WorldWideScience

Sample records for ion range osobennosti

  1. Range and etching behaviour of swift heavy ions in polymers

    Science.gov (United States)

    Singh, Lakhwant; Singh, Mohan; Samra, Kawaljeet Singh; Singh, Ravinder

    Aliphatic (CR-39) and aromatic (Lexan polycarbonate) polymers have been irradiated with a variety of heavy ions such as 58Ni, 93Nb, 132Xe, 139La, 197Au, 208Pb, 209Bi, and 238U having energy ranges of 5.60-8.00 MeV/n in order to study the range and etching kinetics of heavy ion tracksE The ion fluence (range ˜104-105 ions/cm2) was kept low to avoid the overlapping of etched tracks. The measured values of maximum etched track length were corrected due to bulk etching and over etching to obtain the actual range. The experimental results of range profiles were compared with those obtained by the most used procedures employed in obtaining range and stopping power. The range values of present ions have been computed using the semiempirical codes (SRIM-98, SRIM-2003.26, and LISE++:0-[Hub90]) in order to check their accuracy. The merits and demerits of the adopted formulations have been highlighted in the present work. It is observed that the range of heavy ions is greater in aromatic polymers (Lexan polycarbonate) as compared to the aliphatic polymers (CR-39) irradiated with similar ions having same incident energies. The SRIM-98 and SRIM2003.26 codes don't show any significant trend in deviations, however, LISE++:0-[Hub90] code provides overall good agreement with the experimental values. The ratio of track etch rate (along projectile trajectory) to the bulk etch rate has also been studied as a function of energy loss of heavy ions in these polymers.

  2. Solar Wind Electric Fields in the Ion Cyclotron Frequency Range

    CERN Document Server

    Kellogg, P J; Mozer, F S; Horbury, T S; Reme, H

    2006-01-01

    Measurements of fluctuations of electric fields in the frequency range from a fraction of one Hz to 12.5 Hz are presented, and corrected for the Lorentz transformation of magnetic fluctuations to give the electric fields in the plasma frame. The electric fields are large enough to provide the dominant force on the ions of the solar wind in the region near the ion cyclotron frequency of protons, larger than the force due to magnetic fluctuations. They provide sufficient velocity space diffusion or heating to counteract conservation of magnetic moment in the expanding solar wind to maintain nearly isotropic velocity distributions.

  3. On cluster ions, ion transmission, and linear dynamic range limitations in electrospray (ionspray) mass spectrometry

    NARCIS (Netherlands)

    Zook, D.R; Bruins, A.P.

    1997-01-01

    The ion transmission in Electrospray (Ionspray) Mass Spectrometry (ESMS) was studied in order to examine the instrumental factors potentially contributing to observed ESMS linear dynamic range (LDR) limitations. A variety of means used for the investigation of ion transmission demonstrated that a su

  4. Ion range measurements using fluorescent nuclear track detectors

    DEFF Research Database (Denmark)

    Klimpki, G.; Osinga, J.-M.; Herrmann, R.;

    2013-01-01

    Fluorescent nuclear track detectors (FNTDs) show excellent detection properties for heavy charged particles and have, therefore, been investigated in this study in terms of their potential for in-vivo range measurements. We irradiated FNTDs with protons as well as with C, Mg, S, Fe and Xe ion beams...... (3–9 MeV/u) over a broad range of fluences (4.5e5–1.0e11 cm−2) with the detectors' optical c-axis positioned perpendicular to the beam direction. All measured ion ranges (for single track as well as track bulk intensity irradiations) deviate less than 3% from tabulated SRIM data (Ziegler et al., 2009...

  5. Improved Wide Operating Temperature Range of Li-Ion Cells

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2013-01-01

    Future NASA missions aimed at exploring the Moon, Mars, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications including landers, rovers, penetrators, CEV, CLV, etc. This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. The Department of Energy (DoE) has identified a number of technical barriers associated with the development of Liion rechargeable batteries for PHEVs. For this reason, DoE has interest in the development of advanced electrolytes that will improve performance over a wide range of temperatures, and lead to long life characteristics (5,000 cycles over a 10-year life span). There is also interest in improving the high-voltage stability of these candidate electrolyte systems to enable the operation of up to 5 V with high specific energy cathode materials. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, the rate capability at the lower temperatures is very poor. In addition, the low-temperature performance typically deteriorates rapidly upon being exposed to high temperatures. A number of electrolyte formulations were developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl propionate (MP)-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalate borate) (LiBOB), which have previously been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. These MP-based electrolytes with additives have been shown to have improved performance in experiments with MCMB-LiNiCoAlO2 cells.

  6. Controlled long-range interactions between Rydberg atoms and ions

    Science.gov (United States)

    Secker, T.; Gerritsma, R.; Glaetzle, A. W.; Negretti, A.

    2016-07-01

    We theoretically investigate trapped ions interacting with atoms that are coupled to Rydberg states. The strong polarizabilities of the Rydberg levels increase the interaction strength between atoms and ions by many orders of magnitude, as compared to the case of ground-state atoms, and may be mediated over micrometers. We calculate that such interactions can be used to generate entanglement between an atom and the motion or internal state of an ion. Furthermore, the ion could be used as a bus for mediating spin-spin interactions between atomic spins in analogy to much employed techniques in ion-trap quantum simulation. The proposed scheme comes with attractive features as it maps the benefits of the trapped-ion quantum system onto the atomic one without obviously impeding its intrinsic scalability. No ground-state cooling of the ion or atom is required and the setup allows for full dynamical control. Moreover, the scheme is to a large extent immune to the micromotion of the ion. Our findings are of interest for developing hybrid quantum information platforms and for implementing quantum simulations of solid-state physics.

  7. Controlled long-range interactions between Rydberg atoms and ions

    CERN Document Server

    Secker, Thomas; Glaetzle, Alexander W; Negretti, Antonio

    2016-01-01

    We theoretically investigate trapped ions interacting with atoms that are coupled to Rydberg states. The strong polarizabilities of the Rydberg levels increases the interaction strength between atoms and ions by many orders of magnitude, as compared to the case of ground state atoms, and may be mediated over micrometers. We calculate that such interactions can be used to generate entanglement between an atom and the motion or internal state of an ion. Furthermore, the ion could be used as a bus for mediating spin-spin interactions between atomic spins in analogy to much employed techniques in ion trap quantum simulation. The proposed scheme comes with attractive features as it maps the benefits of the trapped ion quantum system onto the atomic one without obviously impeding its intrinsic scalability. No ground state cooling of the ion or atom is required and the setup allows for full dynamical control. Moreover, the scheme is to a large extent immune to the micromotion of the ion. Our findings are of interest...

  8. Ion Stopping Powers and Ranges Whenever You Need Them

    DEFF Research Database (Denmark)

    Bassler, Niels; Christensen, Casper; Tørresø, Jesper Rosholm

    A new app "Electronic Stopping Power" for Android mobile phones and tablets, looks up stopping powers using the ICRU 49 (protons and alphas) and the revised ICRU 73 (lithium and heavier ions) tables. In addition, also MSTAR and an implementation of the Bethe equation expanded to low energies...

  9. Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions

    Science.gov (United States)

    SRD 124 Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (Web, free access)   The databases ESTAR, PSTAR, and ASTAR calculate stopping-power and range tables for electrons, protons, or helium ions. Stopping-power and range tables can be calculated for electrons in any user-specified material and for protons and helium ions in 74 materials.

  10. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry for carbon-ion beams

    CERN Document Server

    Kanematsu, Nobuyuki; Ogata, Risa

    2012-01-01

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. Ideally, such material should be water equivalent as well as that for dosimetry. In this study, we evaluated dosimetric water equivalency of four common plastics, HDPE, PMMA, PET, and POM, by uniformity of effective densities for carbon-ion-beam interactions. Methods: Using the Bethe formula for stopping, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, we calculated the effective densities of the plastics for these interactions. We tested HDPE, PMMA, and POM in carbon-ion-beam experiment and measured attenuations of carbon ions, which were compared with empirical linear-attenuation-model calculations. Results: The theoretical calculations resulted in reduced multiple scattering and increased nuclear interactions for HDPE compared to water, which ...

  11. Mutagenic effects of carbon ions near the range end in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@jaea.go.jp [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Ryouhei; Nozawa, Shigeki; Narumi, Issay [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-03-01

    To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425 keV/{mu}m) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113 keV/{mu}m). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113 keV/{mu}m carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>{approx}30 kb) were six times more frequently induced by carbon ions near the range end. When 352 keV/{mu}m neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113 keV/{mu}m carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.

  12. Luminescence imaging of water during carbon-ion irradiation for range estimation.

    Science.gov (United States)

    Yamamoto, Seiichi; Komori, Masataka; Akagi, Takashi; Yamashita, Tomohiro; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri; Toshito, Toshiyuki

    2016-05-01

    The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom's luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  13. Range of plasma ions in cold cluster gases near the critical point

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G. [Cyclotron Institute, Texas A& M University, 77843 College Station, TX (United States); Quevedo, H.J. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Bonasera, A., E-mail: abonasera@comp.tamu.edu [Cyclotron Institute, Texas A& M University, 77843 College Station, TX (United States); Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Donovan, M.; Dyer, G.; Gaul, E. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Guardo, G.L. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Gulino, M. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Libera Universita' Kore, 94100 Enna (Italy); La Cognata, M.; Lattuada, D. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Palmerini, S. [Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Pizzone, R.G.; Romano, S. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Smith, H. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Trippella, O. [Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Anzalone, A.; Spitaleri, C. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Ditmire, T. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States)

    2017-05-18

    We measure the range of plasma ions in cold cluster gases by using the Petawatt laser at the University of Texas-Austin. The produced plasma propagated in all directions some hitting the cold cluster gas not illuminated by the laser. From the ratio of the measured ion distributions at different angles we can estimate the range of the ions in the cold cluster gas. It is much smaller than estimated using popular models, which take only into account the slowing down of charged particles in uniform matter. We discuss the ion range in systems prepared near a liquid–gas phase transition. - Highlights: • We present experimental results obtained at the UT Petawatt laser facility, Austin, TX. • The ion range is strongly modified for cluster gases as compared to its value in a homogeneous system. • Large fluctuations are found if the cluster gas is prepared near the liquid–gas phase transition region.

  14. Extending the dynamic range of the ion trap by differential mobility filtration.

    Science.gov (United States)

    Hall, Adam B; Coy, Stephen L; Kafle, Amol; Glick, James; Nazarov, Erkinjon; Vouros, Paul

    2013-09-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation.

  15. Multidiagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    Energy Technology Data Exchange (ETDEWEB)

    Anoop, K. K.; Polek, M. P.; Bruzzese, R.; Amoruso, S.; Harilal, Sivanandan S.

    2015-02-28

    The ions dynamics in ultrafast laser ablation of metals is studied over a fluence range spanning from the ablation threshold up to ~75 J/cm2 by means of three established diagnostic techniques. Langmuir probe, Faraday cup and spectrally resolved ICCD imaging simultaneously monitor the laser-produced plasma ions produced during ultrafast laser ablation of a copper target. The fluence dependence of ion yield is analyzed observing the occurrence of three different regimes. Moreover, the specific ion yield shows a maximum at about 4-5 J/cm2, followed by a gradual reduction and a transition to a high-fluence regime above ~50 J/cm2. The fluence variation of the copper ions angular distribution is also analyzed, observing a gradual increase of forward peaking of Cu ions for fluences up to ~10 J/cm2. Then, a broader ion component is observed at larger angles for fluences larger than ~10 J/cm2. Finally, an experimental characterization of the ions angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ~66 J/cm2. Interestingly, the ion emission from the volatile metals show a narrow forward peaked distribution and a high peak ion yield compared to the refractory metals. Moreover, the width of ion angular distributions presents a striking correlation with the peak ion yield.

  16. Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration

    Science.gov (United States)

    Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon

    2013-01-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3-D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation. PMID:23797861

  17. Method for enhancing the resolving power of ion mobility separations over a limited mobility range

    Science.gov (United States)

    Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D

    2014-09-23

    A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.

  18. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    Science.gov (United States)

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications.

  19. Mechanism of Long-Range Penetration of Low-Energy Ions in Botanic Samples

    Institute of Scientific and Technical Information of China (English)

    刘峰; 王宇钢; 薛建明; 王思学; 杜广华; 颜莎; 赵渭江

    2002-01-01

    We present experimental evidence to reveal the mechanism of long-range penetration of low-energy ions in botanic samples. In the 100keV Ar+ ion transmission measurement, the result confirmed that low-energy ions could penetrate at least 60μm thick kidney bean slices with the probability of about 1.0 × 10-5. The energy spectrum of 1 MeV He+ ions penetrating botanic samples has shown that there is a peak of the count of ions with little energy loss. The probability of the low-energy ions penetrating the botanic sample is almost the same as that of the high-energy ions penetrating the same samples with little energy loss. The results indicate that there are some micro-regions with mass thickness less than the projectile range of low-energy ions in the botanic samples and they result in the long-range penetration of low-energy ions in botanic samples.

  20. Expanded Operational Temperature Range for Space Rated Li-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's response to this solicitation calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life...

  1. Expanded Operational Temperature Range for Space Rated Li-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's Phase II proposal calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life capabilities. To...

  2. Determination of metal ions by fluorescence anisotropy exhibits a broad dynamic range

    Science.gov (United States)

    Thompson, Richard B.; Maliwal, Badri P.; Fierke, Carol A.

    1998-05-01

    Recently, we have shown that metal ions free in solution may be determined at low levels by fluorescence anisotropy (polarization) measurements. Anisotropy measurements enjoy the advantages of wavelength ratiometric techniques for determining metal ions such as calcium, because anisotropy measurements are ratiometric as well. Furthermore, fluorescence anisotropy may be imaged in the microscope. An advantage of anisotropy not demonstrated for wavelength ratiometric approaches using indicators such as Fura-2 and Indo-1 is that under favorable circumstances anisotropy-based determinations exhibit a much broader dynamic range in metal ion concentration. Determinations of free Zn(II) in the picomolar range are demonstrated.

  3. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry in carbon-ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Nobuyuki; Koba, Yusuke; Ogata, Risa [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2013-04-15

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. In dosimetry, solid phantoms are often used for convenience. These materials should ideally be equivalent to water. In this study, the authors evaluated dosimetric water equivalence of four common plastics, high-density polyethylene (HDPE), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polyoxymethylene (POM). Methods: Using the Bethe formula for energy loss, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, the authors calculated the effective densities of the plastics for these interactions. The authors experimentally measured variation of the Bragg peak of carbon-ion beams by insertion of HDPE, PMMA, and POM, which were compared with analytical model calculations. Results: The theoretical calculation resulted in slightly reduced multiple scattering and severely increased nuclear interactions for HDPE, compared to water and the other plastics. The increase in attenuation of carbon ions for 20-cm range shift was experimentally measured to be 8.9% for HDPE, 2.5% for PMMA, and 0.0% for POM while PET was theoretically estimated to be in between PMMA and POM. The agreement between the measurements and the calculations was about 1% or better. Conclusions: For carbon-ion beams, POM was dosimetrically indistinguishable from water and the best of the plastics examined in this study. The poorest was HDPE, which would reduce the Bragg peak by 0.45% per cm range shift, although with marginal superiority for reduced multiple scattering. Between the two clear plastics, PET would be superior to PMMA in dosimetric water equivalence.

  4. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions

    Science.gov (United States)

    Donahue, William; Newhauser, Wayne D.; Ziegler, James F.

    2016-09-01

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  5. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions.

    Science.gov (United States)

    Donahue, William; Newhauser, Wayne D; Ziegler, James F

    2016-09-01

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  6. Ion Accumulation Approaches for Increasing Sensitivity and Dynamic Range in the Analysis of Complex Samples

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Mikhail E.; Ibrahim, Yehia M.; Smith, Richard D.

    2010-05-25

    EXTERNAL ACCUMULATION OF IONS FOR FTICR DETECTION The need for higher mass accuracy and precision in analysis of e.g. biological compounds is now commonly addressed by storing charged particles in an ion trap using a superposition of the constant static magnetic and spatially inhomogeneous electric fields, often referred to as Penning trap. The Penning trap has been successfully employed in Fourier Transform Ion Cyclotron Resonance (FTICR) MS instrumentation. Since its inception in 1973,1 FTICR has been the subject of multiple reviews,2-9 several journal issues10,11 and books12,13 that give a full-range technical introduction to both single ion and more populated ion clouds (a group of ions who’s motion is to some extent influenced by the other ions in the cloud) behavior in combined magnetic and electric fields, subsequent signal processing, and technique applications. Principles and design of geometric and electrical configurations of ICR traps have been also reviewed.14 The reader is referred to these publications for more information. Herein, we will give a brief overview of the ion cloud behavior in the superimposed magnetic and electric fields, with an emphasis on ICR trap design, and highlight FTICR performance improvements due to accumulation of ions in another trap external to FTICR.

  7. Ion implantation range and energy deposition codes COREL, RASE4, and DAMG2

    Energy Technology Data Exchange (ETDEWEB)

    Brice, D.K.

    1977-07-01

    The FORTRAN codes COREL, RASE4 and DAMG2 can be used to calculate quantities associated with ion implantation range and energy deposition distributions within an amorphous target, or for ions incident far from low index directions and planes in crystalline targets. RASE4 calculates the projected range, R/sub p/, the root mean square spread in the projected range, ..delta..R/sub p/, and the root mean square spread of the distribution perpendicular to the projected range ..delta..R/sub perpendicular to/. These parameters are calculated as a function of incident ion energy, E, and the instantaneous energy of the ion, E'. They are sufficient to determine the three dimensional spatial distribution of the ions in the target in the Gaussian approximation when the depth distribution is independent of the lateral distribution. RASE4 can perform these calculations for targets having up to four different component atomic species. The code COREL is a short, economical version of RASE4 which calculates the range and straggling variables for E' = 0. Its primary use in the present package is to provide the average range and straggling variables for recoiling target atoms which are created by the incident ion. This information is used by RASE4 in calculating the redistribution of deposited energy by the target atom recoils. The code DAMG2 uses the output from RASE4 to calculate the depth distribution of energy deposition into either atomic processes or electronic processes. With other input DAMG2 can be used to calculate the depth distribution of any energy dependent interaction between the incident ions and target atoms. This report documents the basic theory behind COREL, RASE4 and DAMG2, including a description of codes, listings, and complete instructions for using the codes, and their limitations.

  8. Lithium-ion battery dynamic model for wide range of operating conditions

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef

    2017-01-01

    In order to analyze the dynamic behavior of a Lithium-ion (Li-ion) battery and to determine their suitability for various applications, battery models are needed. An equivalent electrical circuit model is the most common way of representing the behavior of a Li-ion battery. There are different...... characterization tests performed for a wide range of operating conditions (temperature, load current and state-ofcharge) on a commercial available 13Ah high-power lithium titanate oxide battery cell. The obtained results were used to parametrize the proposed dynamic model of the battery cell. To assess...

  9. Towards highest peak intensities for ultra-short MeV-range ion bunches

    Science.gov (United States)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-07-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

  10. Technical Note: Experimental carbon ion range verification in inhomogeneous phantoms using prompt gammas

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, M.; Dauvergne, D.; Dedes, G.; Krimmer, J.; Ray, C.; Testa, E., E-mail: e.testa@ipnl.in2p3.fr; Testa, M. [IPNL, Université de Lyon, Lyon F-69003 |(France); Université Lyon 1, Villeurbanne F-69622 (France); CNRS/IN2P3, UMR 5822, Villeurbanne F-69622 (France); De Rydt, M. [IPNL, Université de Lyon, Lyon F-69003 (France); Université Lyon 1, Villeurbanne F-69622 (France); CNRS/IN2P3, UMR 5822, Villeurbanne F-69622 (France); Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, Leuven B-3001 (Belgium); Freud, N.; Létang, J. M. [CREATIS, Université de Lyon, Lyon F-69003 (France); Université Lyon 1, Villeurbanne F-69622 (France); CNRS UMR 5220, INSERM U1044, INSA-Lyon, Centre Léon Bérard, 69008 Lyon (France)

    2015-05-15

    Purpose: The purpose of this study was to experimentally assess the possibility to monitor carbon ion range variations—due to tumor shift and/or elongation or shrinking—using prompt-gamma (PG) emission with inhomogeneous phantoms. Such a study is related to the development of PG monitoring techniques to be used in a carbon ion therapy context. Methods: A 95 MeV/u carbon ion beam was used to irradiate phantoms with a variable density along the ion path to mimic the presence of bone and lung in homogeneous humanlike tissue. PG profiles were obtained after a longitudinal scan of the phantoms. A setup comprising a narrow single-slit collimator and two detectors placed at 90° with respect to the beam axis was used. The time of flight technique was applied to allow the selection between PG and background events. Results: Using the positions at 50% entrance and 50% falloff of the PG profiles, a quantity called prompt-gamma profile length (PGPL) is defined. It is possible to observe shifts in the PGPL when there are absolute ion range shifts as small as 1–2 mm. Quantitatively, for an ion range shift of −1.33 ± 0.46 mm (insertion of a Teflon slab), a PGPL difference of −1.93 ± 0.58 mm and −1.84 ± 1.27 mm is obtained using a BaF{sub 2} and a NaI(Tl) detector, respectively. In turn, when an ion range shift of 4.59 ± 0.42 mm (insertion of a lung-equivalent material slab) is considered, the difference is of 4.10 ± 0.54 and 4.39 ± 0.80 mm for the same detectors. Conclusions: Herein, experimental evidence of the usefulness of employing PG to monitor carbon ion range using inhomogeneous phantoms is presented. Considering the homogeneous phantom as reference, the results show that the information provided by the PG emission allows for detecting ion range shifts as small as 1–2 mm. When considering the expected PG emission from an energy slice in a carbon ion therapy scenario, the experimental setup would allow to retrieve the same PGPL as the high statistics of

  11. Range Measurements of keV Hydrogen Ions in Solid Oxygen and Carbon Monoxide

    DEFF Research Database (Denmark)

    Schou, Jørgen; Sørensen, H.; Andersen, H.H.

    1984-01-01

    Ranges of 1.3–3.5 keV/atom hydrogen and deuterium molecular ions have been measured by a thin-film reflection method. The technique, used here for range measurements in solid oxygen and carbon monoxide targets, is identical to the one used previously for range measurements in hydrogen and nitrogen....... The main aim was to look for phase-effects, i.e. gas-solid differences in the stopping processes. While measured ranges in solid oxygen were in agreement with known gas data, the ranges in solid carbon monoxide were up to 50% larger than those calculated from gas-stopping data. The latter result agrees...

  12. Multidiagnostic analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    Energy Technology Data Exchange (ETDEWEB)

    Anoop, K. K., E-mail: anoop.kiliyanamkandy@unina.it; Bruzzese, R.; Amoruso, S. [CNR-SPIN and Dipartimento di Fisica, Universita degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, Napoli 80126 (Italy); Polek, M. P. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Harilal, S. S. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States)

    2015-02-28

    The dynamics of ions in ultrafast laser ablation of metals is studied over fluences ranging from the ablation threshold up to ≈75 J/cm{sup 2} by means of three well-established diagnostic techniques. Langmuir probe, Faraday cup, and spectrally resolved intensified charge coupled device imaging simultaneously monitored the ions produced during ultrafast laser ablation of a pure copper target with 800 nm, ≈50 fs, Ti: Sapphire laser pulses. The fluence dependence of ion yield is analyzed, resulting in the observance of three different regimes. The specific ion yield shows a maximum at about 4–5 J/cm{sup 2}, followed by a gradual reduction and a transition to a high-fluence regime above ≈50 J/cm{sup 2}. The fluence dependence of the copper ions angular distribution is also analyzed, observing a gradual increase in forward-peaking of Cu ions for fluences up to ≈10 J/cm{sup 2}. A broader ion component is observed at larger angles for fluences larger than ≈10 J/cm{sup 2}. Finally, an experimental characterization of the ionic angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ≈66 J/cm{sup 2}. Interestingly, the ion emission from the volatile metals shows a narrow, forward-peaked distribution, and a high peak ion yield compared to the refractory metals. Moreover, the width of ionic angular distributions presents a striking correlation with the peak ion yield.

  13. Trapped-ion quantum simulation of tunable-range Heisenberg chains

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Tobias [ICFO-Institut de Ciencies Fotoniques, Castelldefels, Barcelona (Spain); Lewenstein, Maciej [ICFO-Institut de Ciencies Fotoniques, Castelldefels, Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain)

    2014-12-01

    Quantum-optical techniques allow for generating controllable spin-spin interactions between ions, making trapped ions an ideal quantum simulator of Heisenberg chains. A single parameter, the detuning of the Raman coupling, allows to switch between ferromagnetic and antiferromagnetic chains, and to modify the range of the interactions. On the antiferromagnetic side, the system can be tuned from an extreme long-range limit, in which any pair of ions interacts with almost equal strength, to interactions with a decay. By exact diagonalization, we study how a system of up to 20 ions behaves upon tuning the interactions. We find that it undergoes a transition from a dimerized state with extremely short-ranged correlations towards a state with quasi long-range order, that is, algebraically decaying correlations. The dynamical evolution of the system after a local quench is shown to strongly vary in the two regimes: While in the dimerized limit, the excitation remains localized for long times, propagating spinons characterize the dynamics of the quasi-long-range ordered system. Taking a look onto the ferromagnetic side of the system, we demonstrate the feasibility of witnessing non-locality of quantum correlations by measuring two-particle correlators. (orig.)

  14. Influence of nuclear interactions in polyethylene range compensators for carbon-ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Nobuyuki, E-mail: nkanemat@nirs.go.jp; Koba, Yusuke; Ogata, Risa [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Himukai, Takeshi [Ion Beam Therapy Center, SAGA HIMAT Foundation, 415 Harakoga-machi, Tosu, Saga 841-0071 (Japan)

    2014-07-15

    Purpose: A recent study revealed that polyethylene (PE) would cause extra carbon-ion attenuation per range shift by 0.45%/cm due to compositional differences in nuclear interactions. The present study aims to assess the influence of PE range compensators on tumor dose in carbon-ion radiotherapy. Methods: Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles, for each of which the dose and the relative biological effectiveness (RBE) were estimated at a tumor depth in the middle of spread-out Bragg peak. Assuming exponential behavior for attenuation and yield of these components with depth, the PE effect on dose was calculated for clinical carbon-ion beams and was partly tested by experiment. The two-component model was integrated into a treatment-planning system and the PE effect was estimated in two clinical cases. Results: The attenuation per range shift by PE was 0.1%–0.3%/cm in dose and 0.2%–0.4%/cm in RBE-weighted dose, depending on energy and range-modulation width. This translates into reduction of RBE-weighted dose by up to 3% in extreme cases. In the treatment-planning study, however, the effect on RBE-weighted dose to tumor was typically within 1% reduction. Conclusions: The extra attenuation of primary carbon ions in PE was partly compensated by increased secondary particles for tumor dose. In practical situations, the PE range compensators would normally cause only marginal errors as compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response.

  15. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Rastbood, E. [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of); Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  16. Long-range effect of ion implantation of Raex and Hardox steels

    Science.gov (United States)

    Budzyński, P.; Kamiński, M.; Droździel, A.; Wiertel, M.

    2016-09-01

    Ion implantation involves introduction of ionized atoms of any element (nitrogen) to metals thanks to the high kinetic energy that they acquired in the electric field. The distribution of nitrogen ions implanted at E = 65 keV energy and D = 1.1017 N+ /cm2 fluence in the steel sample and vacancies produced by them was calculated using the SRIM program. This result was confirmed by RBS measurements. The initial maximum range of the implanted nitrogen ions is ∼⃒0.17 μm. This value is relatively small compared to the influence of nitriding on the thickness surface layer of modified steel piston rings. Measurements of the friction coefficient during the pin-on-disc tribological test were performed under dry friction conditions. The friction coefficient of the implanted sample increased to values characteristic of an unimplanted sample after ca. 1500 measurement cycles. The depth of wear trace is ca. 2.4 μm. This implies that the thickness of the layer modified by the implantation process is ∼⃒2.4 μm and exceeds the initial range of the implanted ions by an order of magnitude. This effect, referred to as a long-range implantation effect, is caused by migration of vacancies and nitrogen atoms into the sample. This phenomenon makes ion implantation a legitimate process of modification of the surface layer in order to enhance the tribological properties of critical components of internal combustion engines such as steel piston rings.

  17. Experimental measurement of the correlation between CT number and heavy ion range

    Institute of Scientific and Technical Information of China (English)

    HE Peng-Bo; LI Qiang; LIU Xin-Guo; YE Fei; DAI Zhong-Ying

    2012-01-01

    For precision delivery of the Bragg peak of a heavy-ion beam to a target volume in ion beam therapy,it is necessary to know the tissue stopping power.A general approach to solve this problem in ion beam therapy is to convert X-ray CT (computed tomography) numbers into water-equivalent path length (WEPL) coefficients using a CT-WEPL calibration curve for all voxels traversed by the beam.This work aims at establishing a CT-WEPL coefficient calibration curve for the heavy ion therapy project at IMP,so as to compute the range of carbon ion beams in tissues easily according to the patient CT data.Several tissueequivalent materials wcrc applicd to measure their WEPL coefficients using a high-energy carbon ion beam in this work.A CT-WEPL calibration curve was obtained through fitting the measured data,which can be used directly for dose optimization and facilitates the design of patient treatment plans significantly at IMP.

  18. The influence of metal artefacts on the range of ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Jaekel, Oliver; Reiss, Petra [German Cancer Research Center - Deutsches Krebsforschungszentrum, Division for Medical Physics in Radiotherapy (E040), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2007-02-07

    The influence of artefacts due to metal implants on the range of ion beams is investigated, using a geometrically well-defined head and pelvic phantom together with inserts from steel, titanium and tungsten. The ranges along various beam paths including artefacts were calculated from the TPS and compared to known calculations for phantoms without any insert. In the head phantom, beams intersecting the streak artefacts lead to errors in the range of around or below 1%, which is mainly due to a cancellation of various effects. Beams through the metal or close to it show an underestimation of 3.5% of the range for tungsten. For the pelvic phantom, a large underestimation of the range is observed for a lateral path through the metal insert. In the case of tungsten and steel, range errors of -5% and -18% are observed, respectively. Such beam paths are typically used for pelvic tumours in radiotherapy with ion beams. For beams in the anterior-posterior direction through the inserts, an overestimation of ion ranges of up to 3% for titanium and 8% for steel is expected, respectively. Beam paths outside the metal insert show a large cancellation for the lateral beams (leading to errors of around 1% only) and somewhat higher errors for anterior-posterior beams (around 3% for titanium and 6% for steel). The analysis of CT data of patients with dental implants of gold as compared to patients with healthy teeth also showed a significant effect of the artefacts on the distribution of HU in the data, namely a redistribution of HU to higher and lower values as compared to patients with healthy teeth. The corresponding mean range variation was a 2.5% reduction in the data with artefacts as compared to the data without artefacts. It is concluded that beam paths through metal implants should generally be avoided in proton and ion therapy. In this case, the underestimation of ion range due to artefacts alone may amount to 3% for dental fillings and up to 5% and 18% for hip prosthesis

  19. Pulsed ion hall accelerator for investigation of reactions between light nuclei in the astrophysical energy range

    Science.gov (United States)

    Bystritsky, V. M.; Bystritsky, Vit. M.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.

    2017-07-01

    The factors defining the constraints on the current characteristics of the magnetically insulated ion diode (IDM) are considered. The specific current parameters close to the maximum possible ones are obtained for the particular IDM-40 design assigned for acceleration of light ions and investigation of nuclear reactions with small cross sections in the astrophysical energy range (2-40 keV) in the entrance channel. It is experimentally demonstrated that the chosen optimal operation conditions for IDM-40 units provide high stability of the parameters (energy distribution and composition of accelerated particle beams, degree of neutralization) of the accelerated particle flux, which increases during the working pulse.

  20. Insensitivity of Ion Motional Heating Rate to Trap Material over a Large Temperature Range

    CERN Document Server

    Chiaverini, J

    2014-01-01

    We present measurements of trapped-ion motional-state heating rates in niobium and gold surface-electrode ion traps over a range of trap-electrode temperatures from approximately 4 K up to room temperature (295 K) in a single apparatus. Using the sideband-ratio technique after resolved-sideband cooling of single ions to the motional ground state, we find low-temperature heating rates more than two orders of magnitude below the room-temperature values and approximately equal to the lowest measured heating rates in similarly-sized cryogenic traps. We find similar behavior in the two very different electrode materials, suggesting that the anomalous heating process is dominated by non-material-specific surface contaminants. Through precise control of the temperature of cryopumping surfaces, we also identify conditions under which elastic collisions with the background gas can lead to an apparent steady heating rate, despite rare collisions.

  1. On the origin of apparent Z1-oscillations in low-energy heavy-ion ranges

    Science.gov (United States)

    Wittmaack, Klaus

    2016-12-01

    It has been known for quite some time that projected ranges measured by Rutherford backscattering spectrometry for a variety of low-energy heavy ions (energy-to-mass ratio E/M1 less than ∼0.4 keV/u) exhibit significant or even pronounced deviations from the theoretically predicted smooth dependence on the projectile's atomic number Z1. Studied most thoroughly for silicon targets, the effect was attributed to 'Z1 oscillations' in nuclear stopping, in false analogy to the well established Z1 oscillations in electronic stopping of low-velocity light ions. In this study an attempt was made to get order into range data published by four different groups. To achieve the goal, the absolute values of the ranges from each group had to be (re-)adjusted by up to about ±10%. Adequate justification for this approach is provided. With the changes made, similarities and differences between the different sets of data became much more transparent than before. Very important is the finding that the distortions in heavy-ion ranges are not oscillatory in nature but mostly one-sided, reflecting element-specific transport of implanted atoms deeper into the solid. Exceptions are rare gas and alkali elements, known to exhibit bombardment induced transport towards the surface. Range distortions reported for Xe and Cs could be reproduced on the basis of the recently established rapid relocation model. The extent of transport into the bulk, observed with many other elements, notably noble metals and lanthanides, reflects their high mobility under ion bombardment. The complexity of the element specific transport phenomena became fully evident by also examining the limited number of data available for the apparent range straggling. Profile broadening was identified in several cases. One element (Eu) was found to exhibit profile narrowing. This observation suggests that implanted atoms may agglomerate at peak concentrations up to 2%, possibly a tool for generating nano-structured dopant

  2. Ion-exchanged glass waveguides with low birefringence for a broad range of waveguide widths.

    Science.gov (United States)

    Yliniemi, Sanna; West, Brian R; Honkanen, Seppo

    2005-06-01

    Optical communications networks require integrated photonic components with negligible polarization dependence, which typically means that the waveguides must feature very low birefringence. Recent studies have shown that waveguides with low birefringence can be obtained, e.g., by use of silica-on-silicon waveguides or buried ion-exchanged glass waveguides. However, many integrated photonic circuits consist of waveguides with varying widths. Therefore low birefringence is consequently required for waveguides having different widths. This is a difficult task for most waveguide fabrication technologies. We present experimental results on waveguide birefringence for buried silver-sodium ion-exchanged glass waveguides. We show that the waveguide birefringence of the order of 10(-6) for waveguide mask opening widths ranging from 2 to 10 microm can be obtained by postprocessing the sample through annealing at an elevated temperature. The measured values are in agreement with the values calculated with our modeling software for ion-exchanged glass waveguides. This unique feature of ion-exchanged waveguides may be of significant importance in a wide variety of integrated photonic circuits requiring polarization-independent operation.

  3. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Science.gov (United States)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  4. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  5. Long-range interactions between the alkali-metal atoms and alkaline earth ions

    CERN Document Server

    Kaur, Jasmeet; Arora, Bindiya; Sahoo, B K

    2014-01-01

    Accurate knowledge of interaction potentials among the alkali atoms and alkaline earth ions is very useful in the studies of cold atom physics. Here we carry out theoretical studies of the long-range interactions among the Li, Na, K, and Rb alkali atoms with the Ca$^+$, Ba$^+$, Sr$^+$, and Ra$^+$ alkaline earth ions systematically which are largely motivated by their importance in a number of applications. These interactions are expressed as a power series in the inverse of the internuclear separation $R$. Both the dispersion and induction components of these interactions are determined accurately from the algebraic coefficients corresponding to each power combination in the series. Ultimately, these coefficients are expressed in terms of the electric multipole polarizabilities of the above mentioned systems which are calculated using the matrix elements obtained from a relativistic coupled-cluster method and core contributions to these quantities from the random phase approximation. We also compare our estim...

  6. Development of a Compton camera for online ion beam range verification via prompt γ detection

    Energy Technology Data Exchange (ETDEWEB)

    Aldawood, Saad [Ludwig-Maximilians-Universitaet Muenchen (Germany); King Saud University, Riyadh (Saudi Arabia); Lang, Christian; Lutter, Rudolf; Bortfeldt, Jonathan; Parodi, Katia; Thirolf, Peter G. [Ludwig-Maximilians-Universitaet Muenchen (Germany); Kolff, Hugh van der [Ludwig-Maximilians-Universitaet Muenchen (Germany); Delft University of Technology (Netherlands); Maier, Ludwig [Technische Universitaet Muenchen (Germany)

    2014-07-01

    Precise and preferably online ion beam range verification is a mandatory prerequisite to fully exploit the advantages of hadron-therapy in cancer treatment. Our aim is to develop an imaging system based on a Compton camera designed to detect prompt γ rays induced by nuclear reactions between ion beam and biological tissue. The Compton camera prototype consists of a stack of double-sided Si-strip detectors (DSSSD) acting as scatterers, while the absorber is formed by a LaBr{sub 3} scintillator crystal read out by a position-sensitive multi-anode photomultiplier. The LaBr{sub 3} detector was characterized with both absorptive and reflective side-face wrapping materials. Comparative studies of energy and time resolution, photopeak detection efficiency and spatial resolution are presented together with first tests of the complete camera system.

  7. Development of a Compton camera for online ion beam range verification via prompt γ detection

    Energy Technology Data Exchange (ETDEWEB)

    Aldawood, S. [LMU Munich, Garching (Germany); King Saud University, Riyadh (Saudi Arabia); Liprandi, S.; Marinsek, T.; Bortfeldt, J.; Lang, C.; Lutter, R.; Dedes, G.; Parodi, K.; Thirolf, P.G. [LMU Munich, Garching (Germany); Maier, L.; Gernhaeuser, R. [TU Munich, Garching (Germany); Kolff, H. van der [LMU Munich, Garching (Germany); TU Delft (Netherlands); Castelhano, I. [LMU Munich, Garching (Germany); University of Lisbon, Lisbon (Portugal); Schaart, D.R. [TU Delft (Netherlands)

    2015-07-01

    Precise and preferably online ion beam range verification is a mandatory prerequisite to fully exploit the advantages of hadron therapy in cancer treatment. An imaging system is being developed in Garching aiming to detect promptγ rays induced by nuclear reactions between the ion beam and biological tissue. The Compton camera prototype consists of a stack of six customized double-sided Si-strip detectors (DSSSD, 50 x 50 mm{sup 2}, 0.5 mm thick, 128 strips/side) acting as scatterer, while the absorber is formed by a monolithic LaBr{sub 3}:Ce scintillator crystal (50 x 50 x 30 mm{sup 3}) read out by a position-sensitive multi-anode photomultiplier (Hamamatsu H9500). The on going characterization of the Compton camera properties and its individual components both offline in the laboratory as well as online using proton beam are presented.

  8. Studies for the ion cyclotron range of frequency heating in a tokamak fusion experimental device

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, Mikio [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-02-01

    Ion cyclotron range of frequency heating has been investigated as an efficient additional plasma heating and non-inductive current driving methods in a tokamak type fusion experimental device. At first, an ICRF antenna coupling code was developed for the estimation of the coupling properties of phased antenna array, so that the ICRF antennas were designed for JT-60 and JT-60U ICRF heating systems using the coupling codes. The ICRF heating experiments had been performed in JT-60 and JT-60U. The coupling properties of ICRF antenna, the physics of peripheral plasma and energy confinement by ICRF heating in various heating regimes have been investigated. Next, the Toroidicity induced Alfven Eigen (TAE) mode have been studied using minority ICRF heating for producing energetic ions which can excite TAE mode. The TAE mode could be suppressed by current profile control using current ramp operation and lower hybrid current drive. (author) 74 refs.

  9. Theoretical analysis of the EAST 4-strap ion cyclotron range of frequency antenna with variational theory

    Science.gov (United States)

    Zhang, Jia-Hui; Zhang, Xin-Jun; Zhao, Yan-Ping; Qin, Cheng-Ming; Chen, Zhao; Yang, Lei; Wang, Jian-Hua

    2016-08-01

    A variational principle code which can calculate self-consistently currents on the conductors is used to assess the coupling characteristic of the EAST 4-strap ion cyclotron range of frequency (ICRF) antenna. Taking into account two layers of antenna conductors without lateral frame but with slab geometry, the antenna impedances as a function of frequency and the structure of RF field excited inside the plasma in various phasing cases are discussed in this paper. Project supported by the National Magnetic Confinement Fusion Science Program, China (Grant No. 2015GB101001) and the National Natural Science Foundation of China (Grant Nos. 11375236 and 11375235).

  10. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2011-01-01

    Objectives of this work are: (1) Develop advanced Li -ion electrolytes that enable cell operation over a wide temperature range (i.e., -30 to +60C). (2) Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (3) Improve the high voltage stability of these candidate electrolytes systems to enable operation up to 5V with high specific energy cathode materials. (4) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (5) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  11. Theoretical analysis of ion cyclotron range of frequency antenna array for HT-7U

    Institute of Scientific and Technical Information of China (English)

    Zhang Xin-Jun; Qin Cheng-Ming; Zhao Yan-Ping

    2005-01-01

    This paper considers the coupling analysis of phased antenna array designed to excite fast wave in the ion cyclotron range of frequency. The coupling of the antenna is calculated in slab geometry. The coupling code based on the variational principle gives the self-consistent current flowing in the antenna, this method has been extended so that it can be applied to a phased antenna array. As an example, this paper analyses the coupling prosperities of a 2×2phased antenna array. It gives the optimum geometry of antenna array. The fields excited at plasma surface are found to more or less correspond to the antenna current phasing.

  12. Performance of Wide Operating Temperature Range Electrolytes in Quallion Prototype Li-Ion Cells

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Tomcsi, M. R.; Nagata, M.; Visco, V.; Tsukamoto, H.

    2010-01-01

    For a number of applications, there is a continued interest in the development of rechargeable lithium-based batteries that can effectively operate over a wide temperature range (i.e., -40 to +70 deg C). These applications include powering future planetary rovers for NASA, enabling the next generation of automotive batteries for DOE, and supporting many DOD applications. Li-ion technology has been demonstrated to have good performance over a reasonably wide temperature range with many systems; however, there is still a desire to improve the low temperature rate capacity as well as the high temperature resilience. In the current study, we would like to present recent results obtained with prototype Li-Ion cells (manufactured by Quallion, LLC) which include various wide operating temperature range electrolytes developed by both JPL and Quallion. To demonstrate the viability of the technology, a number of performance tests were carried out, including: (a) discharge rate characterization over a wide temperature range (down to -60 deg C) using various rates (up to 20C rates), (b) discharge rate characterization at low temperatures with low temperature charging, (c) variable temperature cycling over a wide temperature range (-40 to +70 deg C), and (d) cycling at high temperature (50 deg C). As will be discussed, impressive rate capability was observed at low temperatures with many systems, as well as good resilience to high temperature cycling. To augment the performance testing on the prototype cells, a number of experimental three electrodes cells were fabricated (including Li reference electrodes) to allow the determination of the lithium kinetics of the respective electrodes and interfacial properties as a function of temperatures.

  13. Short-range ordering of ion-implanted nitrogen atoms in SiC-graphene

    Energy Technology Data Exchange (ETDEWEB)

    Willke, P.; Druga, T.; Wenderoth, M. [IV. Physikalisches Institut der Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Amani, J. A.; Weikert, S.; Hofsäss, H. [II. Physikalisches Institut der Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Thakur, S.; Maiti, K. [Department of Condensed Matter Physics and Materials' Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India)

    2014-09-15

    We perform a structural analysis of nitrogen-doped graphene on SiC(0001) prepared by ultra low-energy ion bombardment. Using scanning tunneling microscopy, we show that nitrogen atoms are incorporated almost exclusively as graphitic substitution in the graphene honeycomb lattice. With an irradiation energy of 25 eV and a fluence of approximately 5 × 10{sup 14 }cm{sup −2}, we achieve a nitrogen content of around 1%. By quantitatively comparing the position of the N-atoms in the topography measurements with simulated random distributions, we find statistically significant short-range correlations. Consequently, we are able to show that the dopants arrange preferably at lattice sites given by the 6 × 6-reconstruction of the underlying substrate. This selective incorporation is most likely triggered by adsorbate layers present during the ion bombardment. This study identifies low-energy ion irradiation as a promising method for controlled doping in epitaxial graphene.

  14. Extended calibration range for prompt photon emission in ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, F. [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Boehlen, T.T.; Chin, M.P.W. [CERN, Geneva (Switzerland); Collamati, F. [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Faccini, R., E-mail: riccardo.faccini@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Ferrari, A. [CERN, Geneva (Switzerland); Lanza, L. [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Mancini-Terracciano, C. [CERN, Geneva (Switzerland); Dipartimento di Fisica, Università Roma Tre, Roma (Italy); Marafini, M. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Mattei, I. [Dipartimento di Fisica, Università Roma Tre, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Morganti, S. [INFN Sezione di Roma, Roma (Italy); Ortega, P.G. [CERN, Geneva (Switzerland); Patera, V. [Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Piersanti, L. [Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Russomando, A. [Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Sala, P.R. [INFN Sezione di Milano, Milano (Italy); and others

    2014-05-01

    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum. This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80 MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is reported.

  15. Extended calibration range for prompt photon emission in ion beam irradiation

    CERN Document Server

    Bellini, F.

    2014-01-01

    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum.This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is report...

  16. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, Alla [Univ. of Nevada, Reno, NV (United States)

    2014-03-14

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, the aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are needed for

  17. Theoretical photoionization spectra in the UV photon energy range for a Mg-like Al+ ion

    Science.gov (United States)

    Kim, Dae-Soung; Kim, Young Soon

    2008-08-01

    In the present work, we report the photoionization cross sections of the Al+ ion calculated for the photon energy range 20-26 eV and 30-50 eV. We have expanded our previous calculation (2007 J. Phys. Soc. Japan 76 014302) with an optimized admixture of the initial ground state 3s21S and exited states 3s3p1,3P, 3s3d1,3D and 3s4s1,3S, and obtained significantly improved predictions for the main background and autoionizing resonance structures of the reported experimental spectra. The absolute measurements of the photoionization cross sections of the Al+ ion in these energy ranges have been performed by West et al (2001 Phys. Rev. A 63 052719), and they reported that the prominent peaks around 21 eV were attributed to the effects of the significant influence of the small fraction of the fourth-order radiation with energies around 84 eV from the synchrotron source. In our previous work, the main shape for these cross sections was calculated assuming an admixture of initial 3s21S and 3s3p3P states, only with a rough overall estimate for the experimental spectra in the photon energy range 20-26 eV, and without these peaks around 21 eV. The report of the experimental assignment attributes these peaks to the excitation of a 2p electron from the core. However, our present results with the new admixture reveal similar peaks without considering the possibility of the core excitation.

  18. Alfv\\'en wave phase-mixing and damping in the ion cyclotron range of frequencies

    CERN Document Server

    Threlfall, J W; De Moortel, I

    2010-01-01

    Aims. To determine the effect of the Hall term in the generalised Ohm's law on the damping and phase mixing of Alfv\\'en waves in the ion cyclotron range of frequencies in uniform and non-uniform equilibrium plasmas. Methods. Wave damping in a uniform plasma is treated analytically, whilst a Lagrangian remap code (Lare2d) is used to study Hall effects on damping and phase mixing in the presence of an equilibrium density gradient. Results. The magnetic energy associated with an initially Gaussian field perturbation in a uniform resistive plasma is shown to decay algebraically at a rate that is unaffected by the Hall term to leading order in k^2di^2 where k is wavenumber and di is ion skin depth. A similar algebraic decay law applies to whistler perturbations in the limit k^2di^2>>1. In a non-uniform plasma it is found that the spatially-integrated damping rate due to phase mixing is lower in Hall MHD than it is in MHD, but the reduction in the damping rate, which can be attributed to the effects of wave dispers...

  19. A lithium-ion capacitor model working on a wide temperature range

    Science.gov (United States)

    Barcellona, S.; Piegari, L.

    2017-02-01

    Energy storage systems are spreading both in stationary and transport applications. Among innovative storage devices, lithium ion capacitors (LiCs) are very interesting. They combine the advantages of both traditional electric double layer capacitors (EDLCs) and lithium ion batteries (LiBs). The behavior of this device is much more similar to ELDCs than to batteries. For this reason, several models developed for traditional ELDCs were extended to LiCs. Anyway, at low temperatures LiCs behavior is quite different from ELDCs and it is more similar to a LiB. Consequently, EDLC models works fine at room temperature but give worse results at low temperatures. This paper proposes a new electric model that, overcoming this issue, is a valid solution in a wide temperature range. Based on only five parameters, depending on polarization voltage and temperature, the proposed model is very simple to be implemented. Its accuracy is verified through experimental tests. From the reported results, it is also shown that, at very low temperatures, the dependence of the resistance from the current has to be taken into account.

  20. Detection of lead ions in picomolar concentration range using underpotential deposition on silver nanoparticles-deposited glassy carbon electrodes.

    Science.gov (United States)

    Sivasubramanian, R; Sangaranarayanan, M V

    2011-09-30

    The efficacy of silver-deposited glassy carbon electrode for the determination of lead ions at the sub-nanomolar concentration ranges is investigated. The silver nanoparticles are electrodeposited on glassy carbon electrode using chronoamperometry and the electrode surface is characterized using SEM. Lead ions are detected in the region of underpotential deposition. The analysis is performed in square wave mode in the stripping voltammetry without the removal of oxygen. The detection limit of 10 pM has been obtained with a constant potential of -0.7 V during the electrodeposition step for a period of 50s. The interference of surfactants in the detection of lead ions is also studied.

  1. Orbit-averaged quasilinear diffusion operator in the ion-cyclotron range of frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Belmondo, V; Bilato, R; Brambilla, M; Maj, O, E-mail: vtb@ipp.mpg.de

    2010-11-01

    The absorption of radio-frequency waves in the ion-cyclotron range of frequencies (ICRF) in fusion plasmas is adequately described in the frame of the quasilinear theory. A peculiarity of ICRF heating is to increase the fraction of trapped particles, whose the guiding-center trajectories are typically banana orbits with finite width. One possible way to properly account for the effects due to the finite-width orbits is provided by the orbit-averaged quasilinear theory. Here, we propose a routine for the evaluation of the orbit-averaged quasilinear diffusion tensor, given the the wave fields from the full wave code TORIC. Particular care is taken in the evaluation of the contribution of each wave-particle resonance as well as for the transition between the two regimes of correlated and uncorrelated resonances along the orbit. We discuss the quasilinear diffusion coefficient thus obtained and validate the result by comparing the power deposition profile computed from the orbit-averaged quasilinear operator with the one determined by TORIC. For future applications, a novel algorithm for the calculation of the corresponding Monte Carlo operators is also presented.

  2. Performance of wide temperature range electrolytes for Li-Ion capacitor pouch cells

    Science.gov (United States)

    Cappetto, A.; Cao, W. J.; Luo, J. F.; Hagen, M.; Adams, D.; Shelikeri, A.; Xu, K.; Zheng, J. P.

    2017-08-01

    Four types of wide temperature-range electrolyte formulations based on carbonate and carboxylate esters were evaluated at various temperatures in lithium-ion capacitor (LIC) pouch cells consisting of both hard carbon (HC) and graphite negative electrodes (NEs) with thin lithium foil and an activated carbon (AC) positive electrodes (PEs). The electrolytes containing methyl butyrate (MB) with various additives enabled the LIC to operate at -40 °C, where all electrolytes based only on carbonates fail. MB-containing electrolyte with lithium Difluoro(oxalato)borate (LiDFOB) as additive showed the best cycling performance over 5000 cycles. Lithium plating also occurred on graphite NEs when charged at low temperatures starting at -20 °C, which resulted in the non-linear curves. When charged at 30 °C and discharged at -40 °C, graphite NE based LIC displayed regular linear charge-discharge curves without lithium plating. In comparison, HC NE based LICs showed better capacity retention at -40 °C and no signs of lithium plating. It could be concluded that low temperature performance of LIC was influenced by both electrolyte formulations and negative electrode material.

  3. Probing short-range nucleon-nucleon interactions with an electron-ion collider

    Science.gov (United States)

    Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju

    2016-04-01

    We derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of "pointlike" and "geometric" Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J /ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN˜12 GeV2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such "knockout" exclusive reactions in light and heavy nuclei.

  4. Ion-selective electrode and anion gap range: What should the anion gap be?

    Directory of Open Access Journals (Sweden)

    Sadjadi SA

    2013-06-01

    Full Text Available Seyed-Ali Sadjadi, Rendell Manalo, Navin Jaipaul, James McMillan Jerry L Pettis Memorial Veterans Medical Center, Loma Linda University School of Medicine, Loma Linda, CA, USA Background: Using flame photometry technique in the 1970s, the normal value of anion gap (AG was determined to be 12 ± 4 meq/L. However, with introduction of the autoanalyzers using an ion-selective electrode (ISE, the anion gap value has fallen to lower levels. Methods: A retrospective study of US veterans from a single medical center was performed to determine the value of the anion gap in subjects with normal renal function and normal serum albumin and in patients with lactic acidosis and end-stage renal disease on dialysis. Results: In 409 patients with an estimated glomerular filtration rate ≥60 mL/min/1.73 m2 body surface area and serum albumin ≥4 g/dL, the mean AG was 7.2 ± 2 (range 3–11 meq/L. In 299 patients with lactic acidosis (lactate level ≥4 meq/L and 68 patients with end-stage renal disease on dialysis, the mean AG was 12.5 meq/L and 12.4 meq/L, respectively. A value <2 meq/L should be considered a low anion gap and a possible clue to drug intoxication and paraproteinemic disorders. Conclusion: With the advent of ISE for measurement of analytes, the value of the anion gap has fallen. Physicians need to be aware of the normal AG value in their respective institutions, and laboratories need to have an established value for AG based on the type of instrument they are using. Keywords: acidosis, electrolytes, ESRD

  5. Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions

    CERN Document Server

    Mao, Albert H; 10.1063/1.4742068

    2012-01-01

    Accurate models of alkali and halide ions in aqueous solution are necessary for computer simulations of a broad variety of systems. Previous efforts to develop ion force fields have generally focused on reproducing experimental measurements of aqueous solution properties such as hydration free energies and ion-water distribution functions. This dependency limits transferability of the resulting parameters because of the variety and known limitations of water models. We present a solvent-independent approach to calibrating ion parameters based exclusively on crystal lattice properties. Our procedure relies on minimization of lattice sums to calculate lattice energies and interionic distances instead of equilibrium ensemble simulations of dense fluids. The gain in computational efficiency enables simultaneous optimization of all parameters for Li+, Na+, K+, Rb+, Cs+, F-, Cl-, Br-, and I- subject to constraints that enforce consistency with periodic table trends. We demonstrate the method by presenting lattice-d...

  6. Measurement of Ion Motional Heating Rates over a Range of Trap Frequencies and Temperatures

    CERN Document Server

    Bruzewicz, C D; Chiaverini, J

    2014-01-01

    We present measurements of the motional heating rate of a trapped ion at different trap frequencies and temperatures between $\\sim$0.6 and 1.5 MHz and $\\sim$4 and 295 K. Additionally, we examine the possible effect of adsorbed surface contaminants with boiling points below $\\sim$105$^{\\circ}$C by measuring the ion heating rate before and after locally baking our ion trap chip under ultrahigh vacuum conditions. We compare the heating rates presented here to those calculated from available electric-field noise models. We can tightly constrain a subset of these models based on their expected frequency and temperature scaling interdependence. Discrepancies between the measured results and predicted values point to the need for refinement of theoretical noise models in order to more fully understand the mechanisms behind motional trapped-ion heating.

  7. SU-E-J-138: On the Ion Beam Range and Dose Verification in Hadron Therapy Using Sound Waves

    Energy Technology Data Exchange (ETDEWEB)

    Fourkal, E [Fox Chase Cancer Center, Philadelphia, PA (United States); Allegheny General Hospital, Pittsburgh, PA (United States); Veltchev, I [Fox Chase Cancer Center, Philadelphia, PA (United States); Gayou, O [Allegheny General Hospital, Pittsburgh, PA (United States); Nahirnyak, V [Bukovinian State Medical University, Chernivtsi (Ukraine)

    2015-06-15

    Purpose: Accurate range verification is of great importance to fully exploit the potential benefits of ion beam therapies. Current research efforts on this topic include the use of PET imaging of induced activity, detection of emerging prompt gamma rays or secondary particles. It has also been suggested recently to detect the ultrasound waves emitted through the ion energy absorption process. The energy absorbed in a medium is dissipated as heat, followed by thermal expansion that leads to generation of acoustic waves. By using an array of ultrasound transducers the precise spatial location of the Bragg peak can be obtained. The shape and intensity of the emitted ultrasound pulse depend on several variables including the absorbed energy and the pulse length. The main objective of this work is to understand how the ultrasound wave amplitude and shape depend on the initial ion energy and intensity. This would help guide future experiments in ionoacoustic imaging. Methods: The absorbed energy density for protons and carbon ions of different energy and field sizes were obtained using Fluka Monte Carlo code. Subsequently, the system of coupled equations for temperature and pressure is solved for different ion pulse intensities and lengths to obtain the pressure wave shape, amplitude and spectral distribution. Results: The proposed calculations show that the excited pressure wave amplitude is proportional to the absorbed energy density and for longer ion pulses inversely proportional to the ion pulse duration. It is also shown that the resulting ionoacoustic pressure distribution depends on both ion pulse duration and time between the pulses. Conclusion: The Bragg peak localization using ionoacoustic signal may eventually lead to the development of an alternative imaging method with sub-millimeter resolution. It may also open a way for in-vivo dose verification from the measured acoustic signal.

  8. Nitrogen diffusion in near-surface range of ion doped molybdenum

    CERN Document Server

    Zamalin, E Y

    2001-01-01

    The dynamics of change in nitrogen near-the-surface concentration in the Mo ion-alloyed monocrystalline foil is studied through the Auger-electron spectroscopy and the secondary ion mass spectrometry. The implantation dose constituted 5 x 10 sup 1 sup 7 ion/cm sup 2 and the implantation energy equaled 50 and 100 keV. The samples diffusion annealing was performed at the temperature of 800-900 deg C. The evaluation of the nitrogen diffusion coefficient indicates the values by 3-5 orders lesser than the diffusion coefficient in the nitrogen solid-state solution in the molybdenum. At the same time the molybdenum self-diffusion coefficient value is by 3-5 orders lesser as compared to the obtained value. The supposition is made, the the surplus nitrogen relative to the solubility limit is deposited on the radiation defects and in the process of the diffusion annealing it nitrates together with them

  9. Ranges, Reflection and Secondary Electron Emission for keV Hydrogen Ions Incident on Solid N2

    DEFF Research Database (Denmark)

    Børgesen, P.; Sørensen, H.; Hao-Ming, Chen

    1983-01-01

    Ranges were measured for 0.67–3.3 keV/amu hydrogen and deuterium ions in solid N2. Comparisons with similar results for N2-gas confirm the previously observed large phase effect in the stopping cross section. Measurements of the secondary electron emission coefficient for bulk solid N2 bombarded...... by 0.67–9 keV/amu ions also seem to support such a phase effect. It is argued that we may also extract information about the charge state of reflected projectiles....

  10. A satellite-borne ion mass spectrometer for the energy range 0 to 16 keV

    Science.gov (United States)

    Balsiger, H.; Eberhardt, P.; Geiss, J.; Ghielmetti, A.; Walker, H. P.; Young, D. T.; Loidl, H.; Rosenbauer, H.

    1976-01-01

    The Ion Composition Experiment (ICE) on GEOS represents the first comprehensive attempt to measure the positive ion composition at high altitudes in the magnetosphere. Due to the heterogeneous nature of the magnetospheric plasma a novel mass spectrometer has been developed to cover the mass per charge range from H-1(+) to beyond Ba-138(+) and the energy per charge range from 0 to 16 keV/e. The ICE consists primarily of a cylindrical electrostatic analyzer followed by a curved analyzer incorporating crossed magnetic and electric fields. This combination has limited angular and energy focusing properties, but it maintains a mass resolution of about 4 over a wide range in energy and mass, sufficient for the objectives of measuring plasmas of both solar and terrestrial origin. High sensitivity and low background should allow measurements of rarer ion constituents down to flux levels of 0.01 ions/sq cm sec ster eV. A sophisticated electronics combined with powerful ground computer and telecommand systems allow for very efficient scanning of the mass-energy space.

  11. Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range.

    Science.gov (United States)

    Choi, Sinho; Cho, Yoon-Gyo; Kim, Jieun; Choi, Nam-Soon; Song, Hyun-Kon; Wang, Guoxiu; Park, Soojin

    2017-04-01

    Porous structured materials have unique architectures and are promising for lithium-ion batteries to enhance performances. In particular, mesoporous materials have many advantages including a high surface area and large void spaces which can increase reactivity and accessibility of lithium ions. This study reports a synthesis of newly developed mesoporous germanium (Ge) particles prepared by a zincothermic reduction at a mild temperature for high performance lithium-ion batteries which can operate in a wide temperature range. The optimized Ge battery anodes with the mesoporous structure exhibit outstanding electrochemical properties in a wide temperature ranging from -20 to 60 °C. Ge anodes exhibit a stable cycling retention at various temperatures (capacity retention of 99% after 100 cycles at 25 °C, 84% after 300 cycles at 60 °C, and 50% after 50 cycles at -20 °C). Furthermore, full cells consisting of the mesoporous Ge anode and an LiFePO4 cathode show an excellent cyclability at -20 and 25 °C. Mesoporous Ge materials synthesized by the zincothermic reduction can be potentially applied as high performance anode materials for practical lithium-ion batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Investigation of amorphization energies for heavy ion implants into silicon carbide at depths far beyond the projected ranges

    Science.gov (United States)

    Friedland, E.

    2017-01-01

    At ion energies with inelastic stopping powers less than a few keV/nm, radiation damage is thought to be due to atomic displacements by elastic collisions only. However, it is well known that inelastic processes and non-linear effects due to defect interaction within collision cascades can significantly increase or decrease damage efficiencies. The importance of these processes changes significantly along the ion trajectory and becomes negligible at some distance beyond the projected range, where damage is mainly caused by slowly moving secondary recoils. Hence, in this region amorphization energies should become independent of the ion type and only reflect the properties of the target lattice. To investigate this, damage profiles were obtained from α-particle channeling spectra of 6H-SiC wafers implanted at room temperature with ions in the mass range 84 ⩽ M ⩽ 133, employing the computer code DICADA. An average amorphization dose of (0.7 ± 0.2) dpa and critical damage energy of (17 ± 6) eV/atom are obtained from TRIM simulations at the experimentally observed boundary positions of the amorphous zones.

  13. Performance Evaluation of an Expanded Range XIPS Ion Thruster System for NASA Science Missions

    Science.gov (United States)

    Oh, David Y.; Goebel, Dan M.

    2006-01-01

    This paper examines the benefit that a solar electric propulsion (SEP) system based on the 5 kW Xenon Ion Propulsion System (XIPS) could have for NASA's Discovery class deep space missions. The relative cost and performance of the commercial heritage XIPS system is compared to NSTAR ion thruster based systems on three Discovery class reference missions: 1) a Near Earth Asteroid Sample Return, 2) a Comet Rendezvous and 3) a Main Belt Asteroid Rendezvous. It is found that systems utilizing a single operating XIPS thruster provides significant performance advantages over a single operating NSTAR thruster. In fact, XIPS performs as well as systems utilizing two operating NSTAR thrusters, and still costs less than the NSTAR system with a single operating thruster. This makes XIPS based SEP a competitive and attractive candidate for Discovery class science missions.

  14. Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B

    Science.gov (United States)

    Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.

    2017-01-01

    We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of 0.86. We assume that the correlation is the result of LHFR wave generation by the ions' polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD) parallel and perpendicular to the ambient magnetic field to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions' polarization drift in the electric field of an EMIC wave.

  15. Ion cyclotron range of frequency mode conversion flow drive in D(He-3) plasmas on JET

    NARCIS (Netherlands)

    Lin, Y.; Mantica, P.; Hellsten, T.; Kiptily, V.; Lerche, E.; Nave, M. F. F.; Rice, J. E.; Van Eester, D.; de Vries, P. C.; Felton, R.; Giroud, C.; Tala, T.

    2012-01-01

    Ion cyclotron range of frequency (ICRF) mode conversion has been shown to drive toroidal flow in JET D(He-3) L-mode plasmas: B-t0 = 3.45 T, n(e0) similar to 3x10(19) m(-3), I-p = 2.8 and 1.8 MA, P-RF <= 3MW at 33MHz and -90 degrees phasing. Central toroidal rotation in the counter-I-p directi

  16. Phase transitions in the two-dimensional single-ion anisotropic Heisenberg model with long-range interactions

    Energy Technology Data Exchange (ETDEWEB)

    Moura, A.R., E-mail: armoura@infis.ufu.br

    2014-11-15

    In the present work, we investigate the effects of long-range interactions on the phase transitions of a two-dimensional Heisenberg model with single-ion anisotropy at zero and finite temperatures. The Hamiltonian is given by H=∑{sub i≠j}J{sub ij}(S{sub i}{sup x}S{sub j}{sup x}+S{sub i}{sup y}S{sub j}{sup y}+λS{sub i}{sup z}S{sub j}{sup z})+D∑{sub i}(S{sub i}{sup z}){sup 2}, where J{sub ij}=−J|r{sub j}−r{sub i}|{sup −p}(p≥3) is a long-range ferromagnetic interaction (J>0), 0≤λ≤1 is an anisotropic constant and D is the single-ion anisotropic constant. It is well-known that the single-ion anisotropy D creates a competition between an ordered state (favored by the exchange interaction) and a disordered state, even at zero temperature. For small values of D, the system has a spontaneous magnetization m{sub z}≠0, while in the large-D phase m{sub z}=0 because a state with 〈S{sup z}〉≠0 is energetically unfavorable. Therefore a phase transition takes a place in some critical value D{sub c} due to quantum fluctuations. For systems with short-range interaction D{sub c}≈6 J (depending of λ constant) but in our model we have found larger values of D due to the higher cost to flip a spin. Since low-dimensional magnetic systems with long range interaction can be ordered at finite temperature, we also have analyzed the thermal phase transitions (similar to the BKT transition). The model has been studied by using a Schwinger boson formalism as well as the self-consistent harmonic approximation (SCHA) and both methods provide according results. - Highlights: • We study the two-dimensional single-ion anisotropic ferromagnetic model with long-range interactions. • We show the quantum phase transition associated with the single-ion anisotropic constant. • We investigate the influence of the power-law exponent in the phase transitions. • We obtain a thermal phase transition similar to the BKT transition.

  17. Integrated Plasma Simulation of Ion Cyclotron and Lower Hybrid Range of Frequencies Actuators in Tokamaks

    Science.gov (United States)

    Bonoli, P. T.; Shiraiwa, S.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Chen, Jin; Poli, F.; Kessel, C. E.; Jardin, S. C.

    2012-10-01

    Recent upgrades to the ion cyclotron RF (ICRF) and lower hybrid RF (LHRF) components of the Integrated Plasma Simulator [1] have made it possible to simulate LH current drive in the presence of ICRF minority heating and mode conversion electron heating. The background plasma is evolved in these simulations using the TSC transport code [2]. The driven LH current density profiles are computed using advanced ray tracing (GENRAY) and Fokker Planck (CQL3D) [3] components and predictions from GENRAY/CQL3D are compared with a ``reduced'' model for LHCD (the LSC [4] code). The ICRF TORIC solver is used for minority heating with a simplified (bi-Maxwellian) model for the non-thermal ion tail. Simulation results will be presented for LHCD in the presence of ICRF heating in Alcator C-Mod. [4pt] [1] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008).[0pt] [2] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).[0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992).[0pt] [4] D. Ignat et al, Nucl. Fus. 34, 837 (1994).[0pt] [5] M. Brambilla, Plasma Phys. and Cont. Fusion 41,1 (1999).

  18. 3D Maxwell-Vlasov boundary value problem solution in stellarator geometry in ion cyclotron frequency range. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V.; Watari, T.; Fukuyama, A.

    1996-12-01

    We develop the theory for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the constructed LHD and projected W7-X stellarators and for the stellarators being at operation (like CHS, W7-AS, etc.). The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non - orthogonal flux coordinates ({psi}, {theta}, {phi}), {psi} being magnetic flux function, {theta} and {phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are firstly self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma dielectric kinetic tensor. The theory is developed in a manner that includes tokamaks and magnetic mirrors as the particular cases through general metric tensor (provided by an equilibrium solver) treatment of the wave equations. We describe the structure of newly developed stellarator ICRF 3D full wave code STELION, based on theory described in this report. (J.P.N.)

  19. Fast- and slow-wave heating of ion cyclotron range of frequencies in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Mutoh, T.; Kumazawa, R.; Seki, T. [and others

    2000-11-01

    Wave-heating at the fundamental ion-cyclotron frequency was applied to a hydrogen plasma in the Large Helical Device (LHD) over a range of plasma densities from 0.2-8x10{sup 19} m{sup -3}. Substantial heating was observed for all densities. In the low-density plasma (less than 0.4x10{sup 19} m{sup -3}) ion-cyclotron-wave (shear Alfven wave) heating was effective. For high-density plasmas, a fast-wave should be excited, and in this case also, effective heating was observed with the presence of the NBI beam component. The wave damping mechanism may be attributed to the finite gyro-radius effect on beam ions by the right-handed polarized wave. The experimental results were compared with an analysis using the full-wave code. The heating performance was a little worse than that of the usual two-ion hybrid-heating mode. (author)

  20. Ion generation and CPC detection efficiency studies in sub 3-nm size range

    Energy Technology Data Exchange (ETDEWEB)

    Kangasluoma, J.; Junninen, H.; Sipilae, M.; Kulmala, M.; Petaejae, T. [Department of Physics, P.O. Box 64, 00014, University of Helsinki, Helsinki (Finland); Lehtipalo, K. [Department of Physics, P.O. Box 64, 00014, University of Helsinki, Helsinki (Finland); Airmodus Ltd., Finland, Gustaf Haellstroemin katu 2 A, 00560 Helsinki (Finland); Mikkilae, J.; Vanhanen, J. [Airmodus Ltd., Finland, Gustaf Haellstroemin katu 2 A, 00560 Helsinki (Finland); Attoui, M. [University Paris Est Creteil, University Paris-Diderot, LISA, UMR CNRS 7583 (France); Worsnop, D. [Department of Physics, P.O. Box 64, 00014, University of Helsinki, Helsinki (Finland) and Aerodyne Research Inc., Billerica, MA (United States)

    2013-05-24

    We studied the chemical composition of commonly used condensation particle counter calibration ions with a mass spectrometer and found that in our calibration setup the negatively charged ammonium sulphate, sodium chloride and tungsten oxide are the least contaminated whereas silver on both positive and negative and the three mentioned earlier in positive mode are contaminated with organics. We report cut-off diameters for Airmodus Particle Size Magnifier (PSM) 1.1, 1.3, 1.4, 1.6 and 1.6-1.8 nm for negative sodium chloride, ammonium sulphate, tungsten oxide, silver and positive organics, respectively. To study the effect of sample relative humidity on detection efficiency of the PSM we used different humidities in the differential mobility analyzer sheath flow and found that with increasing relative humidity also the detection efficiency of the PSM increases.

  1. Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies

    Science.gov (United States)

    Bonoli, Paul

    2014-10-01

    This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.

  2. A detector based on silica fibers for ion beam monitoring in a wide current range

    Science.gov (United States)

    Auger, M.; Braccini, S.; Carzaniga, T. S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2016-03-01

    A detector based on doped silica and optical fibers was developed to monitor the profile of particle accelerator beams of intensity ranging from 1 pA to tens of μA. Scintillation light produced in a fiber moving across the beam is measured, giving information on its position, shape and intensity. The detector was tested with a continuous proton beam at the 18 MeV Bern medical cyclotron used for radioisotope production and multi-disciplinary research. For currents from 1 pA to 20 μA, Ce3+ and Sb3+ doped silica fibers were used as sensors. Read-out systems based on photodiodes, photomultipliers and solid state photomultipliers were employed. Profiles down to the pA range were measured with this method for the first time. For currents ranging from 1 pA to 3 μA, the integral of the profile was found to be linear with respect to the beam current, which can be measured by this detector with an accuracy of ~1%. The profile was determined with a spatial resolution of 0.25 mm. For currents ranging from 5 μA to 20 μA, thermal effects affect light yield and transmission, causing distortions of the profile and limitations in monitoring capabilities. For currents higher than ~1 μA, non-doped optical fibers for both producing and transporting scintillation light were also successfully employed.

  3. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min/sup -1/ can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected.

  4. Total projectile electron loss cross sections of U^{28+} ions in collisions with gaseous targets ranging from hydrogen to krypton

    Directory of Open Access Journals (Sweden)

    G. Weber

    2015-03-01

    Full Text Available Beam lifetimes of stored U^{28+} ions with kinetic energies of 30 and 50  MeV/u, respectively, were measured in the experimental storage ring of the GSI accelerator facility. By using the internal gas target station of the experimental storage ring, it was possible to obtain total projectile electron loss cross sections for collisions with several gaseous targets ranging from hydrogen to krypton from the beam lifetime data. The resulting experimental cross sections are compared to predictions by two theoretical approaches, namely the CTMC method and a combination of the DEPOSIT code and the RICODE program.

  5. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  6. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  7. Probing short-range nucleon-nucleon interactions with an Electron-Ion Collider

    CERN Document Server

    Miller, Gerald A; Venugopalan, Raju

    2015-01-01

    We derive the cross-section for exclusive vector meson production in high energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross-section can be expressed in terms of a novel gluon Transition Generalized Parton Distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial and final state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: in particular, we discuss the relative role of "point-like" and "geometric" Fock configurations that control the parton dynamics of short range nucleon-nucleon scattering. With the aid of exclusive $J/\\Psi$ production data at HERA, as well as elastic nucleon-nucleon cross-sections, w...

  8. Relation of short-range and long-range lithium ion dynamics in glass-ceramics: Insights from 7Li NMR field-cycling and field-gradient studies

    Science.gov (United States)

    Haaks, Michael; Martin, Steve W.; Vogel, Michael

    2017-09-01

    We use various 7Li NMR methods to investigate lithium ion dynamics in 70Li 2S-30 P 2S5 glass and glass-ceramic obtained from this glass after heat treatment. We employ 7Li spin-lattice relaxometry, including field-cycling measurements, and line-shape analysis to investigate short-range ion jumps as well as 7Li field-gradient approaches to characterize long-range ion diffusion. The results show that ceramization substantially enhances the lithium ion mobility on all length scales. For the 70Li 2S-30 P 2S5 glass-ceramic, no evidence is found that bimodal dynamics result from different ion mobilities in glassy and crystalline regions of this sample. Rather, 7Li field-cycling relaxometry shows that dynamic susceptibilities in broad frequency and temperature ranges can be described by thermally activated jumps governed by a Gaussian distribution of activation energies g (Ea) with temperature-independent mean value Em=0.43 eV and standard deviation σ =0.07 eV . Moreover, use of this distribution allows us to rationalize 7Li line-shape results for the local ion jumps. In addition, this information about short-range ion dynamics further explains 7Li field-gradient results for long-range ion diffusion. In particular, we quantitatively show that, consistent with our experimental results, the temperature dependence of the self-diffusion coefficient D is not described by the mean activation energy Em of the local ion jumps, but by a significantly smaller apparent value whenever the distribution of correlation times G (logτ ) of the jump motion derives from an invariant distribution of activation energies and, hence, continuously broadens upon cooling. This effect occurs because the harmonic mean, which determines the results of diffusivity or also conductivity studies, continuously separates from the peak position of G (logτ ) when the width of this distribution increases.

  9. Improvement of the Power Control Unit for Ion Thruster to Cope with Milli-Newton Range RIT

    Science.gov (United States)

    Ceruti, Luca; Polli, Aldo; Galantini, Paolo

    2014-08-01

    The recent development and testing activities of a miniaturized Radio-Frequency Ion Thruster, with relevant ancillary elements, in the range of 10 to 100 micro-Newtons, joined with past flight heritage in the milli-Newton range (RIT-10 for Artemis), shows an appealing capability of such an electrical propulsion technology to support thrust in a wide range of space applications from very fine attitude control up to deorbiting of small-medium satellites. As expectable, this implies that the mentioned ancillary elements (mainly Radio-Frequency Generator and Power Control Unit) require adaptation to the different requirements imposed to different missions and thrust ranges. Regarding the Power Control Unit different power levels, both the controllability requirements and the spacecraft interfaces impose non negligible adaptation leading to significant increase of development activities and associated cost (nonrecurring) increase. From that and with the main purpose to minimize such impacts and provide reliable equipments, Selex ES since a few years is devoting maximum attention in the incremental innovation of the existing design in order to maximize their reuse.

  10. Theoretical photoionization spectra in the UV photon energy range for a Mg-like Al{sup +} ion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Soung [e-Business Department, Kyonggi Institute of Technology, Siheung, Jungwang-Dong 2121-3, Kyonggi-Do 429-792 (Korea, Republic of); Kim, Young Soon [Department of Physics, Myongji University, San 38-2 Namdong, Cheoin-gu, Yongin, Kyonggi-Do 449-728 (Korea, Republic of)], E-mail: dskim@kinst.ac.kr

    2008-08-28

    In the present work, we report the photoionization cross sections of the Al{sup +} ion calculated for the photon energy range 20-26 eV and 30-50 eV. We have expanded our previous calculation (2007 J. Phys. Soc. Japan 76 014302) with an optimized admixture of the initial ground state 3s{sup 21}S and exited states 3s3p{sup 1,3}P, 3s3d{sup 1,3}D and 3s4s{sup 1,3}S, and obtained significantly improved predictions for the main background and autoionizing resonance structures of the reported experimental spectra. The absolute measurements of the photoionization cross sections of the Al{sup +} ion in these energy ranges have been performed by West et al (2001 Phys. Rev. A 63 052719), and they reported that the prominent peaks around 21 eV were attributed to the effects of the significant influence of the small fraction of the fourth-order radiation with energies around 84 eV from the synchrotron source. In our previous work, the main shape for these cross sections was calculated assuming an admixture of initial 3s{sup 21}S and 3s3p{sup 3}P states, only with a rough overall estimate for the experimental spectra in the photon energy range 20-26 eV, and without these peaks around 21 eV. The report of the experimental assignment attributes these peaks to the excitation of a 2p electron from the core. However, our present results with the new admixture reveal similar peaks without considering the possibility of the core excitation.

  11. The short range anion-H interaction is the driving force for crystal formation of ions in water.

    Science.gov (United States)

    Alejandre, José; Chapela, Gustavo A; Bresme, Fernando; Hansen, Jean-Pierre

    2009-05-07

    The crystal formation of NaCl in water is studied by extensive molecular dynamics simulations. Ionic solutions at room temperature and various concentrations are studied using the SPC/E and TIP4P/2005 water models and seven force fields of NaCl. Most force fields of pure NaCl fail to reproduce the experimental density of the crystal, and in solution some favor dissociation at saturated conditions, while others favor crystal formation at low concentration. A new force field of NaCl is proposed, which reproduces the experimental phase diagram in the solid, liquid, and vapor regions. This force field overestimates the solubility of NaCl in water at saturation conditions when used with standard Lorentz-Berthelot combining rules for the ion-water pair potentials. It is shown that precipitation of ions is driven by the short range interaction between Cl-H pairs, a term which is generally missing in the simulation of ionic solutions. The effects of intramolecular flexibility of water on the solubility of NaCl ions are analyzed and is found to be small compared to rigid models. A flexible water model, extending the rigid SPC/E, is proposed, which incorporates Lennard-Jones interactions centered on the hydrogen atoms. This force field gives liquid-vapor coexisting densities and surface tensions in better agreement with experimental data than the rigid SPC/E model. The Cl-H, Na-O, and Cl-O pair distribution functions of the rigid and flexible models agree well with experiment. The predicted concentration dependence of the electric conductivity is in fair agreement with available experimental data.

  12. Nonlinear fast magnetoacoustic wave interaction with 2D magnetic X-points in the ion cyclotron range of frequencies

    CERN Document Server

    Threlfall, J W; De Moortel, I; McClements, K G; Arber, T D

    2012-01-01

    Context. This paper investigates the role of the Hall term in the propagation and dissipation of waves which interact with 2D magnetic X-points and considers the effect of the Hall term on the nature of the resulting reconnection. Aims. The goal is to determine how the evolution of a nonlinear fast magnetoacoustic wave pulse, and the behaviour of the oscillatory reconnection which results from the interaction of the pulse with a line-tied 2D magnetic X-point, is affected by the Hall term in the generalised Ohm's law. Methods. A Lagrangian remap shock-capturing code (Lare2d) is used to study the evolution of an initial fast magnetoacoustic wave annulus for a range of values of the ion skin depth (di) in resistive Hall MHD. A magnetic null-point finding algorithm is also used to locate and track the evolution of the multiple null-points that are formed in the system. Results. In general, the fast wave is coupled to a shear wave and, for finite di, to whistler and ion cyclotron waves. Dispersive whistler effects...

  13. On radio frequency current drive in the ion cyclotron range of frequencies in DEMO and large ignited plasmas

    Science.gov (United States)

    Brambilla, Marco; Bilato, Roberto

    2015-02-01

    To explore the possibility of efficient fast wave current drive in an ignited plasma in the ion cyclotron (IC) range of frequency in spite of competition from absorption by ions, we have added to the full-wave toroidal code TORIC a set of subroutines which evaluate absorption by these particles at IC harmonic resonances, using a realistic ‘slowing-down’ distribution function, and taking into account that their Larmor radius is comparable or even larger than the fast wave wavelength. The thermalized population of α-particles is not a serious competitor for power absorption as long as their number density is compatible with maintenance of ignition. By contrast, the energetic slowing down fraction, in spite of its even greater dilution, can absorb from the waves a substantial amount of power at the cyclotron resonance and its harmonics. An extensive exploration both in frequency and in toroidal wavenumbers using the parameters of one of the European versions of DEMO shows that three frequency windows exist in which damping is nevertheless predominantly on the electrons. Designing an antenna capable of shaping the launched spectrum to optimize current drive, however, will not be straightforward. Only in a narrow range when the first IC harmonic of tritium is deep inside the plasma on the high-field side of the magnetic axis, and that of deuterium and helium is still outside on the low-field side, it appears possible to achieve a satisfactory current drive efficiency with a conventional multi-strap antenna, preferentially located in the upper part of the vessel. Exploiting the other two windows at quite low and quite high frequencies is either impossible on first principles, or will demand novel ideas in antenna design.

  14. Water-soluble main ions in precipitation over the southeastern Adriatic region: chemical composition and long-range transport.

    Science.gov (United States)

    Dorđević, Dragana S; Tosić, Ivana; Unkasević, Miroslava; Durasković, Pavle

    2010-11-01

    (+), Cl(-), Mg(2+)) are significantly correlated, except for air masses originating from the northern and eastern European regions. Significant correlations between SO(4)(2-) and NO(3)(-) are found in air masses coming from the western Europe and North Africa, over the Mediterranean. The highest volume-weighted mean (VWM) of: SO(4)(2-), NH(4)(+) and Mg(2+) are for precipitation from EE-NE while the highest values of VWM of Cl(-) are from WM and of K(+) are from WE-CE. Long-range transport of Sahara dust is confirmed. For better estimation of origins of water-soluble ions in precipitation expanding list of analysis on anions of organic acids, such as HCOO(-), CH(3)COO(-), and C(2)H(2)COO(-), could be indicative of volatile organic compounds emitted by vegetation but also traffic. The chemical composition of precipitation together with a study of air backward trajectories is the proper tool for tracking the long-range transport of water-soluble ions and estimating transboundary pollution.

  15. Projected Range, Straggling and Sputtering Yield of the Ion-Impingement of Inert Gases in Group IV, InP and GaAs Semiconductors

    Directory of Open Access Journals (Sweden)

    J.D. Femi-Oyetoro

    2015-03-01

    Full Text Available One of the major challenges in ion implantation and sputtering process (especially in thin film deposition is to get a shallow or very deep profile and maximum sputtering yield respectively. In this paper, we simulate the projected range, lateral straggle, longitudinal straggle and sputtering yield of inert gas ions (He+, Ne+, Ar+, Kr+, Xe+, Rn+ impinged in group IV elements (C, Si, Ge, Sn, Pb, InP and GaAs against different parameters (ion energy and angle of incident ion, using the TRIM Monte-Carlo Code as embedded in SRIM. In particular, we generated a result on the consistency of the projected range, lateral and longitudinal straggle with the angle of incident ion using ion energies 1 KeV and 10 KeV. However an inconsistency exists in the sputtering yield and we noticed that maximum sputtering yield occurs for certain incident angle. In conclusion, the results presented here provides parameters needed to get low or high projected range and straggling, and also the exact incident angle needed in getting the maximum sputtering yield for the ion-target combinations used.

  16. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    Science.gov (United States)

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  17. A new ion cyclotron range of frequency scenario for bulk ion heating in deuterium-tritium plasmas: How to utilize intrinsic impurities in our favour

    Energy Technology Data Exchange (ETDEWEB)

    Kazakov, Ye. O.; Ongena, J.; Van Eester, D.; Lerche, E.; Messiaen, A. [Laboratory for Plasma Physics, LPP-ERM/KMS, EUROfusion Consortium Member, Brussels (Belgium); Bilato, R. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Dumont, R. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Mantsinen, M. [Catalan Institution for Research and Advanced Studies, Barcelona (Spain); Barcelona Supercomputing Center (BSC), Barcelona (Spain)

    2015-08-15

    A fusion reactor requires plasma pre-heating before the rate of deuterium-tritium fusion reactions becomes significant. In ITER, radio frequency (RF) heating of {sup 3}He ions, additionally puffed into the plasma, is one of the main options considered for increasing bulk ion temperature during the ramp-up phase of the pulse. In this paper, we propose an alternative scenario for bulk ion heating with RF waves, which requires no extra {sup 3}He puff and profits from the presence of intrinsic Beryllium impurities in the plasma. The discussed method to heat Be impurities in D-T plasmas is shown to provide an even larger fraction of fuel ion heating.

  18. Design, performance, and grounding aspects of the International Thermonuclear Experimental Reactor ion cyclotron range of frequencies antenna

    Energy Technology Data Exchange (ETDEWEB)

    Durodié, F., E-mail: frederic.durodie@rma.ac.be; Dumortier, P.; Vrancken, M.; Messiaen, A.; Huygen, S.; Louche, F.; Van Schoor, M.; Vervier, M. [LPP-ERM/KMS, Association EURATOM-Belgian State, Brussels (Belgium); Bamber, R.; Hancock, D.; Lockley, D.; Nightingale, M. P. S.; Shannon, M.; Tigwell, P.; Wilson, D. [EURATOM/CCFE Assoc., Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Maggiora, R.; Milanesio, D. [Associazione EURATOM-ENEA, Politechnico di Torino (Italy); Winkler, K. [IPP-MPI, EURATOM-Assoziation, Garching (Germany)

    2014-06-15

    ITER's Ion Cyclotron Range of Frequencies (ICRF) system [Lamalle et al., Fusion Eng. Des. 88, 517–520 (2013)] comprises two antenna launchers designed by CYCLE (a consortium of European associations listed in the author affiliations above) on behalf of ITER Organisation (IO), each inserted as a Port Plug (PP) into one of ITER's Vacuum Vessel (VV) ports. Each launcher is an array of 4 toroidal by 6 poloidal RF current straps specified to couple up to 20 MW in total to the plasma in the frequency range of 40 to 55 MHz but limited to a maximum system voltage of 45 kV and limits on RF electric fields depending on their location and direction with respect to, respectively, the torus vacuum and the toroidal magnetic field. A crucial aspect of coupling ICRF power to plasmas is the knowledge of the plasma density profiles in the Scrape-Off Layer (SOL) and the location of the RF current straps with respect to the SOL. The launcher layout and details were optimized and its performance estimated for a worst case SOL provided by the IO. The paper summarizes the estimated performance obtained within the operational parameter space specified by IO. Aspects of the RF grounding of the whole antenna PP to the VV port and the effect of the voids between the PP and the Blanket Shielding Modules (BSM) surrounding the antenna front are discussed. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and

  19. The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Z.

    1999-05-10

    This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi{sub 2}Ge{sub 2} (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi{sub 2}Ge{sub 2} compounds. Generalized susceptibility, {chi}{sub 0}(q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi{sub 2}Ge{sub 2}, and the commensurate structure in EuNi{sub 2}Ge{sub 2}. A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T{sub N} in EuNi{sub 2}Ge{sub 2} than that in GdNi{sub 2}Ge{sub 2} is also explained. Next, all the metamagnetic phases in TbNi{sub 2}Ge{sub 2} with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation.

  20. Neutron production from 158 GeV/c per nucleon lead ions on thin copper and lead targets in the angular range 30-135 degree

    CERN Document Server

    Silari, Marco; Birattari, C; Foglio-Para, A; Gini, L; Mitaroff, Angela; Ulrici, L

    2002-01-01

    The neutron emission from 5, 10 and 20 mm thick lead and 10 and 20 mm thick copper targets bombarded by a lead ion beam with momentum of 158 GeV/c per nucleon were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident ion on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 degree with respect to beam direction. Monte Carlo simulations with the FLUKA code were performed to establish a guess spectrum for the unfolding of the experimental data. The results have shown that, lacking Monte Carlo radiation transport codes dealing with ions with masses larger than 1 amu, a reasonable prediction can be carried out by scaling the result of a Monte Carlo calculation for protons by the projectile mass number to the power of 0.85-0.95 for a lead target and 0.88-1.03 for a copper target.

  1. Electrophysical properties of silicon layers implanted with erbium and oxygen ions over a wide dose range and heat treated with different temperature regimes

    CERN Document Server

    Aleksandrov, O V; Sobolev, N A; Nikolaev, Y A

    2002-01-01

    The electrophysical properties of silicon implanted with erbium and oxygen ions over a wide dose range have been studied. The electron mobility dependence on the electrically active center concentration has been obtained in erbium-doped silicon with a concentration varied over 9 x 10 sup 1 sup 5 - 8 x 10 sup 1 sup 6 cm sup - sup 3 range. In the concentration profiles of electrically active centers n(x) and erbium atoms C(x), irregularities related to some peculiarities of the Er segregation during solid phase epitaxial recrystallization were found. They are regarded as peculiar to erbium ion implantation doses higher than the amorphization thresholds. A linear increase of a maximum concentration of electrically active centers and practically constant effective coefficient k of their activation have been observed at the erbium ion implantation doses higher than the amorphization threshold. An increase in the electrically active center concentration gains saturation and k drops at the erbium concentration highe...

  2. Stopping power of liquid water for carbon ions in the energy range between 1 MeV and 6 MeV.

    Science.gov (United States)

    Rahm, J M; Baek, W Y; Rabus, H; Hofsäss, H

    2014-07-21

    The stopping power of liquid water was measured for the first time for carbon ions in the energy range between 1 and 6 MeV using the inverted Doppler shift attenuation method. The feasibility study carried out within the scope of the present work shows that this method is well suited for the quantification of the controversial condensed phased effect in the stopping power for heavy ions in the intermediate energy range. The preliminary results of this work indicate that the stopping power of water for carbon ions with energies prevailing in the Bragg-peak region is significantly lower than that of water vapor. In view of the relatively high uncertainty of the present results, a new experiment with uncertainties less than the predicted difference between the stopping powers of both water phases is planned.

  3. Development of emulsion track expansion techniques for optical-microscopy-observation of low-velocity ion tracks with ranges beyond optical resolution limit

    Energy Technology Data Exchange (ETDEWEB)

    Naka, T. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Natsume, M. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)], E-mail: natsume@flab.phys.nagoya-u.ac.jp; Niwa, K.; Hoshino, K.; Nakamura, M.; Nakano, T.; Sato, O. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2007-11-01

    We succeeded to observe tracks of low-velocity Kr ions, having originally ranges below optical resolution, in a fine grain nuclear emulsion with an optical microscope after expanding the emulsion along the incident direction. This opens up the possibility of tracking low-velocity nuclear recoils from massive dark matter particles using optical microscope scanning systems.

  4. Osobennosti adaptatsii novorozhdennykh u materey s ozhireniem

    Directory of Open Access Journals (Sweden)

    L Yu Zernova

    2008-06-01

    Full Text Available According to various authors, obesity among pregnant recorded at a frequency of 15.5 to 26.9%. There is strong evidence that obesity contributes to complications of pregnancy, childbirth and the postpartum period, provoking the development of gestosis, placental insufficiency, abnormalities of labor, bleeding, et al., Which suggests the possibility of adjustment disorder in the neonatal period in infants of obese mothers. It should be recognized, however, that the available information on the subject are scarce and fragmentary. The purpose of this study was to investigate the features of postnatal adaptation of newborns of mothers with obesity. According to the study found that obesity in women is associated with a high incidence of reproductive disorders, gestational complications and pathological course of labor, resulting in abnormalities in the neonatal adaptation in the postnatal period. Disadaptation syndrome is manifested by the development of jaundice sustained over, edema, transient changes of the cardiovascular system, hypoglycemia. Violations in health are detected in the majority of infants (83.3% born to mothers with obesity. The most significant pathologies are infections specific to the perinatal period (40.5%, respiratory distress syndrome (3.6%, diabetic fetopathy (4.8%, congenital malformations (2.4%.

  5. Osobennosti baltiiskogo IT-rõnka

    Index Scriptorium Estoniae

    2004-01-01

    Leedu panga Prime Investment koostatud Baltimaade IT-turu analüüs. Tabel: IT-teenuseid pakkuvate firmade käive. Vt. samas: Leedu ettevõte Informacines Technologijos Grupas (IT Grupas) sidemeid Venemaa ja Euroopaga tutvustab Keshtutis Uzhpalis

  6. Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory

    Science.gov (United States)

    Yang, Xue-Min; Li, Jin-Yan; Zhang, Meng; Chai, Guo-Min; Zhang, Jian

    2014-12-01

    A thermodynamic model for predicting sulfide capacity of CaO-FeO-Fe2O3-Al2O3-P2O5 slags in a large variation range of oxygen potential corresponding to mass percentage of FetO from 1.88 to 55.50 pct, i.e., IMCT- model, has been developed by coupling with the deduced desulfurization mechanism of the slags based on the ion and molecule coexistence theory (IMCT). The developed IMCT- model has been verified through comparing the determined sulfide capacity after Ban-ya et al.[20] with the calculated by the developed IMCT- model and the calculated by the reported sulfide capacity models such as the KTH model. Mass percentage of FetO as 6.75 pct corresponding to the mass action concentration of FetO as 0.0637 or oxygen partial as 2.27 × 10-6 Pa is the criterion for distinguishing reducing and oxidizing zones for the slags. Sulfide capacity of the slags in reducing zone is controlled by reaction ability of CaO regardless of slag oxidization ability. However, sulfide capacity of the slags in oxidizing zone shows an obvious increase tendency with the increasing of slag oxidization ability. Sulfide capacity of the slags in reducing zone keeps almost constant with variation of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)), or optical basicity, or the mass action concentration ratios of N FeO/ N CaO, , , and . Sulfide capacity of the slags in oxidizing zone shows an obvious increase with the increasing of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)) or optical basicity, or the aforementioned mass action concentration ratios. Thus, the aforementioned mass action concentration ratios and the corresponding mass percentage ratios of various iron oxides to basic oxide CaO are recommended to represent the comprehensive effect of various iron oxides and basic oxide CaO on sulfide capacity of the slags.

  7. Characterization and performance of a field aligned ion cyclotron range of frequency antenna in Alcator C-Moda)

    Science.gov (United States)

    Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.; Terry, J. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Reinke, M. L.; Whyte, D.; Alcator C-Mod Team

    2013-05-01

    Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%-30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed

  8. Thomson spectrometer-microchannel plate assembly calibration for MeV-range positive and negative ions, and neutral atoms

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, R. [Centre for Plasma Physics, School of Mathematics and Physics, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Abicht, F.; Braenzel, J.; Priebe, G.; Schnuerer, M. [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin (Germany); Borghesi, M.; Ter-Avetisyan, S. [Centre for Plasma Physics, School of Mathematics and Physics, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); ELI-Beamlines Project, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic); Nickles, P. V. [WCU Department of Nanobio Materials and Electronics, GIST, Gwangju 500-712 (Korea, Republic of)

    2013-05-15

    We report on the absolute calibration of a microchannel plate (MCP) detector, used in conjunction with a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) and the number of ions incident on MCP. The particle response of the MCP is evaluated for positive, negative, and neutral particles at energies below 1 MeV. As the response of MCP depends on the energy and the species of the ions, the calibration is fundamental for the correct interpretation of the experimental results. The calibration method and arrangement exploits the unique emission symmetry of a specific source of fast ions and atoms driven by a high power laser.

  9. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  10. Spontaneously-acoustic hypersound long-range stimulation of silicon nitride synthesis in silicon at argon ion irradiation

    CERN Document Server

    Demidov, E S; Markov, K A; Sdobnyakov, V V

    2001-01-01

    The work is dedicated to the nature of the average energy ions implantation process effect on the crystal defective system at the distances, exceeding by three-four orders the averagely projected ions run value. It is established that irradiation by the argon ions stimulated the Si sub 3 N sub 4 phase formation in the preliminarily nitrogen-saturated layers at the distances of approximately 600 mu m from the ions deceleration zone. It is supposed that there appear sufficiently effective pulse sources of the hypersonic shock waves in the area of the Ar sup + deceleration zone. These waves are the result of the jump-like origination and grid evolution of the loop-shaped dislocations and argon blisters as well as of the blisters explosion, The evaluations show that the peak pressure in wave due to the synchronized explosion of blisters in the nitrogen-saturated area on the reverse side of the silicon plate 600 mu m thick may exceed 10 sup 8 Pa and cause experimentally observed changes

  11. Development of a Compton camera for online ion beam range verification via prompt γ detection. Session: HK 12.6 Mo 18:30

    Energy Technology Data Exchange (ETDEWEB)

    Aldawood, S. [LMU Munich, Garching (Germany); King Saud University, Riyadh (Saudi Arabia); Liprandi, S.; Marinsek, T.; Bortfeldt, J.; Lang, C.; Lutter, R.; Dedes, G.; Parodi, K.; Thirolf, P.G. [LMU Munich, Garching (Germany); Maier, L.; Gernhaeuser, R. [TU Munich, Garching (Germany); Kolff, H. van der; Schaart, D. [TU Delft (Netherlands); Castelhano, I. [University of Lisbon, Lisbon (Portugal)

    2015-07-01

    A real-time ion beam verification in hadron-therapy is playing a major role in cancer treatment evaluation. This will make the treatment interuption possible if the planned and actual ion range are mismatched. An imaging system is being developed in Garching aiming to detect prompt γ rays induced by nuclear reactions between the ion beam and biological tissue. The Compton camera prototype consists of a stack of six customized double-sided Si-strip detectors (DSSSD, 50 x 50 mm{sup 2}, 128 strips/side) acting as scatterer, while the absorber is formed by a monolithic LaBr{sub 3}:Ce scintillator crystal (50 x 50 x 30 mm{sup 3}) read out by a position-sensitive multi-anode photomultiplier (Hamamatsu H9500). The study of the Compton camera properties and its individual component are in progress both in the laboratory as well as at the online facilities.

  12. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8-24 eV photon energy range

    Energy Technology Data Exchange (ETDEWEB)

    Schwell, Martin, E-mail: Martin.Schwell@lisa.u-pec.fr [LISA UMR CNRS 7583, Universite Paris Est Creteil and Universite Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du General de Gaulle, 94010 Creteil (France); Benilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Es-Sebbar, Et. [LISA UMR CNRS 7583, Universite Paris Est Creteil and Universite Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du General de Gaulle, 94010 Creteil (France); Garcia, Gustavo A.; Nahon, Laurent [Synchrotron SOLEIL, L' Orme des Merisiers, St. Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex (France); Champion, Norbert [LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon (France); Leach, Sydney, E-mail: Sydney.Leach@obspm.fr [LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon (France)

    2012-01-17

    Highlights: Black-Right-Pointing-Pointer We study the VUV photoionization of acetamide in the 8-24 eV photon energy range. Black-Right-Pointing-Pointer Electron/ion coincidence measurements are performed using synchrotron radiation. Black-Right-Pointing-Pointer The adiabatic ionization energy of acetamide is determined by TPEPICO measurements. Black-Right-Pointing-Pointer VUV induced fragmentation pathways of acetamide are assigned and discussed. - Abstract: A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1{sup 2}A Prime ) = (9.71 {+-} 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1{sup 2}A Double-Prime , was determined to be Almost-Equal-To 10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH{sub 3}, NH{sub 2}, NH{sub 3}, CO, HCCO and NH{sub 2}CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed.

  13. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8-24 eV photon energy range

    KAUST Repository

    Schwell, Martin

    2012-01-01

    A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3, NH 2, NH 3, CO, HCCO and NH 2CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed. © 2011 Elsevier B.V. All rights reserved.

  14. Highly selective detection of silver in the low ppt range with ion-selective electrodes based on ionophore-doped fluorous membranes.

    Science.gov (United States)

    Lai, Chun-Ze; Fierke, Melissa A; Corrêa da Costa, Rosenildo; Gladysz, John A; Stein, Andreas; Bühlmann, Philippe

    2010-09-15

    Ionophore-doped sensing membranes exhibit greater selectivities and wider measuring ranges if their membrane matrixes are noncoordinating and solvate interfering ions poorly. This is particularly true for fluorous phases, which are the least polar and polarizable condensed phases known. In this work, fluorous membrane matrixes were used to prepare silver ion-selective electrodes (ISEs). Sensing membranes composed of perfluoroperhydrophenanthrene, sodium tetrakis[3,5-bis(perfluorohexyl) phenyl]borate, and one of four fluorophilic Ag(+)-selective ionophores with one or two thioether groups were investigated. All electrodes exhibited Nernstian responses to Ag(+) in a wide range of concentrations. Their selectivities for Ag(+) over interfering ions were found to depend on host preorganization and the length of the -(CH(2))(n)- spacers separating the coordinating thioether group from the strongly electron withdrawing perfluoroalkyl groups. ISEs based on the most selective of the four ionophores, that is, 1,3-bis(perfluorodecylethylthiomethyl)benzene, provided much higher selectivities for Ag(+) over many alkaline and heavy metal ions than most Ag(+) ISEs reported in the literature (e.g., log K(Ag,J)(pot) for K(+), -11.6; Pb(2+), -10.2; Cu(2+), -13.0; Cd(2+), -13.2). Moreover, the use of this ionophore with a linear perfluorooligoether as membrane matrix and solid contacts consisting of three-dimensionally ordered macroporous (3DOM) carbon resulted in a detection limit for Ag(+) of 4.1 ppt (3.8 × 10(-1)1 M).

  15. Transition metal ion FRET to measure short-range distances at the intracellular surface of the plasma membrane.

    Science.gov (United States)

    Gordon, Sharona E; Senning, Eric N; Aman, Teresa K; Zagotta, William N

    2016-02-01

    Biological membranes are complex assemblies of lipids and proteins that serve as platforms for cell signaling. We have developed a novel method for measuring the structure and dynamics of the membrane based on fluorescence resonance energy transfer (FRET). The method marries four technologies: (1) unroofing cells to isolate and access the cytoplasmic leaflet of the plasma membrane; (2) patch-clamp fluorometry (PCF) to measure currents and fluorescence simultaneously from a membrane patch; (3) a synthetic lipid with a metal-chelating head group to decorate the membrane with metal-binding sites; and (4) transition metal ion FRET (tmFRET) to measure short distances between a fluorescent probe and a transition metal ion on the membrane. We applied this method to measure the density and affinity of native and introduced metal-binding sites in the membrane. These experiments pave the way for measuring structural rearrangements of membrane proteins relative to the membrane.

  16. Improved Wide Operating Temperature Range of LiNiCoAiO2-based Li-ion Cells with Methyl Propionate-based Electrolytes

    Science.gov (United States)

    Smart, Marshall C.; Tomcsi, Michael R.; Hwang, C.; Whitcanack, L. D.; Bugga, Ratnakumar V.; Nagata, Mikito; Visco, Vince; Tsukamoto, Hisashi

    2012-01-01

    Demonstration of wide operating temperature range Li-ion electrolytes Methyl propionate-based wide operating temperature range electrolytes were demonstrated to provide dramatic improvement of the low temperature capability of Quallion prototype Li-ion cells (MCMB-LiNiCoAlO2). Some formulations were observed to deliver over 60% of the room temperature capacity using a 5C rate at - 40oC !! Represents over a 4-fold improvement over the baseline electrolyte system. Demonstrated operational capability of a number of systems over a wide temperature range (-40 to +70 C) Demonstrated reasonably good long term cycle life performance at high temperature (i.e., at +40deg and +50 C) A number of formulations containing electrolytes additives (i.e., FEC, VC, LiBOB, and lithium oxalate) have been shown to have enhanced lithium kinetics at low temperature and promising high temperature resilience. Demonstrated good performance in larger capacity (12 Ah) Quallion Li-ion cells with methyl propionate-based electrolytes. Current efforts focused upon performing life studies and the impact upon low temperature capability.

  17. Observation of ion cyclotron range of frequencies mode conversion plasma flow drive on Alcator C-Moda)

    Science.gov (United States)

    Lin, Y.; Rice, J. E.; Wukitch, S. J.; Greenwald, M. J.; Hubbard, A. E.; Ince-Cushman, A.; Lin, L.; Marmar, E. S.; Porkolab, M.; Reinke, M. L.; Tsujii, N.; Wright, J. C.; Alcator C-Mod Team

    2009-05-01

    At modest H3e levels (n3He/ne˜8%-12%), in relatively low density D(H3e) plasmas, n¯e≤1.3×1020 m-3, heated with 50 MHz rf power at Bt0˜5.1 T, strong (up to 90 km/s) toroidal rotation (Vϕ) in the cocurrent direction has been observed by high-resolution x-ray spectroscopy on Alcator C-Mod. The change in central Vϕ scales with the applied rf power (≤30 km s-1 MW-1), and is generally at least a factor of 2 higher than the empirically determined intrinsic plasma rotation scaling. The rotation in the inner plasma (r /a≤0.3) responds to the rf power more quickly than that of the outer region (r /a≥0.7), and the rotation profile is broadly peaked for r /a≤0.5. Localized poloidal rotation (0.3≤r/a≤0.6) in the ion diamagnetic drift direction (˜2 km/s at 3 MW) is also observed, and similarly increases with rf power. Changing the toroidal phase of the antenna does not affect the rotation direction, and it only weakly affects the rotation magnitude. The mode converted ion cyclotron wave (MC ICW) has been detected by a phase contrast imaging system and the MC process is confirmed by two-dimensional full wave TORIC simulations. The simulations also show that the MC ICW is strongly damped on H3e ions in the vicinity of the MC layer, approximately on the same flux surfaces where the rf driven flow is observed. The flow shear in our experiment is marginally sufficient for plasma confinement enhancement based on the comparison of the E ×B shearing rate and gyrokinetic linear stability analysis.

  18. Abnormal Dielectric Response in an Optical Range Based on Electronic Transition in Rare-Earth-Ion-Doped Crystals

    Institute of Scientific and Technical Information of China (English)

    FU Xiao-Jian; XU Yuan-Da; ZHOU Ji

    2012-01-01

    A new scheme to realize an abnormal dielectric response at optical wavelength is developed on the basis of twolevel electronic transition of rare-earth ion doped crystals.Based on the semi-classical theory and the Judd-Ofelt theory,the electric dipole transition under a weak field is analyzed,and a general expression for the frequencydependent dielectric constant is obtained.As an example,the permittivity of (Erx Y1-x)3Al5O12 is calculated numerically in consideration of the transition between 4I15/2and 4F9/2.An optimized dielectric property with a negative real part and low absorption is achieved.This proposes a new mechanism for building extraordinary electromagnetic media at optical frequencies by using a quantum process.%A new scheme to realize an abnormal dielectric response at optical wavelength is developed on the basis of two-level electronic transition of rare-earth ion doped crystals. Based on the semi-classical theory and the Judd-Ofelt theory, the electric dipole transition under a weak Reid is analyzed, and a general expression for the frequency-dependent dielectric constant is obtained. As an example, the permittivity of (ErxY1-x)3A15O12 is calculated numerically in consideration of the transition between 4I15/2 and 4F9/2. An optimized dielectric property with a negative real part and low absorption is achieved. This proposes a new mechanism for building extraordinary electromagnetic media at optical frequencies by using a quantum process.

  19. Eigenmode formations of m = 1 fast Alfven waves in the ion-cyclotron frequency range in the GAMMA 10 central cell

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Y [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Ichimura, M [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Higaki, H [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Kakimoto, S [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nakagome, K [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nemoto, K [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Katano, M [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nakajima, H [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Fukuyama, A [Department of Nuclear Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Cho, T [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

    2006-08-15

    The formation of eigenmodes with the m = 1 fast Alfven waves in the ion-cyclotron range of frequency are investigated in the axisymmetric central cell of the GAMMA 10 tandem mirror. When the fast waves with frequencies near the fundamental ion-cyclotron frequency have been used for the plasma production, the saturation in the density has been observed. The spatial structure of the excited wave field is calculated in the central cell using a two-dimensional full wave code. The results of numerical analysis indicate that the increase in plasma density depends strongly on the eigenmode formations associated with the boundary conditions. The results of numerical analysis are compared with the results of measurements of the waves with magnetic probes. A very good degree of agreement is found between the theoretical results and the experimental results. It is suggested that the simultaneous excitation of several radial eigenmodes with high-harmonic fast waves is effective for higher density plasma production.

  20. Dynamic off-centering of Cr$^{3+}$ ions and short-range magneto-electric clusters in in CdCr$_2$S$_4$

    CERN Document Server

    Oliveira, Gonçalo Nuno; Lopes, Armandina Lima; Amaral, João Sequeira; dos Santos, António; Ren, Yan; Mendonca, Tania Manuela; Sousa, Célia Tavares; Amaral, Vitor Sequeira; Correia, João Guilherme; Araújo, João Pedro

    2012-01-01

    The cubic spinel CdCr$_2$S$_4$ gained recently a vivid interest, given the relevance of relaxor-like dielectric behavior in its paramagnetic phase. By a singular combination of local probe techniques namely Pair Distribution Function and Perturbed Angular Correlation we firmly establish that the Cr ion plays the central key role on this exotic phenomenon, namely through a dynamic off-centering displacement of its coordination sphere. We further show that this off centering of the magnetic Cr-ion gives rise to a peculiar entanglement between the polar and magnetic degrees of freedom, stabilizing, in the paramagnetic phase, short range magnetic clusters, clearly seen in ultra-low field susceptibility measurements. Moreover, the Landau theory is here used to demonstrate that a linear coupling between the magnetic and polar order parameters is sufficient to justify the appearance of magnetic cluster in paramagnetic phase of this compound. These results open insights on the hotly debated magnetic and polar interac...

  1. On the differentiability of depth distribution function of deposited energy, momentum and ion range--a reply to Dr L. G. Glazov

    Institute of Scientific and Technical Information of China (English)

    张竹林

    2002-01-01

    Based on the translational invariance of a medium, a new theorem has been proposed and proved rigorously: the depth distributions of the deposited energy, momentum and ion range must be infinitely differentiable functions in amorphous or polycrystalline infinite targets by ion bombardment, if these functions exist. The origin of the "discontinuity",derived by Dr Glazov in 1995 in J. Phys.: Condens. Matter 7 6365, has been analysed in detail. For the power cross section, neglecting electronic stopping, the linear transport equations determining the depth distribution functions of the deposited energy and momentum (by taking the threshold energy into account) have been solved asymptotically. An important formula derived by Dr Glazov has been confirmed and generalized. The results agree with the new theorem.

  2. Single photoionization of the Zn ii ion in the photon energy range 17.5-90.0 eV: experiment and theory

    Science.gov (United States)

    Hinojosa, G.; Davis, V. T.; Covington, A. M.; Thompson, J. S.; Kilcoyne, A. L. D.; Antillón, A.; Hernández, E. M.; Calabrese, D.; Morales-Mori, A.; Juárez, A. M.; Windelius, O.; McLaughlin, B. M.

    2017-10-01

    Measurements of the single-photoionization cross-section of Cu-like Zn+ ions are reported in the energy (wavelength) range 17.5 eV (708 Å) to 90 eV (138 Å). The measurements on this trans-Fe element were performed at the Advanced Light Source synchrotron radiation facility in Berkeley, California at a photon energy resolution of 17 meV using the photon-ion merged-beams end-station. Below 30 eV, the spectrum is dominated by excitation autoionizing resonance states. The experimental results are compared with large-scale photoionization cross-section calculations performed using a Dirac Coulomb R-matrix approximation. Comparisons are made with previous experimental studies, resonance states are identified and contributions from metastable states of Zn+ are determined.

  3. A low background-rate detector for ions in the 5 to 50 keV energy range to be used for radioisotope dating with a small cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, P.G.

    1986-11-25

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. We are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for /sup 14/C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV /sup 14/C at 10/sup -2/ counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. We have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10/sup -4/ counts/sec and excellent background suppression. With the cyclotron tuned near the /sup 13/CH background peak, to the frequency for /sup 14/C, the detector suppresses the background to 6 x 10/sup -4/ counts/sec. For each /sup 14/C ion the detectors grazing-incidence Al/sub 2/O/sub 3/ conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive /sup 12/C, /sup 23/Na, /sup 39/K, /sup 41/K, /sup 85/Rb, /sup 87/Rb, and /sup 133/Cs at 5 to 40 keV, and with 36 keV negative /sup 12/C and /sup 13/CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2 x 10/sup -7/ Torr and be repeatedly exposed to air. The maximum rate is 10/sup 6.4/ ions/sec in pulse counting mode and 10/sup 9.7/ ions/sec in current integrating mode.

  4. A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range

    Directory of Open Access Journals (Sweden)

    Fei Feng

    2014-05-01

    Full Text Available Ambient temperature is a significant factor that influences the characteristics of lithium-ion batteries, which can produce adverse effects on state of charge (SOC estimation. In this paper, an integrated SOC algorithm that combines an advanced ampere-hour counting (Adv Ah method and multistate open-circuit voltage (multi OCV method, denoted as “Adv Ah + multi OCV”, is proposed. Ah counting is a simple and general method for estimating SOC. However, the available capacity and coulombic efficiency in this method are influenced by the operating states of batteries, such as temperature and current, thereby causing SOC estimation errors. To address this problem, an enhanced Ah counting method that can alter the available capacity and coulombic efficiency according to temperature is proposed during the SOC calculation. Moreover, the battery SOCs between different temperatures can be mutually converted in accordance with the capacity loss. To compensate for the accumulating errors in Ah counting caused by the low precision of current sensors and lack of accurate initial SOC, the OCV method is used for calibration and as a complement. Given the variation of available capacities at different temperatures, rated/non-rated OCV–SOCs are established to estimate the initial SOCs in accordance with the Ah counting SOCs. Two dynamic tests, namely, constant- and alternated-temperature tests, are employed to verify the combined method at different temperatures. The results indicate that our method can provide effective and accurate SOC estimation at different ambient temperatures.

  5. SU-E-J-146: A Research of PET-CT SUV Range for the Online Dose Verification in Carbon Ion Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L; Hu, W [Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China); Moyers, M [Shanghai Proton and Heavy Ion Center, Colton, CA (China); Zhao, J [Shanghai Proton and Heavy Ion Center, Shanghai, Shanghai (China); Hsi, W [Shanghai Proton and Heavy Ion Center, Shanghai (China)

    2015-06-15

    Purpose: Positron-emitting isotope distributions can be used for the image fusion of the carbon ion planning CT and online target verification PETCT, after radiation in the same decay period,the relationship between the same target volume and the SUV value of different every single fraction dose can be found,then the range of SUV for the radiation target could be decided.So this online range also can provide reference for the correlation and consistency in planning target dose verification and evaluation for the clinical trial. Methods: The Rando head phantom can be used as real body,the 10cc cube volume target contouring is done,beam ISO Center depth is 7.6cm and the 90 degree fixed carbon ion beams should be delivered in single fraction effective dose of 2.5GyE,5GyE and 8GyE.After irradiation,390 seconds later the 30 minutes PET-CT scanning is performed,parameters are set to 50Kg virtual weight,0.05mCi activity.MIM Maestro is used for the image processing and fusion,five 16mm diameter SUV spheres have been chosen in the different direction in the target.The average SUV in target for different fraction dose can be found by software. Results: For 10cc volume target,390 seconds decay period,the Single fraction effective dose equal to 2.5Gy,Ethe SUV mean value is 3.42,the relative range is 1.72 to 6.83;Equal to 5GyE,SUV mean value is 9.946,the relative range is 7.016 to 12.54;Equal or above to 8GyE,SUV mean value is 20.496,the relative range is 11.16 to 34.73. Conclusion: Making an evaluation for accuracy of the dose distribution using the SUV range which is from the planning CT with after treatment online PET-CT fusion for the normal single fraction carbon ion treatment is available.Even to the plan which single fraction dose is above 2GyE,in the condition of other parameters all the same,the SUV range is linearly dependent with single fraction dose,so this method also can be used in the hyper-fraction treatment plan.

  6. Quantitative analysis of growth-induced reduction of long range lattice order in ion-beam sputtered YBa2Cu3O6.9 films

    Science.gov (United States)

    Gauzzi, Andrea; Pavuna, Davor

    1995-04-01

    We report evidence for the reduction of long range lattice order caused by slight departures from the optimal growth temperature in fully doped (x≊0.9) YBa2Cu3O6+x films deposited by ion-beam sputtering on SrTiO3. We estimate the characteristic length of this disorder from the broadening Δϑ of the x-ray diffraction rocking curve. The depression of superconductivity and normal conductivity scales as Δϑ and disappears when the in-plane lattice coherence length rc˜1/Δϑ is larger than ≊10 nm.

  7. Role of Al coordination in barium phosphate glasses on the emission features of Ho{sup 3+} ion in the visible and IR spectral ranges

    Energy Technology Data Exchange (ETDEWEB)

    Satyanarayana, T.; Kalpana, T.; Ravi Kumar, V. [Department of Physics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid-521 201, A.P. (India); Veeraiah, N., E-mail: nvr8@rediffmail.co [Department of Physics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid-521 201, A.P. (India)

    2010-03-15

    The glasses of the composition (39-x)BaO-xAl{sub 2}O{sub 3}-60P{sub 2}O{sub 5}:1.0Ho{sub 2}O{sub 3} (in mol%) with x value ranging from 1.0 to 4.0 have been synthesized. The IR spectral studies of these glasses have indicated that there is a gradual transformation of Al{sup 3+} ions from tetrahedral to octahedral with increase in the concentration of Al{sub 2}O{sub 3} up to 3.0 mol%. Optical absorption and fluorescence spectra (in the visible and NIR regions) of these glasses have been recorded at room temperature. The Judd-Ofelt theory could successfully be applied to characterize the absorption and luminescence spectra of Ho{sup 3+} ions in these glasses. From the luminescence spectra, various radiative properties like transition probability A, branching ratio beta{sub r}, the radiative lifetime tau{sub r} and emission cross-section sigma{sup E} for various emission levels of these glasses have been evaluated. The radiative lifetime of the {sup 5}S{sub 2}->{sup 5}I{sub 8} (green emission) transition has also been measured. The variations observed in these parameters have been discussed in the light of varying co-ordinations (tetrahedral and octahedral positions) of Al{sup 3+} ions in the glass network. The influence of hydroxyl groups on the luminescence efficiency of the transition {sup 5}S{sub 2}->{sup 5}I{sub 8} has also been discussed. Finally the optimum concentration of Al{sub 2}O{sub 3} for getting maximum luminescence output has also been identified and reported.

  8. Dynamic off-centering of Cr3+ ions and short-range magneto-electric clusters in CdCr2S4

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Goncalo [University of Porto, Portugal; Pereira, Andre [University of Porto, Portugal; Lopes, Armandina [Centro de Fisica Nuclear da Universidade de Lisboa, Portugal; Amaral, Joao [University of Aveiro, Portugal; Moreira Dos Santos, Antonio F [ORNL; Ren, Yang [Argonne National Laboratory (ANL); Mendonca, Tania [University of Porto, Portugal; Sousa, C T [University of Porto, Portugal; Amaral, Vitor [University of Aveiro, Portugal; Correa, Joao [Instituto Tecnologico e Nuclear, Sacavem, Portugal; Araujo, Joao Pedro [University of Porto, Portugal

    2012-01-01

    The cubic spinel CdCr2S4 gained recently a vivid interest, given the relevance of relaxor-like dielectric behavior in its paramagnetic phase. By a singular combination of local probe techniques, namely, pair distribution function and perturbed angular correlation, we firmly establish that the Cr ion plays the central key role on this exotic phenomenon, namely, through a dynamic off-centering displacement of its coordination sphere. We further show that this off-centering of the magnetic Cr ion gives rise to a peculiar entanglement between the polar and magnetic degrees of freedom, stabilizing, in the paramagnetic phase, short-range magnetic clusters, clearly seen in ultralow-field susceptibility measurements. Moreover, the Landau theory is here used to demonstrate that a linear coupling between the magnetic and polar order parameters is sufficient to justify the appearance of magnetic cluster in the paramagnetic phase of this compound. These results open insights on the hotly debated magnetic and polar interaction, setting a step forward in the reinterpretation of the coupling of different physical degrees of freedom.

  9. Trifunctional molecular beacon-mediated quadratic amplification for highly sensitive and rapid detection of mercury(II) ion with tunable dynamic range.

    Science.gov (United States)

    Zhao, Yue; Liu, Huaqing; Chen, Feng; Bai, Min; Zhao, Junwu; Zhao, Yongxi

    2016-12-15

    Analyses of target with low abundance or concentration varying over many orders of magnitude are severe challenges faced by numerous assay methods due to their modest sensitivity and limited dynamic range. Here, we introduce a homogeneous and rapid quadratic polynomial amplification strategy through rational design of a trifunctional molecular beacon, which serves as not only a reporter molecule but also a bridge to couple two stage amplification modules without adding any reaction components or process other than basic linear amplification. As a test bed for our studies, we took mercury(II) ion as an example and obtained a high sensitivity with detection limit down to 200 pM within 30min. In order to create a tunable dynamic range, homotropic allostery is employed to modulate the target specific binding. When the number of metal binding site varies from 1 to 3, signal response is programmed accordingly with useful dynamic range spanning 50, 25 and 10 folds, respectively. Furthermore, the applicability of the proposed method in river water and biological samples are successfully verified with good recovery and reproducibility, indicating considerable potential for its practicality in complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Test of hybrid power system for electrical vehicles using a lithium-ion battery pack and a reformed methanol fuel cell range extender

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Sahlin, Simon Lennart

    2014-01-01

    monoxide, the HTPEM fuel cell system can efficiently use a liquid methanol/water mixture of 60%/40% by volume, as fuel instead of compressed hydrogen, enabling potentially a higher volumetric energy density. In order to test the performance of such a system, the experimental validation conducted uses......This work presents the proof-of-concept of an electric traction power system with a high temperature polymer electrolyte membrane fuel cell range extender, usable for automotive class electrical vehicles. The hybrid system concept examined, consists of a power system where the primary power...... is delivered by a lithium ion battery pack. In order to increase the run time of the application connected to this battery pack, a high temperature PEM (HTPEM) fuel cell stack acts as an on-board charger able to charge a vehicle during operation as a series hybrid. Because of the high tolerance to carbon...

  11. Range finding of Alfvén oscillations and direction finding of ion-cyclotron waves by using the ground-based ULF finder

    Directory of Open Access Journals (Sweden)

    A. Guglielmi

    Full Text Available A new approach to the problem of direction and distance finding of magnetospheric ULF oscillations is described. It is based on additional information about the structure of geoelectromagnetic field at the Earth's surface which is contained in the known relations of the theory of magnetovariation and magnetotelluric sounding. This allows us to widen the range of diagnostic tools by using observations of Alfvén oscillations in the Pc 3–5 frequency band and the ion-cyclotron waves in the Pc 1 frequency band. Preliminary results of the remote sensing of the magnetosphere at low-latitudes using the MHD ranger technique are presented. The prospects for remote sensing of the plasmapause position are discussed.

  12. K-, L- and M-shell X-ray productions induced by krypton ions in the 0.8-1.6 MeV/amu range

    Science.gov (United States)

    Gorlachev, I.; Gluchshenko, N.; Ivanov, I.; Kireyev, A.; Alexandrenko, V.; Kurakhmedov, A.; Platov, A.; Zdorovets, M.

    2017-09-01

    The K-, L- and M-shells X-ray production cross sections induced by krypton ions for a range target elements from Ti to Bi were measured. In the experiments the thin films were irradiated by 84Kr particles with projectile energies of 67.2, 84.0, 100.8, 117.6 and 134.4 MeV. An approach based on the use of Mo grid with 500 nm deposited bismuth layer as a beam monitor was developed to determine the amount of particles delivered on the sample. The efficiency of the X-ray detector was determined using the calibration radioactive sources. The experimental results were compared to the predictions of the ECPSSR and PWBA theories calculated with the ISICS code.

  13. Theoretical photoionization spectra for the Mg-like S4+ Ion in the energy range between the S5+ 4 s and 4 f thresholds

    Science.gov (United States)

    Kim, Dae-Soung; Kwon, Duck-Hee

    2014-03-01

    The partial and the total photoionization cross sections of the Mg-like S4+ ion, leaving the residual S5+ 3 l and 4 l states from the ground 3 s 2 1 S e and the excited 3 s3 p 3,1 P o initial states, have been calculated for photon energies ranging from the S5+ 4 s to the S5+ 4 f threshold. The complex features appearing in the cross sections represent the tangled autoionizing Rydberg resonances converging to the different S5+ 4 l thresholds. The present results are compared with the available previous National Institute of Standards and Technology(NIST) and Opacity Project(OP) results.

  14. Irradiation of Fe-Mn Supersaturated Solid Solution with Ions of Various Atomic Masses (Ar+, Xe+) and Analysis of the Role of Nanosized Dynamic Effects in the Activation Processes of Long-Range Type

    Science.gov (United States)

    Ovchinnikov, V. V.; Makhin'ko, F. F.; Semionkin, V. A.; Shalomov, K. V.

    2017-05-01

    A multiple increase in the atom mobility in metastable supersaturated (quenched from 850 °C) Fe-8.16 at % Mn solid solution is detected at temperatures less than 250°C under irradiation with 5-keV Ar+ and Xe+ ions of different masses. The irradiation-induced atom redistribution in the entire volume of foils 30 μm thick at a projected Ar+ and Xe+ ion ranges as much as 20-30 nm only is found and studied by the transmission Mössbauer spectroscopy. Long-range effects at low irradiation doses and anomalously low temperatures are attributed to “radiation shaking” of metastable media with post-cascade solitary waves in contrast to thermally stimulated radiation-enhanced processes in the narrow nanoscale near-surface layers of the alloy. It has been shown that heavier Xe+ ions at higher irradiation doses have a stronger impact on the solid solution than Ar+ ions.

  15. Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation

    Science.gov (United States)

    Tracy, Cameron L.; Shamblin, Jacob; Park, Sulgiye; Zhang, Fuxiang; Trautmann, Christina; Lang, Maik; Ewing, Rodney C.

    2016-08-01

    A2S n2O7 (A =Nd ,Sm,Gd,Er,Yb,and Y) materials with the pyrochlore structure were irradiated with 2.2 GeV Au ions to systematically investigate disordering of this system in response to dense electronic excitation. Structural modifications were characterized, over multiple length scales, by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. Transformations to amorphous and disordered phases were observed, with disordering dominating the structural response of materials with small A -site cation ionic radii. Both the disordered and amorphous phases were found to possess weberite-type local ordering, differing only in that the disordered phase exhibits a long-range, modulated arrangement of weberite-type structural units into an average defect-fluorite structure, while the amorphous phase remains fully aperiodic. Comparison with the behavior of titanate and zirconate pyrochlores showed minimal influence of the high covalency of the Sn-O bond on this phase behavior. An analytical model of damage accumulation was developed to account for simultaneous amorphization and recrystallization of the disordered phase during irradiation.

  16. Commissioning of full energy scanning irradiation with carbon-ion beams ranging from 55.6 to 430 MeV/u at the NIRS-HIMAC

    Science.gov (United States)

    Hara, Y.; Furukawa, T.; Mizushima, K.; Inaniwa, T.; Saotome, N.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    Since 2011, a three-dimensional (3D) scanning irradiation system has been utilized for treatments at the National Institute of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC). In 2012, a hybrid depth scanning method was introduced for the depth direction, in which 11 discrete beam energies are used in conjunction with the range shifter. To suppress beam spread due to multiple scattering and nuclear reactions, we then developed a full energy scanning method. Accelerator tuning and beam commissioning tests prior to a treatment with this method are time-consuming, however. We therefore devised a new approach to obtain the pencil beam dataset, including consideration of the contribution of large-angle scattered (LAS) particles, which reduces the time spent on beam data preparation. The accuracy of 3D dose delivery using this new approach was verified by measuring the dose distributions for different target volumes. Results confirmed that the measured dose distributions agreed well with calculated doses. Following this evaluation, treatments using the full energy scanning method were commenced in September 2015.

  17. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Science.gov (United States)

    Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G. A. P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M. V.; Gentile, A.

    2012-07-01

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  18. Physics and technology in the ion-cyclotron range of frequency on Tore Supra and TITAN test facility: implication for ITER

    Science.gov (United States)

    Litaudon, X.; Bernard, J. M.; Colas, L.; Dumont, R.; Argouarch, A.; Bottollier-Curtet, H.; Brémond, S.; Champeaux, S.; Corre, Y.; Dumortier, P.; Firdaouss, M.; Guilhem, D.; Gunn, J. P.; Gouard, Ph.; Hoang, G. T.; Jacquot, J.; Klepper, C. C.; Kubič, M.; Kyrytsya, V.; Lombard, G.; Milanesio, D.; Messiaen, A.; Mollard, P.; Meyer, O.; Zarzoso, D.

    2013-08-01

    To support the design of an ITER ion-cyclotron range of frequency heating (ICRH) system and to mitigate risks of operation in ITER, CEA has initiated an ambitious Research & Development program accompanied by experiments on Tore Supra or test-bed facility together with a significant modelling effort. The paper summarizes the recent results in the following areas: Comprehensive characterization (experiments and modelling) of a new Faraday screen concept tested on the Tore Supra antenna. A new model is developed for calculating the ICRH sheath rectification at the antenna vicinity. The model is applied to calculate the local heat flux on Tore Supra and ITER ICRH antennas. Full-wave modelling of ITER ICRH heating and current drive scenarios with the EVE code. With 20 MW of power, a current of ±400 kA could be driven on axis in the DT scenario. Comparison between DT and DT(3He) scenario is given for heating and current drive efficiencies. First operation of CW test-bed facility, TITAN, designed for ITER ICRH components testing and could host up to a quarter of an ITER antenna. R&D of high permittivity materials to improve load of test facilities to better simulate ITER plasma antenna loading conditions.

  19. Vacancy-related defects in n-type Si implanted with a rarefied microbeam of accelerated heavy ions in the MeV range

    Energy Technology Data Exchange (ETDEWEB)

    Capan, I. [Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb (Croatia); Pastuović, Ž., E-mail: zkp@ansto.gov.au [Center for Accelerator Science, ANSTO, Locked bag 2001, Kirrawee Dc, NSW 2232 (Australia); Siegele, R. [Center for Accelerator Science, ANSTO, Locked bag 2001, Kirrawee Dc, NSW 2232 (Australia); Jaćimović, R. [Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana (Slovenia)

    2016-04-01

    Deep level transient spectroscopy (DLTS) has been used to study vacancy-related defects formed in bulk n-type Czochralski-grown silicon after implantation of accelerated heavy ions: 6.5 MeV O, 10.5 MeV Si, 10.5 MeV Ge, and 11 MeV Er in the single ion regime with fluences from 10{sup 9} cm{sup −2} to 10{sup 10} cm{sup −2} and a direct comparison made with defects formed in the same material irradiated with 0.7 MeV fast neutron fluences up to 10{sup 12} cm{sup −2}. A scanning ion microprobe was used as the ion implantation tool of n-Cz:Si samples prepared as Schottky diodes, while the ion beam induced current (IBIC) technique was utilized for direct ion counting. The single acceptor state of the divacancy V{sub 2}(−/0) is the most prominent defect state observed in DLTS spectra of n-CZ:Si samples implanted by selected ions and the sample irradiated by neutrons. The complete suppression of the DLTS signal related to the double acceptor state of divacancy, V{sub 2}(=/−) has been observed in all samples irradiated by ions and neutrons. Moreover, the DLTS peak associated with formation of the vacancy-oxygen complex VO in the neutron irradiated sample was also completely suppressed in DLTS spectra of samples implanted with the raster scanned ion microbeam. The reason for such behaviour is twofold, (i) the local depletion of the carrier concentration in the highly disordered regions, and (ii) the effect of the microprobe-assisted single ion implantation. The activation energy for electron emission for states assigned to the V{sub 2}(−/0) defect formed in samples implanted by single ions follows the Meyer–Neldel rule. An increase of the activation energy is strongly correlated with increasing ion mass.

  20. Vacancy-related defects in n-type Si implanted with a rarefied microbeam of accelerated heavy ions in the MeV range

    Science.gov (United States)

    Capan, I.; Pastuović, Ž.; Siegele, R.; Jaćimović, R.

    2016-04-01

    Deep level transient spectroscopy (DLTS) has been used to study vacancy-related defects formed in bulk n-type Czochralski-grown silicon after implantation of accelerated heavy ions: 6.5 MeV O, 10.5 MeV Si, 10.5 MeV Ge, and 11 MeV Er in the single ion regime with fluences from 109 cm-2 to 1010 cm-2 and a direct comparison made with defects formed in the same material irradiated with 0.7 MeV fast neutron fluences up to 1012 cm-2. A scanning ion microprobe was used as the ion implantation tool of n-Cz:Si samples prepared as Schottky diodes, while the ion beam induced current (IBIC) technique was utilized for direct ion counting. The single acceptor state of the divacancy V2(-/0) is the most prominent defect state observed in DLTS spectra of n-CZ:Si samples implanted by selected ions and the sample irradiated by neutrons. The complete suppression of the DLTS signal related to the double acceptor state of divacancy, V2(=/-) has been observed in all samples irradiated by ions and neutrons. Moreover, the DLTS peak associated with formation of the vacancy-oxygen complex VO in the neutron irradiated sample was also completely suppressed in DLTS spectra of samples implanted with the raster scanned ion microbeam. The reason for such behaviour is twofold, (i) the local depletion of the carrier concentration in the highly disordered regions, and (ii) the effect of the microprobe-assisted single ion implantation. The activation energy for electron emission for states assigned to the V2(-/0) defect formed in samples implanted by single ions follows the Meyer-Neldel rule. An increase of the activation energy is strongly correlated with increasing ion mass.

  1. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  2. K-, L- and M-shell X-ray productions induced by oxygen ions in the 0.8-1.6 MeV/amu range

    Science.gov (United States)

    Gorlachev, I.; Gluchshenko, N.; Ivanov, I.; Kireyev, A.; Kozin, S.; Kurakhmedov, A.; Platov, A.; Zdorovets, M.

    2016-08-01

    The X-ray production cross sections induced by oxygen ions with projectile energies from 12.8 to 25.6 MeV for the elements from Al to Bi were measured. The applied approach is based on calculation of X-ray production cross sections through the cross section of Rutherford backscattering, which can be calculated with high accuracy using the Rutherford formula. The experimental results are compared to the predictions of ECPSSR and PWBA theories calculated with the ISICS code.

  3. K-, L- and M-shell X-ray productions induced by oxygen ions in the 0.8–1.6 MeV/amu range

    Energy Technology Data Exchange (ETDEWEB)

    Gorlachev, I., E-mail: Igor.Gorlachev@gmail.com [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Gluchshenko, N. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Ivanov, I. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); L.N. Gumilyov Eurasian National University, Mirzoyan 2, Astana (Kazakhstan); Kireyev, A. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Kozin, S.; Kurakhmedov, A. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); L.N. Gumilyov Eurasian National University, Mirzoyan 2, Astana (Kazakhstan); Platov, A. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Zdorovets, M. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Ural Federal University, Yekaterinburg 620002 (Russian Federation)

    2016-08-15

    The X-ray production cross sections induced by oxygen ions with projectile energies from 12.8 to 25.6 MeV for the elements from Al to Bi were measured. The applied approach is based on calculation of X-ray production cross sections through the cross section of Rutherford backscattering, which can be calculated with high accuracy using the Rutherford formula. The experimental results are compared to the predictions of ECPSSR and PWBA theories calculated with the ISICS code.

  4. Range Distribution Parameters and Electronic Stopping Power for 19F+ Ions in SnO2, Indium-Tin Oxide, AgGaSe2 and AgGaS2:Comparison Between Theory and Experiment

    Institute of Scientific and Technical Information of China (English)

    XIA Hui-Hao; LIU Xiang-Dong

    2004-01-01

    @@ Range distributions of fluorine for 19F+- implantation into SnO2, indium-tin oxide, AgGaS2 and AgGaSe2 are measured by using the 1gF(p,αγ)16O resonant nuclear reactions. The electronic stopping cross sections for 19F ions in these materials are derived from the measured range distributions. These experimental results are compared with those obtained from the newest version of stopping and range computer code, SRIM2003. The values of projected range predicted by the SRIM2003 agree well with the measured values for AgGaS2 and AgGaSe2 substrates. However, the values given by the SRIM2003 substantially deviate from the experimental values for the oxide materials SnO2 and ITO.

  5. Residues from low-order energetic materials: the comparative performance of a range of sampling approaches prior to analysis by ion chromatography.

    Science.gov (United States)

    Szomborg, Katarzyna; Jongekrijg, Fleur; Gilchrist, Elizabeth; Webb, Tony; Wood, Dan; Barron, Leon

    2013-12-10

    A quantitative study of common forensic evidence collection devices for the recovery of low-explosive residues from non-porous glass and plastic is presented herein. Swabbing materials including cotton, rayon, Nomex(®) (poly(isophthaloylchloride/m-phenylenediamine)), Teflon/Teflon-coated fibreglass (polytetrafluoroethylene) and adhesive-coated tapes were used to collect known quantities of up to 14 forensically relevant inorganic and organic anion and cation species from both surfaces. Analysis was performed using two validated ion chromatography methods. This study revealed that all swabs and surfaces contributed highly variable levels of interfering ionic species and that swabbing materials showed variance in the quantities and total number of analytes recovered from both surfaces. Teflon and Nomex(®) materials demonstrated the most promise due to their ability to collect and release analytes into simple extraction solvents as well as displaying relatively low endogenous interference. In parallel, the ability to extract residue directly from both surfaces via the addition of a suitable extraction solvent was investigated instead of swabbing. This work highlights that direct solvent extraction from a surface should be considered as an alternative approach, especially for small areas or objects. To the best of our knowledge, this work represents the most comprehensive study of the efficiencies of sample collection technologies for low-explosive residues prior to analysis by ion chromatography.

  6. Jazykovye osobennosti rukopisnogo Zakonnika pervoj poloviny XVI veka

    OpenAIRE

    2010-01-01

    Rukopisnaja kniga «Zakonnik» sozdavalas', soglasno vodjanym znakam, v period s 1525 do 1535 goda. Ee napisal (kako ukazano v special'noj zapisi) ieromonah Gennadij dlja manastyrja Blagoveščenie. Narodnyj jazyk ieromonaha Gennadija, soglasno rjadu fonetičeskih i morfologičeskih priznakov, prinadležit sovremennomu prizrensko-južno-moravskomu poddialektu.

  7. Development of Ion-Plasma Coatings for Protecting Intermetallic Refractory Alloys VKNA-1V and VKNA-25 in the Temperature Range of 1200 - 1250°C

    Science.gov (United States)

    Budinovskii, S. A.; Matveev, P. V.; Smirnov, A. A.

    2017-05-01

    Multilayer heat-resistant ion-plasma coatings for protecting the parts of the hot duct of gas-turbine engines produced from refractory nickel alloys based on VKNA intermetallics from high-temperature oxidation are considered. Coatings of the Ni - Cr - Al (Ta, Re, Hf, Y) + Al - Ni - Y systems are tested for high-temperature strength at 1200 and 1250°C. Metallographic and microscopic x-ray spectrum analyses of the structure and composition of the coatings in the initial condition and after the testing are performed. The effect of protective coatings of the Ni - Cr - Al - Hf + Al - Ni - Y systems on the long-term strength of alloys VKNA-1V and VKNA-25 at 1200°C is studied.

  8. K-, L- and M-shell X-ray productions induced by argon ions in the 0.8-1.6 MeV/amu range

    Science.gov (United States)

    Gluchshenko, N.; Gorlachev, I.; Ivanov, I.; Kireyev, A.; Kozin, S.; Kurakhmedov, A.; Platov, A.; Zdorovets, M.

    2016-04-01

    The X-ray emissions induced by argon ions for the elements from Mg to Bi were measured on mono-elemental thin films. K-, L- and M-shells X-ray production cross section were obtained for the 40Ar projectile energies of 32, 40, 48, 56 and 64 MeV, considering absorption corrections. For the most of target elements the approach used is based on the calculation of X-ray production cross sections through the cross section of Rutherford backscattering. The efficiency of the X-ray detector was determined using standard calibrated radioactive sources. The experimental results are compared to the predictions of the ECPSSR and PWBA theories calculated with the ISICS code.

  9. Spatial proximity effects on the excitation of sheath RF voltages by evanescent slow waves in the ion cyclotron range of frequencies

    Science.gov (United States)

    Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric

    2017-02-01

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF  +  DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  10. Electron-Impact Ionization Cross Sections of H, He, N, O, Ar, Xe, Au, Pb Atoms and Their Ions in the Electron Energy Range from the Threshold up to 200 keV

    CERN Document Server

    Povyshev, V M; Shevelko, V P; Shirkov, G D; Vasina, E G; Vatulin, V V

    2001-01-01

    Single electron-impact ionization cross sections of H, He, N, O, Ar, Xe, Au, Pb atoms and their positive ions (i.e. all ionization stages) are presented in the electron energy range from the threshold up to 200 keV. The data-set for the cross sections has been created on the basis of available experimental data and calculations performed by the computer code ATOM. Consistent data for the ionization cross sections have been fitted by seven parameters using the LSM method. The accuracy of the calculated data presented is within a factor of 2 that in many cases is sufficient to solve the plasma kinetics problems. Contributions from excitation-autoionization and resonant-ionization processes as well as ionization of atoms and ions are not considered here. The results of the numerical calculations are compared with the well-known Lotz formulae for ionization of neutral atoms and positive ions. The material is illustrated by figures and includes tables of ionization cross sections, binding energies and fitting para...

  11. Measurement of charge- and mass-changing cross sections for 4He+12C collisions in the energy range 80-220 MeV/u for applications in ion beam therapy

    Science.gov (United States)

    Horst, Felix; Schuy, Christoph; Weber, Uli; Brinkmann, Kai-Thomas; Zink, Klemens

    2017-08-01

    4He ions are considered to be used for hadron radiotherapy due to their favorable physical and radiobiological properties. For an accurate dose calculation the fragmentation of the primary 4He ions occurring as a result of nuclear collisions must be taken into account. Therefore precise nuclear reaction models need to be implemented in the radiation transport codes used for dose calculation. A fragmentation experiment using thin graphite targets was conducted at the Heidelberg Ion Beam Therapy Center (HIT) to obtain new and precise 4He-nucleus cross section data in the clinically relevant energy range. Measured values for the charge-changing cross section, mass-changing cross section, as well as the inclusive 3He production cross section for 4He+12C collisions at energies between 80 and 220 MeV /u are presented. These data are compared to the 4He-nucleus reaction model by DeVries and Peng as well as to the parametrizations by Tripathi et al. and by Cucinotta et al., which are implemented in the treatment planning code trip98 and several other radiation transport codes.

  12. [Simultaneous photometric determination of covalently bound fluorine and fluoride ion contamination adsorbed on drugs in the low ppm range after alkaline pulping].

    Science.gov (United States)

    Seeling, A; Dahse, Th; Oelschläger, H

    2003-12-01

    The simultaneous determination of fluorine resulting from inorganic fluoride as well as fluorine-containing solvents adsorbed to drugs was achieved in the 0.1-30 ppm range by a combination of decomposition with magnesium oxide at 800 degrees C and steam distillation of the resulting fluoride followed by photometric measurement of the aminomethylalizarindiacetic acid-cerium(III) complex at 620 nm. The inevitable loss of fluoride occurring during the decomposition and distillation processes was corrected using factors derived from authorized calibrations. The method was validated using glucose contaminated with dexamethasone which contains 4.84% fluorine per molecule.

  13. Antenna Effect on the Organic Spacer-Modified Eu-Doped Layered Gadolinium Hydroxide for the Detection of Vanadate Ions over a Wide pH Range.

    Science.gov (United States)

    Jeong, Heejin; Lee, Byung-Il; Byeon, Song-Ho

    2016-05-04

    The excitation of the adsorbed vanadate group led to the red emission arising from the efficient energy transfer to Eu-doped layered gadolinium hydroxide (LGdH:Eu). This light-harvesting antenna effect allowed LGdH:Eu to detect selectively a vanadate in aqueous solution at different pHs. Because vanadate exists in various forms by extensive oligomerization and protonation reactions in aqueous solution depending on pH, it is important to detect a vanadate regardless of its form over a wide pH range. In particular, spacer molecules with long alkyl chains greatly facilitated access of a vanadate antenna into the interlayer surface of LGdH:Eu. The concomitant increase in adsorption capacity of LGdH:Eu achieved a strong antenna effect of vanadate on the red emission from Eu(3+). When a suspension containing LGdH:Eu nanosheets (1.0 g/L) was used, the vanadate concentration down to 1 × 10(-5) M could even be visually monitored, and the detection limit based on the (5)D0 → (7)F2 emission intensity could reach 4.5 × 10(-8) M.

  14. Evidence for an Early Archean component in the Middle to Late Archean gneisses of the Wind River Range, west-central Wyoming: conventional and ion microprobe U-Pb data

    Science.gov (United States)

    Aleinikoff, J.N.; Williams, I.S.; Compston, W.; Stuckless, J.S.; Worl, R.G.

    1989-01-01

    Gneissic rocks that are basement to the Late Archean granites comprising much of the Wind River Range, west-central Wyoming, have been dated by the zircon U-Pb method using both conventional and ion microprobe techniques. A foliated hornblende granite gneiss member from the southern border of the Bridger batholith is 2670??13 Ma. Zircons from a granulite just north of the Bridger batholith are equant and faceted, a typical morphology for zircon grown under high grade metamorphic conditions. This granulite, which may be related to a second phase of migmatization in the area, is 2698??8 Ma. South of the Bridger batholith, zircons from a granulite (charnockite), which is related to an earlier phase of migmatization in the Range, yield a discordia with intercept ages of about 2.3 and 3.3 Ga. However, ion microprobe analyses of single zircon grains indicate that this rock contains several populations of zircon, ranging in age from 2.67 to about 3.8 Ga. Based on zircon morphology and regional geologic relationships, we interpret the data as indicating an age of ???3.2 Ga for the first granulite metamorphism and migmatization. Older, possibly xenocrystic zircons give ages of ???3.35, 3.65 and ???3.8 Ga. Younger zircons grew at 2.7 and 2.85 Ga in response to events, including the second granulite metamorphism at 2.7 Ga, that culminated in the intrusion of the Bridger batholith and migmatization at 2.67 Ga. These data support the field and petrographic evidence for two granulite events and provide some temporal constraints for the formation of continental crust in the Early and Middle Archean in the Wyoming Province. ?? 1989 Springer-Verlag.

  15. High-dynamic-range neutron time-of-flight detector used to infer the D(t,n){sup 4}He and D(d,n){sup 3}He reaction yield and ion temperature on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, C. J., E-mail: cforrest@lle.rochester.edu; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Romanofsky, M. H.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States)

    2016-11-15

    Upgraded microchannel-plate–based photomultiplier tubes (MCP-PMT’s) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C{sub 15}H{sub 11}NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT’s, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 10{sup 6}. With these enhancements, the 13.4-m nTOF can measure the D(t,n){sup 4}He and D(d,n){sup 3}He reaction yields and average ion temperatures in a single line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 10{sup 9} to 1 × 10{sup 14} and the ion temperature with an accuracy approaching 5% for both the D(t,n){sup 4}He and D(d,n){sup 3}He reactions.

  16. High-dynamic-range neutron time-of-flight detector used to infer the D(t,n)(4)He and D(d,n)(3)He reaction yield and ion temperature on OMEGA.

    Science.gov (United States)

    Forrest, C J; Glebov, V Yu; Goncharov, V N; Knauer, J P; Radha, P B; Regan, S P; Romanofsky, M H; Sangster, T C; Shoup, M J; Stoeckl, C

    2016-11-01

    Upgraded microchannel-plate-based photomultiplier tubes (MCP-PMT's) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C15H11NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT's, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 10(6). With these enhancements, the 13.4-m nTOF can measure the D(t,n)(4)He and D(d,n)(3)He reaction yields and average ion temperatures in a single line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 10(9) to 1 × 10(14) and the ion temperature with an accuracy approaching 5% for both the D(t,n)(4)He and D(d,n)(3)He reactions.

  17. High-dynamic-range neutron time-of-flight detector used to infer the D(t,n)4He and D(d,n)3He reaction yield and ion temperature on OMEGA

    Science.gov (United States)

    Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Romanofsky, M. H.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C.

    2016-11-01

    Upgraded microchannel-plate-based photomultiplier tubes (MCP-PMT's) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C15H11NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT's, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 106. With these enhancements, the 13.4-m nTOF can measure the D(t,n)4He and D(d,n)3He reaction yields and average ion temperatures in a single line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 109 to 1 × 1014 and the ion temperature with an accuracy approaching 5% for both the D(t,n)4He and D(d,n)3He reactions.

  18. Secondary electron emission of thin carbon foils under the impact of hydrogen atoms, ions and molecular ions, under energies within the MeV range; Multiplicite des electrons secondaires emis par des cibles minces de carbone sous l'impact de projectiles H0, H2+, H3+ d'energie de l'ordre du MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vidovic, Z

    1997-06-15

    This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H{sup 0}, H{sub 2}{sup +} and H{sub 3}{sup +} projectiles in the 0.25-2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. The phenomenological and theoretical descriptions, as well as a summary of the main theoretical models are the subject of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of a thin carbon foil traversed by an energetic projectile is described in the chapter two. In this chapter are also presented the method and algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with the emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H{sub 2}{sup +} and H{sub 3}{sup +} polyatomic ions. The results are interpreted in terms of collective effects in the interactions of these ions with solids. The role of the proximity of the protons, molecular ion fragments, upon the amplitude of these collective effects is evidenced from the study of the statistics of forward emission. These experiences allowed us to shed light on various aspects of atom and polyatomic ion inter-actions with solid surfaces. (author)

  19. Measurement of the stopping power of water for carbon ions in the energy range of 1 MeV-6 MeV using the inverted Doppler-shift attenuation method

    Energy Technology Data Exchange (ETDEWEB)

    Rahm, Johannes Martin

    2016-10-31

    Cancer therapy using carbon ions has gained increasing interest in the last decade due to its advantageous dose distributions. For the dosimetry and treatment planning, the accurate knowledge of the stopping power of water for carbon ions is of crucial importance. In the high energy region, the stopping power can be calculated rather accurately by means of the Bethe-Bloch formula. In the case of projectile velocities comparable to those of the valence electrons of the target, these calculations are subject to large uncertainties. There exist no experimental data for the stopping power of water for projectile energies prevailing in the so-called Bragg peak region. The currently available stopping power data for water are derived from measurements in water vapour or D{sub 2}O ice and, hence, neglect the dependence on the state of aggregation. The stopping power of water for charged particles is of high interest not only for practical applications but also to consider how physical and chemical state of the target influence the collisional energy transfer. For the measurement of the stopping power of water, the inverted Doppler-shift attenuation method was used in this work. This method has the advantage that the projectile itself is not needed to be detected and can be slowed down entirely in the target. In this method, the stopping power is determined from the Doppler-shift of the gamma-quanta emitted by projectiles during their slow down. This experiment can be performed at atmospheric pressure and consequently, the stopping power of water can be measured in its real physiological condition. In this work, the stopping power of water for carbon ions was measured for the first time in the energy range between 1 MeV and 6 MeV covering the kinetic energies of carbon ions in the Bragg peak region. The experimental method is presented in detail along with the design of the apparatus and of the data acquisition system. A comprehensive analysis of instrumental effects

  20. Heavy Ion Propulsion in the Megadalton Range

    Science.gov (United States)

    2006-11-01

    atomizacidn electrostdtica, Universidad Carlos III, Madrid, Spain (2006) 15. D. Garoz, "Sintesis, estudio y mezclas de nuevos combustibles basados en...propellants for electrical propulsion from Taylor cones in vacuo), Proyecto fin de carrera (Senior Thesis), Universidad Politecnica de Madrid, Marzo 2004

  1. Range Tracing

    OpenAIRE

    Jenke, Philipp; Huhle, Benjamin

    2010-01-01

    In this report, we tackle the problem of merging an arbitrary number of range scans (depth images) into a single surface mesh. The mesh-based representation is superior to point-based approaches since it contains important connectivity information. Most previous mesh-based merge methods, however, lose surface details by using simplifying intermediate surface representations (e.g.\\ implicit functions). Such details are essential for further processing steps, especially for feature-preserving r...

  2. Ion optics of RHIC electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Kuznetsov, G. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  3. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  4. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  5. Heavy ion storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  6. Ion-Ion Neutralization.

    Science.gov (United States)

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  7. Materials analysis fast ions

    CERN Document Server

    Denker, A; Rauschenberg, J; Röhrich, J; Strub, E

    2006-01-01

    Materials analysis with ion beams exploits the interaction of ions with the electrons and nuclei in the sample. Among the vast variety of possible analytical techniques available with ion beams we will restrain to ion beam analysis with ion beams in the energy range from one to several MeV per mass unit. It is possible to use either the back-scattered projectiles (RBS – Rutherford Back Scattering) or the recoiled atoms itself (ERDA – Elastic Recoil Detection Analysis) from the elastic scattering processes. These techniques allow the simultaneous and absolute determination of stoichiometry and depth profiles of the detected elements. The interaction of the ions with the electrons in the sample produces holes in the inner electronic shells of the sample atoms, which recombine and emit X-rays characteristic for the element in question. Particle Induced X-ray Emission (PIXE) has shown to be a fast technique for the analysis of elements with an atomic number above 11.

  8. Microfabricated cylindrical ion trap

    Science.gov (United States)

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  9. Characterization of a DAPI-RIT-DAPI System for Gas-Phase Ion/Molecule and Ion/Ion Reactions

    Science.gov (United States)

    Lin, Ziqing; Tan, Lei; Garimella, Sandilya; Li, Linfan; Chen, Tsung-Chi; Xu, Wei; Xia, Yu; Ouyang, Zheng

    2014-01-01

    The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10-1 Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.

  10. Characterization of a DAPI-RIT-DAPI system for gas-phase ion/molecule and ion/ion reactions.

    Science.gov (United States)

    Lin, Ziqing; Tan, Lei; Garimella, Sandilya; Li, Linfan; Chen, Tsung-Chi; Xu, Wei; Xia, Yu; Ouyang, Zheng

    2014-01-01

    The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10(-1) Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.

  11. Energy loss straggling data of 28Si, 27Al, 24Mg, 19F, 16O, and 12C heavy ions in thin polymeric Formvar foil over a range of energies 0.1-0.6 MeV/u by time-of-flight spectrometry

    Science.gov (United States)

    Guesmia, A.; Ammi, H.; Msimanga, M.; Dib, A.; Mammeri, S.; Pineda-Vargas, C. A.; Hedibel, M.

    2015-02-01

    The energy-loss straggling of 28Si, 27Al, 24Mg, 19F, 16O and 12C partially stripped heavy ions has been determined in Formvar polymeric thin foil over a continuous range of energies 0.1-0.6 MeV/u, by using a powerful method based on the combination of Heavy Ion-Elastic Recoil Detection Analysis (HI-ERDA) technique and Time of Flight (ToF) spectrometer. The obtained energy loss straggling values have been analyzed and compared with the corresponding computed values adopting some widely used energy loss straggling formulations such as, Bohr, Bethe-Livingston and Yang formulas. The aim of such a comparison is to check the reliability and accuracy of the existing energy loss straggling formulations. The experimental results of energy loss straggling of all ions are found to be significantly greater than those predicted by the theories. These differences can be attributed to the charge exchange straggling. This effect has to be taken into account in order to explain the obtained results.

  12. Ion Chromatography.

    Science.gov (United States)

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  13. Absolute Integral Cross Sections for the State-selected Ion-Molecule Reaction N2+(X2Σg+ v+ = 0-2) + C2H2 in the Collision Energy Range of 0.03-10.00 eV

    Science.gov (United States)

    Xu, Yuntao; Xiong, Bo; Chung Chang, Yih; Ng, C. Y.

    2016-08-01

    Using the vacuum ultraviolet laser pulsed field ionization-photoion source, together with the double-quadrupole-double-octopole mass spectrometer developed in our laboratory, we have investigated the state-selected ion-molecule reaction {{{{N}}}2}+({X}2{{{{Σ }}}{{g}}}+; v + = 0-2, N+ = 0-9) + C2H2, achieving high internal-state selectivity and high kinetic energy resolution for reactant {{{{N}}}2}+ ions. The charge transfer (CT) and hydrogen-atom transfer (HT) channels, which lead to the respective formation of product {{{C}}}2{{{{H}}}2}+ and N2H+ ions, are observed. The vibrationally selected absolute integral cross sections for the CT [σ CT(v +)] and HT [[σ HT(v +)] channels obtained in the center-of-mass collision energy (E cm) range of 0.03-10.00 eV reveal opposite E cm dependences. The σ CT(v +) is found to increase as E cm is decreased, and is consistent with the long-range exothermic CT mechanism, whereas the E cm enhancement observed for the σ HT(v +) suggests effective coupling of kinetic energy to internal energy, enhancing the formation of N2H+. The σ HT(v +) curve exhibits a step at E cm = 0.70-1.00 eV, suggesting the involvement of the excited {{{C}}}2{{{{H}}}2}+({A}2{{{{Σ }}}{{g}}}+) state in the HT reaction. Contrary to the strong E cm dependences for σ CT(v +) and σ HT(v +), the effect of vibrational excitation of {{{{N}}}2}+ on both the CT and HT channels is marginal. The branching ratios and cross sections for the CT and HT channels determined in the present study are useful for modeling the atmospheric compositions of Saturn's largest moon, Titan. These cross sections and branching ratios are also valuable for benchmarking theoretical calculations on chemical dynamics of the titled reaction.

  14. Electrochemical Characteristics and Li+ Ion Intercalation Kinetics of Dual-phase Li4Ti5O12/Li2TiO3 Composite in Voltage Range of 0−3 V

    KAUST Repository

    Bhatti, Humaira S

    2016-04-20

    Li4Ti5O12, Li2TiO3 and dual-phase Li4Ti5O12/Li2TiO3 composite were prepared by sol-gel method with average particle size of 1 µm, 0.3 µm and 0.4 µm, respectively. Though Li2TiO3 is electrochemically inactive, the rate capability of Li4Ti5O12/Li2TiO3 is comparable to Li4Ti5O12 at different current rates. Li4Ti5O12/Li2TiO3 also shows good rate performance of 90 mA h g-1 at high rate of 10 C in voltage range of 1−3 V, attributable to increased interfaces in the composite. While Li4Ti5O12 delivers capacity retention of 88.6 % at 0.2 C over 50 cycles, Li4Ti5O12/Li2TiO3 exhibits no capacity fading at 0.2 C (40 cycles) and capacity retention of 98.45 % at 0.5 C (50 cycles). This highly stable cycling performance is attributed to the contribution of Li2TiO3 in preventing undesirable reaction of Li4Ti5O12 with the electrolyte during cycling. CV curves of Li4Ti5O12/Li2TiO3 in 0−3 V range exhibit two anodic peaks at 1.51 V and 0.7−0.0 V, indicating two modes of lithium intercalation into the lattice sites of active material. Owing to enhanced intercalation/de-intercalation kinetics in 0−3 V, composite electrode delivers superior rate performance of 203 mAh/g at 2.85 C and 140 mAh/g at 5.7 C with good reversible capacity retention over 100 cycles.

  15. Modification of graphene by ion beam

    Science.gov (United States)

    Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J.

    2017-09-01

    Ion induced defect generation in graphene was analyzed using Raman spectroscopy. A single layer graphene membrane produced by chemical vapor deposition (CVD) on copper foil and then transferred on glass substrate was subjected to helium, carbon, nitrogen, argon and krypton ions bombardment at energies from the range 25 keV to 100 keV. A density of ion induced defects and theirs mean size were estimated by using Raman measurements. Increasing number of defects generated by ion with increase of ion mass and decrease of ion energy was observed. Dependence of ion defect efficiency (defects/ion) on ion mass end energy was proportional to nuclear stopping power simulated by SRIM. No correlation between ion defect efficiency and electronic stopping power was observed.

  16. The Toledo heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Haar, R.R. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Beideck, D.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Curtis, L.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Kvale, T.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Sen, A. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Schectman, R.M. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Stevens, H.W. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States))

    1993-06-01

    The recently installed 330 kV electrostatic positive ion accelerator at the University of Toledo is described. Experiments have been performed using ions ranging from H[sup +] to Hg[sup 2+] and exotic molecules such as HeH[sup +]. Most of these experiments involve the beam-foil studies of the lifetimes of excited atomic states and the apparatus used for these experiments is also described. Another beamline is available for ion-implantation. The Toledo heavy ion accelerator facility welcomes outside users. (orig.)

  17. Ion thermal effects on slow mode solitary waves in plasmas with two adiabatic ion species

    Energy Technology Data Exchange (ETDEWEB)

    Nsengiyumva, F., E-mail: franco.nseng@gmail.com; Hellberg, M. A., E-mail: hellberg@ukzn.ac.za; Mace, R. L., E-mail: macer@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2015-09-15

    Using both the Sagdeev and Korteweg-de Vries (KdV) methods, ion thermal effects on slow mode ion acoustic solitons and double layers are investigated in a plasma with two adiabatic positive ion species. It is found that reducing the gap between the two ion thermal speeds by increasing the relative temperature of the cool ions increases the typical soliton/double layer speeds for all values of the ion-ion density ratio and reduces the range in the density ratio that supports double layers. The effect of increasing the relative cool ion temperature on the soliton/double layer amplitudes depends on the relative densities. For lower values of the ion density ratio, an increase in cool ion temperature leads to a significant decrease in soliton/double layer amplitude, so one may find that solitons of all permissible speeds lie within the range of KdV theory.

  18. Experimental investigation of ion-ion recombination at atmospheric conditions

    Directory of Open Access Journals (Sweden)

    A. Franchin

    2015-02-01

    Full Text Available We present the results of laboratory measurements of the ion-ion recombination coefficient at different temperatures, relative humidities and concentrations of ozone and sulfur dioxide. The experiments were carried out using the Cosmics Leaving OUtdoor Droplets (CLOUD chamber at CERN, the walls of which are made of conductive material, making it possible to measure small ions. We produced ions in the chamber using a 3.5 GeV c−1 beam of positively-charged pions (π+ from the CERN Proton Synchrotron (PS and with galactic cosmic rays, when the PS was switched off. The range of the ion production rate varied from 2 to 100 cm−3s−1, covering the typical range of ionization throughout the troposphere. The temperature ranged from −55 to 20 °C, the relative humidity from 0 to 70%, the SO2 concentration from 0 to 40 ppb, and the ozone concentration from 200 to 700 ppb. At 20 °C and 40% RH, the retrieved ion-ion recombination coefficient was (2.3 ± 0.7 × 10−6cm3s−1. We observed no dependency of the ion-ion recombination coefficient on ozone concentration and a weak variation with sulfur dioxide concentration. However, we found a strong dependency of the ion-ion recombination coefficient on temperature. We compared our results with three different models and found an overall agreement for temperatures above 0 °C, but a disagreement at lower temperatures. We observed a strong dependency of the recombination coefficient on relative humidity, which has not been reported previously.

  19. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    Energy Technology Data Exchange (ETDEWEB)

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  20. Ion sources for energy extremes of ion implantation.

    Science.gov (United States)

    Hershcovitch, A; Johnson, B M; Batalin, V A; Kropachev, G N; Kuibeda, R P; Kulevoy, T V; Kolomiets, A A; Pershin, V I; Petrenko, S V; Rudskoy, I; Seleznev, D N; Bugaev, A S; Gushenets, V I; Litovko, I V; Oks, E M; Yushkov, G Yu; Masunov, E S; Polozov, S M; Poole, H J; Storozhenko, P A; Svarovski, A Ya

    2008-02-01

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P(2+) [8.6 pmA (particle milliampere)], P(3+) (1.9 pmA), and P(4+) (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb(3+)Sb(4+), Sb(5+), and Sb(6+) respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  1. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  2. Ion focusing

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  3. Ion Channels in Neurological Disorders.

    Science.gov (United States)

    Kumar, Pravir; Kumar, Dhiraj; Jha, Saurabh Kumar; Jha, Niraj Kumar; Ambasta, Rashmi K

    2016-01-01

    The convergent endeavors of the neuroscientist to establish a link between clinical neurology, genetics, loss of function of an important protein, and channelopathies behind neurological disorders are quite intriguing. Growing evidence reveals the impact of ion channels dysfunctioning in neurodegenerative disorders (NDDs). Many neurological/neuromuscular disorders, viz, Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, and age-related disorders are caused due to altered function or mutation in ion channels. To maintain cell homeostasis, ion channels are playing a crucial role which is a large transmembrane protein. Further, these channels are important as it determines the membrane potential and playing critically in the secretion of neurotransmitter. Behind NDDs, losses of pathological proteins and defective ion channels have been reported and are found to aggravate the disease symptoms. Moreover, ion channel dysfunctions are eliciting a range of symptoms, including memory loss, movement disabilities, neuromuscular sprains, and strokes. Since the possible mechanistic role played by aberrant ion channels, their receptor and associated factors in neurodegeneration remained elusive; therefore, it is a challenging task for the neuroscientist to implement the therapeutics for targeting NDDs. This chapter reviews the potential role of the ion channels in membrane physiology and brain homeostasis, where ion channels and their associated factors have been characterized with their functional consequences in neurological diseases. Moreover, mechanistic role of perturbed ion channels has been identified in various NDDs, and finally, ion channel modulators have been investigated for their therapeutic intervention in treating common NDDs.

  4. Prigranichnyj turizm na Severo-Zapade Rossijskoj Federacii: obshhie tendencii i osobennosti razvitija

    Directory of Open Access Journals (Sweden)

    Stepanova S.

    2014-08-01

    Full Text Available As a result of the socioeconomic transformations in the Russian Federation, the openness of border regions under the influence of integration process taking place in the world community facilitates tourist mobility between neighbouring countries. The author describes an approach that considers the border regions of Northwest Russia as attractive destinations for tourists from neighbouring countries. The development of cross-border tourism as a specific form characteristic of only border regions is one of key areas of tourism development in these regions. An assessment of the prospects of developing cross-border tourism in the border regions of Russian Northwest becomes a relevant research objective. The author identifies the specific features and general trends in the development of cross-border tourism in the Russian regions in question. It is proven that Russian border regions are less competitive than the territories of neighbouring states in terms of the development of crossborder tourism. The author also points out to the avenues of stimulating cross-border tourism development in Russian border regions.

  5. Rectangular ion funnel: a new ion funnel interface for structures for lossless ion manipulations.

    Science.gov (United States)

    Chen, Tsung-Chi; Webb, Ian K; Prost, Spencer A; Harrer, Marques B; Norheim, Randolph V; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D

    2015-01-06

    Structures for lossless ion manipulations (SLIM) have recently demonstrated the ability for near lossless ion focusing, transfer, and trapping in subatmospheric pressure regions. While lossless ion manipulations are advantageously applied to the applications of ion mobility separations and gas phase reactions, ion introduction through ring electrode ion funnels or more conventional ion optics to SLIM can involve discontinuities in electric fields or other perturbations that result in ion losses. In this work, we developed and investigated a new funnel design that aims to seamlessly couple to SLIM at the funnel exit. This rectangular ion funnel (RIF) was initially evaluated by ion simulations, fabricated utilizing printed circuit board technology, and tested experimentally. The RIF was integrated to a SLIM-time of flight (TOF) MS system, and the operating parameters, including RF, DC bias of the RIF electrodes, and electric fields for effectively interfacing with a SLIM, were characterized. The RIF provided a 2-fold sensitivity increase without significant discrimination over a wide m/z range and well matched to that of SLIM, along with greatly improved SLIM operational stability.

  6. Gas and metal ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Oaks, E. [High Current Electronics Institute, Tomsk (Russian Federation)]|[State Academy of Control System and Radioelectronics, Tomsk (Russian Federation); Yushkov, G. [High Current Electronics Institute, Tomsk (Russian Federation)

    1996-08-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of {approximately} 10{sup 17} cm{sup {minus}2} in some tens of minutes. So the average ion current density at the surface under treatment should be over 10{sup {minus}5} A/cm{sup 2}. The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from {approximately}1 kV (for the ion source used for surface sputtering) to {approximately}100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation).

  7. Ion Implantation and Synthesis of Materials

    CERN Document Server

    Nastasi, Michael

    2006-01-01

    Ion implantation is one of the key processing steps in silicon integrated circuit technology. Some integrated circuits require up to 17 implantation steps and circuits are seldom processed with less than 10 implantation steps. Controlled doping at controlled depths is an essential feature of implantation. Ion beam processing can also be used to improve corrosion resistance, to harden surfaces, to reduce wear and, in general, to improve materials properties. This book presents the physics and materials science of ion implantation and ion beam modification of materials. It covers ion-solid interactions used to predict ion ranges, ion straggling and lattice disorder. Also treated are shallow-junction formation and slicing silicon with hydrogen ion beams. Topics important for materials modification, such as ion-beam mixing, stresses, and sputtering, are also described.

  8. Development of the RF Ion Sources for Focused Ion Beam Accelerators

    Directory of Open Access Journals (Sweden)

    V. Voznyi

    2014-01-01

    Full Text Available The paper presents the results of investigations of ion sources developed in the IAP of NAS of Ukraine for generation of high brightness ion beams with small energy spread. A series of RF ion sources operated at the frequency of 27.12 MHz were studied: the inductive RF ion source, the helicon ion source, the multi-cusp RF ion source, and the sputter type RF source of metal ions. A global model and transformer model were applied for calculation of RF source plasma parameters. Ion energy spread, ion mass, and ion current density of some sources were measured in the wide range of RF power, extraction voltage and gas pres-sure.

  9. The ion kinetic D'Angelo mode

    Science.gov (United States)

    Chibisov, D. V.; Mikhailenko, V. S.; Stepanov, K. N.

    2011-10-01

    An extension of hydrodynamic D'Angelo mode of inhomogeneous sheared plasma flow along the magnetic field into the short wavelength range, where the hydrodynamic treatment is not valid, has been considered. We find that D'Angelo mode in this wavelength range is excited by inverse ion Landau damping and is a shear flow driven ion-kinetic mode.

  10. The ATLAS positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs.

  11. Dynamical Properties of Potassium Ion Channels with a Hierarchical Model

    Institute of Scientific and Technical Information of China (English)

    ZHAN Yong; AN Hai-Long; YU Hui; ZHANG Su-Hua; HAN Ying-Rong

    2006-01-01

    @@ It is well known that potassium ion channels have higher permeability than K ions, and the permeable rate of a single K ion channel is about 108 ions per second. We develop a hierarchical model of potassium ion channel permeation involving ab initio quantum calculations and Brownian dynamics simulations, which can consistently explain a range of channel dynamics. The results show that the average velocity of K ions, the mean permeable time of K ions and the permeable rate of single channel are about 0.92nm/ns, 4.35ns and 2.30×108 ions/s,respectively.

  12. Minnesota Pheasant Range

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset delineates the spatial range of wild pheasant populations in Minnesota as of 2002 by dividing the MN state boundary into 2 units: pheasant range and...

  13. Towards optimal range medians

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Gfeller, Beat; Jørgensen, Allan Grønlund

    2011-01-01

    that in the cell-probe model, any data structure which supports updates in O(logO(1)n) time must have Ω(log n/loglog n) query time. Our approach naturally generalizes to higher-dimensional range median problems, where element positions and query ranges are multidimensional - it reduces a range median query...... to a logarithmic number of range counting queries....

  14. Tau ranging revisited

    Science.gov (United States)

    Tausworthe, R. C.

    1987-01-01

    It is shown that a ranging receiver with a sufficient and reasonable number of correlators is competitive with the current sequential component ranging system by some 1.5 to 2.5 dB. The optimum transmitter code, the optimum receiver, and a near-maximum-lilelihood range-estimation algorithm are presented.

  15. GISELE: A resonant ionization laser ion source for the production of radioactive ions at GANIL

    Energy Technology Data Exchange (ETDEWEB)

    Lecesne, N.; Alves-Conde, R.; De Oliveira, F.; Dubois, M.; Flambard, J. L.; Franberg, H.; Jardin, P.; Leroy, R.; Pacquet, J. Y.; Pichard, A.; Saint-Laurent, M. G. [GANIL, BP 55027, 14076 Caen Cedex 5 (France); Coterreau, E.; Le Blanc, F.; Olivier, A. [IPN Orsay, BP 1-91406 Orsay (France); Gottwald, T.; Mattolat, C.; Wendt, K. [Johannes Gutenberg-Universitaet Mainz, Staudinger Weg 7, 55099 Mainz (Germany); Lassen, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Rothe, S. [Department of Engineering, CERN, CH-1211 Geneva 23 (Switzerland)

    2010-02-15

    SPIRAL2 is the new project under construction at GANIL to produce radioactive ion beams and in particular neutron rich ion beams. For the past 10 yr SPIRAL1 at GANIL has been delivering accelerated radioactive ion beams of gases. Both facilities now need to extend the range of radioactive ion beams produced to condensable elements. For that purpose, a resonant ionization laser ion source, funded by the French Research National Agency, is under development at GANIL, in collaboration with IPN Orsay, University of Mainz (Germany) and TRIUMF, Vancouver (Canada). A description of this project called GISELE (GANIL Ion Source using Electron Laser Excitation) is presented.

  16. GISELE: A resonant ionization laser ion source for the production of radioactive ions at GANIL

    CERN Document Server

    Lecesne, N; Wendt, K; Mattolat, C; Rothe, S; Pichard, A; Pacquet, J Y; Dubois, M; Coterreau, E; Franberg, H; Leroy, R; Gottwald, T; Alves-Conde, R; Flambard, J L; De Oliveira, F; Le Blanc, F; Jardin, P; Olivier, A; Lassen, J

    2010-01-01

    SPIRAL2 is the new project under construction at GANIL to produce radioactive ion beams and in particular neutron rich ion beams. For the past 10 yr SPIRAL1 at GANIL has been delivering accelerated radioactive ion beams of gases. Both facilities now need to extend the range of radioactive ion beams produced to condensable elements. For that purpose, a resonant ionization laser ion source, funded by the French Research National Agency, is under development at GANIL, in collaboration with IPN Orsay, University of Mainz (Germany) and TRIUMF, Vancouver (Canada). A description of this project called GISELE (GANIL Ion Source using Electron Laser Excitation) is presented.

  17. Importance of diffuse metal ion binding to RNA.

    Science.gov (United States)

    Tan, Zhi-Jie; Chen, Shi-Jie

    2011-01-01

    RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding.

  18. ION VATAMANU

    Directory of Open Access Journals (Sweden)

    l. Povar

    2012-12-01

    Full Text Available Ion Vatamanu was a chemist, writer and public figure. He was equally passionate about both his chosen fields of activity: chemistry and poetry. Chemistry, with its perfect equilibrium of logic and precision, provided inspiration for lyrical creativity, whereas poetry writing enlivened his imagination and passion for chemistry. He loved his parents. He adored his wife Elena, whom he often gifted a sea of flowers. He loved his daughters Mihaela, Mariana, and Leontina. He loved life, and he loved people.

  19. Ion Elevators and Escalators in Multilevel Structures for Lossless Ion Manipulations

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Yehia M.; Hamid, Ahmed M.; Cox, Jonathan T.; Garimella, Sandilya V. B.; Smith, Richard D.

    2017-01-19

    We describe two approaches based upon ion ‘elevator’ and ‘escalator’ components that allow moving ions to different levels in structures for lossless ion manipulations (SLIM). Guided by ion motion simulations we designed elevator and escalator components providing essentially lossless transmission in multi-level designs based upon ion current measurements. The ion elevator design allowed ions to efficiently bridge a 4 mm gap between levels. The component was integrated in a SLIM and coupled to a QTOF mass spectrometer using an ion funnel interface to evaluate the m/z range transmitted as compared to transmission within a level (e.g. in a linear section). Mass spectra for singly-charged ions of m/z 600-2700 produced similar mass spectra for both elevator and straight (linear motion) components. In the ion escalator design, traveling waves (TW) were utilized to transport ions efficiently between two SLIM levels. Ion current measurements and ion mobility (IM) spectrometry analysis illustrated that ions can be transported between TW-SLIM levels with no significant loss of either ions or IM resolution. These developments provide a path for the development of multilevel designs providing e.g. much longer IM path lengths, more compact designs, and the implementation of much more complex SLIM devices in which e.g. different levels may operate at different temperatures or with different gases.

  20. Ion Elevators and Escalators in Multilevel Structures for Lossless Ion Manipulations.

    Science.gov (United States)

    Ibrahim, Yehia M; Hamid, Ahmed M; Cox, Jonathan T; Garimella, Sandilya V B; Smith, Richard D

    2017-02-07

    We describe two approaches based upon ion "elevator" and "escalator" components that allow moving ions to different levels in structures for lossless ion manipulations (SLIM). Guided by ion motion simulations, we designed elevator and escalator components based upon ion current measurements providing essentially lossless transmission in multilevel designs. The ion elevator design allowed ions to efficiently bridge a 4 mm gap between levels. The component was integrated in a SLIM and coupled to a QTOF mass spectrometer using an ion funnel interface to evaluate the m/z range transmitted as compared to transmission within a level (e.g., in a linear section). The analysis of singly charged ions of m/z 600-2700 produced similar mass spectra for both elevator and straight (linear motion) components. In the ion escalator design, traveling waves (TW) were utilized to transport ions efficiently between two SLIM levels. Ion current measurements and ion mobility (IM) spectrometry analysis illustrated that ions can be transported between TW-SLIM levels with no significant loss of either ions or IM resolution. These developments provide a path for the development of multilevel designs providing, e.g., much longer IM path lengths, more compact designs, and the implementation of much more complex SLIM devices in which, e.g., different levels may operate at different temperatures or with different gases.

  1. Electron Beam Ion Sources

    OpenAIRE

    Zschornacka, G.; Schmidt, M.; Thorn, A.

    2014-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviole...

  2. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction...... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....

  3. Ion Collision, Theory

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Anil K.

    2013-09-11

    The outcome of a collision between an ion and neutral species depends on the chemical and physical properties of the two reactants, their relative velocities, and the impact parameter of their trajectories. These include elastic and inelastic scattering of the colliding particles, charge transfer (including dissociative charge transfer), atom abstraction, complex formation and dissociation of the colliding ion. Each of these reactions may be characterized in terms of their energy-dependent rate coefficients, cross sections and reaction kinetics. A theoretical framework that emphasizes simple models and classical mechanics is presented for these processes. Collision processes are addressed in two categories of low-energy and high-energy collisions. Experiments under thermal or quasi-thermal conditions–swarms, drift tubes, chemical ionization and ion cyclotron resonance are strongly influenced by long-range forces and often involve collisions in which atom exchange and extensive energy exchange are common characteristics. High-energy collisions are typically impulsive, involve short-range intermolecular forces and are direct, fast processes.

  4. Instrumentation: Ion Chromatography.

    Science.gov (United States)

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  5. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2011-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. – We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. – We show how to solve substring range reporting with optimal query time and little...... range reporting are based on a novel combination of suffix trees and range reporting data structures. The reductions are simple and general and may apply to other combinations of string indexing with range reporting....

  6. Central Makran Range, Pakistan

    Science.gov (United States)

    1981-01-01

    A spectacular view of the Makran Range of Pakistan (27.0N, 65.5E) looking north with the Arabian Sea and the city of Karachi in the foreground. In the center, the Indian sub-continent moving slowly north into the Asian continent has caused the folded sedimentary Makran Range to bend from east-west to north-south as well as the uplift forming The Great Himalaya Range and the high Tibetan Plateau to the north.

  7. Baculovirus Host-Range

    Institute of Scientific and Technical Information of China (English)

    Suzanne M. Thiem; Xiao-Wen Cheng

    2009-01-01

    Baculoviruses are used as microbial insecticides, protein expression vectors, epitope display platforms, and most recently as vectors for gene therapy. Understanding the mechanisms that control baculovirus host-range and tissue tropisms are important for assessing their safety and for improving their properties for these biotechnology applications. In the past two decades some progress has been made and several baculovirus genes that influence host-range have been identified. Despite this progress, our understanding of the underlying mechanisms that restrict baculovirus host-range is still limited. Here we review what is currently known about baculovirus genes that influence virus host-range.

  8. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  9. Laser Range Sensors

    Directory of Open Access Journals (Sweden)

    K.C. Bahuguna

    2007-11-01

    Full Text Available This paper presents the design aspects of laser range finders and proximity sensors being developed at IRDE for different applications. The principle used in most of the laser range finders is pulse echo or time-of-flight measurement. Optical triangulation is used in proximity sensors while techniques like phase detection and interferometry are employed in instruments for surveying and motion controllers where high accuracy is desired. Most of the laser range finders are designed for ranging non-cooperative targets.

  10. Dryden Aeronautical Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — Recently redesignated to honor Dr. Hugh L. Dryden, NASA's Dryden Aeronautical Test Range (DATR) supports aerospace flight research and technology integration, space...

  11. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  12. Ion emission in solids bombarded with Au{sub n}{sup +} (n = 1 - 9) clusters accelerated within the 0.15 - 1.25 MeV energy range; Emission ionique des solides a l'impact d'agregats Au{sub n}{sup +} (n=1-9) acceleres entre 0,15 et 1,25 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Wehbe, Nimer [Universite Claude Bernard Lyon-I, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex (France)

    2006-06-15

    This experimental work is devoted to the study of the ion emission in solids at the impact of gold clusters of energies within 0.15 to 1.25 MeV range. The physics of ion-solid collisions and the theoretical models of sputtering of solids under ion bombardment are presented in the first chapter. The chapter no. 2 deals with the description of the experimental setup. The study of a gold target allowed to evidence the role of the size and energy of the clusters in determining the emission intensity and the mass distribution of the ions. The 4. chapter gives results from the study of cesium iodide in which the intense emission of CsI clusters could be investigated quantitatively due to multiplicity measurements. Finally, the chapter no. 5 was devoted to the study of a biologic molecule, the phenylalanine, and of a pesticide molecule, chlorosulfuron. This work evidenced the importance of clusters for surface analyses by mass spectrometry.

  13. Long Range Materials Research

    Science.gov (United States)

    1976-01-01

    platinum supported ou Ca-Y zeolite has been studied by Dalla Betta and Boudart (2). When the exchanged Pt(NH,)^ Ions ware first decomposed In an...complex processes occurring during the decom- position of the ammlne complex has been reported by Dalla Betta and Boudart (2). They studied the effect...Catal. b, 704 (I965). 2. Dalla Betta , R.A., arid Boudart, M., Proc. 5th Int. Congr, Catal, J.W.Hlghtower, Bd., Vol. 2, p.l329i North Holland

  14. Research and development of advanced materials using ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Susumu [Nagasaki Inst. of Applied Science, Nagasaki (Japan)

    1997-03-01

    A wide range of research and development activities of advanced material synthesis using ion beams will be discussed, including ion beam applications to the state-of-the-art electronics from giant to nano electronics. (author)

  15. On Range of Skill

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2008-01-01

    size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...

  16. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2011-01-01

    to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. – We show how to solve substring range reporting with optimal query time and little...

  17. Range Selection and Median

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Larsen, Kasper Green

    2011-01-01

    Range selection is the problem of preprocessing an input array A of n unique integers, such that given a query (i; j; k), one can report the k'th smallest integer in the subarray A[i];A[i+1]; : : : ;A[j]. In this paper we consider static data structures in the word-RAM for range selection and sev...

  18. Home range and travels

    Science.gov (United States)

    Stickel, L.F.; King, John A.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  19. Ion Rings for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Greenly, John, B.

    2005-07-31

    of a reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

  20. Negative Halogen Ions for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85 – 90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams.

  1. Performance of an inverted ion source

    Energy Technology Data Exchange (ETDEWEB)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E. [Institute of Physics, University of Sao Paulo, C.P. 66318, CEP 05315-970, Sao Paulo S.P. (Brazil); Oks, E. M. [State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Brown, I. G. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2013-02-15

    Whereas energetic ion beams are conventionally produced by extracting ions (say, positive ions) from a plasma that is held at high (positive) potential, with ion energy determined by the potential drop through which the ions fall in the beam formation electrode system, in the device described here the plasma and its electronics are held at ground potential and the ion beam is formed and injected energetically into a space maintained at high (negative) potential. We refer to this configuration as an 'inverted ion source.' This approach allows considerable savings both technologically and economically, rendering feasible some ion beam applications, in particular small-scale ion implantation, that might otherwise not be possible for many researchers and laboratories. We have developed a device of this kind utilizing a metal vapor vacuum arc plasma source, and explored its operation and beam characteristics over a range of parameter variation. The downstream beam current has been measured as a function of extraction voltage (5-35 kV), arc current (50-230 A), metal ion species (Ti, Nb, Au), and extractor grid spacing and beamlet aperture size (3, 4, and 5 mm). The downstream ion beam current as measured by a magnetically-suppressed Faraday cup was up to as high as 600 mA, and with parametric variation quite similar to that found for the more conventional metal vapor vacuum arc ion source.

  2. Reducing Space Charge Effects in a Linear Ion Trap by Rhombic Ion Excitation and Ejection

    Science.gov (United States)

    Zhang, Xiaohua; Wang, Yuzhuo; Hu, Lili; Guo, Dan; Fang, Xiang; Zhou, Mingfei; Xu, Wei

    2016-07-01

    Space charge effects play important roles in ion trap operations, which typically limit the ion trapping capacity, dynamic range, mass accuracy, and resolving power of a quadrupole ion trap. In this study, a rhombic ion excitation and ejection method was proposed to minimize space charge effects in a linear ion trap. Instead of applying a single dipolar AC excitation signal, two dipolar AC excitation signals with the same frequency and amplitude but 90° phase difference were applied in the x- and y-directions of the linear ion trap, respectively. As a result, mass selective excited ions would circle around the ion cloud located at the center of the ion trap, rather than go through the ion cloud. In this work, excited ions were then axially ejected and detected, but this rhombic ion excitation method could also be applied to linear ion traps with ion radial ejection capabilities. Experiments show that space charge induced mass resolution degradation and mass shift could be alleviated with this method. For the experimental conditions in this work, space charge induced mass shift could be decreased by ~50%, and the mass resolving power could be improved by ~2 times at the same time.

  3. ION GUN

    Science.gov (United States)

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  4. Cold molecular ions on a chip

    CERN Document Server

    Mokhberi, A

    2014-01-01

    We report the sympathetic cooling and Coulomb crystallization of molecular ions above the surface of an ion-trap chip. N$_2^+$ and CaH$^+$ ions were confined in a surface-electrode radiofrequency ion trap and cooled by the interaction with laser-cooled Ca$^{+}$ ions to secular translational temperatures in the millikelvin range. The configuration of trapping potentials generated by the surface electrodes enabled the formation of planar bicomponent Coulomb crystals and the spatial separation of the molecular from the atomic ions on the chip. The structural and thermal properties of the Coulomb crystals were characterized using molecular dynamics simulations. The present study extends chip-based trapping techniques to Coulomb-crystallized molecular ions with potential applications in mass spectrometry, cold chemistry, quantum information science and spectroscopy.

  5. A high energy, heavy ion microprobe for ion beam research on the tandem accelerator at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Siegele, R.; Dytlewski, N.

    1996-04-01

    A comprehensive review is given on the production and use of heavy ion beams with spot sizes of a few {mu}m. The development of a high energy, heavy ion microprobe at ANSTO and its possible applications are discussed. The microprobe is designed to focus a wide range of ion beam types, from light ions such as protons up to ions as heavy as iodine. Details of the ion beam optics, optical calculations and a description of the proposed microbeam design are given. The unique combination of high energy, heavy ions and improved detection systems will provide high sensitivity elemental composition and depth profiling information, allowing surface topography and 3D surface reconstruction to be performed on a broad range of materials. 86 refs., 5 tabs., 15 figs.

  6. On the role of ion-based imaging methods in modern ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Magallanes, L., E-mail: lorena.magallanes@med.uni-heidelberg.de; Rinaldi, I., E-mail: ilaria.rinaldi@med.uni-heidelberg.de [Heidelberg University Clinic (Dep. Radiation Therapy and Radiation Oncology). Im Neuenheimer Feld 400 69120 Heidelberg, Germany and Ludwig Maximilians University Munich. Am Coulombwall 1, D-85748, Garching (Germany); Brons, S., E-mail: stephan.brons@med.uni-heidelberg.de [Heidelberg Ion Therapy Center. Im Neuenheimer Feld 450 69120 Heidelberg (Germany); Marcelos, T., E-mail: tiago.marcelos@physik.uni-muenchen.de; Parodi, K., E-mail: katia.parodi@physik.uni-muenchen.de [Ludwig Maximilians University Munich. Am Coulombwall 1, D-85748, Garching (Germany); Takechi, M., E-mail: m.takechi@gsi.de [GSI Heimholtz Center for Heavy Ion Research. Planckstraße 1, 64291, Darmstadt (Germany); Voss, B., E-mail: b.voss@gsi.de [GSI Heimholte Center for Heavy Ion Research. Planckstraße 1, 64291, Darmstadt (Germany); Jäkel, O., E-mail: o.jaekel@dkfz-heidelberg.de [Heidelberg University Clinic (Dep. Radiation Therapy and Radiation Oncology). Im Neuenheimer Feld 400 69120 Heidelberg (Germany); Heidelberg Ion Therapy Center. Im Neuenheimer Feld 450 69120 Heidelberg (Germany); German Cancer Research Center, Im N (Germany)

    2014-11-07

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  7. On the role of ion-based imaging methods in modern ion beam therapy

    Science.gov (United States)

    Magallanes, L.; Brons, S.; Marcelos, T.; Takechi, M.; Voss, B.; Jäkel, O.; Rinaldi, I.; Parodi, K.

    2014-11-01

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  8. Atlantic Test Range (ATR)

    Data.gov (United States)

    Federal Laboratory Consortium — ATR controls fully-instrumented and integrated test ranges that provide full-service support for cradle-to-grave testing. Airspace and surface target areas are used...

  9. Light Detection And Ranging

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — LiDAR (Light Detection and Ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format....

  10. Range_Extent_15

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The GIS layer "Range_extent_15" is a simple polyline representing the geographic distribution of the southern sea otter (Enhydra lutris nereis) in mainland...

  11. On Range of Skill

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2008-01-01

    is a small number, but only gave heuristic arguments for this. In this paper, we provide the first methods for rigorously estimating the Range of Skill of a given game. We provide some general, asymptotic bounds that imply that the Range of Skill of a perfectly balanced game tree is almost exponential in its...... size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...

  12. Correlation radio range finder

    Directory of Open Access Journals (Sweden)

    A. Sorochan

    2012-10-01

    Full Text Available In work widely known methods of range measuring are short characterized. The basic attention is given features of signal processing in a correlation method of range measuring. The signal with angular modulation with one-voice-frequency fluctuation is used as a probing signal. The absence of Doppler effect on the formation of the correlation integral, the frequency instability of the transmitter, the phase change on reflection from the target is presented. It is noticed that the result of signal processing in the range measuring instrument is reduced to formation on an exit one-voice-frequency harmonious fluctuation equal to modulating frequency that provides high characteristics of a radio range finder.

  13. Antenna Pattern Range (APR)

    Data.gov (United States)

    Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...

  14. Light Detection And Ranging

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — LiDAR (Light Detection and Ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format....

  15. Substring Range Reporting

    OpenAIRE

    Bille, Philip; Gørtz, Inge Li

    2011-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. {itemize} We give efficient reductions for each of the above problems to a new problem, which we call \\emph{substring range reporting}. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of...

  16. Substring Range Reporting

    OpenAIRE

    Bille, Philip; Gørtz, Inge Li

    2011-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. {itemize} We give efficient reductions for each of the above problems to a new problem, which we call \\emph{substring range reporting}. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of...

  17. Carbon Ion Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Herrmann, Rochus;

    On the importance of choice of target size for selective boosting of hypoxic tumor subvolumina in carbon ion therapy Purpose: Functional imaging methods in radiotherapy are maturing and can to some extent uncover radio resistant structures found within a tumour entity. Selective boost of identified...... size and PTV position. Methods: Several treatment plans are produced with TRiP, using a 256x256x256 mm3 water phantom and SOBP optimization on physical dose. Box formed PTV volumes between 0.15 - 1010 cm3, and PTV positions ranging from 3 cm to 200 cm depth (relative...

  18. The DCU laser ion source.

    Science.gov (United States)

    Yeates, P; Costello, J T; Kennedy, E T

    2010-04-01

    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I approximately 10(8)-10(11) W cm(-2)) and fluences (F=0.1-3.9 kJ cm(-2)) from a Q-switched ruby laser (full-width half-maximum pulse duration approximately 35 ns, lambda=694 nm) were used to generate a copper plasma. In "basic operating mode," laser generated plasma ions are electrostatically accelerated using a dc HV bias (5-18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I approximately 600 microA for Cu(+) to Cu(3+) ions were recorded. The maximum collected charge reached 94 pC (Cu(2+)). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a "continuous einzel array" were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at "high pressure." In "enhanced operating mode," peak currents of 3.26 mA (Cu(2+)) were recorded. The collected currents of more highly charged ions (Cu(4+)-Cu(6+)) increased considerably in this mode of operation.

  19. Molecular and negative ion production by a standard electron cyclotron resonance ion source.

    Science.gov (United States)

    Rácz, R; Biri, S; Juhász, Z; Sulik, B; Pálinkás, J

    2012-02-01

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H(-), O(-), OH(-), O(2)(-), C(-), C(60)(-) negative ions and H(2)(+), H(3)(+), OH(+), H(2)O(+), H(3)O(+), O(2)(+) positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several μA and positive molecular ion beams in the mA range were successfully obtained.

  20. Ion-binding of glycine zwitterion with inorganic ions in biologically relevant aqueous electrolyte solutions.

    Science.gov (United States)

    Fedotova, Marina V; Kruchinin, Sergey E

    2014-06-01

    The ion-binding between inorganic ions and charged functional groups of glycine zwitter-ion in NaCl(aq), KCl(aq), MgCl2(aq), and CaCl2(aq) has been investigated over a wide salt concentration range by using integral equation theory in the 3D-RISM approach. These systems mimic biological systems where binding of ions to charged residues at protein surfaces is relevant. It has been found that the stability of ion pairs formed by the carboxylate group and added inorganic cations decreases in the sequence Mg(2+)>Ca(2+)>Na(+)>K(+). However, all formed ion pairs are weak and decrease in stability with increasing salt concentration. On the other hand, at a given salt concentration the stability of (-NH3(+):Cl(-))aq ion pairs is similar in all studied systems. The features of ion-binding and the salt concentration effect on this process are discussed.

  1. The Pickup Ion Composition Spectrometer

    Science.gov (United States)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  2. Range Information Propagation Transform

    Institute of Scientific and Technical Information of China (English)

    陈向荣; 朱志刚; 等

    1998-01-01

    A novel method of model-based object recognition is presented in this paper.Its novelty stems from the fact that the gray level image captured by a camera is merged with sparse range information in an active manner.By using a projective transform, which is determined by the sparse range data,festures(e.g.edge points)related to a single planar surface patch of figure in the scene can be assignew with their corresponding range values respectively.As a result,the shape of the very planar patch or figure can be recovered and various kinds of description in the Euclidean space can be calculated.Based on these descriptions values,the hypothesis about the identification of the object and its pose in space can be obtained with a high probability of success,and a high efficiency of hypothesis-verification process can be expected.Another advantage of this method is that the edge detection process can be navigated to the proper location hinted by the sparse range image.In consequence edge features can be extracted even in the regions with low contrast.In this paper the principle of range information propagation transform(RIPT)is explained,and some implementation issues,such as the algorithms using calibrated or uncalibrated gray level image for object recognition,are discussed.The preliminary experimental results are presented to indicate the effectiveness and efficiency of the proposed method.

  3. Range Selection and Median

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Larsen, Kasper Green

    2011-01-01

    and several natural special cases thereof. The rst special case is known as range median, which arises when k is xed to b(j 􀀀 i + 1)=2c. The second case, denoted prex selection, arises when i is xed to 0. Finally, we also consider the bounded rank prex selection problem and the xed rank range......Range selection is the problem of preprocessing an input array A of n unique integers, such that given a query (i; j; k), one can report the k'th smallest integer in the subarray A[i];A[i+1]; : : : ;A[j]. In this paper we consider static data structures in the word-RAM for range selection...... selection problem. In the former, data structures must support prex selection queries under the assumption that k for some value n given at construction time, while in the latter, data structures must support range selection queries where k is xed beforehand for all queries. We prove cell probe lower bounds...

  4. Ion permeable microcapsules for the release of biologically available ions for remineralization.

    Science.gov (United States)

    Davidson, Michael T; Greving, Theresa A; McHale, William A; Latta, Mark A; Gross, Stephen M

    2012-03-01

    The objective of this study was to investigate the effect of chemical structure, ion concentration, and ion type on the release rate of biologically available ions useful for remineralization from microcapsules with ion permeable membranes. A heterogeneous polymerization technique was utilized to prepare microcapsules containing either an aqueous solution of K₂HPO₄, Ca(NO₃)₂, or NaF. Six different polyurethane-based microcapsule shells were prepared and characterized based on ethylene glycol, butanediol, hexanediol, octanediol, triethylene glycol, and bisphenol A structural units. Ion release profiles were measured as a function of initial ion concentration within the microcapsule, ion type, and microcapsule chemical structure. The rate of ion release increased with initial concentration of ion stored in the microcapsule over a range of 0.5-3.0M. The monomer used in the synthesis of the membrane had a significant effect on ion release rates at 3.0 M salt concentration. At 1.0 M, the ethylene glycol released ions significantly faster than the hexanediol-, octanediol-, and butanediol-based microcapsules. Ion release was fastest for fluoride and slowest for phosphate for the salts used in this study. It was concluded that the microcapsules are capable of releasing calcium, phosphate, and fluoride ions in their biologically available form.

  5. Ion coalescence of neutron encoded TMT 10-plex reporter ions.

    Science.gov (United States)

    Werner, Thilo; Sweetman, Gavain; Savitski, Maria Fälth; Mathieson, Toby; Bantscheff, Marcus; Savitski, Mikhail M

    2014-04-01

    Isobaric mass tag-based quantitative proteomics strategies such as iTRAQ and TMT utilize reporter ions in the low mass range of tandem MS spectra for relative quantification. The recent extension of TMT multiplexing to 10 conditions has been enabled by utilizing neutron encoded tags with reporter ion m/z differences of 6 mDa. The baseline resolution of these closely spaced tags is possible due to the high resolving power of current day mass spectrometers. In this work we evaluated the performance of the TMT10 isobaric mass tags on the Q Exactive Orbitrap mass spectrometers for the first time and demonstrated comparable quantification accuracy and precision to what can be achieved on the Orbitrap Elite mass spectrometers. However, we discovered, upon analysis of complex proteomics samples on the Q Exactive Orbitrap mass spectrometers, that the proximate TMT10 reporter ion pairs become prone to coalescence. The fusion of the different reporter ion signals into a single measurable entity has a detrimental effect on peptide and protein quantification. We established that the main reason for coalescence is the commonly accepted maximum ion target for MS2 spectra of 1e6 on the Q Exactive instruments. The coalescence artifact was completely removed by lowering the maximum ion target for MS2 spectra from 1e6 to 2e5 without any losses in identification depth or quantification quality of proteins.

  6. Reconfigurable laser ranging instrument

    Science.gov (United States)

    Schneiter, John

    1994-03-01

    This paper describes the design and operation of a fast, flexible, non-contact, eye-safe laser ranging instrument useful in a variety of industrial metrology situations, such as in-process machining control and part inspection. The system has variable computer-controlled standoff and depth of field, and can obtain 3-D images of surfaces within a range of from 1.5 ft to almost 10 ft from the final optical element. The minimum depth of field is about 3.5 in. at 1.5 ft and about 26 in. at the far range. The largest depth of field for which useful data are available is about 41 in. Resolution, with appropriate averaging, is about one part in 4000 of the depth of field, which implies a best case resolution for this prototype of 0.00075 in. System flexibility is achieved by computer controlled relative positioning of optical components.

  7. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2014-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. We show how to solve substring range reporting with optimal query time and little...... space. Combined with our reductions this leads to significantly improved time-space trade-offs for the above problems. In particular, for each problem we obtain the first solutions with optimal time query and O(nlog O(1) n) space, where n is the length of the indexed string. We show that our techniques...

  8. Himalayan Mountain Range, India

    Science.gov (United States)

    1981-01-01

    Snow is present the year round in most of the high Himalaya Mountain Range (33.0N, 76.5E). In this view taken at the onset of winter, the continuous snow line can be seen for hundreds of miles along the south face of the range in the Indian states of Punjab and Kashmir. The snow line is at about 12,000 ft. altitude but the deep Cenab River gorge is easily delineated as a break along the south edge of the snow covered mountains. '

  9. Range-Clustering Queries

    OpenAIRE

    Abrahamsen, Mikkel; de Berg, Mark; Buchin, Kevin; Mehr, Mehran; Mehrabi, Ali D.

    2017-01-01

    In a geometric $k$-clustering problem the goal is to partition a set of points in $\\mathbb{R}^d$ into $k$ subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set $S$: given a query box $Q$ and an integer $k>2$, compute an optimal $k$-clustering for $S\\setminus Q$. We obtain the following results. We present a general method to compute a $(1+\\epsilon)$-approximation to a range-clustering query, ...

  10. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  11. Application of ion beams in electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, W.

    1981-01-01

    Application of ion beams to change surface layer properties of solids has been discussed. Examples and application possibilities in the range of semiconducting materials, magnetic and ceramic materials as well as in metalurgy have been described.

  12. Agriculture, forest, and range

    Science.gov (United States)

    1975-01-01

    The findings and recommendations of the panel for developing a satellite remote-sensing global information system in the next decade are reported. User requirements were identified in five categories: (1) cultivated crops, (2) land resources, (3)water resources, (4)forest management, and (5) range management. The benefits from the applications of satellite data are discussed.

  13. Electric vehicles: Driving range

    Science.gov (United States)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  14. LONG RANGE HEALTH PLANNING

    Directory of Open Access Journals (Sweden)

    ST. Motameni

    1974-03-01

    Full Text Available In the past, health planning in Iran has been carried out in the context of short-range economic plans. Although this mechanism has helped a great deal in the achievement of certain health plans however, the said scheme has been short in meeting the health objectives on a comprehensive basis. Most often, the heath programs have lost their values to the priority and cost effectiveness of economic plans. A brief review of heath planning in the past shows that the second development plan has been devoted to the establishment of new hospitals on a scattered pattern. The development of a coordinated hospital and health center system has been accepted and partly implemented during the third plan period. In the fourth plan the whole direction has changed towards the de­velopment of private hospitals on profit making basis, and now the fifth plan calls for the regionalized hospital system. Thus, one can say that the past twenty years have been spent to the experimentation of different schemes with­out a real long-range goal. In the past decade the World Health Organization has ventured in the development of health planning principles, but most of the efforts have been devoted to the short-range planning. The long-range health planning is not only a new look to the prin­ciples of planning, but a thorough examination of the time factor in health planning.

  15. Online Sorted Range Reporting

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf; Greve, Mark

    2009-01-01

    We study the following one-dimensional range reporting problem: On an arrayA of n elements, support queries that given two indices i ≤ j and an integerk report the k smallest elements in the subarray A[i..j] in sorted order. We present a data structure in the RAM model supporting such queries in ...

  16. An investigation of secondary ion yield enhancement using Bin2+ (n=1,3,5) primary ions.

    Science.gov (United States)

    Nagy, Gabriella; Lu, Peng; Walker, Amy V

    2008-01-01

    We have investigated secondary ion yield enhancement using Bin2+ (n=1, 3, 5) primary ions impacting phenylalanine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), cholesterol, Irganox 1010, and polymer films adsorbed on silicon and aluminum. Secondary ion yields are increased using Bi2+and Bi3(2+) primary ions for the molecular layers and polymers that can undergo allyl cation rearrangements. For Irganox 1010, the deprotonated molecular ion yields (m/z 1175; [M-H]-) are one to two times larger for Bi2+ and Bi(3)2+ primary ions than for Bi+ and Bi3+ at the same primary ion velocities. In the positive ion mode, the largest fragment ion yield (m/z 899) is 1.5 times larger for Bi2+ ions than for Bi+. For Bi3(2+) the largest fragment ion yield is only 70% of the ion yield using Bi3+, but the secondary ion yields of the fragment ions at m/z 57 and 219 are enhanced. For polymers that can undergo allyl cation rearrangement reactions the secondary ion yield enhancements of the monomer ions range from 1.3 to 4.3. For Bi(5)2+ primary ions, secondary ion yields were the same or slightly larger than for Bi5+ in the negative ion mass spectra for Irganox 1010, but lower in the positive ion mode. No secondary ion yield enhancements were measured on polymer samples for Bi5(2+). For all polymer films studied, secondary ion intensities from the oligomer regions are substantially decreased using Bin2+ (n=1, 3, 5). We discuss differences in the ionization mechanisms for doubly and singly-charged Bi primary ion bombardment.

  17. Ion funnel ion trap and process

    Science.gov (United States)

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  18. Active dendrites enhance neuronal dynamic range.

    Directory of Open Access Journals (Sweden)

    Leonardo L Gollo

    2009-06-01

    Full Text Available Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB. Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range.

  19. Ion mixing and phase diagrams

    Science.gov (United States)

    Lau, S. S.; Liu, B. X.; Nicolet, M.-A.

    1983-05-01

    Interactions induced by ion irradiation are generally considered to be non-equilibrium processes, whereas phase diagrams are determined by phase equilibria. These two entities are seemingly unrelated. However, if one assumes that quasi-equilibrium conditions prevail after the prompt events, subsequent reactions are driven toward equilibrium by thermodynamical forces. Under this assumption, ion-induced reactions are related to equilibrium and therefore to phase diagrams. This relationship can be seen in the similarity that exists in thin films between reactions induced by ion irradiation and reactions induced by thermal annealing. In the latter case, phase diagrams have been used to predict the phase sequence of stable compound formation, notably so in cases of silicide formation. Ion-induced mixing not only can lead to stable compound formation, but also to metastable alloy formation. In some metal-metal systems, terminal solubilities can be greatly extended by ion mixing. In other cases, where the two constituents of the system have different crystal structures, extension of terminal solubility from both sides of the phase diagram eventually becomes structurally incompatible and a glassy (amorphous) mixture can form. The composition range where this bifurcation is likely to occur is in the two-phase regions of the phase diagram. These concepts are potentially useful guides in selecting metal pairs that from metallic glasses by ion mixing. In this report, phenomenological correlation between stable (and metastable) phase formation and phase diagram is discussed in terms of recent experimental data.

  20. Analysis of Native-Like Ions Using Structures for Lossless Ion Manipulations.

    Science.gov (United States)

    Allen, Samuel J; Eaton, Rachel M; Bush, Matthew F

    2016-09-20

    Ion mobility separation of native-like protein and protein complex ions expands the structural information available through native mass spectrometry analysis. Here, we implement Structures for Lossless Ion Manipulations (SLIM) for the analysis of native-like ions. SLIM has been shown previously to operate with near lossless transmission of ions up to 3000 Da in mass. Here for the first time, SLIM was used to separate native-like protein and protein complex ions ranging in mass from 12 to 145 kDa. The resulting arrival-time distributions were monomodal and were used to determine collision cross section values that are within 3% of those determined from radio-frequency-confining drift cell measurements. These results are consistent with the retention of native-like ion structures throughout these experiments. The apparent resolving powers of native-like ions measured using SLIM are as high as 42, which is the highest value reported directly from experimental data for the native-like ion of a protein complex. Interestingly, the apparent resolving power depends strongly on the identity of the analyte, suggesting that the arrival-time distributions of these ions may have contributions from an ensemble of structures in the gas phase that is unique to each analyte. These results suggest that the broad range of emerging SLIM technologies may all be adaptable to the analysis of native-like ions, which will enable future applications in the areas of structural biology, biophysics, and biopharmaceutical characterization.

  1. A negative ion source for alkali ions

    NARCIS (Netherlands)

    Vermeer, A.; Zwol, N.A. van

    1980-01-01

    An ion source is described which delivers negative alkali ions. With this source, which consists of a duoplasmatron and a charge exchange canal with alkali vapour, negative Li, Na and K ions are produced. The oven in which alkali metals are evaporated can reach temperatures up to 575°C.

  2. A negative ion source for alkali ions

    NARCIS (Netherlands)

    Vermeer, A.; Zwol, N.A. van

    1980-01-01

    An ion source is described which delivers negative alkali ions. With this source, which consists of a duoplasmatron and a charge exchange canal with alkali vapour, negative Li, Na and K ions are produced. The oven in which alkali metals are evaporated can reach temperatures up to 575°C.

  3. ORANGE: RANGE OF BENEFITS

    OpenAIRE

    Parle Milind; Chaturvedi Dev

    2012-01-01

    No wonder that oranges are one of the most popular fruits in the world. Orange (citrus sinensis) is well known for its nutritional and medicinal properties throughout the world. From times immemorial, whole Orange plant including ripe and unripe fruits, juice, orange peels, leaves and flowers are used as a traditional medicine. Citrus sinensis belongs to the family Rutaceae. The fruit is a fleshy, indehiscent, berry that ranges widely in size from 4 cm to 12 cm. The major medicinal proper...

  4. Hydration of highly charged ions.

    Science.gov (United States)

    Hofer, Thomas S; Weiss, Alexander K H; Randolf, Bernhard R; Rode, Bernd M

    2011-08-01

    Based on a series of ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulations, the broad spectrum of structural and dynamical properties of hydrates of trivalent and tetravalent ions is presented, ranging from extreme inertness to immediate hydrolysis. Main group and transition metal ions representative for different parts of the periodic system are treated, as are 2 threefold negatively charged anions. The results show that simple predictions of the properties of the hydrates appear impossible and that an accurate quantum mechanical simulation in cooperation with sophisticated experimental investigations seems the only way to obtain conclusive results.

  5. Rotation sensing with trapped ions

    CERN Document Server

    Campbell, W C

    2016-01-01

    We present a protocol for using trapped ions to measure rotations via matter-wave Sagnac interferometry. The trap allows the interferometer to enclose a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without losing contrast. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, thermal states with many phonons should be sufficient for operation.

  6. Surface modification of sapphire by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J.

    1998-11-01

    The range of microstructures and properties of sapphire (single crystalline Al{sub 2}O{sub 3}) that are produced by ion implantation are discussed with respect to the implantation parameters of ion species, fluence, irradiation temperature and the orientation of the ion beam relative to crystallographic axes. The microstructure of implanted sapphire may be crystalline with varying concentrations of defects or it may be amorphous perhaps with short-range order. At moderate to high fluences, implanted metallic ions often coalesce into pure metallic colloids and gas ions form bubbles. Many of the implanted microstructural features have been identified from studies using transmission electron microscopy (TEM), optical spectroscopy, Moessbauer spectroscopy, and Rutherford backscattering-channeling. The chemical, mechanical, and physical properties reflect the microstructures.

  7. A Plasma Ion Source for ISOLTRAP

    CERN Document Server

    Skov, Thomas Guldager

    2016-01-01

    In this report, my work testing the new Penning ion source as a summer student at ISOLTRAP is described. The project was composed of three stages: (1) Setting up a test laboratory in building 275, (2) characterizing the ion source, and (3) implementing and testing the source in the ISOLTRAP setup. After setting up the test laboratory, the ion source was tested in a constant pressure environment with produced ion currents in the range of nA . An extensive scan of the source ion current versus operating parameters (pressure, voltage) was performed. A setup with pulsed gas flow was also tested, allowing a reduction of the gas load on the vacuum system. The behavior of the ion source together with the ISOLTRAP setup was also investigated, allowing to understand current limitations and future directions of improvement.

  8. Coulomb crystallization of highly charged ions.

    Science.gov (United States)

    Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo

    2015-03-13

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy.

  9. Heavy Ion Acceleration in Impulsive Solar Flares

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2002-01-01

    The abundance enhancements of heavy ions Ne, Mg, Si and Fe in impulsive solar energetic particle (SEP) eventsare explained by a plasma acceleration mechanism. In consideration of the fact that the coronal plasma is mainlycomposed of hydrogen and helium ions, we think that theion-ion hybrid wave and quasi-perpendicular wave can.be excited by the energetic electron beam in impulsive solar flares. These waves may resonantly be absorbed byheavy ions when the frequencies of these waves are close to the second-harmonic gyrofrequencies of these heavyions. This requires the coronal plasma temperature to be located in the range ofT ~ (5 - 9) × 106 K in impulsivesolar flares and makes the average ionic charge state of these heavy ions in impulsive SEP events higher than theaverage ionic charge state of these heavy ions in gradual SEP events. These pre-heated and enhanced heavy ionsin impulsive SEP events.

  10. The uses of electron beam ion traps in the study of highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, D.

    1994-11-02

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  11. A new ion mobility-linear ion trap instrument for complex mixture analysis.

    Science.gov (United States)

    Donohoe, Gregory C; Maleki, Hossein; Arndt, James R; Khakinejad, Mahdiar; Yi, Jinghai; McBride, Carroll; Nurkiewicz, Timothy R; Valentine, Stephen J

    2014-08-19

    A new instrument that couples a low-pressure drift tube with a linear ion trap mass spectrometer is demonstrated for complex mixture analysis. The combination of the low-pressure separation with the ion trapping capabilities provides several benefits for complex mixture analysis. These include high sensitivity, unique ion fragmentation capabilities, and high reproducibility. Even though the gas-phase separation and the mass measurement steps are each conducted in an ion filtering mode, detection limits for mobility-selected peptide ions are in the tens of attomole range. In addition to ion separation, the low-pressure drift tube can be used as an ion fragmentation cell yielding mobility-resolved fragment ions that can be subsequently analyzed by multistage tandem mass spectrometry (MS(n)) methods in the ion trap. Because of the ion trap configuration, these methods can be comprised of any number (limited by ion signal) of collision-induced dissociation (CID) and electron transfer dissociation (ETD) processes. The high reproducibility of the gas-phase separation allows for comparison of two-dimensional ion mobility spectrometry (IMS)-MS data sets in a pixel-by-pixel fashion without the need for data set alignment. These advantages are presented in model analyses representing mixtures encountered in proteomics and metabolomics experiments.

  12. Thomson parabola ion analyzer for laser-plasma studies.

    Science.gov (United States)

    Slater, D C

    1978-10-01

    A compact, flexible design for a parallel-fields ion analyzer is presented. Accurate ion velocity and charge state measurements can be obtained over a wide range without the need for calibration sources. Etchable cellulose-nitrate foil is used to record individual ion tracks.

  13. Sputtering of solid neon by keV hydrogen ions

    DEFF Research Database (Denmark)

    Ellegaard, Ole; Schou, Jørgen; Sørensen, H.

    1986-01-01

    Sputtering of solid Ne with the hydrogen ions H+1, H+2 and H+3 in the energy range 1–10 keV/atom has been studied by means of a quartz microbalance technique. No enhancement in the yield per atom for molecular ions was found. The results for hydrogen ions are compared with data for keV electrons....

  14. Sputtering of solid deuterium by He-ions

    DEFF Research Database (Denmark)

    Schou, Jørgen; Stenum, B.; Pedrys, R.

    2001-01-01

    Sputtering of solid deuterium by bombardment of 3He+ and 4He+ ions was studied. Some features are similar to hydrogen ion bombardment of solid deuterium, but for the He-ions a significant contribution of elastic processes to the total yield can be identified. The thin-film enhancement is more...... pronounced than that for hydrogen projectiles in the same energy range....

  15. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Kazakov, Ye. O., E-mail: yevgen.kazakov@rma.ac.be; Van Eester, D.; Ongena, J.; Lerche, E.; Messiaen, A. [Laboratory for Plasma Physics, LPP-ERM/KMS, EUROfusion Consortium Member, Brussels (Belgium); Dumont, R. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2015-12-10

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (∼ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  16. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    Science.gov (United States)

    Kazakov, Ye. O.; Van Eester, D.; Dumont, R.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-01

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (˜ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  17. Monocular visual ranging

    Science.gov (United States)

    Witus, Gary; Hunt, Shawn

    2008-04-01

    The vision system of a mobile robot for checkpoint and perimeter security inspection performs multiple functions: providing surveillance video, providing high resolution still images, and providing video for semi-autonomous visual navigation. Mid-priced commercial digital cameras support the primary inspection functions. Semi-autonomous visual navigation is a tertiary function whose purpose is to reduce the burden of teleoperation and free the security personnel for their primary functions. Approaches to robot visual navigation require some form of depth perception for speed control to prevent the robot from colliding with objects. In this paper present the initial results of an exploration of the capabilities and limitations of using a single monocular commercial digital camera for depth perception. Our approach combines complementary methods in alternating stationary and moving behaviors. When the platform is stationary, it computes a range image from differential blur in the image stack collected at multiple focus settings. When the robot is moving, it extracts an estimate of range from the camera auto-focus function, and combines this with an estimate derived from angular expansion of a constellation of visual tracking points.

  18. Ion-ion Recombination and Chemiion Concentrations In Aircraft Exhaust

    Science.gov (United States)

    Turco, R. P.; Yu, F.

    Jet aircraft emit large quantities of ultrafine volatile aerosols, as well as soot parti- cles, into the environment. To determine the long-term effects of these emissions, a better understanding of the mechanisms that control particle formation and evolution is needed, including the number and size dispersion. A recent explanation for aerosol nucleation in a jet wake involves the condensation of sulfuric acid vapor, and cer- tain organic compounds, onto charged molecular clusters (chemiions) generated in the engine combustors (Yu and Turco, 1997). Massive charged aggregates, along with sulfuric acid and organic precursor vapors, have been detected in jet plumes under cruise conditions. In developing the chemiion nucleation theory, Yu and Turco noted that ion-ion recombination in the engine train and jet core should limit the chemiion emission index to 1017/kg-fuel. This value is consistent with ion-ion recombination coefficients of 1×10-7 cm3/s over time scales of 10-2 s. However, the evolution of the ions through the engine has not been adequately studied. The conditions at the combustor exit are extreme-temperatures approach 1500 K, and pressures can reach 30 atmospheres. In this presentation, we show that as the combustion gases expand and cool, two- and three-body ion-ion recombination processes control the chemiion concentration. The concepts of mutual neutralization and Thomson recombination are first summarized, and appropriate temperature and pressure dependent recombination rate coefficients are derived for the aircraft problem. A model for ion losses in jet exhaust is then formulated using an "invariance" principle discussed by Turco and Yu (1997) in the context of a coagulating aerosol in an expanding plume. This recombina- tion model is applied to estimate chemiion emission indices for a range of operational engine conditions. The predicted ion emission rates are found to be consistent with observations. We discuss the sources of variance in chemiion

  19. A novel track imaging system as a range counter

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. [National Institute of Radiological Sciences (Japan); Matsufuji, N. [National Institute of Radiological Sciences (Japan); Tokyo Institute of Technology (Japan); Kanayama, S. [Chiba University (Japan); Ishida, A. [National Institute of Radiological Sciences (Japan); Tokyo Institute of Technology (Japan); Kohno, T. [Tokyo Institute of Technology (Japan); Koba, Y.; Sekiguchi, M.; Kitagawa, A.; Murakami, T. [National Institute of Radiological Sciences (Japan)

    2016-05-01

    An image-intensified, camera-based track imaging system has been developed to measure the tracks of ions in a scintillator block. To study the performance of the detector unit in the system, two types of scintillators, a dosimetrically tissue-equivalent plastic scintillator EJ-240 and a CsI(Tl) scintillator, were separately irradiated with carbon ion ({sup 12}C) beams of therapeutic energy from HIMAC at NIRS. The images of individual ion tracks in the scintillators were acquired by the newly developed track imaging system. The ranges reconstructed from the images are reported here. The range resolution of the measurements is 1.8 mm for 290 MeV/u carbon ions, which is considered a significant improvement on the energy resolution of the conventional ΔE/E method. The detector is compact and easy to handle, and it can fit inside treatment rooms for in-situ studies, as well as satisfy clinical quality assurance purposes.

  20. Observations of strong ion-ion correlations in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T., E-mail: ma8@llnl.gov; Pak, A.; Landen, O. L.; Le Pape, S.; Turnbull, D.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Fletcher, L.; Galtier, E.; Hastings, J.; Lee, H. J.; Nagler, B.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chapman, D. A. [Plasma Physics Group, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Falcone, R. W. [Physics Department, University of California, Berkeley, California 94720 (United States); Fortmann, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G.; White, T. G. [University of Oxford, Clarendon Laboratory, Oxford OX1 3PU (United Kingdom); Neumayer, P. [Extreme Matter Institute, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Vorberger, J. [Max Planck Institut für Physik komplexer Systeme, Nötthnizer Straße 38, 01187 Dresden (Germany); and others

    2014-05-15

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ∼3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å{sup −1}. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  1. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations.

    Science.gov (United States)

    Hamid, Ahmed M; Ibrahim, Yehia M; Garimella, Sandilya V B; Webb, Ian K; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A; Prost, Spencer A; Norheim, Randolph V; Tolmachev, Aleksey V; Smith, Richard D

    2015-11-17

    We report on the development and characterization of a traveling wave (TW)-based Structures for Lossless Ion Manipulations (TW-SLIM) module for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200-2500) utilizing a confining rf waveform (∼1 MHz and ∼300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ∼32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. The combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.

  2. [Determination of iodide, thiocyanate and perchlorate ions in environmental water by two-dimensional ion chromatography].

    Science.gov (United States)

    Lin, Li; Wang, Haibo; Shi, Yali

    2013-03-01

    A procedure for the determination of iodide, thiocyanate and perchlorate ions in environmental water by two-dimensional ion chromatography has been developed. At first the iodide, thiocyanate and perchlorate ions were separated from interfering ions by a column (IonPac AS16, 250 mm x 4 mm). The iodide ion, thiocyanate and perchlorate ions were then enriched with an enrichment column (MAC-200, 80 mm x 0.75 mm). In the 2nd-dimensional chromatography, iodide thiocyanate and perchlorate ions were separated and quantified by a capillary column (IonPac AS20 Capillary, 250 mm x 0.4 mm). The linear ranges were 0.05 -100 pg/L with correlation coefficients of 0. 999 9, and the detection limits were 0. 02 - 0.05 micro gg/L. The spiked recoveries of iodide, thiocyanate and perchlorate ions were in the range of 85.1% to 100.1%. The relative standard deviations of the recoveries were 1.7% to 4.9%.

  3. MeV-range velocity-space tomography from gamma-ray and neutron emission spectrometry measurements at JET

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nocente, M.; Jacobsen, Asger Schou

    2017-01-01

    We demonstrate the measurement of a 2D MeV-range ion velocity distribution function by velocity-space tomography at JET. Deuterium ions were accelerated into the MeV-range by third harmonic ion cyclotron resonance heating. We made measurements with three neutron emission spectrometers and a high-...

  4. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  5. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  6. Microfabricated ion frequency standard

    Science.gov (United States)

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  7. Development of a linear ion trap/orthogonal-time-of-flight mass spectrometer for time-dependent observation of product ions by ultraviolet photodissociation of peptide ions.

    Science.gov (United States)

    Kim, Tae-Young; Schwartz, Jae C; Reilly, James P

    2009-11-01

    A hybrid linear ion trap/orthogonal time-of-flight (TOF) mass spectrometer has been developed to observe time-dependent vacuum ultraviolet photodissociation product ions. In this apparatus, a reflectron TOF mass analyzer is orthogonally interfaced to an LTQ using rf-only octopole and dc quadrupole ion guides. Precursor ions are generated by electrospray ionization and isolated in the ion trap. Subsequently they are directed to the TOF source where photodissociation occurs and product ions are extracted for mass analysis. To detect photodissociation product ions having axially divergent trajectories, a large rectangular detector is utilized. With variation of the time between photodissociation and orthogonal extraction in the TOF source, product ions formed over a range of times after photoexcitation can be sampled. Time-dependent observation of product ions following 157 nm photodissociation of a singly charged tryptic peptide ion (NWDAGFGR) showed that prompt photofragment ions (x- and v-type ions) dominate the tandem mass spectrum up to 1 micros after the laser shot, but the intensities of low energy thermal fragment ions (y-type ions) become comparable several microseconds later. Different proton mobilization time scales were observed for arginine- and lysine-terminated tryptic peptides.

  8. ORANGE: RANGE OF BENEFITS

    Directory of Open Access Journals (Sweden)

    Parle Milind

    2012-07-01

    Full Text Available No wonder that oranges are one of the most popular fruits in the world. Orange (citrus sinensis is well known for its nutritional and medicinal properties throughout the world. From times immemorial, whole Orange plant including ripe and unripe fruits, juice, orange peels, leaves and flowers are used as a traditional medicine. Citrus sinensis belongs to the family Rutaceae. The fruit is a fleshy, indehiscent, berry that ranges widely in size from 4 cm to 12 cm. The major medicinal properties of orange include anti-bacterial, anti-fungal, anti- diabetic, cardio- protective, anti-cancer, anti-arthritic, anti-inflammatory, anti-oxidant, anti-Tubercular, anti-asthmatic and anti-hypertensive. Phytochemically, whole plant contains limonene, citral, neohesperidin, naringin, rutin, rhamnose, eriocitrin, and vitamin-C. In the present review article, a humble attempt is made to compile all the strange facts available about this tasty fruit.

  9. Pulse height defect of energetic heavy ions in ion-implanted Si detectors

    Science.gov (United States)

    Pasquali, G.; Casini, G.; Bini, M.; Calamai, S.; Olmi, A.; Poggi, G.; Stefanini, A. A.; Saint-Laurent, F.; Steckmeyer, J. C.

    1998-02-01

    The pulse height defect in ion-implanted silicon detectors for elastically scattered 93Nb, 100Mo, 116Sn, 120Sn and 129Xe ions, at energies ranging from about 4 to 25 A MeV has been measured. The results are compared with two widely used parametrizations taken from the literature.

  10. Pulse height defect of energetic heavy ions in ion-implanted Si detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pasquali, G.; Casini, G.; Bini, M.; Calamai, S.; Olmi, A.; Poggi, G.; Stefanini, A.A. [Istituto Nazionale di Fisica Nucleare, Florence (Italy)]|[Univ. of Florence (Italy); Saint-Laurent, F. [DRFC/STEP, CEN Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Steckmeyer, J.C. [Laboratoire de Physique Corpuscolaire, ISMRA, 14050 Caen Cedex (France)

    1998-03-01

    The pulse height defect in ion-implanted silicon detectors for elastically scattered {sup 93}Nb, {sup 100}Mo, {sup 116}Sn, {sup 120}Sn and {sup 129}Xe ions, at energies ranging from about 4 to 25 A MeV has been measured. The results are compared with two widely used parametrizations taken from the literature. (orig.). 14 refs.

  11. Multicusp ion sources (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N. (Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States))

    1994-04-01

    During the last decade, different types of multicusp ion sources, such as high current, high concentration H[sup +], H[sup +][sub 2], or N[sup +] ion sources, negative ion sources, radio-frequency-driven sources, and high charge state ion sources have been developed at the Lawrence Berkeley Laboratory. This article reviews the history of the research and development of these ion sources and their applications.

  12. Heavy-ion nucleus scattering

    CERN Document Server

    Rahman, M A; Haque, S

    2003-01-01

    Heavy ion-nucleus scattering is an excellent laboratory to probe high spin phenomena, exotic nuclei and for the analysis of various exit channels. The Strong Absorption Model or the generalized diffraction models, which are semi-classical in nature, have been employed in the description of various heavy ion-nucleus scattering phenomena with reasonable success. But one needs to treat the deflection function (scattering angles) quantum mechanically in the Wave Mechanical picture for the appropriate description of the heavy-ion nucleus scattering phenomena. We have brought the mathematics for the cross-section of the heavy-ion nucleus scattering to an analytic expression taking account of the deflection function (scattering angles) quantum mechanically. sup 9 Be, sup 1 sup 6 O, sup 2 sup 0 Ne and sup 3 sup 2 S heavy-ion beams elastic scattering from sup 2 sup 8 Si, sup 2 sup 4 Mg and sup 4 sup 0 Ca target nuclei at various projectile energies over the range 20-151 MeV have been analysed in terms of the 2-paramet...

  13. Implementation of Ion/Ion Reactions in a Quadrupole/Time-of-Flight Tandem Mass Spectrometer

    Science.gov (United States)

    Xia, Yu; Chrisman, Paul A.; Erickson, David E.; Liu, Jian; Liang, Xiaorong; Londry, Frank A.; Yang, Min J.; McLuckey, Scott A.

    2008-01-01

    A commercial quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been adapted for ion/ion reaction studies. To enable mutual storage of oppositely charged ions in a linear ion trap, the oscillating quadrupole field of the second quadrupole of the system (Q2) serves to store ions in the radial dimension while auxiliary RF is superposed on the end lenses of Q2 during the reaction period to create barriers in the axial dimension. A pulsed dual electrospray (ESI) source is directly coupled to the instrument interface for the purpose of proton transfer reactions. Singly and doubly charged protein ions as high in mass as 66 kDa are readily formed and observed after proton transfer reactions. For the modified instrument, the mass resolving power is about 8000 for a wide m/z range and the mass accuracy is ~20 ppm for external calibration and ~5 ppm for internal calibration after ion/ion reactions. Parallel ion parking is demonstrated with a six-component protein mixture, which shows the potential application of reducing spectral complexity and concentrating certain charge states. The current system has high flexibility with respect to defining MSn experiments involving collision-induced dissociation (CID) and ion/ion reactions. Protein precursor and CID product masses can be determined with good accuracy, providing an attractive platform for top-down proteomics. Electron transfer dissociation (ETD) ion/ion reactions are implemented by using a pulsed nano-ESI/atmospheric pressure chemical ionization (APCI) dual source for ionization. The reaction between protonated peptide ions and radical anions of 1,3-dinitrobenzene formed exclusively c- and z- type fragment ions. PMID:16771545

  14. Tailored-waveform Collisional Activation of Peptide Ion Electron Transfer Survivor Ions in Cation Transmission Mode Ion/Ion Reaction Experiments

    Science.gov (United States)

    Han, Hongling; Londry, Frank A.; Erickson, David E.; McLuckey, Scott A.

    2010-01-01

    SUMMARY Broad-band resonance excitation via a tailored waveform in a high pressure collision cell (Q2) on a hybrid quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been implemented for cation transmission mode electron transfer ion/ion reactions of tryptic polypeptides. The frequency components in the broadband waveform were defined to excite the first generation intact electron transfer products for relatively large tryptic peptides. The optimum amplitude of the arbitrary waveform applied has been determined empirically to be 3.0 Vp-p, which is effective for relatively high mass-to-charge (m/z) ratio precursor ions with little elimination of sequence information for low m/z ions. The application of broadband activation during the transmission mode ion/ion reaction obviates frequency and amplitude tuning normally associated with ion trap collision induced dissociation (CID). This approach has been demonstrated with triply and doubly charged tryptic peptides with and without post-translational modifications. Enhanced structural information was achieved by production of a larger number of informative c- and z-type fragments using the tailored waveform on unmodified and modified (phosphorylated and glycosylated) peptides when the first generation intact electron transfer products fell into the defined frequency range. This approach can be applied to a wide range of tryptic peptide ions, making it attractive as a rapid and general approach for ETD LC-MS/MS of tryptic peptides in a QqTOF instrument. PMID:19305916

  15. Ion sources for ion implantation technology (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Shigeki, E-mail: sakai-shigeki@nissin.co.jp; Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki [Nissin Ion Equipment co., ltd, 575 Kuze-Tonoshiro-cho Minami-ku, Kyoto 601-8205 (Japan)

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  16. Ion Flux Dependent and Independent Functions of Ion Channels in the Vertebrate Heart: Lessons Learned from Zebrafish

    OpenAIRE

    Mirjam Keßler; Steffen Just; Wolfgang Rottbauer

    2012-01-01

    Ion channels orchestrate directed flux of ions through membranes and are essential for a wide range of physiological processes including depolarization and repolarization of biomechanical activity of cells. Besides their electrophysiological functions in the heart, recent findings have demonstrated that ion channels also feature ion flux independent functions during heart development and morphogenesis. The zebrafish is a well-established animal model to decipher the genetics of cardiovascular...

  17. Evolution of Instrumentation for the Study of Gas-Phase Ion/Ion Chemistry via Mass Spectrometry

    OpenAIRE

    Xia, Yu; McLuckey, Scott A.

    2007-01-01

    The scope of gas phase ion/ion chemistry accessible to mass spectrometry is largely defined by the available tools. Due to the development of novel instrumentation, a wide range of reaction phenomenologies have been noted, many of which have been studied extensively and exploited for analytical applications. This perspective presents the development of mass spectrometry-based instrumentation for the study of the gas phase ion/ion chemistry in which at least one of the reactants is multiply-ch...

  18. Wide Range SET Pulse Measurement

    Science.gov (United States)

    Shuler, Robert L.; Chen, Li

    2012-01-01

    A method for measuring a wide range of SET pulses is demonstrated. Use of dynamic logic, faster than ordinary CMOS, allows capture of short pulses. A weighted binning of SET lengths allows measurement of a wide range of pulse lengths with compact circuitry. A pulse-length-conservative pulse combiner tree routes SETs from combinational logic to the measurement circuit, allowing SET measurements in circuits that cannot easily be arranged in long chains. The method is applied to add-multiplex combinational logic, and to an array of NFET routing switches, at .35 micron. Pulses are captured in a chain of Domino Logic AND gates. Propagation through the chain is frozen on the trailing edge by dropping low the second "enable" input to the AND gates. Capacitive loading is increased in the latter stages to create an approximately logarithmic weighted binning, so that a broad range of pulse lengths can be captured with a 10 stage capture chain. Simulations show pulses can be captured which are 1/5th the length of those typically captured with leading edge triggered latch methods, and less than the length of those captured with a trailing edge latch method. After capture, the pulse pattern is transferred to an SEU protected shift register for readout. 64 instances of each of two types of logic are used as targets. One is a full adder with a 4 to 1 mux on its inputs. The other is a 4 x 4 NFET routing matrix. The outputs are passed through buffered XNOR comparators to identify pulses, which are merged in a buffered not-nand (OR) tree designed to avoid pulse absorption as much as possible. The output from each of the two test circuits are input into separate pulse measurement circuits. Test inputs were provided so that the circuit could be bench tested and calibrated. A third SET measurement circuit with no inputs was used to judge the contribution from direct hits on the measurement circuit. Heavy ions were used with an LET range from 12 to 176. At LET of 21 and below, the very

  19. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  20. Ionoacoustics: A new direct method for range verification

    Science.gov (United States)

    Parodi, Katia; Assmann, Walter

    2015-05-01

    The superior ballistic properties of ion beams may offer improved tumor-dose conformality and unprecedented sparing of organs at risk in comparison to other radiation modalities in external radiotherapy. However, these advantages come at the expense of increased sensitivity to uncertainties in the actual treatment delivery, resulting from inaccuracies of patient positioning, physiological motion and uncertainties in the knowledge of the ion range in living tissue. In particular, the dosimetric selectivity of ion beams depends on the longitudinal location of the Bragg peak, making in vivo knowledge of the actual beam range the greatest challenge to full clinical exploitation of ion therapy. Nowadays, in vivo range verification techniques, which are already, or close to, being investigated in the clinical practice, rely on the detection of the secondary annihilation photons or prompt gammas, resulting from nuclear interaction of the primary ion beam with the irradiated tissue. Despite the initial promising results, these methods utilize a not straightforward correlation between nuclear and electromagnetic processes, and typically require massive and costly instrumentation. On the contrary, the long-term known, yet only recently revisited process of "ionoacoustics", which is generated by local tissue heating especially at the Bragg peak, may offer a more direct approach to in vivo range verification, as reviewed here.

  1. Long-range electrostatic screening in ionic liquids.

    Science.gov (United States)

    Gebbie, Matthew A; Dobbs, Howard A; Valtiner, Markus; Israelachvili, Jacob N

    2015-06-16

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems.

  2. Modification of SRIM-calculated dose and injected ion profiles due to sputtering, injected ion buildup and void swelling

    Science.gov (United States)

    Wang, Jing; Toloczko, Mychailo B.; Bailey, Nathan; Garner, Frank A.; Gigax, Jonathan; Shao, Lin

    2016-11-01

    In radiation effects on materials utilizing self-ion irradiations, it is necessary to calculate the local displacement damage level and ion injection profile because of the short distance that self-ions travel in a material and because of the strong variation of displacement rate with depth in a specimen. The most frequently used tool for this is the software package called Stopping and Range of Ions in Matter (SRIM). A SRIM-calculated depth-dependent dose level is usually determined under the implicit assumption that the target does not undergo any significant changes in volume during the process, in particular SRIM ignores the effect of sputtering, injected ions, and void swelling on the redistribution of the dose and injected ion profiles. This approach become increasingly invalid as the ion fluence reaches ever higher levels, especially for low energy ion irradiations. The original surface is not maintained due to sputter-induced erosion, while within the irradiated region of the specimen, injected ions are adding material, and if void swelling is occurring, it is creating empty space. An iterative mathematical treatment of SRIM outputs to produce corrected dose and injected ion profiles based on these phenomenon and without regard to diffusion is presented along with examples of differences between SRIM-calculated values and corrected values over a range of typical ion energies. The intent is to provide the reader with a convenient tool for more accurately calculating dose and injected ion profiles for heavy-ion irradiations.

  3. Ions and light

    CERN Document Server

    Bowers, Michael T

    2013-01-01

    Gas Phase Ion Chemistry, Volume 3: Ions and Light discusses how ions are formed by electron impact, ion-molecule reactions, or electrical discharge. This book discusses the use of light emitted by excited molecules to characterize either the chemistry that formed the excited ion, the structure of the excited ion, or both.Organized into 10 chapters, this volume begins with an overview of the extension of the classical flowing afterglow technique to include infrared and chemiluminescence and laser-induced fluorescence detection. This text then examines the experiments involving molecules that ar

  4. A Range-Shift Technique for TOF Range Image Sensors

    Science.gov (United States)

    Sawada, Tomonari; Ito, Kana; Nakayama, Masakatsu; Kawahito, Shoji

    In Time-of-Flight (TOF) range image sensors using periodical pulsed light, there is a trade-off between the maximum range and range resolution. This paper proposes a range-shift technique for improving range resolution of the TOF range image sensor without sacrificing the measurement range. The range-shift operation uses a TOF range imaging pixel with periodical charge draining structure and several time-shifted short pulses. The use of the short pulse can improve the range resolution. The range image using the range-shift technique is synthesized with several sub-frames, each acquires one of the shifted range images. The use of the small duty-ratio pulse leads to reducing the effect of ambient light and improving the range resolution. The range-shift technique is tested with an implemented TOF range image sensor and it is found that the range resolution is improved to 2cm using a 10ns light pulse and 7 overlapped shifted ranges for the measurement range of 0.5m to 4.0m.

  5. Simulation of electric potentials and ion motion in planar electrode structures for lossless ion manipulations (SLIM).

    Science.gov (United States)

    Garimella, Sandilya V B; Ibrahim, Yehia M; Webb, Ian K; Tolmachev, Aleksey V; Zhang, Xinyu; Prost, Spencer A; Anderson, Gordon A; Smith, Richard D

    2014-11-01

    We report a conceptual study and computational evaluation of novel planar electrode structures for lossless ion manipulations (SLIM). Planar electrode SLIM components were designed that allow for flexible ion confinement, transport, and storage using a combination of radio frequency (rf) and DC fields. Effective potentials can be generated that provide near ideal regions for confining and manipulating ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g., a few Torr). More complex ion manipulations (e.g., turning ions by 90(o) and dynamically switching selected ion species into orthogonal channels) are also shown feasible. The performance of SLIM devices at ~4 Torr pressure for performing ion mobility-based separations (IMS) is computationally evaluated and compared with initial experimental results, and both are also shown to agree closely with experimental and theoretical IMS performance for a conventional drift tube design.

  6. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Seouk [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of); School of Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of); Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Won, Mi-Sook, E-mail: mswon@kbsi.re.kr [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of); Lee, Seung Wook, E-mail: Seunglee@pusan.ac.kr [School of Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of)

    2016-02-15

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1–10 mm{sup 2}. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  7. Ion desorption from frozen H 2O irradiated by MeV heavy ions

    Science.gov (United States)

    Collado, V. M.; Farenzena, L. S.; Ponciano, C. R.; Silveira, E. F. da; Wien, K.

    2004-10-01

    Nitrogen (0.13-0.85 MeV) and 252Cf fission fragments (˜65 MeV) beams are employed to sputter positive and negative secondary ions from frozen water. Desorption yields are measured for different ice temperatures and projectile energies. Target surface is continuously refreshed by condensed water while the target temperature varies and ice thickness changes. In both projectile energy ranges, the preferentially ejected ions are H +, H2+ and (H 2O) nH +-cluster ions. The yields of the corresponding negative ions H - and (H 2O) nO - or (H 2O) nOH - are 1-2 orders of magnitude lower. The (H 2O) nH + desorption yields decrease exponentially as the cluster size, n, increases. In the low energy range, the desorption of positive ion clusters may occur in a two-step process: first, desorption of preformed H 2O clusters and, then, ionization by H + or H 3O + capture. For 0.81 MeV N + projectile ions, the cluster ion emission contributes with 0.05% to the total H 2O desorbed yield. There are indications that emission of the (H 2O) nH + disappears for an electronic energy loss lower than 20 eV/Å. For the high energy range, desorption of small ion clusters is particularly enhanced, revealing that a fragmentation process also exists.

  8. Ion cyclotron emission by spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa, O. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Gresillon, D. [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises

    1994-07-01

    The goal of the study is to examine whether the spontaneous emission can account for ICE (ion cyclotron emission) experimental results, or part of them. A straightforward approach to plasma emission is chosen, investigating the near equilibrium wave radiation by gyrating ions, and thus building from the majority and fast fusion ions the plasma fluctuations and emission on the fast magnetoacoustic or compressional Alfven wave mode in the IC frequency range. Similarities with the ICE experiments are shown: the emission temperature in the presence of fast ions (even in a very small amount), the strong fast ion emission increase with the harmonic, the fine double-line splitting of each peak, the linear but not proportional increase of the peak width with the harmonic. 3 refs., 2 figs.

  9. Characteristics of MINI ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Yuichi; Yokota, Watalu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A very compact electron cyclotron resonance ion source (MINI ECR) was manufactured to extend available energy ranges of ion beams by applying multiply charged ions to electrostatic accelerators. The magnetic field to confine a plasma is formed only by small permanent magnets and the microwave power up to 15 W is generated by a compact transistor amplifier in order to install the ion source at a narrow high-voltage terminal where the electrical power feed is restricted. The magnet assembly is 12 cm in length and 11 cm in diameter, and forms a mirror field with the maximum strength of 0.55 T. The total power consumption of the source is below 160 W. The performance of the source was tested in a bench stand. The results of Ar, Xe, O, and N ion generation are reported in this paper. (author)

  10. Production of N[sup +] ions from a multicusp ion beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kango Leung; Kunkel, W.B.; Walther, S.R.

    1993-03-30

    A method of generating a high purity (at least 98%) N[sup +] ion beam using a multicusp ion source having a chamber formed by a cylindrical chamber wall surrounded by a plurality of magnets, a filament centrally disposed in said chamber, a plasma electrode having an extraction orifice at one end of the chamber, a magnetic filter having two parallel magnets spaced from said plasma electrode and dividing the chamber into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber, maintaining the chamber wall at a positive voltage relative to the filament and at a magnitude for an optimum percentage of N[sup +] ions in the extracted ion beams, disposing a hot liner within the chamber and near the chamber wall to limit recombination of N[sup +] ions into the N[sub 2][sup +] ions, spacing the magnets of the magnetic filter from each other for optimum percentage of N[sup 3] ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8[times]10[sup [minus]4] torr) for an optimum percentage of N[sup +] ions in the extracted ion beam.

  11. Production of N.sup.+ ions from a multicusp ion beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Ka-Ngo (Hercules, CA); Kunkel, Wulf B. (Berkeley, CA); Walther, Steven R. (Salem, MA)

    1993-01-01

    A method of generating a high purity (at least 98%) N.sup.+ ion beam using a multicusp ion source (10) having a chamber (11) formed by a cylindrical chamber wall (12) surrounded by a plurality of magnets (13), a filament (57) centrally disposed in said chamber, a plasma electrode (36) having an extraction orifice (41) at one end of the chamber, a magnetic filter having two parallel magnets (21, 22) spaced from said plasma electrode (36) and dividing the chamber (11) into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber (11), maintaining the chamber wall (12) at a positive voltage relative to the filament (57) and at a magnitude for an optimum percentage of N.sup.+ ions in the extracted ion beams, disposing a hot liner (45) within the chamber and near the chamber wall (12) to limit recombination of N.sup.+ ions into the N.sub.2.sup.+ ions, spacing the magnets (21, 22) of the magnetic filter from each other for optimum percentage of N.sup.3 ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8.times.10.sup.-4 torr) for an optimum percentage of N.sup.+ ions in the extracted ion beam.

  12. Improved production of N{sup +} ions from a multicusp ion beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Ka-Ngo; Kunkel, W.B.; Walther, S.R.

    1991-12-31

    This invention is comprised of a method of generating a high purity (at least 98%) N{sup +} ion beam using a multicusp ion source having a chamber formed by a cylindrical chamber wall surrounded by a plurality of magnets, a filament centrally disposed in said chamber, a plasma electrode having an extraction orifice at one end of the chamber, a magnetic filter having two parallel magnets spaced from said plasma electrode and dividing the chamber into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber, maintaining the chamber wall at a positive voltage relative to the filament and at a magnitude for an optimum percentage of N{sup +} ions in the extracted ion beam, disposing a hot liner within the chamber and near the chamber wall to limit recombination of N{sup +} ions into the N{sub 2}{sup +} ions, spacing the magnets of the magnetic filter from each other for optimum percentage of N{sup +} ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3--8 {times} 10{sup {minus}4} torr) for an optimum percentage of N{sup +} ions in the extracted ion beam.

  13. Ion exchange in KTiOPO4 crystals irradiated by copper and hydrogen ions.

    Science.gov (United States)

    Zhang, Ruifeng; Lu, Fei; Lian, Jie; Liu, Hanping; Liu, Xiangzhi; Lu, Qingming; Ma, Hongji

    2008-05-12

    Cs(+)-K+ ion exchanges were produced on KTiOPO4 crystals which is prior irradiated by Cu+ can H+ ions. The energy and dose of implanted Cu+ ions are 1.5 MeV and 0.5 x 10(14) ions/cm2, and that of H+ are 300 keV and 1 x 10(16) ions/cm2, respectively. The temperature of ions exchange is 430 degrees C, and the time range from 15 minutes to 30 minutes. The prism coupling method is used to measure the dark mode spectra of the samples. Compared with results of ion exchange on the sample without irradiations, both the number of guided mode and its corresponding effective refractive index are decreased. The experimental results indicate that the ion exchange rate closely related with the lattice damage and the damage layers formed in the depth of maximum nuclear energy deposition act as a barrier to block the ions diffuse into the sample and the concentration of defects can modify the speed of ion exchange..

  14. Production and ion-ion cooling of highly charged ions in electron string ion source.

    Science.gov (United States)

    Donets, D E; Donets, E D; Donets, E E; Salnikov, V V; Shutov, V B; Syresin, E M

    2009-06-01

    The scheme of an internal injection of Au atoms into the working space of the "Krion-2" electron string ion source (ESIS) was applied and tested. In this scheme Au atoms are evaporated from the thin tungsten wire surface in vicinity of the source electron string. Ion beams with charge states up to Au51+ were produced. Ion-ion cooling with use of C and O coolant ions was studied. It allowed increasing of the Au51+ ion yield by a factor of 2. Ions of Kr up to charge state 28+ were also produced in the source. Electron strings were first formed with injection electron energy up to 6 keV. Methods to increase the ESIS ion output are discussed.

  15. Surface nanostructuring of TiO{sub 2} thin films by ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Gomez, P. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, c/Americo Vespucio 49, 41092 Sevilla (Spain); Palmero, A. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, c/Americo Vespucio 49, 41092 Sevilla (Spain)], E-mail: alberto.palmero@icmse.csic.es; Yubero, F. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, c/Americo Vespucio 49, 41092 Sevilla (Spain); Vinnichenko, M.; Kolitsch, A. [Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); Gonzalez-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, c/Americo Vespucio 49, 41092 Sevilla (Spain)

    2009-04-15

    This work reports a procedure to modify the surface nanostructure of TiO{sub 2} anatase thin films through ion beam irradiation with energies in the keV range. Irradiation with N{sup +} ions leads to the formation of a layer with voids at a depth similar to the ion-projected range. By setting the ion-projected range a few tens of nanometers below the surface of the film, well-ordered nanorods appear aligned with the angle of incidence of the ion beam. Slightly different results were obtained by using heavier (S{sup +}) and lighter (B{sup +}) ions under similar conditions.

  16. Ion mobility spectrometry

    CERN Document Server

    Eiceman, GA

    2005-01-01

    Key Developments for Faster, More Precise Detection Capabilities Driven by the demand for the rapid and advanced detection of explosives, chemical and biological warfare agents, and narcotics, ion mobility spectrometry (IMS) undergone significant refinements in technology, computational capabilities, and understanding of the principles of gas phase ion chemistry and mobility. Beginning with a thorough discussion of the fundamental theories and physics of ion mobility, Ion Mobility Spectrometry, Second Edition describes the recent advances in instrumentation and newly

  17. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  18. Beam investigations at a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Volk, K.; Klein, H. (Institut fuer Angewandte Physik der Johann Wolfgang Goethe-Universitaet, Robert-Mayer-Strasse 2-4, D-6000 Frankfurt am Main (Germany)); Leung, K.N. (Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States))

    1992-04-01

    In cooperation with the Lawrence Berkeley Laboratory, a multicusp ion source has been investigated. The goal of these investigations is to generate a nearly pure atomic nitrogen (N{sup +}) ion beam. To achieve this, the discharge chamber is divided into two parts of different plasma parameters by means of a filter magnetic field. As beam diagnostics, a bending magnet and a faraday cup have been used. Measurements of the beam current density and the ion composition for a wide range of discharge conditions have been performed. By using a Langmuir probe, we have performed measurements of electron temperature and electron density.

  19. Ion source design for industrial applications

    Science.gov (United States)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The more frequently used design techniques for the components of broad-beam electron bombardment ion sources are discussed. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, the cathodes, and the magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. A comparison is made between two-grid and three-grid optics. The designs presented are representative of current technology and are adaptable to a wide range of configurations.

  20. Ion source design for industrial applications

    Science.gov (United States)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The more frequently used design techniques for the components of broad-beam electron bombardment ion sources are discussed. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, the cathodes, and the magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. A comparison is made between two-grid and three-grid optics. The designs presented are representative of current technology and are adaptable to a wide range of configurations.

  1. Ionic Liquids in Lithium-Ion Batteries.

    Science.gov (United States)

    Balducci, Andrea

    2017-04-01

    Lithium-ion batteries are among the most widespread energy storage devices in our society. In order to introduce these devices in new key applications such as transportation, however, their safety and their operative temperature range need to be significantly improved. These improvements can be obtained only by developing new electrolytes. Ionic liquids are presently considered among the most attractive electrolytes for the development of advanced and safer lithium-ion batteries. In this manuscript, the use of various types of ionic liquids, e.g. aprotic and protic, in lithium-ion batteries is considered. The advantages and the limits associated to the use of these innovative electrolytes are critically analysed.

  2. Inverted battery design as ion generator for interfacing with biosystems

    Science.gov (United States)

    Wang, Chengwei; Fu, Kun (Kelvin); Dai, Jiaqi; Lacey, Steven D.; Yao, Yonggang; Pastel, Glenn; Xu, Lisha; Zhang, Jianhua; Hu, Liangbing

    2017-07-01

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an `electron battery' configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As a proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications.

  3. Critical concentration of ion-pairs formation in nonpolar media.

    Science.gov (United States)

    Dukhin, Andrei

    2014-07-01

    It is known that nonpolar liquids can be ionized by adding surfactants, either ionic or nonionic. Surfactant molecules serve as solvating agents, building inverse micelles around ions, and preventing their association back into neutral molecules. According to the Bjerrum-Onsager-Fuoss theory, these inverse micelle ions should form "ion pairs." This, in turn, leads to nonlinear dependence of the conductivity on the concentration. Surprisingly, ionic surfactants exhibit linear conductivity dependence, which implies that these inverse micelle ions do not form ion pairs. Theory predicts the existence of two ionic strength ranges, which are separated by a certain critical ion concentration. Ionic strength above the critical one is proportional to the square root of the ion concentration, whereas it becomes linear below the critical concentration. Critical ion concentration lies within the range of 10(-11) -10(-7) mol/L when ion size ranges from 1 to 3 nm. Critical ion concentration is related, but not equal, to a certain surfactant concentration (critical concentration of ion-pairs formation (CIPC)) because only a fraction of the surfactant molecules is incorporated into the micelles ions. The linear conductivity dependence for ionic surfactants indicates that the corresponding CIPC is above the range of studied concentrations, perhaps, due to rather large ion size. The same linearity is a sign that charged inverse micelles structure and fraction are concentration independent due to strong charge-dipole interaction in the charge micelle core. This also proves that CIPC is independent of critical concentration of micelle formation. Nonionic surfactants, on the other hand, exhibit nonlinear conductivity dependence apparently due to smaller ion sizes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ion trap simulation tools.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  5. Ion implanted dielectric elastomer circuits

    Science.gov (United States)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  6. [Development of metal ions analysis by ion chromatography].

    Science.gov (United States)

    Yu, Hong; Wang, Yuxin

    2007-05-01

    Analysis of metal ions by ion chromatography, including cation-exchange ion chromatography, anion-exchange ion chromatography and chelation ion chromatography, is reviewed. The cation-exchange ion chromatography is a main method for the determination of metal ions. Stationary phases in cation-exchange ion chromatography are strong acid cation exchanger (sulfonic) and weak acid cation exchanger (carboxylic). Alkali metal ions, alkaline earth metal ions, transition metal ions, rare earth metal ions, ammonium ions and amines can be analyzed by cation-exchange ion chromatography with a suitable detector. The anion-exchange ion chromatography is suitable for the separation and analysis of alkaline earth metal ions, transition metal ions and rare earth metal ions. The selectivity for analysis of metal ions with anion-exchange ion chromatography is good. Simultaneous determination of metal ions and inorganic anions can be achieved using anion-exchange ion chromatography. Chelation ion chromatography is suitable for the determination of trace metal ions in complex matrices. A total of 125 references are cited.

  7. Bambusurils as effective ion caging agents: Does desolvation guide conformation?

    Science.gov (United States)

    Cova, Tânia F. G. G.; Nunes, Sandra C. C.; Pinho e Melo, Teresa M. V. D.; Pais, Alberto A. C. C.

    2017-03-01

    Water soluble bambusurils can bind and isolate inorganic anions in the center of the hydrophobic cavity, with high affinity and selectivity. This makes them appealing anion carriers and ion transporters for a wide range of biomedical applications, including in ion-channel diseases of the muscles, bones and brain. For understanding the bambusuril ion caging ability in aqueous media, molecular dynamics simulations, including free energy calculations are used. It is seen that the ion is hermetically sealed inside the cavity, as a result of a concerted action involving conformation and desolvation of both ion and bambusuril cavity.

  8. Erosion yield of metal surface under ion pulsed irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Krivobokov, Valery; Stepanova, Olga, E-mail: omsa@tpu.ru; Yuryeva, Alena

    2013-11-15

    The paper is devoted to the study of erosion processes on a metal surface (Ag, Ni, Cu, W) under argon ion bombardment. The erosion yields including the sputtered and evaporated particles have been calculated for a wide range of the initial ion energy (1–1000 keV). They are revealed to reach the values from units to 10{sup 4} atom/ion under a pulsed ion beam with the power density of 10{sup 2}–10{sup 10} W/cm{sup 2}. The ion beam and target parameters are shown to influence on the erosion intensity.

  9. Observation of elastic collisions between lithium atoms and calcium ions

    CERN Document Server

    Haze, Shinsuke; Fujinaga, Munekazu; Mukaiyama, Takashi

    2013-01-01

    We observed elastic collisions between laser-cooled fermionic lithium atoms and calcium ions at the energy range from 100 mK to 3 K. Lithium atoms in an optical-dipole trap were transported to the center of the ion trap using an optical tweezer technique, and a spatial overlap of the atoms and ions was realized in order to observe the atom-ion interactions. The elastic scattering rate was determined from the decay of atoms due to elastic collisions with ions. The collision-energy dependence of the elastic scattering cross-section was consistent with semi-classical collision theory.

  10. Ion channels in asthma.

    Science.gov (United States)

    Valverde, Miguel A; Cantero-Recasens, Gerard; Garcia-Elias, Anna; Jung, Carole; Carreras-Sureda, Amado; Vicente, Rubén

    2011-09-23

    Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.

  11. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  12. Osobennosti jenergeticheskoj strategii ES v Baltijskom regione [The features of EU energy strategy in the Baltic region

    Directory of Open Access Journals (Sweden)

    Kretinin Gannady

    2011-01-01

    Full Text Available This article analyses the issues of EU energy policy in the 1990s-the beginning of the 2000s in order to identify the features of energy supply and energy safety of the Baltic region countries. The research and practical significance of the work lies in the stepwise description of actions taken by EU leaders and EU member states in order to formulate a common European energy policy. The 2004 EU enlargement posed the problem of taking into account the features of energy supply of Eastern European countries and, especially, the Baltic States. The energy industries of Lithuania, Latvia, and Estonia, as well as other Eastern European and CIS countries, are closely related to the energy industry of the Russian Federation. Trying to allow for this circumstance, EU leaders and energy structures took a number of organizational measures aimed, on the one hand, at an increase in energy independence of new members of the EU and, on the other hand, at taking into account the recent trends in the energy market development. The research shows that most of the initiatives do not take into account the perspective and interests of Russia, which has a strong presence in the energy market. The analysis conducted will help the assessment of prospects of further development of the Baltic States' energy industry and its interaction with that of the Russian Federation.

  13. Strukturno-funkcional'nye osobennosti prostranstvennogo razvitija gorodskih i sel'skih poselenij Severo-Zapadnogo jekonomicheskogo rajona

    Directory of Open Access Journals (Sweden)

    Sobolev A.

    2015-02-01

    Full Text Available This article is dedicated to the problem of increasing spatial polarisation in the population distribution systems of the Leningrad, Novgorod, and Pskov regions. The author examines the impact of development and distribution of factors of production on demographic processes and trends in the transformation of the population distribution system. Based on an analysis of the sectoral structure of economy and demographic development trends, the author proposes a functional typology of urban and rural settlements. He stresses the discrepancy between the established population distribution systems and the demographic trends in regional development. It is suggested in the paper that the overcoming of spatial heterogeneity should be considered at the regional level from the perspective of improving the stability of district population distribution systems and strengthening organisational and economic ties between urban and rural areas. The author issues a number of recommendations for overcoming the spatial differentiation and ensuring a balanced development of district population distribution systems.

  14. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  15. Crater formation by single ions, cluster ions and ion "showers"

    CERN Document Server

    Djurabekova, Flyura; Timko, Helga; Nordlund, Kai; Calatroni, Sergio; Taborelli, Mauro; Wuensch, Walter

    2011-01-01

    The various craters formed by giant objects, macroscopic collisions and nanoscale impacts exhibit an intriguing resemblance in shapes. At the same time, the arc plasma built up in the presence of sufficiently high electric fields at close look causes very similar damage on the surfaces. Although the plasma–wall interaction is far from a single heavy ion impact over dense metal surfaces or the one of a cluster ion, the craters seen on metal surfaces after a plasma discharge make it possible to link this event to the known mechanisms of the crater formations. During the plasma discharge in a high electric field the surface is subject to high fluxes (~1025 cm-2s-1) of ions with roughly equal energies typically of the order of a few keV. To simulate such a process it is possible to use a cloud of ions of the same energy. In the present work we follow the effect of such a flux of ions impinging the surface in the ‘‘shower’’ manner, to find the transition between the different mechanisms of crater formati...

  16. Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Brihoum, Melisa; Cunge, Gilles; Darnon, Maxime; Joubert, Olivier [Laboratoire des Technologies de la Microelectronique CNRS, Grenoble Cedex 9, Isere 38054 (France); Gahan, David [Impedans Ltd., Dublin 17 (Ireland); Braithwaite, Nicholas St. J. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2013-03-15

    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 {mu}s reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.

  17. Ion sources for heavy ion fusion (invited)

    Science.gov (United States)

    Yu, Simon S.; Eylon, S.; Chupp, W.; Henestroza, E.; Lidia, S.; Peters, C.; Reginato, L.; Tauschwitz, A.; Grote, D.; Deadrick, F.

    1996-03-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K+ ions of 950 mA peak from a 6.7 in. curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 μs. The measured normalized edge emittance of less than 1 π mm mrad is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described.

  18. The long-range electromobility; Die Langstrecken-Elektromobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Burkert, Andreas

    2013-05-01

    The recent advances in the fuel cell technology prompted the automotive developers to bring to design hybrid electric vehicles with a fuel cell and a lithium-ion battery. Thus, the long-range electric mobility is possible at a short refueling time simultaneously. In addition, the lithium battery is suitable for preconditioning of the hydrogen fuel cell.

  19. Multiple-electron losses in uranium ion beams in heavy ion synchrotrons

    Science.gov (United States)

    Bozyk, L.; Chill, F.; Litsarev, M. S.; Tolstikhina, I. Yu.; Shevelko, V. P.

    2016-04-01

    Charge changing processes as the result of collisions with residual gas particles are the main cause of beam loss in high energy medium charge state heavy ion beams. To investigate the magnitude of this effect for heavy ion synchrotrons like the planned SIS100 at GSI, the multiple-electron and the total electron-loss cross sections are calculated for Uq+ ions, q = 10, 28, 40, 73, colliding with typical gas components H2, He, C, N2, O2, and Ar at ion energies E = 1 MeV/u-10 GeV/u. The total electron-capture cross sections for U28+ and U73+ ions interacting with these gases are also calculated. Most of these cross sections are new and presented for the first time. Calculated charge-changing cross sections are used to determine the ion-beam lifetimes τ for U28+ ions which agree well with the recently measured values at SIS18/GSI in the energy range E = 10-200 MeV/u. Using simulations made by the StrahlSim code with the reference ion U28+, it is found that in SIS100 the beam loss caused by single and multiple electron losses has only little impact on the residual gas density due to the high efficiency of the ion catcher system.

  20. Traveling wave ion transport for the cyclotron gas stopper

    Energy Technology Data Exchange (ETDEWEB)

    Brodeur, M., E-mail: maxime.brodeur.2@nd.edu; Joshi, N.; Gehring, A.E.; Bollen, G.; Morrissey, D.J.; Schwarz, S.

    2013-12-15

    Highlights: • Estimated transport time of thermal ions of 5 ms or less for the cyclotron gas stopper using the ion surfing method. • Experimental investigation of a prototype ion conveyor to transport ions in the magnet magnetic field gradient. • Efficient long-distance ion transport with the conveyor is expected. -- Abstract: Next generation beam thermalization devices such as the cyclotron gas stopper are being developed to efficiently deliver a broad range of radioactive isotopes to experiments. Ion transport methods utilizing a traveling wave were investigated experimentally as part of the developments needed for this device. The “ion surfing” method, which will be used to transports thermal ions inside the main chamber of the cyclotron gas stopper, was found to transport ions at speeds reaching 75 m/s, resulting in net transport times as short as 5 ms. A second traveling wave transport method called the “ion conveyor” was investigated for the challenging task of extracting the ions through the cyclotron gas stopper magnetic field gradient. Results from the first prototype conveyor show a strong pressure and wave amplitude dependance for the transport efficiency. A second prototype designed to operate over a larger pressure range is currently being tested.

  1. Ion cyclotron waves at Titan

    Science.gov (United States)

    Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.

    2016-03-01

    During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.

  2. Compact Ion and Neutral Mass Spectrometer with Ion Drifts, Temperatures and Neutral Winds

    Science.gov (United States)

    Paschalidis, Nikolaos

    2016-07-01

    In situ measurements of atmospheric neutral and ion composition and density, temperatures, ion drifts and neutral winds, are in high demand to study the dynamics of the ionosphere-theremosphere-mesosphere system. This paper presents a compact Ion and Neutral Mass Spectrometer (INMS) with impended ion drifts and temperature, and neutral winds capability for in situ measurements of ions and neutrals H, He, N, O, N2, O2. The mass resolution M/dM is approximately 10 at an incoming energy range of 0-20eV. The goal is to resolve ion drifts in the range 0 to 3000m/sec with a resolution better than 50m/sec, and neutral winds in the range of 0 to 1000m/sec with similar resolution. For temperatures the goal is to cover a dynamic range of 0 to 5000K. The INMS is based on front end optics for ions and neutrals, pre acceleration, gated time of flight, top hat ESA, MCP detectors and compact electronics. The instrument is redundant for ions and neutrals with the ion and neutral sensor heads on opposite sides and with full electronics in the middle. The ion front end includes RPA for temperature scanning and neutral front end includes angular modulation and thermionic ionization and ion blocking grids. The electronics include fast electric gating, TOF electronics, TOF binning and C&DH digital electronics. The data package includes 400 mass bins each for ions and neutrals and key housekeeping data for instrument health and calibration. The data sampling can be commanded from 0.1 to 10 sec with 1sec nominal setting. The instrument has significant onboard storage capability and a data compression scheme. The mass spectrometer version of the instrument has been flown on the Exocube mission. The instrument occupied 1.5U volume, weighed only 560 g and required nominal power of 1.6W The ExoCube mission was designed to acquire global knowledge of in-situ densities of [H], [He], [O] and H+, He+, O+ in the upper ionosphere and lower exosphere in combination with incoherent scatter radar and

  3. Modelling of advanced three-ion ICRF heating and fast ion generation scheme for tokamaks and stellarators

    Science.gov (United States)

    Faustin, J. M.; Graves, J. P.; Cooper, W. A.; Lanthaler, S.; Villard, L.; Pfefferlé, D.; Geiger, J.; Kazakov, Ye O.; Van Eester, D.

    2017-08-01

    Absorption of ion-cyclotron range of frequencies waves at the fundamental resonance is an efficient source of plasma heating and fast ion generation in tokamaks and stellarators. This heating method is planned to be exploited as a fast ion source in the Wendelstein 7-X stellarator. The work presented here assesses the possibility of using the newly developed three-ion species scheme (Kazakov et al (2015) Nucl. Fusion 55 032001) in tokamak and stellarator plasmas, which could offer the capability of generating more energetic ions than the traditional minority heating scheme with moderate input power. Using the SCENIC code, it is found that fast ions in the MeV range of energy can be produced in JET-like plasmas. The RF-induced particle pinch is seen to strongly impact the fast ion pressure profile in particular. Our results show that in typical high-density W7-X plasmas, the three-ion species scheme generates more energetic ions than the more traditional minority heating scheme, which makes three-ion scenario promising for fast-ion confinement studies in W7-X.

  4. Negative ions in liquid helium

    Science.gov (United States)

    Khrapak, A. G.; Schmidt, W. F.

    2011-05-01

    The structure of negative ions in liquid 4He is analyzed. The possibility of cluster or bubble formation around impurity ions of both signs is discussed. It is shown that in superfluid helium, bubbles form around negative alkaline earth metal ions and clusters form around halogen ions. The nature of "fast" and "exotic" negative ions is also discussed. It is assumed that "fast" ions are negative ions of helium excimer molecules localized inside bubbles. "Exotic" ions are stable negative impurity ions, which are always present in small amounts in gas discharge plasmas. Bubbles or clusters with radii smaller the radius of electron bubbles develop around these ions.

  5. Sensitivity and working range of backside calibration potentiometry.

    Science.gov (United States)

    Ngeontae, Wittaya; Xu, Yida; Xu, Chao; Aeungmaitrepirom, Wanlapa; Tuntulani, Thawatchai; Pretsch, Ernö; Bakker, Eric

    2007-11-15

    A new direction in potentiometric sensing, termed backside calibration potentiometry, was recently introduced. It makes use of the fact that the stir effect disappears in the absence of an ion-ionophore complex concentration gradient across supported liquid ion-selective membranes. This method is especially suitable for measurements in which recalibration in the sample is not feasible, such as in remote monitoring applications. Here, a theoretical model is established to predict the working concentration range of the method. Lead(II)-selective Celgard membranes were used here with H+ as the dominant interfering ions. The emf difference for stirred and unstirred solutions was measured, and the magnitude of this emf change as a function of the sample Pb2+ concentration was found to exhibit a bell shape that spans approximately 3 orders of magnitude. The concentration of interfering ions and the selectivity of the membrane were demonstrated to be important factors that affect the working range. Smaller ratios of primary ion concentrations at both aqueous sides of the membrane gave smaller emf difference values, and emf changes could still be observed with a logarithmic concentration ratio of 0.05. All experimental results correlated satisfactorily with the theoretical model.

  6. The acrylonitrile dimer ion

    Science.gov (United States)

    Ervasti, Henri K.; Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. Ae; Terlouw, Johan K.

    2007-04-01

    Large energy barriers prohibit the rearrangement of solitary acrylonitrile ions, CH2CHCN+, into their more stable hydrogen-shift isomers CH2CCNH+ or CHCH-CNH+. This prompted us to examine if these isomerizations occur by self-catalysis in acrylonitrile dimer ions. Such ions, generated by chemical ionization experiments of acrylonitrile with an excess of carbon dioxide, undergo five dissociations in the [mu]s time frame, as witnessed by peaks at m/z 53, 54, 79, 80 and 105 in their metastable ion mass spectrum. Collision experiments on these product ions, deuterium labeling, and a detailed computational analysis using the CBS-QB3 model chemistry lead to the following conclusions: (i) the m/z 54 ions are ions CH2CHCNH+ generated by self-protonation in ion-dipole stabilized hydrogen-bridged dimer ions [CH2CHCN...H-C(CN)CH2]+ and [CH2CHCN...H-C(H)C(H)CN]+; the proton shifts in these ions are associated with a small reverse barrier; (ii) dissociation of the H-bridged ions into CH2CCNH+ or CHCH-CNH+ by self-catalysis is energetically feasible but kinetically improbable: experiment shows that the m/z 53 ions are CH2CHCN+ ions, generated by back dissociation; (iii) the peaks at m/z 79, 80 and 105 correspond with the losses of HCN, C2H2 and H, respectively. The calculations indicate that these ions are generated from dimer ions that have adopted the (much more stable) covalently bound "head-to-tail" structure [CH2CHCN-C(H2)C(H)CN]+; experiments indicate that the m/z 79 (C5H5N) and m/z 105 (C6H6N2) ions have linear structures but the m/z 80 (C4H4N2) ions consist of ionized pyrimidine in admixture with its stable pyrimidine-2-ylidene isomer. Acrylonitrile is a confirmed species in interstellar space and our study provides experimental and computational evidence that its dimer radical cation yields the ionized prebiotic pyrimidine molecule.

  7. Electric refuse collection vehicle with a range extender; Elektrisches Abfallsammelfahrzeug mit Range Extender

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Andreas

    2012-10-15

    At the Frankfurt Motor Show IAA 2012, MAN will be presenting the Metropolis, a heavy-duty truck for use in urban areas that produces no emissions and is ultra-quiet. Using mains electricity generated from renewable sources, it can operate without producing any CO{sub 2}. The truck's modular lithium-ion battery is located under the ab. A quiet and efficient diesel engine from the Volkswagen Group generates power as needed and functions as a range extender for the truck. At the end of 2012, the MAN Metropolis will start a two-year field test as a refuse collection vehicle. (orig.)

  8. Semiconductor Ion Implanters

    Science.gov (United States)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  9. Radiocarbon positive-ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Stewart P.H.T.; Shanks, Richard P. [Scottish Universities Environmental Research Centre (SUERC), Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom); Donzel, Xavier; Gaubert, Gabriel [Pantechnik S.A., 13 Rue de la Résistance, 14400 Bayeux (France)

    2015-10-15

    Proof-of-principle of a new mass spectrometric technique for radiocarbon measurement is demonstrated. Interfering nitrogen and hydrocarbon molecules are largely eliminated in a charge-exchange cell operating on non-metallic gas. The positive-to-negative ion conversion is the reverse of that conventionally used in accelerator mass spectrometry (AMS) and is compatible with plasma ion sources that may be significantly more efficient and capable of greater output than are AMS sputter ion sources. The Nanogan electron cyclotron resonance (ECR) ion source employed exhibited no sample memory and the >50 kyrs age range of AMS was reproduced. A bespoke prototype new instrument is now required to optimise the plasma and cell physics and to realise hypothetical performance gains over AMS.

  10. Cluster Ions and Atmospheric Processes

    Science.gov (United States)

    D'Auria, R.; Turco, R. P.

    We investigate the properties and possible roles of naturally occurring ions under at- mospheric conditions. Among other things, the formation of stable charged molecular clusters represents the initial stages of aerosol nucleation [e.g., Keesee and Castle- man, 1982], while the conversion of vapor to aggregates is the first step in certain atmospheric phase transitions [e.g. Hamill and Turco, 2000]. We analyze the stability and size distributions of common ionic clusters by solving the differential equations describing their growth and loss. The necessary reaction rate coefficients are deter- mined using kinetic and thermodynamic data. The latter are derived from direct labo- ratory measurements of equilibrium constants, from the classical charged liquid drop model applied to large aggregates (i.e., the Thomson model [Thomson, 1906]), and from quantum mechanical calculations of the thermodynamic potentials associated with the cluster structures. This approach allows us to characterize molecular clusters across the entire size range from true molecular species to larger aggregates exhibiting macroscopic behavior [D'Auria, 2001]. Cluster systems discussed in this talk include the proton hydrates (PHs) and nitrate-water and nitrate-nitric acid series [D'Auria and Turco, 2001]. These ions have frequently been detected in the stratosphere and tropo- sphere [e.g., Arnold et al., 1977; Viggiano and Arnold, 1981]. We show how the pro- posed hybrid cluster model can be extended to a wide range of ion systems, including non-proton hydrates (NPHs), mixed-ligand clusters such as nitrate-water-nitric acid and sulfate-sulfuric acid-water, as well as more exotic species containing ammonia, pyridine and other organic compounds found on ions [e.g., Eisele, 1988; Tanner and Eisele, 1991]. References: Arnold, F., D. Krankowsky and K. H. Marien, First mass spectrometric measurements of posi- tive ions in the stratosphere, Nature, 267, 30-32, 1977. D'Auria, R., A study of ionic

  11. Correlation ion mobility spectroscopy

    Science.gov (United States)

    Pfeifer, Kent B.; Rohde, Steven B.

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  12. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  13. Peristaltic ion source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.

    1995-08-01

    Conventional ion sources generate energetic ion beams by accelerating the plasma-produced ions through a voltage drop at the extractor, and since it is usual that the ion beam is to propagate in a space which is at ground potential, the plasma source is biased at extractor voltage. For high ion beam energy the plasma source and electrical systems need to be raised to high voltage, a task that adds considerable complexity and expense to the total ion source system. The authors have developed a system which though forming energetic ion beams at ground potential as usual, operates with the plasma source and electronics at ground potential also. Plasma produced by a nearby source streams into a grided chamber that is repetitively pulsed from ground to high positive potential, sequentially accepting plasma into its interior region and ejecting it energetically. They call the device a peristaltic ion source. In preliminary tests they`ve produced nitrogen and titanium ion beams at energies from 1 to 40 keV. Here they describe the philosophy behind the approach, the test embodiment that they have made, and some preliminary results.

  14. Ion Source DECRIS-3

    CERN Document Server

    Efremov, A; Lebedev, A N; Loginov, V N; Yazvitsky, N Yu

    1999-01-01

    The ECR ion source DECRIS-3 is the copy of the mVINIS ion source which was designed and built in Dubna for the TESLA Accelerator Installation (Belgrade, Yugoslavia) in 1997. The assembly of the source was completely finished in the end of 1998 and then it was installed at the FLNR ECR test bench. The source was successfully tested with some gases and metals by using the MIVOC technique. In nearest future the source will be capable of ECR plasma heating using two different frequencies simultaneously. We are also going to use the DECRIS-3 ion source to design 1+ -> n+ technique for the DRIBs (Dubna Radioactive Ion Beams) project.

  15. Superheated water ion-exchange chromatography: an experimental approach for interpretation of separation selectivity in ion-exchange processes.

    Science.gov (United States)

    Shibukawa, Masami; Shimasaki, Tomomi; Saito, Shingo; Yarita, Takashi

    2009-10-01

    Cation-exchange selectivity for alkali and alkaline-earth metal ions and tetraalkylammonium ions on a strongly acidic sulfonic acid cation-exchange resin has been investigated in the temperature range of 40-175 degrees C using superheated water chromatography. Dependence of the distribution coefficient (ln KD) on the reciprocal of temperature (1/T) is not linear for most of the ions studied, and the selectivity coefficient for a pair of alkali metal ions or that of alkaline-earth metal ions approaches unity as temperature increases. On the other hand, the retention order of tetraalkylammonium ions is reversed at 160 degrees C or above when eluted with Na2SO4 aqueous solution and the larger ions are eluted faster than the smaller ones contrary to the retention order obtained at ambient temperature. The change in ion-exchange selectivity with temperature observed with superheated water chromatography has been discussed on the basis of the effect of temperature on hydration of the ions and specific adsorption or distribution of ionic species between the external solution and ion-exchange resin. In superheated water, the electrostatic interaction or association of the ions with the fixed ion becomes a predominant mechanism resulting in different separation selectivity from that obtained at ambient temperature.

  16. Energy landscapes for mobile ions in ion conducting solids

    Indian Academy of Sciences (India)

    S Adams

    2006-11-01

    Structure property function relationships provide valuable guidelines in the systematic development of advanced functional materials with tailored properties. It is demonstrated that an augmented bond valence approach can be effectively used to establish such relationships for solid electrolytes. A bond valence analysis of local structure models for disordered systems or interfaces based on reverse Monte Carlo (RMC) fits or molecular dynamics (MD) simulations yields quantitative predictions of the ion transport characteristics. As demonstrated here for a range of metaphosphate and diborate glasses, the complete description of the energy landscape for mobile ions also provides an effective tool for achieving a more detailed understanding of ion transport in glasses. The investigation of time evolutions can be included, if the bond valence analysis is based on MD trajectories. In principle, this allows quantifying the time and temperature dependence of pathway characteristics, provided that a suitable empirical force-field is available. For the example of LiPO3, the remaining differences between simulated and experimental structures are investigated and a compensation method is discussed.

  17. Faraday-cup-type lost fast ion detector on Heliotron J

    Science.gov (United States)

    Yamamoto, S.; Ogawa, K.; Isobe, M.; Darrow, D. S.; Kobayashi, S.; Nagasaki, K.; Okada, H.; Minami, T.; Kado, S.; Ohshima, S.; Weir, G. M.; Nakamura, Y.; Konoshima, S.; Kemmochi, N.; Ohtani, Y.; Mizuuchi, T.

    2016-11-01

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90∘-140∘, especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  18. Faraday-cup-type lost fast ion detector on Heliotron J.

    Science.gov (United States)

    Yamamoto, S; Ogawa, K; Isobe, M; Darrow, D S; Kobayashi, S; Nagasaki, K; Okada, H; Minami, T; Kado, S; Ohshima, S; Weir, G M; Nakamura, Y; Konoshima, S; Kemmochi, N; Ohtani, Y; Mizuuchi, T

    2016-11-01

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90(∘)-140(∘), especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  19. BRAMA, a Broad Range Atomic Mass Analyzer for the ISL

    Energy Technology Data Exchange (ETDEWEB)

    Nitschke, J.M. [Lawrence Berkeley Lab., CA (United States)

    1994-05-01

    An alternative to conventional on-line isotope separators for use in radioactive beam facilities is described. It consists of an analyzer with a static magnetic field that is capable of separating a wide mixture of (radioactive) ions into mass bins ranging from 6 to 240 u. If incorporated into the ISL, BRAMA would make several low-energy radioactive beams available for experiments simultaneously, in addition to the beam that is being delivered to the post-accelerator. A preliminary ion-optical geometry is discussed.

  20. Expanding the linear dynamic range for quantitative liquid chromatography-high resolution mass spectrometry utilizing natural isotopologue signals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hanghui, E-mail: Hanghui.Liu@senomyx.com [Senomyx Inc. 4767 Nexus Centre Dr., San Diego, CA 92121 (United States); Lam, Lily; Yan, Lin; Chi, Bert [Senomyx Inc. 4767 Nexus Centre Dr., San Diego, CA 92121 (United States); Dasgupta, Purnendu K., E-mail: Dasgupta@uta.edu [Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065 (United States)

    2014-11-19

    Highlights: • Less abundant isotopologue ions were utilized to decrease detector saturation. • A 25–50 fold increase in the upper limit of dynamic range was demonstrated. • Linear dynamic range was expanded without compromising mass resolution. - Abstract: The linear dynamic range (LDR) for quantitative liquid chromatography–mass spectrometry can be extended until ionization saturation is reached by using a number of target isotopologue ions in addition to the normally used target ion that provides the highest sensitivity. Less abundant isotopologue ions extend the LDR: the lower ion abundance decreases the probability of ion detector saturation. Effectively the sensitivity decreases and the upper limit of the LDR increases. We show in this paper that the technique is particularly powerful with a high resolution time of flight mass spectrometer because the data for all ions are automatically acquired, and we demonstrated this for four small organic molecules; the upper limits of LDRs increased by 25–50 times.

  1. Operational Experience with The GTS-LHC Ion Source and Future Developments of The CERN Ion Injector

    CERN Document Server

    Kuchler, D; Lombardi, A; O'Neil, M; Scrivens, R; Stafford-Haworth, J; Thomae, R

    2012-01-01

    Since 2010 the GTS-LHC source delivers lead ions for heavy ion physics at the LHC. Several modifications allowed the improvement the source reliability and the beam stability. The attempts to improve the beam intensity were less successful. The different modifications and actual performance figures will be presented in this paper. In addition to the heavy ion physics program of the LHC new ion species will be requested for different experiments in the future. The fixed target experiment NA61 requires primary argon and xenon beams. And a future biomedical facility asks for light ions in the range helium to neon. Approaches to prepare these beams and to modify the ion injector towards a light ion front end are presented.

  2. Production of rare-earth atomic negative ion beams in a cesium-sputter-type negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Davis, V.T. [Test Support Division, Defense Threat Reduction Agency, West Desert Test Center, Dugway, UT 84022-5000 (United States)]. E-mail: vernon.davis@us.army.mil; Covington, A.M. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States); Duvvuri, S.S. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States); Kraus, R.G. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States); Emmons, E.D. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States); Kvale, T.J. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Thompson, J.S. [Department of Physics, University of Nevada, MS 220, Reno, NV 89557-0058 (United States)

    2007-08-15

    The desire to study negative ion structure and negative ion-photon interactions has spurred the development of ion sources for use in research and industry. The many different types of negative ion sources available today differ in their characteristics and abilities to produce anions of various species. Thus the importance of choosing the correct type of negative ion source for a particular research or industrial application is clear. In this study, the results of an investigation on the production of beams composed of negatively-charged rare-earth ions from a cylindrical-cathode-geometry, cesium-sputter-type negative ion source are presented. Beams of atomic anions have been observed for most of the first-row rare-earth elements, with typical currents ranging from hundreds of picoamps to several nanoamps.

  3. Greatly Increasing Trapped Ion Populations for Mobility Separations Using Traveling Waves in Structures for Lossless Ion Manipulations

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Liulin; Ibrahim, Yehia M.; Garimella, Sandilya V. B.; Webb, Ian K.; Hamid, Ahmed M.; Norheim, Randolph V.; Prost, Spencer A.; Sandoval, Jeremy A.; Baker, Erin S.; Smith, Richard D.

    2016-10-18

    The initial use of traveling waves (TW) for ion mobility (IM) separations using a structures for lossless ion manipulations (SLIM) employed an ion funnel trap (IFT) to accumulate ions from a continuous electrospray ionization source, and limited to injected ion populations of ~106 charges due to the onset of space charge effects in the trapping region. Additional limitations arise due to the loss of resolution for the injection of ions over longer periods (e.g. in extended pulses). In this work a new SLIM ‘flat funnel’ (FF) module has been developed and demonstrated to enable the accumulation of much larger ion populations and their injection for IM separations. Ion current measurements indicate a capacity of ~3.2×108 charges for the extended trapping volume, over an order of magnitude greater than the IFT. The orthogonal ion injection into a funnel shaped separation region can greatly reduce space charge effects during the initial IM separation stage, and the gradually reduced width of the path allows the ion packet to be increasingly compressed in the lateral dimension as the separation progresses, allowing e.g. efficient transmission through conductance limits or compatibility with subsequent ion manipulations. This work examined the TW, RF, and DC confining field SLIM parameters involved in ion accumulation, injection, transmission and separation in the FF IM module using both direct ion current and MS measurements. Wide m/z range ion transmission is demonstrated, along with significant increases in signal to noise (S/N) ratios due to the larger ion populations injected. Additionally, we observed a reduction in the chemical background, which was attributed to more efficient desolvation of solvent related clusters over the extended ion accumulation periods. The TW SLIM FF IM module is anticipated to be especially effective as a front end for long path SLIM IM separation modules.

  4. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions.

    Science.gov (United States)

    Rafalskyi, Dmytro; Dudin, Stanislav; Aanesland, Ane

    2015-05-01

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV.

  5. Greatly Increasing Trapped Ion Populations for Mobility Separations Using Traveling Waves in Structures for Lossless Ion Manipulations.

    Science.gov (United States)

    Deng, Liulin; Ibrahim, Yehia M; Garimella, Sandilya V B; Webb, Ian K; Hamid, Ahmed M; Norheim, Randolph V; Prost, Spencer A; Sandoval, Jeremy A; Baker, Erin S; Smith, Richard D

    2016-10-07

    The initial use of traveling waves (TW) for ion mobility (IM) separations using structures for lossless ion manipulations (SLIM) employed an ion funnel trap (IFT) to accumulate ions from a continuous electrospray ionization source and was limited to injected ion populations of ∼10(6) charges due to the onset of space charge effects in the trapping region. Additional limitations arise due to the loss of resolution for the injection of ions over longer periods, such as in extended pulses. In this work a new SLIM "flat funnel" (FF) module has been developed and demonstrated to enable the accumulation of much larger ion populations and their injection for IM separations. Ion current measurements indicate a capacity of ∼3.2 × 10(8) charges for the extended trapping volume, over an order of magnitude greater than that of the IFT. The orthogonal ion injection into a funnel shaped separation region can greatly reduce space charge effects during the initial IM separation stage, and the gradually reduced width of the path allows the ion packet to be increasingly compressed in the lateral dimension as the separation progresses, allowing efficient transmission through conductance limits or compatibility with subsequent ion manipulations. This work examined the TW, rf, and dc confining field SLIM parameters involved in ion accumulation, injection, transmission, and IM separation in the FF module using both direct ion current and MS measurements. Wide m/z range ion transmission is demonstrated, along with significant increases in the signal-to-noise ratios (S/N) due to the larger ion populations injected. Additionally, we observed a reduction in the chemical background, which was attributed to more efficient desolvation of solvent related clusters over the extended ion accumulation periods. The TW SLIM FF IM module is anticipated to be especially effective as a front end for long path SLIM IM separation modules.

  6. Cold Strontium Ion Source for Ion Interferometry

    Science.gov (United States)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  7. Factors affecting the ion beam implantation in silicon

    CERN Document Server

    El-Shanshoury, A I

    2003-01-01

    The factors affecting the ion beam implantation in silicon have been studied using boron, phosphorus, oxygen, and argon ions having energy range 0.5 ke V-200 ke V. It was found that the range of the ions in silicon increases with the increase of their energy and decreases with the increase of their masses. The ionization process is found to be the main process for causing damage in the silicon matrix whether it is produced by the accelerated ions or by the recoiled silicon atoms. The magnitude of ionization in silicon is found to be inversely proportional to the mass of ions. Ionization produced by ions or recoils shows different contributions to the damage depending on the mass of ions where the ions energy loss to ionization decreases from 70% to 23% as the mass is increased from 11 for boron (B) to 40 for argon (Ar). Its magnitude, as produced by ions, is found to decrease with the increase of their masses. Its value is observed to increase in a complementary way with the mass increase. Ions energy loss to...

  8. Ion channels in toxicology.

    Science.gov (United States)

    Restrepo-Angulo, Iván; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2010-08-01

    Ion channels play essential roles in human physiology and toxicology. Cardiac contraction, neural transmission, temperature sensing, insulin release, regulation of apoptosis, cellular pH and oxidative stress, as well as detection of active compounds from chilli, are some of the processes in which ion channels have an important role. Regulation of ion channels by several chemicals including those found in air, water and soil represents an interesting potential link between environmental pollution and human diseases; for instance, de novo expression of ion channels in response to exposure to carcinogens is being considered as a potential tool for cancer diagnosis and therapy. Non-specific binding of several drugs to ion channels is responsible for a huge number of undesirable side-effects, and testing guidelines for several drugs now require ion channel screening for pharmaceutical safety. Animal toxins targeting human ion channels have serious effects on the population and have also provided a remarkable tool to study the molecular structure and function of ion channels. In this review, we will summarize the participation of ion channels in biological processes extensively used in toxicological studies, including cardiac function, apoptosis and cell proliferation. Major findings on the adverse effects of drugs on ion channels as well as the regulation of these proteins by different chemicals, including some pesticides, are also reviewed. Association of ion channels and toxicology in several biological processes strongly suggests these proteins to be excellent candidates to follow the toxic effects of xenobiotics, and as potential early indicators of life-threatening situations including chronic degenerative diseases.

  9. ION EXCHANGE IN GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    George Halsey Beall

    2016-08-01

    Full Text Available In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque and different mechanical properties (especially higher modulus and toughness. There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass. The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change.This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  10. Ion Exchange in Glass-Ceramics

    Science.gov (United States)

    Beall, George; Comte, Monique; Deneka, Matthew; Marques, Paulo; Pradeau, Philippe; Smith, Charlene

    2016-08-01

    In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque) and different mechanical properties (especially higher modulus and toughness). There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass). The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change). This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  11. Liquid metal alloy ion sources—An alternative for focussed ion beam technology

    Science.gov (United States)

    Bischoff, Lothar; Mazarov, Paul; Bruchhaus, Lars; Gierak, Jacques

    2016-06-01

    Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionally into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.

  12. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi; Webb, Ian K.; Baker, Erin S.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Anderson, Gordon A.; Smith, Richard D.

    2016-04-06

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e., a reduction in peak widths of all species. This peak compression occurs with a modest reduction of resolution, but which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. In addition, approaches for peak compression in traveling wave IMS are also discussed. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.

  13. Characterisation of corona-generated ions used in a Neutral cluster and Air Ion Spectrometer (NAIS

    Directory of Open Access Journals (Sweden)

    H. E. Manninen

    2011-04-01

    Full Text Available We characterized size and chemical composition of ions generated by a corona-needle charger of a Neutral cluster and Air Ion Spectrometer (NAIS by using a high resolution differential mobility analyzer and a time-of-flight mass spectrometer. Our study is crucial to verify the role of corona-generated ions in the particle size spectra measured with the NAIS, in which a corona charger is used to charge aerosol particles down to the size range overlapping with the size of generated ions. The size and concentration of ions produced by the corona discharging process depend both on corona voltage and on properties and composition of carrier gas. Negative ions were <1.6 nm (0.8 cm2 V−1 s−1 in mobility in all tested gas mixtures (nitrogen, air with variable mixing ratios of water vapour, whereas positive ions were <1.7 nm (0.7 cm2 V−1 s−1. Electrical filtering of the corona-generated ions and not removing all charged particles plays an important role in determining the lowest detection limit. Based on our experiments, the lowest detection limit for the NAIS in the particle mode is between 2 and 3 nm.

  14. Characterisation of corona-generated ions used in a Neutral cluster and Air Ion Spectrometer (NAIS

    Directory of Open Access Journals (Sweden)

    H. E. Manninen

    2011-12-01

    Full Text Available We characterized size and chemical composition of ions generated by a corona-needle charger of a Neutral cluster and Air Ion Spectrometer (NAIS by using a high resolution differential mobility analyzer and a time-of-flight mass spectrometer. Our study is crucial to verify the role of corona-generated ions in the particle size spectra measured with the NAIS, in which a corona charger is used to charge aerosol particles down to the size range overlapping with the size of generated ions. The size and concentration of ions produced by the corona discharging process depend both on corona voltage and on properties and composition of carrier gas. Negative ions were <1.6 nm (0.8 cm2 V−1 s−1 in mobility in all tested gas mixtures (nitrogen, air with variable mixing ratios of water vapour, whereas positive ions were <1.7 nm (0.7 cm2 V−1 s−1. Electrical filtering of the corona generated ions and not removing all charged particles plays an important role in determining the lowest detection limit. Based on our experiments, the lowest detection limit for the NAIS in the particle mode is between 2 and 3 nm.

  15. Biomimetic ion nanochannels as a highly selective sequential sensor for zinc ions followed by phosphate anions.

    Science.gov (United States)

    Han, Cuiping; Su, Haiyan; Sun, Zhongyue; Wen, Long; Tian, Demei; Xu, Kai; Hu, Junfeng; Wang, Aming; Li, Haibing; Jiang, Lei

    2013-07-08

    A novel biomimetic ion-responsive multi-nanochannel system is constructed by covalently immobilizing a metal-chelating ligand, 2,2'-dipicolylamine (DPA), in polyporous nanochannels prepared in a polymeric membrane. The DPA-modified multi-nanochannels show specific recognition of zinc ions over other common metal ions, and the zinc-ion-chelated nanochannels can be used as secondary sensors for HPO4(2-) anions. The immobilized DPA molecules act as specific-receptor binding sites for zinc ions, which leads to the highly selective zinc-ion response through monitoring of ionic current signatures. The chelated zinc ions can be used as secondary recognition elements for the capture of HPO4(2-) anions, thereby fabricating a sensing nanodevice for HPO4(2-) anions. The success of the DPA immobilization and ion-responsive events is confirmed by measurement of the X-ray photoelectron spectroscopy (XPS), contact angle (CA), and current-voltage (I-V) characteristics of the systems. The proposed nanochannel sensing devices display remarkable specificity, high sensitivity, and wide dynamic range. In addition, control experiments performed in complex matrices suggest that this sensing system has great potential applications in chemical sensing, biotechnology, and many other fields.

  16. Secondary Ion Mass Spectrometry Analysis of Renal Cell Carcinoma with Electrospray Droplet Ion Beams

    Science.gov (United States)

    Ninomiya, Satoshi; Yoshimura, Kentaro; Chen, Lee Chuin; Takeda, Sen; Hiraoka, Kenzo

    2017-01-01

    Tissue samples from renal cell carcinoma patients were analyzed by electrospray droplet ion beam-induced secondary ion mass spectrometry (EDI/SIMS). Positively- and negatively-charged secondary ions were measured for the cancerous and noncancerous regions of the tissue samples. Although specific cancerous species could not be found in both the positive and negative secondary ion spectra, the spectra of the cancerous and noncancerous tissues presented different trends. For instance, in the m/z range of 500–800 of the positive secondary ion spectra for the cancerous tissues, the intensities for several m/z values were lower than those of the m/z+2 peaks (indicating one double bond loss for the species), whereas, for the noncancerous tissues, the inverse trend was obtained. The tandem mass spectrometry (MS/MS) was also performed on the tissue samples using probe electrospray ionization (PESI), and some molecular ions produced by PESI were found to be fragmented into the ions observed in EDI/SIMS analysis. When the positive secondary ion spectra produced by EDI/SIMS were analyzed by principal component analysis, the results for cancerous and noncancerous tissues were separated. The EDI/SIMS method can be applied to distinguish between a cancerous and a noncancerous area with high probability. PMID:28149705

  17. Metal Ions in Unusual Valency States.

    Science.gov (United States)

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  18. Ranging Behaviour of Commercial Free-Range Laying Hens.

    Science.gov (United States)

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-04-26

    In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0-10 m from shed normally without cover or other enrichments); enriched belt (10-50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be

  19. Where do ions solvate?

    Indian Academy of Sciences (India)

    Yan Levin

    2005-06-01

    We study a simple model of ionic solvation inside a water cluster. The cluster is modeled as a spherical dielectric continuum. It is found that unpolarizable ions always prefer the bulk solvation. On the other hand, for polarizable ions, there exists a critical value of polarization above which surface solvation becomes energetically favorable for large enough water clusters.

  20. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  1. Secure High Dynamic Range Images

    OpenAIRE

    Med Amine Touil; Noureddine Ellouze

    2016-01-01

    In this paper, a tone mapping algorithm is proposed to produce LDR (Limited Dynamic Range) images from HDR (High Dynamic Range) images. In the approach, non-linear functions are applied to compress the dynamic range of HDR images. Security tools will be then applied to the resulting LDR images and their effectiveness will be tested on the reconstructed HDR images. Three specific examples of security tools are described in more details: integrity verification using hash function to compute loc...

  2. Stereoscopic High Dynamic Range Video

    OpenAIRE

    Rüfenacht, Dominic

    2011-01-01

    Stereoscopic video content is usually being created by using two or more cameras which are recording the same scene. Traditionally, those cameras have the exact same intrinsic camera parameters. In this project, the exposure times of the cameras differ, allowing to record different parts of the dynamic range of the scene. Image processing techniques are then used to enhance the dynamic range of the captured data. A pipeline for the recording, processing, and displaying of high dynamic range (...

  3. Scaffold Diversity from N-Acyliminium Ions

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas E

    2017-01-01

    of structurally diverse scaffolds, ranging from simple bicyclic skeletons to complex polycyclic systems and natural-product-like compounds. This review aims to provide an overview of cyclization reactions of N-acyliminium ions derived from various precursors for the assembly of structurally diverse scaffolds...

  4. Collisions of antiprotons with hydrogen molecular ions

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2009-01-01

    Time-dependent close-coupling calculations of the ionization and excitation cross section for antiproton collisions with molecular hydrogen ions are performed in an impact energy range from 0.5 keV to 10 MeV. The Born-Oppenheimer and Franck-Condon approximations as well as the impact parameter...

  5. Conditions for the Observation of Two Ion-Acoustic Waves via Thomson Scattering

    Institute of Scientific and Technical Information of China (English)

    郑坚; 胡广月; 王哲斌; 俞昌旋; 刘万东

    2003-01-01

    Observation of two ion-acoustic waves via Thomson scattering can provide precise measurements of plasma parameters. The conditions for the observation of two ion-acoustic modes in a two-ion plasmaare discussed.The ratio of electron temperature Te to ion temperature Ti is the critical parameter for the presence of two ion-acoustic modes, which should be in the range of 4/ZL(<~)Te/Ti(<~)2AH/ZHAL, where ZL,H are the charge states of light and heavy ions, and AL,H are the atomic numbers of light and heavy ions, respectively. As the temperature ratio varies in this range, the concentration of heavy ions must increase with the ratio Te/Ti so that the two ion-acoustic modes can have the same fluctuation levels.

  6. Osprey Range - CWHR [ds601

    Data.gov (United States)

    California Department of Resources — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  7. Cascade Mountain Range in Oregon

    Science.gov (United States)

    Sherrod, David R.

    2016-01-01

    The Cascade mountain system extends from northern California to central British Columbia. In Oregon, it comprises the Cascade Range, which is 260 miles long and, at greatest breadth, 90 miles wide (fig. 1). Oregon’s Cascade Range covers roughly 17,000 square miles, or about 17 percent of the state, an area larger than each of the smallest nine of the fifty United States. The range is bounded on the east by U.S. Highways 97 and 197. On the west it reaches nearly to Interstate 5, forming the eastern margin of the Willamette Valley and, farther south, abutting the Coast Ranges

  8. Heavy ion cocktail beams at the 88 inch Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Daniela; McMahan, Margaret A.; Argento, David; Gimpel, Thomas; Guy, Aran; Morel, James; Siero, Christine; Thatcher, Ray; Lyneis, Claude M.

    2002-09-03

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate ''cocktails'' of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch Cyclotron and has since become a powerful tool in the field of heavy ion radiation effects testing. Several different ''cocktails'' at various energies are available at the 88-Inch cyclotron for radiation effect testing, covering a broad range of linear energy transfer and penetration depth. Two standard heavy ion cocktails at 4.5 MeV/nucleon and 10 MeV/nucleon have been developed over the years containing ions from boron to bismuth. Recently, following requests for higher penetration depths, a 15MeV/nucleon heavy ion cocktail has been developed. Up to nine different metal and gaseous ion beams at low to very high charge states are tuned out of the ion source simultaneously and injected together into the cyclotron. It is therefore crucial to balance the ion source very carefully to provide sufficient intensities throughout the cocktail. The paper describes the set-up and tuning of the ion source for the various heavy ion cocktails.

  9. Ion mobility sensor system

    Science.gov (United States)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  10. Lipid Ion Channels

    CERN Document Server

    Heimburg, Thomas

    2010-01-01

    The interpretation electrical phenomena in biomembranes is usually based on the assumption that the experimentally found discrete ion conduction events are due to a particular class of proteins called ion channels while the lipid membrane is considered being an inert electrical insulator. The particular protein structure is thought to be related to ion specificity, specific recognition of drugs by receptors and to macroscopic phenomena as nerve pulse propagation. However, lipid membranes in their chain melting regime are known to be highly permeable to ions, water and small molecules, and are therefore not always inert. In voltage-clamp experiments one finds quantized conduction events through protein-free membranes in their melting regime similar to or even undistinguishable from those attributed to proteins. This constitutes a conceptual problem for the interpretation of electrophysiological data obtained from biological membrane preparations. Here, we review the experimental evidence for lipid ion channels...

  11. Ion-by-ion Cooling efficiencies

    CERN Document Server

    Gnat, Orly

    2011-01-01

    We present ion-by-ion cooling efficiencies for low-density gas. We use Cloudy (ver. 08.00) to estimate the cooling efficiencies for each ion of the first 30 elements (H-Zn) individually. We present results for gas temperatures between 1e4 and 1e8K, assuming low densities and optically thin conditions. When nonequilibrium ionization plays a significant role the ionization states deviate from those that obtain in collisional ionization equilibrium (CIE), and the local cooling efficiency at any given temperature depends on specific non-equilibrium ion fractions. The results presented here allow for an efficient estimate of the total cooling efficiency for any ionic composition. We also list the elemental cooling efficiencies assuming CIE conditions. These can be used to construct CIE cooling efficiencies for non-solar abundance ratios, or to estimate the cooling due to elements not explicitly included in any nonequilibrium computation. All the computational results are listed in convenient online tables.

  12. Quantum-State-Resolved Ion-Molecule Chemistry

    Science.gov (United States)

    Chen, Gary; Yang, Tiangang; Campbell, Wesley; Hudson, Eric

    2016-05-01

    We propose a method to achieve quantum-state-resolved ion-molecule chemistry by utilizing cryogenic buffer gas cooling techniques and a combination of ion imaging and mass spectrometry of targets in an RF Paul trap. Cold molecular species produced by a cryogenic buffer gas beam (CBGB) are introduced to target ion species in an linear quadrupole trap (LQT) where ion imaging techniques and time of flight mass spectrometry (ToF) are then used to observe the target ions and the charged reaction products [1,2]. By taking advantage of the large ion-neutral interaction cross sections and characteristically long ion trap lifetimes, we can utilize the precision control over quantum states allowed by an ion trap to resolve state-to-state quantum chemical reactions without high-density molecular sample production, well within proposed capabilities. The combination of these two very general cold species production techniques allows for production and observation of a broad range of ion-neutral reactions. We initially plan to study chemical reactions between sympathetically cooled carbon ions (via laser cooled beryllium ions) with buffer gas cooled water. This work is supported by the US Air Force Office of Scientific Research.

  13. Ion-photon entanglement and quantum frequency conversion with trapped Ba+ ions.

    Science.gov (United States)

    Siverns, J D; Li, X; Quraishi, Q

    2017-01-20

    Trapped ions are excellent candidates for quantum nodes, as they possess many desirable features of a network node including long lifetimes, on-site processing capability, and production of photonic flying qubits. However, unlike classical networks in which data may be transmitted in optical fibers and where the range of communication is readily extended with amplifiers, quantum systems often emit photons that have a limited propagation range in optical fibers and, by virtue of the nature of a quantum state, cannot be noiselessly amplified. Here, we first describe a method to extract flying qubits from a Ba+ trapped ion via shelving to a long-lived, low-lying D-state with higher entanglement probabilities compared with current strong and weak excitation methods. We show a projected fidelity of ≈89% of the ion-photon entanglement. We compare several methods of ion-photon entanglement generation, and we show how the fidelity and entanglement probability varies as a function of the photon collection optic's numerical aperture. We then outline an approach for quantum frequency conversion of the photons emitted by the Ba+ ion to the telecommunication range for long-distance networking and to 780 nm for potential entanglement with rubidium-based quantum memories. Our approach is significant for extending the range of quantum networks and for the development of hybrid quantum networks compromised of different types of quantum memories.

  14. Laser ion source for high brightness heavy ion beam

    Science.gov (United States)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  15. Extended range chemical sensing apparatus

    Science.gov (United States)

    Hughes, Robert C.; Schubert, W. Kent

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  16. PN ranging/telemetry transmission

    Science.gov (United States)

    Deerkoski, L. F.

    1977-01-01

    System can transmit range-indicating pseudonoise (PN) codes and simultaneously transmit auxiliary information as binary data at a rate at least on order of pseudonoise chipping rate. PN code is modulated by data stream with relatively low bit rate. Data stream with high bit rate can be transmitted in same frequency band as PN ranging code.

  17. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Jin, Q. Y.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, W.; Wang, G. C. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10{sup 13} W cm{sup −2} in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  18. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Science.gov (United States)

    Zhao, H. Y.; Zhang, J. J.; Jin, Q. Y.; Liu, W.; Wang, G. C.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 1013 W cm-2 in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  19. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    Science.gov (United States)

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  20. Lithium-ion Energy Storage at Very Low Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Li-ion batteries with specific energy >180 Wh/kg, calendar life (>15years), and a wide operating temperature range (-60oC to 60oC) are crucial for the...

  1. Radio Frequency Micro Ion Thruster for Precision Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop radio frequency discharge, gridded micro-ion thruster that produces sub-mN thrust precisely adjustable over a wide dynamic thrust range....

  2. Improved Range Searching Lower Bounds

    DEFF Research Database (Denmark)

    Larsen, Kasper Green; Nguyen, Huy L.

    2012-01-01

    Table of Contents -------------------------------------------------------------------------------- In this paper we present a number of improved lower bounds for range searching in the pointer machine and the group model. In the pointer machine, we prove lower bounds for the approximate simplex...... range reporting problem. In approximate simplex range reporting, points that lie within a distance of ε ⋅ Diam(s) from the border of a query simplex s, are free to be included or excluded from the output, where ε ≥ 0 is an input parameter to the range searching problem. We prove our lower bounds...... by constructing a hard input set and query set, and then invoking Chazelle and Rosenberg's [CGTA'96] general theorem on the complexity of navigation in the pointer machine. For the group model, we show that input sets and query sets that are hard for range reporting in the pointer machine (i.e. by Chazelle...

  3. High dynamic range subjective testing

    Science.gov (United States)

    Allan, Brahim; Nilsson, Mike

    2016-09-01

    This paper describes of a set of subjective tests that the authors have carried out to assess the end user perception of video encoded with High Dynamic Range technology when viewed in a typical home environment. Viewers scored individual single clips of content, presented in High Definition (HD) and Ultra High Definition (UHD), in Standard Dynamic Range (SDR), and in High Dynamic Range (HDR) using both the Perceptual Quantizer (PQ) and Hybrid Log Gamma (HLG) transfer characteristics, and presented in SDR as the backwards compatible rendering of the HLG representation. The quality of SDR HD was improved by approximately equal amounts by either increasing the dynamic range or increasing the resolution to UHD. A further smaller increase in quality was observed in the Mean Opinion Scores of the viewers by increasing both the dynamic range and the resolution, but this was not quite statistically significant.

  4. Fast ions and momentum transport in JET tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Salmi, A.

    2012-07-01

    Fast ions are an inseparable part of fusion plasmas. They can be generated using electromagnetic waves or injected into plasmas as neutrals to heat the bulk plasma and to drive toroidal rotation and current. In future power plants fusion born fast ions deliver the main heating into the plasma. Understanding and controlling the fast ions is of crucial importance for the operation of a power plant. Furthermore, fast ions provide ways to probe the properties of the thermal plasma and get insight of its confinement properties. In this thesis, numerical code packages are used and developed to simulate JET experiments for a range of physics issues related to fast ions. Namely, the clamping fast ion distribution at high energies with RF heating, fast ion ripple torque generation and the toroidal momentum transport properties using NBI modulation technique are investigated. Through a comparison of numerical simulations and the JET experimental data it is shown that the finite Larmor radius effects in ion cyclotron resonance heating are important and that they can prevent fast ion tail formation beyond certain energy. The identified mechanism could be used for tailoring the fast ion distribution in future experiments. Secondly, ASCOT simulations of NBI ions in a ripple field showed that most of the reduction of the toroidal rotation that has been observed in the JET enhanced ripple experiments could be attributed to fast ion ripple torque. Finally, fast ion torque calculations together with momentum transport analysis have led to the conclusion that momentum transport in not purely diffusive but that a convective component, which increases monotonically in radius, exists in a wide range of JET plasmas. Using parameter scans, the convective transport has been shown to be insensitive to collisionality and q-profile but to increase strongly against density gradient. (orig.)

  5. Monte Carlo Simulation of Ion Trajectories of Reacting Chemical Systems: Mobility of Small Water Clusters in Ion Mobility Spectrometry

    Science.gov (United States)

    Wissdorf, Walter; Seifert, Luzia; Derpmann, Valerie; Klee, Sonja; Vautz, Wolfgang; Benter, Thorsten

    2013-04-01

    For the comprehensive simulation of ion trajectories including reactive collisions at elevated pressure conditions, a chemical reaction simulation (RS) extension to the popular SIMION software package was developed, which is based on the Monte Carlo statistical approach. The RS extension is of particular interest to SIMION users who wish to simulate ion trajectories in collision dominated environments such as atmospheric pressure ion sources, ion guides (e.g., funnels, transfer multi poles), chemical reaction chambers (e.g., proton transfer tubes), and/or ion mobility analyzers. It is well known that ion molecule reaction rate constants frequently reach or exceed the collision limit obtained from kinetic gas theory. Thus with a typical dwell time of ions within the above mentioned devices in the ms range, chemical transformation reactions are likely to occur. In other words, individual ions change critical parameters such as mass, mobility, and chemical reactivity en passage to the analyzer, which naturally strongly affects their trajectories. The RS method simulates elementary reaction events of individual ions reflecting the behavior of a large ensemble by a representative set of simulated reacting particles. The simulation of the proton bound water cluster reactant ion peak (RIP) in ion mobility spectrometry (IMS) was chosen as a benchmark problem. For this purpose, the RIP was experimentally determined as a function of the background water concentration present in the IMS drift tube. It is shown that simulation and experimental data are in very good agreement, demonstrating the validity of the method.

  6. Foraging optimally for home ranges

    Science.gov (United States)

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  7. High dynamic range images for enhancing low dynamic range content

    OpenAIRE

    Banterle, Francesco; Dellepiane, Matteo; Scopigno, Roberto

    2011-01-01

    This poster presents a practical system for enhancing the quality of Low Dynamic Range (LDR) videos using High Dynamic Range (HDR) background images. Our technique relies on the assumption that the HDR information is static in the video footage. This assumption can be valid in many scenarios where moving subjects are the main focus of the footage and do not have to interact with moving light sources or highly reflective objects. Another valid scenario is teleconferencing via webcams, where th...

  8. Ion irradiation induced effects in polyamidoimide

    Energy Technology Data Exchange (ETDEWEB)

    Merhari, L.; Belorgeot, C.; Moliton, J.P. (Laboratoire d' Electronique des Polymeres sous Faisceaux Ioniques 123, avenue Albert Thomas, 87060 Limoges Cedex (France))

    1991-09-01

    The interaction between ion beam and polyamidoimide (PAI) is studied by means of low-temperature infrared spectroscopy. 200 keV Ar{sup +} and 250 keV He{sup +} beams with fluences ranging from 10{sup 13} ions cm{sup {minus}2} to 5{times}10{sup 16} ions cm{sup {minus}2} are found to induce atomic bond breaks leading to absorption bands at 2344, 2261, and 2125 cm{sup {minus}1} corresponding respectively to CO{sub 2}, C=N=N and C=N--R vibrations. Shrinkage of the polymer along with a drastic decrease of the resistivity during Ar{sup +} and He{sup +} irradiation are observed. Speculations on the respective role of electronic processes and atomic collisions in the evolution of the polymer are made. No evidence of PAI modification through knock-on mechanism for fluences lower than 5{times}10{sup 15} ions cm{sup {minus}2} is noticed. In fact, our results would suggest a predominant role of the electronic processes for the low fluences (up to 5{times}10{sup 15} ions cm{sup {minus}2} ), whereas a degradation mechanism based on atomic collisions is more likely to take place for higher fluences. A theoretical mechanism of reactions based upon our Fourier transform infrared (FTIR) and secondary ion mass spectroscopies (SIMS) results, describing the chemical changes occurring in the PAI, is presented and briefly discussed.

  9. Industrial Application of Ion Beams in KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesang; Lee, Chanyoung; Kim, Bomsok; Choi, Hyukjun; Kim, Yongki; Kim, Hyungjin; Park, Jaewon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    For the last 5 years, we have performed extensive R and D efforts by ion beam to characterize metallic, ceramic, polymeric materials and have supported users from a broad range of institutions, including a large number of industries. So, in this study, through verification on the industrialization feasibility by experiments, it is going to get it started, with cooperation of participatory company, to enter into markets with developed technology and products. Through the ion beam service to users by using ion beam facilities in KOMAC, we are successfully achieved several industrial applications by ion beams. Based on verification on the industrialization feasibility by experiments, we hope to get it started to enter markets with developed technology and products. Ion implantation technology, which is one of ultramodern technologies, can be used in enhancing chemical and physical properties of materials, such as anti-corrosion, wear resistance and electrical conductivity. Comparing with conventional surface modification technologies, it does not generate toxic wastes, which can threaten the environment. It provides precise control of surface thickness and strong adherence of surface material. Therefore, this technology will be used in surface modification along with steady improvement of ion implantation technology.

  10. Heavy ion acceleration using femtosecond laser pulses

    CERN Document Server

    Petrov, G M; Thomas, A G R; Krushelnick, K; Beg, F N

    2015-01-01

    Theoretical study of heavy ion acceleration from ultrathin (<200 nm) gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations the time history of the laser bullet is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity , duration 32 fs, focal spot size 5 mkm and energy 27 Joules the calculated reflection, transmission and coupling coefficients from a 20 nm foil are 80 %, 5 % and 15 %, respectively. The conversion efficiency into gold ions is 8 %. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon and flux . Analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the Radiation Pressure Acceleration regime and the onset of the Target Normal Sheath Acceleratio...

  11. Home range analysis using a mechanistic home range model

    Energy Technology Data Exchange (ETDEWEB)

    Moorcroft, P.R. (Princeton Univ., NJ (United States). Dept. of Ecology and Evolutionary Biology); Lewis, M.A. (Univ. of Utah, Salt Lake City, UT (United States). Dept. of Mathematics) Crabtree, R.L. (Univ. of Idaho, Moscow, ID (United States). Dept. of Fish and Wildlife Resources)

    1999-07-01

    The traditional models used to characterize animal home ranges have no mechanistic basis underlying their descriptions of space use, and as a result, the analysis of animal home ranges has primarily been a descriptive endeavor. In this paper, the authors characterize coyote (Canis latrans) home range patterns using partial differential equations for expected space use that are formally derived from underlying descriptions of individual movement behavior. To the authors' knowledge, this is the first time that mechanistic models have been used to characterize animal home ranges. The results provide empirical support for a model formulation of movement response to scent marks, and suggest that having relocation data for individuals in adjacent groups is necessary to capture the spatial arrangement of home range boundaries. The authors then show how the model fits can be used to obtain predictions for individual movement and scent marking behavior and to predict changes in home range patterns. More generally, the findings illustrate how mechanistic models permit the development of a predictive theory for the relationship between movement behavior and animal spatial distribution.

  12. The role of chemical interactions in ion-solid processes

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, B.W.

    1990-01-01

    Computer simulation of low-energy ion-solid processes has greatly broadened in scope in recent years. In particular, realistic descriptions of the ion-solid and solid-solid interactions can now be utilized. The molecular dynamics technique, in which the equations of motion of the interacting atoms are numerically integrated, can now be used to characterize ion-solid interactions in a range of model material systems. Despite practical limitations of this procedure, a number of substantial results have appeared. The available results are examined to investigate the qualitative influence that chemical interactions have on low-energy ion-solid processes. 26 refs., 4 figs.

  13. Cold atom-ion experiments in hybrid traps

    CERN Document Server

    Härter, Arne

    2013-01-01

    In the last 5 years, a novel field of physics and chemistry has developed in which cold trapped ions and ultracold atomic gases are brought into contact with each other. Combining ion traps with traps for neutral atoms yields a variety of new possibilities for research and experiments. These range from studies of cold atom-ion collisions and atom-ion chemistry to applications in quantum information science and condensed matter related research. In this article we give a brief introduction into this new field and describe some of the perspectives for its future development.

  14. Heavy ion fusion experiments at LBNL and LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Ahle, L

    1998-08-19

    The long-range goal of the US Heavy Ion Fusion (HIF) program is to develop heavy ion accelerators capable of igniting inertial fusion targets to generate fusion energy for electrical power production. Accelerators for heavy ion fusion consist of several subsystems: ion sources, injectors, matching sections, combiners, induction acceleration sections with electric and magnetic focusing, beam compression and bending sections, and a final-focus system to focus the beams onto the target. We are currently assembling or performing experiments to address the physics of all these subsystems. This paper will discuss some of these experiments.

  15. LHC Report: Ions cross protons

    CERN Multimedia

    Reyes Alemany Fernandez for the LHC team

    2013-01-01

    The LHC starts the New Year facing a new challenge: proton-lead collisions in the last month before the shutdown in mid-February.    The first stable beams were achieved on 20 January with 13 individual bunches per beam. In the next fill, the first bunch-trains were injected and stable beams were achieved with 96 proton on 120 ion bunches.  This fill was very important because we were able to study the so-called moving long-range beam-beam encounters. Long-range encounters, which are also seen in proton-proton runs, occur when the bunches in the two beams “see” each other as they travel in the same vacuum chamber at either side of the experiments.  The situation becomes more complicated with proton-lead ions because the two species have different revolution times (until the frequencies are locked at top energy- see “Cogging exercises”) and thus these encounters move. We found that this effect does not cause significant beam losses...

  16. A comprehensive suite of suprathermal ion sensors

    Science.gov (United States)

    Allegrini, F.; Ho, G. C.; Desai, M. I.; Ebert, R. W.; Nelson, K.; Ogasawara, K.

    2016-12-01

    Ions with energies from a few times the solar wind plasma thermal energy up to hundreds of keV/e are called suprathermal (ST) ions. ST ions are ubiquitous throughout the heliosphere and comprise material from many sources that vary in time and space. ST ions constitute a key source of material for solar energetic particles and other higher-energy interplanetary particle populations. Measuring the energy spectra and composition (ionic charge and elemental) of ST ions in the heliosphere has proved to be rather difficult. This is because their energy region lies between that sampled by solar wind instruments, which require long integration times to acquire adequate statistics at these energies, and that by the energetic particle instruments, which typically do not extend down into the lower part of the ST regime due to the low-energy thresholds ( 25-50 keV) of solid-state detectors. We present two novel concepts that, when combined, measure ST ions with high time, mass, and charge state resolution to address these challenges. Both use electrostatic analyzers that essentially serve as spectrographs. They simultaneously select ions over a broad range of energy-per-charge (E/q), thus requiring fewer voltage steps to cover the entire energy range. Their sensitivity is large compared to current instruments because each E/q is sampled for a longer period of time while the geometric factor is comparable. We describe the results obtained with laboratory prototypes. We also present a list of potential options for the detector section.

  17. Ion channels in inflammation.

    Science.gov (United States)

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  18. Polarized negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  19. Radiative Recombination and Photoionization Data for Tungsten Ions. Electron Structure of Ions in Plasmas

    Directory of Open Access Journals (Sweden)

    Malvina B. Trzhaskovskaya

    2015-05-01

    Full Text Available Theoretical studies of tungsten ions in plasmas are presented. New calculations of the radiative recombination and photoionization cross-sections, as well as radiative recombination and radiated power loss rate coefficients have been performed for 54 tungsten ions for the range W6+–W71+. The data are of importance for fusion investigations at the reactor ITER, as well as devices ASDEX Upgrade and EBIT. Calculations are fully relativistic. Electron wave functions are found by the Dirac–Fock method with proper consideration of the electron exchange. All significant multipoles of the radiative field are taken into account. The radiative recombination rates and the radiated power loss rates are determined provided the continuum electron velocity is described by the relativistic Maxwell–Jüttner distribution. The impact of the core electron polarization on the radiative recombination cross-section is estimated for the Ne-like iron ion and for highly-charged tungsten ions within an analytical approximation using the Dirac–Fock electron wave functions. The effect is shown to enhance the radiative recombination cross-sections by ≲20%. The enhancement depends on the photon energy, the principal quantum number of polarized shells and the ion charge. The influence of plasma temperature and density on the electron structure of ions in local thermodynamic equilibrium plasmas is investigated. Results for the iron and uranium ions in dense plasmas are in good agreement with previous calculations. New calculations were performed for the tungsten ion in dense plasmas on the basis of the average-atom model, as well as for the impurity tungsten ion in fusion plasmas using the non-linear self-consistent field screening model. The temperature and density dependence of the ion charge, level energies and populations are considered.

  20. Laser ranging ground station development

    Science.gov (United States)

    Faller, J. E.

    1973-01-01

    The employment of ground to conduct radar range measurements of the lunar distance is discussed. The advantages of additional ground stations for this purpose are analyzed. The goals which are desirable for any new type of ranging station are: (1) full time availability of the station for laser ranging, (2) optimization for signal strength, (3) automation to the greatest extent possible, (4) the capability for blind pointing, (5) reasonable initial and modest operational costs, and (6) transportability to enhance the value of the station for geophysical purposes.

  1. Dynamic Range Majority Data Structures

    OpenAIRE

    Elmasry, Amr; HE, MENG; Munro, J. Ian; Nicholson, Patrick K.

    2011-01-01

    Given a set $P$ of coloured points on the real line, we study the problem of answering range $\\alpha$-majority (or "heavy hitter") queries on $P$. More specifically, for a query range $Q$, we want to return each colour that is assigned to more than an $\\alpha$-fraction of the points contained in $Q$. We present a new data structure for answering range $\\alpha$-majority queries on a dynamic set of points, where $\\alpha \\in (0,1)$. Our data structure uses O(n) space, supports queries in $O((\\lg...

  2. Secure High Dynamic Range Images

    Directory of Open Access Journals (Sweden)

    Med Amine Touil

    2016-04-01

    Full Text Available In this paper, a tone mapping algorithm is proposed to produce LDR (Limited Dynamic Range images from HDR (High Dynamic Range images. In the approach, non-linear functions are applied to compress the dynamic range of HDR images. Security tools will be then applied to the resulting LDR images and their effectiveness will be tested on the reconstructed HDR images. Three specific examples of security tools are described in more details: integrity verification using hash function to compute local digital signatures, encryption for confidentiality, and scrambling technique.

  3. Detecting negative ions on board small satellites

    Science.gov (United States)

    Lepri, S. T.; Raines, J. M.; Gilbert, J. A.; Cutler, J.; Panning, M.; Zurbuchen, T. H.

    2017-04-01

    Recent measurements near comets, planets, and their satellites have shown that heavy ions, energetic neutral atoms, molecular ions, and charged dust contain a wealth of information about the origin, evolution, and interaction of celestial bodies with their space environment. Using highly sensitive plasma instruments, positively charged heavy ions have been used to trace exospheric and surface composition of comets, planets, and satellites as well as the composition of interplanetary and interstellar dust. While positive ions dominate throughout the heliosphere, negative ions are also produced from surface interactions. In fact, laboratory experiments have shown that oxygen released from rocky surfaces is mostly negatively charged. Negative ions and negatively charged nanograins have been detected with plasma electron analyzers in several different environments (e.g., by Cassini and Rosetta), though more extensive studies have been challenging without instrumentation dedicated to negative ions. We discuss an adaptation of the Fast Imaging Plasma Spectrometer (FIPS) flown on MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) for the measurement of negatively charged particles. MESSENGER/FIPS successfully measured the plasma environment of Mercury from 2011 until 2015, when the mission ended, and has been used to map multiple ion species (H+ through Na+ and beyond) throughout Mercury's space environment. Modifications to the existing instrument design fits within a 3U CubeSat volume and would provide a low mass, low power instrument, ideal for future CubeSat or distributed sensor missions seeking, for the first time, to characterize the contribution of negative particles in the heliospheric plasmas near the planets, moons, comets, and other sources.

  4. IN MEMORIAM ION VATAMANU

    Directory of Open Access Journals (Sweden)

    S.P. Palii

    2012-12-01

    Full Text Available A dreamer in his creative solitude, an objective and lucid analyst of history and contemporaneity, an energetic and decisive leader with an uncanny ability for crisis management – all these describe Ion Vatamanu. His wife Elena and daughters Mihaela, Mariana, Leontina treasure a personal universe in which the magical spark of Ion Vatamanu’s love and joy of life meld the everyday in and out of poetry. Ion Vatamanu’s instantaneous connection to the audiences and deeply felt words still touch the hearts of his many colleagues and friends. Downloads: 2

  5. Collective Ion Acceleration.

    Science.gov (United States)

    1980-01-01

    Bostick, Appl. Phys. Lett. 35, 296 (1979). 3. S. Humphries, R.N. Sudan, and IV. Condit, Appl. Phys. Lett. 26, 667 (1975). 4. D.S. Prono , J.M. Creedon, I...and to provide a good ion depenently by Creedon, Smith, and Prono ." In both source at the second anode A2. The ion flux from the of these approaches...and Ion Beam Research and Technology, (Ith- Let. 37, 1236 (1977). ac, New York,1977), Vol. 11, p. 819. 72. D. S. Prono , J. W. Shearer, and X J. Briggs

  6. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  7. Ion accelerator system mounting design and operating characteristics for a 5 kW 30-cm xenon ion engine

    Science.gov (United States)

    Aston, Graeme; Brophy, John R.

    1987-01-01

    Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.

  8. Ion sound instability driven by ion beam

    CERN Document Server

    Koshkarov, O; Kaganovich, I D; Ilgisonis, V I

    2014-01-01

    In many natural and laboratory conditions, plasmas are often in the non-equilibrium state due to presence of stationary flows, when one particle species (or a special group, such as group of high energy particles, i.e. beam) is mowing with respect to the other plasma components. Such situations are common for a number of different plasma application such as diagnostics with emissive plasma probes, plasma electronics devices and electric propulsion devices. The presence of plasma flows often lead to the instabilities in such systems and subsequent development of large amplitude perturbations. The goal of this work is to develop physical insights and numerical tools for studies of stability of the excitation of the ion sound waves by the ion beam in the configuration similar to the plasma Pierce diode. This systems, in some limiting cases, reduce to mathematically similar equations originally proposed for Pierce instability. The finite length effect are crucial for this instability which generally belong to the...

  9. Kenai National Moose Range Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This book presents a summary of the history, wildlife, recreational opportunities, economic uses, and future plans for Kenai National Moose Range.

  10. The Kenai National Moose Range

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the geological history, early settlement, game resources, early conservation interests, and establishment of Kenai National Moose Range.

  11. Genus Ranges of Chord Diagrams.

    Science.gov (United States)

    Burns, Jonathan; Jonoska, Nataša; Saito, Masahico

    2015-04-01

    A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges.

  12. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens;

    2017-01-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...... with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state...... contributing to the mean excitation energy....

  13. Mean excitation energies for molecular ions

    Science.gov (United States)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  14. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  15. CERN's Fixed Target Primary Ion Programme

    CERN Document Server

    Manglunki, Django; Axensalva, Jerome; Bellodi, Giulia; Blas, Alfred; Bodendorfer, Michael; Bohl, Thomas; Cettour-Cave, Stephane; Cornelis, Karel; Damerau, Heiko; Efthymiopoulos, Ilias; Fabich, Adrian; Ferreira Somoza, Jose; Findlay, Alan; Freyermuth, Pierre; Gilardoni, Simone; Hancock, Steven; Holzer, Eva Barbara; Jensen, Steen; Kain, Verena; Küchler, Detlef; Lombardi, Alessandra; Michet, Alice; O'Neil, Michael; Pasinelli, Sergio; Scrivens, Richard; Steerenberg, Rende; Tranquille, Gerard

    2016-01-01

    The renewed availability of heavy ions at CERN for the needs of the LHC programme has triggered the interest of the fixed-target community. The project, which involves sending several species of primary ions at various energies to the North Area of the Super Proton Synchrotron, has now entered its operational phase. The first argon run, with momenta ranging from 13 AGeV/c to 150 AGeV/c, took place from February 2015 to April 2015. This paper presents the status of the project, the performance achieved thus far and an outlook on future plans.

  16. New Horizons for Conventional Lithium Ion Battery Technology.

    Science.gov (United States)

    Erickson, Evan M; Ghanty, Chandan; Aurbach, Doron

    2014-10-02

    Secondary lithium ion battery technology has made deliberate, incremental improvements over the past four decades, providing sufficient energy densities to sustain a significant mobile electronic device industry. Because current battery systems provide ∼100-150 km of driving distance per charge, ∼5-fold improvements are required to fully compete with internal combustion engines that provide >500 km range per tank. Despite expected improvements, the authors believe that lithium ion batteries are unlikely to replace combustion engines in fully electric vehicles. However, high fidelity and safe Li ion batteries can be used in full EVs plus range extenders (e.g., metal air batteries, generators with ICE or gas turbines). This perspective article describes advanced materials and directions that can take this technology further in terms of energy density, and aims at delineating realistic horizons for the next generations of Li ion batteries. This article concentrates on Li intercalation and Li alloying electrodes, relevant to the term Li ion batteries.

  17. Ion microscopy based on laser-cooled cesium atoms.

    Science.gov (United States)

    Viteau, M; Reveillard, M; Kime, L; Rasser, B; Sudraud, P; Bruneau, Y; Khalili, G; Pillet, P; Comparat, D; Guerri, I; Fioretti, A; Ciampini, D; Allegrini, M; Fuso, F

    2016-05-01

    We demonstrate a prototype of a Focused Ion Beam machine based on the ionization of a laser-cooled cesium beam and adapted for imaging and modifying different surfaces in the few-tens nanometer range. Efficient atomic ionization is obtained by laser promoting ground-state atoms into a target excited Rydberg state, then field-ionizing them in an electric field gradient. The method allows obtaining ion currents up to 130pA. Comparison with the standard direct photo-ionization of the atomic beam shows, in our conditions, a 40-times larger ion yield. Preliminary imaging results at ion energies in the 1-5keV range are obtained with a resolution around 40nm, in the present version of the prototype. Our ion beam is expected to be extremely monochromatic, with an energy spread of the order of the eV, offering great prospects for lithography, imaging and surface analysis.

  18. Comparison of Se and Te clusters produced by ion bombardment

    Directory of Open Access Journals (Sweden)

    Trzyna Małgorzata

    2017-01-01

    Full Text Available Nanostructures based on tellurium and selenium are materials used as components for the manufacturing topological insulators. Therefore it is crucial to precisely characterize these materials. In this work the emission of selenium and tellurium cluster ions, sputtered by Bi+ primary ion guns, was investigated by using Time-of-Flight Secondary Ion Mass Spectrometry (TOF SIMS. It has been found that BixTex and BixSex clusters appear in addition to Sex and Tex clusters in the mass range up to ~ 1300 m/z. Local maxima or minima (magic numbers are observed in the ion intensity versus a number of atoms per cluster for both positive and negative ions spectra for all types of clusters and primary ions used. These extrema can be attributed to different yield and stability of certain clusters but also to fragmentation of high-mass clusters.

  19. Ion specificities of artificial macromolecules.

    Science.gov (United States)

    Liu, Lvdan; Kou, Ran; Liu, Guangming

    2016-12-21

    Artificial macromolecules are well-defined synthetic polymers, with a relatively simple structure as compared to naturally occurring macromolecules. This review focuses on the ion specificities of artifical macromolecules. Ion specificities are influenced by solvent-mediated indirect ion-macromolecule interactions and also by direct ion-macromolecule interactions. In aqueous solutions, the role of water-mediated indirect ion-macromolecule interactions will be discussed. The addition of organic solvents to aqueous solutions significantly changes the ion specificities due to the formation of water-organic solvent complexes. For direct ion-macromolecule interactions, we will discuss specific ion-pairing interactions for charged macromolecules and specific ion-neutral site interactions for uncharged macromolecules. When the medium conditions change from dilute solutions to crowded environments, the ion specificities can be modified by either the volume exclusion effect, the variation of dielectric constant, or the interactions between ions, macromolecules, and crowding agents.

  20. Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite.

    Science.gov (United States)

    Weatherley, L R; Miladinovic, N D

    2004-12-01

    In this study the uptake performances of the naturally occurring zeolite, clinoptilolite, and of New Zealand mordenite are compared. The uptake of fully ionised ammonium ion from aqueous solutions in the concentration range 0-200 mg/l on to these two materials was compared. The influence of other cations present in water upon the ammonia uptake was also determined. The cations studied were potassium, calcium and magnesium. In all cases the anionic counterion present was chloride. The results showed that the mordenite exhibited higher overall uptake concentrations at equilibrium compared with clinoptilolite at solution concentrations greater than 80 mg/l. Beyond this value, the difference in solid-phase equilibrium concentrations on the mordenite became greater at higher solution-phase ammonium ion concentrations. The effect of the other cations upon uptake of ammonium ion was relatively small. In all cases, the ammonium ion showed the highest uptake on to both the mordenite and the clinoptilolite. In the case of clinoptilolite this was rather an unexpected result since the majority of other work shows clinoptilolite exhibiting a higher affinity for potassium ion compared with ammonium ion. This may be explained by the fact that the clinoptilolite came from volcanic deposits in New Zealand. This is the first such study on this material. At solution-phase equilibrium concentrations of greater than 80 mg/l, the mordenite showed smaller reductions in ammonium ion uptake in the presence of the other cations when compared with clinoptilolite.

  1. First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H. T.; Thomas, R. D.; Gatchell, M.; Rosen, S.; Reinhed, P.; Loefgren, P.; Braennholm, L.; Blom, M.; Bjoerkhage, M.; Baeckstroem, E.; Alexander, J. D.; Leontein, S.; Zettergren, H.; Liljeby, L.; Kaellberg, A.; Simonsson, A.; Hellberg, F.; Mannervik, S.; Larsson, M.; Geppert, W. D. [Department of Physics, Stockholm University, SE-10691 Stockholm (Sweden); and others

    2013-05-15

    We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C{sub n}{sup -}, n= 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C{sub 2}{sup -} molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s {+-} 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10{sup -14} mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

  2. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  3. [Particle therapy: carbon ions].

    Science.gov (United States)

    Pommier, Pascal; Hu, Yi; Baron, Marie-Hélène; Chapet, Olivier; Balosso, Jacques

    2010-07-01

    Carbon ion therapy is an innovative radiation therapy. It has been first proposed in the forties by Robert Wilson, however the first dedicated centres for human care have been build up only recently in Japan and Germany. The interest of carbon ion is twofold: 1) the very sharp targeting of the tumour with the so called spread out Bragg peak that delivers most of the beam energy in the tumour and nothing beyond it, sparing very efficiently the healthy tissues; 2) the higher relative biological efficiency compared to X rays or protons, able to kill radioresistant tumour cells. Both properties make carbon ions the elective therapy for non resectable radioresistant tumours loco-regionally threatening. The technical and clinical experience accumulated during the recent decades is summarized in this paper along with a detailed presentation of the elective indications. A short comparison between conventional radiotherapy and hadrontherapy is proposed for the indications which are considered as priority for carbon ions.

  4. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  5. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  6. Atomic negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Brage, T.

    1991-12-31

    We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given.

  7. Atomic negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Brage, T.

    1991-01-01

    We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given.

  8. Modification of SRIM-calculated dose and injected ion profiles due to sputtering, injected ion buildup and void swelling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Toloczko, Mychailo B.; Bailey, Nathan; Garner, Frank A.; Gigax, Jonathan; Shao, Lin

    2016-11-01

    In radiation effects on materials utilizing self-ion irradiations, it is necessary to calculate the local displacement damage level and ion injection profile because of the short distance that self-ions travel in a material and because of the strong variation of displacement rate with depth in a specimen. The most frequently used tool for this is the software package called Stopping and Range of Ions in Matter (SRIM). A SRIM-calculated depth-dependent dose level is usually determined under the implicit assumption that the target does not undergo any significant changes in volume during the process, in particular SRIM ignores the effect of sputtering, injected ions, and void swelling on the redistribution of the dose and injected atom profiles. This approach become increasingly invalid as the ion fluence reaches ever higher levels, especially for low energy ion irradiations. The original surface is not maintained due to sputter-induced erosion, while within the irradiated region of the specimen, injected ions are adding material, and if void swelling is occurring, it is creating empty space. An iterative mathematical treatment of SRIM outputs to produce corrected dose and injected atom profiles is presented along with examples differences between SRIM-calculated values and corrected values over a range of typical ion energies.

  9. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    2003-01-01

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  10. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  11. Ion-acoustic solitary waves in ion-beam plasma with multiple-electron-temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, B.; Das, G.C.; Singh, Kh.I.

    1988-08-01

    The solitary wave solution has been studied in an ion-beam plasma with multiple-electron-temperatures stemmed through the derivation of a modified Korteweg-de Vries (KdV) equation. The evolution of solitons shows that the existence and the behaviour depend effectively on the ion-beam as well as on the multiple-electron-temperatures. It has been shown that the solitons might be large amplitude waves with the addition of a small percentage of ion-beam concentration or by the increase of electron-temperatures. The present investigators believe and conclude that the solitons should also show experimentally these fascinating properties but one has to be careful about the range of the physical parameters in ion-beam plasma.

  12. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  13. Miniaturized Ion Mobility Spectrometer

    Science.gov (United States)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  14. Radio frequency ion source

    CERN Document Server

    Shen Guan Ren; Gao Fu; LiuNaiYi

    2001-01-01

    The study on Radio Frequency Ion Source is mainly introduced, which is used for CIAE 600kV ns Pulse Neutron Generator; and obtained result is also presented. The RF ion source consists of a diameter phi 25 mm, length 200 mm, coefficient of expansion =3.5 mA, beam current on target >=1.5 mA, beam spot =100 h.

  15. The BEAN experiment - An EISCAT study of ion temperature anisotropies

    Directory of Open Access Journals (Sweden)

    I. W. McCrea

    Full Text Available Results are presented from a novel EISCAT special programme, SP-UK-BEAN, intended for the direct measurement of the ion temperature anisotropy during ion frictional heating events in the high-latitude F-region. The experiment employs a geometry which provides three simultaneous estimates of the ion temperature in a single F-region observing volume at a range of aspect angles from 0° to 36°. In contrast to most previous EISCAT experiments to study ion temperature anisotropies, field-aligned observations are made using the Sodankylä radar, while the Kiruna radar measures at an aspect angle of the order of 30°. Anisotropic effects can thus be studied within a small common volume whose size and altitude range is limited by the radar beamwidth, rather than in volumes which overlap but cover different altitudes. The derivation of line-of-sight ion temperature is made more complex by the presence of an unknown percentage of atomic and molecular ions at the observing altitude and the possibility of non-Maxwellian distortion of the ion thermal velocity distribution. The first problem has been partly accounted for by insisting that a constant value of electron temperature be maintained. This enables an estimate of the ion composition to be made, and facilitates the derivation of more realistic line-of-sight ion temperatures and temperature anisotropies. The latter problem has been addressed by assuming that the thermal velocity distribution remains bi-Maxwellian. The limitations of these approaches are discussed. The ion temperature anisotropies and temperature partition coefficients during two ion heating events give values intermediate between those expected for atomic and for molecular species. This result is consistent with an analysis which indicates that significant proportions of molecular ions (up to 50% were present at the times of greatest heating.

  16. 2010 ion run: completed!

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    After a very fast switchover from protons to lead ions, the LHC has achieved performances that allowed the machine to exceed both peak and integrated luminosity by a factor of three. Thanks to this, experiments have been able to produce high-profile results on ion physics almost immediately, confirming that the LHC was able to keep its promises for ions as well as for protons.   First direct observation of jet quenching. A seminar on 2 December was the opportunity for the ALICE, ATLAS and CMS collaborations to present their first results on ion physics in front of a packed auditorium. These results are important and are already having a major impact on the understanding of the physics processes that involve the basic constituents of matter at high energies. In the ion-ion collisions, the temperature is so high that partons (quarks and gluons), which are usually constrained inside the nucleons, are deconfined to form a highly dense and hot soup known as quark-gluon plasma (QGP). The existence of ...

  17. Ion flux dependent and independent functions of ion channels in the vertebrate heart: lessons learned from zebrafish.

    Science.gov (United States)

    Keßler, Mirjam; Just, Steffen; Rottbauer, Wolfgang

    2012-01-01

    Ion channels orchestrate directed flux of ions through membranes and are essential for a wide range of physiological processes including depolarization and repolarization of biomechanical activity of cells. Besides their electrophysiological functions in the heart, recent findings have demonstrated that ion channels also feature ion flux independent functions during heart development and morphogenesis. The zebrafish is a well-established animal model to decipher the genetics of cardiovascular development and disease of vertebrates. In large scale forward genetics screens, hundreds of mutant lines have been isolated with defects in cardiovascular structure and function. Detailed phenotyping of these lines and identification of the causative genetic defects revealed new insights into ion flux dependent and independent functions of various cardiac ion channels.

  18. Ion Flux Dependent and Independent Functions of Ion Channels in the Vertebrate Heart: Lessons Learned from Zebrafish

    Directory of Open Access Journals (Sweden)

    Mirjam Keßler

    2012-01-01

    Full Text Available Ion channels orchestrate directed flux of ions through membranes and are essential for a wide range of physiological processes including depolarization and repolarization of biomechanical activity of cells. Besides their electrophysiological functions in the heart, recent findings have demonstrated that ion channels also feature ion flux independent functions during heart development and morphogenesis. The zebrafish is a well-established animal model to decipher the genetics of cardiovascular development and disease of vertebrates. In large scale forward genetics screens, hundreds of mutant lines have been isolated with defects in cardiovascular structure and function. Detailed phenotyping of these lines and identification of the causative genetic defects revealed new insights into ion flux dependent and independent functions of various cardiac ion channels.

  19. Optical range and range rate estimation for teleoperator systems

    Science.gov (United States)

    Shields, N. L., Jr.; Kirkpatrick, M., III; Malone, T. B.; Huggins, C. T.

    1974-01-01

    Range and range rate are crucial parameters which must be available to the operator during remote controlled orbital docking operations. A method was developed for the estimation of both these parameters using an aided television system. An experiment was performed to determine the human operator's capability to measure displayed image size using a fixed reticle or movable cursor as the television aid. The movable cursor was found to yield mean image size estimation errors on the order of 2.3 per cent of the correct value. This error rate was significantly lower than that for the fixed reticle. Performance using the movable cursor was found to be less sensitive to signal-to-noise ratio variation than was that for the fixed reticle. The mean image size estimation errors for the movable cursor correspond to an error of approximately 2.25 per cent in range suggesting that the system has some merit. Determining the accuracy of range rate estimation using a rate controlled cursor will require further experimentation.

  20. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interactions.

    Science.gov (United States)

    Collins, Kim D

    2012-06-01

    Continuum electrostatics models for ions in water provide apparent long range electrostatic explanations for the forces on ions. However the electro-chemical free energy of solvation of ions resides largely in the first two water layers, which control the interfacial behavior of the ions and require explicit modeling to capture their distinctive behaviors. The resulting short range forces produce such surprising charge density-dependent behaviors as ion adsorption onto nonpolar surfaces, like charge aggregation of ions, and substantial ion pairing preferences, which arise largely from the affinity of specific ions for individual water molecules. Specific ion effects controlled by the local water affinity of the ion show a diagnostic change of sign between strongly hydrated Na(+) and weakly hydrated K(+) and between strongly hydrated F(-) and weakly hydrated Cl(-), in both cases marking the strength of water-water interactions in bulk solution, a critical benchmark missing from continuum electrostatics models.

  1. Theory for charge states of energetic oxygen ions in the earth's radiation belts

    Science.gov (United States)

    Spjeldvik, W. N.; Fritz, T. A.

    1978-01-01

    Fluxes of geomagnetically trapped energetic oxygen ions have been studied in detail. Ion distributions in radial locations below the geostationary orbit, energy spectra between 1 keV and 100 MeV, and the distribution over charge states have been computed for equatorially mirroring ions. Both ionospheric and solar wind oxygen ion sources have been considered, and it is found that the charge state distributions in the interior of the radiation belts are largely independent of the charge state characteristics of the sources. In the MeV range, oxygen ions prove to be a more sensitive probe for radiation belt dynamics than helium ions and protons.

  2. 2013 GASEOUS IONS GORDON RESEARCH CONFERENCE, FEBRUARY 24 - MARCH 1, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Evan

    2013-03-01

    The Gaseous Ions: Structures, Energetics and Reactions Gordon Research Conference will focus on ions and their interactions with molecules, surfaces, electrons, and light. The long-standing goal of our community is to develop new strategies for capturing complex molecular architectures as gas phase ions where they can be isolated, characterized and manipulated with great sensitivity. Emergent areas of interest include catalytic mechanisms, cryogenic processing of ions extracted from solution, ion fragmentation mechanisms, and new methods for ion formation and structural characterization. The conference will cover theoretical and experimental advances on systems ranging from model studies at the molecular scale to preparation of nanomaterials and characterization of large biological molecules.

  3. Structure analysis of bimetallic Co-Au nanoparticles formed by sequential ion implantation

    Science.gov (United States)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Song, Shu-peng; chen, Hong; Zhang, Ke; Xiong, Zu-zhao; Ji, Ling-ling; Dai, Hou-mei; Wang, Deng-jing; Lu, Jian-duo; Wang, Ru-wu; Zheng, Li-rong

    2016-08-01

    Co-Au alloy Metallic nanoparticles (MNPs) are formed by sequential ion implantation of Co and Au into silica glass at room temperature. The ion ranges of Au ions implantation process have been displayed to show the ion distribution. We have used the atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the formation of bimetallic nanoparticles. The extended X-ray absorption fine structure (EXAFS) has been used to study the local structural information of bimetallic nanoparticles. With the increase of Au ion implantation, the local environments of Co ions are changed enormously. Hence, three oscillations, respectively, Co-O, Co-Co and Co-Au coordination are determined.

  4. Dynamic range majority data structures

    DEFF Research Database (Denmark)

    Elmasry, Amr Ahmed Abd Elmoneim; He, Meng; Munro, J. Ian

    2011-01-01

    Given a set P of n coloured points on the real line, we study the problem of answering range α-majority (or "heavy hitter") queries on P. More specifically, for a query range Q, we want to return each colour that is assigned to more than an α-fraction of the points contained in Q. We present a new...... data structure for answering range α-majority queries on a dynamic set of points, where α ε (0,1). Our data structure uses O(n) space, supports queries in O((lg n)/α) time, and updates in O((lg n)/α) amortized time. If the coordinates of the points are integers, then the query time can be improved to O...

  5. New focal plane detector system for the broad range spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, T.P.

    1984-01-01

    A focal plane detector system consisting of a vertical drift chamber, parallel plate avalanche counters, and an ionization chamber with segmented anodes has been installed in the Broad Range Spectrometer at the Holifield Facility at Oak Ridge. The system, which has been designed for use with light-heavy ions with energies ranging from 10 to 25 MeV/amu, has a position resolution of approx. 0.1 mm, a scattering angle resolution of approx. 3 mrad, and a mass resolution of approx. 1/60.

  6. Hybrid quantum systems of atoms and ions

    CERN Document Server

    Zipkes, Christoph; Palzer, Stefan; Sias, Carlo; Köhl, Michael

    2010-01-01

    In recent years, ultracold atoms have emerged as an exceptionally controllable experimental system to investigate fundamental physics, ranging from quantum information science to simulations of condensed matter models. Here we go one step further and explore how cold atoms can be combined with other quantum systems to create new quantum hybrids with tailored properties. Coupling atomic quantum many-body states to an independently controllable single-particle gives access to a wealth of novel physics and to completely new detection and manipulation techniques. We report on recent experiments in which we have for the first time deterministically placed a single ion into an atomic Bose Einstein condensate. A trapped ion, which currently constitutes the most pristine single particle quantum system, can be observed and manipulated at the single particle level. In this single-particle/many-body composite quantum system we show sympathetic cooling of the ion and observe chemical reactions of single particles in situ...

  7. Dissociation mechanisms of photoexcited molecular ions

    CERN Document Server

    Inglis, L C

    2003-01-01

    Photoionisation of gas phase molecules, in the energy range 8 - 40 eV, and the subsequent dissociation mechanisms have been investigated using threshold photoelectron spectroscopy and ion time-of-flight mass spectrometry. The excitation source used was monochromatic radiation, delivered by station 3.2 at the Daresbury Laboratory Synchrotron Radiation Source. These two techniques have also been combined in threshold photoelectron-photoion coincidence experiments, in order to record coincidence time-of-flight mass spectra and thereby determine breakdown curves. Such curves display the ion fragmentation as a function of internal energy. In addition, computer modelling techniques have been employed to gain some understanding of the unimolecular dissociations of energy selected molecular ions by establishing theoretical breakdown graphs, appearance energies, fragmentation pathways and dissociation rates. Ab initio quantum chemistry calculations have been carried out, generating ionisation and appearance energies, ...

  8. Hybrid quantum systems of atoms and ions

    Energy Technology Data Exchange (ETDEWEB)

    Zipkes, Christoph; Ratschbacher, Lothar; Palzer, Stefan; Sias, Carlo; Koehl, Michael [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2011-01-10

    In recent years, ultracold atoms have emerged as an exceptionally controllable experimental system to investigate fundamental physics, ranging from quantum information science to simulations of condensed matter models. Here we go one step further and explore how cold atoms can be combined with other quantum systems to create new quantum hybrids with tailored properties. Coupling atomic quantum many-body states to an independently controllable single-particle gives access to a wealth of novel physics and to completely new detection and manipulation techniques. We report on recent experiments in which we have for the first time deterministically placed a single ion into an atomic Bose Einstein condensate. A trapped ion, which currently constitutes the most pristine single particle quantum system, can be observed and manipulated at the single particle level. In this single-particle/many-body composite quantum system we show sympathetic cooling of the ion and observe chemical reactions of single particles in situ.

  9. Heavy ion irradiation of crystalline water ice

    CERN Document Server

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

    2015-01-01

    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  10. Pair distribution of ions in Coulomb lattice

    CERN Document Server

    Witt, H E D; Chugunov, A I; Baiko, D A; Yakovlev, D G

    2003-01-01

    The pair distribution function g(r) ident to g(x, y, z) and the radial pair distribution function g(r) of ions in body-centred-cubic and face-centred-cubic Coulomb crystals are calculated within the harmonic-lattice (HL) approximation in a wide temperature range, from the high-temperature classical limit (T >> h-bar w sub p , w sub p being the ion plasma frequency) to the low-temperature quantum limit (T || h-bar w sub p). In the classical limit, g(r) is also calculated by the Monte Carlo (MC) method. MC and HL results are demonstrated to be in good agreement. With decreasing T, the correlation peaks of g(r) and g(r) become narrower. At T || h-bar w sub p they become temperature independent (determined by zero-point ion vibrations).

  11. GEA CRDA Range Data Analysis

    Science.gov (United States)

    1999-07-28

    E1, July-August 1998 18 3.3. Example 3: SatMex, Solidaridad 2, May-June 1998 27 3.4. Example 4: PanAmSat, Galaxy IV, May-June 1998 33 3.5...17 Millstone measurements residuals for Telstar 401 on Days 181-263. 26 3-18 Millstone measurement residuals for Solidaridad 1 on Days 141-153...with 29 SatMex range data. 3-19 Hermosillo B-- Solidaridad 1 range residuals through Days 135-144 with bias 30 removed. 3-20 Iztapalapa D

  12. Ion sequestration particles for naval anticorrosion coatings

    Science.gov (United States)

    Zguris, Zachary Z.

    Corrosion is the electrochemical process of a metal returning to its lower energy state, the metal oxide. The cost of corrosion is difficult to estimate. One area particularly susceptible to corrosion problems with high maintenance costs is that of the 20,000 tanks existent in the US Naval Fleet. The Navy is sponsoring the development of novel coatings and additives that can be used to decrease the rising corrosion related costs. This dissertation describes in detail the synthesis of Ion Sequestration Particles (ISP) that when added to the standard MIL-DTL-24441 or potentially another coating system act to enhance the anticorrosion properties of the coating. A solid ion sequestration core material (SISCM) is first produced. The core is then encapsulated in a second stage forming a shell that protects the SISCM sufficiently from the harmful interactions with uncured epoxy based coatings. ISPs were designed to sequester harmful ions while releasing passivating ions in their place. The passivating ions then migrate to defect sites at the coating interface where they act to inhibit corrosion. The anticorrosion performance of ISPs in epoxy coatings has been demonstrated by both 500 hrs of hot deionized water immersion and 1000 hrs of salt spray exposure (ASTM B117). The best improvements in coating performance are attained with ISP content ranging from 5-10 wt % loading in a coating. ISPs were designed to limit the transport of harmful ions through the coating. However this work has determined high diffusion coefficients for ions (CI- and PO42-) through the epoxy matrix. Without ISPs, the diffusion coefficient through the MIL-DTL-24441 coating was determined for phosphate to be 1.16x10-7 cm2/s and for chloride to be in the range of 2.7x10-9 to 5.6x10-10 cm2/s. The addition of 5 wt % ISPs to the coating had the effect of decreasing the diffusion coefficient by an average of 25.5%. These results yield the conclusion that the enhanced anticorrosion properties of coatings

  13. Release of Potassium Ion and Calcium Ion from Phosphorylcholine Group Bearing Hydrogels

    Directory of Open Access Journals (Sweden)

    Kazuhiko Ishihara

    2013-11-01

    Full Text Available In an attempt to recreate the microenvironment necessary for directed hematopoietic stem cell differentiation, control over the amount of ions available to the cells is necessary. The release of potassium ion and calcium ion via the control of cross-linking density of a poly(2-hydroxyethyl methacrylate (pHEMA-based hydrogel containing 1 mol % 2-methacryloyloxyethyl phosphorylcholine (MPC and 5 mol % oligo(ethylene glycol (400 monomethacrylate [OEG(400MA] was investigated. Tetra(ethylene glycol diacrylate (TEGDA, the cross-linker, was varied over the range of 1–12 mol %. Hydrogel discs (ϕ = 4.5 mm and h = 2.0 mm were formed by UV polymerization within silicone isolators to contain 1.0 M CaCl2 and 0.1 M KCl, respectively. Isothermal release profiles, were measured at 37 °C in 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid sodium salt (HEPES buffer using either calcium ion or potassium ion selective electrodes (ISE. The resulting release profiles were found to be independent of cross-linking density. Average (n = 3 release profiles were fit to five different release models with the Korsmeyer-Peppas equation, a porous media transport model, exhibiting the greatest correlation (R2 > 0.95. The diffusion exponent, n was calculated to be 0.24 ± 0.02 and 0.36 ± 0.04 for calcium ion and potassium ion respectively indicating non-Fickian diffusion. The resulting diffusion coefficients were calculated to be 2.6 × 10−6 and 11.2 × 10−6 cm2/s, which compare well to literature values of 2.25 × 10−6 and 19.2 × 10−6 cm2/s for calcium ion and potassium ion, respectively.

  14. Adsorption of Potassium and Calcium Ions by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    LIHONG-YAN; JIGUO-LIANG

    1992-01-01

    Interactions of potassium and calcium ions with four typical variable charge soils in South China were examined by measuring pK-0.5pCa value with a potassium ion-selective electrode and a calcium ion-selective electrode,and pK value with a potassium ion-selective electrode.The results showed that adsorption of potassium and calcium ions increased with soil suspension pH,and the tendency of the pK-0.5pCa value changing with pH differed with respect to pH range and potassium to calcium ratio.Adsorption of equal amount of calcium and potassium ions led to release of an identical number of protons,suggesting similar adsorption characteristics of these two ions when adsorbed by variable charge soils.Compared with red soil,latosol and lateritic red soil had higher adsorption selectivities for calcium ion.The red soil had a greater affinity for potassium ion than that for calcium ion at low concentration,which seems to result from its possession of 2:1 type minerals,such as vermiculite and mica with a high affinity for potassium ion.The results indicated that adsorption of potassium and calcium ions by the variable charge soils was chiefly caused by the electrostatic attraction between the cations and the soil surfaces.Moreover,it was found that sulfate could affect the adsorption by changing soil surface properties and by forming ion-pair.

  15. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  16. Entanglement Growth in Quench Dynamics with Variable Range Interactions

    Directory of Open Access Journals (Sweden)

    J. Schachenmayer

    2013-09-01

    Full Text Available Studying entanglement growth in quantum dynamics provides both insight into the underlying microscopic processes and information about the complexity of the quantum states, which is related to the efficiency of simulations on classical computers. Recently, experiments with trapped ions, polar molecules, and Rydberg excitations have provided new opportunities to observe dynamics with long-range interactions. We explore nonequilibrium coherent dynamics after a quantum quench in such systems, identifying qualitatively different behavior as the exponent of algebraically decaying spin-spin interactions in a transverse Ising chain is varied. Computing the buildup of bipartite entanglement as well as mutual information between distant spins, we identify linear growth of entanglement entropy corresponding to propagation of quasiparticles for shorter-range interactions, with the maximum rate of growth occurring when the Hamiltonian parameters match those for the quantum phase transition. Counterintuitively, the growth of bipartite entanglement for long-range interactions is only logarithmic for most regimes, i.e., substantially slower than for shorter-range interactions. Experiments with trapped ions allow for the realization of this system with a tunable interaction range, and we show that the different phenomena are robust for finite system sizes and in the presence of noise. These results can act as a direct guide for the generation of large-scale entanglement in such experiments, towards a regime where the entanglement growth can render existing classical simulations inefficient.

  17. The Dynamic Range of LZ

    CERN Document Server

    Yin, Jun

    2015-01-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in such a detector, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined by the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines. S2 signals induced by alpha particles from radon decay will saturate one or more channels of the top PMT array but techniques are being dev...

  18. Truthful approximations to range voting

    DEFF Research Database (Denmark)

    Filos-Ratsika, Aris; Miltersen, Peter Bro

    We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare...

  19. Heteronuclear Long-Range Correlation

    DEFF Research Database (Denmark)

    Sørensen, Ole W.

    The lecture will cover heteronuclear long-range correlation techniques like HMBC, H2BC, and HAT HMBC with the emphasis on determining the number of covalent bonds between two spins being correlated. H2BC and HMBC spectra are quite complementary as a peak can be strong in one of the two spectra...

  20. Mobile Lunar Laser Ranging Station

    Science.gov (United States)

    Intellect, 1977

    1977-01-01

    Harlan Smith, chairman of the University of Texas's Astronomy Department, discusses a mobile lunar laser ranging station which could help determine the exact rates of movement between continents and help geophysicists understand earthquakes. He also discusses its application for studying fundamental concepts of cosmology and physics. (Editor/RK)

  1. Range Compressed Holographic Aperture Ladar

    Science.gov (United States)

    2017-06-01

    digital holography, laser, active imaging, remote sensing, laser imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 8...slow speed tunable lasers, while relaxing the need to precisely track the transceiver or target motion. In the following section we describe a scenario...contrast targets. As shown in Figure 28, augmenting holographic ladar with range compression relaxes the dependence of image reconstruction on

  2. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  3. Operation of ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In 2001, ECR ion source was operated for HIRFL about 5138 hours and 8 species of ion beams, such as ~(12)C~(4+), ~(12)C~(5+), ~(36)Ar~(11+),~(13)C~(4+),~(40)Ca~(11+),~(40)Ar~(11+),~(56)Fe~(10+) and ~(18)O~(6+) were provided. Among these ions,~(56)Fe~(10+)is a new ion beam. In this period, 14 experiments of heavy ion physics application and nuclear research were finished.

  4. Fundamentals of traveling wave ion mobility spectrometry.

    Science.gov (United States)

    Shvartsburg, Alexandre A; Smith, Richard D

    2008-12-15

    Traveling wave ion mobility spectrometry (TW IMS) is a new IMS method implemented in the Synapt IMS/mass spectrometry system (Waters). Despite its wide adoption, the foundations of TW IMS were only qualitatively understood and factors governing the ion transit time (the separation parameter) and resolution remained murky. Here we develop the theory of TW IMS using derivations and ion dynamics simulations. The key parameter is the ratio (c) of ion drift velocity at the steepest wave slope to wave speed. At low c, the ion transit velocity is proportional to the squares of mobility (K) and electric field intensity (E), as opposed to linear scaling in drift tube (DT) IMS and differential mobility analyzers. At higher c, the scaling deviates from quadratic in a way controlled by the waveform profile, becoming more gradual with the ideal triangular profile but first steeper and then more gradual for realistic profiles with variable E. At highest c, the transit velocity asymptotically approaches the wave speed. Unlike with DT IMS, the resolving power of TW IMS depends on mobility, scaling as K(1/2) in the low-c limit and less at higher c. A nonlinear dependence of the transit time on mobility means that the true resolving power of TW IMS differs from that indicated by the spectrum. A near-optimum resolution is achievable over an approximately 300-400% range of mobilities. The major predicted trends are in agreement with TW IMS measurements for peptide ions as a function of mobility, wave amplitude, and gas pressure. The issues of proper TW IMS calibration and ion distortion by field heating are also discussed. The new quantitative understanding of TW IMS separations allows rational optimization of instrument design and operation and improved spectral calibration.

  5. Thermal assisted ion shrinkage (TAIS) of fluorinated polyimide for optical telecommunication devices

    Science.gov (United States)

    Trigaud, T.; Moliton, J. P.; Quillat, M.; Chiron, D.

    1999-06-01

    In the framework of the development of low cost optical devices for telecommunications, here is studied the shrinkage of 6FDA-ODA polyimide films by ion irradiation as a function of five parameters: the ion fluence, the ion fluence rate, the ion energy, the ion nature and the target temperature. In the 30-350 keV energy range for impinging ions, the shrinkage remains constant whatever the tested fluence rate is. An upper limit appears for fluences above 10 16 ions cm -2. The etching is linearly dependent on the ion beam energy and reaches a maximum around 1 μm by thermal assisted ion shrinkage (TAIS) with Na + irradiations.

  6. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    Science.gov (United States)

    Rosinski, M.; Badziak, B.; Parys, P.; Wołowski, J.; Pisarek, M.

    2009-03-01

    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:˜0.5 J, power density: 10 10 W/cm 2) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES.

  7. Single Ion Implantation and Deterministic Doping

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, Thomas

    2010-06-11

    implantation is usually a highly statistical process, where high fluences of energetic ions, ranging from {approx}10{sup 9} to >10{sup 16} cm{sup -2} are implanted. For single atom device development, control over the absolute number of ions is needed and ions have to be placed with high spatial resolution. In the following sections we will discuss a series of approaches to single ion implantation with regard to single ion impact sensing and control of single ion positioning.

  8. Clues From Pluto's Ions

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Nearly a year ago, in July 2015, the New Horizons spacecraft passed by the Pluto system. The wealth of data amassed from that flyby is still being analyzed including data from the Solar Wind Around Pluto (SWAP) instrument. Recent examination of this data has revealedinteresting new information about Plutos atmosphere and how the solar wind interacts with it.A Heavy Ion TailThe solar wind is a constant stream of charged particles released by the Sun at speeds of around 400 km/s (thats 1 million mph!). This wind travels out to the far reaches of the solar system, interacting with the bodies it encounters along the way.By modeling the SWAP detections, the authors determine the directions of the IMF that could produce the heavy ions detected. Red pixels represent IMF directions permitted. No possible IMF could reproduce the detections if the ions are nitrogen (bottom panels), and only retrograde IMF directions can produce the detections if the ions are methane. [Adapted from Zirnstein et al. 2016]New Horizons data has revealed that Plutos atmosphere leaks neutral nitrogen, methane, and carbon monoxide molecules that sometimes escape its weak gravitational pull. These molecules become ionized and are subsequently picked up by the passing solar wind, forming a tail of heavy ions behind Pluto. The details of the geometry and composition of this tail, however, had not yet been determined.Escaping MethaneIn a recent study led by Eric Zirnstein (Southwest Research Institute), the latest analysis of data from the SWAP instrument on board New Horizons is reported. The team used SWAPs ion detections from just after New Horizons closest approach to Pluto to better understand how the heavy ions around Pluto behave, and how the solar wind interacts with Plutos atmosphere.In the process of analyzing the SWAP data, Zirnstein and collaborators first establish what the majority of the heavy ions picked up by the solar wind are. Models of the SWAP detections indicate they are unlikely

  9. Micromotion in trapped atom-ion systems

    CERN Document Server

    Nguyen, Le Huy; Barrett, Murray; Englert, Berthold-Georg

    2012-01-01

    We examine the validity of the harmonic approximation, where the radio-frequency ion trap is treated as a harmonic trap, in the problem regarding the controlled collision of a trapped atom and a single trapped ion. This is equivalent to studying the effect of the micromotion since this motion must be neglected for the trapped ion to be considered as a harmonic oscillator. By applying the transformation of Cook and Shankland we find that the micromotion can be represented by two periodically oscillating operators. In order to investigate the effect of the micromotion on the dynamics of a trapped atom-ion system, we calculate (i) the coupling strengths of the micromotion operators by numerical integration and (ii) the quasienergies of the system by applying the Floquet formalism --- a useful framework for studying periodic systems. It turns out that the micromotion is not negligible when the distance between the atom and the ion traps is shorter than a characteristic distance. Within this range the energy diagr...

  10. Characterization of Cr ion exchange with hydrotalcite.

    Science.gov (United States)

    Terry, Patricia A

    2004-11-01

    Experiments were performed to characterize the removal of chromium from water with uncalcined hydrotalcite, a clay mineral ion exchange media. The process was characterized as a function of pH, temperature, contact time, and both Cr and hydrotalcite concentrations. A Freundlich isotherm, used to describe adsorption equilibria, was used as a model and Freundlich constants were determined. The kinetics of the ion exchange reaction were also modeled using a pseudo-first order reaction rate. Finally, an equilibrium stage process was modeled with sequential batch separations to determine if hydrotalcite ion exchange could reduce aqueous Cr levels to below the EPA limit of 0.1mgl(-1). It was shown that the process is highly pH dependent, only yielding significant removals at pH levels between 2.0 and 2.1. While hydrotalcite concentration, Cr concentration, and time did effect the ion exchange, temperature was not found to be a factor. Under optimal conditions, maximum removals of greater than 95% were achieved. Finally, sequential batch tests performed on initial Cr solutions ranging from 5mgl(-1) to 40mgl(-1), demonstrated that the water could be purified to a level that was not statistically different than the EPA limit, thus demonstrating the applicability of hydrotalcite ion exchange.

  11. Do toxic ions induce hormesis in plants?

    Science.gov (United States)

    Poschenrieder, Charlotte; Cabot, Catalina; Martos, Soledad; Gallego, Berta; Barceló, Juan

    2013-11-01

    The concept of hormesis in plants is critically reviewed, taking growth stimulation by low concentrations of toxic trace elements as a reference. The importance of both non-adaptive and adaptive mechanisms underlying ion-induced hormetic growth responses is highlighted. The activation of defense mechanisms by metal ions and pathogenic elicitors and the cross talk between the signals induced by metal ions and biotic stressors are considered. The production of reactive oxygen species and, consequently, the induction of stress-induced antioxidants, are key mechanisms in metal ion-induced hormesis in plants. It is concluded that in the current scientific literature, hormesis is used as an "umbrella" term that includes a wide range of different mechanisms. It is recommended that the term hormesis be used in plant toxicology as a descriptive term for the stimulated phase in growth response curves that is induced by low concentrations of toxic metal ions without evidence of the underlying mechanisms. If the mechanisms underlying the stimulated growth phase have been identified, specific terms, such as amelioration, defense gene activation, priming or acclimation, should be used. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Molecular ion photofragment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bustamente, S.W.

    1983-11-01

    A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O/sub 2//sup +/(/sup 4/..pi../sub u/) metastable state which is found to consist of two main components: the /sup 4/..pi../sub 5/2/ and /sup 4/..pi../sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the /sup 4/..pi../sub 3/2/ and /sup 4/..pi../sub 1/2/ spin components having a short lifetime (approx. 6 ms).

  13. A Multicusp Ion Source for Radioactive Ion Beams

    Science.gov (United States)

    Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.

    1997-05-01

    In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.

  14. Cassini observations of ion cyclotron waves and ions anisotropy

    Science.gov (United States)

    Crary, F. J.; Dols, V. J.; Cassidy, T. A.; Tokar, R. L.

    2013-12-01

    In Saturn's equatorial, inner magnetosphere, the production of fresh ions in a pick-up distribution generates ion cyclotron waves. These waves are a sensitive indicator of fresh plasma production, but the quantitative relation between wave properties and ionization rates is nontrivial. We present a combined analysis of Cassini MAG and CAPS data, from a variety of equatorial orbits between 2005 and 2012. Using the MAG data, we determine the amplitude and peak frequency of ion cyclotron waves. From the CAPS data we extract the parallel and perpendicular velocity distribution of water group ions. We compare these results with hybrid simulations of the ion cyclotron instability and relate the observed wave amplitudes and ion velocity distributions to the production rate of pickup ions. The resulting relation between wave and plasma properties will allow us to infer ion production rates even at times when no direct ion measurements are available.

  15. Fast thermometry for trapped ions using dark resonances

    CERN Document Server

    Roßnagel, Johannes; Schmidt-Kaler, Ferdinand; Singer, Kilian

    2014-01-01

    We experimentally demonstrate a method to determine the temperature of trapped ions which is suitable for monitoring fast thermalization processes. We show that observing and analyzing the lineshape of dark resonances in the fluorescence spectrum provides a temperature measurement which accurate over a large dynamic range, applied to single ions and small ion crystals. Laser induced fluorescence is detected over a time of only $20\\,\\mu$s allowing for rapid determination of the ion temperature. In the measurement range of $10^{-1}-10^{+2}\\,$mK we reach better than $15\\,\\%$ accuracy. Tuning the cooling laser to selected resonance features allows for controlling the ion temperatures between $0.7\\,$mK and more than $10\\,$mK. Experimental work is supported by a solution of the 8-level optical Bloch equations when including the ions classical motion. This technique paves the way for many experiments comprising heat transport in ion strings, heat engines, non-equilibrium thermodynamics or thermometry of large ion cr...

  16. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    Science.gov (United States)

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density.

  17. Experimental study of particle formation by ion-ion recombination

    Science.gov (United States)

    Nagato, Kenkichi; Nakauchi, Masataka

    2014-10-01

    Particle formation by ion-ion recombination has been studied using an ion-ion recombination drift tube (IIR-DT). IIR-DT uses two DC corona ionizers to produce positive and negative ions at the ends of the drift tube. The ions of different polarity move in opposite directions along the electric field in the drift tube. We observed significant particle formation using ions generated in purified air containing H2O, SO2, and NH3. Particle formation was suppressed when no drift field was applied. We also observed few particles when we used a single discharge (positive or negative only). These results clearly show that particle formation observed in the IIR-DT was caused by nucleation by ion-ion recombination. Positive and negative ion species produced by corona ionizers were investigated using an atmospheric pressure ionization mass spectrometer. The ions involved in the particle formation were suggested to include H3O+(H2O)n and NH4+(H2O)n for positive ions and sulfur-based ions such as SO5-, SO5-NO2, and HSO4- for negative ions.

  18. Secondary ion emission from CO2-H2O ice irradiated by energetic heavy ions: Part I. Measurement of the mass spectra

    Science.gov (United States)

    Farenzena, L. S.; Collado, V. M.; Ponciano, C. R.; da Silveira, E. F.; Wien, K.

    2005-05-01

    Secondary ion mass spectrometry is used to investigate ion emission from a frozen-gas mixture (T = 80-90 K) of CO2 and H2O bombarded by MeV nitrogen ions and by 252Cf fission fragments (FF). The aim of the experiments is to produce organic molecules in the highly excited material around the nuclear track and to detect them in the flux of sputtered particles. Such sputter processes are known to occur at the icy surfaces of planetary or interstellar objects. Time-of-flight (TOF) mass spectrometry is employed to identify the desorbed ions. Mass spectra of positive and negative ions were taken for several molecular H2O/CO2 ratios. In special, positive ions induced by MeV nitrogen beam were analyzed for 9 and 18% H2O concentrations of the CO2-H2O ice and negative ions for ~5% H2O. The ion peaks are separated to generate exclusive the spectra of CO2 specific ions, H2O specific ions and hybrid molecular ions, the latter ones corresponding to ions that contain mostly H and C atoms. In the mass range from 10 to 320 u, the latter exhibits 35 positive and 58 negative ions. The total yield of the positive ions is 0.35 and 0.57 ions/impact, respectively, and of negative ions 0.066 ions/impact. Unexpected effects of secondary ion sputtering yields on H2O/CO2 ratio are attributed to the influence of water molecules concentration on the ionization process.

  19. Ion chromatography on-chip.

    Science.gov (United States)

    Murrihy, J P; Breadmore, M C; Tan, A; McEnery, M; Alderman, J; O'Mathuna, C; O'Neill, A P; O'Brien, P; Avdalovic, N; Haddad, P R; Glennon, J D; Advoldvic, N

    2001-07-27

    On-chip separation of inorganic anions by ion-exchange chromatography was realized. Micro separation channels were fabricated on a silicon wafer and sealed with a Pyrex cover plate using standard photolithography, wet and dry chemical etching, and anodic bonding techniques. Quaternary ammonium latex particles were employed for the first time to coat the separation channels on-chip. Owing to the narrow depths of the channels on the chip, 0.5-10 microm, there were more interactions of the analytes with the stationary phase on the chip than in a 50-microm I.D. capillary. With off-chip injection (20 nl) and UV detection, NO2-, NO3-, I-, and thiourea were separated using 1 mM KCl as the eluent. The linear ranges for NO2- and NO3- are from 5 to 1000 microM with the detection limits of 0.5 microM.

  20. ION-1 technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Halbig, J.K.; Caine, J.C.

    1985-07-01

    The portable gamma-ray and neutron detector electronics (ION-1) gives a digital readout of the current-mode response produced by gamma rays in an ion chamber and of amplification and scaling of pulses received from a neutron detector. The primary application is the measurement of gamma-ray and neutron activity of irradiated reactor fuels stored at a reactor or at a storage pond away from a reactor. ION-1 is the first such instrument to use a design that allows communication of procedures, response, and results between instrument and inspector. It prompts the inspector through procedures, carries out programmed measurement steps, calculates results and error estimates, and performs internal diagnostic checks. This Technical Manual describes adjustment procedures and limited technical information that enable the inspector to troubleshoot at the board level. 5 figs., 10 tabs.