WorldWideScience

Sample records for ion fusion accelerator

  1. Pulsed power ion accelerators for inertially confined fusion

    International Nuclear Information System (INIS)

    Olson, C.L.

    1976-01-01

    Current research is described on pulsed power ion accelerators for inertial fusion, i.e., ion diodes and collective accelerators. Particle beam energy and power requirements for fusion, and basic deposition characteristics of charged particle beams are discussed. Ion diodes and collective accelerators for fusion are compared with existing conventional accelerators

  2. Accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1985-10-01

    Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985

  3. Accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Talbert, W.L. Jr.; Sawyer, G.A.

    1980-01-01

    Accelerator technology development is presented for heavy ion drivers used in inertial confinement fusion. The program includes construction of low-velocity ''test bed'' accelerator facilities, development of analytical and experimental techniques to characterize ion beam behavior, and the study of ion beam energy deposition

  4. Heavy-ion fusion accelerator research, 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the following topics on heavy-ion fusion accelerator research: MBE-4: the induction-linac approach; transverse beam dynamics and current amplification; scaling up the results; through ILSE to a driver; ion-source and injector development; and accelerator component research and development

  5. New heavy-ion-fusion accelerator research program

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1983-05-01

    This paper will briefly summarize the concepts of Heavy Ion Fusion (HIF), especially those aspects that are important to its potential for generating electrical power. It will also note highlights of the various HIF programs throughout the world. Especially significant is that the US Department of Energy (DOE) plans a program, beginning in 1984, aimed at determining the feasibility of using heavy ion accelerators as drivers for Inertial Confinement Fusion (ICF). The new program concentrates on the aspects of accelerator design that are important to ICF, and for this reason is called HIF Accelerator Research

  6. Heavy Ion Fusion Accelerator Research (HIFAR)

    International Nuclear Information System (INIS)

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C s + sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac

  7. Accelerators for heavy ion inertial fusion: Progress and plans

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Friedman, A.; Herrmannsfeldt, W.B.

    1994-08-01

    The Heavy Ion Inertial Fusion Program is the principal part of the Inertial Fusion Energy Program in the Office of Fusion Energy of the U.S. Department of Energy. The emphasis of the Heavy Ion Program is the development of accelerators for fusion power production. Target physics research and some elements of fusion chamber development are supported in the much larger Inertial Confinement Fusion Program, a dual purpose (defense and energy) program in the Defense Programs part of the Department of Energy. The accelerator research program will establish feasibility through a sequence of scaled experiments that will demonstrate key physics and engineering issues at low cost compared to other fusion programs. This paper discusses progress in the accelerator program and outlines how the planned research will address the key economic issues of inertial fusion energy

  8. Developments in accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1985-01-01

    The long term goal of Heavy Ion Fusion (HIF) is the development of an accelerator with the large beam power, large beam stored-energy, and high brightness needed to implode small deuterium-tritium capsules for fusion power. While studies of an RF linac/storage ring combination as an intertial fusion driver continue in Japan and Europe, the US program in recent times has concentrated on the study of the suitability of linear induction acceleration of ions for this purpose. Novel features required include use of multiple beams, beam current amplification in the linac, and manipulation of long beam bunches with a large velocity difference between head and tail. Recent experiments with an intense bright beam of cesium ions have established that much higher currents can be transported in a long quadrupole system than was believed possible a few years ago. A proof-of-principle ion induction linac to demonstrate beam current amplification with multiple beams is at present being fabricated at LBL

  9. Developments in accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1985-05-01

    The long term goal of Heavy Ion Fusion (HIF) is the development of an accelerator with the large beam power, large beam stored-energy, and high brightness needed to implode small deuterium-tritium capsules for fusion power. While studies of an rf linac/storage ring combination as an inertial fusion driver continue in Japan and Europe, the US program in recent times has concentrated on the study of the suitability of linear induction acceleration of ions for this purpose. Novel features required include use of multiple beams, beam current amplification in the linac, and manipulation of long beam bunches with a large velocity difference between head and tail. Recent experiments with an intense bright beam of cesium ions have established that much higher currents can be transported in a long quadrupole system than was believed possible a few years ago. A proof-of-principle ion induction linac to demonstrate beam current amplification with multiple beams is at present being fabricated at LBL. 28 refs., 4 figs

  10. Heavy-Ion Fusion Accelerator Research, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    This report discusses the following topics: research with multiple- beam experiment MBE-4; induction linac systems experiments; and long- range research and development of heavy-ion fusion accelerators

  11. Heavy-ion accelerator research for inertial fusion

    International Nuclear Information System (INIS)

    1987-08-01

    Thermonuclear fusion offers a most attractive long-term solution to the problem of future energy supplies: The fuel is virtually inexhaustible and the fusion reaction is notably free of long-lived radioactive by-products. Also, because the fuel is in the form of a plasma, there is no solid fuel core that could melt down. The DOE supports two major fusion research programs to exploit these virtues, one based on magnetic confinement and a second on inertial confinement. One part of the program aimed at inertial fusion is known as Heavy Ion Fusion Accelerator Research, or HIFAR. In this booklet, the aim is to place this effort in the context of fusion research generally, to review the brief history of heavy-ion fusion, and to describe the current status of the HIFAR program

  12. Induction-accelerator heavy-ion fusion: Status and beam physics issues

    International Nuclear Information System (INIS)

    Friedman, A.

    1996-01-01

    Inertial confinement fusion driven by beams of heavy ions is an attractive route to controlled fusion. In the U.S., induction accelerators are being developed as open-quotes driversclose quotes for this process. This paper is divided into two main sections. In the first section, the concept of induction-accelerator driven heavy-ion fusion is briefly reviewed, and the U.S. program of experiments and theoretical investigations is described. In the second, a open-quotes taxonomyclose quotes of space-charge-dominated beam physics issues is presented, accompanied by a brief discussion of each area

  13. Workshop on Accelerators for Heavy Ion Fusion: Summary Report of the Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, P.A.; Barnard, J.J.

    2011-04-29

    The Workshop on Accelerators for Heavy Ion Fusion was held at Lawrence Berkeley National Laboratory May 23-26, 2011. The workshop began with plenary sessions to review the state of the art in HIF (heavy ion fusion), followed by parallel working groups, and concluded with a plenary session to review the results. There were five working groups: IFE (inertial fusion energy) targets, RF approach to HIF, induction accelerator approach to HIF, chamber and driver interface, ion sources and injectors.

  14. Recirculating induction accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Barnard, J.J.; Deadrick, F.; Bangerter, R.O.

    1993-01-01

    We have recently completed a two-year study of recirculating induction heavy-ion accelerators (recirculators) as low-cost drivers for inertial-fusion-energy power plants. We present here a summary of that study and other recent work on recirculators

  15. Induction accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE). The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator

  16. Induction accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE).The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development. The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator

  17. Limitations of heavy ion synchrotron acceleration for inertial fusion

    International Nuclear Information System (INIS)

    Berley, D.; Danby, G.T.

    1977-01-01

    The potential benefits from heavy ion inertial fusion motivate the rapid development of a program to test the principle. To define the program, accelerator parameters which have not hitherto been commonly considered must be studied interactively with basic questions of space charge limitations and charge exchange. Beam lifetime and power output efficiency may ultimately lead to a linear accelerator as the choice for an ignition device. For proof of principle, however, at power levels way beyond present inertial fusion experience, synchrotrons may have applicability at lower cost. The power and energy which can be delivered by the accelerating system to the reaction chamber are limited by space charge defocussing and intra beam charge exchange scattering, both of which are beam density dependent. These put constraints on linac injector energy, synchrotron aperture, synchrotron magnetic rigidity, acceleration time, ion species and charge to mass ratio. The accelerator system considered is classical. A linear accelerator injects into a synchrotron which accelerates the ion beam to the full energy delivered to the target. The maximum energy deliverable by a synchrotron is treated in section I. The targetting parameters and the energy gained through synchrotron acceleration completely determine the synchrotron aperture. These are discussed in sections II and III. The ion range in material is treated in section IV. The problem of intrabeam scattering is considered in section V. Finally, in section VI is a discussion of examples to meet specified goals

  18. Heavy-ion fusion accelerator research in the USA

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Godlove, T.D.; Herrmannsfeldt, W.B.; Keefe, D.

    1985-01-01

    In October 1983, a Heavy-Ion Fusion Accelerator Research programme (HIFAR) was established under the Office of Energy Research of the United States Department of Energy. The programme goal over the next several years is to establish a data base in accelerator physics and technology that can allow the potential of heavy ion fusion to be accurately assessed. Three new developments have taken place in the HIFAR programme. First, a decision has been made to concentrate the experimental programme on the development of multiple-beam induction linacs. Second, new beam transport experiments over a large number of quadrupole elements show that stable beam propagation occurs for significantly higher beam currents than had been believed possible a few years ago. Third, design calculations now show that a test accelerator of modest size and cost can come within a factor of three of testing almost all of the physics and technical issues appropriate to a power plant driver. (author)

  19. Inertial confinement fusion systems using heavy ion accelerators as drivers

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Godlove, T.F.; Keefe, D.

    1980-03-01

    Heavy ion accelerators are the most recent entrants in the effort to identify a practical driver for inertial confinement fusion. They are of interest because of the expected efficient coupling of ion kinetic energy to the thermal energy needed to implode the pellet and because of the good electrical efficiency of high intensity particle accelerators. The beam intensities required, while formidable, lie within the range that can be studied by extensions of the theories and the technology of modern high energy accelerators

  20. Development of heavy-ion accelerators as drivers for inertially confined fusion

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1979-06-01

    The commercialization of inertial confinement fusion is discussed in terms of power costs. A chapter on heavy ion accelerators covers the prinicpal components, beam loss mechanisms, and theoretical considerations. Other tyopics discussed include the following: (1) heavy ion fusion implementation plan, (2) driver with accumulator rings fed by an rf LINAC, (3) single pass driver with an induction LINAC, and (4) implementation scenarios

  1. Inertial confinement fusion systems using heavy ion accelerators as drivers

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Godlove, T.F.; Keefe, D.

    1980-01-01

    Heavy ion accelerators are the most recent entrants in the effort to identify a practical driver for inertial confinement fusion. They are of interest because of the expected efficient coupling of ion kinetic energy to the thermal energy needed to implode the pellet and because of the good electrical efficiency of high intensity particle accelerators. The beam intensities required, while formidable, lie within the range that can be studied by extensions of the theories and the technology of modern high energy accelerators. (orig.) [de

  2. Design study of an accelerator for heavy ion fusion

    International Nuclear Information System (INIS)

    Katayama, T.; Noda, A.; Tokuda, N.; Hirao, Y.

    1980-01-01

    Design of a demonstration accelerator for heavy ion fusion based on a synchrotron system is briefly described. The proposed complex system of injector linac, rapid cycling synchrotron and five accumulation rings can produce a peak current 1.6 kA, peak power 32 TW and total energy 0.3 MJ. Investigations of the intrabeam scattering give a lifetime of the beam longer than the fusion cycle time of 1 sec

  3. Ion beam inertial fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1995-01-01

    About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise

  4. Resolving key heavy-ion fusion target issues with relativistic heavy-ion research accelerators

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1988-01-01

    Heavy-ion accelerators designed for relativistic nuclear research experiments can also be adapted for target research in heavy-ion driver inertial fusion. Needle-shaped plasmas can be created that are adequate for studying basic properties of matter at high energy density. Although the ion range is very long, the specific deposited power nevertheless increases with kinetic energy, as the focus spot can be made smaller and more ions can be accumulated in larger rings

  5. Heavy ion accelerators for inertial fusion

    International Nuclear Information System (INIS)

    Rubbia, C.

    1992-01-01

    Particle accelerators are used for accelerating the elementary, stable and separable constituents of matters to relativistic speed. These beams are of fundamental interest in the study on the ultimate constituents of matters and their interaction. Particle accelerators are the most promising driver for the fusion power reactors based on inertial confinement. The principle of inertial confinement fusion, radiation driven indirect drive, the accelerator complex and so on are described. (K.I.)

  6. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1--September 30, 1988

    International Nuclear Information System (INIS)

    1988-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; final bunching, transport, and accurate focusing on a small target

  7. First phase plan for experimental study of heavy-ion inertial fusion accelerator

    International Nuclear Information System (INIS)

    Hattori, Toshiyuki; Okamura, Masahiro; Oguri, Yoshiyuki; Aida, Toshihiro; Takeuchi, Kouichi; Sasa, Kimikazu; Itoh, Takashi; Okada, Masashi; Takahashi, Yousuke; Ishii, Yasuyuki.

    1993-01-01

    We propose the basic experiment plan of driver for heavy-ion inertial fusion by heavy-ion linac [1-3] system and the heavy-ion cooler synchrotron. As the first phase of planning, we will improve old heavy-ion accelerator system that accelerate small intensity around Cl ion with charge to mass ratio of 1/4 up to 2.4 MeV/amu. The injector of the system will exchange from the 1.6 MV Peletron Tandem accelerator to an RFQ type linac with an ECR heavy-ion source. According to building up the power sources of RF and focusing magnet, then it is able to accelerate intense around Xe ion with charge to mass ratio of 1/6 up to 2.4 MeV/amu. At the next stage of it, we will construct a heavy-ion cooler synchrotron having magneticrigidity of 3 or 6 Tm and begin to study about HIF driver. (author)

  8. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1990--September 30, 1990

    International Nuclear Information System (INIS)

    1990-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, induction acceleration, is being studied at the Lawrence Berkeley Laboratory and at the Lawrence Livermore National Laboratory. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies to cut costs. Key elements to be addressed include: (1) beam quality limits set by transverse and longitudinal beam physics; (2) development of induction accelerating modules, and multiple-beam hardware, at affordable costs; (3) acceleration of multiple beams with current amplification without significant dilution of the optical quality of the beams; (4) final bunching, transport, and accurate focusing on a small target

  9. High current pulsed linear ion accelerators for inertial fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Yonas, G.; Poukey, J.W.

    1978-01-01

    Pulsed ion beams have a number of advantages for use as inertial fusion drivers. Among these are classical interaction with targets and good efficiency of production. As has been pointed out by members of the accelerator community, multistage accelerators are attractive in this context because of lower current requirements, low power flow per energy conversion stage and low beam divergence at higher ion energies. On the other hand, current transport limits in conventional accelerators constrain them to the use of heavy ions at energies much higher than those needed to meet the divergence requirements, resulting in large, costly systems. We have studied methods of neutralizing ion beams with electrons within the accelerator volume to achieve higher currents. The aim is to arrive at an inexpensive accelerator that can advantageously use existing pulsed voltage technology while being conservative enough to achieve a high repetition rate. Typical output parameters for reactor applications would be an 0 + beam of 30 kA at 300 MeV. We will describe reactor scaling studies and the physics of neutralized linear accelerators using magnetic fields to control the electron dynamics. Recent results are discussed from PULSELAC, a five stage multikiloampere device being tested at Sandia Laboratories

  10. Heavy ion fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1986-01-01

    This report on the International Symposium on Heavy Ion Fusion held May 27-29, 1986 summarizes the problems and achievements in the areas of targets, accelerators, focussing, reactor studies, and system studies. The symposium participants recognize that there are large uncertainties in Heavy Ion Fusion but many of them are also optimistic that HIF may ultimately be the best approach to fusion

  11. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1988--March 31, 1989

    International Nuclear Information System (INIS)

    1989-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; and final bunching, transport, and accurate focusing on a small target

  12. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, October 1, 1987--March 31, 1988

    International Nuclear Information System (INIS)

    1988-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification -- both new features in a linac -- without significant dilution of the optical quality of beams; and final bunching, transport, and accurate focusing on a small target

  13. Use of heavy ion accelerators in fusion reactor-related radiation-damage studies

    International Nuclear Information System (INIS)

    Taylor, A.; Dobson, D.A.

    1974-01-01

    The heavy-ion accelerator has become an important tool in the study of the fundamentals of radiation damage in fission- and fusion-reactor materials. Present facilities for such studies within the Materials Science Division at Argonne National Laboratory are provided by two complementary accelerator systems. Examples of the work carried out are discussed

  14. Beam dynamics studies of the Heavy Ion Fusion Accelerator injector

    International Nuclear Information System (INIS)

    Henestroza, E.; Yu, S.S.; Eylon, S.

    1995-04-01

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K + ) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam and simultaneously accelerates the ions to 2 MeV. The fully 3-D PIC code WARP together with EGUN and POISSON were used to design the machine and analyze measurements of voltage, current and phase space distributions. A comparison between beam dynamics characteristics as measured for the injector and corresponding computer calculations will be presented

  15. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Friedman, A.

    1991-01-01

    This report describes the research status in the following areas of research in the field of heavy ion inertial fusion: (1) RF accelerators, storage rings, and synchrotrons; (2) induction linacs; (3) recirculation induction accelerator approach; (4) a new accelerator concept, the ''Mirrortron''; (5) general issues of transport, including beam merging, production of short, fat quadrupoles with nearly linear focusing, calculations of beam behaviour in image fields; 3-D electrostatic codes on drift compression with misalignments and transport around bends; (6) injectors, ion sources and RFQs, a.o., on the development of a 27 MHz RFQ to be used for the low energy portion of a new injector for all ions up to Uranium, and the development of a 2 MV carbon ion injector to provide 16 C + beams of 0.5 A each for ILSE; (7) beam transport from accelerator to target, reporting, a.o., the feasibility to suppress third-order aberrations; while Particle-in-Cell simulations on the propagation of a non-neutral ion beam in a low density gas identified photo-ionization by thermal X-rays from the target as an important source of defocusing; (9) heavy ion target studies; (10) reviewing experience with laser drivers; (11) ion cluster stopping and muon catalyzed fusion; (12) heavy ion systems, including the option of a fusion-fission burner. 1 tab

  16. Overview of Heavy Ion Fusion Accelerator Research in the U. S.

    Science.gov (United States)

    Friedman, Alex

    2002-12-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.

  17. Overview of heavy ion fusion accelerator research in the U.S

    International Nuclear Information System (INIS)

    Friedman, Alex

    2002-01-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed

  18. Overview of Heavy Ion Fusion Accelerator Research in the U.S

    International Nuclear Information System (INIS)

    Friedman, A

    2002-01-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory; the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed

  19. Heavy ion fusion

    International Nuclear Information System (INIS)

    Hofmann, Ingo

    1993-01-01

    With controlled thermonuclear fusion holding out the possibility of a prolific and clean new source of energy, the goal remains elusive after many years of continual effort. While the conventional Tokamak route with magnetic confinement continues to hit the headlines, other alternatives are now becoming competitive. One possible solution is to confine the thermonuclear fuel pellet by high power beams. Current research and perspectives for future work in such inertial confinement was the subject of the 'Prospects for Heavy Ion Fusion' European Research Conference held in Aghia Pelaghia, Crete, last year. Its main focus was on the potential of heavy ion accelerators as well as recent advances in target physics with high power lasers and light ion beams. Carlo Rubbia declared that high energy accelerators, with their high efficiency, are the most promising approach to economical fusion energy production. However the need for cost saving in the driver accelerator requires new ideas in target design tailored to the particularities of heavy ion beams, which need to be pushed to the limits of high current and phase space density at the same time

  20. Accelerator and fusion research division

    International Nuclear Information System (INIS)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations

  1. Correction of longitudinal errors in accelerators for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Callahan, D.A.; Barnard, J.J.; Langdon, A.B.; Fessenden, T.J.

    1993-01-01

    Longitudinal space-charge waves develop on a heavy-ion inertial-fusion pulse from initial mismatches or from inappropriately timed or shaped accelerating voltages. Without correction, waves moving backward along the beam can grow due to the interaction with their resistivity retarded image fields, eventually degrading the longitudinal emittance. A simple correction algorithm is presented here that uses a time-dependent axial electric field to reverse the direction of backward-moving waves. The image fields then damp these forward-moving waves. The method is demonstrated by fluid simulations of an idealized inertial-fusion driver, and practical problems in implementing the algorithm are discussed

  2. BNL heavy ion fusion program

    International Nuclear Information System (INIS)

    Maschke, A.W.

    1978-01-01

    A principal attraction of heavy ion fusion is that existing accelerator technology and theory are sufficiently advanced to allow one to commence the design of a machine capable of igniting thermonuclear explosions. There are, however, a number of features which are not found in existing accelerators built for other purposes. The main thrust of the BNL Heavy Ion Fusion program has been to explore these features. Longitudinal beam bunching, very low velocity acceleration, and space charge neutralization are briefly discussed

  3. Development of heavy ion induction linear accelerators as drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Warwick, A.I.; Celata, C.; Faltens, A.; Fessenden, T.J.; Judd, D.L.; Keefe, D.; Kim, C.H.; Laslett, L.J.; Lee, E.P.; Meuth, H.

    1988-01-01

    This paper reports on a continuing study in the USA of the feasibility of an induction linac fusion driver, which would accelerate multiple heavy-ion beams through a sequence of pulsed transformers and amplify the beam current during acceleration. The driver cost could be $200/Joule or less and the cost of electricity in the range of .050-.055$/kWhr. As a next stage of development to assess the feasibility of this approach the authors propose an Induction Linac Systems Experiment. This will test some of the technology and multiple-beam manipulations necessary for a fusion driver

  4. Development of heavy ion induction linear accelerators as drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Warwick, A.I.; Celata, C.; Faltens, A.

    1988-06-01

    There is a continuing study in the USA of the feasibility of an induction linac fusion driver, which would accelerate multiple heavy-ion beams through a sequence of pulsed transformers and amplify the beam current during acceleration. The driver cost could be $200/Joule or less and the cost of electricity in the range of .050-.055$/kWhr. As a next stage of development to assess the feasibility of this approach we propose an ''Induction Linac Systems Experiment''. This will test some of the technology and multiple-beam manipulations necessary for a fusion driver. 7 refs., 1 fig

  5. Recirculating induction accelerator as a low-cost driver for heavy ion fusion

    International Nuclear Information System (INIS)

    Barnard, J.J.; Newton, M.A.; Reginato, L.L.; Sharp, W.M.; Shay, H.D.; Yu, S.S.

    1991-09-01

    As a fusion driver, a heavy ion accelerator offers the advantages of efficient target coupling, high reliability, and long stand-off focusing. While the projected cost of conventional heavy ion fusion (HIF) drivers based on multiple beam induction linacs are quite competitive with other inertial driver options, a driver solution which reduces the cost by a factor of two or more will make the case for HIF truly compelling. The recirculating induction accelerator has the potential of large cost reductions. For this reason, an intensive study of the recirculator concept was performed by a team from LLNL and LBL over the past year. We have constructed a concrete point design example of a 4 MJ driver with a projected efficiency of 35% and projected cost of less than 500 million dollars. A detailed report of our findings during this year of intensive studies has been recently completed. 3 refs., 2 figs., 2 tabs

  6. Accelerator aspects of heavy ion induced inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, D

    1983-01-01

    Besides the possibilities of the magnetic fusion those of inertial fusion have increasingly found interest. Bundled photon and corpuscular beams shall be symetrically focussed from the outside on a pellet with the fusion fuel being compressed far beyond the density of the ordinary solids. Laser, light ion and heavy ion beams can be used as driver beams. The GSI took over the project leadership for a five years' research programme with formulated questions on heavy ion fusion. The project is promoted by the BMFT. During the international symposium the opportunity of intensive discussions on research work in this field in different countries was made use of.

  7. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  8. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  9. Accelerator and Fusion Research Division 1989 summary of activities

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations

  10. Construction of ion accelerator for ion-surface interaction research

    International Nuclear Information System (INIS)

    Obara, Kenziro; Ohtsuka, Hidewo; Yamada, Rayji; Abe, Tetsuya; Sone, Kazuho

    1977-09-01

    A Cockcroft-Walton type ion accelerator for ion-surface interaction research was installed at Plasma Engineering Laboratory, Division of Thermonuclear Fusion Research, JAERI, in March 1977. Its maximum accelerating voltage is 400 kV. The accelerator has some outstanding features compared with the conventional type. Described are setup of the accelerator specification of the major components, safety system and performance. (auth.)

  11. Ion accelerators as drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.; Rosenblum, S.S.

    1980-11-01

    During the past few years the possibility of using intense ion beams to ignite a pellet of fusion fuel has looked increasingly promising. Ion beams ranging in mass from protons up to uranium have been investigated and several machines have been built at different laboratories to investigate the required technology. Light ion drivers are based on the use of high current, high voltage diodes arranged around a central target. These devices have the necessary power and energy to initiate fusion burn but suffer from the inability to transport stably the necessary huge beam currents over long distances to a small target. Heavy ion drivers are based either on the radio-frequency linac or the induction linac. Because heavy ions have a much shorter range than light ions of the same energy, one is able to raise the beam voltage by a factor of one-thousand and lower the current correspondingly. The expected parameters for a fusion driver will be delineated and the present state of development of the technology for the candidate ion beam drivers will be described in light of these desiderata

  12. Accelerator and Fusion Research Division 1989 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  13. Linear induction accelerators for fusion and neutron production

    International Nuclear Information System (INIS)

    Barletta, W.A.; California Univ., Los Angeles, CA

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs

  14. Heavy ion fusion accelerator research (HIFAR) year-end report, April 1, 1987-September 30, 1987

    International Nuclear Information System (INIS)

    1987-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to access the suitabilty of heavy ion accelerators as iginiters for Inertial Confinement Fusion (ICF). A specific accerelator techonolgy, the induction linac, has been studied at the Lawerence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the vadidation of new accelerator strategies, to cut costs. The papers in this report that address these goals are: MBE-4 mechanical progress, alignment of MBE-4, a compact energy analyzer for MBE-4, Cs + injector modeling with the EGUN code, an improved emittance scanning system for HIFAR, 2-MV injector, carbon arc source development, beam combining in ILSE, emittance growth due to transverse beam combining in ILSE - particle simulation results, achromatic beam combiner for ILSE, additional elements for beam merging, quadrupole magnet design for ILSE, and waveforms and longitudinal beam-parameters for ILSE

  15. Report of the heavy-ion fusion task group

    International Nuclear Information System (INIS)

    Sawyer, G.A.; Booth, L.A.; Henderson, D.B.; Jameson, R.A.; Kindel, J.M.; Knapp, E.A.; Pollock, R.; Talbert, W.L.; Thode, L.E.; Williams, J.M.

    1980-02-01

    An assessment of heavy-ion fusion has been completed. Energetic heavy ions, for example 10-GeV uranium, provided by an rf linac or an induction linac, are used as alternatives to laser light to drive inertial confinement fusion pellets. The assessment has covered accelerator technology, transport of heavy-ion beams, target interaction physics, civilian power issues, and military applications. It is concluded that particle accelerators promise to be efficient pellet drivers, but that there are formidable technical problems to be solved. It is recommended that a moderate level research program on heavy-ion fusion be pursued and that LASL should continue to work on critical issues in accelerator development, beam transport, reactor systems studies, and target physics over the next few years

  16. Comparative study of energy accounting for heavy ion fusion with various driver accelerators

    International Nuclear Information System (INIS)

    Kawasaki, S.; Miyahara, A.

    1980-04-01

    Typical designs of driver heavy ion accelerator systems are referred and compared with regard to the assessment of the energy payback problem involved in their applications to the inertial fusion. Detailed analyses show that the energy investment for the construction of the HIF power station is fairly smaller than the energy produced by the station in its lifetime, in spite of the large scale of its hardware. The situation could be more favourable than, or at least comparable with, the case of the magnetically confined fusion. (author)

  17. Accelerator and Fusion Research Division: Summary of activities, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately

  18. The heavy ion fusion program in the USA

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Davidson, R.C.; Herrmannsfeldt, W.B.; Lindl, J.; Meier, W.R.; Logan, B.G.

    2001-01-01

    Inertial fusion energy research has enjoyed increased interest and funding. This has allowed expanded programs in target design, target fabrication, fusion chamber research, target injection and tracking, and accelerator research. The target design effort examines ways to minimize the beam power and energy and increase the allowable focal spot size while preserving target gain. Chamber research for heavy ion fusion emphasizes the use of thick liquid walls to serve as the coolant, breed tritium, and protect the structural wall from neutrons, photons, and other target products. Several small facilities are now operating to model fluid chamber dynamics. A facility to study target injection and tracking has been built and a second facility is being designed. Improved economics is an important goal of the accelerator research. The accelerator research is also directed toward the design of an Integrated Research Experiment (IRE). The IRE is being designed to accelerate ions to >100 MeV, enabling experiments in beam dynamics, focusing, and target physics. Activities leading to the IRE include ion source development and a High Current Experiment (HCX) designed to transport and accelerate a single beam of ions with a beam current of approximately 1 A, the initial current required for each beam of a fusion driver. In terms of theory, the program is developing a source-to-target numerical simulation capability. The goal of the entire program is to enable an informed decision about the promise of heavy ion fusion in about a decade. (author)

  19. Charged particle accelerators for inertial fusion energy

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1991-01-01

    The long history of successful commercial applications of charged-particle accelerators is largely a result of initiative by private industry. The Department of Energy views accelerators mainly as support equipment for particle physicists rather than components of an energy generation program. In FY 91, the DOE spent over 850 M$ on building and supporting accelerators for physics research versus 5 M$ on induction accelerators for fusion energy. The author believes this emphasis is skewed. One must address problems of long-term energy sources to preserve the possibility of basic research by future generations. In this paper, the author reviews the rationale for accelerators as inertial fusion drivers, emphasizing that these devices provide a viable path of fusion energy from viewpoints of both physics and engineering. In this paper, he covered the full range of accelerator fusion applications. Because of space limitations, this paper concentrates on induction linacs for ICF, an approach singled out in recent reports by the National Academy of Sciences and the Fusion Policy Advisory Committee as a promising path to long-term fusion power production. Review papers by Cook, Leung, Franzke, Hofmann and Reiser in these proceedings give details on light ion fusion and RF accelerator studies

  20. Progress in heavy-ion drivers for inertial fusion

    International Nuclear Information System (INIS)

    Friedman, A.; Bangerter, R.O.; Herrmannsfeldt, W.B.

    1995-01-01

    This document deals with heavy-ion induction accelerators developed as fusion drivers for Inertial Confinement Fusion power. It presents the results of research aimed at developing drivers having reduced cost and size as well as the Elise accelerator being built at Lawrence Berkeley Laboratory. An experimental program at Lawrence Livermore National Laboratory concerning recirculating induction accelerators is also presented. Eventually, the document provides some information on other elements of the U.S. Heavy-Ion Fusion (HIF) research program: the experimental study of beam merging, a magnetic quadrupole development program and a study of plasma lenses. (TEC). 28 refs., 6 figs

  1. Heavy ion inertial fusion: interface between target gain, accelerator phase space and reactor beam transport revisited

    International Nuclear Information System (INIS)

    Barletta, W.A.; Fawley, W.M.; Judd, D.L.; Mark, J.W.K.; Yu, S.S.

    1984-01-01

    Recently revised estimates of target gain have added additional optimistic inputs to the interface between targets, accelerators and fusion chamber beam transport. But it remains valid that neutralization of the beams in the fusion chamber is useful if ion charge state Z > 1 or if > 1 kA per beamlet is to be propagated. Some engineering and economic considerations favor higher currents

  2. Development and testing of the improved focusing quadrupole for heavy ion fusion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R R; Martovetsky, N N; Meinke, R B; Chiesa, L; Lietzke, A F; Sabbi, G L; Seidl, P A

    2003-10-23

    An improved version of the focusing magnet for a Heavy Ion Fusion (HIF) accelerator was designed, built and tested in 2002-2003. This quadrupole has higher focusing power and lower error field than the previous version of the focusing quadrupoles successfully built and tested in 2001. We discuss the features of the new design, selected fabrication issues and test results.

  3. Accelerator Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  4. Accelerator & Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  5. Accelerator and Fusion Research Division: 1987 summary of activities

    International Nuclear Information System (INIS)

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics

  6. Accelerator and Fusion Research Division: 1987 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  7. Study of recirculating induction accelerator as drivers for heavy ion fusion

    International Nuclear Information System (INIS)

    Shay, H.D.; Barnard, J.J.; Brooks, A.L.; Coffield, F.; Deadrick, F.; Griffith, L.V.; Kirbie, H.C.; Neil, V.K.; Newton, M.A.; Paul, A.C.

    1993-01-01

    Two years ago, Lawrence Livermore National Laboratory (LLNL) began a study of the viability and relative utility of recirculating induction accelerators as drivers for Heavy Ion Fusion (HIF). The final draft of the report detailing the results in 284 pages was completed in September, 1991. As well as broadly involving the collaboration of many researchers from several groups at LLNL, it also benefited from contributions from several individuals in the HIF program at Lawrence Berkeley Laboratory and from others in the HIF community nationwide. This presentation summarizes the key findings given in that report

  8. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1989--September 30, 1989

    International Nuclear Information System (INIS)

    1989-12-01

    This report contains the following topics on heavy ion fusion: MBE-4 drifting beam quadrupole operating range; transverse emittance growth in MBE-4; an improved ion source for MBE-4; drifting beam studies on MBE-4; 2-MV injector; improvements in lifetime of the C + source; injector control system; Maxwell spark gap test update; ILSE cosine 2θ quadrupole magnet development; electrostatic quadrupole prototype development activity; induction accelerator cell development; effect of a spread in beamlet currents on longitudinal stability; and heavy ion linac driver analysis

  9. Progress toward fusion with light ions

    International Nuclear Information System (INIS)

    1980-01-01

    New results in target design, beam generation and transport, and pulse power technology have led to a program shift stressing light ion-driven inertial confinement fusion. According to present estimates, a gain ten fusion pellet will require at least one megajoule and approx. 100 TW power input. Progress in ion sources has resulted in beam power density of approx. 1 TW/cm 2 , a factor of ten increase over the last year, and cylindrical implosion experiments have been performed. Other experiments have demonstrated the ability to transport ion and electron beams with high efficiency and have confirmed numerical predictions on the properties of beam transport channels converging at a target. These developments together with improvements in pulse power technology allow us to project that the 72 beam, 100 TW Particle Beam Fusion Accelerator, PBFA-II will attain target output energy equal to stored energy in the accelerator

  10. Accelerator and Fusion Research Division: summary of activities, 1983

    International Nuclear Information System (INIS)

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation

  11. Mechanical design of recirculating accelerator experiments for heavy-ion fusion

    International Nuclear Information System (INIS)

    Karpenko, V.

    1995-01-01

    Recirculating induction accelerators have been studied as a potential low cost driver for inertial fusion energy. At LLNL, we are developing a small (4.5-m diameter), scaled, experimental machine which will demonstrate many of the engineering solutions of a full scale driver. The small recirculator will accelerate singly ionized potassium ions from 80 to 320 keV and 2 to 8 mA, using electric dipoles for bending and permanent magnet quadrupoles for focusing in a compact periodic lattice. While very compact, and low cost, this design allows the investigation of most of the critical physics issues associated with space-charge-dominated beams in future IFE power plant drivers. This report describes the recirculator, its mechanical design, its vacuum design, and the process for aligning it. Additionally, a straight magnetic transport experiment is being carried out to test diagnostics and magnetic transport in preparation for the recirculator

  12. Progress in heavy-ion drivers for inertial fusion

    International Nuclear Information System (INIS)

    Friedman, A.; Bangerter, R.O.; Herrmannsfeldt, W.B.

    1994-01-01

    Heavy-ion induction accelerators are being developed as fusion drivers for ICF power production in the US Inertial Fusion Energy (IFE) program, in the Office of Fusion Energy of the US Department of Energy. In addition, they represent an attractive driver option for a high-yield microfusion facility for defense research. This paper describes recent progress in induction drivers for Heavy-Ion Fusion (HIF), and plans for future work. It presents research aimed at developing drivers having reduced cost and size, specifically advanced induction linacs and recirculating induction accelerators (recirculators). The goals and design of the Elise accelerator being built at Lawrence Berkeley Laboratory (LBL), as the first stage of the ILSE (Induction Linac Systems Experiments) program, are described. Elise will accelerate, for the first time, space-charge-dominated ion beams which are of full driver scale in line-charge density and diameter. Elise will be a platform on which the critical beam manipulations of the induction approach can be explored. An experimental program at Lawrence Livermore National Laboratory (LLNL) exploring the recirculator principle on a small scale is described in some detail; it is expected that these studies will result ultimately in an operational prototype recirculating induction accelerator. In addition, other elements of the US HIF program are described

  13. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    Buttram, M.T.

    1985-01-01

    Successful ignition of an inertial confinement fusion (ICF) pellet is calculated to require that several megajoules of energy be deposited in the pellet's centimeter-sized shell within 10 ns. This implies a driver power of several hundreds of terawatts and power density around 100 TW/cm 2 . The Sandia ICF approach is to deposit the energy with beams of 30 MV lithium ions. The first accelerator capable of producing these beams (PBFA II, 100 TW) will be used to study beam formation and target physics on a single pulse basis. To utilize this technology for power production, repetitive pulsing at rates that may be as high as 10 Hz will be required. This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  14. Accelerator ampersand Fusion Research Division 1991 summary of activities

    International Nuclear Information System (INIS)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations

  15. Accelerator and fusion research division. 1992 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  16. The Heavy Ion Fusion Program in the U.S.A

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Davidson, R.C.; Herrmannsfeldt, W.B.; Lindl, J.D.; Logan, B.G.; Meier, W.R.

    2000-01-01

    Inertial fusion energy research has enjoyed increased interest and funding. This has allowed expanded programs in target design, target fabrication, fusion chamber research, target injection and tracking, and accelerator research. The target design effort examines ways to minimize the beam power and energy and increase the allowable focal spot size while preserving target gain. Chamber research for heavy ion fusion emphasizes the use of thick liquid walls to serve as the coolant, breed tritium, and protect the structural wall from neutrons, photons, and other target products. Several small facilities are now operating to model fluid chamber dynamics. A facility to study target injection and tracking has been built and a second facility is being designed. Improved economics is an important goal of the accelerator research. The accelerator research is also directed toward the design of an Integrated Research Experiment (IRE). The IRE is being designed to accelerate ions to >100 MeV, enabling experiments in beam dynamics, focusing, and target physics. Activities leading to the IRE include ion source development and a High Current Experiment (HCX) designed to transport and accelerate a single beam of ions with a beam current of approximately 1 A, the initial current required for each beam of a fusion driver. In terms of theory, the program is developing a source-to-target numerical simulation capability. The goal of the entire program is to enable an informed decision about the promise of heavy ion fusion in about a decade

  17. Intense ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.

    1997-01-01

    Intense beams of light of heavy ions are being studied as inertial confinement fusion (ICF) drivers for high yield and energy. Heavy and light ions have common interests in beam transport, targets, and alternative accelerators. Self-pinched transport is being jointly studied. This article reviews the development of intense ion beams for ICF. Light-ion drivers are highlighted because they are compact, modular, efficient and low cost. Issues facing light ions are: (1) decreasing beam divergence; (2) increasing beam brightness; and (3) demonstrating self-pinched transport. Applied-B ion diodes are favored because of efficiency, beam brightness, perceived scalability, achievable focal intensity, and multistage capability. A light-ion concept addressing these issues uses: (1) an injector divergence of ≤ 24 mrad at 9 MeV; (2) two-stage acceleration to reduce divergence to ≤ 12 mrad at 35 MeV; and (3) self-pinched transport accepting divergences up to 12 mrad. Substantial progress in ion-driven target physics and repetitive ion diode technology is also presented. Z-pinch drivers are being pursued as the shortest pulsed power path to target physics experiments and high-yield fusion. However, light ions remain the pulsed power ICF driver of choice for high-yield fusion energy applications that require driver standoff and repetitive operation. 100 refs

  18. Development of the rf linear accelerator test bed for heavy-ion fusion

    International Nuclear Information System (INIS)

    Watson, J.M.

    1981-01-01

    The amount of absorbed energy required by high gain deuterium-tritium targets for inertial confinement fusion reactors is now projected to be greater than 1 Megajoule. It has become apparent that a heavy ion fusion driver is the preferred choice in this scenario. To demonstrate this accelerator-based option, the national program has established two test beds: one at Argonne for the rf linac/storage ring approach, and one at Lawrence Berkeley Laboratory developing an induction linac. The Argonne Beam Development Facility (BDF) would consist of a 40 mA rf linac for Xe + 8 , a storage ring, and a 10 GeV synchrotron. The design and status of the BDF is described as well as future program options to demonstrate as many solutions as possible of the issues involved in this approach

  19. Heavy ion fusion- Using heavy ions to make electricity

    International Nuclear Information System (INIS)

    Celata, C.M.

    2004-01-01

    The idea of using nuclear fusion as a source of commercial electrical power has been pursued worldwide since the 1950s. Two approaches, using magnetic and inertial confinement of the reactants, are under study. This paper describes the difference between the two approaches, and discusses in more detail the heavy-ion-driven inertial fusion concept. A multibeam induction linear accelerator would be used to bring ∼100 heavy ion beams to a few GeV. The beams would then heat and compress a target of solid D-T. This approach is unique among fusion concepts in its ability to protect the reaction chamber wall from neutrons and debris

  20. Heavy ion induction linacs for fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Ho, D.D.M.

    1991-01-01

    In 1976 Denis Keefe proposed the heavy ion induction linac as a driver for inertial confinement fusion (ICF) power plants. Subsequent research has established that heavy ion fusion (HIF) is potentially an attractive energy source and has identified the issues that must be resolved to make HIF a reality. The principal accelerator issues are achieving adequately low transverse and longitudinal emittance and acceptable cost. Results from the single and multiple beam experiments at LBL on transverse emittance are encouraging. A predicted high current longitudinal instability that can affect longitudinal emittance is currently being studied. This paper presents an overview of economics and ICF target requirements and their relationship to accelerator design. It also presents a summary of the status of heavy ion induction linac research. It concludes with a discussion of research plans, including plans for the proposed Induction Linac Systems Experiments (ILSE)

  1. Induction linac drivers for commercial heavy-ion beam fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1987-11-01

    This paper discusses induction linac drivers necessary to accelerate heavy ions at inertial fusion targets. Topics discussed are: driver configurations, the current-amplifying induction linac, high current beam behavior and emittance growth, new considerations for driver design, the heavy ion fusion systems study, and future studies. 13 refs., 6 figs., 1 tab

  2. Development of FET-switched induction accelerator cells for heavy-ion fusion recirculators

    International Nuclear Information System (INIS)

    Newton, M.A.; Cravey, W.R.; Hawkins, S.A.; Kirbie, H.C.; Ollis, C.W.

    1993-01-01

    The ''recirculator,'' a recirculating heavy-ion induction accelerator, has been identified as a promising approach for an inertial fusion driver. One of the technical challenges to building a recirculator is the requirement for a modulator that can drive the induction accelerator cells at repetition rates ≥ 100 kHz with variable pulse width and pulse repetition rate capability. A high repetition rate modulator and cell is presently being developed for use on a proposed heavy-ion recirculator. The goal is to develop an array of field-effect transistors to switch 5 kV, 1 μs pulses onto a Metglas induction core at pulse rates exceeding 100 kHz. Each transistor in the array is driven by a fiber-optic isolated gate signal that is powered by a dc/dc converter. The circuit architecture provides for core reset between pulses and produces bursts of pulses that are variable in pulse width and prf. The transistor switching array, energy storage capacitors, reset circuit and cell core are all combined into a single compact, low-impedance package. Progress of this development work will be presented with supporting data

  3. New developments in heavy ion fusion

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1984-01-01

    Beginning in 1984, the US Department of Energy plans a program aimed at determining the feasibility of using heavy ion accelerators as pellet drivers for Inertial Confinement Fusion (ICF). This paper will describe the events in the field of Heavy Ion Fusion (HIF) that have occurred in the three years since the Lausanne Conference in this series. The emphasis will be on the events leading towards the energy oriented program. In addition to providing an overview of progress in HIF, such a discussion may prove useful for promoters of any ''emerging'' energy technology. (orig.) [de

  4. Accelerators for Fusion Materials Testing

    Science.gov (United States)

    Knaster, Juan; Okumura, Yoshikazu

    with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H+ in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low β beams achieved in recent years.

  5. Transverse emittance studies of an induction accelerator of heavy ions

    International Nuclear Information System (INIS)

    Garvey, T.; Eylon, S.; Fessenden, T.J.; Hahn, K.; Henestroza, E.

    1991-01-01

    Current amplification of heavy ion beams is an integral feature of the induction linac approach to heavy ion fusion. As part of the Heavy Ion Fusion Accelerator Research program at LBL the authors have been studying the evolution of the transverse emittance of ion beams while they are undergoing current amplification, achieved by longitudinal bunch compression and acceleration. Experiments are conducted on MBE-4, a four beam Cs + induction linac. The space-charge dominated beams of MBE-4 are focused by electrostatic quadrupoles while they are accelerated from nominally 200 keV up to ∼ 1 MEV by 24 accelerating gaps. Initially the beams have currents of typically 4 mA to 10 mA per beam. Early experimental results showed a growth of the normalized emittance by a factor of 2 while the beam current was amplified by up to 9 times its initial value. The authors will discuss the results of recent experiments in which a mild bunch length compression rate, more typical of that required by a fusion driver, has shown that the normalized emittance can be maintained at its injection value (0.03 mm-mr) during acceleration

  6. Inertial fusion with heavy ion beams

    International Nuclear Information System (INIS)

    Bock, R.; Hofmann, I.; Arnold, R.

    1984-01-01

    The underlying principle of inertial confinement is the irradiation of a small pellet filled with DT-fuel by laser or particle beams in order to compress the fuel and ignite it. As 'drivers' for this process large laser installations and light-ion devices have been built since then and the results obtained during the past few years have increased our confidence, that the ignition conditions might be reached. Further conditions, however, have to be fulfilled for operating a power plant. In particular, the driver needs to have enough efficiency to be economical, and for a continuous energy production a high repetition rate and availability is required. It is less than ten years since it was realized that heavy ion beams might be a promising candidate for achieving inertial confinement fusion (ICF). Due to the evolution of high-energy and heavy-ion physics during the past 25 years, accelerators have attained a high technical and technological standard and an excellent operational reliability. Nevertheless, the heavy ion driver for a fusion power plant requires beam specifications exceeding those of existing accelerators considerably. (Auth.)

  7. Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, I.D.; Qin, H.; Sefkow, A.B.; Startsev, E.A.; Welch, D.; Olson, C.

    2007-01-01

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy

  8. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  9. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions (1)could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion-ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component--positive ions, negative ions, and electrons--can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed

  10. Evaluation of laser-driven ion energies for fusion fast-ignition research

    Science.gov (United States)

    Tosaki, S.; Yogo, A.; Koga, K.; Okamoto, K.; Shokita, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Nishimura, H.

    2017-10-01

    We investigate laser-driven ion acceleration using kJ-class picosecond (ps) laser pulses as a fundamental study for ion-assisted fusion fast ignition, using a newly developed Thomson-parabola ion spectrometer (TPIS). The TPIS has a space- and weight-saving design, considering its use in an laser-irradiation chamber in which 12 beams of fuel implosion laser are incident, and, at the same time, demonstrates sufficient performance with its detectable range and resolution of the ion energy required for fast-ignition research. As a fundamental study on laser-ion acceleration using a ps pulse laser, we show proton acceleration up to 40 MeV at 1 × 10^{19} W cm^{-2}. The energy conversion efficiency from the incident laser into protons higher than 6 MeV is 4.6%, which encourages the realization of fusion fast ignition by laser-driven ions.

  11. Accelerator & Fusion Research Division: 1993 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  12. Conceptual design of compact heavy-ion inertial fusion driver with an r.f. LINAC with high acceleration rate

    International Nuclear Information System (INIS)

    Hattori, T.; Sasa, K.; Okamura, M.; Ito, T.; Tomizawa, H.; Katayose, T.; Hayashizaki, N.; Yoshida, T.; Isokawa, K.; Aoki, M.; Fujita, N.; Okada, M.

    1996-01-01

    The interdigital-H-type (IH) linear accelerator (LINAC) is well known for its high shunt impedance at low and medium particle velocities. Therefore, it can be used to operate efficiently with a high acceleration gradient. The IH LINAC cavity is able to generate 10 MV m -1 (average acceleration gradient) with focusing of the particles by a superconducting solenoid and quadrupole. The LINAC can accelerate particles with a charge to mass ratio (q/A) greater than 1/250 from 0.3 MeV a.m.u. -1 . In a compact heavy-ion inertial fusion driver design, the total effective length of the IH LINAC cavities is about 1250 m. (orig.)

  13. Heavy ion fusion experiments at LLNL

    International Nuclear Information System (INIS)

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-01-01

    We review the status of the experimental campaign being carried out at Lawrence Livermore National Laboratory, involving scaled investigations of the acceleration and transport of space-charge dominated heavy ion beams. The ultimate goal of these experiments is to help lay the groundwork for a larger scale ion driven inertial fusion reactor, the purpose of which is to produce inexpensive and clean electric power

  14. Inertial confinement fusion with light ion beams

    International Nuclear Information System (INIS)

    VanDevender, J.P.; Cook, D.L.

    1986-01-01

    The Particle Beam Fusion Accelerator II (PBFA II) is presently under construction and is the only existing facility with the potential of igniting thermonuclear fuel in the laboratory. The accelerator will generate up to 5 megamperes of lithium ions at 30 million electron volts and will focus them onto an inertial confinement fusion (ICF) target after beam production and focusing have been optimized. Since its inception, the light ion approach to ICF has been considered the one that combines low cost, high risk, and high payoff. The beams are of such high density that their self-generated electric and magnetic fields were thought to prohibit high focal intensities. Recent advances in beam production and focusing demonstrate that these self-forces can be controlled to the degree required for ignition, break-even, and high gain experiments. ICF has been pursued primarily for its potential military applications. However, the high efficiency and cost-effectiveness of the light ion approach enhance its potential for commercial energy application as well

  15. Heavy ion fusion III

    International Nuclear Information System (INIS)

    Hammer, D.; Max, C.; Perkins, F.; Rosenbluth, M.

    1987-03-01

    This report updates Heavy Ion Fusion, JSR-82-302, dated January, 1983. During the last four years, program management and direction has been changed and the overall Inertial Confinement Program has been reviewed. This report therefore concentrates on accelerator physics issues, how the program has addressed those issues during the last four years, and how it will be addressing them in the future. 8 refs., 3 figs

  16. 3-megajoule heavy-ion fusion driver

    International Nuclear Information System (INIS)

    Faltens, A.; Hoyer, E.; Keefe, D.

    1981-06-01

    The initiation of inertial confinement fusion reactions with a heavy ion particle beam has been under intensive study since 1976, and the progress of this study is principally documented in the proceedings of annual workshops held by US National Laboratories. At this time a 3MJ, 150 TW, ion beam is a good choice to initiate microexplosions with energy gain of 100. The Lawrence Berkeley Laboratory has made systems studies based on a Linear Induction Accelerator to meet the beam requirements. The accelerator system, expected performance and cost, and technical problems to be addressed in the near future are discussed

  17. US Heavy Ion Beam Research for Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Callahan D.A.; Kireeff Covo, M.; Celata, C.M.; Cohen, R.H.; Coleman, J.E.; Debonnel, C.S.; Grote, D.P.; Efthimiom, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Henestroza, E.; Kaganovich, I.D.; Kwan, J.W.; Lee, E.P.; Lee, W.W.; Leitner, M.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.L.; Penn, G.E.; Qin, H.; Roy, P.K.; Rose, D.V.; Sefkow, A.; Seidl, P.A.; Sharp, W.M.; Startsev, E.A.; Tabak, M.; Thoma, C.; Vay, J-L; Wadron, W.L.; Wurtele, J.S.; Welch, D.R.; Westenskow, G.A.; Yu, S.S.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  18. The heavy ion fusion research program in West Germany

    International Nuclear Information System (INIS)

    Bock, R.

    1984-01-01

    The study on the feasibility of heavy ion beam for inertial confinement fusion was started four years ago, setting the main goal to identify and investigate the key issues of heavy ion fusion concept. The fund for this program has been provided by the Federal Ministry of Research and Technology. In this paper, the outline of the present research is shown, and some recent achievement is summarized. Moreover, the idea about the goal and the new direction of the future program are discussed. In the present program, two activities are distinguished, that is, the expermental and theoretical studies on accelerators, target physics and atomic physics, and the conceptual design study for a heavy ion-driven power plant. A RF linac with storage rings was chosen as the driver concept. In the accelerator research, ion source studies, RFQ development and beam transport measurement have been considered. Two beam transport experiments were carried out. In the conceptual design study, the HIBALL driver concept, the reactor chamber having the first wall protection using Pb-Li eutectic and so on have been studied. An accelerator facility of modest size has been suggested for basic accelerator physics studies. (Kako, I.)

  19. Heavy-Ion Fusion Accelerator Research, 1992

    International Nuclear Information System (INIS)

    1993-06-01

    The National Energy Strategy calls for a demonstration IFE power plant by the year 2025. The cornerstone of the plan to meet this ambitious goal is research and development for heavy-ion driver technology. A series of successes indicates that the technology being studied by the HIFAR Group -- the induction accelerator -- is a prime candidate for further technology development toward this long-range goal. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions; the understanding of the scaling laws that apply in this hitherto little-explored physics regime; and the validation of new, potentially more economical accelerator strategies. Key specific elements to be addressed include: fundamental physical limits of transverse and longitudinal beam quality; development of induction modules for accelerators, along with multiple-beam hardware, at reasonable cost; acceleration of multiple beams, merging of the beams, and amplification of current without significant dilution of beam quality; final bunching, transport, and focusing onto a small target. In 1992, the HIFAR Program was concerned principally with the next step toward a driver: the design of ILSE, the Induction Linac Systems Experiments. ILSE will address most of the remaining beam-control and beam-manipulation issues at partial driver scale. A few parameters -- most importantly, the line charge density and consequently the size of the ILSE beams -- will be at full driver scale. A theory group closely integrated with the experimental groups continues supporting present-day work and looking ahead toward larger experiments and the eventual driver. Highlights of this long-range, driver-oriented research included continued investigations of longitudinal instability and some new insights into scaled experiments with which the authors might examine hard-to-calculate beam-dynamics phenomena

  20. Direct-driven target implosion in heavy ion fusion

    International Nuclear Information System (INIS)

    Noguchi, K.; Suzuki, T.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A. I.

    2016-01-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. A fuel target alignment error would happen in a fusion reactor; the target alignment error induces heavy ion beam illumination non-uniformity on a target. On the other hand, heavy ion beam accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. First we study the effect of driver irradiation non-uniformity induced by the target alignment error (dz) on the target implosion. We found that dz should be less than about 130 μm for a sufficient fusion energy output. We also optimize the wobbling scheme. The spiral wobbling heavy ion beams would provide a promissing scheme to the uniform beam illumination. (paper)

  1. Intense pulsed ion beams for fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1980-04-01

    The subject of this review paper is the field of intense pulsed ion beam generation and the potential application of the beams to fusion research. Considerable progress has been made over the past six years. The ion injectors discussed utilize the introduction of electrons into vacuum acceleration gaps in conjunction with high voltage pulsed power technology to achieve high output current. Power levels from injectors exceeding 1000 MW/cm 2 have been obtained for pulse lengths on the order of 10 -7 sec. The first part of the paper treats the physics and technology of intense ion beams. The second part is devoted to applications of intense ion beams in fusion research. A number of potential uses in magnetic confinement systems have been proposed

  2. A high charge state heavy ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1996-01-01

    A high current, low emittance, high charge state heavy ion beam source is being developed. This is designed to deliver a heavy ion fusion (HIF) driver accelerator scale beam. Using a high charge state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system, which consists of a gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 3D beam simulations and experimental feasibility study results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector. (orig.)

  3. HIFSA: Heavy-Ion Fusion Systems Assessment Project: Volume 1, Executive summary

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Herrmannsfeldt, W.B.; Saylor, W.W.

    1987-12-01

    The Heavy-Ion Fusion Systems Assessment (HIFSA) was conducted with the specific objective of evaluating the prospects of using induction-linac heavy-ion accelerators to generate economical electrical power from Inertial Confinement Fusion (ICF). Cost/performance models of the major fusion power plant systems were used to identify promising areas in parameter space. Resulting cost-of-electricity projections for a plant size of 1 GWe are comparable to those from other fusion system studies, some of which were for much larger power plants. These favorable projections maintain over an unusually large domain of parameter space but depend especially on making large cost savings for the accelerator by using higher charge-to-mass ratio ions than assumed previously. The feasibility of realizing such savings has been shown by (1) experiments demonstrating transport stability better than anticipated for space-charge-dominated beams, and (2) theoretical predictions that the final transport and pulse compression in reactor-chamber environments will be sufficiently resistant to streaming instabilities to allow successful propagation of neutralized beams to the target. Results of the HIFSA study already have had a significant impact on the heavy-ion induction accelerator R and D program, especially in selection of the charge-state objectives. Also, the study should enhance the credibility of induction linacs as ICF drivers

  4. Heavy ion fusion

    International Nuclear Information System (INIS)

    Bock, R.

    1983-01-01

    Two accelerator scenarios for heavy ion fusion are considered as driver candidates for an ICF power plant: the RF linac with storage rings and the induction linac. The necessary beam intensity and beam quality requirements are already believed to be achievable in the long run; repetition rate and accelerator efficiency are not critical issues. Conceptual design studies have indicated that the technical problems of the ICF concept with a heavy ion driver can be solved and that the economical aspects are not prohibitive as compared to other ICF concepts. Nevertheless, many open problems still exist, and some new ones have exhibited themselves, and it has become evident that most of them cannot be investigated with existing facilities and at the present level of effort. The first section of this paper deals with current conceptual design studies and focuses on the interface between the accelerator and the reactor. The second section summarizes the present research programs and recommends that their scope should be expanded and intensified in the areas of accelerator physics and beam-target interaction and target physics. In the third section the author calls for a dedicated facility and reports on the plans and ideas for such a facility. Schematics of two proposed accelerator driver systems--the driver for HIBALL (5 MJ/pulse) and a single-pass four-beam induction linac (3 MJ/pulse)--are provided

  5. Elise - The next step in development of induction heavy ion drivers for inertial fusion energy

    International Nuclear Information System (INIS)

    Lee, E.; Bangerter, R.O.; Celata, C.; Faltens, A.; Fessenden, T.; Peters, C.; Pickrell, J.; Reginato, L.; Seidl, P.; Yu, S.; Deadeick, F.

    1995-01-01

    This document presents the main features of Elise, a future electric-focused accelerator proposed by the Lawrence Berkeley Laboratory (LBL) and the Lawrence Livermore National Laboratory (LLNL). The goal of the Heavy Ion Fusion Accelerator Research Program is to develop accelerators for fusion energy production. The Elise accelerator would be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and would be designed to be extendible so as to meet this goal. (TEC). 3 refs., 3 figs

  6. A theoretical investigation of the collective acceleration of cluster ions with accelerated potential waves

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Enjoji, Hiroshi; Kawaguchi, Motoichi; Noritake, Toshiya

    1984-01-01

    A theoretical treatment of the acceleration of cluster ions for additional heating of fusion plasma using the trapping effect in an accelerated potential wave is described. The conceptual design of the accelerator is the same as that by Enjoji, and the potential wave used is sinusoidal. For simplicity, collisions among cluster ions and the resulting breakups are neglected. The masses of the cluster ions are specified to range from 100 m sub(D) to 1000 m sub(D) (m sub(D): mass of a deuterium atom). Theoretical treatment is carried out only for the injection velocity which coincides with the phase velocity of the applied wave at the entrance of the accelerator. An equation describing the rate for successful acceleration of ions with a certain mass is deduced for the continuous injection of cluster ions. Computation for a typical mass distribution shows that more than 70% of the injected particles are effectively accelerated. (author)

  7. Design considerations for long-pulse, high-repetition-rate modulators for recirculating heavy-ion accelerators

    International Nuclear Information System (INIS)

    Newton, M.A.; Reginato, L.L.; Yu, S.S.

    1991-06-01

    Heavy-ion accelerators are considered to be one of the promising driver alternatives for inertial fusion. In an inertial fusion driver, multiple beams of heavy-ions are accelerated to kinetic energies consistent with the fusion target requirements. During acceleration, the beams of heavy ions are compressed in time from an initial pulse duration that range from 10's to 100's of microseconds to a final pulse duration of approximately 10 nanoseconds. The compressed beam of heavy ions is then focused on the target in a reactor chamber where the energy released from the fusion reaction is converted to thermal energy and eventually to electricity. A recirculator is an induction accelerator which accelerates the particles and bends them in a closed path with pulsed dipole magnets. A single beam traverses the same accelerating cavities many times (50--100) to acquire its final energy. The primary motivation to evaluate recirculators is the potential for low cost that results from re-using many of the most expensive accelerator components, such as the induction cells, pulsers, and focusing magnets, during an acceleration sequence. One of the areas of technology that is critical to the feasibility of a recirculator is the modulator system required to accelerate the ion beams. This system greatly impacts the overall design of the recirculating accelerator. System studies have been conducted to evaluate the cost and efficiency of several recirculator configurations as function of various parameters. These system studies have helped identify desirable induction cell driver characteristics. These characteristics and the trade-offs that were evaluated will be presented and discussed

  8. Inertial Fusion Driven By Intense Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Sharp, W.M.; Friedman, A.; Grote, D.P.; Barnard, J.J.; Cohen, R.H.; Dorf, M.A.; Lund, S.M.; Perkins, L.J.; Terry, M.R.; Logan, B.G.; Bieniosek, F.M.; Faltens, A.; Henestroza, E.; Jung, J.Y.; Kwan, J.W.; Lee, E.P.; Lidia, S.M.; Ni, P.A.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Takakuwa, J.H.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Gilson, E.P.; Kaganovich, I.D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R.A.; Koniges, A.E.

    2011-01-01

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  9. Accelerator ampersand Fusion Research Division: 1993 Summary of activities

    International Nuclear Information System (INIS)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book

  10. Superconducting focusing quadrupoles for heavy ion fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  11. An accelerated beam-plasma neutron/proton source and early application of a fusion plasma

    International Nuclear Information System (INIS)

    Ohnishi, M.; Yoshikawa, K.; Yamamoto, Y.; Hoshino, C.; Masuda, K.; Miley, G.; Jurczyk, B.; Stubbers, R.; Gu, Y.

    1999-01-01

    We measured the number of the neutrons and protons produced by D-D reactions in an accelerated beam-plasma fusion and curried out the numerical simulations. The linear dependence of the neutron yield on a discharge current indicates that the fusion reactions occur between the background gas and the fast particles. i.e. charge exchanged neutrals and accelerated ions. The neutron yield divided by (fusion cross section x ion current x neutral gas pressure) still possesses the dependence of the 1.2 power of discharge voltage. which shows the fusion reactions are affected by the electrostatic potential built-up in the center. The measured proton birth profiles suggest the existence of a double potential well, which is supported by the numerical simulations. (author)

  12. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Alex, E-mail: af@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); The Virtual National Laboratory for Heavy Ion Fusion Science (United States)

    2014-01-01

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, each of which has a unique arrival time and may have a unique kinetic energy. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of “main-pulse” beams relative to “foot-pulse” beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying “differential acceleration” to individual beams or sets of beams at strategic stages of the transport lines. That is, by accelerating some beams “sooner” and others “later,” it is possible to simplify the beam line configuration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use differential acceleration to effect the simultaneous arrival on target of a set of beams (e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model configurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.

  13. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    International Nuclear Information System (INIS)

    Friedman, Alex

    2014-01-01

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, each of which has a unique arrival time and may have a unique kinetic energy. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of “main-pulse” beams relative to “foot-pulse” beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying “differential acceleration” to individual beams or sets of beams at strategic stages of the transport lines. That is, by accelerating some beams “sooner” and others “later,” it is possible to simplify the beam line configuration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use differential acceleration to effect the simultaneous arrival on target of a set of beams (e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model configurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy

  14. Heavy-ion-fusion-science: summary of US progress

    International Nuclear Information System (INIS)

    Yu, S.S.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Grote, D.P.; Henestroza, E.; Kaganovich, I.D.; Covo, M. Kireeff; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Lund, S.M.; Molvik, A.W.; Olson, C.L.; Qin, H.; Roy, P.K.; Sefkow, A.; Seidl, P.A.; Startsev, E.A.; Vay, J-L.; Waldron, W.L.; Welch, D.R.

    2007-01-01

    Over the past two years noteworthy experimental and theoretical progress has been made towards the top-level scientific question for the US programme on heavy-ion-fusion-science and high energy density physics: 'How can heavy-ion beams be compressed to the high intensity required to create high energy density matter and fusion conditions?' New results in transverse and longitudinal beam compression, high-brightness transport and beam acceleration will be reported. Central to this campaign is final beam compression. With a neutralizing plasma, we demonstrated transverse beam compression by an areal factor of over 100 and longitudinal compression by a factor of > 50. We also report on the first demonstration of simultaneous transverse and longitudinal beam compression in plasma. High beam brightness is key to high intensity on target, and detailed experimental and theoretical studies on the effect of secondary electrons on beam brightness degradation are reported. A new accelerator concept for near-term low-cost target heating experiments was invented, and the predicted beam dynamics validated experimentally. We show how these scientific campaigns have created new opportunities for interesting target experiments in the warm dense matter regime. Finally, we summarize progress towards heavy-ion fusion, including the demonstration of a compact driver-size high-brightness ion injector. For all components of our high intensity campaign, the new results have been obtained via tightly coupled efforts in experiments, simulations and theory

  15. Heavy ion drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1983-01-01

    The advantages of heavy ion beams as a way of delivering the needed energy and power to an inertial fusion target are surveyed. The existing broad technology base of particle accelerators provides an important foundation for designing, costing, and evaluating proposed systems. The sequence of steps needed for the verification of the heavy ion approach is described; recent research results are even more encouraging than had been assumed hitherto

  16. Heavy ion drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1983-12-01

    The advantages of heavy ion beams as a way of delivering the needed energy and power to an inertial fusion target are surveyed. The existing broad technology base of particle accelerators provides an important foundation for designing, costing, and evaluating proposed systems. The sequence of steps needed for the verification of the heavy ion approach is described; recent research results are even more encouraging than had been assumed hitherto

  17. U.S. Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  18. Induction linacs for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brady, V.; Bisognano, J.; Celata, C.; Chupp, W.W.; Faltens, A.; Hartwig, E.C.; Judd, D.L.; Keefe, D.; Kim, C.H.; Laslett, L.J.; Lee, E.P.; Rosenblum, S.S.; Smith, L.; Warwick, A.

    1984-01-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams. (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to proportional70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units. (orig.)

  19. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  20. Fusion at counterstreaming ion beams - ion optic fusion (IOF)

    International Nuclear Information System (INIS)

    Gryzinski, M.

    1981-01-01

    The results of investigation are briefly reviewed in the field of ion optic fusion performed at the Institute of Nuclear Research in Swierk. The ion optic fusion concept is based on the possibility of obtaining fusion energy at highly ordered motion of ions in counterstreaming ion beams. For this purpose TW ion beams must be produced and focused. To produce dense and charge-neutralized ion beams the selective conductivity and ballistic focusing ideas were formulated and used in a series of RPI devices with low-pressure cylindrical discharge between grid-type electrodes. 100 kA, 30 keV deuteron beams were successfully produced and focused into the volume of 1 cm 3 , yielding 10 9 neutrons per 200 ns shot on a heavy ice target. Cylindrically convergent ion beams with magnetic anti-defocusing were proposed in order to reach a positive energy gain at reasonable energy level. (J.U.)

  1. Accelerator and Fusion Research Division: 1984 summary of activities

    International Nuclear Information System (INIS)

    1985-05-01

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers

  2. Plasma focus as an heavy ion source in the problem of heavy ion fusion

    International Nuclear Information System (INIS)

    Gribkov, V.A.; Dubrovskij, A.V.; Kalachev, N.V.; Krokhin, O.N.; Silin, P.V.; Nikulin, V.Ya.; Cheblukov, Yu.N.

    1984-01-01

    Results of experiments on the ion flux formation in a plasma focus (PF) to develop a multicharged ion source for thermonuclear facility driver are presented. In plasma focus accelerating section copper ions were injected. Advantages of the suggested method of ion beam formation are demonstrated. Beam emittance equalling < 0.1 cmxmrad is obtained. Plasma focus ion energy exceeds 1 MeV. Plasma focus in combination with a neodymium laser is thought to be a perspective ion source for heavy ion fusion

  3. 16. International Symposium on Heavy Ion Inertial Fusion (HIF'06)

    International Nuclear Information System (INIS)

    Adonin, A.; Ausset, P.; Babadunni, O.; Barnard, J.; Barriga-Carrasco, M.; Bawa, O.; Benedetti, C.; Bieniosek, F.; Bouchigny, S.; Bret, A.; Celata, Ch.; Chieze, J.P.; Coelho, L.F.; Cohen, R.; Coleman, J.; Cremer, S.; Crouseilles, N.; Davidson, R.; Debonnel, Ch.; Deutsch, C.; Didelez, J.P.; Efremov, V.; Fedosejevs, R.; Fertman, A.; Friedman, A.; Gardes, D.; Gericke, D.; Gilson, E.; Golubev, A.; Gombert, M.M.; Grisham, L.; Grote, D.; Gutnic, M.; Haber, I.; Hammel, B.; Hasegawa, J.; Hegelich, B.M.; Henestroza, E.; Hoffmann, D.H.H.; Horioka, K.; Jacoby, J.; Kaganovich, I.; Katagiri, K.; Kawata, S.; Kikuchi, T.; Kireeff Covo, M.; Kurilenkov, Y.; Latu, G.; Lenglet, A.; Logan, G.; Lund, St.; Maynard, G.; Molvik, A.; Nishinomiya, S.; Ogawa, M.; Oguri, Y.; Piriz, A.R.; Popoff, R.; Pusterla, M.; Qin, H.; Roth, M.; Roy, P.; Sant'Anna, M.; Sasaki, T.; Sefkow, A.; Seidl, P.; Sharkov, B.; Sharp, W.; Sonnendrucker, E.; Spiller, P.; Startsev, E.; Stoltz, P.; Synakowski, E.; Tahir, N.; Takayama, K.; Tashev, B.; Turchetti, G.; Turtikov, V.; Udrea, S.; Varentsov, D.; Vay, J.L.; Velarde, P.; Welch, D.R.; Westenskow, G.; Weyrich, K.; Yaramyshev, St.; Zenkevich, P.

    2006-01-01

    The contributions to this symposium have been divided into 8 issues: 1) overviews of national fusion programs, 2) other fusion programs, 3) accelerators, 4) warm dense matter, 5) ion beam neutralization, 6) atomic physics, 7) beam dynamics, and 8) stopping power. This document gathers only the resumes of the articles

  4. 16. International Symposium on Heavy Ion Inertial Fusion (HIF'06)

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A; Ausset, P; Babadunni, O; Barnard, J; Barriga-Carrasco, M; Bawa, O; Benedetti, C; Bieniosek, F; Bouchigny, S; Bret, A; Celata, Ch; Chieze, J P; Coelho, L F; Cohen, R; Coleman, J; Cremer, S; Crouseilles, N; Davidson, R; Debonnel, Ch; Deutsch, C; Didelez, J P; Efremov, V; Fedosejevs, R; Fertman, A; Friedman, A; Gardes, D; Gericke, D; Gilson, E; Golubev, A; Gombert, M M; Grisham, L; Grote, D; Gutnic, M; Haber, I; Hammel, B; Hasegawa, J; Hegelich, B M; Henestroza, E; Hoffmann, D H.H.; Horioka, K; Jacoby, J; Kaganovich, I; Katagiri, K; Kawata, S; Kikuchi, T; Kireeff Covo, M; Kurilenkov, Y; Latu, G; Lenglet, A; Logan, G; Lund, St; Maynard, G; Molvik, A; Nishinomiya, S; Ogawa, M; Oguri, Y; Piriz, A R; Popoff, R; Pusterla, M; Qin, H; Roth, M; Roy, P; Sant' Anna, M; Sasaki, T; Sefkow, A; Seidl, P; Sharkov, B; Sharp, W; Sonnendrucker, E; Spiller, P; Startsev, E; Stoltz, P; Synakowski, E; Tahir, N; Takayama, K; Tashev, B; Turchetti, G; Turtikov, V; Udrea, S; Varentsov, D; Vay, J L; Velarde, P; Welch, D R; Westenskow, G; Weyrich, K; Yaramyshev, St; Zenkevich, P

    2006-07-01

    The contributions to this symposium have been divided into 8 issues: 1) overviews of national fusion programs, 2) other fusion programs, 3) accelerators, 4) warm dense matter, 5) ion beam neutralization, 6) atomic physics, 7) beam dynamics, and 8) stopping power. This document gathers only the resumes of the articles.

  5. Accelerator and Fusion Research Division annual report, fiscal year 1980, October 1979-September 1980

    International Nuclear Information System (INIS)

    1981-03-01

    Research during October 1979 to September 1980 is summarized. Areas covered include: accelerator operations; positron-electron project; stochastic beam cooling; high-field superconducting magnets; accelerator theory; neutral beam sources; and heavy ion fusion

  6. Review of light-ion driver development for inertial fusion energy

    Science.gov (United States)

    Bluhm, H.; Hoppé, P.

    2001-05-01

    The concept of a light ion beam driver for Inertial Fusion Energy (IFE) is based on multi-terawatt, multi-megavolt pulsed power generators, two-stage ion acceleration and charge neutralised transport. In this paper we discuss the present status for each of these components and identify the main issues for research. Only modest extrapolations from presently available technologies seem necessary for the high voltage pulse generator. The greatest challenge of this approach is the accelerator, which will consist of two stages, the injector and the post-accelerator. Large progress has been made in understanding the physical phenomena occurring in the injector gap. This progress has become possible by new sophisticated diagnostics that allowed detailed temporally and spatially resolved measurements of field and particle densities in the acceleration gap and by relativistic fully electromagnetic PIC-simulation tools, that stimulated analytic models. The conclusions drawn from these studies, namely limiting the ion current density to small enhancements to reduce the beam divergence need still to be verified experimentally. Systematic experimental research on post-acceleration at high power and voltage must aim at a complete understanding of instabilities coupling from the injector to the post-accelerator and at limiting voltages and barriers for the extraction of unwanted ions from plasmas at the injection side. Ultimately the light ion approach requires rep-rateable large area ion sources with ion masses greater than 1 and particle energies around 30 MeV. Although different cleaning protocols were able to reduce the amount of parasitic ions in the Li beam from a LiF field emission source the achievements are still insufficient. A field of common interest between light and heavy ion beam driven fusion is beam transport from the accelerator to the target. Supposedly the most favourable concept for both approaches is self-pinched transport. Experimental evidence for self

  7. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    Science.gov (United States)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  8. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen, R.H.; Friedman, A.; Grote, D.P; Covo, Kireeff M.; Meier, W.R.; Molvik, A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.; Prost, L.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy

  9. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J.; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2005-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy. (author)

  10. rf linac approach to heavy ion fusion

    International Nuclear Information System (INIS)

    Swenson, D.A.

    1979-01-01

    The necessary properties of funneling particle beams from multiple accelerators into combined beams having higher current are outlined, and methods are proposed which maximize the efficiency of this process. A heavy ion fusion driver system example is presented which shows the large advantages in system efficiency to be gained by proper funneling

  11. PBFA [Particle Beam Fusion Accelerator] II: The pulsed power characterization phase

    International Nuclear Information System (INIS)

    Martin, T.H.; Turman, B.N.; Goldstein, S.A.

    1987-01-01

    The Particle Beam Fusion Accelerator II, PBFA II, is now the largest pulsed power device in operation. This paper summarizes its first year and a half of operation for the Department of Energy (DOE) Inertial Confinement Fusion (ICF) program. Thirty-six separate modules provide 72 output pulses that combine to form a 100 TW output pulse at the accelerator center. PBFA II was successfully test fired for the first time on December 11, 1985. This test completed the construction phase (Phase 1) within the expected schedule and budget. The accelerator checkout phase then started (Phase 2). The first priority during checkout was to bring the Phase 1 subsystems into full operation. The accelerator was first tested to determine overall system performance. Next, subsystems that were not performing adequately were modified. The accelerator is now being used for ion diode studies. 32 refs

  12. Overview of US heavy-ion fusion progress and plans

    International Nuclear Information System (INIS)

    Logan, B.G.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, transport, final focusing, chambers and targets for inertial fusion energy (IFE) driven by induction linac accelerators seek to provide the scientific and technical basis for the Integrated Beam Experiment (IBX), an integrated source-to-target physics experiment recently included in the list of future facilities planned by the U.S. Department of Energy. To optimize the design of IBX and future inertial fusion energy drivers, current HIF-VNL research is addressing several key issues (representative, not inclusive): gas and electron cloud effects which can exacerbate beam loss at high beam perveance and magnet aperture fill factors; ballistic neutralized and assisted-pinch focusing of neutralized heavy ion beams; limits on longitudinal compression of both neutralized and un-neutralized heavy ion bunches; and tailoring heavy ion beams for uniform target energy deposition for high energy density physics (HEDP) studies.

  13. Progress in light ion beam fusion research on PBFA II

    International Nuclear Information System (INIS)

    Cook, D.L.; Allshouse, G.O.; Bailey, J.

    1986-01-01

    PBFA II is a 100 TW pulsed power accelerator constructed at Sandia National Laboratories for use in the Light Ion Fusion Program. The objective of PBFA II is to accelerate and focus upon an inertial confinement fusion (ICF) target a lithium beam with sufficient energy, power, and power density to perform ignition scaling experiments. The technologies used in PBFA II include: (1) primary energy storage and compression with 6 MV, low-inductance Marx generators, (2) pulse forming in water-insulated, water-dielectric lines with self-closing water switches, (4) voltage addition in vacuum using self-magnetically-insulated biconic transmission lines, (5) inductive energy storage and pulse compression using a fast-opening plasma erosion switch, (6) beam formation using a magnetically-insulated ion diode, and (7) space-charge and current-neutralized beam propagation to the target in a gas-filled cell. The first multimodule shot was on December 11, 1985. The plans for PBFA II include development and demonstration of the pulse-shaping techniques which are necessary for high-gain target compressions. Following a modification of the accelerator which will probably include an ''extraction'' ion diode, a 4- to 5-meter plasma channel for beam bunching during propagation, and a target chamber located beneath the accelerator, temporally-shaped ion beam pulses will be available for pulse-shaped target experiments. (author)

  14. 16. International Symposium on Heavy Ion Inertial Fusion (HIF'06)

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A.; Ausset, P.; Babadunni, O.; Barnard, J.; Barriga-Carrasco, M.; Bawa, O.; Benedetti, C.; Bieniosek, F.; Bouchigny, S.; Bret, A.; Celata, Ch.; Chieze, J.P.; Coelho, L.F.; Cohen, R.; Coleman, J.; Cremer, S.; Crouseilles, N.; Davidson, R.; Debonnel, Ch.; Deutsch, C.; Didelez, J.P.; Efremov, V.; Fedosejevs, R.; Fertman, A.; Friedman, A.; Gardes, D.; Gericke, D.; Gilson, E.; Golubev, A.; Gombert, M.M.; Grisham, L.; Grote, D.; Gutnic, M.; Haber, I.; Hammel, B.; Hasegawa, J.; Hegelich, B.M.; Henestroza, E.; Hoffmann, D.H.H.; Horioka, K.; Jacoby, J.; Kaganovich, I.; Katagiri, K.; Kawata, S.; Kikuchi, T.; Kireeff Covo, M.; Kurilenkov, Y.; Latu, G.; Lenglet, A.; Logan, G.; Lund, St.; Maynard, G.; Molvik, A.; Nishinomiya, S.; Ogawa, M.; Oguri, Y.; Piriz, A.R.; Popoff, R.; Pusterla, M.; Qin, H.; Roth, M.; Roy, P.; Sant' Anna, M.; Sasaki, T.; Sefkow, A.; Seidl, P.; Sharkov, B.; Sharp, W.; Sonnendrucker, E.; Spiller, P.; Startsev, E.; Stoltz, P.; Synakowski, E.; Tahir, N.; Takayama, K.; Tashev, B.; Turchetti, G.; Turtikov, V.; Udrea, S.; Varentsov, D.; Vay, J.L.; Velarde, P.; Welch, D.R.; Westenskow, G.; Weyrich, K.; Yaramyshev, St.; Zenkevich, P

    2006-07-01

    The contributions to this symposium have been divided into 8 issues: 1) overviews of national fusion programs, 2) other fusion programs, 3) accelerators, 4) warm dense matter, 5) ion beam neutralization, 6) atomic physics, 7) beam dynamics, and 8) stopping power. This document gathers only the resumes of the articles.

  15. The LILIA (laser induced light ions acceleration) experiment at LNF

    International Nuclear Information System (INIS)

    Agosteo, S.; Anania, M.P.; Caresana, M.; Cirrone, G.A.P.; De Martinis, C.; Delle Side, D.; Fazzi, A.; Gatti, G.; Giove, D.; Giulietti, D.; Gizzi, L.A.; Labate, L.; Londrillo, P.; Maggiore, M.; Nassisi, V.; Sinigardi, S.; Tramontana, A.; Schillaci, F.; Scuderi, V.; Turchetti, G.

    2014-01-01

    Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50–75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given

  16. The LILIA (laser induced light ions acceleration) experiment at LNF

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Anania, M.P. [INFN LNF Frascati, Frascati (Italy); Caresana, M. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Cirrone, G.A.P. [INFN LNS Catania, Catania (Italy); De Martinis, C. [Physics Department, University of Milan and INFN, Milan (Italy); Delle Side, D. [LEAS, University of Salento and INFN, Lecce (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Gatti, G. [INFN LNF Frascati, Frascati (Italy); Giove, D. [Physics Department, University of Milan and INFN, Milan (Italy); Giulietti, D. [Physics Department, University of Pisa and INFN, Pisa (Italy); Gizzi, L.A.; Labate, L. [INO-CNR and INFN, Pisa (Italy); Londrillo, P. [Physics Department, University of Bologna and INFN, Bologna (Italy); Maggiore, M. [INFN LNL, Legnaro (Italy); Nassisi, V., E-mail: vincenzo.nassisi@le.infn.it [LEAS, University of Salento and INFN, Lecce (Italy); Sinigardi, S. [Physics Department, University of Bologna and INFN, Bologna (Italy); Tramontana, A.; Schillaci, F. [INFN LNS Catania, Catania (Italy); Scuderi, V. [INFN LNS Catania, Catania (Italy); Institute of Physics of the ASCR, Prague (Czech Republic); Turchetti, G. [Physics Department, University of Bologna and INFN, Bologna (Italy); and others

    2014-07-15

    Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50–75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given.

  17. Simulating electron clouds in heavy-ion accelerators

    International Nuclear Information System (INIS)

    Cohen, R.H.; Friedman, A.; Covo, M. Kireeff; Lund, S.M.; Molvik, A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J.-L.; Stoltz, P.; Veitzer, S.

    2005-01-01

    Contaminating clouds of electrons are a concern for most accelerators of positively charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly magnetized, weakly magnetized, and unmagnetized. The approach to such self-consistency is described, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyroperiod in the magnets. Tests and applications are presented: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the high-current experiment [L. R. Prost, P. A. Seidl, F. M. Bieniosek, C. M. Celata, A. Faltens, D. Baca, E. Henestroza, J. W. Kwan, M. Leitner, W. L. Waldron, R. Cohen, A. Friedman, D. Grote, S. M. Lund, A. W. Molvik, and E. Morse, 'High current transport experiment for heavy ion inertial fusion', Physical Review Special Topics, Accelerators and Beams 8, 020101 (2005)], at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam on an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-time-step mover to accurately calculate the instability

  18. High brightness K+ ion source for heavy ion fusion linear induction accelerators

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Chupp, W.; Rutkowski, H.

    1992-01-01

    Low emittance, high current, singly charged potassium thermionic ion sources are being developed for the Induction Linac System Experiment injector, ILSE. The ILSE, now in study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K + ion beam considered is emitted thermionically into a diode gap from alumino-silicate layers (zeolite) coated on a porous tungsten cup. The Single Beam Transport Experiment (SBTE) 120keV cesium source was redesigned and modified with the aid of an ion optics and gun design program (EGUN) to enable the evaluation of the K + source performance at high extraction currents of about 80mA from a one inch diameter source. The authors report on the source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, phase space distributions using the double slit scanning technique, and source emitting surface temperature dependence on heating power using a wire pyrometer

  19. Acceleration systems for heavy-ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Judd, D.L.; Keefe, D.

    1977-01-01

    Heavy-ion beam pulse parameters needed to achieve useful electric power generation through inertial confinement fusion have been set forth. For successful ignition of a high-gain D-T target a few magajoules of energy per pulse, delivered at a peak power of several hundred terawatts, are needed; it must be deposited with an energy density of 20 to 30 magajoules per gram of the target material on which it impinges. Additional requirements must be met if this form of fusion is to be used for practical power generation; for example, the igniter system for a 1 GWe power plant should have a repetition rate in the neighborhood of 1 to 10 Hz, an overall electrical conversion efficiency from mains to beam of greater than 10%, and high availability. At present under discussion are the needs for a Heavy-Ion Demonstration Experiment (HIDE); an example set of parameters is given for comparison with those for a power plant

  20. Development of a dual ion beam system with single accelerator for materials studies

    International Nuclear Information System (INIS)

    Suzuki, Kazumichi; Nishimura, Eiichi; Hashimoto, Tsuneyuki

    1986-01-01

    The dual ion beam accelerator system has been developed for simulation studies of neutron radiation damage of structural materials for nuclear fusion and fission reactors. One accelerator is used to accelerate two different kinds of ions, which are generated in the ion source simultaneously. One of these ions is selected alternatively by switching the magnetic field of the analyzing magnet, and is then accelerated to the desired energy value. The system is controlled by a microcomputer. The accelerator used in the system is a conventional 400 kV Cockcroft-Walton accelerator. The performance test by the acceleration of He + and Ar + shows that the system is capable of accelerating two ions alternatively with a switching time of less than 22 s. The beam current obtained with the microcomputer control is more than 98% of the current obtained by manual operation. (orig.)

  1. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    DEFF Research Database (Denmark)

    Schneider, M.; Johnson, T.; Dumont, R.

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...... enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast...

  2. SABRE (Sandia Accelerator and Beam Research Experiment): A test bed for the light ion fusion program

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Hanson, D.L.; McKay, P.F.; Maenchen, J.E.; Tisone, G.C.; Adams, R.G.; Nash, T.; Bernard, M.; Boney, C.; Chavez, J.R.; Fowler, W.F.; Ruscetti, J.; Stearns, W.F.; Noack, D.; Wenger, D.F.

    1992-01-01

    Extraction applied-B ion diode experiments are underway on the recently completed SABRE positive polarity linear induction accelerator (6 MV, 220 kA). The authors are performing these experiments in direct support of the light ion fusion program on PBFAII at Sandia. SABRE provides a test bed with a higher shot rate and improved diagnostic access for ion source development and ion beam divergence control experiments. These experiments will also address the coupling of an ion diode to the turbulent, wide spectrum feed electrons which occur on these inductive adders in positive polarity. This work continues previous work on the HELIA accelerator. The diode is a uniformly magnetically insulated, extraction ion diode, with a 5-cm mean anode surface radius. The uniform insulation field profiles are generated by four individual 60 kJ capacitor banks. Field-exclusion profiles are also anticipated. They have developed a wide array of electrical, ion beam, and plasma diagnostics to accomplish their objectives. MITL (magnetically insulated transmission line) and diode voltages are being measured with a magnetic spectrometer, a range-filtered-scintillator (RFS) fiber optic/PMT system, and a range-filtered CR-39 nuclear track film based system. Beam energy can be determined by these diagnostics as well as a filtered Faraday cup array. MITL and ion currents are being measured with an array of Rogowski coils, common-mode rejection and single turn Bs, and resistive shunts. The ion source experiments will investigate thin-film lithium ion sources, particularly the active LEVIS (Laser EVaporation Ion Source) and the passive LiF source. LEVIS uses two pulsed lasers to evaporate and then ionize lithium from a lithium bearing thin-film on the anode. A ruby laser (20 ns, 12 J) for evaporation, and a dye laser for resonant lithium ionization have been developed. The performance of LEVIS with an array of active and passive surface cleaning techniques will be studied

  3. Heavy ion fusion notes 94-1 through 94-9

    International Nuclear Information System (INIS)

    Judd, D.; Rintamaki, J.; Lund, S.

    1995-01-01

    This report contains information on the following topics dealing with heavy ion fusion accelerators: steering errors and corrections in a small recirculator; evaluation of a capacitive beam position monitor diagnostic for use on the heavy ion recirculator; beam steering with dipole biased electrostatic quadrupoles; estimate of emittance growth; c-probes for the recirculator; analysis of the dipole plate shape and location; and generation of electric dipole waveforms

  4. Heavy ion fusion notes 94-1 through 94-9

    Energy Technology Data Exchange (ETDEWEB)

    Judd, D.; Rintamaki, J.; Lund, S. [and others

    1995-03-13

    This report contains information on the following topics dealing with heavy ion fusion accelerators: steering errors and corrections in a small recirculator; evaluation of a capacitive beam position monitor diagnostic for use on the heavy ion recirculator; beam steering with dipole biased electrostatic quadrupoles; estimate of emittance growth; c-probes for the recirculator; analysis of the dipole plate shape and location; and generation of electric dipole waveforms.

  5. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    Science.gov (United States)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  6. Engineering systems designs for a recirculating heavy ion induction accelerator

    International Nuclear Information System (INIS)

    Newton, M.A.; Barnard, J.J.; Reginato, L.L.; Yu, S.S.

    1991-05-01

    Recirculating heavy ion induction accelerators are being investigated as possible drivers for heavy ion fusion. Part of this investigation has included the generation of a conceptual design for a recirculator system. This paper will describe the overall engineering conceptual design of this recirculator, including discussions of the dipole magnet system, the superconducting quadrupole system and the beam acceleration system. Major engineering issues, evaluation of feasibility, and cost tradeoffs of the complete recirculator system will be presented and discussed. 5 refs., 4 figs

  7. Cost reduction possibilities for a heavy-ion accelerator for inertial confinement fusion

    International Nuclear Information System (INIS)

    Thayer, G.R.; Sims, J.R.; Henke, M.D.; Harris, D.B.; Dudziak, D.J.; Phillips, N.R.

    1987-10-01

    A design was produced for a single module in a cost-optimized accelerator appropriate for a commercial heavy-ion power plant. The goal of the study was to determine if the cost of the accelerator module could be reduced through design options, selection of materials, and manufacturing techniques. Independent cost estimates were obtained for the three main components of the module, and cost reductions of 20% from the cost calculated by the heavy-ion accelerator design/cost-minimization computer code LIACEP were identified. 3 refs., 23 figs

  8. Research in the US on heavy ion drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Celata, C.; Faltens, A.; Fessenden, T.J.

    1986-10-01

    The US study of high-energy multigap accelerators to produce large currents of heavy ions for inertial fusion is centered on the single-pass induction linac method. The large technology base associated with multigap accelerators for high-energy physics gives confidence that high efficiency, high repetition rate, and good availability can be achieved, and that the path from scientific demonstration to commercial realization can be a smooth one. In an induction linac driver, multiple (parallel) ion beams are accelerated through a sequence of pulsed transformers. Crucial to the design is the manipulation of electric fields to amplify the beam current during acceleration. A proof-of-principle induction linac experiment (MBE-4) is underway and has begun the first demonstration of current amplification, control of the bunch ends, and the acceleration of multiple beams. A recently completed experiment, called the Single Beam Transport Experiment has shown that we can now count on more freedom to design an alternating-gradient quadrupole focusing channel to transport much higher ion-beam currents than formerly believed possible. A recent Heavy Ion Fusion System Assessment (HIFSA) has shown that a substantial cost saving results from use of multiply-charged ions, and that a remarkably broad range of options exist for viable power-plant designs. The driver cost at 3 to 4 MJ could be $200/joule or less, and the cost of electricity in the range of 50 to 55 mills/kWhr

  9. Simulation of Chamber Transport for Heavy-Ion-Fusion Drivers

    International Nuclear Information System (INIS)

    Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Rose, D.V.; Welch, D.R.

    2003-01-01

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs

  10. Chamber-transport simulation results for heavy-ion fusion drivers

    International Nuclear Information System (INIS)

    Sharp, W M; Callahan, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R

    2004-01-01

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs

  11. SIMULATION OF CHAMBER TRANSPORT FOR HEAVY-ION FUSION DRIVERS

    International Nuclear Information System (INIS)

    Sharp, W M; Callahan, D A; Tabak, M; Yu, S S; Peterson, P F; Rose, D V; Welch, D R

    2004-01-01

    The heavy-ion fusion (HIF) community recently developed a power-plant design that meets the various requirements of accelerators, final focus, chamber transport, and targets. The point design is intended to minimize physics risk and is certainly not optimal for the cost of electricity. Recent chamber-transport simulations, however, indicate that changes in the beam ion species, the convergence angle, and the emittance might allow more-economical designs

  12. Accelerator conceptual design of the international fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Sugimoto, M.; Kinsho, M.; Teplyakov, V.; Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J.; Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K.; Miyahara, A.; Olivier, M.; Piechowiak, E.; Tanabe, Y.

    1998-01-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.)

  13. Evaluation of Negative-Ion-Beam Driver Concepts for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Grisham, Larry R.

    2002-01-01

    We evaluate the feasibility of producing and using atomically neutral heavy ion beams produced from negative ions as drivers for an inertial confinement fusion reactor. Bromine and iodine appear to be the most attractive elements for the driver beams. Fluorine and chlorine appear to be the most appropriate feedstocks for initial tests of extractable negative ion current densities. With regards to ion sources, photodetachment neutralizers, and vacuum requirements for accelerators and beam transport, this approach appears feasible within existing technology, and the vacuum requirements are essentially identical to those for positive ion drivers except in the target chamber. The principal constraint is that this approach requires harder vacuums in the target chamber than do space-charge-neutralized positive ion drivers. With realistic (but perhaps pessimistic) estimates of the total ionization cross section, limiting the ionization of a neutral beam to less than 5% while traversing a four -meter path would require a chamber pressure of no more than 5 x 10 -5 torr. Alternatively, even at chamber pressures that are too high to allow propagation of atomically neutral beams, the negative ion approach may still have appeal, since it precludes the possibly serious problem of electron contamination of a positive ion beam during acceleration, drift compression, and focusing

  14. Accelerator and Ion Beam Tradeoffs for Studies of Warm Dense Matter

    CERN Document Server

    Barnard, John J; Callahan, Debra; Davidson, Ronald C; Friedman, Alex; Grant-Logan, B; Grisham, Larry; Lee, Edward; Lee, Richard; Olson, Craig; Rose, David; Santhanam, Parthiban; Sessler, Andrew M; Staples, John W; Tabak, Max; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    One approach to heat a target to "Warm Dense Matter" conditions (similar, for example, to the interiors of giant planets or certain stages in Inertial Confinement Fusion targets), is to use intense ion beams as the heating source. By consideration of ion beam phase space constraints, both at the injector, and at the final focus, and consideration of simple equations of state, approximate conditions at a target foil may be calculated. Thus target temperature and pressure may be calculated as a function of ion mass, ion energy, pulse duration, velocity tilt, and other accelerator parameters. We examine the variation in target performance as a function of various beam and accelerator parameters, in the context of several different accelerator concepts, recently proposed for WDM studies.

  15. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1995-01-01

    Chamber transport is an important area of study for heavy ion fusion. Final focus and chamber-transport are high leverage areas providing opportunities to significantly decrease the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (approx-lt 0.003 torr), ballistic or nearly-ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (approx-gt.1 torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber then transporting it at small radius (∼ 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity

  16. Heavy ion inertial fusion - an overview

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1983-09-01

    Energetic heavy ions represent an alternative to laser light and light ions as ''drivers'' for supplying energy for inertial confinement fusion. To induce ignition of targets containing thermonuclear fuel, an energy of several megajoules has to be focused on to a target with radius a few millimetres in a time of some tens of nanoseconds. Serious study of the use of heavy ion drivers for producing useful power in this way has been underway for seven years, though funding has been at a low level. In this paper the requirements for targets, accelerator, and reactor vessel for containing the thermonuclear explosion are surveyed, and some of the problems to be solved before the construction of a power station can realistically be contemplated are discussed. (author)

  17. Fusion by 1990: the Sandia ion beam program can do it

    International Nuclear Information System (INIS)

    Stevens, C.B.

    1985-01-01

    Recent experimental results at Sandia National Laboratories demonstrate that light ion beam accelerator devices can deliver considerably more than the power necessary for achieving high-gain fusion energy - millions of joules at power densities of 10,000 trillion watts/cm 2 . This means that commercial fusion energy with an inertial-confinement fusion device can be realized by the 1990s, despite the general curtailment of the US fusion research budget over the past eight years. Dr. J. Pace VanDevender, pulsed power sciences director at Sandia, and Professor Ravindra N. Sudan, director of the Cornell University Laboratory of Plasma Studies, discussed the experimental and theoretical advances underlying this happy prognosis at the April 17-19 conference at the Rochester University for Laser Energetics. Sudan showed that experiments with high-current ion beam pulses over the past decade have demonstrated that such pulses, instead of diffusing, tend to self-focus nonlinearly to higher power densities. Second, weak magnetic fields do not interact and change the trajectory of such high-current beam pulses. At the Rochester meeting, VanDevender reviewed experiments on Sandia's Proto I device in which 1.5 trillion watts per square centimeter were delivered to a target in May 1984. This spring, Sandia's Particle Beam Fusion Accelerator I, PBFA I, delivered an 8-trillion watt pulse onto a spot 4.0 to 4.5 millimeters in diameter. This demonstrated that the Sandia light ion beam focusing process maintains itself as the current is increased. 3 figures

  18. Acceleration of beam ions during major radius compression in TFTR

    International Nuclear Information System (INIS)

    Wong, K.L.; Bitter, M.; Hammett, G.W.

    1985-09-01

    Tangentially co-injected deuterium beam ions were accelerated from 82 keV up to 150 keV during a major radius compression experiment in TFTR. The ion energy spectra and the variation in fusion yield were in good agreement with Fokker-Planck code simulations. In addition, the plasma rotation velocity was observed to rise during compression

  19. Illumination non-uniformity of spirally wobbling beam in heavy ion fusion

    International Nuclear Information System (INIS)

    Suzuki, T.; Noguchi, K.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A.I.

    2016-01-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. The illumination non-uniformity allowed is less than a few percent in inertial fusion target implosion. Heavy ion beam (HIB) accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. In this paper the HIBs wobbling illumination scheme was optimized. (paper)

  20. Status and perspectives of heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Bock, R.

    1989-04-01

    For energy production by inertial confinement fusion the heavy ion accelerator is the most promising driver candidate. A conceptual design study, HIBALL, showed for the first time that a concept of an accelerator driven power station should be feasible. Two accelerator concepts, an rf-linac with storage rings and an induction linac, both investigated in the framework of national programs during the last decade, can be seriously taken into account as driver candidates. Two accelerator facilities now under construction or design, SIS/ESR at GSI and MBE-4/ISLE at LBL, are conceived to study key issues of both driver concepts. Present activities and some new ideas on driver concepts are reviewed. (orig.)

  1. Accelerator conceptual design of the international fusion materials irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M.; Kinsho, M. [Japan Atomic Energy Res. Inst., Tokai, Ibaraki (Japan). Intense Neutron Source Lab.; Jameson, R.A.; Blind, B. [Los Alamos National Lab., NM (United States); Teplyakov, V. [Institute for High Energy Physics, Moscow (Russian Federation); Berwald, D.; Bruhwiler, D.; Peakock, M.; Rathke, J. [Northrop Grumman Corp., Bethpage, NY (United States); Deitinghoff, H.; Klein, H.; Pozimski, Y.; Volk, K. [Johann Wolfgang Goethe Univ., Frankfurt (Germany). Inst. fur Angewandte Phys.; Ferdinand, R.; Lagniel, J.-M. [CEA Saclay LNS, Gif-sur-Yvette (France); Miyahara, A. [Teikyo Univ., Tokyo (Japan); Olivier, M. [CEA DSM, Saclay, Gif-sur-Yvette (France); Piechowiak, E. [Northrop Grumman Corp., Baltimore, MD (United States); Tanabe, Y. [Toshiba Corp., Tsurumi-ku, Yokohama (Japan)

    1998-10-01

    The accelerator system of the international fusion materials irradiation facility (IFMIF) provides the 250-mA, 40-MeV continuous-wave deuteron beam at one of the two lithium target stations. It consists of two identical linear accelerator modules, each of which independently delivers a 125-mA beam to the common footprint of 20 cm x 5 cm at the target surface. The accelerator module consists of an ion injector, a 175 MHz RFQ and eight DTL tanks, and rf power supply system. The requirements for the accelerator system and the design concept are described. The interface issues and operational considerations to attain the proposed availability are also discussed. (orig.) 8 refs.

  2. Heavy-ion fusion: Future promise and future directions

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Saylor, W.W.; Pendergrass, J.H.

    1986-01-01

    The previous several papers in this heavy-ion fusion special session have described work that has taken place as part of the Heavy-Ion Fusion Systems Assessment (HIFSA) project. Key technical issues in the design and costing of targets, accelerator systems, beam transport, reactor and balance-of-plant, and systems integration have been identified and described. The HIFSA systems model was used to measure the relative value of improvements in physics understanding and technology developments in many different areas. The result of this study has been to, within the limits of our 1986 imagination and creativity, define the ''most attractive'' future heavy-ion fusion (HIF) power plant at some time in the future (beyond the year 2020 in this case). The project has specifically avoided narrowing the focus to a point facility design; thus, the generic systems modeling capability developed in the process allows for a relative comparison among design options. The authors describe what are thought to be achievable breakthroughs and what the relative significance of the breakthroughs will be, although the specific mechanism for achieving some breakthroughs may not be clear at this point

  3. Chamber propagation physics for heavy ion fusion

    International Nuclear Information System (INIS)

    Callahan, D.A.

    1996-01-01

    Chamber transport is a key area of study for heavy ion fusion. Final focus and chamber transport are high leverage areas providing opportunities to decrease significantly the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime (below about 0.003 Torr), ballistic or nearly ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime (above about 0.1 Torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber and then transporting it at small radius (about 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity. (orig.)

  4. High temperature experiment for accelerator inertial fusion

    International Nuclear Information System (INIS)

    Lee, E.P.

    1985-01-01

    The High Temperature Experiment (HTE) is intended to produce temperatures of 50-100 eV in solid density targets driven by heavy ion beams from a multiple beam induction linac. The fundamental variables (particle species, energy number of beamlets, current and pulse length) must be fixed to achieve the temperature at minimum cost, subject to criteria of technical feasibility and relevance to the development of a Fusion Driver. The conceptual design begins with an assumed (radiation-limited) target temperature and uses limitations due to particle range, beamlet perveance, and target disassembly to bound the allowable values of mass number (A) and energy (E). An accelerator model is then applied to determine the minimum length accelerator, which is a guide to total cost. The accelerator model takes into account limits on transportable charge, maximum gradient, core mass per linear meter, and head-to-tail momentum variation within a pulse

  5. Overview of US heavy-ion fusion progress and plans

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J.; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2005-01-01

    Significant experimental and theoretical progress has been made in the US heavy-ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high-energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy-ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high-energy density conditions as well as for inertial fusion energy

  6. Radio-frequency-quadrupole linac in a heavy ion fusion driver system

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Stokes, R.; Swenson, D.A.; Wangler, T.P.

    1980-01-01

    A new type of linear accelerator, the radio-frequency quadrupole (RFQ) linac, is being developed for the acceleration of low-velocity ions. The RFQ accelerator can be adapted to any high-current applications. A recent experimental test carried out at the Los Alamos Scienific Laboratory (LASL) has demonstrated the outstandig properties of RFQ systems. The test linac accepts a 30-mA proton beam of 100-keV energy and focuses, bunches, and accelerates the beam to an energy to 640 keV. This ia done in a length of 1.1 m, with a transmission efficiency of 87% and with a radial emittance growth of less than 60%. The proven capability of the RFQ linac, when extended to heavy ion acceleration, should provide an ideal technique for use in the low-velocity portion of a heavy-ion linac for inertial-confinement fusion. A specific concept for such an RFQ-based system is described

  7. Heavy-ion fusion driver research at Berkeley and Livermore

    International Nuclear Information System (INIS)

    Seidl, P.; Bangerter, R.; Celata, C.M.

    1996-08-01

    The Department of Energy is restructuring the U.S. fusion program to place a greater emphasis on science. As a result, we will not build the ILSE or Elise heavy ion fusion (HIF) facilities described in 1992 and 1994 conferences. Instead we are performing smaller experiments to address important scientific questions. Accelerator technology for HIF is similar to that for other applications such as high energy physics and nuclear physics. The beam physics, however, differs from the physics encountered in most accelerators, where the pressure arising from the beam temperature (emittance) is the dominant factor determining beam size and focusing system design. In HIF, space charge is the dominant feature, leading us into a parameter regime where.the beam plasma frequency becomes comparable to the betatron frequency. Our experiments address the physics of non-neutral plasmas in this novel regime. Because the beam plasma frequency is low, Particle-in-cell (PIC) simulations provide a good description of most of our experiments. Accelerators for HIF consist of several subsystems: ion sources, injectors, matching sections, combiners, acceleration sections with electric and magnetic focusing, beam compression and bending sections, and a system to focus the beams onto the target. We are currently assembling or performing experiments to address the physics of all these subsystems. This paper will discuss experiments in injection, combining, and bending

  8. Nuclear fusion ion beam source composed of optimum channel wall

    International Nuclear Information System (INIS)

    Furukaw, T.

    2007-01-01

    Full text of publication follows: Numerical and experimental researches of the hall-type beam accelerator was conducted by highlighting both neutral species and material of acceleration channel wall. The hall-type beam accelerator is expected as ion beam source for nuclear fusion since it could product ion beam density over 10 3 times as high as that of electrostatic accelerator, which is used regularly as beam heating device, because it is proven that the beam heating method could accelerate ion to high energy beam by electric field and heat plasma to ultra high temperature of 100 million degrees or more. At high-voltage mode of DC regime that is normal operational condition, however, the various plasma MHD (magneto-hydrodynamic) instabilities are generated. In particular, the large-amplitude and low-frequency plasma MHD instability in the tens of kHz among them has been a serious problem that should be solved to improve the operational stability and the system durability. So, we propose a hall-type beam accelerator with new design concepts; both acquisition of simultaneous solution for reducing the plasma MHD instability and the accelerator core overheating and optimum combination of the acceleration channel wall material. The technologies for this concept are as follows: 1) To increase neutral species velocity-inlet in acceleration channel by preheating propellant through circularly propellant conduit line inside accelerator system could bring about the lower amplitude of the instability. 2) Through this method, the accelerator system is cooled, and the higher thrust and specific-impulse is produced with hardly changing thrust efficiency at the same time. 3) To select BN (Boron- Nitride) and Al 2 O 3 as wall material of ionization- and acceleration-zone in acceleration channel respectively having different secondary-electron emission-coefficient could achieve the higher-efficiency and -durability. The hall-type beam accelerator designed using these technologies

  9. Magnetic linear accelerator (MAGLAC) for hypervelocity acceleration in impact fusion (IF)

    International Nuclear Information System (INIS)

    Chen, K.W.

    1980-01-01

    This paper presents considerations on the design of a magnetic linear accelerator suitable as driver for impact fusion. We argue that the proposed approach offers an attractive option to accelerate macroscopic matter to centiluminal velocity suitable for fusion applications. The design goal is to attain a velocity approaching 200 km/sec. Recent results in suitable target design suggest that a velocity in the range of 40-100 km/sec might be sufficient to include fusion. An accelerator in this velocity range can be constructed with current-day technology. We present both design and practical engineering considerations. Future work are outlined and recommended. (orig.)

  10. DEVELOPING THE PHYSICS DESIGN FOR NDCX-II, A UNIQUE PULSE-COMPRESSING ION ACCELERATOR

    International Nuclear Information System (INIS)

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.

    2009-01-01

    The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at ∼ + ions to ∼1 ns while accelerating it to 3-4 MeV over ∼15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  11. Recirculating induction accelerators for inertial fusion: Prospects and status

    International Nuclear Information System (INIS)

    Friedman, A.; Barnard, J.J.; Cable, M.D.

    1995-01-01

    The US is developing the physics and technology of induction accelerators for heavy-ion beam-driven inertial fusion. The recirculating induction accelerator repeatedly passes beams through the same set of accelerating and focusing elements, thereby reducing both the length and gradient of the accelerator structure. This promises an attractive driver cost, if the technical challenges associated with recirculation can be met. Point designs for recirculator drivers were developed in a multi-year study by LLNL, LBNL, and FM Technologies, and that work is briefly reviewed here. To validate major elements of the recirculator concept, we are developing a small (4-5-m diameter) prototype recirculator which will accelerate a space-charge-dominated beam of K + ions through 15 laps, from 80 to 320 keV and from 2 to 8 mA. Transverse beam confinement is effected via permanent-magnet quadrupoles; bending is via electric dipoles. This ''Small Recirculator'' is being developed in a build-and-test sequence of experiments. An injector, matching section, and linear magnetic channel using seven half-lattice periods of permanent-magnet quadrupole lenses are operational. A prototype recirculator half-lattice period is being fabricated. This paper outlines the research program, and presents initial experimental results

  12. Accelerator and Ion Beam Tradeoffs for Studies of Warm Dense Matter

    International Nuclear Information System (INIS)

    Barnard, J.J.; Briggs, R.J.; Callahan, D.A.; Davidson, R.C.; Friedman, A.; Grisham, L.; Lee, E.P.; Lee, R.W.; Logan, B.G.; Olson, C.L.; Rose, D.V.; Santhanam, P.; Sessler, A.M.; Staples, J.W.; Tabak, M.; Welch, D.R.; Wurtele, J.S.; Yu, S.S.

    2006-01-01

    One approach for heating a target to ''Warm Dense Matter'' conditions (similar, for example, to the interiors of giant planets or certain stages in inertial confinement fusion targets), is to use intense ion beams as the heating source (see refs.[6] and [7] and references therein for motivation and accelerator concepts). By consideration of ion beam phase-space constraints, both at the injector, and at the final focus, and consideration of simple equations of state and relations for ion stopping, approximate conditions at the target foil may be calculated. Thus, target temperature and pressure may be calculated as a function of ion mass, ion energy, pulse duration, velocity tilt, and other accelerator parameters. We connect some of these basic parameters to help search the extensive parameter space including ion mass, ion energy, total charge in beam pulse, beam emittance, target thickness and density

  13. Advanced approaches to high intensity laser-driven ion acceleration

    International Nuclear Information System (INIS)

    Henig, Andreas

    2010-01-01

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C 6+ and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C 6+ spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times increase in

  14. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  15. Experimental approaches to heavy ion fusion

    International Nuclear Information System (INIS)

    Obayashi, H.; Fujii-e, Y.; Yamaki, T.

    1986-01-01

    As a feasibility study on heavy-ion-beam induced inertial fusion (HIF) approach, a conceptual plant design called HIBLIC-I has been worked out since 1982. The characteristic features of this design are summarized. To experimentally confirm them and prove them at least in principle, considerations are made on possible experimental programs to give substantial information on these critical phenomena. In HIBLIC-I, an accelerator complex is adopted as driver system to provide 6 beams of 208 Pb +1 ions at 15 GeV, which will be simultaneously focussed on a single shell, three layered target. The target is designed to give an energy gain of 100, so that the total beam energy of 4 MJ with 160 TW power may release 400 MJ fusion energy. A reactor chamber is cylindrical with double-walled structure made of HT-9. There are three layers of liquid Li flow inside the reactor. The innermost layer forms a Li curtain which is effective to recover the residual cavity pressure. A thick upward flow serves as coolant and tritium breeder. Tritium will be recovered by yttrium gettering system. A driver system is operated at the repetition rate of 10 Hz and supplies beams for 10 reactor chambers. Then the plant yield of fusion power becomes 4000 MWt, corresponding a net electric output of 1.5 GW. Experimental programs related to HIBLIC-I is described and discussed, including those for heavy-ion-beam experiments and proposals for lithium curtain by electron beam to clarify the key phenomena in HIBLIC-I cavity. (Nogami, K.)

  16. Overview of U.S. heavy ion fusion progress and plans

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy

  17. IFMIF [International Fusion Materials Irradiation Facility], an accelerator-based neutron source for fusion components irradiation testing: Materials testing capabilities

    International Nuclear Information System (INIS)

    Mann, F.M.

    1988-08-01

    The International Fusion Materials Irradiation Facility (IFMIF) is proposed as an advanced accelerator-based neutron source for high-flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. At the extended facility, neutrons would be produced by a 0.1-A beam of 35-MeV deuterons incident upon a liquid lithium target. The volume available for high-flux (>10/sup 15/ n/cm/sup 2/-s) testing in IFMITF would be over a liter, a factor of about three larger than in the FMIT facility. This is because the effective beam current of 35-MeV deuterons on target can be increased by a factor of ten to 1A or more. Such an increase can be accomplished by funneling beams of deuterium ions from the radio-frequency quadruple into a linear accelerator and by taking advantage of recent developments in accelerator technology. Multiple beams and large total current allow great variety in available testing. For example, multiple simultaneous experiments, and great flexibility in tailoring spatial distributions of flux and spectra can be achieved. 5 refs., 2 figs., 1 tab

  18. Conceptual design of light ion beam inertia nuclear fusion reactors

    International Nuclear Information System (INIS)

    1983-07-01

    Light ion beam, inertia nuclear fusion system drew attention recently as one of the nuclear fusion systems for power reactors in the history of the research on nuclear fusion. Its beginning seemed to be the judgement that the implosion of fusion fuel pellets with light ions can be realized with the light ions which can be obtained in view of accelerator techniques. Of course, in order to generate practically usable nuclear fusion reaction by this system and maintain it, many technical difficulties must be overcome. This research was carried out for the purpose of discovering such technical problems and searching for their solution. At the time of doing the works, the following policy was adopted. Though their is the difference of fine and rough, the design of a whole reactor system is performed conformably. In order to make comparison with other reactor types and nuclear fusion systems, the design is carried out as the power plant of about one million kWe output. As the extent of the design, the works at conceptual design stage are performed to present the concept of design which satisfies the required function. Basically, the design is made from conservative standpoint. This research of design was started in 1981, and in fiscal 1982, the mutual adjustment among the design of respective parts was performed on the basis of the results in 1981, and the possible revision and new proposal were investigated. (Kako, I.)

  19. The intense neutron generator and future factory type ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1968-07-01

    A neutron factory is likely to sell its product in the form of isotopes. To ay neutron factories are nuclear reactors. Ion accelerators may also produce isotopes by direct interaction and, at high enough energies, mesons and hyperons. The challenge of the electrical production of neutrons goes far beyond the isotope market. It challenges the two popular concepts for long term large scale energy, the fast breeder reactor and controlled thermonuclear fusion. For this use about 4% of nuclear generated power would be applied in a feedback loop generating extra neutrons. Competition rests on operating and processing costs. The Intense Neutron Generator proposal now cancelled would have been full scale for such a use, but much further advance in accelerator engineering is required and anticipated. Perhaps most promising is the application of the ion drag principle in which rings of fast electrons are accelerated along their axis dragging ions with them by electrostatic attraction. Due to the much larger mass of the ions they can acquire much higher energy than the electrons and the process could be efficient. Such accelerators have not yet been made but experimental and theoretical studies are promising. (author)

  20. The intense neutron generator and future factory type ion accelerators

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1968-01-01

    A neutron factory is likely to sell its product in the form of isotopes. To ay neutron factories are nuclear reactors. Ion accelerators may also produce isotopes by direct interaction and, at high enough energies, mesons and hyperons. The challenge of the electrical production of neutrons goes far beyond the isotope market. It challenges the two popular concepts for long term large scale energy, the fast breeder reactor and controlled thermonuclear fusion. For this use about 4% of nuclear generated power would be applied in a feedback loop generating extra neutrons. Competition rests on operating and processing costs. The Intense Neutron Generator proposal now cancelled would have been full scale for such a use, but much further advance in accelerator engineering is required and anticipated. Perhaps most promising is the application of the ion drag principle in which rings of fast electrons are accelerated along their axis dragging ions with them by electrostatic attraction. Due to the much larger mass of the ions they can acquire much higher energy than the electrons and the process could be efficient. Such accelerators have not yet been made but experimental and theoretical studies are promising. (author)

  1. Studies on the feasibility of heavy ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    1985-08-01

    This Annual Report summarizes experimental and theoretical investigations carried out in the framework of a feasibility study of inertial confinement fusion by heavy ion beams, funded by the Federal Ministry for Research and Technology. After the completion of the conceptual design study HIBALL with an upgraded version, the investigations concentrated in 1984 mainly on problems of accelerator and target physics. In the area of accelerator physics the main interest was in the production and acceleration of high intensity heavy ion beams of high phase space density and in beam dynamics theory, in the area of target physics on beam-target interaction, radiation hydrodynamics, instabilities and the equation of state of highly compressed hot matter. (orig./AH)

  2. Intense light-ion beams provide a robust, common-driver path toward ignition, gain, and commercial fusion energy

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Cook, D.L.

    1993-01-01

    Intense light-ion beams are being developed for investigations of inertial confinement fusion (ICF). This effort has concentrated on developing the Particle Beam Fusion Accelerator II (PBFA II) at Sandia as a driver for ICF target experiments, on design concepts for a high-yield, high-gain Laboratory Microfusion Facility (LMF), and on a comprehensive system study of a light-ion beam-driven commercial fusion reactor (LIBRA). Reports are given on the status of design concepts and research in these areas. (author)

  3. Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver

    International Nuclear Information System (INIS)

    Grisham, L.R.; Hahto, S.K.; Hahto, S.T.; Kwan, J.W.; Leung, K.N.

    2004-01-01

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm 2 was obtained under the same conditions that gave 57 45 mA/cm 2 of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl - was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm 2 , sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source

  4. Study on possibility of development of a laser multicharged ion source for a heavy ion fusion driver

    International Nuclear Information System (INIS)

    Barabash, L.Z.; Krechet, K.I.; Lapitskij, Yu.Ya.; Latyshev, S.V.; Shumshurov, A.V.

    1983-01-01

    The results of studying laser produced plasma ion sources for a heavy ion accelerating-storage complex used as a heavy ion fusion driver are presented. The following parameters were measured on an installation aimed for studying physical characteristics of heavy ion laser plasma for a lead target at laser radiation flux density of approximately 3x10 10 W/cm 2 : scattered ion charge composition, energy spectra and scattering angle distributions, ion currents, absolute number of ions in every charge state, plasma electron temperature. The ion current pulse duration varied from 3x10 -4 s at Z +1 to 2x10 -5 s at Z +10 . The maximum current amplitude of 2 mA corresponded to Z +7 charge. The scattering velocity increased with charge. The total number of ions that could be used for acceleration was approximately 5x10 13 for Z +2 and 5x10 12 for Z +6 per pulse. The ion laser source brightness was 2x10 11 A/cm 2 , the particle phase density was 10 18 (cmxrad) -1

  5. Accelerator and Fusion Research Division annual report, October 1981-September 1982. Fiscal year 1982

    International Nuclear Information System (INIS)

    Johnson, R.K.; Bouret, C.

    1983-05-01

    This report covers the activities of LBL's Accelerator and Fusion Research Division (AFRD) during 1982. In nuclear physics, the Uranium Beams Improvement Project was concluded early in the year, and experimentation to exploit the new capabilities began in earnest. Technical improvement of the Bevalac during the year centered on a heavy-ion radiofrequency quadrupole (RFQ) as part of the local injector upgrade, and we collaborated in studies of high-energy heavy-ion collision facilities. The Division continued its collaboration with Fermilab to design a beam-cooling system for the Tevatron I proton-antiprotron collider and to engineer the needed cooling components for the antiproton. The high-field magnet program set yet another record for field strength in an accelerator-type dipole magnet (9.2 T at 1.8 K). The Division developed the design for the Advanced Light Source (ALS), a 1.3-GeV electron storage ring designed explicitly (with low beam emittance and 12 long straight sections) to generate high-brilliance synchrotron light from insertion devices. The Division's Magnetic Fusion Energy group continued to support major experiments at the Princeton Plasma Physics Laboratory, the Lawrence Livermore National Laboratory (LLNL), and General Atomic Co. by developing positive-ion-based neutral-beam injectors. Progress was made toward converting our major source-test facility into a long-pulse national facility, the Neutral Beam Engineering Test Facility, which was completed on schedule and within budget in 1983. Heavy Ion Fusion research focused on planning, theoretical studies, and beam-transport experiments leading toward a High Temperature Experiment - a major test of this promising backup approach to fusion energy

  6. The light ion pulsed power induction accelerator for ETF

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.; Smith, D.L.; Bennett, L.F.

    1994-01-01

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The ∼ 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current per module is relatively modest (∼300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source

  7. Induction Linac Systems Experiments for heavy ion fusion

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Bangerter, R.O.

    1994-06-01

    The Lawrence Berkeley Laboratory and the Lawrence Livermore National Laboratory propose to build at LBL the Induction Linac Systems Experiments (ILSE), the next logical step toward the eventual goal of a heavy ion induction accelerator powerful enough to implode or drive inertial confinement fusion targets. Though much smaller than a driver, ILSE will be at full driver scale in several important parameters. Nearly all accelerator components and beam manipulations required for a driver will be tested. It is expected that ILSE will be built in stages as funds and technical progress allow. The first stage, called Elise will include all of the electrostatic quadrupole focused parts of ILSE

  8. Manipulation of high-current pulses for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Callahan, D.A.; Griedman, A.; Grote, D.P.

    1996-01-01

    For efficient induction-driven heavy-ion fusion, the current profile along a pulse must be modified in a non-selfsimilar manner between the accelerator and the target. In the accelerator, the pulse should have a duration of at least 50 ns in order to make efficient use of the induction cores, and the current should by nearly uniform along the pulse to minimize the aperture. In contrast, the optimal current profile on target consists of a main pulse of about 10 ns preceded by a longer low-current 'foot.' This pulse-shape manipulation must be carried out at the final pulse energy (5-10 GeV for 200 amu ions) in the presence of a large nonlinear longitudinal space-charge field. A straightforward method is presented here for doing the required pulse shaping. Induction-ceU voltages are generated using idealized beam profiles both in the accelerator and on target, and they are verified and checked for error sensitivity using the fluid/envelope code CIRCE

  9. Simulation of transient effects in the heavy ion fusion injectors

    International Nuclear Information System (INIS)

    Chen, Y.J.; Hewett, D.

    1993-01-01

    The authors have used the 2-D PIC code, GYMNOS, to study the transient behaviors in the Heavy Ion Fusion (HIF) injectors. GYMNOS simulations accurately provide the steady state Child-Langmuir current and the beam transient behavior within a planar diode. The simulations of the LBL HIF ESAC injector experiments agree well with the experimental data and EGUN steady state results. Simulations of the nominal HIF injectors have revealed the need to design the accelerating electrodes carefully to control the ion beam current, particularly the ion loss at the end of the bunch as the extraction voltage is reduced

  10. Simulation of transient effects in the heavy ion fusion injectors

    Science.gov (United States)

    Chen, Yu-Jiuan; Hewett, D. W.

    1993-05-01

    We have used the 2-D PIC code, GYMNOS, to study the transient behaviors in the Heavy Ion Fusion (HIF) injectors. GYMNOS simulations accurately provide the steady state Child-Langmuir current and the beam transient behavior within a planar diode. The simulations of the LBL HIF ESAC injector experiments agree well with the experimental data and EGUN steady state results. Simulations of the nominal HIF injectors have revealed the need to design the accelerating electrodes carefully to control the ion beam current, particularly the ion loss at the end of the bunch as the extraction voltage is reduced.

  11. Progress in heavy ion driven inertial fusion energy: From scaled experiments to the integrated research experiment

    International Nuclear Information System (INIS)

    Barnard, J.J.; Ahle, L.E.; Baca, D.; Bangerter, R.O.; Bieniosek, F.M.; Celata, C.M.; Chacon-Golcher, E.; Davidson, R.C.; Faltens, A.; Friedman, A.; Franks, R.M.; Grote, D.P.; Haber, I.; Henestroza, E.; Hoon, M.J.L. de; Kaganovich, I.; Karpenko, V.P.; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Logan, B.G.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.; Prost, L.R.; Qin, H.; Rose, D.; Sabbi, G.-L.; Sangster, T.C.; Seidl, P.A.; Sharp, W.M.; Shuman, D.; Vay, J.-L.; Waldron, W.L.; Welch, D.; Yu, S.S.

    2001-01-01

    The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents (∼100's Amperes/beam) and ion energies (∼1-10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions, and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned. The step which bridges the gap between the IBX and an engineering test facility for fusion has been designated the Integrated Research Experiment (IRE). The IRE (like the IBX) will provide an

  12. Heavy ion fusion: Prospects and status

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1995-10-01

    The main purpose of this talk is to review the status of HIF as it was presented at Princeton, and also to try to deduce something about the prospects for HIF in particular, and fusion in general, from the world and US political scene. The status of the field is largely, though not entirely, expressed through presentations from the two leading HIF efforts: (1) the US program, centered at LBNL and LLNL, is primarily concerned with applying induction linac technology for HIF drivers; (2) the European program, centered at GSI, Darmstadt, but including several other laboratories, is primarily directed towards the rf linac approach using storage rings for energy compression. Several developments in the field of HIF should be noted: (1) progress towards construction of the National Ignition Facility (NIF) gives strength to the whole rational for developing a driver for Inertial Fusion Energy; (2) the field of accelerator science has matured far beyond the status that it had in 1976; (3) Heavy Ion Fusion has passed some more reviews, including one by the Fusion Energy Advisory Committee (FEAC), and has received the usual good marks; (5) as the budgets for Magnetic Fusion have fallen, the pressures on the Office of Fusion energy (OFE) have intensified, and a move is underway to shift the HIF program out of the IFE program and back into the ICF program in the Defense Programs (DP) side of the DOE

  13. Fusion reactor development using high power particle beams

    International Nuclear Information System (INIS)

    Ohara, Y.

    1990-01-01

    The present paper outlines major applications of the ion source/accelerator to fusion research and also addresses the present status and future plans for accelerator development. Applications of ion sources/accelerators for fusion research are discussed first, focusing on plasma heating, plasma current drive, plasma current profile control, and plasma diagnostics. The present status and future plan of ion sources/accelerators development are then described focusing on the features of existing and future tokamak equipment. Positive-ion-based NBI systems of 100 keV class have contributed to obtaining high temperature plasmas whose parameters are close to the fusion break-even condition. For the next tokamak fusion devices, a MeV class high power neutral beam injector, which will be used to obtain a steady state burning plasma, is considered to become the primary heating and current drive system. Development of such a system is a key to realize nuclear fusion reactor. It will be entirely indebted to the development of a MeV class high current negative deuterium ion source/accelerator. (N.K.)

  14. HEAVY ION LINEAR ACCELERATOR

    Science.gov (United States)

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  15. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    Buttram, M.T.

    1985-01-01

    This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  16. Heavy ion accelerators

    International Nuclear Information System (INIS)

    Schmelzer, C.

    1974-01-01

    This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)

  17. Laser-driven Ion Acceleration using Nanodiamonds

    Science.gov (United States)

    D'Hauthuille, Luc; Nguyen, Tam; Dollar, Franklin

    2016-10-01

    Interactions of high-intensity lasers with mass-limited nanoparticles enable the generation of extremely high electric fields. These fields accelerate ions, which has applications in nuclear medicine, high brightness radiography, as well as fast ignition for inertial confinement fusion. Previous studies have been performed with ensembles of nanoparticles, but this obscures the physics of the interaction due to the wide array of variables in the interaction. The work presented here looks instead at the interactions of a high intensity short pulse laser with an isolated nanodiamond. Specifically, we studied the effect of nanoparticle size and intensity of the laser on the interaction. A novel target scheme was developed to isolate the nanodiamond. Particle-in-cell simulations were performed using the EPOCH framework to show the sheath fields and resulting energetic ion beams.

  18. Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion

    International Nuclear Information System (INIS)

    Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

    1998-01-01

    Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots (∼100 (micro)m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with ρr ∼ 2 g/cm 2 for a small demo/pilot plant producing ∼40 MJ of fusion yield per target, and (2) a large target with ρr ∼ 10 g/cm 2 producing ∼1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q ∼ 26) ion sources for short (∼5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of ∼10 MG fields to provide steep focusing angles close-in to the target (built-in as part of each target); (4) beam space charge

  19. Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion

    Energy Technology Data Exchange (ETDEWEB)

    Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

    1998-04-01

    Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots ({approx}100 {micro}m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with {rho}r {approx} 2 g/cm{sup 2} for a small demo/pilot plant producing {approx}40 MJ of fusion yield per target, and (2) a large target with {rho}r {approx} 10 g/cm{sup 2} producing {approx}1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q {approx} 26) ion sources for short ({approx}5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of {approx}10 MG fields to provide steep focusing angles

  20. Dynamical limitations to heavy ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    Dynamical limitations to heavy ion fusion reaction are considered. The experimental signatures and the importance of a quasi-fission process are examined. The anaular distributions of fission fragments for the 32 S+ 208 Pb and 16 O+ 238 U systems are presented. It is shown that the observations of quasi-fission for even rather ''light'' heavy ions poeess severe limitations on the fusion process. This result may consequently be responsible for the lack of success of the search for super heavy elements in heavy ion fusion reactions

  1. Investigation of induction cells and modulator design for heavy ion accelerators

    International Nuclear Information System (INIS)

    Fong, C.G.; Reginato, L.R.

    1992-01-01

    The induction linear accelerator has been a leading candidate in the U.S. for the acceleration of high current heavy ion beams to initiate inertial confinement fusion (ICF). This paper describes the rather unique parameters derived from the accelerator beam dynamics, and addresses the design and development of accelerator induction cells and their modulators to be used in a near-term driver scaling experiment named the Induction Linac Systems Experiments (ILSE) planned for construction starting in 1994. Work is underway to develop the cells and their pulse modulators. Tradeoffs between the amorphous core material, pulse length, rise and fall time are made against efficiency, costs and technical risks are discussed

  2. Acceleration of radioactive ions

    International Nuclear Information System (INIS)

    Laxdal, R.E.

    2003-01-01

    There is an intense interest world-wide in the use of radioactive ion beams (RIBs) for experiment. In many existing or proposed facilities ions are produced or collected at source potential, ionized and re-accelerated. Within the past year three new ISOL based facilities have added dedicated post-accelerators to deliver accelerated RIBs to experiment. The paper gives an overview of RIB accelerators present and future, and explores the inherent features in the various acceleration methods with an emphasis on heavy ion linacs. The ISAC-I and ISAC-II post-accelerators are discussed as examples. Commissioning results and initial operating experience with ISAC-I will be presented

  3. Emittance growth from rotated quadrupoles in heavy ion accelerators

    International Nuclear Information System (INIS)

    Barnard, J.J.

    1995-01-01

    We derive a set of moment equations which incorporates linear quadrupolar focusing and space-charge defocusing, in the presence of rotational misalignments of the quadrupoles about the direction of beam propagation. Although the usual beam emittance measured relative to fixed transverse x and y coordinate axes is not constant, a conserved emittance-like quantity has been found. Implications for alignment tolerances in accelerators for heavy-ion inertial fusion are discussed

  4. Towards polarization measurements of laser-accelerated helium-3 ions

    Energy Technology Data Exchange (ETDEWEB)

    Engin, Ilhan

    2015-08-28

    In the framework of this thesis, preparatory investigations for the spin-polarization measurement of {sup 3}He ions from laser-induced plasmas have been performed. Therefore, experiments aiming at an efficient laser-induced ion acceleration out of a {sup 4}He gas target were carried out at two high-intensity laser facilities: the Arcturus laser at Heinrich-Heine-Universitaet Duesseldorf as well as PHELIX at GSI Darmstadt. The scientific goal of both experiments was to investigate the ion-acceleration process in underdense plasmas by measuring the ion energy spectra and the angular distribution of the ion signal around the gas-jet target. Laser-accelerated MeV-He-ions could successfully be detected. The main acceleration direction at large angles with regard to the laser propagation direction was determined. In a second step, unpolarized {sup 3}He gas was attached in order to cross-check the experimental results with those of {sup 4}He. With the help of the achieved ion yield data, the expected rates of the fusion reaction D({sup 3}He,p){sup 4}He in the polarized case have been estimated: the information regarding the fusion proton yield from this nuclear reaction allows an experimentally based estimation for future experiments with pre-polarized {sup 3}He gas as plasma target. The experimental data is in line with supporting Particle-in-Cell (PIC) simulations performed on the Juelich supercomputers. For this purpose, the simulated target was defined as a neutral gas. The use of pre-polarized {sup 3}He gas demands a special preparation of a polarized {sup 3}He target for laser-acceleration experiments. This layout includes an (external) homogeneous magnetic holding field (field strength of ∝1.4 mT) for storing the pre-polarized gas for long time durations inside the PHELIX target chamber. For this purpose, a precise Halbach array consisting of horizontally arranged rings with built-in permanent magnets had to be designed, optimized, and constructed to deliver high

  5. Pulsed power accelerators for particle beam fusion

    International Nuclear Information System (INIS)

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed

  6. Pulsed, Inductively Generated, Streaming Plasma Ion Source for Heavy Ion Fusion Linacs

    International Nuclear Information System (INIS)

    Steven C. Glidden; Howard D Sanders; John B. Greenly; Daniel L. Dongwoo

    2006-01-01

    This report describes a compact, high current density, pulsed ion source, based on electrodeless, inductively driven gas breakdown, developed to meet the requirements on normalized emittance, current density, uniformity and pulse duration for an ion injector in a heavy-ion fusion driver. The plasma source produces >10 (micro)s pulse of Argon plasma with ion current densities >100 mA/cm2 at 30 cm from the source and with strongly axially directed ion energy of about 80 eV, and sub-eV transverse temperature. The source has good reproducibility and spatial uniformity. Control of the current density during the pulse has been demonstrated with a novel modulator coil method which allows attenuation of the ion current density without significantly affecting the beam quality. This project was carried out in two phases. Phase 1 used source configurations adapted from light ion sources to demonstrate the feasibility of the concept. In Phase 2 the performance of the source was enhanced and quantified in greater detail, a modulator for controlling the pulse shape was developed, and experiments were conducted with the ions accelerated to >40 kV

  7. Jason: heavy-ion-driven inertial fusion

    International Nuclear Information System (INIS)

    Callan, C.G. Jr.; Dashen, R.F.; Garwin, R.L.; Muller, R.A.; Richter, B.; Rosenbluth, M.N.

    1978-02-01

    A few of the problems in heavy-ion-driven inertial-fusion systems are reviewed. Nothing was found within the scope of this study that would in principle bar such systems from delivering the energy and peak power required to ignite the fuel pellet. Indeed, ion-fusion seems to show great promise, but the conceptual design of ion-fusion systems is still in a primitive state. A great deal of work, mostly theoretical, remains to be done before proceeding with massive hardware development. Conclusions are given about the state of the work

  8. Negative Halogen Ions for Fusion Applications

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85-90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams

  9. Important atomic physics issues for ion beam fusion

    International Nuclear Information System (INIS)

    Bangerter, Roger.

    1986-01-01

    The nearly endless variety of interesting and challenging problems makes physics research enjoyable. Most of us would choose to be physicists even if physics had no practical applications. However, physics does have practical applications. This workshop deals with one of those applications, namely ion beam fusion. Not all interesting and challenging atomic physics questions are important for ion beam fusion. This paper suggests some questions that may be important for ion beam fusion. It also suggests some criteria for determining if a question is only interesting, or both interesting and important. Importance is time dependent and, because of some restrictions on the flow of information, also country dependent. In the early days of ion beam fusion, it was important to determine if ion beam fusion made sense. Approximate answers and bounds on various parameters were required. Accurate, detailed answers were not needed. Because of the efforts of many people attending this workshop, we now know that ion beam fusion does make some sense. We must still determine if ion beam fusion truly makes good sense. If it does make good sense, we must determine how to make it work. Accurate detailed answers are becoming increasingly important. (author)

  10. Performance of MBE-4: An experimental multiple beam induction linear accelerator for heavy ions

    International Nuclear Information System (INIS)

    Warwick, A.I.; Fessenden, T.J.; Keefe, D.; Kim, C.H.; Meuth, H.

    1988-06-01

    An experimental induction linac, called MBE-4, has been constructed to demonstrate acceleration and current amplification of multiple heavy ion beams. This work is part of a program to study the use of such an accelerator as a driver for heavy ion inertial fusion. MBE-4 is 16m long and accelerates four space-charge-dominated beams of singly-charged cesium ions, in this case from 200 keV to 700 keV, amplifying the current in each beam from 10mA by a factor of nine. Construction of the experiment was completed late in 1987 and we present the results of detailed measurements of the longitudinal beam dynamics. Of particular interest is the contribution of acceleration errors to the growth of current fluctuations and to the longitudinal emittance. The effectiveness of the longitudinal focusing, accomplished by means of the controlled time dependence of the accelerating fields, is also discussed. 4 refs., 5 figs., 1 tab

  11. Possible use of the SNS synchrotron for feasibility tests on aspects of heavy ion fusion drivers

    International Nuclear Information System (INIS)

    Planner, C.W.; Rees, G.H.

    1980-07-01

    There remain a large number of theoretical and practical problems to be solved before a complete accelerator-driver system prototype and a target chamber prototype may be built with any confidence to allow an assessment to be made of the practicality of heavy ion fusion power plants. Two accelerator-driver systems remain under serious consideration for 1 - 10 MJ systems of ion kinetic energies approximately 10 GeV, namely, the induction linac and the storage ring systems. The possible use of the SNS synchrotron for comparative studies of these alternative accelerator-driver systems is discussed. (U.K.)

  12. Ion beam pellet fusion as a CTR neutron test source

    International Nuclear Information System (INIS)

    Arnold, R.; Martin, R.

    1975-07-01

    Pellet fusion, driven by nanosecond pulses containing α particles with 200 MeV energy, is being developed as a neutron source. A prototype system is in the conceptual design stage. During the coming year, engineering design of required accelerator components, storage rings, and pellet configurations, as well as experiments on energy deposition mechanisms, should be accomplished. Successful construction and tests of prototype rings, followed by two years of full scale system construction, would give a source producing a useful flux of fusion neutrons for materials testing. The system as currently envisioned would employ 100 small superconducting high field storage rings (15 cm radius, 140 kG field) which would be synchronously filled with circulating 1 nsec pulses from a 200 MeV linear accelerator over a period of 3 x 10 -4 sec. These ion pulses would all be simultaneously extracted, forming a total current of 10 kA, and focussed from all directions on a deuterium and tritium (DT) pellet with 0.17 mm radium, surrounded by a heavier (metal) coating to increase confinement time and aid compression efficiency. The overall repetition rate, limited principally by physical transport of the pellets, could reach 100/sec. Spacing between pellet and focussing elements would be about 1 m. The predominant engineering problems are the fast extraction mechanism and beam transport devices for the storage rings. Additional theoretical and experimental studies are required on the crucial energy deposition and transport mechanisms in pellets with ion beam heating before firm estimates can be given. Preliminary estimates suggest fusion neutron yields of at least 10 14 /sec and possibly 10 16 /sec are possible, with optimal pellet dynamics, but without the necessity for any large advances in the state-of-the-art in accelerator and storage ring design. (auth)

  13. Collective ion acceleration

    International Nuclear Information System (INIS)

    Godfrey, B.B.; Faehl, R.J.; Newberger, B.S.; Shanahan, W.R.; Thode, L.E.

    1977-01-01

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  14. Heavy ion fusion targets; issues for fast ignition

    International Nuclear Information System (INIS)

    Bangerter, Roger O.

    2014-01-01

    During the last 36 years researchers have suggested and evaluated a large number of target designs for heavy ion inertial fusion. The different target designs can be classified according to their mode of ignition, their method of implosion, and their size. Ignition modes include hot-spot ignition and fast ignition. Methods of implosion include direct drive and indirect drive. Historically there has been significant work on indirectly driven targets with hot-spot ignition. Recently there has been increasing interest in directly driven targets with ion driven fast ignition. In principle, fast ignition might lead to improved target performance. On the other hand, fast ignition imposes stringent requirements on accelerators and beam physics. Furthermore, fast ignition magnifies the importance of a number of traditional target physics issues associated with ion beam energy deposition and fuel preheat. This paper will discuss the advantages and disadvantages of the various classes of targets. It will also discuss some issues that must be resolved to assess the feasibility of ion fast ignition

  15. LIBRA-LiTE: A commercial size light ion fusion power plant

    International Nuclear Information System (INIS)

    Badger, B.; Choi, B.; Engelstad, R.L.; Kulcinski, G.L.; Lovell, E.G.; MacFarlane, J.J.; Mogehed, E.A.; Moses, G.A.; Peterson, R.R.; Rutledge, S.; Sawan, M.E.; Sviatoslavsky, G.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1992-05-01

    LIBRA-LiTE is a concept study for future 1000 MWe nuclear fusion reactors operating on the principle of inertial confinement. Light ions, e.g. lithium ions, are given an energy of 25-35 MeV in an accelerator and focused symmetrically onto a target (deuterium-tritium filled sphere of 7 mm diameter) in a reactor chamber. The fusion reaction is ignited by shock wave induced compression of the target. The radiation (photons, neutrons, ions) is absorbed in a blanket where the thermal power is removed by a coolant and tritium is rebred. The LIBRA-LiTE concept study is the continuation of the earlier LIBRA study (330 MWe) with a modified concept of light ion beam focusing. Starting from an ion source (diode), the lithium ion beams are focused ballistically onto the target. For this to be achieved, lithium must be used as the coolant in the reactor chamber and the blanket concept must be slightly modified by providing steel tubes (HT-9) as guiding tubes for the coolant flow. A particular engineering problem to be solved are the ion beam focusing magnets, which have to extend rather closely up to the center of the reactor chamber. (orig.) [de

  16. Ion sources for electrostatic accelerators

    International Nuclear Information System (INIS)

    Hellborg, R.

    1998-01-01

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  17. Accelerator and Fusion Research Division. Annual report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    Research is reported for the combined groups consisting of the Accelerator Division and the Magnetic Fusion Energy Group. Major topics reported include accelerator operations, magnetic fusion energy, and advanced accelerator development. (GHT)

  18. MBE-4: an induction linac experiment for heavy ion fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brodzik, D.A.

    1986-06-01

    The multiple-beam induction linac approach to a heavy ion fusion driver features continuous current amplification along the accelerator and a minimum of transverse beam manipulation from source to pellet. Current amplification and bunch length control require careful shaping of the accelerating voltages. This driver approach exploits developments in electron induction linac technology that have occurred within the last 15 years at LBL, LLNL and NBS. MBE-4 is a four beam induction linac that models much of the accelerator physics of the electrostatically focused section of a considerably longer induction accelerator. Four parallel Cs + beams are electrostatically focussed and will be accelerated from 200 keV to approximately one MeV when the experiment is complete in the spring of 1987. The current in each of the four beams will increase from 10 to 40 mA due to both increase in beam speed and shortening of the bunch length. Results of experiments with the injector and first eight accelerating gaps are presented

  19. SUPER-FMIT, an accelerator-based neutron source for fusion components irradiation testing

    International Nuclear Information System (INIS)

    Burke, R.J.; Holmes, J.J.; Johnson, D.L.; Mann, F.M.; Miles, R.R.

    1984-01-01

    The SUPER-FMIT facility is proposed as an advanced accelerator based neutron source for high flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. There, neutrons would be produced by a 0.1 ampere beam of 35 MeV deuterons incident upon a liquid lithium target. The volume available for high flux (> 10 14 n/cm 2 -s) testing in SUPER-FMIT would be 14 liters, about a factor of 30 larger than in the FMIT facility. This is because the effective beam current of 35 MeV deuterons on target can be increased by a factor of ten to 1.0 amperes or more. Such a large increase can be accomplished by acceleration of multiple beams of molecular deuterium ions (D 2 +) to 70 MeV in a common accelerator sructure. The availability of multiple beams and large total current allows great variety in the testing that can be done. For example, fluxes greater than 10 16 n/cm 2 -s, multiple simultaneous experiments, and great flexibility in tailoring of spatial distributions of flux and spectra can be achieved

  20. Preliminary results from MBE-4: A four beam induction linac for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Judd, D.L.; Keefe, D.; Kim, C.; Laslett, L.J.; Smith, L.; Warwick, A.I.; Warwick, P.b.A.I.

    1986-01-01

    Preliminary results are presented from a scaled experimental multiple beam induction linac. This experiment is part of a program of accelerator research for heavy ion fusion. It is shown that multiple beams can be accelerated without significant mutual interaction. Measurements of the longitudinal dynamics of a current-amplifying induction linac are presented and compared to calculations. Coupling of transverse and longitudinal dynamics is discussed

  1. Preliminary results from MBE-4: a four beam induction linac for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Judd, D.L.; Keefe, D.; Kim, C.; Laslett, L.J.; Smith, L.; Warwick, A.I.

    1986-05-01

    Preliminary results are presented from a scaled experimental multiple beam induction linac. This experiment is part of a program of accelerator research for heavy ion fusion. It is shown that multiple beams can be accelerated without significant mutual interaction. Measurements of the longitudinal dynamics of a current-amplifying induction linac are presented and compared to calculations. Coupling of transverse and longitudinal dynamics is discussed

  2. Elise - the next step in development of induction heavy ion drivers for inertial fusion energy

    International Nuclear Information System (INIS)

    Lee, E.; Bangerter, R.O.; Celata, C.; Faltens, A.; Fessenden, T.; Peters, C.; Pickrell, J.; Reginato, L.; Seidl, P.; Yu, S.

    1994-11-01

    LBL, with the participation of LLNL and industry, proposes to build Elise, an electric-focused accelerator as the next logical step towards the eventual goal of a heavy-ion induction linac powerful enough to implode or open-quotes driveclose quotes inertial-confinement fusion targets. Elise will be at full driver scale in several important parameters-most notably line charge density (a function of beam size), which was not explored in earlier experiments. Elise will be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and will be designed to be extendible, by successive future construction projects, to meet the goal of the USA DOE Inertial Fusion Energy program (IFE). This goal is to address all remaining issues in heavy-ion IFE except target physics, which is currently the responsibility of DOE Defense Programs, and the target chamber. Thus Elise is the first step of a program that will provide a solid foundation of data for further progress toward a driver, as called for in the National Energy Strategy and National Energy Policy Act

  3. Low frequency RFQ linacs for heavy ion fusion

    International Nuclear Information System (INIS)

    Moretti, A.; Watson, J.M.; Martin, R.L.; Lari, R.J.; Stockley, R.L.

    1982-01-01

    Low frequency, radio frequency quadrupole (RFQ) structures are under study at Argonne National Laboratory (ANL) as the low-velocity portion of an rf linac driver for heavy ion inertial confinement fusion. Besides offering a direct comparison with the present ANL front end, it would provide a second low-velocity Xe +1 linac for funneling experiments at 22.9 MeV. Heavy ion RFQ accelerators are characterized by their low rf operating frequency of about 10 MHz. The large size of a manifold-fed four-vane, 10 MHz RFQ resonator structure (about 6 m in diameter) makes it unacceptable for heavy ions; therefore, alternate structures are under study at Argonne. The structures under study are: (1) a Wideroe-type structure with external stub lines, (2) a Wideroe-type structure with the stub lines internal to the structure, (3) a split coaxial line resonator with modulated vanes, and (4) a interdigital line resonator with modulated cylindrical rods. The split coaxial line resonator seems best at this low frequency. It is compact and very efficient. About 15.5 m of linac structure excited with 560 kW of rf power is sufficient to accelerate 30 mA of Xe +1 with 97% transmission efficiency from 250 keV to 3 MeV

  4. Advanced high brightness ion rf accelerator applications in the nuclear energy

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1991-01-01

    The capability of modern rf linear accelerators to provide intense high quality beams of protons, deuterons, or heavier ions is opening new possibilities for transmuting existing nuclear wastes, for generating electricity from readily available fuels with minimal residual wastes, for building intense neutron sources for materials research, for inertial confinement fusion using heavy ions, and for other new applications. These are briefly described, couched in a perspective of the advances in the understanding of the high brightness beams that has enabled these new programs. 32 refs., 2 figs

  5. Principles of non-Liouvillean pulse compression by photoionization for heavy ion fusion drivers

    International Nuclear Information System (INIS)

    Hofmann, I.

    1990-05-01

    Photoionization of single charged heavy ions has been proposed recently by Rubbia as a non-Liouvillean injection scheme from the linac into the storage rings of a driver accelerator for inertial confinement fusion (ICF). The main idea of this scheme is the accumulation of high currents of heavy ions without the usually inevitable increase of phase space. Here we suggest to use the photoionization idea in an alternative scheme: if it is applied at the final stage of pulse compression (replacing the conventional bunch compression by an rf voltage, which always increases the momentum spread) there is a significant advantage in the performance of the accelerator. We show, in particular, that this new compression scheme has the potential to relax the tough stability limitations, which were identified in the heavy ion fusion reactor study HIBALL. Moreover, it is promising for achieving the higher beam power, which is suitable for indirectly driven fusion targets (10 16 Watts/gram in contrast with the 10 14 for the directly driven targets in HIBALL). The idea of non-Liouvillean bunch compression is to stack a large number of bunches (typically 50-100) in the same phase space volume during a change of charge state of the ion. A particular feature of this scheme with regard to beam dynamics is its transient nature, since the time required is one revolution per bunch. After the stacking the intense bunch is ejected and directly guided to the target. The present study is a first step to explore the possibly limiting effect of space charge under the conditions of parameters of a full-size driver accelerator. Preliminary results indicate that there is a limit to the effective stacking number (non-Liouvillean 'compression-factor'), which is, however, not prohibitive. Requirements to the power of the photon beam from a free electron laser are also discussed. It is seen that resonant cross sections of the order of 10 -15 cm 2 lead to photon beam powers of a few Megawatt. (orig.)

  6. Accelerators of future generation

    International Nuclear Information System (INIS)

    Kolomenskij, A.A.

    1983-01-01

    A brief review of the prospects of development of various of types accelerator over next 10 to 15 years is given. The following directions are considered: superhign energy proton accelerators and storage rings, electron-positron colliding beams, heavy ion accelerators, medium energy, high-current proton accelerators superhigh power particle beams (electrons light- and heavy ions) for inertial fusion

  7. Dynamical limitations to heavy-ion fusion

    International Nuclear Information System (INIS)

    Back, B.B.

    1983-01-01

    In spite of the many attempts to synthesize superheavy elements in recent years, these efforts have not yet been successful. Recent improved theoretical models of heavy-ion fusion reactions suggest that the formation of super-heavy elements is hindered by the dynamics of the process. Several recent experiments lend support to these theories. The necessity of an excess radial velocity (extra push) over the Coulomb barrier in order to induce fusion is observed experimentally as predicted by the theory. So is a new reaction mechanism, called quasi-fission which tend to exhaust the part of the reaction cross section, which would otherwise lead to fusion. The present study shows that the angular distribution of fragments from quasi-fission processes are very sensitive to the occurrence of this reaction mechanism. A slight modification of one parameter in the theory demanded by the observation of quasi-fission for lighter projectiles via the angular distributions, has the consequence of posing even more-stringent limitations on heavy-ion-fusion reactions. This reduces even further the possibility for synthesizing and identifying superheavy elements in heavy-ion-fusion reactions

  8. Report on the workshop on atomic and plasma physics requirements for heavy ion fusion, Argonne National Lab., December 13-14, 1979

    International Nuclear Information System (INIS)

    Kin, Y.K.; Magelssen, G.

    1979-01-01

    Atomic, molecular, and plasma physics areas that are relevant to inertial confinement fusion by energetic heavy ions are identified. Discussions are confined to problems related to the design of heavy ion accelerators, accumulation of ions in storage rings, and the beam transport in a reactor vessel

  9. Molecular ion acceleration using tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuichi; Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    In TIARA compound beam radiation system, cluster beams have been produced using 3 MV tandem accelerator (9SDH-2) to supply them to various radiation on injection experiments. Till now, productions of C{sub 2-8}, Si{sub 2-4} and O{sub 2} and their accelerations up to 6 MeV have been succeeded. This study aimed at production and acceleration of B{sub 2-4} and LiF. Anion clusters were produced using the conventional ion source of cesium sputter type. The proportions of atoms, molecules and clusters elicited from the ion source were varied depending on the material`s properties and the operating conditions of ion source such as sample temperature, sputter voltage and the shape of sample. The anion clusters were accelerated toward the high voltage terminal in the center of tandem accelerator, leading to cations through losing their electrons by the collision to N{sub 2} gas in a charge conversion cell at the terminal. Positively charged cluster ions could be obtained by modulating the pressure of N{sub 2} gas. Thus, B{sub 2} (64 nA), B{sub 3} (4.4 nA) and B{sub 4} (2.7 nA) have been produced and their maximum survival probabilities were higher than those of carbon or silicon clusters. In addition, the relationship between beam current and gas pressure was investigated for Bn (n = 2-4) and LiF. (M.N.)

  10. Development of heavy ion linear accelerators

    International Nuclear Information System (INIS)

    Bomko, V.A.; Khizhnyak, N.A.

    1981-01-01

    A review of the known heavy ion accelerators is given. It is stated that cyclic and linear accelerators are the most perspective ones in the energy range up to 10 MeV/nucleon according to universality in respect with the possibility of ion acceleration of the wide mass range. However, according to the accelerated beam intensity of the heavier ions the linear accelerators have considerable advantages over any other types of accelerators. The review of the known heavy ion linac structures permits to make the conclusion that a new modification of an accelerating structure of opposite pins excited on a H-wave is the most perspective one [ru

  11. The prospect for fusion energy with light ions

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Adams, R.G.; Bailey, J.E.

    1998-01-01

    Intense ion beams may be the best option for an Inertial Fusion Energy (IFE) driver. While light ions may be the long-term pulsed power approach to IFE, the current economic climate is such that there is no urgency in developing fusion energy sources. Research on light ion beams at Sandia will be suspended at the end of this fiscal year in favor of z-pinches studying ICF target physics, high yield fusion, and stewardship issues. The authors document the status of light ion research and the understanding of the feasibility of scaling light ions to IFE

  12. Highlights of the heavy ion fusion symposium

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-01-01

    The current status and prospects for inertial confinement fusion based on the use of intense beams of heavy ions will be described in the light of results presented at the International Symposium on Heavy Ion Fusion, (Washington, DC, May 27-29, 1986)

  13. Highlights of the heavy ion fusion symposium

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The current status and prospects for inertial confinement fusion based on the use of intense beams of heavy ions will be described in the light of results presented at the International Symposium on Heavy Ion Fusion, (Washington, DC, May 27-29, 1986)

  14. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  15. Compact RF ion source for industrial electrostatic ion accelerator

    Science.gov (United States)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  16. Study of heavy ion fusion reaction of 58Ni + 24Mg at 11 MeV/nucleon

    International Nuclear Information System (INIS)

    Shea, J.Y.

    1991-01-01

    This thesis presents a study of the heavy ion fusion reaction in which a 58 Ni projectile bombards a 24 Mg target at 11 MeV/nucleon. The incident projectile energy was purposefully chosen so as the system studied to be at the onset of the more complex and interesting phenomenon of incomplete fusion. The physics motivation is to probe the central collision of a heavy, energetic, and asymmetric system by means of both inclusive and exclusive experimental measurements. The experiment was performed at HHIRF (Holifield Heavy Ion Research Facility) by using the coupled accelerators at Oak Ridge National Laboratory. The reaction products were measured by the new open-quotes HILI-Ringclose quotes large solid angle detector system at Oak Ridge National Laboratory. The thesis discusses the physics motivation and the systematics of heavy ion fusion reactions. Details of the design and construction of a new CsI(T1) Ring detector is given. Since this is the first such study performed on the Heavy Ion Light Ion (HILI) detector, an extensive discussion of the calibration procedures and the data reduction methods are given. The fusion reaction data were analyzed in both inclusive and exclusive modes with the result that a valuable new perspective on the deconvolution of the reaction mechanism has been achieved

  17. Annual report of the Brookhaven National Laboratory Heavy Ion Fusion Project, 1 October 1977--1 October 1978

    International Nuclear Information System (INIS)

    1979-02-01

    This report is divided into three parts. The first deals with the results of an analysis of the fusion problem in general, and heavy ion inertial fusion in particular. The second portion deals with the progress being made in the design and development of high current, high brightness pre-injectors and linear accelerators. The third deals with some experiments with space charge neutralization, bunching, etc

  18. Laser - driven high - energy ions and their application to inertial confinement fusion

    International Nuclear Information System (INIS)

    Borghesi, M.

    2007-01-01

    The acceleration of high-energy ion beams (up to several tens of MeV per nucleon) following the interaction of short and intense laser pulses with solid targets has been one of the most important results of recent laser-plasma research [1]. The acceleration is driven by relativistic electrons, which acquire energy directly from the laser pulse and set up extremely large (∼TV/m) space charge fields at the target interfaces. The properties of laser-driven ion beams (high brightness and laminarity, high-energy cut-off, ultrashort burst duration) distinguish them from lower energy ions accelerated in earlier experiments at moderate laser intensities, and compare favourably with those of 'conventional' accelerator beams. In view of these properties, laser-driven ion beams can be employed in a number of innovative applications in the scientific, technological and medical areas. We will discuss in particular aspects of interest to their application in an Inertial Confinement Fusion context. Laser-driven protons are indeed being considered as a possible trigger for Fast Ignition of a precompressed fuel.[2] Recent results relating to the optimization of beam energy and focusing will be presented. These include the use of laser-driven impulsive fields for proton beam collimation and focusing [3], and the investigation of acceleration in presence of finite-scale plasma gradient. Proposed target developments enabling proton production at high repetition rate will also be discussed. Another important area of application of proton beams is diagnostic use in a particle probing arrangement for detection of density non-homogeneities [4] and electric/magnetic fields [5]. We will discuss the use of laser-driven proton beams for the diagnosis of magnetic and electric fields in planar and hohlraum targets and for the detection of fields associated to relativistic electron propagation through dense matter, an issue of high relevance for electron driven Fast Ignition. [1] M

  19. Ion Acceleration by Double Layers with Multi-Component Ion Species

    Science.gov (United States)

    Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team

    2017-10-01

    Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.

  20. Status of inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1987-04-01

    The technology advancement to high-power beams has also given birth to new technologies. That class of Free Electron Lasers that employs rf linacs, synchrotrons, and storage rings - although the use the tools of High Energy Physics (HEP) - was developed well behind the kinetic energy frontier. The induction linac, however, is something of an exception; it was born directly from the needs of the magnetic fusion program, and was not motivated by a high-energy physics application. The heavy-ion approach to inertial fusion starts with picking from the rich menu of accelerator technologies those that have, ab initio, the essential ingredients needed for a power plant driver: multigap acceleration - which leads to reliability/lifetime; electrical efficiency; repetition rate; and beams that can be reliably focused over a suitably long distance. The report describes the programs underway in Heavy Ion Fusion Accelerator Research as well as listing expected advances in driver, target, and beam quality areas in the inertial fusion power program

  1. Ion sources for heavy ion fusion

    International Nuclear Information System (INIS)

    Yu, S.S.; Eylon, S.; Chupp, W.

    1995-09-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K + ions of 950 mA peak from a 6.7 inch curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 micros. The measured normalized edge emittance of less than 1 π mm-mr is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described

  2. Heavy-ion fusion accelerator research, 1985

    International Nuclear Information System (INIS)

    1986-10-01

    A plan for exploring the physics and technology of induction linac development is discussed which involves a series of increasingly sophisticated experiments. The first is the single-beam transport experiment, which has explored the physics of a single space-charge-dominated beam. Second is the multiple-beam experiment in which four independent beams will be transported and accelerated through a multigap accelerating structure. The single-beam transport experiment is described, and some results are given of stability studies and instrumentation studies. The design and fabrication of the multi-beam experiment are described, as well as results of a first round of experiments in which beam-current amplification was observed. Concurrent theoretical work, resulting in a variety of acce-leration schedules and sets of associated voltage waveforms required to implement the experiments, is also reported

  3. Ion acceleration and D-D nuclear fusion in laser-generated plasma from advanced deuterated polyethylene.

    Science.gov (United States)

    Torrisi, Lorenzo

    2014-10-23

    Deuterated polyethylene targets have been irradiated by means of a 1016 W/cm2 laser using 600 J pulse energy, 1315 nm wavelength, 300 ps pulse duration and 70 micron spot diameter. The plasma parameters were measured using on-line diagnostics based on ion collectors, SiC detectors and plastic scintillators, all employed in time-of-flight configuration. In addition, a Thomson parabola spectrometer, an X-ray streak camera, and calibrated neutron dosimeter bubble detectors were employed. Characteristic protons and neutrons at maximum energies of 3.0 MeV and 2.45 MeV, respectively, were detected, confirming that energy spectra of reaction products coming from deuterium-deuterium nuclear fusion occur. In thick advanced targets a fusion rate of the order of 2 × 108 fusions per laser shot was calculated.

  4. Ion accelerator based on plasma vircator

    CERN Document Server

    Onishchenko, I N

    2001-01-01

    The conception of a collective ion accelerator is proposed to be developed in the frameworks of STCU project 1569 (NSC KIPT, Ukraine) in coordination with the ISTC project 1629 (VNIEF, Russia). The main processes of acceleration are supposed to be consisted of two stages.First one is the plasma assistance virtual cathode (VC) in which plasma ions are accelerated in a potential well of VC. Along with ion acceleration the relaxation oscillations, caused by diminishing the potential well due to ion compensation, arise that provides the low-frequency (inverse ion transit time) temporal modulation of an intense relativistic electron beam (IREB) current. At the second stage temporally modulated IREB is injected into the spatially periodic magnetic field. The further ion acceleration is realized by the slow space charge wave that arises in IREB due to its simultaneous temporal and spatial modulation.

  5. An induction Linac driven heavy-ion fusion systems model

    International Nuclear Information System (INIS)

    Zuckerman, D.S.; Driemeyer, D.E.; Waganer, L.M.; Dudziak, D.J.

    1988-01-01

    A computerized systems model of a heavy-ion fusion (HIF) reactor power plant is presented. The model can be used to analyze the behavior and projected costs of a commercial power plant using an induction linear accelerator (Linac) as a driver. Each major component of the model (targets, reactor cavity, Linac, beam transport, power flow, balance of plant, and costing) is discussed. Various target, reactor cavity, Linac, and beam transport schemes are examined and compared. The preferred operating regime for such a power plant is also examined. The results show that HIF power plants can compete with other advanced energy concepts at the 1000-MW (electric) power level [cost of electricity (COE) -- 50 mill/kW . h] provided that the cost savings predicted for Linacs using higher charge-state ions (+3) can be realized

  6. High Energy Density Physics and Exotic Acceleration Schemes

    International Nuclear Information System (INIS)

    Cowan, T.; Colby, E.

    2005-01-01

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  7. Development of bipolar pulse accelerator for intense pulsed ion beam acceleration

    International Nuclear Information System (INIS)

    Fujioka, Y.; Mitsui, C.; Kitamura, I.; Takahashi, T.; Masugata, K.; Tanoue, H.; Arai, K.

    2003-01-01

    To improve the purity of an intense pulsed ion beams a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' was proposed. In the accelerator purity of the beam is expected. To confirm the principle of the accelerator experimental system was developed. The system utilizes B y type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun placed in the grounded anode was used as an ion source, and source plasma (nitrogen) of current density approx. = 25 A/cm 2 , duration approx. = 1.5 μs was injected into the acceleration gap. The ions are successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 180 kV, duration 60 ns to the drift tube. Pulsed ion beam of current density approx. = 40 A/cm 2 , duration approx. 60 ns was obtained at 42 mm downstream from the anode surface. (author)

  8. Radiation safety of Takasaki ion accelerators for advanced radiation in JAERI

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Tanaka, Susumu; Anazawa, Yutaka

    1991-01-01

    Building layout of Takasaki ion accelerator facility has been started since 1987, with the propulsion of research development of (1) cosmetic environment materials, (2) nuclear fusion reactors, (3) biotechnology, and (4) new functional materials. This paper deals with an AVF cyclotron and a tandem type accelerator, focusing on safety design, radiation safety management, and radioactive waste management. Safety design is discussed in view of radiation shielding and activation countermeasures. Radiation safety management covers radiation monitoring in the workplace, exhaust radioactivity, environment outside the facility, and the other equipments; personal monitoring; and protective management of exposure. For radiation waste management, basic concept and management methods are commented on. (N.K.)

  9. Heavy ion fusion sources

    International Nuclear Information System (INIS)

    Grote, D.P.; Kwan, J.; Westenskow, G.

    2003-01-01

    In Heavy-Fusion and in other applications, there is a need for high brightness sources with both high current and low emittance. The traditional design with a single monolithic source, while very successful, has significant constraints on it when going to higher currents. With the Child-Langmuir current-density limit, geometric aberration limits, and voltage breakdown limits, the area of the source becomes a high power of the current, A ∼ I 8/3 . We are examining a multi-beamlet source, avoiding the constraints by having many beamlets each with low current and small area. The beamlets are created and initially accelerated separately and then merged to form a single beam. This design offers a number of potential advantages over a monolithic source, such as a smaller transverse footprint, more control over the shaping and aiming of the beam, and more flexibility in the choice of ion sources. A potential drawback, however, is the emittance that results from the merging of the beamlets. We have designed injectors using simulation that have acceptably low emittance and are beginning to examine them experimentally

  10. Progress in the pulsed power Inertial Confinement Fusion program

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Matzen, M.K.; Mehlhorn, T.A.

    1996-01-01

    Pulsed power accelerators are being used in Inertial Confinement Fusion (ICF) research. In order to achieve our goal of a fusion yield in the range of 200 - 1000 MJ from radiation-driven fusion capsules, it is generally believed that ∼10 MJ of driver energy must be deposited within the ICF target in order to deposit ∼1 MJ of radiation energy in the fusion capsule. Pulsed power represents an efficient technology for producing both these energies and these radiation environments in the required short pulses (few tens of ns). Two possible approaches are being developed to utilize pulsed power accelerators in this effort: intense beams of light ions and z- pinches. This paper describes recent progress in both approaches. Over the past several years, experiments have successfully answered many questions critical to ion target design. Increasing the ion beam power and intensity are our next objectives. Last year, the Particle Beam Fusion Accelerator H (PBFA II) was modified to generate ion beams in a geometry that will be required for high yield applications. This 2048 modification has resulted in the production of the highest power ion beam to be accelerated from an extraction ion diode. We are also evaluating fast magnetically-driven implosions (z-pinches) as platforms for ICF ablator physics and EOS experiments. Z-pinch implosions driven by the 20 TW Saturn accelerator have efficiently produced high x- ray power (> 75 TW) and energy (> 400 kJ). Containing these x-ray sources within a hohlraum produces a unique large volume (> 6000 mm 3 ), long lived (>20 ns) radiation environment. In addition to studying fundamental ICF capsule physics, there are several concepts for driving ICF capsules with these x-ray sources. Progress in increasing the x-ray power on the Saturn accelerator and promise of further increases on the higher power PBFA II accelerator will be described

  11. A novel method to recover DD fusion proton CR-39 data corrupted by fast ablator ions at OMEGA and the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sutcliffe, G. D., E-mail: gdsut@mit.edu; Milanese, L. M.; Orozco, D.; Lahmann, B.; Gatu Johnson, M.; Séguin, F. H.; Sio, H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Park, H.-S.; Rygg, J. R.; Casey, D. T.; Bionta, R.; Turnbull, D. P.; Huntington, C. M.; Ross, J. S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Zylstra, A. B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rosenberg, M. J.; Glebov, V. Yu. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2016-11-15

    CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.

  12. A novel method to recover DD fusion proton CR-39 data corrupted by fast ablator ions at OMEGA and the National Ignition Facility

    International Nuclear Information System (INIS)

    Sutcliffe, G. D.; Milanese, L. M.; Orozco, D.; Lahmann, B.; Gatu Johnson, M.; Séguin, F. H.; Sio, H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Park, H.-S.; Rygg, J. R.; Casey, D. T.; Bionta, R.; Turnbull, D. P.; Huntington, C. M.; Ross, J. S.; Zylstra, A. B.; Rosenberg, M. J.; Glebov, V. Yu.

    2016-01-01

    CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.

  13. A novel method to recover DD fusion proton CR-39 data corrupted by fast ablator ions at OMEGA and the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sutcliffe, G. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Milanese, L. M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Orozco, D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Lahmann, B. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Gatu Johnson, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Séguin, F. H. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Sio, H. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Li, C. K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Park, H. -S. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Rygg, J. R. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Casey, D. T. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Bionta, R. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Turnbull, D. P. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Huntington, C. M. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Ross, J. S. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Zylstra, A. B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; Rosenberg, M. J. [Laboratory for Laser Energetics, Rochester, New York 14623, USA; Glebov, V. Yu. [Laboratory for Laser Energetics, Rochester, New York 14623, USA

    2016-08-05

    CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 μm deeper than the necessary bulk material removal.

  14. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Science.gov (United States)

    Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  15. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E. [Consorzio RFX—Associazione EURATOM-ENEA per la Fusione, Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  16. Targets for heavy ion fusion

    International Nuclear Information System (INIS)

    Clauser, M.J.

    1978-01-01

    This paper describes some of the basic principles of fusion target implosions, using some simple targets designed for irradiation by ion beams. Present estimates are that ion beams with 1-5 MJ, and 100-500 TW will be required to ignite high gain targets. (orig.) [de

  17. Design study of prototype accelerator and MeV test facility for demonstration of 1 MeV, 1 A negative ion beam production

    International Nuclear Information System (INIS)

    Inoue, Takashi; Hanada, Masaya; Miyamoto, Kenji; Ohara, Yoshihiro; Okumura, Yoshikazu; Watanabe, Kazuhiro; Maeno, Shuichi.

    1994-08-01

    In fusion reactors such as ITER, a neutral beam injector of MeV class beam energy and several tens MW class power is required as one of candidates of heating and current drive systems. However, the beam energy of existing high power accelerators are one order of magnitude lower than the required value. In order to realize a neutral beam injector for the fusion reactor, 'Proof-of-Principle' of such high energy acceleration is a critical issue at a reactor relevant beam current and pulse length. An accelerator and an accelerator facility which are necessary to demonstrate the Proof-of-Principle acceleration of negative ion beams up to 1 MeV, have been designed in the present study. The accelerator is composed of a cesium-volume type ion source and a multi-stage electrostatic acceleration system [Prototype Accelerator]. A negative hydrogen ion beam with the current of about one ampere (1 A) can be accelerated up to 1 MeV at a low operating pressure. Two types of acceleration system, a multi-multi type and a multi-single type, have been studied. The test facility has sufficient capability for the test of the Prototype Accelerator [MeV Test Facility]. The dc high voltage generator for negative ion acceleration is a Cockcroft-Walton type and capable of delivering 1 A at 1 MV (=1 MW) for 60 s. High voltage components including Prototype Accelerator are installed in a SF 6 vessel pressurized at 6 kg/cm 2 to overcome high voltage gradients. The vessel and the beamline are installed in a X-ray shield. (author)

  18. A lower cost development path for heavy ion fusion

    International Nuclear Information System (INIS)

    Hogan, W.J.; Meier, W.R.

    1993-01-01

    If two features of the inertial fusion process are exploited successfully, they can lead to significantly lower costs for demonstrating the feasibility of commercial electric power production from this source of energy. First, fusion capsule ignition and burn physics is independent of reaction chamber size and hydrodynamically-equivalent capsules can be designed to perform at small yield, exactly as they do at large yield. This means that an integrated test of all power plant components and feasibility tests of various reaction chamber concepts can be done at much smaller sizes (about 1--2 m first wall radius) and much lower powers (tens of MWs) than magnetic fusion development facilities such as ITER. Second, the driver, which is the most expensive component of currently conceived IFE development facilities, can be used to support more than one experiment target chamber/reactor (simultaneously and/or sequentially). These two factors lead to lower development facility costs, modular facilities, and the planning flexibility to spread costs over time or do several things in parallel and thus shorten the total time needed for development of Inertial Fusion Energy (IFE). In this paper the authors describe the general feature of a heavy ion fusion development plan that takes advantage of upgradable accelerators and the ability to test chambers and reactor systems at small scale in order to reduce development time and costs

  19. Nuclear structure and heavy-ion fusion

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1980-10-01

    A series of lectures is presented on experimental studies of heavy-ion fusion reactions with emphasis on the role of nuclear structure in the fusion mechanism. The experiments considered are of three types: the fusion of lighter heavy ions at subcoulomb energies is studied with in-beam γ-ray techniques; the subbarrier fusion of 16 O and 40 Ar with the isotopes of samarium is detected out of beam by x-radiation from delayed activity; and measurements at very high energies, again for the lighter ions, employ direct particle identification of evaporation residues. The experimental data are compared with predictions based on the fusion of two spheres with the only degree of freedom being the separation of the centers, and which interact via potentials that vary smoothly with changes in the mass and charge of the projectile and target. The data exhibit with the isotopes of samarium, a portion of these deviations can be understood in terms of the changing deformation of the target nucleus, but an additional degree of freedom such as neck formation appears necessary. The results on 10 B + 16 O and 12 C + 14 N → 26 Al at high bombarding energies indicate a maximum limiting angular momentum characteristic of the compound nucleus. At lower energies the nuclear structure of the colliding ion seems to affect strongly the cross section for fusion. Measurements made at subbarrier energies for a variety of projectile-target combinations in the 1p and 2s - 1d shell also indicate that the valence nucleons can affect the energy dependence for fusion. About half the systems studied so far have structureless excitation functions which follow a standard prediction. The other half exhibit large variations from this prediction. The possible importance of neutron transfer is discussed. The two-center shell model appears as a promising approach for gaining a qualitative understanding of these phenomena. 95 references, 52 figures, 1 table

  20. Heavy Ion Fusion Systems Assessment study

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Herrmannsfeldt, W.B.

    1986-07-01

    The Heavy Ion Fusion Systems Assessment (HIFSA) study was conducted with the specific objective of evaluating the prospects of using induction linac drivers to generate economical electrical power from inertial confinement fusion. The study used algorithmic models of representative components of a fusion system to identify favored areas in the multidimensional parameter space. The resulting cost-of-electricity (COE) projections are comparable to those from other (magnetic) fusion scenarios, at a plant size of 100 MWe

  1. Ion acceleration in modulated electron beams

    International Nuclear Information System (INIS)

    Bonch-Osmolovskij, A.G.; Dolya, S.N.

    1977-01-01

    A method of ion acceleration in modulated electron beams is considered. Electron density and energy of their rotational motion are relatively low. However the effective ion-accelerating field is not less than 10 MeV/m. The electron and ion numbers in an individual bunch are also relatively small, although the number of produced bunches per time unit is great. Some aspects of realization of the method are considered. Possible parameters of the accelerator are given. At 50 keV electron energy and 1 kA beam current a modulation is realized at a wave length of 30 cm. The ion-accelerating field is 12 MeV/m. The bunch number is 2x10 3 in one pulse at a gun pulse duration of 2 μs. With a pulse repetition frequency of 10 2 Hz the number of accelerated ions can reach 10 13 -10 14 per second

  2. The Pulse Line Ion Accelerator Concept

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Richard J.

    2006-02-15

    The Pulse Line Ion Accelerator concept was motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The concept might be described crudely as an ''air core'' induction linac where the PFN is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  3. Heavy ion medical accelerator, HIMAC

    International Nuclear Information System (INIS)

    Yamada, Satoru

    1993-01-01

    The heavy ion beam is undoutedly suitable for the cancer treatment. The supriority of the heavy ions over the conventional radiations including protons and neutrons comes mainly from physical characteristics of a heavy particle with multiple charges. A straggling angle due to a multiple Coulomb scattering process in a human body is small for heavy ions, and the small scattering angle results in a good dose localization in a transverse direction. An ionization ratio of the heavy ion beam makes a very sharp peak at the ends of their range. The height of the peak is higher for the heavier ions and shows excellent biomedical effects around Ne ions. In order to apply heavy ion beams to cancer treatment, Heavy Ion Medical Accelerator in Chiba (HIMAC) has been constructed at National Institute of Radiological Sciences. The accelerator complex consists of two ion sources, two successive linac tanks, a pair of synchrotron rings, a beam transport system and an irradiation system. An operation frequency is 100 MHz for two linacs, and the ion energy is 6.0 MeV/u at the output end of the linac. The other four experimental rooms are prepared for basic experiments. The synchrotron accelerates ions up to 800 MeV/u for a charge to mass ratio of 1/2. The long beam transport line provides two vertical beams in addition with two horizontal beams for the treatment. The three treatment rooms are prepared one of which is equipped with both horizontal and vertical beam lines. The whole facility will be open for all scientists who have interests in the heavy ion science as well as the biophysics. The conceptual design study of HIMAC started in 1984, and the construction of the accelerator complex was begun in March 1988. The beam acceleration tests of the injector system was successfully completed in March of this year, and tests of the whole system will be finished throughout this fyscal year. (author)

  4. Numerical studies of acceleration of thorium ions by a laser pulse of ultra-relativistic intensity

    Directory of Open Access Journals (Sweden)

    Domanski Jaroslaw

    2018-01-01

    Full Text Available One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity ~ 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values ~ 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.

  5. Overview of US heavy-ion fusion commercial electric power systems assessment project. Revision

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Pendergrass, J.H.; Saylor, W.W.

    1986-01-01

    The US heavy-ion fusion (HIF) research program is oriented toward development of multiple-beam induction linacs. Over the last two years an assessment has been performed of the potential of HIF as a competitive commercial electric power source. This assessment involved several technology performance and cost issues (e.g., final beam transport system, target manufacturing, beam stability in reactor cavity environments, and reactor cavity clearing), as well as overall power plant systems integration and tradeoff studies. Results from parametric analyses using a systems code developed in the project show cost of electricity (COE) values comparable with COEs from other magnetic fusion and inertial confinement fusion (ICF) plant studies; viz, 50-60 mills/kWh (1985 dollars) for 1-GWe plants. Also, significant COE insensitivity to major accelerator, target, and reactor parameters was demonstrated

  6. Cyclotron method for heavy ion acceleration

    International Nuclear Information System (INIS)

    Gikal, B.N.; Gul'bekyan, G.G.; Kutner, V.B.; Oganesyan, R.Ts.

    1984-01-01

    Studies on heavy ion beams in a wide range of masses (up to uranium) and energies disclose essential potential opportunities for solution of both fundamental scientific and significant economical problems. A cyclotron method for heavy ion acceleration is considered. Development of low and medium energy heavy ion accelerators is revealed. The design of a complex comprising two isochronous cyclotrons which is planned to be constrdcted 1n the JINR is described. The cyclotron complex includes the U-400 and the U-400 M cyclotrons and it is intended for acceleration of both 35-20 MeV/nucleon superheavy ions such as Xe-U and 120 MeV/nucleon light ions. Certain systems of the accelerators are described. Prospects of the U-400 and the U-400 M development are displayed

  7. Heavy ion acceleration at the AGS

    International Nuclear Information System (INIS)

    Lee, Y.Y.

    1989-01-01

    The Brookhaven AGS is alternating gradient synchrotron, 807 meters in circumference, which was originally designed for only protons. Using the 15 MV Brookhaven Tandem Van de Graaff as an injector, the AGS started to accelerate heavy ions of mass lighter than sulfur. Because of the relatively poor vacuum (∼10 -8 Torr), the AGS is not able to accelerate heavier ions which could not be fully stripped of electrons at the Tandem energy. When the AGS Booster, which is under construction, is completed the operation will be extended to all species of heavy ions including gold and uranium. Because ultra-high vacuum (∼10 -11 Torr) is planned, the Booster can accelerate partially stripped elements. The operational experience, the parameters, and scheme of heavy ion acceleration will be presented in detail from injection to extraction, as well as future injection into the new Relativistic Heavy Ion Collider (RHIC). A future plan to improve intensity of the accelerator will also be presented. 5 figs., 4 tabs

  8. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Masugata, Katsumi [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan)]. E-mail: masugata@eng.toyama-u.ac.jp; Shimizu, Yuichro [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Fujioka, Yuhki [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Kitamura, Iwao [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Tanoue, Hisao [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Arai, Kazuo [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan)

    2004-12-21

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator' was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density {approx}25A/cm2, duration {approx}1.5{mu}s was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240kV, duration 100ns to the drift tube. Pulsed ion beam of current density {approx}40A/cm2, duration {approx}50ns was obtained at 41mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness {approx}500nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  9. Collective focusing ion accelerator

    International Nuclear Information System (INIS)

    Goldin, F.J.

    1986-01-01

    The principal subject of this dissertation is the trapping confinement of pure electron plasmas in bumpy toroidal magnetic fields, with particular attention given to the trapping procedure and the behavior of the plasma during the final equilibrium. The most important aspects of the equilibrium studied were the qualitative nature of the plasma configuration and motion and its density, distribution and stability. The motivation for this study was that an unneutralized cloud of electrons contained in a toroidal system, sufficiently dense and stable, may serve to electrostatically focus ions (against centrifugal and self space charge forces) in a cyclic ion accelerator. Such an accelerator, known as a Collective Focusing Ion Accelerator (CFIA) could be far smaller than conventional designs (which use external magnetic fields directly to focus the ions) due to the smaller gyro-radium of an electron in a magnetic field of given strength. The electron cloud generally drifted poloidally at a finite radius from the toroidal minor axis. As this would preclude focusing ions with such clouds, damping this motion was investigated. Finite resistance in the normally perfectly conductive vessel wall did this. In further preparation for a working CFIA, additional experiments studied the effect of ions on the stability of the electron cloud

  10. Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF.

    Science.gov (United States)

    Sinenian, N; Manuel, M J-E; Zylstra, A B; Rosenberg, M; Waugh, C J; Rinderknecht, H G; Casey, D T; Sio, H; Ruszczynski, J K; Zhou, L; Gatu Johnson, M; Frenje, J A; Séguin, F H; Li, C K; Petrasso, R D; Ruiz, C L; Leeper, R J

    2012-04-01

    The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility. © 2012 American Institute of Physics

  11. Recent US target-physics-related research in heavy-ion inertial fusion: simulations for tamped targets and for disk experiments in accelerator test facilities

    International Nuclear Information System (INIS)

    Mark, J.W.K.

    1982-01-01

    Within the last few years, there have also appeared in the Heavy-Ion Fusion literature several studies of targets which have outer tampers. One-dimensional simulations indicate higher target gains with a judicious amount of tamping. But for these targets, a full investigation has not been carried through in regards to conservative criteria for fluid instabilities as well as reasonable imperfections in target fabrication and illumination symmetry which all affect target ignition and burn. Comparisons of these results with the gain survey of Part I would have to be performed with care. These calculations suggest that experiments relating to high temperature disk heating, as well as beam deposition, focusing and transport can be performed within the context of current design proposals for accelerator test-facilities. Since the test-facilities have lower ion kinetic energy and beam pulse power as compared to reactor drivers, we achieve high-beam intensities at the focal spot by using short focal distance and properly designed beam optics

  12. Heavy ion fusion reactions: comparison among different models

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Carlson, B V; Hussein, M S

    1988-03-01

    A comparison among different ion fusion models is presented. In particular, the multistep aspects of the recently proposed Dinucleus Doorway Model are made explicit and the model is confronted with other compound nucleus limitation models. It is suggested that the latter models provide effective one-step descriptions of heavy ion fusion.

  13. Unlimited ion acceleration by radiation pressure.

    Science.gov (United States)

    Bulanov, S V; Echkina, E Yu; Esirkepov, T Zh; Inovenkov, I N; Kando, M; Pegoraro, F; Korn, G

    2010-04-02

    The energy of ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region resulting in an increase in the ion energy and in the ion longitudinal velocity. In the relativistic limit, the ions become phase locked with respect to the electromagnetic wave resulting in unlimited ion energy gain.

  14. Ion acceleration in the plasma focus

    International Nuclear Information System (INIS)

    Deutsch, R.

    1982-09-01

    Experimental informations are used to estimate the time dependence of the current density in the plasma focus and the electromagnetic field is determined from the Maxwell equations. The acceleration of the ions in these fields is studied. A detailed analysis of the acceleration in the compression phase, in the expansion phase and during the evolution of the m=O instability is made. It is shown, that the appearance of fast selffocused quasineutral electron beams, as a result of the betatron acceleration, has a decisive importance in the ion acceleration during the m=O constriction. Models for electromagnetic ion acceleration are described for each phase. A concordance with many experimental results can be observed. (orig.)

  15. Accelerated plan to develop magnetic fusion energy

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1986-01-01

    We have shown that, despite funding delays since the passage of the Magnetic Fusion Engineering Act of 1980, fusion development could still be carried to the point of a demonstration plant by the year 2000 as called for in the Act if funding, now about $365 million per year, were increased to the $1 billion range over the next few years (see Table I). We have also suggested that there may be an economic incentive for the private sector to become in accelerating fusion development on account of the greater stability of energy production costs from fusion. Namely, whereas fossil fuel prices will surely escalate in the course of time, fusion fuel will always be abundantly available at low cost; and fusion technology poses less future risk to the public and the investor compared to conventional nuclear power. In short, once a fusion plant is built, the cost of generating electricity mainly the amortization of the plant capital cost - would be relatively fixed for the life of the plant. In Sec. V, we found that the projected capital cost of fusion plants ($2000 to $4000 per KW/sub e/) would probably be acceptable if fusion plants were available today

  16. Heavy ion accelerators at GSI

    International Nuclear Information System (INIS)

    Angert, N.

    1984-01-01

    The status of the Unilac heavy ion linear accelerator at GSI, Darmstadt is given. A schematic overall plan view of the Unilac is shown and its systems are described. List of isotopes and intensities accelerated at the Unilac is presented. The experimental possibilities at GSI should be considerably extended by a heavy ion synchrotron (SIS 18) in combination with an experimental storage ring (ESR). A prototype of the rf-accelerating system of the synchrotron has been built and tested. Prototypes for the quadrupole and dipole magnets for the ring are being constructed. The SIS 18 is desigmed for a maximum magnetic rigidity of 18Tm so that neon can be accelerated to 2 GeV/W and uranium to 1 GeV/u. The design allows also the acceleration of protons up to 4.5 GeV. The ESR permits to storage fully stripped uranium ions up to an energy of approximately R50 MeV/u

  17. Intense ion beam diagnostics for light ion inertial fusion experiments on PBFA 2

    International Nuclear Information System (INIS)

    Leeper, R.J.; Stygar, W.A.; Bailey, J.E.; Baldwin, G.T.; Bloomquist, D.D.; Carlson, A.L.; Chandler, G.; Crist, C.E.; Cooper, G.; Derszon, M.S.; Dukart, R.J.; Fehl, D.L.; Hebron, D.E.; Johnson, D.J.; Kensek, R.P.; Landron, C.O.; Lee, J.R.; Lockner, T.R.; Mattson, C.R.; Matzen, M.K.; Maenchen, J.; Mehlhorn, T.A.; Mix, L.P.; Muron, D.J.; Nash, T.; Nelson, W.E.; Reyes, P.; Rockett, P.; Ruiz, C.L.; Schmidlapp, A.; Stinnett, R.W.; Sujka, B.; Wenger, D.F.

    1991-01-01

    A review of recent developments in intense ion beam diagnostics used in the light ion inertial confinement fusion (ICF) program on the PBFA-2 accelerator at Sandia National Laboratories will be presented. These developments have occurred in each of several generic classes of diagnostics, namely, imaging diagnostics, particle spectrograph diagnostics, nuclear activation, and visible spectroscopy. Critical beam parameters measured by the diagnostic include spatial profile, absolute number, species, anode plasma temperature and density, beam divergence, and beam voltage current density, and power density. A unique feature of these diagnostics is that they are capable of operating in hard (multi-Mev) X-ray (bremsstrahlung) backgrounds of some 10 10 - 10 12 rad/s. The operating principles of each diagnostic will be summarized in the paper, with examples of how the diagnostics may be integrated together to form a complete diagnostic system. The paper will close with a discussion of several near diagnostic systems that are presently being developed. 13 refs., 6 figs

  18. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1985-March 31, 1986

    International Nuclear Information System (INIS)

    1986-05-01

    The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: (1) beam quality limits set by transverse and longitudinal beam physics; (2) development of induction accelerating modules, and multiple beam hardware, at affordable costs; (3) acceleration of multiple beams with current amplification - both new features in a linac - without significant dilution of the optical quality of the beams; (4) fianl bunching, transport, and accurate focussing on a small target

  19. Ion sources for medical accelerators

    Science.gov (United States)

    Barletta, W. A.; Chu, W. T.; Leung, K. N.

    1998-02-01

    Advanced injector systems for proton synchrotrons and accelerator-based boron neutron capture therapy systems are being developed at the Lawrence Berkeley National Laboratory. Multicusp ion sources, particularly those driven by radio frequency, have been tested for these applications. The use of a radio frequency induction discharge provides clean, reliable, and long-life source operation. It has been demonstrated that the multicusp ion source can provide good-quality positive hydrogen ion beams with a monatomic ion fraction higher than 90%. The extractable ion current densities from this type of source can meet the injector requirements for both proton synchrotron and accelerator-based boron neutron capture therapy projects.

  20. Ion pulse propagation through a previously unfilled electrostatic aperture lens accelerating column

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Eylon, S.; Keeney, D.S.; Chen, Y.J.; Hewett, D.W.; Barnard, J.

    1993-01-01

    Heavy Ion Fusion experiments require very high current beams with excellent beam quality during a short pulse. Scaled experiments planned at LBL require very short pulses (μsec) compared to what one expects in an HIF driver (20-30 μs). A 1MV acceleration column composed of aperture lenses has been constructed at LBL in order to study the propagation effects on such ion pulses. The column is initially empty of space charge but with the full acceleration potential applied. A short current pulse is then injected into the column with a planar diode open-quotes current valve.close quotes Effects on the pulse propagation due to rise time, pulse duration, and beam size have been studied. Experiments on transported beam current and emittance have been conducted using a carbon arc plasma source (2 double-prime and .5 double-prime diameter) and a 1 double-prime diameter alumino-silicate potassium ion source. Computer simulations using a 2.5D time dependent code are compared with the experimental data

  1. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and 3 He ions, respectively. When the plasma was compressed, the d(d,n) 3 He fusion reaction rate increased a factor of five, and the 3 He(d,p) 4 He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling

  2. HIBALL - a conceptual heavy ion beam driven fusion reactor study. Vol. 1

    International Nuclear Information System (INIS)

    Badger, B.; El-Guebaly, L.; Engelstad, R.; Hassanein, A.; Klein, A.; Kulcinski, G.; Larsen, E.; Lee, K.; Lovell, E.; Moses, G.

    1981-12-01

    A preliminary concept for a heavy-ion beam driven inertial confinement fusion power plant is presented. The high repetition rate of the RF accelerator driver is utilized to serve four reactor chambers alternatingly. In the chambers a novel first-wall protection scheme is used. At a target gain of 83 the total net electrical output is 3.8 GW. The recirculating power fraction is below 15%. The main goal of the comprehensive HIBALL study (which is continuing) is to demonstrate the compatibility of the design of the driver, the target and the reactor chambers. Though preliminary, the present dessign is essentially self-consistent. Tentative cost estimates are given. The costs compare well with those found in similar studies on other types of fusion reactors. (orig.) [de

  3. Ultra-relativistic ion acceleration in the laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yongsheng; Wang Naiyan; Tang Xiuzhang; Shi Yijin [China Institute of Atomic Energy, Beijing 102413 (China); Xueqing Yan [Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2012-09-15

    An analytical relativistic model is proposed to describe the relativistic ion acceleration in the interaction of ultra-intense laser pulses with thin-foil plasmas. It is found that there is a critical value of the ion momentum to make sure that the ions are trapped by the light sail and accelerated in the radiation pressure acceleration (RPA) region. If the initial ion momentum is smaller than the critical value, that is in the classical case of RPA, the potential has a deep well and traps the ions to be accelerated, as the same described before by simulation results [Eliasson et al., New J. Phys. 11, 073006 (2009)]. There is a new ion acceleration region different from RPA, called ultra-relativistic acceleration, if the ion momentum exceeds the critical value. In this case, ions will experience a potential downhill. The dependence of the ion momentum and the self-similar variable at the ion front on the acceleration time has been obtained. In the ultra-relativistic limit, the ion momentum at the ion front is proportional to t{sup 4/5}, where t is the acceleration time. In our analytical hydrodynamical model, it is naturally predicted that the ion distribution from RPA is not monoenergetic, although the phase-stable acceleration mechanism is effective. The critical conditions of the laser and plasma parameters which identify the two acceleration modes have been achieved.

  4. Ultra-relativistic ion acceleration in the laser-plasma interactions

    International Nuclear Information System (INIS)

    Huang Yongsheng; Wang Naiyan; Tang Xiuzhang; Shi Yijin; Xueqing Yan

    2012-01-01

    An analytical relativistic model is proposed to describe the relativistic ion acceleration in the interaction of ultra-intense laser pulses with thin-foil plasmas. It is found that there is a critical value of the ion momentum to make sure that the ions are trapped by the light sail and accelerated in the radiation pressure acceleration (RPA) region. If the initial ion momentum is smaller than the critical value, that is in the classical case of RPA, the potential has a deep well and traps the ions to be accelerated, as the same described before by simulation results [Eliasson et al., New J. Phys. 11, 073006 (2009)]. There is a new ion acceleration region different from RPA, called ultra-relativistic acceleration, if the ion momentum exceeds the critical value. In this case, ions will experience a potential downhill. The dependence of the ion momentum and the self-similar variable at the ion front on the acceleration time has been obtained. In the ultra-relativistic limit, the ion momentum at the ion front is proportional to t 4/5 , where t is the acceleration time. In our analytical hydrodynamical model, it is naturally predicted that the ion distribution from RPA is not monoenergetic, although the phase-stable acceleration mechanism is effective. The critical conditions of the laser and plasma parameters which identify the two acceleration modes have been achieved.

  5. Diagnostics of discharge channels for neutralized chamber transport in heavy ion fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Penache, D.; Tauschwitz, A.; Rosmej, F.B.; Neff, S.; Birkner, R.; Constantin, C.; Knobloch, R.; Presura, R.; Yu, S.S.; Sharp, W.M.; Ponce, D.M.; Hoffmann, D.H.H.

    2002-01-01

    The final beam transport in the reactor chamber for heavy ion fusion in preformed plasma channels offers many attractive advantages compared to other transport modes. In the past few years, experiments at the Gesellschaft fuer Schwerionenforschung (GSI) accelerator facility have addressed the creation and investigation of discharge plasmas, designed for the transport of intense ion beams. Stable, self-standing channels of 50 cm length with currents up to 55 kA were initiated in low-pressure ammonia gas by a CO 2 -laser pulse along the channel axis before the discharge is triggered. The channels were characterized by several plasma diagnostics including interferometry and spectroscopy. We also present first experiments on laser-guided intersecting discharges

  6. Impulsive ion acceleration in earth's outer magnetosphere

    International Nuclear Information System (INIS)

    Baker, D.N.; Belian, R.D.

    1985-01-01

    Considerable observational evidence is found that ions are accelerated to high energies in the outer magnetosphere during geomagnetic disturbances. The acceleration often appears to be quite impulsive causing temporally brief (10's of seconds), very intense bursts of ions in the distant plasma sheet as well as in the near-tail region. These ion bursts extend in energy from 10's of keV to over 1 MeV and are closely associated with substorm expansive phase onsets. Although the very energetic ions are not of dominant importance for magnetotail plasma dynamics, they serve as an important tracer population. Their absolute intensity and brief temporal appearance bespeaks a strong and rapid acceleration process in the near-tail, very probably involving large induced electric fields substantially greater than those associated with cross-tail potential drops. Subsequent to their impulsive acceleration, these ions are injected into the outer trapping regions forming ion ''drift echo'' events, as well as streaming tailward away from their acceleration site in the near-earth plasma sheet. Most auroral ion acceleration processes occur (or are greatly enhanced) during the time that these global magnetospheric events are occurring in the magnetotail. A qualitative model relating energetic ion populations to near-tail magnetic reconnection at substorm onset followed by global redistribution is quite successful in explaining the primary observational features. Recent measurements of the elemental composition and charge-states have proven valuable for showing the source (solar wind or ionosphere) of the original plasma population from which the ions were accelerated

  7. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1985-September 30, 1985

    International Nuclear Information System (INIS)

    1985-10-01

    The heavy ion accelerator is profiled. Energy losses, currents, kinetic energy, beam optics, pulse models and mechanical tolerances are included in the discussion. In addition, computational efforts and an energy analyzer are described. 37 refs., 27 figs

  8. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification.

    Science.gov (United States)

    Baccou, C; Yahia, V; Depierreux, S; Neuville, C; Goyon, C; Consoli, F; De Angelis, R; Ducret, J E; Boutoux, G; Rafelski, J; Labaune, C

    2015-08-01

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.

  9. Ion source development for a photoneutralization based NBI system for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simonin, A.; Esch, H. P. L. de; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A. [CEA-Cadarache, IRFM, F-13108 St. Paul-lez-Durance (France); LPSC, Grenoble-Alpes University, F-38026 Grenoble France (France)

    2015-04-08

    The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D{sup −} beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R and D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities.

  10. Ion source development for a photoneutralization based NBI system for fusion reactors

    International Nuclear Information System (INIS)

    Simonin, A.; Esch, H. P. L. de; Garibaldi, P.; Grand, C.; Bechu, S.; Bès, A.; Lacoste, A.

    2015-01-01

    The next step after ITER is to demonstrate the viability and generation of electricity by a future fusion reactor (DEMO). The specifications required to operate an NBI system on DEMO are very demanding. The system has to provide a very high level of power and energy, ~100MW of D° beam at 1MeV, including high wall-plug efficiency (η > 60%). For this purpose, a new injector concept, called Siphore, is under investigation between CEA and French universities. Siphore is based on the stripping of the accelerated negative ions by photo-detachment provided by several Fabry-Perot cavities (3.5MW of light power per cavity) implemented along the D − beam. The beamline is designed to be tall and narrow in order that the photon flux overlaps the entire negative ion beam. The paper will describe the present R and D at CEA which addresses the development of an ion source and pre-accelerator prototypes for Siphore, the main goal being to produce an intense negative ion beam sheet. The negative ion source Cybele is based on a magnetized plasma column where hot electrons are emitted from the source center. Parametric studies of the source are performed using Langmuir probes in order to characterize the plasma and to compare with numerical models being developed in French universities

  11. MeV and GeV prospects for producing a large ion layer configuration for fusion power generation and breeding

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1983-01-01

    Injection of multi-MeV molecular hydrogen ions into a magnetic mirror or magnetic mirror well can lead to the production of an ion (or proton-E) Layer with prospects for fusion power generation. This involves: (1) slow (exponential or Lorentz) trapping of protons from dissociation and/or ionization of H 2 + ions; (2) electron cyclotron drive of the electronic temperature to reduce the electron stopping power; (3) production of an Ion-Layer, E-Core plasma configuration having prospects for cold fuel feed with in situ axial acceleration of say D 2 + ions into the negative E-Core; (4) ignited advanced fuel burns in the resulting high beta plasma with excess (free) neutrons available for energy multiplication of fissile fuel breeding; (5) development of a nuclear dynamo with fuel feed, plasma energy, and Ion-Layer current maintenance by fusion products; and (6) a natural divertor end loss of ashes with charge separation permitting a natural direct electrical conversion prospect

  12. Ultraintense laser interaction with nanoscale targets: a simple model for layer expansion and ion acceleration

    International Nuclear Information System (INIS)

    Albright, B J; Yin, L; Hegelich, B M; Bowers, K J; Huang, C; Fernandez, J C; Flippo, K A; Gaillard, S A; Kwan, T J T; Henig, A; Tajima, T; Habs, D; Yan, X Q

    2010-01-01

    A simple model has been derived for expansion of a thin (up to 100s of nm thickness) target initially of solid density irradiated by an ultraintense laser. In this regime, ion acceleration mechanisms, such as the Break-Out Afterburner (BOA) [1], emerge with the potential for dramatically improved energy, efficiency, and energy spread. Ion beams have been proposed [2] as drivers for fast ignition inertial confinement fusion [3]. Analysis of kinetic simulations of the BOA shows the period of enhanced acceleration occurs between times t 1 , when the target becomes relativistically transparent to the laser, and t 2 , when the target becomes classically underdense and the enhanced acceleration terminates. A simple model for target expansion has been derived that contains early, one-dimensional (1D) expansion of the target and three-dimensional (3D) expansion at late times. The model assumes expansion is slab-like at the instantaneous ion sound speed and requires as input target composition, laser intensity, laser spot area, and the efficiency of laser absorption into electron thermal energy.

  13. Status report of pelletron accelerator and ECR based heavy ion accelerator programme

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2015-01-01

    The BARC-TIFR Pelletron Accelerator is completing twenty seven years of round-the-clock operation, serving diverse users from institutions within and outside DAE. Over the years, various developmental activities and application oriented programs have been initiated at Pelletron Accelerator Facility, resulting into enhanced utilization of the accelerator. We have also been pursuing an ECR based heavy ion accelerator programme under XII th Plan, consisting of an 18 GHz superconducting ECR (Electron Cyclotron Resonance) ion source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting niobium resonator cavities. This talk will provide the current status of Pelletron Accelerator and the progress made towards the ECR based heavy ion accelerator program at BARC. (author)

  14. Ion sources for accelerators

    International Nuclear Information System (INIS)

    Alton, G.D.

    1974-01-01

    A limited review of low charge sate positive and negative ion sources suitable for accelerator use is given. A brief discussion is also given of the concepts underlying the formation and extraction of ion beams. Particular emphasis is placed on the technology of ion sources which use solid elemental or molecular compounds to produce vapor for the ionization process

  15. Fusion hindrance in reactions with very heavy ions: Border between normal and hindered fusion

    International Nuclear Information System (INIS)

    Shen Caiwan; Li Qingfeng; Boilley, David; Shen Junjie; Abe, Yasuhisa

    2011-01-01

    The fusion hindrance in heavy-ion collisions is studied in the framework of the two-center liquid drop model. It appears that the neck and the radial degrees of freedom might both be hampered by an inner potential barrier on their path between the contact configuration to the compound nucleus. Heavy-ion reactions with and without the two kinds of fusion hindrance are classified through systematic calculations. It is found that the number of reactions without radial fusion hindrance is much smaller than that without neck fusion hindrance, and for both kinds of fusion hindrance the number of reactions without fusion hindrance at small mass-asymmetry parameter α is smaller than that at large α. In the formation of a given compound nucleus, if a reaction with α c is not hindered, then other reactions with α>α c are also not hindered, as is well known experimentally.

  16. Heavy-ion fusion accelerator research, 1988

    International Nuclear Information System (INIS)

    1989-05-01

    This report discusses the following topics: MBE-4: The Induction-Linac Approach; Current Amplification and Acceleration Schedules; Emittance and Current Amplification; Scaling Up the Results; Progress on the Carbon-Arc Source; Injector Development; Progress Towards an ILSE Design; Beam Combination; and Focusing-System Alignment Tolerances

  17. Folded tandem ion accelerator facility at BARC

    International Nuclear Information System (INIS)

    Agarwal, Arun; Padmakumar, Sapna; Subrahmanyam, N.B.V.; Singh, V.P.; Bhatt, J.P.; Ware, Shailaja V.; Pol, S.S; Basu, A.; Singh, S.K.; Krishnagopal, S.; Bhagwat, P.V.

    2017-01-01

    The 5.5 MV single stage Van de Graaff (VDG) accelerator was in continuous operation at Nuclear Physics Division (NPD), Bhabha Atomic Research Centre (BARC) since its inception in 1962. During 1993-96, VDG accelerator was converted to a Folded Tandem Ion Accelerator (FOTIA). The scientists and engineers of NPD, IADD (then a part of NPD) along with several other divisions of BARC joined hands together in designing, fabrication, installation and commissioning of the FOTIA for the maximum terminal voltage of 6 MV. After experiencing the first accelerated ion beam on the target from FOTIA during April 2000, different ion species were accelerated and tested. Now this accelerator FOTIA is in continuous use for different kind of experiments

  18. Experimental study of ion heating and acceleration during magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.C.

    2000-01-28

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  19. Experimental study of ion heating and acceleration during magnetic reconnection

    International Nuclear Information System (INIS)

    Hsu, S.C.

    2000-01-01

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  20. Electron-beam-fusion progress report, 1975

    International Nuclear Information System (INIS)

    1976-06-01

    Summaries of research work are given on electron sources, insulation problems, and power supplies. Some theoretical work is reported on fusion target design, self-consistent deposition and hydrodynamic calculations, analysis of x-ray pinhole data, diode code calculations, magnetically insulated diodes and transmission lines, ion sheath motion in plasma-filled diodes, relativistic distribution functions, macroscopic properties, and kinetic theory, heavy ion pulsed fusion, and collective ion acceleration. Some experimental work on targets, diode physics, and diagnostic developments is given

  1. High-powered pulsed-ion-beam acceleration and transport

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

  2. High-powered pulsed-ion-beam acceleration and transport

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized

  3. Light ion driven inertial fusion reactor concepts

    International Nuclear Information System (INIS)

    Cook, D.L.; Sweeney, M.A.; Buttram, M.T.; Prestwich, K.R.; Moses, G.A.; peterson, R.R.; Lovell, E.G.; Englestad, R.L.

    1980-01-01

    The possibility of designing fusion reactor systems using intense beams of light ions has been investigated. concepts for beam production, transport, and focusing on target have been analyzed in light of more conservative target performance estimates. Analyses of the major criteria which govern the design of the beam-target-cavity tried indicate the feasibility of designing power systems at the few hundred megawatt (electric) level. This paper discusses light ion fusion reactor (LIFR) concepts and presents an assessment of the design limitations through quantitative examples

  4. A single-beam deuteron compact accelerator for neutron generation

    International Nuclear Information System (INIS)

    Araujo, Wagner Leite; Campos, Tarcisio Passos Ribeiro de

    2011-01-01

    Portable neutron generators are devices composed by small size accelerators that produce neutrons through fusion between hydrogen isotopes. These reactions are characterized by appreciable cross section at energies at the tens of keV, which enables device portability. The project baselines follow the same physical and engineering principles of any other particle accelerators. The generator consists of a gas reservoir, apparatus for ion production, few electrodes to accelerate and focus the ion beam, and a metal hydride target where fusion reactions occur. Neutron generator applications include geophysical measurements, indus- trial process control, environmental, research, nation's security and mechanical structure analysis.This article presents a design of a compact accelerator for d-d neutron generators, describing the physical theory applied to the deuteron extraction system, and simulating the ion beam transport in the accelerator. (author)

  5. 0,01-5 MeV heavy ion accelerators

    International Nuclear Information System (INIS)

    Golubev, V.P.; Ivanov, A.S.; Nikiforov, S.A.; Svin'in, M.P.; Tarvid, G.V.; Troshikhin, A.G.; Fedotov, M.T.

    1983-01-01

    The results of development of an accelerating complex on the base of the UP-2-1 heavy ion charge exchange accelerator and IMPLANT-500 high-voltage heavy ion accelerator are given. The accelerating complex provides overlapping of the 0.01 MeV to 5 MeV energy range at accelerated beam currents of 10 -3 -10 -6 A order. The structural features of accelerators and their basic units and systems are considered. The UP-2-1 accelerator is designed for researches in the field of experimental physics and applied problem solutions. The IMPLANT-500 accelerator is designed for commercial ion-beam facilities with closed loop of silicon plate treatment

  6. Progress in the development of superconducting quadrupoles for heavy ion fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-01-01

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported

  7. Progress in the development of superconducting quadrupoles for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-05-24

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  8. Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-08-19

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  9. Lawrence Livermore Laboratory heavy ion fusion program

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Lee, E.P.; Monsler, M.J.; Yu, S.S.

    1978-01-01

    Target design at LLL for heavy ion fusion power production is discussed, including target development and beam-target interaction. The energy conversion chamber design, which utilizes a liquid lithium blanket, is described. Ion beam transport theory is discussed

  10. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; McClements, K.G.; Lashmore Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-01-01

    Ion cyclotron emission (ICE) has been observed from neutral beam heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer midplane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution that is anisotropic and sharply peaked. Fusion product driven ICE can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed: for fusion products in the outer midplane edge of TFTR supershots, υ birth A ; for alpha particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha particles that are present in the outer midplane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product driven ICE in JET persists for longer than fusion product driven ICE in TFTR. A separate mechanism is proposed for the excitation of beam driven ICE in TFTR: electrostatic ion cyclotron harmonic waves, supported by strongly sub-Alfvenic beam ions, can be destabilized by a low concentration of such ions with a very anrrow spread of velocities in the parallel direction. 25 refs, 14 figs

  11. Heavy-ion fusion: future promise and future directions

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Saylor, W.W.; Pendergrass, J.H.

    1986-01-01

    The previous papers in this heavy-ion fusion special session have described work performed as part of the Heavy-Ion Fusion Systems Assessment (HIFSA) Project. Key technical issues in the design and costing of targets, induction linacs, beam transport, reactor, balance of plant, and systems integration have been identified and described. The HIFSA systems model was used to measure the relative value of improvements in physics understanding and technology developments in many different areas. Within the limits of our 1986 knowledge and imagination, this study defines the most attractive heavy-ion fusion (HIF) power plant concepts. The project has deliberately avoided narrowing the focus to a point facility design; thus, the generic systems modeling capability developed in the process allows for relative comparisons among design options. We will describe what are thought to be achievable breakthroughs and what the relative significance of the breakthroughs will be, although the specific mechanism for achieving some breakthroughs may not be clear at this point. This degree of optimism concerning such breakthroughs is probably at least as conservative as that used in other fusion assessments

  12. Medium energy heavy ion accelerator 14 UD Pelletron- a BARC-TIFR facility: a 5 year progress report 1989-1994

    International Nuclear Information System (INIS)

    Chatterjee, A.; Tandon, P.N.

    1995-01-01

    The medium energy heavy ion accelerator (MEHIA) facility based on 14 UD Pelletron set up under the collaborative project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR) at the TIFR campus at Bombay has been serving as a joint BARC-TIFR facility for heavy-ion accelerator based research. As this accelerator has just completed five years of its successful operations, it has been thought to be an appropriate time to bring out a report of the research work carried out with the accelerator facility over these last five years. To put the research work in proper perspective, the present report is formatted to provide a short write-up highlighting the work carried out in each area of activity along with a list of the publications which have resulted from these investigations. Some theoretical work related to the experimental activities with the pelletron accelerator has also been included in the list of publications. The research work in the area of nuclear physics, which forms the main thrust of the research activities with the accelerator, covers areas of high spin states, high energy photons, resonances in heavy ion reactions, heavy ion elastic and transfer reactions, heavy ion fusion-fission reactions and radiochemical studies in heavy ion reactions. The interdisciplinary areas of research include condensed matter physics and accelerator based atomic physics. In addition to the above topics the present report also describes the work related to the pelletron accelerator and associated experimental facilities, gas detector development work, data acquisition systems and spectrometer for heavy recoil ions under development. The present status of the superconducting Linac booster project is also briefly described. (author). refs., tabs

  13. Modeling Drift Compression in an Integrated Beam Experiment for Heavy-Ion-Fusion

    Science.gov (United States)

    Sharp, W. M.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Celata, C. M.; Yu, S. S.

    2003-10-01

    The Integrated Beam Experiment (IBX) is an induction accelerator being designed to further develop the science base for heavy-ion fusion. The experiment is being developed jointly by Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. One conceptual approach would first accelerate a 0.5-1 A beam of singly charged potassium ions to 5 MeV, impose a head-to-tail velocity tilt to compress the beam longitudinally, and finally focus the beam radiallly using a series of quadrupole lenses. The lengthwise compression is a critical step because the radial size must be controlled as the current increases, and the beam emittance must be kept minimal. The work reported here first uses the moment-based model HERMES to design the drift-compression beam line and to assess the sensitivity of the final beam profile to beam and lattice errors. The particle-in-cell code WARP is then used to validate the physics design, study the phase-space evolution, and quantify the emittance growth.

  14. Interpretation of ion cyclotron emission from fusion and space plasmas

    International Nuclear Information System (INIS)

    Dendy, R.O.

    1994-01-01

    Superthermal ion cyclotron emission (ICE) is observed in both fusion and space plasma. Typical spectra display strong peaks at sequential multiple ion cyclotron harmonics, and distinct energetic ion populations are present in the emitting regions. In JET and TFTR, for example, ICE appears to be driven by fusion products or by injected beam ions in the outer mid plane; and in the Earth's ring current, radiation belts, and bow shock, ICE has been observed by the spacecraft OGO 3, GEOS 1 and 2 and AMPTE/IRM, often in conjunction with highly non-Maxwellian proton populations. Common emission mechanisms, arising from collective relaxation of energetic ion populations, appear to operate in both the fusion and space plasma environments. These are reviewed here, and the potential role of ICE as a diagnostic of energetic ion populations is also examined. (Author)

  15. Atomic collisions in fusion plasmas involving multiply charged ions

    International Nuclear Information System (INIS)

    Salzborn, E.

    1980-01-01

    A short survey is given on atomic collisions involving multiply charged ions. The basic features of charge transfer processes in ion-ion and ion-atom collisions relevant to fusion plasmas are discussed. (author)

  16. Ion acceleration from relativistic laser nano-target

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Daniel

    2012-01-06

    Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the {mu}m range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, {lambda}=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C{sup 6+} energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH{sub 2} targets. Experimental data is presented, where the conversion efficiency into carbon C{sup 6+} (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil

  17. Complete fusion in light 'heavy ion' collisions

    International Nuclear Information System (INIS)

    Volant, C.; Wieleczko, J.P.

    1979-01-01

    In the last few years a large amount of data have been obtained on the complete fusion of light ions. One of the aim of these studies was to look for aspects which could not be explained by the macroscopic description of the fusion which works quite well for heavier systems. Indeed, it was suggested that for light systems the fusion could be sometimes limited by compound nucleus properties or by some particular structures in the entrance channel. In this talk new results on fusion experiments obtained by the Saclay group are presented

  18. Knudsen and inverse Knudsen layer effect on tail ion distribution and fusion reactivity in inertial confinement fusion targets

    Science.gov (United States)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-01

    A series of reduced models are used to study the fast ion tail in the vicinity of a transition layer between plasmas at disparate temperatures and densities, which is typical of the gas-pusher interface in inertial confinement fusion targets. Emphasis is placed on utilizing progressively more comprehensive models in order to identify the essential physics for computing the fast ion tail at energies comparable to the Gamow peak. The resulting fast ion tail distribution is subsequently used to compute the fusion reactivity as a function of collisionality and temperature. It is found that while the fast ion distribution can be significantly depleted in the hot spot, leading to a reduction of the fusion reactivity in this region, a surplus of fast ions is present in the neighboring cold region. The presence of this fast ion surplus in the neighboring cold region is shown to lead to a partial recovery of the fusion yield lost in the hot spot.

  19. Studies on the feasibility of heavy ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    1983-05-01

    This Annual Report summarizes the scientific results of work carried out in 1982 in the framework of a feasibility study for inertial confinement fusion with heavy ion beams funded by the German Ministry of Research and Technology. The principal aim of this basic research program is the investigation of key problems and the identification of critical issues of the heavy ion ICF concept in the fields of accelerator research, atomic physics, target physics, and reactor design. The research is carried out by about ten working groups at various research centers and universities. One of the highlights in 1982 was a symposium held end of March at GSI which focussed on a critical analysis of the HIBALL accelerator concept. Whereas technical issues and hardware parameters were found feasible the beam dynamics in the storage rings turned out to be beyond the so far believed stability limits. As a consequence a revised accelerator scenario based on a lower charge state and a higher linac current has been investigated during the last year. First considerations were made on an experimental facility necessary for the study of high-intensity beam dynamics and of beam target interaction. Experimental studies of this kind will be of increasing importance for the future of the project. (orig.) [de

  20. Studies of the mirrortron ion accelerator concept and its application to heavy-ion drivers

    International Nuclear Information System (INIS)

    Post, R.F.; Schwager, L.A.; Dougless, S.R.; Jones, B.R.; Lambert, M.A.; Larson, D.L.

    1991-01-01

    The Mirrortron accelerator is a plasma-based ion accelerator concept that, when implemented, should permit both higher acceleration gradients and higher peak-current capabilities than is possible with conventional induction-type accelerators. Control over the acceleration and focussing of an accelerated beam should approach that achieved in vacuum-field-based ion accelerators. In the Mirrortron a low density (10 10 to 10 11 cm -3 ) ''hot electron'' plasma is confined by a long solenoidal magnetic field capped by ''mirrors''. Acceleration of prebunched ions is accomplished by activating a series of fast-pulsed mirror coils spaced along the acceleration tube. The hot electrons, being repelled by mirror action, leave the plasma ions behind to create a localized region of high electrical gradient (up to of order 100 MV/m). At the Laboratory an experiment and analyses to elucidate the concept and its scaling laws as applied to heavy-ion drivers are underway and will be described. 4 refs., 5 figs

  1. Overview of The Pulse Line Ion Accelerator

    International Nuclear Information System (INIS)

    Briggs, R.J.; Bieniosek, F.M.; Coleman, J.E.; Eylon, S.; Henestroza, E.; Leitner, M.; Logan, B.G.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Caporaso, G.J.; Friedman, A.; Grote, D.P.; Nelson, S.D.

    2006-01-01

    An overview of the Pulse Line Ion Accelerator (PLIA) concept and its development is presented. In the PLIA concept a pulse power driver applied to one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines a heavy ion beam pulse The motivation for its development at the IFE-VNL is the acceleration of intense, short pulse, heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The main attraction of the concept is the very low cost it promises. It might be described crudely as an ''air core'' induction linac where the pulse-forming network is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication

  2. Collective ion acceleration by means of virtual cathodes

    International Nuclear Information System (INIS)

    Peter, W.; Faehl, R.J.; Snell, C.; Jones, M.E.

    1985-01-01

    Experiments on collective ion acceleration by means of the formation of a virtual cathode have been carried out for a number of years in the Soviet Union and in the United States. Recently, there has been renewed interest in the subject as a possible means of accelerating ions to very high energies. By understanding the physics underlying the acceleration process it may be possible to determine the feasibility of virtual cathode staging for very high energy ion production. For this reason, a theoretical and computational effort is underway at Los Alamos in order to clarify the basic issues of collective ion acceleration by means of virtual cathodes. To support the theoretical effort, simulations were done with the fully electromagnetic and relativistic particle-in-cell code ISIS (in a one-dimensional mode) and the electrostatic one-dimensional code BIGONE. In the simulations, an electron beam of density 6 x 10 11 cm -3 is injected into a one-dimensional box of length L. To supply the necessary ions for collective acceleration, a plasma source containing both ions and electrons was initialized near the emitting boundary. Of prime interest in this study was to understand the dynamics of virtual cathode formation and the dynamics of the acceleration process for the ions. In particular, the question of whether the ions are accelerated by a moving potential well or hydrodynamic pressure due to ambipolar expansion is of primary interest. 3 refs., 5 figs

  3. Improving beam spectral and spatial quality by double-foil target in laser ion acceleration for ion-driven fast ignition

    International Nuclear Information System (INIS)

    Huang, Chenkun; Albright, Brian J.

    2010-01-01

    Mid-Z ion driven fast ignition inertial fusion requires ion beams of 100s of MeV energy and < 10% energy spread. An overdense run-scale foil target driven by a high intensity laser pulse can produce an ion beam that has attractive properties for this application. The Break Out Afterburner (BOA) is one laser-ion acceleration mechanism proposed to generate such beams, however the late stages of the BOA tend to produce too large of an energy spread. The spectral and spatial qualities of the beam quickly evolve as the ion beam and co-moving electrons continue to interact with the laser. Here we show how use of a second target foil placed behind a nm-scale foil can substantially reduce the temperature of the co-moving electrons and improve the ion beam energy spread. Particle-In-Cell simulations reveal the dynamics of the ion beam under control. Optimal conditions for improving the spectral and spatial spread of the ion beam is explored for current laser and target parameters, leading to generation of ion beams of energy 100s of MeV and 6% energy spread, a vital step for realizing ion-driven fast ignition.

  4. Ultraintense laser interaction with nanoscale target: a simple model for layer expansion and ion acceleration

    International Nuclear Information System (INIS)

    Albright, Brian J.; Yin, Lin; Hegelich, Bjoorn M.; Bowers, Kevin J.; Huang, Chengkun; Fernandez, Juan C.; Flippo, Kirk A.; Gaillard, Sandrine; Kwan, Thomas J.T.; Henig, Andreas; Habs, Dieter

    2009-01-01

    A simple model has been derived for the expansion of a thin (up to 100s of nm thickness), solid-density target driven by an u.ltraintense laser. In this regime, new ion acceleration mechanisms, such as the Break-Out Afterburner (BOA) (1), emerge with the potential to dramatically improve energy, efficiency, and energy spread of laser-driven ion beams. Such beams have been proposed (2) as drivers for fast ignition inertial confinement fusion (3). Analysis of kinetic simulations of the BOA shows two dislinct times that bound the period of enhanced acceleration: t 1 , when the target becomes relativistically transparent to the laser, and t 2 , when the target becomes classically underdense and the enhanced acceleration terminates. A silllple dynamical model for target expansion has been derived that contains both the early, one-dimensional (lD) expansion of the target as well as three-dimensional (3D) expansion of the plasma at late times, The model assumes that expansion is slab-like at the instantaneous ion sound speed and requires as input target composition, laser intensity, laser spot area, and the efficiency of laser absorption into electron thermal energy.

  5. High-energy heavy-ion beams as igniters for commercial-scale intertial-fusion power plants

    International Nuclear Information System (INIS)

    Judd, D.L.

    1977-01-01

    Commercial-scale inertial-fusion power can be generated by producing a steady succession of thermonuclear microexplosions of small pellet targets whose ignition requires supplying a few magajoules in a few nanoseconds, a goal well beyond the present single-shot capabilities of high-power pulsed laser and electron-beam systems which also lack the needed repetition-rate capability of order one per second. However, existing high-energy accelerator technology with straightforward engineering extrapolations, applied to pulsed beams of heavy ions in low charge states, can meet all requirements. The relevant accelerator capabilities are discussed; three widely differing types of accelerators show promise. Needed developmental work is mostly on lower-energy components and can be conducted at relatively low cost. Some of the work started at several accelerator laboratories on this new approach within the past year are described, and possible goals of an early demonstration construction project are indicated

  6. Ion acceleration in the plasma source sheath

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1986-01-01

    This note is a calculation of the potential drop for a planar plasma source, across the source sheath, into a uniform plasma region defined by vector E = 0 and/or perhaps ∂ 2 PHI/∂ x 2 = 0. The calculation complements that of Bohm who obtained the potential drop at the other end of a plasma, at a planar collector sheath. The result is a relation between the source ion flux and the source sheath potential drop and the accompanying ion acceleration. This planar source sheath ion acceleration mechanism (or that from a distributed source) can provide the pre-collector-sheath ion acceleration as found necessary by Bohm. 3 refs

  7. Laser-driven ion acceleration: methods, challenges and prospects

    Science.gov (United States)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  8. Realistic modeling of chamber transport for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Grote, D.P.; Callahan, D.A.; Tabak, M.; Henestroza, E.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.

    2003-01-01

    Transport of intense heavy-ion beams to an inertial-fusion target after final focus is simulated here using a realistic computer model. It is found that passing the beam through a rarefied plasma layer before it enters the fusion chamber can largely neutralize the beam space charge and lead to a usable focal spot for a range of ion species and input conditions

  9. Heavy-ion accelerator mass spectrometry with a 'small' accelerator

    International Nuclear Information System (INIS)

    Steier, P.; Golser, R.; Priller, A.; Vockenhuber, C.; Irlweck, K.; Kutschera, W.; Lichtenstein, V.

    2001-01-01

    Full text: VERA, the Vienna environmental research accelerator, is based on a 3-MV pelletron tandem accelerator and is designed to allow the transport of ions of all elements, from the lightest to the heaviest. The VERA heavy ion program tries to establish measurement methods which work for the long-lived radionuclides where suppression of isobars is not required. Among these are 129 I, 210 Pb, 236 U and all heavier ions where no stable isobars exist. To suppress neighboring masses, the resolution of VERA was increased, both by improving the ion optics of existing elements and by installing a new electrostatic separator after the analyzing magnet. Interfering ions which pass all beam filters are identified with a high-resolution time-of-flight system, using a 0.5 μg/cm 2 DLC (diamond-like carbon) foil in the start detector, which substantially reduces beam straggling. Compared to heavy ion AMS at large tandem accelerators (TV ≥ 8 MV) and for cases where stable isobar interference is absent, it is possible to offset the disadvantage of lower ion energy. Moreover, the more compact facilities like VERA achieve higher stability and reliability and provide advanced computer control. This promises even higher precision and sensitivity for a larger number of samples, which is a prerequisite for research on natural-occurring heavy radioisotopes at environmental levels. First results on the measurement of 210 Pb (half-life 22 a) and 236 U (23 Ma) encourages us to push towards even heavier radionuclides (e.g. 224 Pu, 81 Ma). (author)

  10. Joint ICFRM-14 (14. international conference on fusion reactor materials) and IAEA satellite meeting on cross-cutting issues of structural materials for fusion and fission applications. PowerPoint presentations

    International Nuclear Information System (INIS)

    2009-01-01

    The Conference was devoted to the challenges in the development of new materials for advanced fission, fusion and hybrid reactors. The topics discussed include fuels and materials research under the high neutron fluence; post-irradiation examination; development of radiation resistant structural materials utilizing fission research reactors; core materials development for the advanced fuel cycle initiative; qualification of structural materials for fission and fusion reactor systems; application of charged particle accelerators for radiation resistance investigations of fission and fusion structural materials; microstructure evolution in structural materials under irradiation; ion beams and ion accelerators

  11. Resonant ion acceleration by collisionless magnetosonic shock waves

    International Nuclear Information System (INIS)

    Ohsawa, Y.

    1985-01-01

    Resonant ion acceleration ( the ν/sub rho/xΒ acceleration ) in laminar magnetosonic shock waves is studied by theory and simulation. Theoretical analysis based on a two-fluid model shows that, in laminar shocks, the electric field strength in the direction of the wave normal is about (m/sub i/m/sub e/) 1 2 times large for quasi-perpendicular shocks than that for the quasi-parallel shocks, which is a reflection of the fact that the width of quasi-perpendicular shocks is much smaller than that of the quasi-parallel shocks. Trapped ions can be accelerated up to the speed about ν/sub A/(m/sub i/m/sub e/) 1 2(M/sub A/-1) 3 2 in quasi-perpendicular shocks. Time evolution of self-consistent magnetosonic shock waves is studied by using a 2-12 dimensional fully relativistic, fully electromagnetic particle simulation with full ion and electron dynamics. Even a low-Mach-number shock wave can significantly accelerate trapped ions by the ν/sub rho/xΒ acceleration. The resonant ion acceleration occurs more strongly in quasi-perpendicular shocks, because the magnitude of this acceleration is proportional to the electric field strength

  12. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    International Nuclear Information System (INIS)

    Rosenberg, M. J.; Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D.; Amendt, P. A.; Wilks, S. C.; Pino, J.; Atzeni, S.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.

    2015-01-01

    The significance and nature of ion kinetic effects in D 3 He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N K ) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N K  ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects

  13. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Amendt, P. A.; Wilks, S. C.; Pino, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Atzeni, S. [Dipartimento SBAI, Università di Roma “La Sapienza” and CNISM, Via A. Scarpa 14-16, I-00161 Roma (Italy); Hoffman, N. M.; Kagan, G.; Molvig, K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2015-06-15

    The significance and nature of ion kinetic effects in D{sup 3}He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N{sub K}) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N{sub K} ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  14. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  15. Properties of the ion-ion hybrid resonator in fusion plasmas

    International Nuclear Information System (INIS)

    Morales, George J.

    2015-01-01

    The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvn resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts between experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.

  16. Study of ion beam-initiated inertial-confinement fusion. Final report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    Chang, D.; Phelps, D.

    1982-02-01

    For the past four years, Occidental Research Corporation has been conducting a fusion program which is based on a reactor concept in which geometrically focused and time compressed beams of cold light ions and neutralizing cold electrons from large area sources are ballistically propagated over several meters through a near vacuum to implode a pellet target. The approach combines the cost advantage of efficient moderate voltage pulsed power technology with the simplicity-advantage of unguided ballistic propagation. In addition, the compactness, efficiency, focusability and energy range of the system makes the approach of great interest for supplementary heating of magnetically confined fusion plasmas. Theoretical analyses have been made of beam-target interaction, beam progagation and source accelerator design. A one-dimensional implosion and nuclear burn code indicates that significant yields can be obtained from simple targets with moderately energetic light ions. Experimentally the short-term objective is to demonstrate that the required degree of space-time focusing can be achieved on a 200-500 keV electron neutralized ion (or plasma) beam from a simple prototype 100 sq cm low temperature zeolite source

  17. Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

    Science.gov (United States)

    Sommer, P.; Metzkes-Ng, J.; Brack, F.-E.; Cowan, T. E.; Kraft, S. D.; Obst, L.; Rehwald, M.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.

    2018-05-01

    For laser-driven ion acceleration from thin foils (∼10 μm–100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer—thickness and relevant lateral extent—as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F ∼ 0.6 J cm‑2, high: F ∼ 4 J cm‑2) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.

  18. High-energy acceleration of an intense negative ion beam

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1995-02-01

    A high-current H - ion beam has been accelerated with the two-stage acceleration. A large negative hydrogen ion source with an external magnetic filter produces more than 10 A of the H - ions from the grid area of 25cm x 50cm with the arc efficiency of 0.1 A/kW by seeding a small amount of cesium. The H - ion current increases according to the 3/2-power of the total beam energy. A 13.6 A of H - ion beam has been accelerated to 125 keV at the operational gas pressure of 3.4 mTorr. The optimum beam acceleration is achieved with nearly the same electric fields in the first and the second acceleration gaps on condition that the ratio of the first acceleration to the extraction electric fields is adjusted for an aspect ratio of the extraction gap. The ratio of the acceleration drain current to the H - ion current is more than 1.7. That is mainly due to the secondary electron generated by the incident H - ions on the extraction grid and the electron suppression grid. The neutralization efficiency was measured and agrees with the theoretical calculation result. (author)

  19. Ion beam irradiation of ceramics at fusion relevant conditions

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1991-01-01

    Ceramic materials are required at a variety of locations in proposed fusion reactors where significant ionizing and displacive fields may be present. Energetic ion beams are a useful tool for probing the effects of irradiation on the structure and electrical properties of ceramics over a wide range of experimental conditions. The advantages and disadvantages of using ion beams to provide information on anticipated ceramic radiation effects in a fusion reactor environment are discussed. In this paper particular emphasis is placed on microstructural changes and how the high helium generation rates associated with DT fusion neutrons affect cavity swelling

  20. Electron and ion beam transport to fusion targets

    International Nuclear Information System (INIS)

    Freeman, J.R.; Baker, L.; Miller, P.A.; Mix, L.P.; Olsen, J.N.; Poukey, J.W.; Wright, T.P.

    1979-01-01

    ICF reactors have been proposed which incorporate a gas-filled chamber to reduce x-ray and debris loading of the first wall. Focused beams of either electrons or ions must be transported efficiently for 2-4 m to a centrally located fusion target. Laser-initiated current-carrying plasma discharge channels provide the guiding magnetic field and the charge- and current-neutralizing medium required for beam propagation. Computational studies of plasma channel formation in air using a 1-D MHD model with multigroup radiation diffusion have provided a good comparison with the expansions velocity and time dependent refractivity profile determined by holographic interferometry. Trajectory calculations have identified a beam expansion mechanism which combines with the usual ohmic dissipation to reduce somewhat the transported beam fluence for electrons. Additional trajectory calculations have been performed for both electrons and light ions to predict the limits on the particle current density which can be delivered to a central target by overlapping the many independently-generated beams. Critical features of the use of plasma channels for transport and overlap of charged particle beams are being tested experimentally with up to twelve electron beams from the Proto II accelerator

  1. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  2. Simulation for evaluation of the multi-ion-irradiation Laboratory of TechnoFusion facility and its relevance for fusion applications

    International Nuclear Information System (INIS)

    Jimenez-Rey, D.; Mota, F.; Vila, R.; Ibarra, A.; Ortiz, Christophe J.; Martinez-Albertos, J.L.; Roman, R.; Gonzalez, M.; Garcia-Cortes, I.; Perlado, J.M.

    2011-01-01

    Thermonuclear fusion requires the development of several research facilities, in addition to ITER, needed to advance the technologies for future fusion reactors. TechnoFusion will focus in some of the priority areas identified by international fusion programmes. Specifically, the TechnoFusion Area of Irradiation of Materials aims at surrogating experimentally the effects of neutron irradiation on materials using a combination of ion beams. This paper justifies this approach using computer simulations to validate the multi-ion-irradiation Laboratory. The planned irradiation facility will investigate the effects of high energetic radiations on reactor-relevant materials. In a second stage, it will also be used to analyze the performance of such materials and evaluate newly designed materials. The multi-ion-irradiation Laboratory, both triple irradiation and high-energy proton irradiation, can provide valid experimental techniques to reproduce the effect of neutron damage in fusion environment.

  3. Negative hydrogen ion sources for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, D.P.; /Fermilab; Peters, J.; /DESY; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  4. Technology development for recirculating heavy-ion accelerators

    International Nuclear Information System (INIS)

    Newton, M.A.; Kirbie, H.C.

    1993-01-01

    The open-quotes recirculator,close quotes a recirculating heavy-ion accelerator has been identified as a promising approach for an inertial fusion driver. System studies have been conducted to evaluate the recirculator on the basis of feasibility and cost. The recirculator has been shown to have significant cost advantages over other potential driver schemes, but some of the performance requirements exceed the capabilities of present technology. The system studies identified the high leverage areas where advances in technology will significantly impact the cost and performance of a recirculator. One of the high leverage areas is the modulator system which generates the acceleration potentials in the induction cells. The modulator system must be capable of generating the acceleration potentials at peak repetition rates in excess of 100 kHz with variable pulse widths. LLNL is developing a modulator technology capable of driving induction cells using the latest in solid state MOSFET technology. A small scale modulator has been built and tested to prove the concept and the next version is presently being designed. The objective is to demonstrate a modulator operating at 5 kV, 1 kA, with 0.2--1 μs pulse widths while driving an induction cell at >100 kHz within the next year. This paper describes the recirculator, the technology requirements necessary to implement it and the modulator system development that is being pursued to meet these requirements

  5. Engineering aspects of particle beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  6. Engineering aspects of particle-beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  7. Lasers and particle beam for fusion and strategic defense

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This special issue of the Journal of Fusion Energy consists of the edited transscripts of a symposium on the applications of laser and particle beams to fusion and strategic defense. Its eleven papers discuss these topics: the Strategic Defense Initiative; accelerators for heavy ion fusion; rf accelerators for fusion and strategic defense; Pulsed power, ICF, and the Strategic Defense Initiative; chemical lasers; the feasibility of KrF lasers for fusion; the damage resistance of coated optic; liquid crystal devices for laser systems; fusion neutral-particle beam research and its contribution to the Star Wars program; and induction linacs and free electron laser amplifiers for ICF devices and directed-energy weapons

  8. Overview of Theory and Modeling in the Heavy Ion Fusion Virtual National Laboratory

    CERN Document Server

    Davidson, R C; Celata, C M; Cohen, R H; De Hoon, M; Friedman, A; Grote, D P; Henestroza, E; Kaganovich, I D; Lee, E P; Lee, W W; Lund, S M; Olson, C L; Qin, H; Rose, D V; Sharp, W M; Startsev, E A; Tzenov, Stephan I; Vay, J L; Welch, D R; Yu, S S

    2003-01-01

    This paper presents analytical and simulation studies of intense heavy ion beam propagation, including the injection, acceleration, transport and compression phases, and beam transport and focusing in background plasma in the target chamber. Analytical theory and simulations that support the High Current Experiment (HCX), the Neutralized Transport Experiment (NTX), and the advanced injector development program are being used to provide a basic understanding of the nonlinear beam dynamics and collective processes, and to develop design concepts for the next-step Integrated Beam Experiment (IBX), an Integrated Research Experiment (IRE), and a heavy ion fusion driver. Three-dimensional (3-D) nonlinear perturbative simulations have been applied to collective instabilities driven by beam temperature anisotropy and to two-stream interactions between the beam ions and any unwanted background electrons. Three-dimensional particle-in-cell simulations of the 2 MV Electrostatic Quadrupole (ESQ) injector have clarified t...

  9. Ion accelerators for space

    International Nuclear Information System (INIS)

    Slobodrian, R.J.; Potvin, L.

    1991-01-01

    The main purpose of the accelerators is to allow ion implantation in space stations and their neighborhoods. There are several applications of interest immediately useful in such environment: as ion engines and thrusters, as implanters for material science and for hardening of surfaces (relevant to improve resistance to micrometeorite bombardment of exposed external components), production of man made alloys, etc. The microgravity environment of space stations allows the production of substances (crystalline and amorphous) under conditions unknown on earth, leading to special materials. Ion implantation in situ of those materials would thus lead uninterruptedly to new substances. Accelerators for space require special design. On the one hand it is possible to forego vacuum systems simplifying the design and operation but, on the other hand, it is necessary to pay special attention to heat dissipation. Hence it is necessary to construct a simulator in vacuum to properly test prototypes under conditions prevailing in space

  10. Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils

    International Nuclear Information System (INIS)

    Allen, M

    2004-01-01

    with deuterium. We present evidence that ions heavier than protons can be accelerated if hydrogenous contaminants that cover the laser target can be removed. We show that deuterons can be accelerated from the deuterated-palladium target, which has been radiatively heated to remove contaminants. Impinging a deuteron beam onto a tritiated-titanium catcher could lead to the development of a table-top source of short-pulse, 14-MeV fusion neutrons. We also show that by using an argon-ion sputter gun, contaminants from one side of the laser target can be selectively removed without affecting the other side. We show that irradiating a thin metallic foil with an ultra-intense laser pulse produces a proton beam with a yield of 1.5-2.5 10 11 and temperature, kT 1.5 MeV with a maximum proton energy > 9 MeV. Removing contaminants from the front surface of the laser target with an argon-ion sputter gun, had no observable effect on the proton beam. However, removing contaminants from the back surface of the laser target reduced the proton beam by two orders of magnitude to, at most, a yield of ∼ 10 9 and a maximum proton energy 99%) of high energy protons (E > 5 MeV) from the interaction of an ultra-intense laser pulse with a thin foil originate on the back surface of the foil--as predicted by the TNSA model. Our experimental results are in agreement with PIC simulations showing back surface protons reach energies up to 13 MeV, while front surface protons reach a maximum energy of 4 MeV. Well diagnosed and controllable proton beams will have many applications: neutron radiography, material damage studies, production of medical isotopes, and as a high-resolution radiography tool for diagnosing opaque materials and plasmas. Well collimated and focusable ion beams may also prove beneficial for alternative inertial-fusion concepts such as proton fast ignition, a potentially viable method for achieving a controlled fusion reaction in the laboratory earlier than expected

  11. DC and RF ion accelerators for MeV energies

    International Nuclear Information System (INIS)

    Urbanus, W.H.

    1990-01-01

    This thesis deals with the transport and acceleration of intense ion beams in single-ended Van de Graaff accelerators and the multiple beam rf accelerator MEQALAC (Multiple Electrostatic Quadrupole Array Linear Accelerator). Ch. 2 discusses several beam-envelope calculation techniques and describes the ion-optical components of a 1 MV, high-current, heavy-ion implantation facility and a 2 MV facility for analyzing purposes. The X-ray level of these accelerators is kept low, such that no shielding is needed, by keeping the energy of the secondary electrons sufficiently low, which is accomplished by a suppression system of small permanent magnets built in the acceleration tubes (ch. 3). Ch.'s 4,5 and 6 cover various aspects of stage II of the MEQALAC project. This stage deals with the parallel acceleration of four high-current N + beams from 40 keV to 1 MeV. Acceleration takes place in 32 rf gaps which are part of a modified interdigital H-resonator. In between the accelerating gaps, small electrostatic quadrupoles are mounted, which oppose the space charge forces of the intense ion beams. The lenses are arranged in a periodic focusing structure. A bucket-type plasma ion source is used, which produces both N + and N 2 + ions. In between the ion source and the MEQALAC section, a Low Energy Beam Transport (LEBT) section is mounted which provides for the drift space for a buncher. The latter device transforms the extracted dc beams into bunched beams which are accepted by the MEQALAC section. In ch. 4 the transport of ion beams that contain both N + and N 2 + ions, so-called mixed beams, through the LEBT section is discussed and equations for the current limit of a mixed beam are derived. Bunching of mixed N + , N 2 + beams is discussed in ch. 5. Multichannel acceleration of N + ions with the MEQALAC is discussed in ch. 6. (author). 122 refs.; 67 figs.; 1 tab

  12. Overview of Theory and Modeling in the Heavy Ion Fusion Virtual National Laboratory

    International Nuclear Information System (INIS)

    Davidson, R.C.; Kaganovich, I.D.; Lee, W.W.; Qin, H.; Startsev, E.A.; Tzenov, S.; Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Celata, C.M.; De Hoon, M.; Henestroza, E.; Lee, E.P.; Yu, S.S.; Vay, J.-L.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2003-01-01

    This paper presents analytical and simulation studies of intense heavy ion beam propagation, including the injection, acceleration, transport and compression phases, and beam transport and focusing in background plasma in the target chamber. Analytical theory and simulations that support the High Current Experiment (HCX), the Neutralized Transport Experiment (NTX), and the advanced injector development program are being used to provide a basic understanding of the nonlinear beam dynamics and collective processes, and to develop design concepts for the next-step Integrated Beam Experiment (IBX), an Integrated Research Experiment (IRE), and a heavy ion fusion driver. Three-dimensional (3-D) nonlinear perturbative simulations have been applied to collective instabilities driven by beam temperature anisotropy and to two-stream interactions between the beam ions and any unwanted background electrons. Three-dimensional particle-in-cell simulations of the 2 MV Electrostatic Quadrupole (ESQ) injector have clarified the influence of pulse rise time. Analytical studies and simulations of the drift compression process have been carried out. Syntheses of a four-dimensional (4-D) particle distribution function from phase-space projections have been developed. And, studies of the generation and trapping of stray electrons in the beam self-fields have been performed. Particle-in-cell simulations, involving preformed plasma, are being used to study the influence of charge and current neutralization on the focusing of the ion beam in Neutralized Transport Experiment and in a fusion chamber

  13. Reaction mechanisms in heavy ion fusion

    Directory of Open Access Journals (Sweden)

    Lubian J.

    2011-10-01

    Full Text Available We discuss the reaction mechanisms involved in heavy ion fusion. We begin with collisions of tightly bound systems, considering three energy regimes: energies above the Coulomb barrier, energies just below the barrier and deep sub-barrier energies. We show that channel coupling effects may influence the fusion process at above-barrier energies, increasing or reducing the cross section predicted by single barrier penetration model. Below the Coulomb barrier, it enhances the cross section, and this effect increases with the system’s size. It is argued that this behavior can be traced back to the increasing importance of Coulomb coupling with the charge of the collision partners. The sharp drop of the fusion cross section observed at deep sub-barrier energies is addressed and the theoretical approaches to this phenomenon are discussed. We then consider the reaction mechanisms involved in fusion reactions of weakly bound systems, paying particular attention to the calculations of complete and incomplete fusion available in the literature.

  14. Ion acceleration from relativistic laser nano-target interaction

    International Nuclear Information System (INIS)

    Jung, Daniel

    2012-01-01

    Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the μm range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, λ=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C 6+ energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH 2 targets. Experimental data is presented, where the conversion efficiency into carbon C 6+ (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil targets at Trident with an

  15. Intense ion beam research for inertial confinement fusion. Final technical report, 1 October 1981-31 October 1985

    International Nuclear Information System (INIS)

    Hammer, D.A.; Kusse, B.R.; Sudan, R.N.

    1986-01-01

    Theoretical and experimental research has been performed on the application of intense light ion beams to inertial confinement fusion. The following achievements are documented. A 1 TW accelerator (a module of the PBFA 1 device at Sandia National Laboratories, Albuquerque), has been installed at Cornell and it has been used to develop high power magnetically insulated ion diodes. Ion beams at 0.3 TW level have been produced. The use of spectroscopic techniques to diagnose conditions in detail with in magnetically insulated diodes was proposed, and preliminary experiments have been successfully performed. These have revealed the anode plasma density, transverse velocities of ions within the diode (from Doppler broadening of ion emission lines) and the electric field profile in the accelerating gap (from the Stark shifted line profile of especially selected emission lines). Theoretical studies on the effects of lack of symmetry in the electron drift direction on the leakage electron current in a magnetically insulated diode show that even very small perturbations can cause a substantial enhancement of the leakage current. Experiments involving electron flow in a magnetically insulated diode have shown cathode sheath losses to occur in local burst as well as in a smooth manner

  16. Laser-plasma booster for ion post acceleration

    Directory of Open Access Journals (Sweden)

    Satoh D.

    2013-11-01

    Full Text Available A remarkable ion energy increase is demonstrated for post acceleration by a laser-plasma booster. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when this intense short-pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in plasma. During the increase phase in the magnetic field, a longitudinal inductive electric field is induced for the forward ion acceleration by the Faraday law. Our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by several tens of MeV.

  17. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; Clements, K.G.; Lashmore-Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-06-01

    Ion cyclotron emission (ICE) has been observed from neutral beam-heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer mid-plane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution which is anisotropic and sharply peaked. Fusion product-driven ICE in both TFTR and JET can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed:for fusion products in the outer midplane edge of TFTR, υ birth A ; for alpha-particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha-particles which are present in the outer mid-plane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product-driven ICE in JET persists for longer than fusion product-driven ICE in TFTR. (Author)

  18. Heavy ion medical accelerator in chiba

    International Nuclear Information System (INIS)

    Hirao, Y.; Ogawa, H.; Yamada, S.

    1992-12-01

    The HIMAC (Heavy Ion Medical Accelerator in Chiba) construction project has been promoted by NIRS (National Institute of Radiological Sciences) as one of the projects of 'Comprehensive 10 year Strategy for Cancer Control' HIMAC is the first heavy-ion accelerator dedicated to medicine in the world, and its design parameters are based on the radiological requirements. It consists of two types of ion sources, an RFQ and an Alvarez linacs, dual synchrotron rings, high energy beam transport lines, and irradiation facilities for treatment and experiments. This report mainly describes the outline of the structure and performance of each HIMAC subsystem. (J.P.N.)

  19. Quasi-static drift-tube accelerating structures for low-speed heavy ions

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1978-01-01

    A pulsed drift-tube accelerating structure for use in Heavy Ion Fusion applications is described. Possible arrangements of components in such a structure, the injector design needs, and the influence of the existing state of component technology on drift-tube structure design are considered. It is concluded that the major attractions of the pulsed drift tubes are that they are nonresonant structures and that they appear suitable for accelerating a very high current bunch at low energies. The mechanical tolerances of the nonresonant structure are very loose and the cost per meter should be low; the cost of the transport system is expected to be the major cost. The pulse-power modulators used to drive the drift tubes are inexpensive compared with rf sources of equivalent peak power. The longitudinal emittance of the beam emerging from the structure could be extremely low. (U.K.)

  20. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270 MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRIS) has been designed, fabricated and installed successfully. It has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  1. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRlS) has been designed, fabricated and installed successfully. lt has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  2. RF accelerators for fusion and strategic defense

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1985-01-01

    RF linacs have a place in fusion, either in an auxiliary role for materials testing or for direct drivers in heavy-ion fusion. For SDI, the particle-beam technology is an attractive candidate for discrimination missions and also for lethality missions. The free-electron laser is also a forerunner among the laser candidates. in many ways, there is less physics development required for these devices and there is an existing high-power technology. But in all of these technologies, in order to scale them up and then space-base them, there is an enormous amount of work yet to be done

  3. Minority Ions Acceleration by ICRH: a tool for investigating Burning Plasma Physics

    International Nuclear Information System (INIS)

    Cardinali, A.; Briguglio, S.; Calabro, G.; Crisanti, F.; Di Troia, C.; Fogaccia, G.; Marinucci, M.; Vlad, G.; Zonca, F.

    2008-01-01

    A thorough numerical analysis of the quasi-linear plasma-ICRH wave interaction has been made and will be presented in order to determine the characteristic fast-ion parameters that are necessary for addressing some of the main ITER burning plasma physics issues, e.g. fast ion transport due to collective mode excitations, cross-scale couplings of micro-turbulence with meso-scale fluctuations due to energetic particles, etc. These investigations refer to the Fusion Advanced Studies Torus (FAST), a conceptual tokamak design operating with deuterium plasmas in a dimensionless parameter range as close as possible to that of ITER and equipped with ICRH as a main heating scheme. The destabilization and saturation of fast ion driven Alfvenic modes below and above the EPM (Energetic Particle Modes) stability threshold are investigated by numerical simulations with the HMGC code, which assumes the anisotropic energetic particle distribution function accelerated by ICRH as input. The results of this study, obtained by integration of many numerical tools, are presented and discussed

  4. High current pulsed ion inductor accelerator for destruction of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S A; Puzynin, I V; Samojlov, V N; Sissakyan, A N [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    1997-12-31

    A new high-current pulsed linear induction accelerator proposed for application in beam-driven transmutation technologies is described. The accelerator consists of an ion injector, of ion separation and induction accelerating systems, and of an output system for extracting an ion beam into open air. An ion source with explosive ion emission, capable of producing various kinds of ions, is used as an injector. The ion separator exploits a pulsed magnetic system. The induction acceleration structure includes inductors with amorphous iron cores. Imbedded magnetic elements assure the ion beam transport. Main parameters of the accelerator are given in the paper and the design of an ion injector is discussed in more detail. (J.U.). 3 figs., 3 refs.

  5. High current pulsed ion inductor accelerator for destruction of radioactive wastes

    International Nuclear Information System (INIS)

    Korenev, S.A.; Puzynin, I.V.; Samojlov, V.N.; Sissakyan, A.N.

    1996-01-01

    A new high-current pulsed linear induction accelerator proposed for application in beam-driven transmutation technologies is described. The accelerator consists of an ion injector, of ion separation and induction accelerating systems, and of an output system for extracting an ion beam into open air. An ion source with explosive ion emission, capable of producing various kinds of ions, is used as an injector. The ion separator exploits a pulsed magnetic system. The induction acceleration structure includes inductors with amorphous iron cores. Imbedded magnetic elements assure the ion beam transport. Main parameters of the accelerator are given in the paper and the design of an ion injector is discussed in more detail. (J.U.). 3 figs., 3 refs

  6. Negative-ion-based neutral beams for fusion

    International Nuclear Information System (INIS)

    Cooper, W.S.; Anderson, O.A.; Chan, C.F.

    1987-10-01

    To maximize the usefulness of an engineering test reactor (e.g., ITER, TIBER), it is highly desirable that it operate under steady-state conditions. The most attractive option for maintaining the circulating current needed in the center of the plasma is the injection of powerful beams of neutral deuterium atoms. The beam simultaneously heats the plasma. At the energies required, in excess of 500 keV, such beams can be made by accelerating D - ions and then removing the electron. Sources are being developed that generate the D - ions in the volume of a specially constructed plasma discharge, without the addition of cesium. These sources must operate with minimum gas flow, to avoid stripping the D - beam, and with minimum electron output. We are designing at LBL highly efficient electrostatic accelerators that combine electric strong-focusing with dc acceleration and offer the possibility of varying the beam energy at constant current while minimizing breakdown. Some form of rf acceleration may also be required. To minimize irradiation of the ion sources and accelerators, the D - beam can be transported through a maze in the neutron shielding. The D - ions can be converted to neutrals in a gas or plasma target, but advances in laser and mirror technology may make possible very efficient photodetachment systems by the time an ETR becomes operational. 9 refs., 4 figs

  7. Transport of heavy ions in inertial confinement fusion

    International Nuclear Information System (INIS)

    Parvazian, A.; Shahbandari Gouchani, A.

    2007-01-01

    In this article we have investigated the interaction of heavy ions (U) with a target (Au). In inertial confinement fusion method Interaction between heavy ion beam and target was simulated, Numerical analysis of the Boltzmann Fokker Planck equation used in order to optimize the material of the target and Energy deposition of ion beam to electrons and ions of target and The thickness of the target were calculated.

  8. Installation of the Ion Accelerator for the Surface Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung; Kim, Han-Sung; Chung, Bo-Hyun; Ahn, Tae-Sung; Kim, Dae-Il; Kim, Cho-Rong; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, an introduction to the accelerator, an installation status at KOMAC and the operation plan of the accelerator are discussed. A pelletron, which has been used over 25 years at KIGAM, is moved and installed at KOMAC in order to supply a qualified service to ion beam users. The system will be installed in September and component tests will be carried. The operation of the system starts in 2016 after it gets operation license from Nuclear Safety and Security Commission. Korea Multi-purpose Accelerator Complex (KOMAC) is operating several ion beam accelerators to provide various ion beams to users. Those are a 100 MeV proton linear accelerator, a 220 keV ion implanter for gaseous ion beams, a 150 keV metal ion implanter and a 20 keV high-current ion implanter. All of those are the machine for user service and it is important to qualify the results of the irradiation conditions for user service. For this reason, an electrostatic tandem accelerator, which has been operating over 25 years at Korea Institute of Geoscience and Mineral Resources (KIGAM), is moved to KOMAC in order to supply the qualified and quantified data on the irradiation species.

  9. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    International Nuclear Information System (INIS)

    Inoue, T.; Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-01-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz

  10. Acceleration of heavy-ion beams at the SF cyclotron

    International Nuclear Information System (INIS)

    Sakurada, Yuzo; Yamazaki, Tsutomu.

    1984-10-01

    With the development of the new arc-heated cathode PIG type source, heavy-ion acceleration in the SF cyclotron has been drastically augmented, which means that a stable routine operation is being realized as well as the number of ion species is increasing. Excellent performance is also being exhibited with the arc power supply and gas feeding system required for the operation of the heavy-ion source. At present, the gaseous ions which are being accelerated are as follows: He, B, C, N, O, F, Ne, S, Ar and Xe. In the meantime, the metallic ions which are being accelerated likewise are Li, Be, Na, Mg, Al, Si, Cl, Ca, Ti, Fe and Cu. In this paper, results of mainly the research of heavy-ion acceleration conducted during the period from 1983 to July 1984 are described. (author)

  11. HEATHER - HElium Ion Accelerator for RadioTHERapy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jordan [Huddersfield U.; Edgecock, Thomas [Huddersfield U.; Green, Stuart [Birmingham U.; Johnstone, Carol [Fermilab

    2017-05-01

    A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 superconducting rings, treating with helium ions (He²⁺ ) and image with hydrogen ions (H + 2 ). Currently only carbon ions are used to treat cancer, yet there is an increasing interest in the use of lighter ions for therapy. Lighter ions have reduced dose tail beyond the tumour compared to carbon, caused by low Z secondary particles produced via inelastic nuclear reactions. An FFAG approach for helium therapy has never been previously considered. Having demonstrated isochronous acceleration from 0.5 MeV to 900 MeV, we now demonstrate the survival of a realistic beam across both stages.

  12. Ion Beam Facilities at the National Centre for Accelerator based Research using a 3 MV Pelletron Accelerator

    Science.gov (United States)

    Trivedi, T.; Patel, Shiv P.; Chandra, P.; Bajpai, P. K.

    A 3.0 MV (Pelletron 9 SDH 4, NEC, USA) low energy ion accelerator has been recently installed as the National Centre for Accelerator based Research (NCAR) at the Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, India. The facility is aimed to carried out interdisciplinary researches using ion beams with high current TORVIS (for H, He ions) and SNICS (for heavy ions) ion sources. The facility includes two dedicated beam lines, one for ion beam analysis (IBA) and other for ion implantation/ irradiation corresponding to switching magnet at +20 and -10 degree, respectively. Ions with 60 kV energy are injected into the accelerator tank where after stripping positively charged ions are accelerated up to 29 MeV for Au. The installed ion beam analysis techniques include RBS, PIXE, ERDA and channelling.

  13. Ion extraction capabilities of two-grid accelerator systems

    International Nuclear Information System (INIS)

    Rovang, D.C.; Wilbur, P.J.

    1984-02-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems

  14. Present status of TIARA electrostatic accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Saito, Yuichi; Uno, Sadanori; Okoshi, Kiyonori; Ishii, Yasuyuki; Nakajima, Yoshinori; Sakai, Takuro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    The electrostatic accelerator, 3 MV tandem accelerator, 3 MV single end accelerator and 400 kV ion implantation equipment, which were installed in Takasaki Ion Irradiation Research Facility (TIARA) of Japan Atomic Energy Research Institute, have been used for the research on the advanced utilization of radiation mainly in material science by ion beam. The utilization is open to other researchers, and in fiscal year 1995, about 40% was the utilization by outsiders. The number of the experimental subjects adopted in fiscal year 1995 was 47, and the fields of research were space and environment materials, nuclear fusion reactor materials, new functional materials, biotechnology and base technology. The operation time in fiscal year 1995 was 1201, 1705 and 1505 hours for the tandem accelerator, single end accelerator and ion implantation equipment, respectively. The methods of experiment are reported. The troubles occurred in the tandem accelerator and single end accelerator are reported. As the diversification of beam utilization in the tandem accelerator, the utilizations of high energy molecular ions, low energy negative ions, multivalent ions by post stripper and low intensity ions by mesh attenuator have been attempted. These utilizations are described. (K.I.)

  15. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    Science.gov (United States)

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  16. Reaching for highest ion beam intensities through laser ion acceleration and beam compression

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dennis; Brabetz, Christian; Blazevic, Abel; Bagnoud, Vincent; Weih, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Jahn, Diana; Ding, Johannes; Roth, Markus [TU Darmstadt (Germany); Kroll, Florian; Schramm, Ulrich; Cowan, Tom [Helmholtzzentrum Dresden Rossendorf (Germany); Collaboration: LIGHT-Collaboration

    2016-07-01

    Laser ion acceleration provides access to ion sources with unique properties. To use these capabilities the LIGHT collaboration (Laser Ion Generation Handling and Transport) was founded. The aim of this collaboration is the beam transport and manipulation of laser accelerated ions with conventional accelerator structures. Therefor a dedicated beam line has been build up at GSI Helmholtzzentrum fuer Schwerionenforschung. With this beam line the manipulation of the transversal and also the longitudinal beam parameters has been achieved. It has been shown that laser generated ion beams can be transported over more than 6 meters and pulses shorter than 300 ps can be generated at this distance. This Talk will give an overview over the recent developments and plans of the LIGHT collaboration.

  17. Accelerator Division annual report, January 1976--September 1977

    International Nuclear Information System (INIS)

    1977-01-01

    Accelerator operations of the Bevatron/Bevalac, the SuperHILAC, and the 184-Inch Synchrocyclotron are described. The PEP storage ring is described. The superconducting accelerator (ESCAR) construction is reported, and experiments in heavy ion fusion are described

  18. Ion tail filling in laser-fusion targets

    International Nuclear Information System (INIS)

    Henderson, D.B.

    1975-06-01

    Thermonuclear burn begins in laser-fusion targets with the collapse of the imploding fuel shell. At this instant the ion velocity distribution is non-Maxwellian, requiring correction to the commonly used computer simulation codes. This correction is computed and compared with that arising from the loss of fast ions in marginal (rho R less than 0.01 gm cm -2 ) targets. (U.S.)

  19. Proceedings of the heavy ion fusion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R C [ed.

    1978-01-01

    These proceedings contain reviews of current laboratory programs dealing with inertial fusion driven by beams of heavy ions, as well as several individually abstracted invited talks, workshop reports and contributed papers.

  20. Studies on the feasibility of heavy-ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    1982-04-01

    This annual report summarizes the scientific results of work carried out in 1981 in the framework of a feasibility study for inertial confinement fusion (ICF) with heavy ion beams. This program, established in autumn 1979 and funded by the German Ministry for Science and Technology, is devoted in a first period until 1984 to the study of fundamental aspects of the field. Its principal aims are the investigation of key problems and the identification of critical issues of the heavy ion ICF concept in the fields of accelerator research, pellet physics, atomic physics, and reactor design. The research is carried out by about ten working groups at various German research centers and universities. In addition, together with a group of the University of Wisconsin a conceptual design study for a reactor plant (HIBALL) has been started in 1980 and was continued 1981. (orig.) [de

  1. Development of exploding wire ion source for intense pulsed heavy ion beam accelerator

    International Nuclear Information System (INIS)

    Ochiai, Y.; Murata, T.; Ito, H.; Masugata, K.

    2012-01-01

    A Novel exploding wire type ion source device is proposed as a metallic ion source of intense pulsed heavy ion beam (PHIB) accelerator. In the device multiple shot operations is realized without breaking the vacuum. The basic characteristics of the device are evaluated experimentally with an aluminum wire of diameter 0.2 mm, length 25 mm. Capacitor bank of capacitance 3 μF, charging voltage 30 kV was used and the wire was successfully exploded by a discharge current of 15 kA, rise time 5.3 μs. Plasma flux of ion current density around 70 A/cm 2 was obtained at 150 mm downstream from the device. The drift velocity of ions evaluated by a time-of-flight method was 2.7x10 4 m/sec, which corresponds to the kinetic energy of 100 eV for aluminum ions. From the measurement of ion current density distribution ion flow is found to be concentrated to the direction where ion acceleration gap is placed. From the experiment the device is found to be acceptable for applying PHIB accelerator. (author)

  2. Ion optics for accelerators

    International Nuclear Information System (INIS)

    Enge, H.A.

    1974-01-01

    A review is given of ion-optic devices used in particle accelerators, including electrostatic lenses, magnetic quadrupoles, and deflecting magnets. Tube focusing in dc accelerators is also treated, and a novel scheme for shaping the electrodes to produce strong focusing is described. The concepts of emittance (phase space) and emittance conservation are briefly discussed. Chromatic and spatial aberrations are introduced, and it is shown how they can be calculated and sometimes substantially reduced. Some examples are given

  3. Collective acceleration of ions on the basis of resonance surface photoionization

    International Nuclear Information System (INIS)

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G.

    1994-01-01

    The effects of ion beam shaping and collective acceleration on the basis of resonance surface ionization are discussed. The principle diagram of the device for collective acceleration of positive ions is given. The method suggested for positive ion acceleration provides the efficiency increase, the design simplification, the size decrease and the increase in the frequency of the collective laser ion accelerator pulses

  4. Controlled Fusion with Hot-ion Mode in a Degenerate Plasma

    International Nuclear Information System (INIS)

    S. Son and N.J. Fisch

    2005-01-01

    In a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from the classical prediction, possibly enabling new regimes for controlled nuclear fusion, including the hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Previous calculations of these processes in dense plasmas are now corrected for partial degeneracy and relativistic effects, leading to an expanded regime of self-sustained fusion

  5. Prospects for developing attractive inertial fusion concepts

    International Nuclear Information System (INIS)

    Cornwall, T.; Bodner, S.; Herrmannsfeldt, W.B.; Hogan, W.; Storm, E.; VanDevender, J.P.

    1986-01-01

    The authors discuss the role of inertial fusion in relationship to defense activities as well as in relation to energy alternatives. Other general advantages to inertial fusion besides maintaining the system more cheaply and easily, are discussed such as certain designs and the use of very short wavelength with a very modest laser intensity. A discussion on the direct illumination approach is offered. The progress made in high-gain target physics and the potential for development of solid-state lasers as a potential multimegajoule driver and a potential high-rep-rate fusion driver are discussed. Designs for reaction chambers are examined, as is the heavy-ion fusion program. Light-ion accelerators are also discussed

  6. Operating experience with a high-current Cs+1 injector for heavy-ion fusion

    International Nuclear Information System (INIS)

    Chupp, W.; Faltens, A.; Herrmannsfeldt, W.

    1981-03-01

    The construction and assembly of a Cs ion injector consisting of a pulsed source and 3 pulsed drift tubes has been complete since April 1980. The measurement program, underway since then to characterize the beam, has been interspersed with the development of diagnostic equipment. The Cs contact ionization source and each of the 3 drift tubes are driven by 500 kV Marx generators. The injector has been operated reliably at 300 kV/stage at a repetition rate of 1 pulse/4 sec. About 10 5 pulses have been accumulated. The space charge limited diode and drift tube acceleration system were designed with the aid of the EGUN code of Herrmannsfeldt. Measurements of the beam envelope have been made by means of a movable biased charge collector. Good agreement with the EGUN calculation is found. Measurements of the beam emittance have been made at the exit of the third drift tube. The normalized emittance π epsilon N = 2 x 10 -6 π m-rad is of better optical quality than that required for further acceleration and transport in a Heavy Ion Fusion (HIF) Induction Linac Driver

  7. Heavy ion fusion (HIF) impulse injector design, construction, and checkout

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M. J., LLNL

    1998-05-04

    The following report describes the design, construction, and checkout of a high-voltage (HV) impulser built for the heavy ion fusion (HIF) project. The purpose of this impulser is to provide an adjustable diode voltage source of sufficient quality and level to allow the optimization of beam transport and accelerator sections of HIF. An elegant, low-impedance, high-energy storage capacitor circuit has been selected for this application. A retrofit to the diode region has been included to provide additional beam stability and a controlled rise time. The critical part of this circuit that is common to all candidates is the impedance matching component. The following report provides a description of the implemented circuit, the basic circuit variables for wave shaping, component screening techniques, resulting operating parameters, diode modifications, operating considerations, and fault protection.

  8. Light ion fusion experiment (L.I.F.E.) concept validation studies. Final report, July 1979-May 1980

    International Nuclear Information System (INIS)

    Christensen, T.E.; Orthel, J.L.; Thomson, J.J.

    1980-12-01

    This report reflects the considerable advances made for the objectives of the contractual program, validating by detailed anaytical studies the concept of a new Light Ion Fusion Experiment for Inertial Confinement Fusion. The studies have produced an analytical design of a novel electrostatic accelerator based on separate function and strong channel focusing principles, to launch 3 to 10 MeV, 23 kA, He + neutralized beams in 400 ns pulses, delivering on a 5 mm radius target located 10 m downstream, 50 kJ of implosion energy in approx. 20 ns impact times The control, stability and focusing of beams is made by electrostatic quadrupoles, producing overall beam normalized emittance of approx. 3 x 10 -5 m-rad

  9. Basic Design Study on 1-MV Electrostatic Accelerator for ion irradiation

    International Nuclear Information System (INIS)

    Cho, Yongsub; Kim, Kyeryung; Lee, Chanyoung

    2014-01-01

    The KOMAC (KOrea Multi-purpose Accelerator Complex) has electrostatic ion accelerators whose terminal voltages are less than 100kV. To extend ion beam irradiations with higher energy ions for industrial purposes, an electrostatic accelerator of 1-MV terminal voltage should have been studied. For industrial applications, the most important features of the accelerator are high current and high reliability for high irradiation dose and high through-put with high current and long irradiation time. The basic study on 1-MV electrostatic ion accelerator for industrial applications has been done. The key components are a high voltage power supply, an ion source, and an accelerating column. The feasibility study for fabrication is being performed. Especially the R and D for ion source is required. The 1-MV ion accelerator will be constructed with domestic companies and installed in the beam application research building, which is under construction in the site of KOMAC at Gyeongju

  10. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    Science.gov (United States)

    Fisch, Nathaniel J.; Rax, Jean M.

    1994-01-01

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  11. Preliminary design of a 10 MV ion accelerator

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Celata, C.M.; Faltens, A.

    1986-06-01

    At the low energy end of an induction linac HIF driver the beam current is limited by our ability to control space charge by a focusing system. As a consequence, HIF induction accelerator designs feature simultaneous acceleration of many beams in parallel within a single accelerator structure. As the speed of the beams increase, the focusing system changes from electrostatic to magnetic quadrupoles with a corresponding increase in the maximum allowable current. At that point the beams are merged thereby decreasing the cost of the subsequent accelerator structure. The LBL group is developing an experiment to study the physics of merging and of focusing ion beams. In the design, parallel beams of ions (C + , Al + , or Al ++ ) are accelerated to several MV and merged transversely. The merged beams are then further accelerated and the growth in transverse and longitudinal emittance is determined for comparison with theory. The apparatus will then be used to study the problems associated with focusing ion beams to a small spot. Details of the accelerator design and considerations of the physics of combining beams are presented

  12. 14 MV pelletron accelerator and superconducting ECR ion source

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2015-01-01

    The BARC-TIFR 14UD Pelletron Accelerator at Mumbai has completed more than two and a half decade of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic and molecular, condensed matter physics and material science. The application areas include accelerator mass spectrometry, production of track-etch membranes, radioisotopes production, radiation damage studies and secondary neutron production for cross section measurement etc. Over the years, numerous developmental activities have been carried out in-house that have resulted in improving the overall performance and uptime of the accelerator and has also made possible to initiate variety of application oriented programmes. Since the SF 6 pressure vessels have been in operation for about 29 years, a comprehensive refurbishment and retrofitting work is carried out to comply with the safety recommendations. Recently, the beam trials were conducted with 18 GHz superconducting ECR (Electron Cyclotron Resonance) Ion Source system at Van-de-Graaff as per BARC Safety Council permission. Various ion beams with different charge states were extracted and mass analyzed and the beam quality was measured by recording their transverse emittance in situ. Experimental measurements pertaining to projectile X-rays Spectroscopy were carried out using variety of ion beams at variable energies. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A ∼60 region with E∼5 MeV/A. In order to cover the entire mass range of the elements across the periodic table, an ECR based heavy ion accelerator was initiated under plan project. This heavy ion accelerator essentially comprises of a superconducting ECR ion source, room temperature RFQ (Radio Frequency Quadrupole) followed by superconducting Niobium resonators as accelerating elements. This talk will provide an overview of the developmental activities and the safety features

  13. FMIT: an accelerator-based neutron factory for fusion materials qualification

    International Nuclear Information System (INIS)

    Burke, R.J.; Hagan, J.W.; Trego, A.L.

    1983-01-01

    The Fusion Materials Irradiation Test Facility will provide a unique testing environment for irradiation of structural and special-purpose materials in support of fusion-power systems. The neutron source will be produced by a deuteron-lithium stripping reaction to generate high-energy neutrons to ensure materials damage characteristic of the deuterium-tritium power system. The facility, its testing role, the status, and major aspects of its design and supporting system development are described. Emphasis is given to programmatic elements and features incorporated in the accelerator and other systems to assure that the FMIT runs as a highly reliable fusion materials testing installation

  14. Negative ion sources for tandem accelerator

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    1980-08-01

    Four kinds of negative ion sources (direct extraction Duoplasmatron ion source, radial extraction Penniing ion source, lithium charge exchange ion source and Middleton-type sputter ion source) have been installed in the JAERI tandem accelerator. The ion sources can generate many negative ions ranging from Hydrogen to Uranium with the exception of Ne, Ar, Kr, Xe and Rn. Discussions presented in this report include mechanisms of negative ion formation, electron affinity and stability of negative ions, performance of the ion sources and materials used for negative ion production. Finally, the author will discuss difficult problems to be overcome in order to get any negative ion sufficiently. (author)

  15. Optimization of negative ion accelerators

    International Nuclear Information System (INIS)

    Pamela, J.

    1991-01-01

    We have started to study negative ion extraction and acceleration systems in view of designing a 1 MeV D - accelerator. This study is being made with a two-Dimensional code that has been specifically developed in our laboratory and validated by comparison to three sets of experimental data. We believe that the criteria for negative ion accelerator design optimization should be: (i) to provide the best optics; (ii) to reduce the power load on the extraction grid; (iii) to allow operation with low electric fields in order to reduce the problem of breakdowns. We show some results of optics calculations performed for two systems that will be operational in the next months: the CEA-JAERI collaboration at Cadarache and the european DRAGON experiment at Culham. Extrapolations to higher energies of 500 to 1100 keV have also been conducted. All results indicate that the overall accelerator length, whatever be the number of gaps, is constrained by space charge effects (Child-Langmuir). We have combined this constraint with high-voltage hold-off empirical laws. As a result, it appears that accelerating 10 mA/cm 2 of D - at 1 MeV with good optics, as required for NET or ITER, is close to the expected limit of high-voltage hold-off

  16. Stray-electron accumulation and effects in HIF accelerators

    International Nuclear Information System (INIS)

    Cohen, R.H.; Friedman, A.; Furman, M.A.; Lund, S.M.; Molvik, A.W.; Stoltz, P.; Vay, J.-L.

    2003-01-01

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. Electron accumulation is impacted by the ion beam potential, accelerating fields, multipole magnetic fields used for beam focus, and the pulse duration. We highlight the distinguishing features of heavy-ion accelerators as they relate to stray-electron issues, and present first results from a sequence of simulations to characterize the electron cloud that follows from realistic ion distributions. Also, we present ion simulations with prescribed random electron distributions, undertaken to begin to quantify the effects of electrons on ion beam quality

  17. Heavy ion accelerating structure

    International Nuclear Information System (INIS)

    Pottier, Jacques.

    1977-01-01

    The heavy ion accelerating structure concerned in this invention is of the kind that have a resonance cavity inside which are located at least two longitudinal conducting supports electrically connected to the cavity by one of their ends in such a way that they are in quarter-wavelength resonance and in phase opposition. Slide tubes are electrically connected alternatively to one or the other of the two supports, they being electrically connected respectively to one or the other end of the side wall of the cavity. The feature of the structure is that it includes two pairs of supports symmetrically placed with respect to the centre line of the cavity, the supports of one pair fitted overhanging being placed symmetrically with respect to the centre line of the cavity, each slide tube being connected to the two supports of one pair. These support are connected to the slide wall of the cavity by an insulator located at their electrically free end. The accelerator structure composed of several structures placed end to end, the last one of which is fed by a high frequency field of adjustable amplitude and phase, enables a heavy ion linear accelerator to be built [fr

  18. Pulsed power systems for inertial confinement fusion

    International Nuclear Information System (INIS)

    VanDevender, J.P.

    1979-01-01

    Sandis's Particle Beam Fusion Program is investigating pulsed electron and light ion beam accelerators with the goal of demonstrating the practical application of such drivers as igniters in inertial confinement fusion (ICF) reactors. The power and energy requirements for net energy gain are 10 14 to 10 15 W and 1 to 10 MJ. Recent advances in pulsed power and power flow technologies permit suitable accelerators to be built. The first accelerator of this new generation is PBFA I. It operates at 2 MV, 15 MA, 30 TW for 35 ns and is scheduled for completion in June 1980. The principles of this new accelerator technology and their application to ICF will be presented

  19. Collective ion acceleration via laser controlled ionization channel

    International Nuclear Information System (INIS)

    Destler, W.W.; O'Shea, P.G.; Rodgers, J.; Segalov, Z.

    1987-01-01

    Initial results from a successful laser-controlled collective ion acceleration experiment at the University of Maryland are presented. In the experiment, positive ions are trapped in the potential well at the head of an intense relativistic electron beam injected at current levels above the space charge limit. Seed ions for acceleration are provided by puff valve injection of a neutral gas cloud localized to within 3 cm of the injection point. Control over the acceleration of the well and the ions is then achieved by means of a laser-generated ionization channel produced by passing the light from a Q-switched ruby laser through a series of partially and fully reflecting mirrors in such a way as to provide time-sequenced laser ionization of a target located on the drift tube wall. Using this system, controlled acceleration of protons at a rate of approximately 40 MV/m has been demonstrated over a distance of about 50 cm

  20. Inertial confinement fusion (ICF)

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1977-01-01

    The principal goal of the inertial confinement fusion program is the development of a practical fusion power plant in this century. Rapid progress has been made in the four major areas of ICF--targets, drivers, fusion experiments, and reactors. High gain targets have been designed. Laser, electron beam, and heavy ion accelerator drivers appear to be feasible. Record-breaking thermonuclear conditions have been experimentally achieved. Detailed diagnostics of laser implosions have confirmed predictions of the LASNEX computer program. Experimental facilities are being planned and constructed capable of igniting high gain fusion microexplosions in the mid 1980's. A low cost long lifetime reactor design has been developed

  1. Accelerator and Fusion Research Division annual report, October 1980-September 1981. Fiscal year, 1981

    International Nuclear Information System (INIS)

    Johnson, R.K.; Thomson, H.A.

    1982-04-01

    Major accomplishments during fiscal year 1981 are presented. During the Laboratory's 50th anniversary celebrations, AFRD and the Nuclear Science Division formally dedicated the new (third) SuperHILAC injector that adds ions as heavy as uranium to the ion repertoire at LBL's national accelerator facilities. The Bevalac's new multiparticle detectors (the Heavy Ion Spectrometer System and the GSI-LBL Plastic Ball/Plastic Wall) were completed in time to take data before the mid-year shutdown to install the new vacuum liner, which passed a milestone in-place test with flying colors in September. The Bevalac biomedical program continued patient treatment with neon beams aimed at establishing a complete data base for a dedicated biomedical accelerator, the design of which NCI funded during the year. Our program to develop alternative Isabelle superconducting dipole magnets, which DOE initiated in FY80, proved the worth of a new magnet construction technique and set a world record - 7.6 Tesla at 1.8 K - with a model magnet in our upgraded test facility. Final test results at LBL were obtained by the Magnetic Fusion Energy Group on the powerful neutral beam injectors developed for Princeton's TFTR. The devices exceeded the original design requirements, thereby completing the six-year, multi-million-dollar NBSTF effort. The group also demonstrated the feasibility of efficient negative-ion-based neutral beam plasma heating for the future by generating 1 A of negative ions at 34 kV for 7 seconds using a newly developed source. Collaborations with other research centers continued, including: (1) the design of LBL/Exxon-dedicated beam lines for the Stanford Synchrotron Radiation Laboratory; (2) beam cooling tests at Fermilab and the design of a beam cooling system for a proton-antiproton facility there; and (3) the development of a high-current betatron for possible application to a free electron laser

  2. The technology of heavy-ion fusion

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1980-09-01

    The concept of inertial confinement fusion using heavy ion beams as a driver is surveyed, with reference to parameters which might ultimately be suitable for a commercial power station. Particular attention is drawn to the parameters associated with the final focusing of the beam on the target. (author)

  3. An examination of medical linear accelerator ion-chamber performance

    International Nuclear Information System (INIS)

    Karolis, C.; Lee, C.; Rinks, A.

    1996-01-01

    Full text: The company ( Radiation Oncology Physics and Engineering Services Pty Ltd) provides medical physics services to four radiotherapy centres in NSW with a total of 6 high energy medical linear accelerators manufactured by three different companies. As part of the services, the stability of the accelerator ion chamber system is regularly examined for constancy and periodically for absolute calibration. Each accelerator ion chamber has exhibited undesirable behaviour from time to time, sometimes leading to its replacement. This presentation describes the performance of the ion chambers for some of the linacs over a period of 12-18 months and the steps taken by the manufacturer to address the problems encountered. As part of our commissioning procedure of new linacs, an absolute calibration of the accelerator output (photon and electron beams) is repeated several times over the period following examination of the physical properties of the radiation beams. These calibrations were undertaken in water using the groups calibrated ion chamber/electrometer system and were accompanied by constancy checks using an acrylic phantom and field instruments. Constancy checks were performed daily for a period of 8 weeks during the initial life of the accelerator and thereafter weekly. For one accelerator, the ion chamber was replaced 6 times in the first eighteen months of its life due to severe drifts in output, found to be due to pressure changes in one half of the chamber In another accelerator, erratic swings of 2% were observed for a period of nine months, particularly with the electron beams, before the manufacturer offered to change the chamber with another constructed from different materials. In yet another accelerator the ion chamber has shown consistent erratic behaviour, but this has not been addressed by the manufacturer. In another popular accelerator, the dosimetry was found to be very stable until some changes in the tuning were introduced resulting in small

  4. A 1MeV, 1A negative ion accelerator test facility

    International Nuclear Information System (INIS)

    Hanada, M.; Dairaku, M.; Inoue, T.; Miyamoto, K.; Ohara, Y.; Okumura, Y.; Watanabe, K.; Yokoyama, K.

    1995-01-01

    For the Proof-of-Principle test of negative ion acceleration up to 1 MeV, the beam energy required for ITER, a negative ion test facility named MeV Test Facility (MTF) and an ion source/accelerator have been designed and constructed. They are designed to produce a 1 MeV H- beam at a low source pressure of 0.13Pa. The MTF has a power supply system, which constituts of a 1MV, 1A, 60 s Cockcroft-Walton type dc high energy generator and power supplies for negative ion generation and extraction (ion source power supplies). The negative ion source/accelerator is composed of a cesiated volume source and a 5-stage, multi-aperture, electrostatic accelerator. The MTF and the ion source/accelerator have been completed, and the accelertion test up to 1 MeV of the H- ions has started. (orig.)

  5. Civilian applications of particle-beam-initiated inertial confinement fusion technology

    International Nuclear Information System (INIS)

    Varnado, S.G.; Mitchiner, J.L.

    1977-05-01

    Electrical power generation by controlled fusion may provide a partial solution to the world's long-term energy supply problem. Achievement of a fusion reaction requires the confinement of an extremely hot plasma for a time long enough to allow fuel burnup. Inertial confinement of the plasma may be possible through the use of tightly focused, relativistic electron or ion beams to compress a fuel pellet. The Sandia Particle Beam Fusion program is developing the particle-beam accelerators necessary to achieve fuel ignition. In this report we review the status of the particle-beam fusion technology development program and identify several potential civilian applications for this technology. We describe program objectives, discuss the specific accelerators presently under development, and briefly review the results of beam-focusing and target-irradiation experiments. Then we identify and discuss applications for the beam technology and for the fusion neutrons. The applications are grouped into near-term, intermediate-term, and long-term categories. Near-term applications for the beam technology include electron-beam (e-beam) pumping of gas lasers and several commercial applications. Intermediate-term applications (pellet gain less than 50) include hybrid reactors for electrical power production and fissile fuel breeding, pure fusion reactors for electrical power production, and medical therapy using ion accelerators. In the long term, complex, high-gain pellets may be used in pure fusion reactors

  6. Tritium depth profiling by AMS in carbon samples from fusion experiments

    International Nuclear Information System (INIS)

    Friedrich, M.; Pilz, W.; Sun, G.; Behrisch, R.; Garcia-Rosales, C.

    2001-01-01

    Tritium depth profiling measurements by accelerator mass spectrometry have been performed at a facility installed at the Rossendorf 3 MV Tandetron. In order to achieve an uniform erosion at the target surface inside of a commercial Cs ion sputtering source and to avoid edge effects, the samples were mechanically scanned inside of a commercial Cs sputter ion source. The sputtered negative ions were mass analysed by the injection magnet of the Tandetron. The tritium ions are counted after the acceleration with semiconductor detectors. Depth profiles have been measured for carbon samples which had been exposed to the plasma at the first wall of the Garching fusion experiment ASDEX-Upgrade and from the European fusion experiment JET, Culham/UK. A dedicated AMS facility with an air-insulated 100 kV tandem accelerator for depth profiling measurements at samples with high tritium concentration is under construction. First results of test operation are presented. (orig.)

  7. Heavy Ion Acceleration at J-PARC

    Science.gov (United States)

    SATO, Susumu

    2018-02-01

    J-PARC, the Japan Proton Accelerator Research Complex, is an accelerator, which provides a high-intensity proton beam. Recently as a very attractive project, the acceleration of heavy ions produced by supplementary ion sources, called J-PARC-HI, is seriously contemplated by domestic as well as international communities. The planned facility would accelerate heavy ions up to U92+ with a beam energy 20 AGeV ( of 6.2 AGeV). The highlight of the J-PARC-HI project is its very high beam rate up to 1011 Hz, which will enable the study of very rare events. Taking advantage of this high intensity, J-PARC-HI will carry out frontier studies of new and rare observables in this energy region: (i) nuclear medium modification of chiral property of vector mesons through low-mass di-lepton signal, (ii) QCD critical pointcharacterization through event-by-event fluctuation signals of particle production, (iii) systematic measurements related to the equation of state through collective flow signal or two-particle momentum correlation signal, or (iv) the search of hyper nuclei with multi strangeness including or exceeding S = 3. The current plan of J-PARC-HI aims to carrying out the first experimental measurements in 2025.

  8. Ion distribution in the hot spot of an inertial confinement fusion plasma

    Science.gov (United States)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  9. Generation and transport of laser accelerated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Peter; Boine-Frankenheim, Oliver [Technische Univ. Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Kornilov, Vladimir; Spaedtke, Peter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Collaboration: LIGHT-Collaboration

    2013-07-01

    Currently the LIGHT- Project (Laser Ion Generation, Handling and Transport) is performed at the GSI Helmholtzzentrum fuer Schwerionenforschung GmbH Darmstadt. Within this project, intense proton beams are generated by laser acceleration, using the TNSA mechanism. After the laser acceleration the protons are transported through the beam pipe by a pulsed power solenoid. To study the transport a VORPAL 3D simulation is compared with CST simulation. A criterion as a function of beam parameters was worked out, to rate the importance of space charge. Furthermore, an exemplary comparison of the solenoid with a magnetic quadrupole-triplet was carried out. In the further course of the LIGHT-Project, it is planned to generate ion beams with higher kinetic energies, using ultra-thin targets. The acceleration processes that can appear are: RPA (Radiation Pressure Acceleration) and BOA (Break-Out Afterburner). Therefore the transport of an ion distribution will be studied, as it emerges from a RPA acceleration.

  10. Theoretical study of ion bunching for pellet fusion in self-consistent time dependent space charge fields

    International Nuclear Information System (INIS)

    Lu, P.C.

    1977-01-01

    The use of intense ion beams as a heating source for the fusion reaction in pellets of D-T appears to have several potential advantages over the use of electron beams. If ion bunching can be accomplished, then existing technology can be used to achieve the required power, energy and time scales for pellet fusion. A scheme to be considered is that of a pre-formed nonuniform plasma adjacent to a partially transparent anode through which a space charge limited electron beam is injected from the terminals of a convergent spherical geometry with a finite (or zero) rise-time. At the instant of beam injection, the virtual cathode is formed. Due to the space charge fields set up by the beam, the plasma ions are accelerated towards the region beyond the virtual cathode. A self-consistent transient analysis of the interactions between the electron beam and the background plasma is performed. The numerical calculations show that by specifying the target plasma for perfect bunching the ions can be made to bunch nearly perfectly. Also, by considering the depletion of initial plasma and accounting for the fact that the virtual anode-virtual cathode gap region is moving opposite to the direction of the ions, one can considerably enhance the instantaneous power delivered to the target over that which is injected at the terminals of the device, even with a finite rise-time on the current pulse

  11. Induction Accelerator Technology Choices for the Integrated Beam Experiment (IBX)

    International Nuclear Information System (INIS)

    Leitner, M.A.; Celata, C.M.; Lee, E.P.; Logan, B.G.; Sabbi, G.; Waldron, W.L.; Barnard, J.J.

    2003-01-01

    Over the next three years the research program of the Heavy Ion Fusion Virtual National Laboratory (HIF-VNL), a collaboration among LBNL, LLNL, and PPPL, is focused on separate scientific experiments in the injection, transport and focusing of intense heavy ion beams at currents from 100 mA to 1 A. As a next major step in the HIF-VNL program, we aim for a complete 'source-to-target' experiment, the Integrated Beam Experiment (IBX). By combining the experience gained in the current separate beam experiments IBX would allow the integrated scientific study of the evolution of a single heavy ion beam at high current (∼1 A) through all sections of a possible heavy ion fusion accelerator: the injection, acceleration, compression, and beam focusing.This paper describes the main parameters and technology choices of the planned IBX experiment. IBX will accelerate singly charged potassium or argon ion beams up to 10 MeV final energy and a longitudinal beam compression ratio of 10, resulting in a beam current at target of more than 10 Amperes. Different accelerator cell design options are described in detail: Induction cores incorporating either room temperature pulsed focusing-magnets or superconducting magnets

  12. Accelerator complex for a radioactive ion beam facility at ATLAS

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1995-01-01

    Since the superconducting heavy ion linac ATLAS is an ideal post-accelerator for radioactive beams, plans are being developed for expansion of the facility with the addition of a driver accelerator, a production target/ion source combination, and a low q/m pre-accelerator for radioactive ions. A working group including staff from the ANL Physics Division and current ATLAS users are preparing a radioactive beam facility proposal. The present paper reviews the specifications of the accelerators required for the facility

  13. Induction linacs for heavy ion fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-11-01

    Experimental progress to date has strengthened our belief in the soundness and attractiveness of the heavy ion method for fusion. What surprises that have shown up in the laboratory (e.g., in SBTE) have all been of the pleasant kind so far. The systems assessment has supported the view that the heavy ion approach can lead to economically attractive electric power and that a wide variety of options exists in all parameters. The systems work has also been of great help in pointing the way for the research and development activities

  14. Ion exchange currents in vacuum accelerator tubes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Thorn, R.

    1978-01-01

    Ion exchange currents (microdischarges) have been observed in short lengths of accelerator tube. The occurrence of these discharges can be related to the trajectories of ions in the tube. High-resolution mass spectra of the negative and positive ion components have been obtained. (author)

  15. Analysis of an induction linac driver system for inertial fusion

    International Nuclear Information System (INIS)

    Hovingh, J.; Brady, V.O.; Faltens, A.; Keefe, D.; Lee, E.P.

    1987-07-01

    A linear induction accelerator that produces a beam of energetic (5 to 20 GeV) heavy (130 to 210 amu) ions is a prime candidate as a driver for inertial fusion. Continuing developments in sources for ions with charge state greater than unity allow a potentially large reduction in the driver cost and an increase in the driver efficiency. The use of high undepressed tunes (σ 0 ≅ 85 0 ) and low depressed tunes (σ ≅ 8.5 0 ) also contributes to a potentially large reduction in the driver cost. The efficiency and cost of the induction linac system are discussed as a function of output energy and pulse repetition frequency for several ion masses and charge states. The cost optimization code LIACEP, including accelerating module alternatives, transport modules, and scaling laws, is presented. Items with large cost-leverage are identified as a guide to future research activities and development of technology that can yield substantial reductions in the accelerator system cost and improvement in the accelerator system efficiency. Finally, a cost-effective strategy using heavy ion induction linacs in a development scenario for inertial fusion is presented. 34 refs., 6 figs., 7 tabs

  16. Accelerator mass spectrometry of 41Ca with a positive-ion source and the UNILAC accelerator

    International Nuclear Information System (INIS)

    Steinhof, A.; Henning, W.; Mueller, M.; Roeckl, E.; Schuell, D.; Korschinek, G.; Nolte, E.; Paul, M.

    1987-06-01

    We have made first tests investigating the performance characteristics of the UNILAC accelerator system at GSI, in order to explore the sensitivity achievable in accelerator mass spectrometry (AMS) of 41 Ca with high-current positive-ion sources. Positively charged Ca 3+ ions of up to about 100 micro-amperes electrical current were injected from a penning-sputter source and, after further stripping to Ca 9+ , accelerated to 14.3 MeV/nucleon. The combination of velocity-focussing accelerator and magnetic ion-beam transport system completely eliminated background from the other calcium isotopes. Full-stripping and detection of 41 Ca 20+ ions with a magnetic spectrograph provides separation from isobaric 41 K and, at present, a level of sensitivity of 41 Ca/Ca ≅ 2x10 -15 . Future improvements and implications for dating of Pleistoscene samples will be discussed. (orig.)

  17. High current pulsed ion inductor accelerator for destruction of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A.; Puzynin, I.V.; Samoilov, V.N.; Sissakian, A.N. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-09-01

    The project of a high current pulsed linear ion accelerator is described in this paper. The accelerator consists of an ion injector, a system of charge and energy separation, an inductor accelerator and an output system. The ion source with explosive ion emission can produce all kinds of ions. The separation system includes a pulsed magnetic system. The inductors are based on amorphous iron with inside magnetic elements. 3 refs., 3 figs.

  18. High current pulsed ion inductor accelerator for destruction of radioactive wastes

    International Nuclear Information System (INIS)

    Korenev, S.A.; Puzynin, I.V.; Samoilov, V.N.; Sissakian, A.N.

    1997-01-01

    The project of a high current pulsed linear ion accelerator is described in this paper. The accelerator consists of an ion injector, a system of charge and energy separation, an inductor accelerator and an output system. The ion source with explosive ion emission can produce all kinds of ions. The separation system includes a pulsed magnetic system. The inductors are based on amorphous iron with inside magnetic elements. 3 refs., 3 figs

  19. High-quality laser-accelerated ion beams for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Harman, Zoltan; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); American University of Sharjah (United Arab Emirates)

    2009-07-01

    Cancer radiation therapy requires accelerated ion beams of high energy sharpness and a narrow spatial profile. As shown recently, linearly and radially polarized, tightly focused and thus extremely strong laser beams should permit the direct acceleration of light atomic nuclei up to energies that may offer the potentiality for medical applications. Radially polarized beams have better emittance than their linearly polarized counterparts. We put forward the direct laser acceleration of ions, once the refocusing of ion beams by external fields is solved or radially polarized laser pulses of sufficient power can be generated.

  20. Pelletron ion accelerator facilities at Inter University Accelerator Centre

    International Nuclear Information System (INIS)

    Chopra, S.

    2011-01-01

    Inter University Accelerator Centre has two tandem ion accelerators, 15UD Pelletron and 5SDH-2 Pelletron, for use in different areas of research. Recently Accelerator Mass Spectrometry facility has also been added to to the existing experimental facilities of 15UD Pelletron. In these years many modifications and up gradations have been performed to 15UD Pelletron facility. A new MCSNICS ion source has been procured to produce high currents for AMS program. Two foils stripper assemblies ,one each before and after analyzing magnet, have also been added for producing higher charge state beams for LINAC and for experiments requiring higher charge states of accelerated beams. A new 1.7 MV Pelletron facility has also been recently installed at IUAC and it is equipped with RBS and Channelling experimental facility. There are two beam lines installed in the system and five more beam lines can be added to the system. A clean chemistry laboratory with all the modern facilities has also been developed at IUAC for the chemical processing of samples prior to the AMS measurements. The operational description of the Pelletron facilities, chemical processing of samples, methods of measurements and results of AMS measurements are being presented. (author)

  1. X-ray spectroscopy of highly ionized heavy ions as an advanced research for controlled nuclear fusion power

    International Nuclear Information System (INIS)

    Zschornack, G.; Musiol, G.

    1988-01-01

    Diagnostics and modelling of nuclear fusion plasmas require a detailed knowledge of atomic and molecular data for highly ionized heavy ions. Experimental verification of atomic data is made on the basis of IAEA recommendations using the method of high-resolution wavelength-dispersive X-ray spectroscopy in order to obtain contributions extensioning the available atomic data lists. Basic facilities for producing highly charged heavy ions are the electron-ion rings of the heavy ion collective accelerator and the electron beam ion source KRYON-2 at the Joint Institute for Nuclear Research at Dubna. For high-resolution X-ray spectroscopy with these sources a computer-aided crystal diffraction spectrometer has been developed the precision of which is achieved by using advanced principles of measurement and control. Relativistic atomic structure calculations have been carried out for a great number of elements and configurations to obtain data in ionization regions heavily accessible to the experiment. (author)

  2. Electron string ion sources for carbon ion cancer therapy accelerators

    Science.gov (United States)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  3. Nuclear fusion in a solid body

    International Nuclear Information System (INIS)

    Romodanov, V.A.; Savin, V.I.; Shakhurin, M.V.; Chernyavskij, V.T.; Pustovit, A.E.

    1991-01-01

    The present work was aimed at investigating a possibility to have a fusion reaction during the interaction of gaseous deuterium with various metals under conditions of glow discharge. It is shown that neutron flux which presumably occurs due to the reaction of nuclear fusion exceeded the background level two times maximum for such materials as Cr, Pd, B, Li. A conclusion is made that for the recording of neutrons which can be generated under bombardment of material surfaces with accelerated ions an additional shielding of standard recorders is required against electromagnetic oscillations both in the input circuits and power supply circuits. A significant increase of tritium concentration in deuterium was recorded (by mass spectrometry and β activity measurement) during the passage of the latter through the metal being bombarded with accelerated ions from glow discharge plasma

  4. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  5. HIFSA: Heavy-Ion Fusion Systems Assessment Project: Volume 2, Technical analyses

    International Nuclear Information System (INIS)

    Dudziak, D.J.

    1987-12-01

    A two-year project was undertaken to assess the commercial potential of heavy-ion fusion (HIF) as an economical electric power production technology. Because the US HIF development program is oriented toward the use of multiple-beam induction linacs, the study was confined to this particular driver technology. The HIF systems assessment (HIFSA) study involved several subsystem design, performance, and cost studies (e.g., the induction linac, final beam transport, beam transport in reactor cavity environments, cavity clearing, target manufacturing, and reactor plant). In addition, overall power plant systems integration, parametric analyses, and tradeoff studies were performed using a systems code developed specifically for the HIFSA project. Systems analysis results show values for cost of electricity (COE) comparable to those from other inertial- and magnetic-confinement fusion plant studies; viz., 50 to 60 mills/kWh (1985 dollars) for 1-GWe plant sizes. Also, significant COE insensitivity to major accelerator, target, and reactor parameters near the minima was demonstrated. Conclusions from the HIFSA study have already led to substantial modifications of the US HIF research and development program. Separate abstracts were prepared for 17 papers in these analyses

  6. Status report on the folded tandem ion accelerator at BARC

    Indian Academy of Sciences (India)

    Folded tandem ion accelerator; charged particle beams; voltage stability; Rutherford backscattering; ion optics; beam lines. Abstract. The folded tandem ion accelerator (FOTIA) facility set up at BARC has become operational. At present, it is used for elemental analysis studies using the Rutherford backscattering technique.

  7. Application of the UKP-2-1 accelerator of heavy ions in the field of nuclear and radiation physics. Chapter 2

    International Nuclear Information System (INIS)

    2003-01-01

    The UKP-2-1 accelerator is intended for research works conducting in the field of solid state physics, low energy nuclear physics, nuclear microanalysis, materials modification and others. The accelerator includes two autonomous beam transporting channels jointed by one accelerating potential. One of the channel is intended for hydrogen and inert gases' ions acceleration, obtained from duoplasmatron. The second one includes the source with cesium dispersion and it is intended for heavy ions acceleration. On the base of the accelerator the set of the analytical methods such as PIXE, RBS, NRA were developed allowing to study of samples element content, distribution of elements by depth, analysis of thin films thickness. The accelerator intensively using in the filed of inertial nuclear fusion and studies on Coulomb energy losses of plasma target fast protons. The experience of the accelerator in different environmental researches is gained as well. In particular of deuterium determination in the water samples by the nuclear reaction method and study of plutonium and uranium distribution in 'hot' particles by the proton-induced X-ray method are developed. Beginning of 1999 on the accelerator a new research activity trend related with nuclear physical analysis methods adaptation on charged particles beams for study of a biological objects has been developed. At present the accelerator hardware does not concedes to hardware of the best world laboratories

  8. High-performance control system for a heavy-ion medical accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, H.D.; Magyary, S.B.; Sah, R.C.

    1983-03-01

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species.

  9. High-performance control system for a heavy-ion medical accelerator

    International Nuclear Information System (INIS)

    Lancaster, H.D.; Magyary, S.B.; Sah, R.C.

    1983-03-01

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species

  10. Simulations of longitudinal beam dynamics of space-charge dominated beams for heavy ion fusion

    International Nuclear Information System (INIS)

    Miller, D.A.C.

    1994-12-01

    The longitudinal instability has potentially disastrous effects on the ion beams used for heavy ion driven inertial confinement fusion. This instability is a open-quotes resistive wallclose quotes instability with the impedance coining from the induction modules in the accelerator used as a driver. This instability can greatly amplify perturbations launched from the beam head and can prevent focusing of the beam onto the small spot necessary for fusion. This instability has been studied using the WARPrz particle-in-cell code. WARPrz is a 2 1/2 dimensional electrostatic axisymmetric code. This code includes a model for the impedance of the induction modules. Simulations with resistances similar to that expected in a driver show moderate amounts of growth from the instability as a perturbation travels from beam head to tail as predicted by cold beam fluid theory. The perturbation reflects off the beam tail and decays as it travels toward the beam head. Nonlinear effects cause the perturbation to steepen during reflection. Including the capacitive component of the, module impedance. has a partially stabilizing effect on the longitudinal instability. This reduction in the growth rate is seen in both cold beam fluid theory and in simulations with WARPrz. Instability growth rates for warm beams measured from WARPrz are lower than cold beam fluid theory predicts. Longitudinal thermal spread cannot account for this decrease in the growth rate. A mechanism for coupling the transverse thermal spread to decay of the longitudinal waves is presented. The longitudinal instability is no longer a threat to the heavy ion fusion program. The simulations in this thesis have shown that the growth rate for this instability will not be as large as earlier calculations predicted

  11. Applications of induction linac technology to heavy ion fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1977-07-01

    Evaluation of the application of heavy ion accelerators to ignite d-t pellets in a thermonuclear reactor is discussed. Accelerator design requirements considered include transport-limited current, beam injection conditions, and pulse bunching and focusing characteristics. The desirability of resonant and non-resonant accelerating structures is comparatively examined. The required power system switch tubes are discussed. It is concluded that heavy ion accelerators could offer a promising solution to the pellet-igniter problem. The advantages pointed out for this approach include electric efficiency greater than 10 percent, the possibility of high repetition rates (1 to 10 Hz), and a mature technological base

  12. Collective ion acceleration by relativistic electron beams in plasmas

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.

    1991-01-01

    A two-dimensional fully electromagnetic particle-in-cell code is used to simulate the interaction of a relativistic electron beam injected into a finite-size background neutral plasma. The simulations show that the background electrons are pushed away from the beam path, forming a neutralizing ion channel. Soon after the beam head leaves the plasma, a virtual cathode forms which travels away with the beam. However, at later times a second, quasi-stationary, virtual cathode forms. Its position and strength depends critically on the parameters of the system which critically determines the efficiency of the ion acceleration process. The background ions trapped in the electrostatic well of the virtual cathode are accelerated and at later times, the ions as well as the virtual cathode drift away from the plasma region. The surfing of the ions in the electrostatic well produces an ion population with energies several times the initial electron beam energy. It is found that optimum ion acceleration occurs when the beam-to-plasma density ratio is near unity. When the plasma is dense, the beam is a weak perturbation and accelerates few ions, while when the plasma is tenuous, the beam is not effectively neutralized, and a virtual cathode occurs right at the injection plane. The simulations also show that, at the virtual cathode position, the electron beam is pinched producing a self-focusing phenomena

  13. Research progress in intense ion beam production for inertial confinement fusion at Cornell University

    International Nuclear Information System (INIS)

    Bluhm, H.; Greenly, J.B.; Hammer, D.A.

    1983-01-01

    Recent results obtained in the generation of intense pulsed light ion beams and their application to inertial confinement fusion are described. Studies of time-integrated and time-dependent beam divergence using a magnetically insulated ion diode with a ''flashboard'' anode at 11 W diode power show a directionality which is apparently due to electron dynamics in the diode. Nevertheless, ion beams having divergence angle as small as 0.5 0 have been produced at >10 8 W.cm - 2 . In another experiment with a similar diode, the anode plasma formation time varied with the detailed anode configuration, the diode voltage and the insulating magnetic field, with the longer times obtained at lower voltage and higher insulating magnetic field strength. The anode plasma density was determined to be in the 10 15 cm - 3 density range and to move away from the anode at approx.2 cm.μs - 1 in another similar experiment. Preliminary experiments performed on a 10 12 W accelerator show reasonable power coupling to a magnetically insulated ion diode, with >10 9 W.cm - 2 beams at approx.1.5 MV being generated. Computer simulations suggest that if such a beam can be focused into a plasma channel, most of its energy can be delivered to a pellet one to two metres away. In experiments on the applied Bsub(theta) diode, microwave radiation, ion production efficiency, and ion beam fluctuations all reach a maximum when the insulating magnetic field is about 1.4 times the critical field for magnetic insulation. Finally, relatively pure beams of heavy ions have been produced by making the anode with hydrocarbon-free dielectric material which contains the desired species together with other ions having substantially higher ionization potential. The sum of these results suggests that flashboard anodes operated at the few-MV level can be used to produce beams with properties suitable for inertial confinement fusion experiments on sufficiently powerful pulsed power generators. (author)

  14. New heavy-ion accelerator facility at Oak Ridge

    International Nuclear Information System (INIS)

    Stelson, P.H.

    1974-01-01

    Funds were obtained to establish a new national heavy-ion facility to be located at Oak Ridge. The principal component of this facility is a 25-MW tandem designed specifically for good heavy-ion acceleration, which will provide high quality beams of medium weight ions for nuclear research by itself. The tandem beams will also be injected into ORIC for additional energy gain, so that usable beams for nuclear physics research can be extended to about A = 160. A notable feature of the tandem is that it will be of the ''folded'' type, in which both the negative and positive accelerating tubes are contained in the same column. The accelerator system, the experimental lay-out, and the time schedule for the project are discussed

  15. Next generation of relativistic heavy ion accelerators

    International Nuclear Information System (INIS)

    Grunder, H.; Leemann, C.; Selph, F.

    1978-06-01

    Results are presented of exploratory and preliminary studies of a next generation of heavy ion accelerators. The conclusion is reached that useful luminosities are feasible in a colliding beam facility for relativistic heavy ions. Such an accelerator complex may be laid out in such a way as to provide extractebeams for fixed target operation, therefore allowing experimentation in an energy region overlapping with that presently available. These dual goals seem achievable without undue complications, or penalties with respect to cost and/or performance

  16. Experimental studies of the laser-controlled collective ion accelerator

    International Nuclear Information System (INIS)

    Destler, W.W.; Rodgers, J.; Segalov, Z.

    1989-01-01

    Detailed experimental studies of a collective acceleration experiment in which a time-sequenced laser-generated ionization channel is used to control the propagation of an intense relativistic electron beamfront are presented. Ions trapped in the potential well at the beamfront are accelerated as the velocity of the beamfront is increased in a manner controlled by the time-dependent axial extent of the ionization channel. Beamfront propagation data for two different accelerating gradients are presented, together with results of ion acceleration studies for both gradients

  17. Charged fusion product and fast ion loss in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Fredrickson, E.D.; Mynick, H.E.; White, R.B.; Biglari, H.; Bretz, N.; Budny, R.; Bush, C.E.; Chang, C.S.; Chen, L.; Cheng, C.Z.; Fu, G.Y.; Hammett, G.W.; Hawryluk, R.J.; Hosea, J.; Johnson, L.; Mansfield, D.; McGuire, K.; Medley, S.S.; Nazikian, R.; Owens, D.K.; Park, H.; Park, J.; Phillips, C.K.; Schivell, J.; Stratton, B.C.; Ulrickson, M.; Wilson, R.; Young, K.M.; Fisher, R.; McChesney, J.; Fonck, R.; McKee, G.; Tuszewski, M.

    1993-03-01

    Several different fusion product and fast ion loss processes have been observed in TFTR using an array of pitch angle, energy and time resolved scintillator detectors located near the vessel wall. For D-D fusion products (3 MeV protons and 1 MeV tritons) the observed loss is generally consistent with expected first-orbit loss for Ip I MA. However, at higher currents, Ip = 1.4--2.5 MA, an NM induced D-D fusion product loss can be up to 3-4 times larger than the first-orbit loss, particularly at high beam powers, P ≥ 25 MW. The MHD induced loss of 100 KeV neutron beam ions and ∼0.5 MeV ICRF minority tail tons has also been measured ≤ 459 below the outer midplane. be potential implications of these results for D-T alpha particle experiments in TFTR and ITER are described

  18. Essay of accelerator R and D in a small laboratory of an university. Head ion IH linac for fusion material. 1983-1985

    International Nuclear Information System (INIS)

    Hattori, Toshiyuki

    2005-01-01

    The linear accelerator of Inter-Digital H type (IH linac) is known to have a high shunt impedance. Research Laboratory for Nuclear Reactors of Tokyo Institute of Technology introduced an IH linac for fusion materials irradiation test in 1983. The beam injector was a tandem electrostatic accelerator. The IH linac was designed and fabricated based on the developmental work at Institute for Nuclear Study of University of Tokyo. The processes of component alignment, cold test and start-up operation are described. Educational aspect of the project is also reviewed. (K.Y.)

  19. Electron string ion sources for carbon ion cancer therapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Katagiri, K.; Noda, K. [National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  20. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1986-September 30, 1986

    International Nuclear Information System (INIS)

    1986-10-01

    Activities are reported on MBE-4, the four-beam proof-of-principle ion induction linear accelerator with the capability of beam-current amplification. Mechanical aspects of MBE-4, quadrupole insulator performance, and pulsers are discussed. The computer code, SLID, has been used to help understand the longitudinal beam dynamics in MBE-4. A computer-controlled emittance scanning system is in use in MBE-4. A systematic effort is under way to discover and correct all the defects peculiar to the low energy part of the linac design code

  1. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    International Nuclear Information System (INIS)

    Ellison, C.L.; Fuchs, J.

    2010-01-01

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  2. Topical problems of accelerator and applied heavy ion physics

    International Nuclear Information System (INIS)

    Becker, R.; Deitinghoff, H.; Junior, P.H.; Schempp, A.

    1990-12-01

    These proceedings contain the articles presented at the named seminar. They deal with high-intensity linacs for heavy ions, the free-electron laser, applications of heavy-ion beams, MEQALAC, the ESR Schottky-diagnosis system, the analysis of GaAs by ion-beam methods, a light-ion synchrotron for cancer therapy, a device for the measurement of the momentum spread of ion beams, the European Hadron facility, the breakdown fields at electrons in high vacuum, a computer program for the calculation of electric quadrupoles, a focusing electrostatic mirror, storage and cooling of Ar beams, the visualization of heavy ion tracks in photographic films, the motion of ions in magnetic fields, the CERN heavy ion program, linear colliders, the beam injection from a linac into a storage ring, negative-ion sources, wake field acceleration, RFQ's, a dense electron target, the matching of a DC beam into the RFQ, electron emission and breakdown in vacuum, and 1-1.5 GeV 300 mA linear accelerator, the production of high-current positive-ion beams, high-current beam experiments at GSI, improvement of the Frankfurt EBIS, the physics of the violin, double layers, beam formation with coupled RFQ's, atomic nitrogen beam for material modification, compact superconducting synchrotron-radiation sources, industrial property rights, a RF ion source for thin film processes, beam-cavity interactions in the RFQ linac, atomic physics with crossed uranium beams, proton linacs, the interdigital H-type structure, injection of H - beams into a RFQ accelerator, the production of MOS devices by ion implantation, the application of RFQ's, the Frankfurt highly-charged ion facility, RF acceleration techniques for beam current drive in tokamaks, space-charge neutralized transport, and storage rings for synchrotron radiation and free electron lasers. (HSI)

  3. Accelerator Technology Program. Progress report, January-June 1980

    International Nuclear Information System (INIS)

    Knapp, E.A.; Jameson, R.A.

    1980-03-01

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the first six months of calendar 1980 are discussed. This report is organized around major projects of the Division, reflecting a wide variety of applications and sponsors. The first section summarizes progress on the Proton Storage Ring to be located between LAMPF and the LASL Pulsed Neutron Research facility, followed by a section on the gyrocon, a new type of high-power, high-efficiency radio-frequency (rf) amplifier. The third section discusses the racetrack microtron being developed jointly by AT Division and the National Bureau of Standards; the fourth section concerns the free-electron studies. The fifth section covers the radio-frequency quadrupole linear accelerator, a new concept for the acceleration of low-velocity particles; this section is followed by a section discussing heavy ion fusion accelerator development. The next section reports activities in the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory. The final section deals first with development of H - ion sources and injectors, then with accelerator instrumentation and beam dynamics

  4. Heavy ion acceleration strategies in the AGS accelerator complex -- 1994 Status report

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Benjamin, J.; Blaskiewicz, M.

    1995-01-01

    The strategies invoked to satisfy the injected beam specifications for the Brookhaven Relativistic Heavy Ion Collider (RHIC) continue to evolve, in the context of the yearly AGS fixed target heavy ion physics runs. The primary challenge is simply producing the required intensity. The acceleration flexibility available particularly in the Booster main magnet power supply and rf accelerating systems, together with variations in the charge state delivered from the Tandem van de Graaff, and accommodation by the AGS main magnet and rf systems allow the possibility for a wide range of options. The yearly physics run provides the opportunity for exploration of these options with the resulting significant evolution in the acceleration plan. This was particularly true in 1994 with strategies involving three different charge states and low and high acceleration rates employed in the Booster. The present status of this work will be presented

  5. A feasibility study of space-charge neutralized ion induction linacs: Final report

    International Nuclear Information System (INIS)

    Slutz, S.A.; Primm, P.; Renk, T.; Johnson, D.J.

    1997-03-01

    Applications for high current (> 1 kA) ion beams are increasing. They include hardening of material surfaces, transmutation of radioactive waste, cancer treatment, and possibly driving fusion reactions to create energy. The space-charge of ions limits the current that can be accelerated in a conventional ion linear accelerator (linac). Furthermore, the accelerating electric field must be kept low enough to avoid the generation and acceleration of counter-streaming electrons. These limitations have resulted in ion accelerator designs that employ long beam lines and would be expensive to build. Space-charge neutralization and magnetic insulation of the acceleration gaps could substantially reduce these two limitations, but at the expense of increasing the complexity of the beam physics. We present theory and experiments to determine the degree of charge-neutralization that can be achieved in various environments found in ion accelerators. Our results suggest that, for high current applications, space-charge neutralization could be used to improve on the conventional ion accelerator technology. There are two basic magnetic field geometries that can be used to insulate the accelerating gaps, a radial field or a cusp field. We will present studies related to both of these geometries. We shall also present numerical simulations of open-quotes multicuspclose quotes accelerator that would deliver potassium ions at 400 MeV with a total beam power of approximately 40 TW. Such an accelerator could be used to drive fusion

  6. Concept for a lead-ion accelerating facility at CERN

    International Nuclear Information System (INIS)

    Billinge, R.; Boltezar, E.; Boussard, D.; Brouzet, E.; Cappi, R.; Raad, B. de; Doble, N.; Grafstroem, P.; Haseroth, H.; Hill, C.E.; Kissler, K.H.; Knott, J.; Linnecar, T.; Nitsch, F.; Poncet, A.; Raich, U.; Rasmussen, N.; Schoenauer, H.; Sherwood, T.R.; Siegel, N.; Tallgren, U.; Tetu, P.; Warner, D.; Weiss, M.

    1990-01-01

    After the successful acceleration of deuterons, alpha particles and in more recent years of oxygen and sulphur ions, interest arose for even heavier particles. This paper describes the problems associated with heavy ions. A proposal is made for a scenario which allows the CERN accelerators to cope with ions heavier than sulphur, e.g. lead. Discussed are the different options for the injector and the necessary upgrading for the circular machines. (orig.)

  7. MEV Energy Electrostatic Accelerator Ion Beam Emittance Measurement

    OpenAIRE

    I.G. Ignat’ev; M.I. Zakharets; S.V. Kolinko; D.P. Shulha

    2014-01-01

    The testing equipment was designed, manufactured and tried out permitting measurements of total current, current profile and emittance of an ion beam extracted from the ion beam. MeV energy electrostatic accelerator ion H + beam emittance measurement results are presented.

  8. Surface negative ion production in ion sources

    International Nuclear Information System (INIS)

    Belchenko, Y.

    1993-01-01

    Negative ion sources and the mechanisms for negative ion production are reviewed. Several classes of sources with surface origin of negative ions are examined in detail: surface-plasma sources where ion production occurs on the electrode in contact with the plasma, and ''pure surface'' sources where ion production occurs due to conversion or desorption processes. Negative ion production by backscattering, impact desorption, and electron- and photo-stimulated desorption are discussed. The experimental efficiencies of intense surface negative ion production realized on electrodes contacted with hydrogen-cesium or pure hydrogen gas-discharge plasma are compared. Recent modifications of surface-plasma sources developed for accelerator and fusion applications are reviewed in detail

  9. Ion surface collisions on surfaces relevant for fusion devices

    International Nuclear Information System (INIS)

    Rasul, B.; Endstrasser, N.; Zappa, F.; Grill, V.; Scheier, P.; Mark, T.

    2006-01-01

    Full text: One of the great challenges of fusion research is the compatibility of reactor grade plasmas with plasma facing materials coating the inner walls of a fusion reactor. The question of which surface coating should be used is of particular interest for the design of ITER. The impact of energetic plasma particles leads to sputtering of wall material into the plasma. A possible solution for the coating of plasma facing walls would be the use of special carbon surfaces. Investigations of these various surfaces have been started at BESTOF ion-surface collision apparatus. Experiment beam of singly charged molecular ions of hydrocarbon molecules, i.e. C 2 H + 4 , is generated in a Nier-type electron impact ionization source at an electron energy of about 70 eV. In the first double focusing mass spectrometer the ions are mass and energy analyzed and afterwards refocused onto a surface. The secondary reaction products are monitored using a Time Of Flight mass spectrometer. The secondary ion mass spectra are recorded as a function of the collision energy for different projectile ions and different surfaces. A comparison of these spectra show for example distinct changes in the survival probability of the same projectile ion C 2 H + 4 for different surfaces. (author)

  10. Heavy-ion-linac post-accelerators

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1979-01-01

    The main features of the tandem-linac system for heavy-ion acceleration are reviewed and illustrated in terms of the technology and performance of the superconducting heavy-ion energy booster at Argonne. This technology is compared briefly with the corresponding technologies of the superconducting linac at Stony Brook and the room-temperature linac at Heidelberg. The performance possibilities for the near-term future are illustrated in terms of the proposed extension of the Argonne booster to form ATLAS

  11. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  12. Medical heavy ion accelerator proposals

    International Nuclear Information System (INIS)

    Gough, R.A.

    1985-05-01

    For several decades, accelerators designed primarily for research in nuclear and high energy physics have been adapted for biomedical research including radiotherapeutic treatment of human diseases such as pituitary disorders, cancer, and more recently, arteriovascular malformations. The particles used in these treatments include pions, protons and heavier ions such as carbon, neon, silicon and argon. Maximum beam energies must be available to penetrate into an equivalent of about 30 cm of water, requiring treatment beams of 250 to 1000 MeV/nucleon. Certain special treatments of superficial melanoma, however, require that beam energies as low as 70 MeV/nucleon also be available. Intensities must be adequate to complete a 100 rad treatment fraction in about 1 minute. For most heavy ion treatments, this corresponds to 10 7 -10 9 ions/second at the patient. Because this research is best conducted in a dedicated, hospital-based facility, and because of the clinical need for ultra-high reliability, the construction of new and dedicated facilities has been proposed. Heavy ion accelerators can provide a variety of ions and energies, permitting treatment plans that exploit the properties of the ion best suited to each individual treatment, and that employ radioactive beams (such as 11 C and 19 Ne) to precisely confirm the dose localization. The favored technical approach in these proposals utilizes a conventional, strong-focusing synchrotron capable of fast switching between ions and energies, and servicing multiple treatment rooms. Specialized techniques for shaping the dose to conform to irregularly-shaped target volumes, while simultaneously sparing surrounding, healthy tissue and critical structures, are employed in each treatment room, together with the sophisticated dosimetry necessary for verification, monitoring, and patient safety. 3 refs., 8 figs

  13. Ion bombardment simulation: a review related to fusion radiation damage

    International Nuclear Information System (INIS)

    Brimhall, J.L.

    1975-01-01

    Prime emphasis is given to reviewing the ion bombardment data on the refractory metals molybdenum, niobium and vanadium which have been proposed for use in advanced fusion devices. The temperature and dose dependence of the void parameters are correlated among these metals. The effect of helium and hydrogen gas on the void parameters is also included. The similarities and differences of the response of these materials to high dose, high temperature radiation damage are evaluated. Comparisons are made with results obtained from stainless steel and nickel base alloys. The ion bombardment data is then compared and correlated, as far as possible, with existing neutron data on the refractory metals. The theoretically calculated damage state produced by neutrons and ions is also briefly discussed and compared to experimental data wherever possible. The advantages and limitations of ion simulation in relation to fusion radiation damage are finally summarized

  14. Status of light ion inertial fusion research at NRL

    International Nuclear Information System (INIS)

    Cooperstein, G.; Barker, R.J.; Colombant, D.G.; Goldstein, S.A.; Meger, R.A.; Mosher, D.; Neri, J.M.; Ottinger, P.F.

    1984-01-01

    This chapter reports on the use of high-brightness proton beams, extracted from axial pinch-reflex diodes mounted on the Naval Research Laboratory (NRL) Gamble II generator, to study light ion inertial fusion. Topics covered include the modular approach, ion beam brightness studies, light-ion beam transport, final focusing, the single diode approach, the inductive storage approach, an energy loss experiment, and future plans. Analysis of a modular inertial confinement fusion (ICF) system using axial pinch-reflex diodes shows that an operational window for transport of light-ion species exists. A proof-of-principle experiment for the required final focusing cell was conducted on Gamble II. Preliminary experiments using vacuum inductive storage and plasma opening switches have demonstrated factorof-three pulse compressions, with corresponding power and voltage multiplications for pulse durations of interest to PBFA II. The stopping power of deuterons in hot plasmas was measured in other experiments. It is demonstrated that about 40% enhancement in stopping power over that in cold targets when the deuteron beam is focused on the target to about .25 MA/cm 2 . Includes 6 diagrams

  15. Experimental Study of an ion cyclon resonance accelerator presentation of his thesis

    CERN Document Server

    Ramsell, C T

    1999-01-01

    The Ion Cyclotron Resonance Accelerator (ICRA) uses the operating principles of cyclotrons and gyrotrons. The novel geometry of the ICRA allows an ion beam to drift axially while being accelerated in the azimuthal direction. Previous work on electron cyclotron resonance acceleration used waveguide modes to accelerate an electron beam [5]. This research extends cyclotron resonance acceleration to ions by using a high field superconducting magnet and an rf driven magnetron operating at a harmonic of the cyclotron frequency. The superconducting solenoid provides an axial magnetic field for radial confinement and an rf driven magnetron provides azimuthal electric fields for acceleration. The intent of the ICRA concept is to create an ion accelerator which is simple, compact, lightweight, and inexpensive. Furthermore, injection and extraction are inherently simple since the beam drifts through the acceleration region. However, use of this convenient geometry leads to an accelerated beam with a large energy spread....

  16. Tritium depth profiling in carbon by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Friedrich, M.; Pilz, W.; Sun, G.; Behrisch, R.; Garcia-Rosales, C.; Bekris, N.; Penzhorn, R.-D.

    2000-01-01

    Tritium depth profiling measurements by accelerator mass spectrometry have been performed at the facility installed at the Rossendorf 3 MV Tandetron. In order to achieve a uniform erosion at the target surface inside a commercial Cs ion sputtering source and to avoid edge effects, the samples were mechanically scanned and the signals were recorded only during sputtering at the centre of the sputtered area. The sputtered negative ions were mass analysed by the injection magnet of the Tandetron. Hydrogen and deuterium profiles were measured with the Faraday cup between the injection magnet and the accelerator, while the tritium was counted after the accelerator with semiconductor detectors. Depth profiles have been measured for carbon samples which had been exposed to the plasma at the first wall of the Garching fusion experiment ASDEX-Upgrade and from the European fusion experiment JET, Culham, UK

  17. Internuclear potentials from heavy ion fusion excitation functions

    International Nuclear Information System (INIS)

    Birkelund, J.R.; Huizenga, J.R.

    1977-01-01

    A discussion is given of the determination of internuclear potentials from heavy ion fusion excitation functions. It is found that this calculation is complicated by the difficulties involved in a calculation of the frictional energy loss and by the problem of measurement of excitation function with sufficient accuracy to closely define the barrier radius. Any quantitative comparisons made between the nuclear potential derived from fusion data and theoretical nuclear potentials depend upon the solutions of the above problems. 15 references

  18. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    Science.gov (United States)

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  19. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Junichi, E-mail: hiratsuka.junichi@jaea.go.jp; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Miyamoto, Kenji [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)

    2016-02-15

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  20. Mesh Refinement for Particle-In-Cell Plasma Simulations: Applications to - and benefits for - Heavy-Ion-Fusion

    International Nuclear Information System (INIS)

    Vay, J.-L.; Colella, P.; McCorquodale, P.; Van Straalen, B.; Friedman, A.; Grote, D.P.

    2002-01-01

    The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and simulation of the power plant as a whole, or even of the driver, is not yet possible. Despite the rapid progress in computer power, past and anticipated, one must consider the use of the most advanced numerical techniques, if we are to reach our goal expeditiously. One of the difficulties of these simulations resides in the disparity of scales, in time and in space, which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g., fluid dynamics simulations) is the mesh refinement technique. They discuss the challenges posed by the implementation of this technique into plasma simulations (due to the presence of particles and electromagnetic waves). They will present the prospects for and projected benefits of its application to heavy ion fusion. In particular to the simulation of the ion source and the final beam propagation in the chamber. A collaboration project is under way at LBNL between the Applied Numerical Algorithms Group (ANAG) and the HIF group to couple the Adaptive Mesh Refinement (AMR) library (CHOMBO) developed by the ANAG group to the Particle-In-Cell accelerator code WARP developed by the HIF-VNL. They describe their progress and present their initial findings

  1. Light Ion Biomedical Research Accelerator LIBRA

    International Nuclear Information System (INIS)

    Gough, R.A.

    1987-01-01

    LIBRA is a concept to place a light-ion, charged-particle facility in a hospital environment, and to dedicate it to applications in biology and medicine. There are two aspects of the program envisaged for LIBRA: a basic research effort coupled with a program in clinical applications of accelerated charged particles. The operational environment to be provided for LIBRA is one in which both of these components can coexist and flourish, and one that will promote the transfer of technology and knowledge from one to the other. In order to further investigate the prospects for a Light Ion Biomedical Research Accelerator (LIBRA), discussions are underway with the Merritt Peralta Medical Center MPMC) in Oakland CA, and the University of California at San Francisco (UCSF). In this paper, a brief discussion of the technical requirements for such a facility is given, together with an outline of the accelerator technology required. While still in a preliminary stage, it is possible nevertheless to develop an adequate working description of the type, size, performance and cost of the accelerator facilities required to meet the preliminary goals for LIBRA

  2. The Penning fusion experiment-ions

    International Nuclear Information System (INIS)

    Schauer, M. M.; Umstadter, K. R.; Barnes, D. C.

    1999-01-01

    The Penning fusion experiment (PFX) studies the feasibility of using a Penning trap as a fusion confinement device. Such use would require spatial and/or temporal compression of the plasma to overcome the Brillouin density limit imposed by the nonneutrality of Penning trap plasmas. In an earlier experiment, we achieved enhanced plasma density at the center of a pure, electron plasma confined in a hyperbolic, Penning trap by inducing spherically convergent flow in a nonthermal plasma. The goal of this work is to induce similar flow in a positive ion plasma confined in the virtual cathode provided by a spherical, uniform density electron plasma. This approach promises the greatest flexibility in operating with multi-species plasmas (e.g. D + /T + ) or implementing temporal compression schemes such as the Periodically Oscillating Plasma Sphere of Nebel and Barnes. Here, we report on our work to produce and diagnose the necessary electron plasma

  3. Apparatus for neutralization of accelerated ions

    International Nuclear Information System (INIS)

    Fink, J.H.; Frank, A.M.

    1979-01-01

    Apparatus is described for neutralization of a beam of accelerated ions, such as hydrogen negative ions (H - ), using relatively efficient strip diode lasers which emit monochromatically at an appropriate wavelength (lambda = 8000 A for H - ions) to strip the excess electrons by photodetachment. A cavity, formed by two or more reflectors spaced apart, causes the laser beams to undergo multiple reflections within the cavity, thus increasing the efficiency and reducing the illumination required to obtain an acceptable percentage (approx. 85%) of neutralization

  4. Recent developments in heavy-ion fusion reactions around the Coulomb barrier

    Directory of Open Access Journals (Sweden)

    Hagino K.

    2016-01-01

    Full Text Available The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we discuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as 12C+12C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion reactions of 58Ni+58Ni and 40Ca+58Ni systems, and discuss the role of anharmonicity of the low-lying vibrational motions.

  5. Recommendation for a injector-cyclotron and ion sources for the acceleration of heavy ions and polarized protons and deuterons

    International Nuclear Information System (INIS)

    Botha, A.H.; Cronje, P.M.; Du Toit, Z.B.; Nel, W.A.G.; Celliers, P.J.

    1984-01-01

    It was decided to accelerate both heavy and light ions with the open-sector cyclotron. The injector SPS1, was used for light ions and SPS2 for heavy ions. Provision was also made for the acceleration of polarized neutrons. To enable this, the injector must have an axial injection system. The working of a source of polarized ions and inflectors for an axial injection system is discussed. The limitations of the open-sector cyclotron on the acceleration of heavy ions are also dealt with. The following acceleration/ion source combinations are discussed: i) The open-sector cyclotron and a k=40 injector cyclotron with a Penning ion source, and a stripper between the injector and the open-sector cyclotron and also a source of polarized protons and deuterons; ii) The acceleration/ion source combination with the addition of electron beam ion sources; iii) The open-sector cyclotron and a k=11 injector cyclotron with a electron beam ion source and a source of polarized protons and deuterons

  6. Three dimensional PIC simulation of heavy ion fusion beams: Recent improvements to and applications of WARP

    International Nuclear Information System (INIS)

    Grote, D.P.; Friedman, A.; Haber, I.

    1993-01-01

    The multi-dimensional particle simulation code WARP is used to study the transport and acceleration of space-charge dominated ion beams in present-day and near-term experiments, and in fusion drivers. The algorithms employed in the 3d package and a number of applications have recently been described. In this paper the authors review the general features and major applications of the code. They then present recent developments in both code capabilities and applications. Most notable is modeling of the planned ESQ injector for ILSE, which uses the code's newest features, including subgrid-scale placement of internal conductor boundaries

  7. Acceleration of cluster and molecular ions by TIARA 3 MV tandem accelerator

    CERN Document Server

    Saitoh, Y; Tajima, S

    2000-01-01

    We succeeded in accelerating molecular and cluster ions (B sub 2 sub - sub 4 , C sub 2 sub - sub 1 sub 0 , O sub 2 , Al sub 2 sub - sub 4 , Si sub 2 sub - sub 4 , Cu sub 2 sub - sub 3 , Au sub 2 sub - sub 3 , LiF, and AlO) to MeV energies with high-intensity beam currents by means of a 3 MV tandem accelerator in the TIARA facility. These cluster ions were generated by a cesium sputter-type negative ion source. We tested three types of carbon sputter cathodes in which graphite powder was compressed with different pressures. The pressure difference affected the generating ratio of clusters generated to single atom ions extracted from the source and it appeared that the high-density cathode was suitable. We also investigated the optimum gas pressure for charge exchange in the tandem high-voltage terminal. Clusters of larger size tend to require lower pressure than do smaller ones. In addition, we were able to obtain doubly charged AlO molecular ions. (authors)

  8. Pulsed vapor source for use in ion sources for heavy-ion accelerators

    International Nuclear Information System (INIS)

    Shiloh, J.; Chupp, W.; Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.

    1980-01-01

    A pulsed cesium vapor source for use in ion sources for high-current heavy-ion accelerators is described. The source employs a vacuum spark in Cs and its properties are measured with a hot-filament Cs detector

  9. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    International Nuclear Information System (INIS)

    Busold, S.; Almomani, A.; Bagnoud, V.; Barth, W.; Bedacht, S.; Blažević, A.; Boine-Frankenheim, O.

    2014-01-01

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies

  10. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Busold, S., E-mail: s.busold@gsi.de [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Almomani, A. [Institut für angewandte Physik, Johann-Wolfgang-Goethe-Universität Frankfurt, Max von Laue Straße 1, D-60438 Frankfurt (Germany); Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Barth, W. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Bedacht, S. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Blažević, A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Boine-Frankenheim, O. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schloßgartenstraße 8, D-64289 Darmstadt (Germany); and others

    2014-03-11

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies.

  11. The fusion of heavy ions in an interaction potential model

    International Nuclear Information System (INIS)

    Zipper, W.

    1980-01-01

    The paper contains the problems connected with fusion processes in heavy ions collision. Results of experimental fusion data for reactions: 9 Be + 12 C, 6 Li + 28 Si, 9 Be + 28 Si, 12 C + 28 Si, 12 C + 16 O and 16 O + 16 O are presented. Comparison of measured fusion cross sections with predictions of the fusion potential model have been made. The validity of this model for both light systems, like 9 Be + 12 C and heavy systems, like 35 Cl + 62 Ni, have been discussed. In conclusion, it should be stated that fusion cross sections could be correctly predicted by the potential model with a potential describing the elastic scattering data. (author)

  12. Sheath structure in negative ion sources for fusion (invited)

    International Nuclear Information System (INIS)

    McAdams, R.; King, D. B.; Surrey, E.; Holmes, A. J. T.

    2012-01-01

    In fusion negative ion sources, the negative ions are formed on the caesiated plasma grid predominantly by hydrogen atoms from the plasma. The space charge of the negative ions leaving the wall is not fully compensated by incoming positive ions and at high enough emission a virtual cathode is formed. This virtual cathode limits the flux of negative ions transported across the sheath to the plasma. A 1D collisionless model of the sheath is presented taking into account the virtual cathode. The model will be applied to examples of the ion source operation. Extension of the model to the bulk plasma shows good agreement with experimental data. A possible role for fast ions is discussed.

  13. A review of ion sources for medical accelerators (invited)a)

    Science.gov (United States)

    Muramatsu, M.; Kitagawa, A.

    2012-02-01

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespread since the 1990s. The energy and intensity are typically over 200 MeV and several 1010 pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV/u. Although the beam intensity depends on the irradiation method, it is typically several 108 or 109 pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of accelerators are under

  14. Diagnostics for studies of novel laser ion acceleration mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Senje, Lovisa; Aurand, Bastian; Wahlström, Claes-Göran [Department of Physics, Lund University, P. O. Box 118, S-221 00 Lund (Sweden); Yeung, Mark; Kuschel, Stephan; Rödel, Christian [Helmholtz-Institut Jena, D-07743 Jena (Germany); Wagner, Florian; Roth, Markus [Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Li, Kun; Neumayer, Paul [ExtreMe Matter Institut, D-64291 Darmstadt (Germany); Dromey, Brendan; Jung, Daniel [Department of Physics and Astronomy, Queen' s University, Belfast BT7 1NN (United Kingdom); Bagnoud, Vincent [Helmholtz-Institut Jena, D-07743 Jena (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Zepf, Matthew [Helmholtz-Institut Jena, D-07743 Jena (Germany); Department of Physics and Astronomy, Queen' s University, Belfast BT7 1NN (United Kingdom); Kuehl, Thomas [ExtreMe Matter Institut, D-64291 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Universität Mainz, D-55099 Mainz (Germany)

    2014-11-15

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.

  15. Diagnostics for studies of novel laser ion acceleration mechanisms

    International Nuclear Information System (INIS)

    Senje, Lovisa; Aurand, Bastian; Wahlström, Claes-Göran; Yeung, Mark; Kuschel, Stephan; Rödel, Christian; Wagner, Florian; Roth, Markus; Li, Kun; Neumayer, Paul; Dromey, Brendan; Jung, Daniel; Bagnoud, Vincent; Zepf, Matthew; Kuehl, Thomas

    2014-01-01

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution

  16. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    Directory of Open Access Journals (Sweden)

    Enrique Henestroza

    2004-08-01

    Full Text Available In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final-focus magnet system through the fusion chamber to hit spots on the target with radii of about 2 mm. For the heavy-ion-fusion power-plant scenarios presently favored in the U.S., a substantial fraction of the ion-beam space charge must be neutralized during this final transport. The most effective neutralization technique found in numerical simulations is to pass each beam through a low-density plasma after the final focusing. To provide quantitative comparisons of these theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the neutralized-transport experiment. The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam, while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed quadrupoles, permits the study of magnet tuning, as well as the effects of phase-space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  17. The wondrous world of transport and acceleration of intense ion beams

    International Nuclear Information System (INIS)

    Siebenlist, F.

    1987-01-01

    A theoretical and experimental study of the transport, bunching and acceleration of intense ion beams in periodic focusing channels is described. The aim is to show the feasibility of accelerating high current ion beams with a Multiple Electrostatic Quadrupole Array Linear ACcelerator (MEQALAC). 83 refs.; 51 figs.; 3 tabs

  18. Lithium ion beam driven hohlraums for PBFA II

    International Nuclear Information System (INIS)

    Dukart, R.J.

    1994-01-01

    In our light ion inertial confinement fusion (ICF) program, fusion capsules are driven with an intense x-ray radiation field produced when an intense beam of ions penetrates a radiation case and deposits energy in a foam x-ray conversion region. A first step in the program is to generate and measure these intense fields on the Particle Beam Fusion Accelerator II (PBFA II). Our goal is to generate a 100-eV radiation temperature in lithium ion beam driven hohlraums, the radiation environment which will provide the initial drive temperature for ion beam driven implosion systems designed to achieve high gain. In this paper, we describe the design of such hohlraum targets and their predicted performance on PBFA II as we provide increasing ion beam intensities

  19. High current vacuum arc ion source for heavy ion fusion

    International Nuclear Information System (INIS)

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-01-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in ∼0.5 A current beams with ∼20 micros pulse widths and ∼10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce ∼0.5 A, ∼60 keV Gd (A∼158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported

  20. Review of ion accelerators

    International Nuclear Information System (INIS)

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here

  1. Characteristics of bipolar-pulse generator for intense pulsed heavy ion beam acceleration

    International Nuclear Information System (INIS)

    Igawa, K.; Tomita, T.; Kitamura, I.; Ito, H.; Masugata, K.

    2006-01-01

    Intense pulsed heavy ion beams are expected to be applied to the implantation technology for semiconductor materials. In the application it is very important to purify the ion beam. In order to improve the purity of an intense pulsed ion beams we have proposed a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)'. A prototype of the experimental system has been developed to perform proof of principle experiments of the accelerator. A bipolar pulse generator has been designed for the generation of the pulsed ion beam with the high purity via the bipolar pulse acceleration and the electrical characteristics of the generator were evaluated. The production of the bipolar pulse has been confirmed experimentally. (author)

  2. Use of molecular ion beams from a tandem accelerator

    International Nuclear Information System (INIS)

    Faibis, A.; Goldring, G.; Hass, M.; Kaim, R.; Plesser, I.; Vager, Z.

    1981-01-01

    A large variety of positive molecular ion beams can be produced by gaseous charge exchange in the terminal of a tandem accelerator. After acceleration the molecules are usually dissociated by passage through a thin foil. Measurements of the break-up products provide a way to study both the structure of incident ions and the effects of electronic potentials on the internuclear interaction inside the foil. Beam intensities of a few picoamperes are quite adequate for these measurements, and the relatively high energy obtained by use of a tandem accelerator has the advantage of minimizing multiple scattering effects in the foil. The main difficulty in using the molecular beams lies in the large magnetic rigidity of singly-charged heavy molecular ions

  3. Electromagnetic computer simulations of collective ion acceleration by a relativistic electron beam

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.R.

    1988-01-01

    A 2.5 electromagnetic particle-in-cell computer code is used to study the collective ion acceleration when a relativistic electron beam is injected into a drift tube partially filled with cold neutral plasma. The simulations of this system reveals that the ions are subject to electrostatic acceleration by an electrostatic potential that forms behind the head of the beam. This electrostatic potential develops soon after the beam is injected into the drift tube, drifts with the beam, and eventually settles to a fixed position. At later times, this electrostatic potential becomes a virtual cathode. When the permanent position of the electrostatic potential is at the edge of the plasma or further up, then ions are accelerated forward and a unidirectional ion flow is obtained otherwise a bidirectional ion flow occurs. The ions that achieve higher energy are those which drift with the negative potential. When the plasma density is varied, the simulations show that optimum acceleration occurs when the density ratio between the beam (n b ) and the plasma (n o ) is unity. Simulations were carried out by changing the ion mass. The results of these simulations corroborate the hypothesis that the ion acceleration mechanism is purely electrostatic, so that the ion acceleration depends inversely on the charge particle mass. The simulations also show that the ion maximum energy increased logarithmically with the electron beam energy and proportional with the beam current

  4. The SPS as accelerator of Pb$^{82+}$ ions

    CERN Document Server

    Faugier, A; Bailey, R; Blanchard, R R; Bohl, T; Brouzet, E; Burkhardt, H; Collier, Paul; Cornelis, Karel; de Rijk, G; Ferioli, F; Hilaire, A; Lamont, M; Linnecar, Trevor Paul R; Jonker, M; Niquille, C; Roy, G; Schmickler, Hermann

    1996-01-01

    In 1994 the CERN SPS was used for the first time to accelerate fully stripped ions of the Pb208 isotope from the equivalent proton momentum of 13 GeV/c to 400 GeV/c. In the CERN PS, which was used as injector, the lead was accelerated as Pb53+ ions and then fully stripped in the transfer line from PS to SPS. The radio frequency swing which is needed in order to keep the synchronism during acceleration is too big to have the SPS cavities deliver enough voltage for all frequencies. For that reason a new technique of fixed frequency acceleration was used. With this technique up to 70% of the injected beam could be captured and accelerated up to the extraction energy, the equivalent of 2.2 1010 charges. The beam was extracted over a 5 sec. long spill and was then delivered to different experiments at the same time.

  5. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion acceleration

    International Nuclear Information System (INIS)

    Sahai, Aakash A.

    2014-01-01

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a 0 >1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary

  6. Heavy-ion research at the tandem and superconducting linac accelerators

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The heavy-ion research program at the Argonne Physics Division is principally aimed at the study of nuclear structure and its manifestation in heavy-ion induced nuclear reactions. In order to extract information on nuclear structure, measurements with high precision often need to be performed. Such measurements are now carried out at the tandem-linac accelerator over a wide energy range. The investigation of high-spin states near the yrast line has provided much new information on the behavior of nuclei at high angular momentum. Argonne work has concentrated on nuclei where high-spin isomers, the so-called yrast traps, are prevalent. The resonance effects observed previously in the 24 Mg( 16 O, 12 C) 28 Si reactions have been further explored through both additional measurements and a new quantitative method of analysis. The measurements were extended in energy and angular range and to various exit channels as well as similar systems. Several measurements were performed to investigate the reaction mechanisms in heavy-ion induced reactions and to map out the distribution of reaction strength as a function of energy and target-projectile masses energy regions previously not accessible. The behavior of the quasi- and deep-inelastic reaction cross sections was studied as a function of energy for medium-heavy systems, the production of inclusive alpha-particle yields for 16 O beams at energies E/A greater than or equal to 5 MeV/nucleon, and excitation functions, mass and kinetic energy distributions for heavy-ion induced fusion-fission reactions

  7. Heavy ion accelerator GANIL

    International Nuclear Information System (INIS)

    1975-04-01

    This article presents GANIL, a large national heavy ion accelerator. The broad problems of nuclear physics, atomic physics, astrophysics and physics of condensed media which can be approached and studied with this machine are discussed first, after which the final construction project is described. The project comprises a circular injector, a separated sector cyclotron up beam stripper, and a second separated cyclotron downstream [fr

  8. Phase-of-flight method for setting the accelerating fields in the ion linear accelerator

    International Nuclear Information System (INIS)

    Dvortsov, S.V.; Lomize, L.G.

    1983-01-01

    For setting amplitudes and phases of accelerating fields in multiresonator ion accelerators presently Δt-procedure is used. The determination and setting of two unknown parameters of RF-field (amplitude and phase) in n-resonator is made according to the two increments of particle time-of-flight, measured experimentally: according to the change of the particle time-of-flight Δt 1 in the n-resonator, during the field switching in the resonator, and according to the change of Δt 2 of the time-of-flight in (n+1) resonator without RF-field with the switching of accelerating field in the n-resonator. When approaching the accelerator exit the particle energy increases, relative energy increment decreases and the accuracy of setting decreases. To enchance the accuracy of accelerating fields setting in a linear ion accelerator a phase-of-flight method is developed, in which for the setting of accelerating fields the measured time-of-flight increment Δt only in one resonator is used (the one in which the change of amplitude and phase is performed). Results of simulation of point bunch motion in the IYaI AN USSR linear accelerator are presented

  9. The MIT HEDP Accelerator Facility for education and advanced diagnostics development for OMEGA, Z and the NIF

    Science.gov (United States)

    Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Han, H. W.; Kabadi, N.; Lahmann, B.; Orozco, D.; Rojas Herrera, J.; Sio, H.; Sutcliffe, G.; Frenje, J.; Li, C. K.; Séguin, F. H.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2015-11-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, a D-T neutron source and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The ion accelerator generates D-D and D-3He fusion products through acceleration of D ions onto a 3He-doped Erbium-Deuteride target. Fusion reaction rates around 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. The D-T neutron source generates up to 6 × 108 neutrons/s. The two x-ray generators produce spectra with peak energies of 35 keV and 225 keV and maximum dose rates of 0.5 Gy/min and 12 Gy/min, respectively. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.

  10. Inertial fusion with hypervelocity impact

    International Nuclear Information System (INIS)

    Olariu, S.

    1998-01-01

    The physics of the compression and ignition processes in inertial fusion is to a certain extent independent of the nature of the incident energy pulse. The present strategy in the field of inertial fusion is to study several alternatives of deposition of the incident energy, and, at the same time, of conducting studies with the aid of available incident laser pulses. In a future reactor based on inertial fusion, the laser beams may be replaced by ion beams, which have a better energy efficiency. The main projects in the field of inertial fusion are the National Ignition Facility (NIF) in USA, Laser Megajoule (LMJ) in France, Gekko XII in Japan and Iskra V in Russia. NIF will be constructed at Lawrence Livermore National Laboratory, in California. LMJ will be constructed near Bordeaux. In the conventional approach to inertial confinement fusion, both the high-density fuel mass and the hot central spot are supposed to be produced by the deposition of the driver energy in the outer layers of the fuel capsule. Alternatively, the driver energy could be used only to produce the radial compression of the fuel capsule to high densities but relatively low temperatures, while the ignition of fusion reactions in the compressed capsule should be effected by a synchronized hypervelocity impact. Using this arrangement, it was supposed that a 54 μm projectile is incident with a velocity of 3 x 10 6 m s -1 upon a large-yield deuterium-tritium target at rest. The collision of the incident projectile and of the large-yield target takes place inside a high-Z cavity. A laser or heavy-ion pulse is converted at the walls of the cavity into X-rays, which compresses the incident projectile and the large-yield target in high-density states. The laser pulse and the movement of the incident projectile are synchronized such that the collision should take place when the densities are the largest. The collision converts the kinetic energy of the incident projectile into thermal energy, the

  11. Notes of a symposium on heavy ion fusion, held at the Cosener's House, Abingdon on 16 June 1978

    International Nuclear Information System (INIS)

    Gray, D.E.

    1979-01-01

    This Symposium on Heavy Ion Fusion was held to inform the relevant University Departments and other interested organisations of the developments and prospects in this field, and to encourage them to take up problems relevant to their research fields. Three papers were presented, on 'The Heavy Ion Fusion Concept', 'Target Design for Heavy Ion Fusion', and 'Problem Areas in Heavy Ion Fusion', with open discussion after each presentation. The meeting ended with a final period of discussion, several University groups expressing their interest in pursuing some of the problems outlined. (author)

  12. Review of Heavy-ion Induced Desorption Studies for Particle Accelerators

    CERN Document Server

    Mahner, E

    2008-01-01

    During high-intensity heavy-ion operation of several particle accelerators worldwide, large dynamic pressure rises of orders of magnitude were caused by lost beam ions that impacted under grazing angle onto the vacuum chamber walls. This ion-induced desorption, observed, for example, at CERN, GSI, and BNL, can seriously limit the ion intensity, luminosity, and beam lifetime of the accelerator. For the heavyion program at CERN's Large Hadron Collider collisions between beams of fully stripped lead (208Pb82+) ions with a beam energy of 2.76 TeV/u and a nominal luminosity of 10**27 cm**-2 s**-1 are foreseen. The GSI future project FAIR (Facility for Antiproton and Ion Research) aims at a beam intensity of 10**12 uranium (238U28+) ions per second to be extracted from the synchrotron SIS18. Over the past years an experimental effort has been made to study the observed dynamic vacuum degradations, which are important to understand and overcome for present and future particle accelerators. The paper reviews the resu...

  13. 6 MV Folded Tandem Ion Accelerator facility at BARC

    International Nuclear Information System (INIS)

    Gupta, S.K.

    2010-01-01

    The 6 MV Folded Tandem Ion Accelerator (FOTIA) facility is operational round the clock and accelerated beams of both light and heavy ions are being used extensively by various divisions of BARC, Universities, lIT Bombay and other R and D labs across the country. The FOTIA is an upgraded version of the old 5.5 MV single stage Van-de-Graaff accelerator (1962-1992). Since its commissioning in the year 2000, the poor beam transmission through the 180 deg folding magnet was a matter of concern. A systematic study for beam transmission through the accelerator was carried out and progressive modifications in folding magnet chamber, foil stripper holder and improvement in average vacuum level through the accelerator have resulted in large improvement of beam transmission leading to up to 2.0 micro-amp analyzed proton beams on target. Now the utilization of the beams from the accelerator has increased many folds for basic and applied research in the fields of atomic and nuclear physics, material science and radiation biology etc. Few new beam lines after the indigenously developed 5-port switching magnet are added and the experimental setup for PIXE, PIGE, External PIXE, 4 neutron detector, Proton Induced Positron Annihilation Spectroscopy (PIPAS) setup and the general purpose scattering chamber etc have been commissioned in the beam hall. The same team has developed a Low Energy Accelerator Facility (LEAF) which delivers negative ions of light and heavy ions for application in implantation, irradiation damage studies in semiconductor devices and testing of new beam line components being developed for Low Energy High Intensity Proton Accelerator (LEHIPA) programme at BARC. The LEAF has been developed as stand alone facility and can deliver beam quickly with minimum intervention of the operator. Few more features are being planned to deliver uniform scanned beams on large targets. (author)

  14. The Role of Ion Selectivity of the Fusion Pore on Transmission and the Exocytosis of Neurotransmitters and Hormones

    Science.gov (United States)

    Delacruz, Joannalyn Bongar

    Healthy nervous system function depends on proper transmission. Synaptic transmission occurs by the release of transmitters from vesicles that fuse to the plasma membrane of a pre-synaptic cell. Regulated release of neurotransmitters, neuropeptides, and hormones occurs by exocytosis, initiated by the formation of the fusion pore. The initial fusion pore has molecular dimensions with a diameter of 1-2 nm and a rapid lifetime on the millisecond time scale. It connects the vesicular lumen and extracellular space, serving as an important step for regulating the release of charged transmitters. Comprehending the molecular structure and biophysical properties of the fusion pore is essential for a mechanistic understanding of vesicle-plasma membrane fusion and transmitter release. Release of charged transmitter molecules such as glutamate, acetylcholine, dopamine, or noradrenaline through a narrow fusion pore requires compensation of change in charge. Transmitter release through the fusion pore is therefore an electrodiffusion process. If the fusion pore is selective for specific ions, then its selectivity will affect the rate of transmitter release via the voltage gradient that develops across the fusion pore. The elucidation of these mechanisms can lead to a better understanding of nervous system cell biology, neural and endocrine signaling, learning, memory, motor control, sensory function and integration, and in particular synaptic transmission. This investigation can advance our understanding of neurological disorders in which noradrenergic and dopaminergic exocytosis is disturbed, leading to neurological consequences of developmental disorders, epilepsy, Parkinson's disease, and other neurodegenerative diseases. Ultimately, understanding the role of selectivity in the fusion pore and its effects on exocytosis can contribute to the development of more effective therapies. This study investigates the selectivity of the fusion pore by observing the effects of ion

  15. Important atomic physics issues for ion beam fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1985-01-01

    This paper suggests several current atomic physics questions important to ion beam fusion. Among the topics discussed are beam transport, beam-target interaction, and reactor design. The major part of the report is discussion concerning areas of research necessary to better understand beam-target interactions

  16. Concept for high-charge-state ion induction accelerators

    International Nuclear Information System (INIS)

    Logan, B.G.; Perry, M.D.; Caporaso, G.J.

    1996-01-01

    This work describes a particular concept for ion induction linac accelerators using high-charge-state ions produced by an intense, short pulse laser, and compares the costs of a modular driver system producing 6.5 MJ for a variety of ion masses and charge states using a simple but consistent cost model

  17. Accelerated ion beam research at ATOMKI

    International Nuclear Information System (INIS)

    Kiss, A.Z.

    2009-01-01

    The paper summarizes the studies on accelerated ion beams at ATOMKI and their technical background, their use from chemical analysis to biological, medical, geological, archaeological applications, their advance from material science to micromachining. (TRA)

  18. Progress in pulsed power fusion

    Energy Technology Data Exchange (ETDEWEB)

    Quintenz, J P; Adams, R G; Bailey, J E [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    Pulsed power offers an efficient, high energy, economical source of x-rays for inertial confinement fusion (ICF) research. Two main approaches to ICF driven with pulsed power accelerators are pursued: intense light ion beams and z-pinches. Recent progress in each approach and plans for future development is described. (author). 2 figs., 10 refs.

  19. Progress in pulsed power fusion

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Adams, R.G.; Bailey, J.E.

    1996-01-01

    Pulsed power offers an efficient, high energy, economical source of x-rays for inertial confinement fusion (ICF) research. Two main approaches to ICF driven with pulsed power accelerators are pursued: intense light ion beams and z-pinches. Recent progress in each approach and plans for future development is described. (author). 2 figs., 10 refs

  20. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard X-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona? This problem is discussed.