WorldWideScience

Sample records for ion collisions eos-sensitive

  1. Heavy ion reaction measurements with the EOS TPC (looking for central collisions with missing energy)

    International Nuclear Information System (INIS)

    Wieman, H.H.

    1994-05-01

    The EOS TPC was constructed for complete event measurement of heavy ion collisions at the Bevalac. We report here on the TPC design and some preliminary measurements of conserved event quantities such as total invariant mass, total momentum, total A and Z

  2. Hot QCD equations of state and relativistic heavy ion collisions

    Science.gov (United States)

    Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.

    2007-11-01

    We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.

  3. Directed Flow in Heavy-Ion Collisions and Its Implications for Astrophysics

    Directory of Open Access Journals (Sweden)

    Yuri B. Ivanov

    2017-11-01

    Full Text Available Analysis of directed flow ( v 1 of protons, antiprotons and pions in heavy-ion collisions is performed in the range of collision energies s N N = 2.7–39 GeV. Simulations have been done within a three-fluid model employing a purely hadronic equation of state (EoS and two versions of the EoS with deconfinement transitions: a first-order phase transition and a smooth crossover transition. The crossover EoS is unambiguously preferable for the description of experimental data at lower collision energies s N N ≲ 20 Gev. However, at higher collision energies s N N ≳ 20 Gev. the purely hadronic EoS again becomes advantageous. This indicates that the deconfinement EoS in the quark-gluon sector should be stiffer at high baryon densities than those used in the calculation. The latter finding is in agreement with that discussed in astrophysics in connection with existence of hybrid stars with masses up to about two solar masses.

  4. ASY-EOS experiment at GSI

    Directory of Open Access Journals (Sweden)

    Kezzar K.

    2012-07-01

    Full Text Available The elliptic-flow ratio of neutrons with respect to protons in reactions of neutron rich Heavy-Ion at intermediate energies has been recently proposed as an observable sensitive to the strength of the symmetry term in the nuclear equation of state (EOS at supra-saturation densities. The recent results obtained from the existing FOPI/LAND data for 197Au+197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model allowed a first estimate of the symmetry term of the EOS but suffer from a considerable statistical uncertainty. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration in May 2011.

  5. Directed flow of baryons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Ivanov, Yu.B.; Nikonov, E.G.; Toneev, V.D.; Noerenberg, W.; Shanenko, A.A.

    2000-11-01

    The collective motion of nucleons from high-energy heavy-ion collisions is analyzed within a relativistic two-fluid model for different equations of state (EoS). As function of beam energy the theoretical slope parameter F y of the differential directed flow is in good agreement with experimental data, when calculated for the QCD-consistent EoS described by the statistical mixed-phase model. Within this model, which takes the deconfinement phase transition into account, the excitation function of the directed flow left angle P x right angle turns out to be a smooth function in the whole range from SIS till SPS energies. This function is close to that for pure hadronic EoS and exhibits no minimum predicted earlier for a two-phase bag-model EoS. Attention is also called to a possible formation of nucleon antiflow (F y or∼100 A.GeV. (orig.)

  6. What can we learn from the directed flow in heavy-ion collisions at BES RHIC energies?

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yu.B. [NRC ' ' Kurchatov Institute' ' , National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Moscow Engineering Physics Institute, National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Soldatov, A.A. [Moscow Engineering Physics Institute, National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation)

    2016-01-15

    Analysis of directed flow (v{sub 1}) of protons, antiprotons and pions in heavy-ion collisions is performed in the range of collision energies √(s{sub NN}) = 2.7-39 GeV. Simulations have been done within a three-fluid model employing a purely hadronic equation of state (EoS) and two versions of the EoS with deconfinement transitions: a first-order phase transition and a smooth crossover transition. The crossover EoS is unambiguously preferable for the description of the most part of experimental data in this energy range. The directed flow indicates that the crossover deconfinement transition takes place in semicentral Au+Au collisions in a wide range of collision energies 4 EoS's in the quark-gluon sector should be stiffer at high baryon densities than those used in the calculation. The latter finding is in agreement with that discussed in astrophysics. (orig.)

  7. The discovery of nuclear compression phenomena in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schmidt, H.R.

    1991-01-01

    This article has attempted to review more than 15 years of research on shock compression phenomena, which is closely related to the goal of determining the nuclear EOS. Exciting progress has been made in this field over the last years and the fundamental physics of relativistic heavy ion-collisions has been well established. Overwhelming experimental evidence for the existence of shock compression has been extracted from the data. While early, inclusive measurements had been rather inconclusive, the advent of 4π-detectors like the GSI-LBL Plastic Ball had enabled the outstanding discovery of collective flow effects, as they were predicted by fluid-dynamical calculations. The particular case of conical Mach shock waves, anticipated for asymmetric collisions, has not been observed. What are the reasons? Surprisingly, the maximum energy of 2.1 GeV/nucleon for heavy ions at the BEVALAC had been found to be too low for Mach shock waves to occur. The small 20 Ne-nucleus is stopped in the heavy Au target. A Mach cone, however, if it had developed in the early stage of the collision will be wiped out by thermal motion in the process of slowing the projectile down to rest. A comparison of the data with models hints towards a rather hard EOS, although a soft one cannot be excluded definitively. A quantitative extraction is aggravated by a number in-medium and final-state effects which influence the calculated observables in a similar fashion as different choices of an EOS. Thus, as of now, the precise knowledge of the EOS of hot and dense matter is still an open question and needs further investigation. (orig.)

  8. Ion-ion collisions

    International Nuclear Information System (INIS)

    Salzborn, Erhard; Melchert, Frank

    2000-01-01

    Collisions between ions belong to the elementary processes occurring in all types of plasmas. In this article we give a short overview about collisions involving one-electron systems. For collisions involving multiply-charged ions we limit the discussion to one specific quasi-one-electron system. (author)

  9. Relativistic nuclear collisions from the EOS experiment at the Bevalac: collective observables and multifragmentation

    International Nuclear Information System (INIS)

    Insolia, A.

    1996-01-01

    The EOS Collaborations has completed an exclusive study of relativistic heavy ion collisions at the Bevalac using a variety of projectile, target and beam energy combinations. We report here results on directed sidewards flow in Au+Au between 0.25 AGeV and 1.2 AGeV, using a standard in-plane transverse momentum analysis. We also report on projectile fragmentation of Au in C at 1 AGeV. An analysis of fluctuations and critical exponents for small systems seems to support the idea that the multifragmentation regime is associated with a liquid gas phase transition in nuclear matter. (authors)

  10. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mehtar-Tani, Yacine [Institute of Nuclear Theory, University of Washington,Seattle, WA 98195-1550 (United States); Tywoniuk, Konrad [Theoretical Physics Department, CERN,1211 Geneva 23 (Switzerland)

    2017-04-21

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the “soft drop declustering” procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  11. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    CERN Document Server

    Mehtar-Tani, Yacine

    2017-04-21

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  12. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    Science.gov (United States)

    Mehtar-Tani, Yacine; Tywoniuk, Konrad

    2017-04-01

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  13. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    International Nuclear Information System (INIS)

    Mehtar-Tani, Yacine; Tywoniuk, Konrad

    2017-01-01

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the “soft drop declustering” procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  14. Hot super-dense compact object with particular EoS

    Science.gov (United States)

    Tito, E. P.; Pavlov, V. I.

    2018-03-01

    We show the possibility of existence of a self-gravitating spherically-symmetric equilibrium configuration for a neutral matter with neutron-like density, small mass M ≪ M_{⊙}, and small radius R ≪ R_{⊙}. We incorporate the effects of both the special and general theories of relativity. Such object may be formed in a cosmic cataclysm, perhaps an exotic one. Since the base equations of hydrostatic equilibrium are completed by the equation of state (EoS) for the matter of the object, we offer a novel, interpolating experimental data from high-energy physics, EoS which permits the existence of such compact system of finite radius. This EoS model possesses a critical state characterized by density ρc and temperature Tc. For such an object, we derive a radial distribution for the super-dense matter in "liquid" phase using Tolman-Oppenheimer-Volkoff equations for hydrostatic equilibrium. We demonstrate that a stable configuration is indeed possible (only) for temperatures smaller than the critical one. We derive the mass-radius relation (adjusted for relativistic corrections) for such small (M ≪ M_{⊙}) super-dense compact objects. The results are within the constraints established by both heavy-ion collision experiments and theoretical studies of neutron-rich matter.

  15. Flow and spectra for light fragments from Au+Au collisions in the EOS TPC

    International Nuclear Information System (INIS)

    Lisa, M.A.

    1997-01-01

    We study the effects of the collective motion (flow) on distributions and yields of light fragments produced in heavy ion collisions at the Bevalac/SIS energy range. p, d, t, 3 He and α fragments emitted from Au+Au collisions at 0.25 - 1.15 AGeV bombarding energy were measured with the EOS TPC. The TPC has high and seamless acceptance in the forward hemisphere of the CM system, and excellent particle identification for light fragments. Analyses of the sidewards flow, squeeze-out, and radial flow signals are presented as a function of bombarding energy and centrality of the collision. The fragment mass systematics of the flow signals are seen to be consistent with a simple coalescence picture for the light particles studied. A unifying framework for describing many of the systematic features of the different types of flow (e.g. the p T dependence of squeeze-out) in terms of 3 parameters is discussed. Consistent with previous studies, the parameter describing squeeze-out is seen to be most sensitive to the Equation of State within a Quantum Molecular Dynamics (QMD) model. The effect on extracted temperature of various radial flow profiles is discussed. Finally, a preliminary study of light particle yields in terms of the Quantum Statistical Model (QSM) is presented. It is found that the beam energy dependence of the 'chemical' temperature obtained from the yields tracks with the 'kinetic' temperature obtained from the spectral fits, if one accounts for a flow profile. However, discrepancies between different implementations (computer codes) of the QSM must be resolved before drawing final conclusions about agreement. (authors)

  16. The ASY-EOS Experiment at GSI

    Directory of Open Access Journals (Sweden)

    Russotto P.

    2016-01-01

    Full Text Available The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of heavy ions at pre-relativistic energies has been proposed as an observable sensitive to the strength of the symmetry term of the nuclear equation of state at supra-saturation densities. In the ASY-EOS experiment at the GSI laboratory, flows of neutrons and light charged particles were measured for 197Au+197Au collisions at 400 MeV/nucleon. Flow results obtained for the Au+Au system, in comparison with predictions of the UrQMD transport model, confirm the moderately soft to linear density dependence of the symmetry energy deduced from the earlier FOPI-LAND data.

  17. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    International Nuclear Information System (INIS)

    Petersen, Hannah

    2009-01-01

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v 2 values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E lab =2-160 A GeV. The HBT correlation of the negatively charged pion source created in

  18. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Hannah

    2009-04-22

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v{sub 2} values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E{sub lab}=2-160 A GeV. The HBT correlation of the negatively charged pion source

  19. Constraints on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions

    International Nuclear Information System (INIS)

    Klaehn, T.; Blaschke, D.; Typel, S.; Dalen, E. N. E. van; Faessler, A.; Fuchs, C.; Gaitanos, T.; Wolter, H. H.; Grigorian, H.; Ho, A.; Weber, F.; Kolomeitsev, E. E.; Miller, M. C.; Roepke, G.; Truemper, J.; Voskresensky, D. N.

    2006-01-01

    A new scheme for testing nuclear matter equations of state (EoSs) at high densities using constraints from neutron star (NS) phenomenology and a flow data analysis of heavy-ion collisions is suggested. An acceptable EoS shall not allow the direct Urca process to occur in NSs with masses below 1.5M · , and also shall not contradict flow and kaon production data of heavy-ion collisions. Compact star constraints include the mass measurements of 2.1±0.2M · (1σ level) for PSR J0751+1807 and of 2.0±0.1M · from the innermost stable circular orbit for 4U 1636-536, the baryon mass--gravitational mass relationships from Pulsar B in J0737-3039 and the mass-radius relationships from quasiperiodic brightness oscillations in 4U 0614+09 and from the thermal emission of RX J1856-3754. This scheme is applied to a set of relativistic EoSs which are constrained otherwise from nuclear matter saturation properties. We demonstrate on the given examples that the test scheme due to the quality of the newly emerging astrophysical data leads to useful selection criteria for the high-density behavior of nuclear EoSs

  20. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  1. Are high energy heavy ion collisions similar to a little bang, or just a very nice firework?

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E.V. [State University of New York, NY (United States)

    2001-07-01

    The talk is a brief overview of recent progress in heavy ion physics, with emphasis on applications of macroscopic approaches. The central issues are whether the systems exhibit macroscopic behavior we need in order to interpret it as excited hadronic matter, and, if so, what is its effective Equation of State (EoS). This, in turn, depends on the collision rate in matter: we think we understand in hadronic matter near freeze-out, but certainly not at earlier stages of the collisions. Still (and this is about the most important statement we make) there is no indication that is not high enough, so that a hydro description of excited matter be possible. More specifically, we concentrate on such properties of the produced excited system as collective flow, particle composition and fluctuations relaxation are ultimately a measure of a collision rate we would like to know. We also try to explain what exactly are the expected differences between collisions at AGS/SPS and RHIC energies. (author)

  2. Are high energy heavy ion collisions similar to a little bang, or just a very nice firework?

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    2001-01-01

    The talk is a brief overview of recent progress in heavy ion physics, with emphasis on applications of macroscopic approaches. The central issues are whether the systems exhibit macroscopic behavior we need in order to interpret it as excited hadronic matter, and, if so, what is its effective Equation of State (EoS). This, in turn, depends on the collision rate in matter: we think we understand in hadronic matter near freeze-out, but certainly not at earlier stages of the collisions. Still (and this is about the most important statement we make) there is no indication that is not high enough, so that a hydro description of excited matter be possible. More specifically, we concentrate on such properties of the produced excited system as collective flow, particle composition and fluctuations relaxation are ultimately a measure of a collision rate we would like to know. We also try to explain what exactly are the expected differences between collisions at AGS/SPS and RHIC energies. (author)

  3. Electron collisions and internal excitation in stored molecular ion beams

    International Nuclear Information System (INIS)

    Buhr, H.

    2006-01-01

    In storage ring experiments the role, which the initial internal excitation of a molecular ion can play in electron collisions, and the effect of these collisions on the internal excitation are investigated. Dissociative recombination (DR) and inelastic and super-elastic collisions are studied in the system of He + 2 . The DR rate coefficient at low energies depends strongly on the initial vibrational excitation in this system. Therefore changes in the DR rate coefficient are a very sensitive probe for changes in the vibrational excitation in He + 2 , which is used to investigate the effects of collisions with electrons and residual gas species. The low-energy DR of HD + is rich with resonances from the indirect DR process, when certain initial rotational levels in the molecular ion are coupled to levels in neutral Rydberg states lying below the ion state. Using new procedures for high-resolution electron-ion collision spectroscopy developed here, these resonances in the DR cross section can be measured with high energy sensitivity. This allows a detailed comparison with results of a MQDT calculation in an effort to assign some or all of the resonances to certain intermediate Rydberg levels. (orig.)

  4. Electron collisions and internal excitation in stored molecular ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Buhr, H.

    2006-07-26

    In storage ring experiments the role, which the initial internal excitation of a molecular ion can play in electron collisions, and the effect of these collisions on the internal excitation are investigated. Dissociative recombination (DR) and inelastic and super-elastic collisions are studied in the system of He{sup +}{sub 2}. The DR rate coefficient at low energies depends strongly on the initial vibrational excitation in this system. Therefore changes in the DR rate coefficient are a very sensitive probe for changes in the vibrational excitation in He{sup +}{sub 2}, which is used to investigate the effects of collisions with electrons and residual gas species. The low-energy DR of HD{sup +} is rich with resonances from the indirect DR process, when certain initial rotational levels in the molecular ion are coupled to levels in neutral Rydberg states lying below the ion state. Using new procedures for high-resolution electron-ion collision spectroscopy developed here, these resonances in the DR cross section can be measured with high energy sensitivity. This allows a detailed comparison with results of a MQDT calculation in an effort to assign some or all of the resonances to certain intermediate Rydberg levels. (orig.)

  5. Are High Energy Heavy Ion Collisions similar to a Little Bang, or just a very nice Firework?

    Science.gov (United States)

    Shuryak, E. V.

    2001-09-01

    The talk is a brief overview of recent progress in heavy ion physics, with emphasis on applications of macroscopic approaches. The central issues are whether the systems exhibit macroscopic behavior we need in order to interpret it as excited hadronic matter, and, if so, what is its effective Equation of State (EoS). This, in turn, depends on the collision rate in matter: we think we understand in hadronic matter near freeze-out, but certainly not at earlier stages of the collisions. Still (and this is about the most important statement we make) there is no indication that it is not high enough, so that a hydro description of excited matter be possible. More specifically, we concentrate on such properties of the produced excited system as collective flow, particle composition and fluctuations. Note that both a generation of a pressure and the rate of fluctuation relaxation are ultimately a measure of a collision rate we would like to know. We also try to explain what exactly are the expected differences between collisions at AGS/SPS and RHIC energies.

  6. Heavy ion collisions with the ATLAS detector

    International Nuclear Information System (INIS)

    Nevski, Pavel

    2004-01-01

    The ATLAS detector is designed to study high-p T physics in proton-proton collisions at the LHC design luminosity. The detector capabilities for heavy-ion physics are now being evaluated. This paper reports on a preliminary assessment of the baseline ATLAS detector potential for heavy-ion physics. The ATLAS sensitivity to some of the expected signatures from the quark-gluon plasma (e.g. jet quenching, Υ suppression) is discussed. (orig.)

  7. The ASY-EOS experiment at GSI: investigating symmetry energy at supra-saturation densities

    Directory of Open Access Journals (Sweden)

    Russotto P.

    2014-03-01

    Full Text Available The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of heavy-ions at pre-relativistic energies has been proposed as an observable sensitive to the strength of the symmetry term of the nuclear equation of state at supra-saturation densities. The results obtained from the existing FOPI/LAND data for 197Au+197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model simulations favoured a moderately soft symmetry term, but suffer from a considerable statistical uncertainty. These results have been confirmed by an independent analysis based on the Tübingen QMD simulations. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration. The present status of the data analysis is reported

  8. Realistic modelling of jets in heavy-ion collisions

    International Nuclear Information System (INIS)

    Young, Clint; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2013-01-01

    The reconstruction of jets in heavy-ion collisions provides insight into the dynamics of hard partons in media. Unlike the spectrum of single hadrons, the spectrum of jets is highly sensitive to q -hat ⊥ , as well as being sensitive to partonic energy loss and radiative processes. We use martini, an event generator, to study how finite-temperature processes at leading order affect dijets

  9. Studying heavy-ion collisions with FAUST-QTS

    Directory of Open Access Journals (Sweden)

    Cammarata P.

    2015-01-01

    Full Text Available Heavy-ion collisions at lower energies provide a rich environment for investigating reaction dynamics. Recent theory has suggested a sensitivity to the symmetry energy and the equation of state via deformations of the reaction system and ternary breaking of the deformed reaction partners into three heavy fragments. A new detection system has been commissioned at Texas A&M University in an attempt to investigate some of the observables sensitive to the nuclear equation of state.

  10. Ion-ion collisions and ion storage rings

    International Nuclear Information System (INIS)

    Mowat, J.R.

    1988-01-01

    Improved understanding of fundamental ion-ion interactions is expected to emerge from research carried out with ion storage rings. In this short survey the significant advantages and unique features that make stored ions useful targets for collision experiments are reviewed and discussed. It is pointed out that improvements to existing ion-ion experiments, as well as qualitatively new experiments, should occur over the next few years as ion storage rings become available for atomic physics. Some new experiments are suggested which are difficult if not impossible with present-day technology, but which seem feasible at storage rings facilities. (orig.)

  11. Charge changing collision cross sections of atomic ions

    International Nuclear Information System (INIS)

    Bliman, S.; Dousson, S.; Geller, R.; Jacquot, B.; Van Houtte, D.

    1980-05-01

    A device has been built to measure charge changing cross sections of atomic ions. It consists of an E.C.R. ion source (Micromafios) that delivers oxygen ions up to charge + 8, argon ions up to charge + 13. The ion source potential may be varied from 1 up to 10 kVolts. A first magnet is used to charge analyze the extracted beam. For a given charge state, the ion beam is passed in a collision cell whose pressure may be varied. The ions undergoing collisions on the target are analyzed by a second magnet and collected. The single collision condition is checked. Different collisions are considered: 1- Charge exchange collisions of argon ions with charge 2<=Z<=12 on argon. Cross sections for capture of 1, 2 and 3 electrons are given. 2- Stripping of argon ions (1<=Z<=4) on argon atoms. 3- Charge exchange of oxygen ions (2<=Z<=8) colliding on deuterium. One and two electron capture cross sections are presented

  12. Paths to equilibrium in non-conformal collisions

    Directory of Open Access Journals (Sweden)

    Attems Maximilian

    2018-01-01

    Full Text Available Ever since fast hydrodynamization has been observed in heavy ion collisions the understanding of the hot early out-of-equilibrium stage of such collisions has been a topic of intense research. We use the gauge/gravity duality to model the creation of a strongly coupled Quark-Gluon plasma in a non-conformal gauge theory. This numerical relativity study is the first non-conformal holographic simulation of a heavy ion collision and reveals the existence of new relaxation channels due to the presence of non-vanishing bulk viscosity. We study shock wave collisions at different energies in gauge theories with different degrees of non-conformality and compare three relaxation times which can occur in different orderings: the hydrodynamization time (when hydrodynamics becomes applicable, the EoSization time (when the average pressure approaches its equilibrium value and the condensate relaxation time (when the expectation value of a scalar operator approaches its equilibrium value. We find that these processes can occur in several different orderings. In particular, the condensate can remain far from equilibrium even long after the plasma has hydrodynamized and EoSized.

  13. Electron-ion collisions

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1982-01-01

    This discussion concentrates on basic physics aspects of inelastic processes of excitation, ionization, and recombination that occur during electron-ion collisions. Except for cases of illustration along isoelectronic sequences, only multicharged (at least +2) ions will be specifically discussed with some emphasis of unique physics aspects associated with ionic charge. The material presented will be discussed from a primarily experimental viewpoint with most attention to electron-ion interacting beams experiments

  14. Collisions of low-energy multicharged ions

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Crandall, D.H.

    1981-01-01

    Experimental measurements of cross sections for collisions of multiply charged ions with atoms at the lowest attainable collision energies are reported. Emphasis is on electron capture from hydrogen atoms by multiply charged ions at energies below 1 keV/amu. The principal effort is the development of a merged-ion-atom-beams apparatus for studies down to 1 eV/amu relative energy

  15. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  16. Electroweak bosons in heavy-ion collisions measured with the ATLAS detector

    CERN Document Server

    Perepelitsa, Dennis; The ATLAS collaboration

    2017-01-01

    Electroweak bosons do not interact strongly with the dense and hot medium formed in nuclear collisions, and thus are sensitive to the nuclear modification of parton distribution functions (nPDFs). The ATLAS detector, optimised to search for new physics in proton-proton interactions, is well equipped to measure photons, W and Z bosons in the high occupancy environment produced in heavy-ion collisions. Results from the ATLAS experiment on photons, W, and Z boson yields in lead-lead and proton-lead collisions are presented. These results have particular importance in the context of understanding the collision geometry and nuclear initial state.

  17. Probing jet decoherence in heavy ion collisions

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Mehtar-Tani, Yacine; Salgado, Carlos A.; Tywoniuk, Konrad

    2017-11-01

    We suggest to use the SofDrop jet grooming technique to investigate the sensitivity of jet substructure to color decoherence in heavy ion collisions. We propose in particular to analyze the two-prong probability angular distribution as a probe of the transition between the coherent and incoherent energy loss regimes. We predict an increasing suppression of two-prong substructures with angle as the medium resolves more jet substructure.

  18. Entropy and Multifractality in Relativistic Ion-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Shaista Khan

    2018-01-01

    Full Text Available Entropy production in multiparticle systems is investigated by analyzing the experimental data on ion-ion collisions at AGS and SPS energies and comparing the findings with those reported earlier for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It is observed that the entropy produced in limited and full phase space, when normalized to maximum rapidity, exhibits a kind of scaling which is nicely supported by Monte Carlo model HIJING. Using Rényi’s order q information entropy, multifractal characteristics of particle production are examined in terms of generalized dimensions, Dq. Nearly the same values of multifractal specific heat, c, observed in hadronic and ion-ion collisions over a wide range of incident energies suggest that the quantity c might be used as a universal characteristic of multiparticle production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. The analysis is extended to the study of spectrum of scaling indices. The findings reveal that Rényi’s order q information entropy could be another way to investigate the fluctuations in multiplicity distributions in terms of spectral function f(α, which has been argued to be a convenient function for comparison sake not only among different experiments but also between the data and theoretical models.

  19. Future directions in electron--ion collision physics

    International Nuclear Information System (INIS)

    Reed, K.J.; Griffin, D.C.

    1992-01-01

    This report discusses the following topics: Summary of session on synergistic co-ordination of theory and experiment; synergism between experiment and theory in atomic physics; comparison of theory and experiment for electron-ion excitation and ionization; summary of session on new theoretical and computational methods; new theoretical and computational methods-r-matrix calculations; the coulomb three-body problem: a progress report; summary of session on needs and applications for electron-ion collisional data; electron-ion collisions in the plasma edge; needs and applications of theoretical data for electron impact excitation; summary of session on relativistic effects, indirect effects, resonance, etc; direct and resonant processes in electron-ion collisions; relativistic calculations of electron impact ionization and dielectronic recombination cross section for highly charged ions; electron-ion recombination in the close-coupling approximation; modified resonance amplitudes with strongly correlated channels; a density-matrix approach to the broadening of spectral lines by autoionization, radiative transitions and electron-ion collisions; towards a time-dependent description of electron-atom/ion collisions two electron systems; and comments on inclusion of the generalized bright interaction in electron impact excitation of highly charged ions

  20. Electron capture in ion-molecule collisions at intermediate energy

    International Nuclear Information System (INIS)

    Kumura, M.

    1986-01-01

    Recent progress of theoretical charge transfer study in ion-molecule collisions at the intermediate energy is reviewed. Concept of close and distant collisions obtained from extensive ion-atom collision studies is identified so that it can be utilized to model two distinct collision processes. For a close collision, explicit representation of the whole collision complex is necessary to describe collision dynamics correctly, while a model potential approach for molecule is appropriate for a distant collision. It is shown that these two distinct models are indeed capable of reproducing experimental charge transfer cross sections. Some remarks for further theoretical study of ion-molecule collisions are also given. 21 refs., 8 figs

  1. Effects of mean-field and softening of equation of state on elliptic flow in Au+Au collisions at \\sqrt{{s}_{\\rm{NN}}}=5\\,{GeV} from the JAM model

    Science.gov (United States)

    Chen, Jiamin; Luo, Xiaofeng; Liu, Feng; Nara, Yasushi

    2018-01-01

    We perform a systematic study of elliptic flow (v 2) in Au+Au collisions at \\sqrt{{s}NN}}=5 {GeV} by using a microscopic transport model, JAM. The centrality, pseudorapidity, transverse momentum and beam energy dependence of v 2 for charged as well as identified hadrons are studied. We investigate the effects of both the hadronic mean-field and the softening of equation of state (EoS) on elliptic flow. The softening of the EoS is realized by imposing attractive orbits in two body scattering, which can reduce the pressure of the system. We found that the softening of the EoS leads to the enhancement of v 2, while the hadronic mean-field suppresses v 2 relative to the cascade mode. It indicates that elliptic flow at high baryon density regions is highly sensitive to the EoS and the enhancement of v 2 may probe the signature of a first-order phase transition in heavy-ion collisions at beam energies of a strong baryon stopping region. Supported by the MoST of China 973-Project (2015CB856901), NSFC (11575069, 11221504). Y. N. is supported by the Grants-in-Aid for Scientific Research from JSPS (15K05079, 15K05098)

  2. Rearrangement reactions in ion-ion and ion-atom collisions: results and problems

    Energy Technology Data Exchange (ETDEWEB)

    Presnyakov, L.P. [Lebedev Physical Institute, Moscow (Russian Federation); Tawara, H.

    1997-01-01

    Recent experimental and theoretical results are discussed for ionic collisions with large cross sections at intermediate and small energies of the relative motion. Single- and double-electron removal from H{sup -} ions in slow collisions with other ions is considered in more details. The theoretical methods are discussed from the viewpoint of general requirements of scattering theory. (author)

  3. A new technique for the study of charge transfer in multiply charged ion-ion collisions

    International Nuclear Information System (INIS)

    Shinpaugh, J.L.; Meyer, F.W.; Datz, S.

    1994-01-01

    While large cross sections (>10 -16 cm 2 ) have been predicted for resonant charge transfer in ion-ion collisions, no experimental data exist for multiply charged systems. A novel technique is being developed at the ORNL ECR facility to allow study of symmetric charge exchange in multiply charged ion-ion collisions using a single ion source. Specific intra-beam charge transfer collisions occurring in a well-defined interaction region labeled by negative high voltage are identified and analyzed by electrostatic analysis in combination with ion time-of-flight coincidence detection of the collision products. Center-of-mass collision energies from 400 to 1000 eV are obtained by varying source and labeling-cell voltages. In addition, by the introduction of a target gas into the high-voltage cell, this labeling-voltage method allows measurement of electron-capture and -loss cross sections for ion-atom collisions. Consequently, higher collision energies can be investigated without the requirement of placing the ECR source on a high-voltage platform

  4. Fast ion-atom and ion-molecule collisions

    CERN Document Server

    2013-01-01

    The principal goal of this book is to provide state-of-the art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this fiel...

  5. Atomic collisions in fusion plasmas involving multiply charged ions

    International Nuclear Information System (INIS)

    Salzborn, E.

    1980-01-01

    A short survey is given on atomic collisions involving multiply charged ions. The basic features of charge transfer processes in ion-ion and ion-atom collisions relevant to fusion plasmas are discussed. (author)

  6. Ion trapping in one-minimum potentials via charge-exchange collisions

    International Nuclear Information System (INIS)

    Maier, H.; Kuhn, S.

    1994-01-01

    A (1 d, 2 v), electrostatic, kinetics model for time-independent single-ended Q-machine states with a positively biased cold plate and a single internal minimum near the hot plate is presented. While the electrons are treated as collisionless, charge-exchange collisions between the ions and the neutral background gas atoms are taken into account by means of a linearized Boltzmann collision operator. The self-consistent plasma states are found by using an iterative analytic-numerical trajectory-simulation method in which the charge-density and potential distributions are alternately determined numerical results clearly demonstrate the sensitive role that trapped ions play in shaping the microscopic and macroscopic properties of the dc states under study. The trapped-ion distributions themselves are shown to be controlled critically by the detailed scattering conditions, which in turn are determined by the choice of the background properties. (author). 10 refs, 3 figs

  7. Numerical simulation of ion temperature gradient driven modes in the presence of ion-ion collisions

    International Nuclear Information System (INIS)

    Xu, X.Q.

    1990-08-01

    Ion temperature gradient driven modes in the presence of ion-ion collisions in a toroidal geometry with trapped ions have been studied by using a 1 2/2 d linearized gyro-kinetic particle simulation code in the electrostatic limit. The purpose of the investigation is to try to understand the physics of flat density discharges, in order to test the marginal stability hypothesis. Results giving threshold conditions of L Ti /R 0 , an upper bound on k χ , and linear growth rates and mode frequencies over all wavelengths for the collisionless ion temperature gradient driven modes are obtained. The behavior of ion temperature gradient driven instabilities in the transition from slab to toroidal geometry, with trapped ions, is shown. A Monte Carlo scheme for the inclusion of ion-ion collisions, in which ions can undergo Coulomb collisional dynamical friction, velocity space diffusion and random walk of guiding centers, has been constructed. The effects of ion-ion collisions on the long wave length limit of the ion modes is discussed. 44 refs., 12 figs

  8. Viscous photons in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dion, Maxime; Paquet, Jean-Francois; Young, Clint; Jeon, Sangyong; Gale, Charles; Schenke, Bjoern

    2011-01-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v 2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  9. Heavy ion collisions in AdS5

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. Heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling.

  10. Searching for Jets in Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Salur, Sevil

    2008-01-01

    Jet quenching measurements using leading particles and their correlations suffer from known biases, which can be removed via direct reconstruction of jets in central heavy ion collisions. In this talk, we discuss several modern jet reconstruction algorithms and background subtraction techniques that are appropriate to heavy ion collisions

  11. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    Science.gov (United States)

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  12. Collective flow and azimuthal correlations in nucleus-nucleus collisions at the Bevalac

    International Nuclear Information System (INIS)

    Rai, G.

    1993-09-01

    The EOS experiment at the Bevalac has recently carried out exclusive event-by-event measurements of relativistic heavy ion collisions with a variety of projectile, target and beam energy combinations. The data was obtained using the EOS Time Projection Chamber. We present preliminary results on inclusive spectra, collective flow and azimuthal correlations obtained from a study of Au + Au reactions with beam energies covering 0.6 - 1.2 A GeV

  13. Jets in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs

  14. Performance of centrality determination in heavy-ion collisions with CBM experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klochkov, Viktor; Selyuzhenkov, Ilya [GSI, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The goal of the CBM experiment at FAIR is to investigate the properties of compressed baryonic matter. The measurement of physics observables in heavy-ion collisions requires information about event geometry. A magnitude of the impact parameter, which is among the most important parameters to describe collision geometry, cannot be measured directly in experiment. One can estimate it by measuring produced particle's multiplicities or energy of the spectator fragments. Typically, the collisions are divided into centrality classes which corresponds to the ranges of impact parameter with e.g. centrality class 0-5% corresponds to most central events, and 95-100% to the most peripheral collisions. Sensitivity to the range of impact parameters with the Silicon Tracking System (STS) and Projectile Spectator Detector (PSD) to select centrality classes in the CBM experiment will be presented. The STS is measuring the multiplicity of the particles produced in the nuclei overlap zone and different areas of the PSD are sensitive to both spectator fragments and produced particles. Supported by the GSI Helmholtzzentrum fuer Schwerionenforschung.

  15. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I., E-mail: goto@ppl.appi.keio.ac.jp; Nishioka, S.; Abe, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  16. Constituent quarks and charge particle production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Mishra, Aditya Nath; Mazumder, Rakesh; Sahoo, Raghunath; Nandi, Basanta Kumar

    2012-01-01

    Relativistic heavy-ion collisions aims at producing a state of matter which is governed by partonic degree of freedom. The pseudorapidity density of particle multiplicity and transverse energy are the key observables which provide the properties of matter produced in heavy-ion collisions. Study of their dependence on centrality and collision energy is of paramount importance to understand the particle production mechanism. This may provide insight into the partonic phase that might be created in nuclear collisions. Here, in a constituent quarks framework, charged particle and transverse energy production in heavy-ion collisions are studied both as a function of centrality and collision energy, and hence the study gives a prediction for Pb + Pb collisions

  17. Particle production in heavy ion collisions

    International Nuclear Information System (INIS)

    Braun-Munzinger, P.; Redlich, K.; Wroclaw Univ.; Stachel, J.

    2003-04-01

    The status of thermal model descriptions of particle production in heavy ion collisions is presented. We discuss the formulation of statistical models with different implementation of the conservation laws and indicate their applicability in heavy ion and elementary particle collisions. We analyze experimental data on hadronic abundances obtained in ultra-relativistic heavy ion collisions, in a very broad energy range starting from RHIC/BNL (√(s) = 200 A GeV), SPS/CERN (√(s) ≅ 20 A GeV) up to AGS/BNL (√(s) ≅ 5 A GeV) and SIS/GSI (√(s) ≅ 2 A GeV) to test equilibration of the fireball created in the collision. We argue that the statistical approach provides a very satisfactory description of experimental data covering this wide energy range. Any deviations of the model predictions from the data are indicated. We discuss the unified description of particle chemical freeze-out and the excitation functions of different particle species. At SPS and RHIC energy the relation of freeze-out parameters with the QCD phase boundary is analyzed. Furthermore, the application of the extended statistical model to quantitative understanding of open and hidden charm hadron yields is considered. (orig.)

  18. Photon-photon and photon-hadron processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Baron, N.C.

    1993-11-01

    Photon-photon and photon-hadron interactions in relativistic heavy ion collisions are studied in the framework of the impact parameter dependent equivalent photon approximation. Improvements of this method, like formfactor inclusion and geometrical modifications are developed. In disruptive relativistic heavy ion collisions where the heavy ions overlapp during the collision, electromagnetic processes are an important background to other mechanisms. In peripheral (non-disruptive) relativistic heavy ion collisions where the ions pass each other without strong interactions, the electromagnetic processes can be studied in their pure form. The lepton pair production is an important diagnostic tool in relativistic heavy ion collisions. The coherent γγ lepton pair production is therefore extensively studied in disruptive but also in non-disruptive collisions. The effects of strong interactions on the coherent γγ lepton pair production in disruptive collisions are discussed in terms of a simple stopping model. Coherent γγ dielectron production contributes to the dilepton production in high energy hadron-hadron collisions. As an example, the coherent dielectron production in π - p collisions is studied in terms of the equivalent photon approximation. Peripheral ultrarelativistic heavy ion collisions open up new possibilities for γγ physics. Taking into account γA background reactions, typical γγ processes in the relevant invariant mass ranges are discussed. The extreme high energy part of the equivalent photon spectrum leads to hard photon-parton reactions. As a potential tool to investigate the gluon distribution function of nucleons, thee q anti q production via the γg fusion in ultrarelativistic heavy ion collisions is studied. It is the purpose of this work to investigate how photon-photon and photon-hadron reactions in relativistic heavy ion collisions may contribute to the understanding of QCD and the standard model. (orig.) [de

  19. Hydrogenlike nitrogen ions collision with helium into excited states

    International Nuclear Information System (INIS)

    Pan Guangyan; Yang Feng; Li Dawan; Xu Qian; Liu Huiping; Zhao Mengchun

    1991-01-01

    The emission spectra have been measured in collisions between N 6+ and He using the LHT-30 VUV Monochromator. The wavelength range is 10 nm-80 nm, the energy of N 6+ ions is 90 keV, the current of ion beam in the collision region is about 10 μA. Recently, the authors have investigated the electron capture processes and incident ions excitation in the velocity of N 6+ ions about 0.5 atomic unit. The emission spectrum of N V, N VI and N VII liens is given in collisions of N 6+ with He at 90 keV of ions energy

  20. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2017-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  1. Exotic phenomena in collisions of heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Schramm, S.; Reus, T. de; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.; Mueller, U.

    1985-08-01

    To exemplify current theoretical investigations we discuss three different topics. After a presentation of the underlying theoretical framework for ionization processes we will sketch the possibility to employ delta-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 -10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that we investigate the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework. Finally we very briefly consider some phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms. (orig./HSI)

  2. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  3. Seventh international seminar on ion-atom collisions (ISIAC VII): summary

    International Nuclear Information System (INIS)

    1981-01-01

    The scientific program was structured into eight symposia representing seven important research areas. The subject matter was expanded to include ion-molecule collisions as one of the eight symposia. The symposia were: (1) collisions involving strong binding phenomena and nuclear effects; (2) low-energy, high charge state collisions; (3) Rydberg states; (4) an Open Session; (5) ion-molecule collisions; (6) laser applications to atomic and molecular collisions; (7) collision spectroscopy; and (8) polarization, alignment and correlation

  4. Reaction mechanism in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Tanihata, Isao.

    1982-04-01

    The reaction mechanism in high energy heavy-ion collision is discussed. The discussion is mainly based on the experimental data. Empirical equations have been given for the total cross-sections of nucleus-nucleus reactions and the reaction cross-sections. These cross-sections are well described by the geometrical size of the colliding nuclei. The cross-sections are also understood by microscopic calculation. The charged particle multiplicity gives additional information about the geometrical aspect of heavy ion collision. The data suggested that the total energy, independent of projectile size, is most important for determining the multiplicity. The inclusive proton spectrum in a heavy ion collision showed two distinct regions. The one is the fragment region, and the other the participant region. The spectral shapes of inclusive pion spectra are reasonably well explained by the Coulomb interaction of pions with nuclear fragments. The high energy heavy ion reaction occurs in the overlap region of the projectile and target. This has been tested by measuring the number of participants for various reactions. The space and the time structure of the collision are also discussed in this paper as well as the dynamical aspects of the collision. (Kato, T.)

  5. Newly appreciated roles for electrons in ion-atom collisions

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1990-01-01

    Since the previous Debrecen workshop on High-Energy Ion-Atom Collisions there have been numerous experiments and substantial theoretical developments in the fields of fast ion-atom and ion- solid collisions concerned with explicating the previously largely underappreciated role of electrons as ionizing and exciting agents in such collisions. Examples to be discussed include the double electron ionization problem in He; transfer ionization by protons in He; double excitation in He; backward scattering of electrons in He; the role of electron-electron interaction in determining beta parameters for ELC; projectile K ionization by target electrons; electron spin exchange in transfer excitation; electron impact ionization in crystal channels; resonant coherent excitation in crystal channels; excitation and dielectronic recombination in crystal channels; resonant transfer and excitation; the similarity of recoil ion spectra observed in coincidence with electron capture vs. electron loss; and new research on ion-atom collisions at relativistic energies

  6. High baryon density from relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Y.; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States); Schlagel, T.J. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States)

    1993-10-01

    A quantitative model, based on hadronic physics, is developed and applied to heavy ion collisions at BNL-AGS energies. This model is in excellent agreement with observed particle spectra in heavy ion collisions using Si beams, where baryon densities of three and four times the normal nuclear matter density ({rho}{sub 0}) are reached. For Au on Au collisions, the authors predict the formation of matter at very high densities (up to 10 {rho}{sub 0}).

  7. Electron detachment in ion-atom collisions

    International Nuclear Information System (INIS)

    Vreugd, C. de.

    1980-01-01

    The electron detachment process that occurs in negative ion-atom collisions is investigated. Differential cross sections were measured for the collisions of F - , Cl - , Br - , I - on He, Ne, Ar, Kr, Xe, Na and K. Electron energy distributions were obtained for some of the systems. (Auth.)

  8. Isospin effects in intermediate energy heavy ion collision

    International Nuclear Information System (INIS)

    Liu Jianye; Zuo Wei; Yang Yanfang; Zhao Qiang; Guo Wenjun

    2001-01-01

    Based on the achievements for the intermediate energy heavy ion collision in authors' recent work and the progresses in the world, the isospin effects and the dependence of the entrance channel conditions on them in the intermediate energy heavy ion collisions were introduced, analysed and commended. From the calculation results by using isospin dependence quantum molecular dynamics, it is clear to see that the nuclear stopping power strongly depends on the in-medium isospin dependence nucleon-nucleon cross section and weakly on the symmetry potential in the energy region from about Fermi energy to 150 MeV/u and the intermediate mass fragment multiplicity also sensitively depends on the in-medium isospin dependent nucleon-nucleon cross section and weakly on the symmetry potential in a selected energy region. But the preequilibrium emission neutron-proton ratio is quite contrary, it sensitively depends on the symmetry potential and weakly on the in-medium isospin dependent nucleon-nucleon cross section. In addition to the nuclear stopping sensitively depending on the beam energy, impact parameter and the mass of colliding system and weakly on the neutron-proton ratio of the colliding systems with about the same mass, the preequilibrium emission neutron-neutron ratio sensitively depends on the beam energy and the neutron-proton ratio of colliding system, but weakly on the impact parameter. From above results it is proposed that the nuclear stopping is a new probe to extract the information on the in-medium isospin dependence nucleon-nucleon cross section in energy region from about Fermi energy to 150 MeV/u and the preequilibrium emission neutron-proton ratio is a good probe for extracting the information about the symmetry potential from the lower energy to about 150 MeV/u

  9. Utilization of ion source 'SUPERSHYPIE' in the study of low energy ion-atom and ion-molecule collisions

    International Nuclear Information System (INIS)

    Bazin, V.; Boduch, P.; Chesnel, J.Y.; Fremont, F.; Lecler, D.; Pacquet, J. Y.; Gaubert, G.; Leroy, R.

    1999-01-01

    Modifications in the ECR 4M ion source are described, which conducted to realization of the advanced source 'SUPERSHYPIE'. The Ar 8+ ion collision with Cs(6s,6p) were studied by photon spectroscopy at low energy, where the process is dominated by simple electron capture. Results obtained with 'SUPERSHYPIE' source are presented. The source was utilized also in ion-molecule collisions (CO, H 2 ) to study the spectra of recoil ions and Auger electron spectra in the Ar 17+ He collisions. The excellent performances of 'SUPERSHYPIE' in high charge production and concerning its accurate and fine control and stability are illustrated and underlined as compared with those of ECR 4M source

  10. Heavy ion collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.

    1994-01-01

    Heavy ion collisions at very high energies provide an opportunity to recreate in the laboratory the conditions which existed very early in the universe, just after the big bang. We prepare matter at very high energy density and search for evidence that the quarks and gluons are deconfined. I describe the kinds of observables that are experimentally accessible to characterize the system and to search for evidence of new physics. A wealth of information is now available from CERN and BNL heavy ion experiments. I discuss recent results on two particle correlations, strangeness production, and dilepton and direct photon distributions

  11. Low mass dilepton production in heavy ion collisions

    International Nuclear Information System (INIS)

    Pisutova, N.; Pisut, J.

    1988-01-01

    The total transverse energy dependence of low mass dilepton (and single low p T photon) production was demonstrated to be a signature of the onset of the evidence of plasma formation in heavy ion collisions. Cross-sections are presented for low mass dilepton production in proton-nucleus and heavy ion collisions which represent lower bounds for the ''collectivization'' and the thermalization of matter produced in the collision. Higher cross-section are a signature of the onset of the formation of thermalized matter. (author). 4 figs., 11 refs

  12. Probing in-medium spin–orbit interaction with intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu, Jun; Li, Bao-An

    2013-01-01

    Incorporating for the first time both the spin and isospin degrees of freedom explicitly in transport model simulations of intermediate-energy heavy-ion collisions, we observe that a local spin polarization appears during collision process. Most interestingly, it is found that the nucleon spin up–down differential transverse flow is a sensitive probe of the spin–orbit interaction, providing a novel approach to probe both the density and isospin dependence of the in-medium spin–orbit coupling that is important for understanding the structure of rare isotopes and synthesis of superheavy elements

  13. Development of a collision induced dissociation ion cyclotron resonance spectrometer

    International Nuclear Information System (INIS)

    Fan, Y.N.

    1982-01-01

    A transient analysis ion cyclotron resonance spectrometer is developed to investigate the phenomena of collision induced dissociation. The Fourier transform method and the modified maximum entropy spectral analysis or covariance least square method are implemented in measuring the mass spectrum of the ion ensemble. The Fourier transform method can be used in quantitative analysis while the maximum entropy method as developed here is useful for qualitative analysis only. The cyclotron resonance frequency, relaxation time constant, and the relative ion population are observable from the Fourier transform spectrum. These parameters are very important in investigating collision induced dissociation process and other topics in gas phase chemistry. The ion cyclotron resonance spectrometer is not only developed to study fragments and their abundance from a parent ion, but also to determine the threshold energy and reaction cross section in the collision induced dissociation process. When hard sphere model is used in the ion-molecule collision, the radius of acetone ion measured from the reactive cross section is 2.2 angstrom which is very close to the physical dimension of acetone. The threshold energy for acetone ion in collision induced dissociation process is 1.8 eV which is similar to the result obtained by the angle-resolved mass spectrometer

  14. The ASY-EOS experiment at GSI: Constraining the symmetry energy at supra-saturation densities

    Directory of Open Access Journals (Sweden)

    Russotto P.

    2015-01-01

    Full Text Available The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of heavy ions at pre-relativistic energies has been proposed as an observable sensitive to the strength of the symmetry term of the nuclear equation of state at supra-saturation densities. In the ASY-EOS experiment at the GSI laboratory, flows of neutrons and light charged particles were measured for 197Au+197Au, 96Zr+96Zr and 96Ru+96Ru collisions at 400 MeV/nucleon with the Large Area Neutron Detector LAND as part of a setup with several additional detection systems used for the event characterization. Flow results obtained for the Au+Au system, in comparison with predictions of the UrQMD transport model, confirm the moderately soft to linear density dependence of the symmetry energy deduced from the earlier FOPI-LAND data.

  15. Overview of electromagnetic probe production in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Paquet, Jean-François

    2017-01-01

    An introductory overview of electromagnetic probe production in ultra-relativistic heavy ion collisions is provided. Experimental evidence supporting the production of thermal photons and dileptons in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) are reviewed. Thermal electromagnetic probe production from hydrodynamical models of collisions is discussed. (paper)

  16. A classical statistical model of heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.; Teichert, J.

    1980-01-01

    The use of the computer code TRAJEC which represents the numerical realization of a classical statistical model for heavy ion collisions is described. The code calculates the results of a classical friction model as well as various multi-differential cross sections for heavy ion collisions. INPUT and OUTPUT information of the code are described. Two examples of data sets are given [ru

  17. Radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Kast, J.R.; Lee, Y.K.

    1975-01-01

    A study of x rays produced in heavy ion collisions has led to a search for molecular orbital x rays, concentrating on 35 Cl ions on Al, NaCl, and C targets. Preliminary analysis of the angular dependence of continuum x rays has tentatively identified quasi-molecular K x rays. Other work completed and in progress is discussed. (3 figures) (U.S.)

  18. Two-gluon correlations in heavy–light ion collisions

    International Nuclear Information System (INIS)

    Wertepny, Douglas E.

    2014-01-01

    We derive the cross-section for two-gluon production in heavy–light ion collisions in the saturation/Color Glass Condensate framework. This calculation includes saturation effects to all orders in one of the nuclei (heavy ion) along with a single saturation correction in the projectile (light ion). The calculation of the correlation function predicts (qualitatively) two identical ridge-like correlations, near- and away-side. This prediction was later supported by experimental findings in p + A collisions at the LHC. Concentrating on the energy and geometry dependence of the correlation functions we find that the correlation function is nearly center-of-mass energy independent. The geometry dependence of the correlation function leads to an enhancement of near- and away-side correlations for the tip-on-tip U + U collisions when compared with side-on-side U + U collisions, an exactly opposite behavior from the correlations generated by the elliptic flow of the quark–gluon plasma

  19. Charge exchange in ion-atom collisions

    International Nuclear Information System (INIS)

    Bransden, B.H.

    1990-01-01

    Charge exchange reactions in which electrons are transferred from one ion (or atom) to another during a collision have been studied both as interesting examples of rearrangement collisions and because of important applications in plasma physics. This article reviews the modern theory developed for use at non-relativistic energies, but excluding the thermal and very low energy region. (author)

  20. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions (updated 1993)

    International Nuclear Information System (INIS)

    Tawara, H.

    1993-04-01

    Following our previous compilations [IPPJ-AM-45 (1986), NIFS-DATA-7 (1990)], bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1980-1992 are included. For easy finding references for particular combination of collision partners, a simple list is also provided. (author) 1542 refs

  1. Exploring the QCD Phase Structure with Beam Energy Scan in Heavy-ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaofeng, E-mail: xfluo@mail.ccnu.edu.cn

    2016-12-15

    Beam energy scan programs in heavy-ion collisions aim to explore the QCD phase structure at high baryon density. Sensitive observables are applied to probe the signatures of the QCD phase transition and critical point in heavy-ion collisions at RHIC and SPS. Intriguing structures, such as dip, peak and oscillation, have been observed in the energy dependence of various observables. In this paper, an overview is given and corresponding physics implications will be discussed for the experimental highlights from the beam energy scan programs at the STAR, PHENIX and NA61/SHINE experiments. Furthermore, the beam energy scan phase II at RHIC (2019–2020) and other future experimental facilities for studying the physics at low energies will be also discussed.

  2. Susceptibilities of conserved quantities in relativistic heavy-ion collisions at RHIC

    International Nuclear Information System (INIS)

    Chatterjee, A.; Nayak, T.K.; Chatterjee, S.; Sahoo, N.R.

    2016-01-01

    The major motivations of heavy-ion collisions at ultra-relativistic energies is to study the formation of new form of matter, called quark-gluon plasma (QGP) and study its basic properties. Susceptibilities of conserved quantities, such as electric charge, baryon number and strangeness are sensitive to the onset of quantum chromodynamics (QCD) phase transition, and provide information on the mater produce in heavy ion collisions. In this work, we have used the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and the hadron resonance gas (HRG) models to analyzes the 2"n"d order susceptibilities of conserved charges. In experiments, one needs to understand and correct for detector acceptance, efficiency and limited particle identification in order to interpret the results and compare with theoretical calculations. The transverse momentum cutoff dependence of suitably normalized susceptibilities are proposed as useful observables to probe the properties of the medium at freezout

  3. Proton capture and loss in ion-molecule collisions

    International Nuclear Information System (INIS)

    Ibanez, S; Alessi, M; Zimmerman, V; Fregenal, D; Focke, P; Bernardi, G; Suarez, S

    2007-01-01

    We have measured proton distributions from the collision systems Ar + , Kr + on CH 4 molecular targets, searching for atom capture into the projectile continuum. Within the studied energy range (100 to 300 eV/u) we have not distinctive evidence of capture. A small contamination of ion beams with molecular ions as ArH + or KrH + , have shown to be enough to produce peak shaped structures at the projectile velocity. We, therefore, concentrate our study on proton loss from molecular ions in collision with several targets

  4. Quarkonia at finite temperature in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-06

    May 6, 2015 ... The behaviour of quarkonia in relativistic heavy-ion collisions is reviewed. After a detailed discussion of the current theoretical understanding of quarkonia in a static equilibriated plasma, we discuss quarkonia yield from the fireball created in ultrarelativistic heavy-ion collision experiments. We end with a ...

  5. Deformation relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Yu, L.; Gan, Z.G.; Zhang, Z.Y.; Zhang, H.F.; Li, J.Q.

    2014-01-01

    In deeply inelastic heavy-ion collisions, the quadrupole deformations of both fragments are taken as stochastic independent dynamical variables governed by the Fokker–Planck equation (FPE) under the corresponding driving potential. The mean values, variances and covariance of the fragments are analytically expressed by solving the FPE in head on collisions. The characteristics and mechanism of the deformation are discussed. It is found that both the internal structures and interactions of the colliding partners are critical for the deformation relaxation in deeply inelastic collisions.

  6. Multiple electron capture in close ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Stearns, J.W.; Berkner, K.H.

    1989-01-01

    Collisions in which a fast highly charged ion passes within the orbit of K electron of a target gas atom are selected by emission of a K x-ray from the projectile or target. Measurement of the projectile charge state after the collision, in coincidence with the K x-ray, allows measurement of the charge-transfer probability during these close collisions. When the projectile velocity is approximately the same as that of target electrons, a large number of electrons can be transferred to the projectile in a single collision. The electron-capture probability is found to be a linear function of the number of vacancies in the projectile L shell for 47-MeV calcium ions in an Ar target. 18 refs., 9 figs

  7. Heavy ion collisions and quark distribution in nuclei

    International Nuclear Information System (INIS)

    Liu Lian-sou; Pan Ji-cai; Peng Hung-an

    1986-01-01

    Heavy-ion collisions are studied by means of two-component Fokker--Planck equations on the assumption that there exist multiquark states in nuclei. Inclusive cross sections for the production of protons are calculated in heavy-ion collisions of C+C, Ne+NaF, and Ar+KCl at 800 MeV/A; Ne+Na at 400 MeV/A, 800 MeV/A, and 2100 MeV/A. Satisfactory agreement with the experimental data near 90 degrees c.m. is obtained. The production of deuterons in the collision of C+C at 800 MeV/A is also discussed

  8. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    Blieck, J.

    2008-10-01

    87 Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na + projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  9. How to deal with relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Hagedorn, R.

    1981-01-01

    A qualitative review is given of the theoretical problems and possibilities arising when one tries to understand what happens in relativistic heavy ion collisions. The striking similarity between these and pp collisions suggests the use of techniques similar to those used five to twelve years ago in pp collisions to disentangle collective motions from thermodynamics. A very heuristic and qualitative sketch of statistical bootstrap thermodynamics concludes an idealized picture in which a relativistic heavy ion collision appears as a superposition of moving 'fireballs' with equilibrium thermodynamics in the rest frames of these fireballs. The interesting problems arise where this theoretician's picture deviates from reality: non-equilibrium, more complicated motion (shock waves, turbulence, spin) and the collision history. Only if these problems have been solved or shown to be irrelevant can we safely identify signatures of unusual states of hadronic matter as, for example, a quark-gluon plasma or density isomers. (orig.)

  10. TARGET EXCITATION IN BARE ION XE/AR COLLISIONS STUDIED BY ELECTRON TARGET ION COINCIDENCES

    NARCIS (Netherlands)

    DENIJS, G; HOEKSTRA, R; MORGENSTERN, R

    We present electron spectra resulting from collisions of bare ions N-15(7+) and C-13(6+) on Ar and the charge state distribution of target ions resulting from C-13(6+)-Xe collisions. From both type of experiments we find evidence that electron capture accompanied by target excitation is an important

  11. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions, updated 1990

    International Nuclear Information System (INIS)

    Tawara, H.

    1990-08-01

    Following a previous compilation, new bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1989 are surveyed. For easy finding references for particular combination of collision partners, a simple list is also provided. Furthermore, for convenience, a copy of the previous compilation (IPPJ-AM-45 (1986)) is included. (author) 1363 refs

  12. Quarkonia at finite temperature in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Datta, Saumen

    2015-01-01

    The behaviour of quarkonia in relativistic heavy-ion collisions is reviewed. After a detailed discussion of the current theoretical understanding of quarkonia in a static equilibriated plasma, we discuss quarkonia yield from the fireball created in ultrarelativistic heavy-ion collision experiments. We end with a brief discussion of the experimental results and outlook. (author)

  13. Heavy-ion collisions and the nuclear equation of state

    International Nuclear Information System (INIS)

    Keane, D.

    1993-01-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the course of this reporting period, the PI returned to Kent from a 15-month leave at Lawrence Berkeley Lab, which had been devoted 100% to work on this research project. The EOS Time Projection Chamber at LBL's Bevalac accelerator has continued to be the major focus of research for all of the supported personnel; about a year ago, this detector successfully took data in production mode for the first time, and accumulated in excess of 1000 hours of beam time before the termination of the Bevalac in February 1993. Reduction and analysis of these data is currently our first priority. Effort has also been devoted to the STAR detector at the Relativistic Heavy Ion Collider, in the form of contributions to the Conceptual Design Report, work on HV control hardware and software for use with the STAR Time Projection Chamber, and tracking software development

  14. Collision-induced dissociation of diatomic ions

    International Nuclear Information System (INIS)

    Los, J.; Govers, T.R.

    1978-01-01

    An attempt is made to illustrate how mass spectrometric studies of dissociation in diatomic molecular ions can provide information on the dynamics of these collisions and on the predissociative states involved. Restriction is made to primary beam energies of the order of at least keV. The review covers the dynamics of dissociation, experimental techniques, direct dissociation in heavy-particle collisions, and translational spectroscopy. 120 references

  15. Dissipation and thermal fluctuations in heavy-ion collisions

    International Nuclear Information System (INIS)

    Froebrich, P.

    1992-01-01

    The concept of friction has turned out to be a useful one not only in solid state physics but also in the description of heavy-ion collisions and fisson. In the following I concentrate on applications to low energy (E << 10 MeV/nucleon) heavy-ion collisions. I put emphasis on the phenomenological side in showing that by using frictional forces (and the associated fluctuating forces) in a semi-phenomenological model one is able to put some order into a large variety of experimental data. These concern above- and below-barrier fusion, spin distributions, deep-inelastic scattering and the emission of δ electrons in deep-ineleastic collisions. (orig.)

  16. State-selective electron capture into He-like U90+ ions in collisions with gaseous targets

    International Nuclear Information System (INIS)

    Ma, X.; Stoehlker, T.; Brinzanescu, O.; Fritzsche, S.; Ludziejewski, T.; Stachura, Z.; Warczak, A.

    2000-11-01

    For He-like uranium, a state-selective electron capture study was carried out for relativistic collisions with gaseous targets. In the experiment, the projectile X-ray emission produced by electron capture in collisions of 223 MeV/u U 90+ ions on N 2 , Ar, Kr, and Xe targets was measured in coincidence with down-charged U 89+ projectiles. Due to the large fine structure splitting in heavy ions, the well resolved Balmer transitions observed were used to deduce subshell sensitive cross-sections for electron capture. For this purpose a theoretical spectrum analysis and simulation was performed by taking into account electron cascades from states up to n = 40. The state-selective data are compared with theoretical calculations as a function of target atomic number. An overall agreement is found between the experimental data and the theoretical approaches applied except for the j-sensitive part. (orig.)

  17. Discovery of hydrodynamic behavior in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Hamagaki, Hideki

    2010-01-01

    The objective of high energy heavy ion collision experiments is creating high temperature and high density states to investigate hadron matter properties in such extreme conditions. Since the start of heavy ion collision experiments with BEVALAC, knowledge of the space-time evolution of collision has become indispensable for understanding the hadronic matter properties. This problem is reviewed here from the hydrodynamics view point. Although its importance has been generally recognized since the time of BEVALAC, the hydrodynamic description has not been successful because the hydrodynamic model assuming non-viscous or small fluid had not been considered to be enough to properly describe the space-time evolution of hadron-hadron collisions until the RHIC experiments. Items of the following titles are picked up and reviewed here: Development of heavy ion accelerations; Space-time evolution of hadron collision process and hydrodynamic model; Chemical freezing and kinematical freezing, including transverse momentum spectra at proton-proton collisions and particle spectra in heavy ion collisions; Elliptical azimuthal angle anisotropy; Discovery of hydrodynamic flow at BEVALAC; Problems of incident beam dependence of v2; Elliptic azimuthal angle anisotropy at RHIC; What is it that carries the elliptic anisotropy? Discussion of attainment of thermodynamical equilibrium state at RHIC; and finally investigations of fluid properties other than azimuthal anisotropy, such as, Fluid properties probed by heavy quarks and Observing QCD fluid responses. (S. Funahashi)

  18. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions. Updated 1997

    International Nuclear Information System (INIS)

    Tawara, H.

    1997-04-01

    Following our previous compilations (IPPJ-AM-45 (1986), NIFS-DATA-7 (1990), NIFS-DATA-20 (1993)), bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1954-1996 are listed in the order of the publication year. For easy finding of the references for a combination of collision partners, a simple list is provided. (author)

  19. Direct photons in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baeuchle, Bjoern

    2010-12-13

    Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. In all systems that have been considered -- heavy-ion collisions at E{sub lab}=35 AGeV and 158 AGeV, (s{sub NN}){sup 1/2}=62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. (orig.)

  20. Direct photons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Baeuchle, Bjoern

    2010-01-01

    Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. In all systems that have been considered -- heavy-ion collisions at E lab =35 AGeV and 158 AGeV, (s NN ) 1/2 =62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. (orig.)

  1. Medium dependence of vector meson properties in heavy ion collisions

    International Nuclear Information System (INIS)

    Faessler, Amand; Fuchs, Christian

    2007-01-01

    Heavy ion collisions produce dense and hot nuclear matter. Dileptons give information about this hot and dense phase. The dileptons are produced by vector mesons. Theoretical calculation of dilepton production in the DLS (Berkeley), the HADES (GSI) experiments and the CERES, HELIOS and NA60 data from CERN give information about possible modifications of the vector meson properties in hot and dense nuclear matter. Here the description in relativistic quantum molecular dynamics of heavy ion collisions and dilepton production are presented and compared with data. (authors) Key words: heavy ion collisions; dense and hot nuclear matter; dileptons; medium dependence

  2. Heavy flavours in ultra-relativistic heavy ions collisions; Les saveurs lourdes dans les collisions d'ions lourds ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Rosnet, Ph

    2008-01-15

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons.

  3. Heavy ion collisions at energies near the Coulomb barrier 1990

    International Nuclear Information System (INIS)

    Nagarajan, M.A.

    1991-01-01

    During recent years, detailed experimental and theoretical investigations have been carried out on heavy ion collisions at energies close to the Coulomb barrier. These studies have provided direct evidence of strong couplings between the various reaction channels available at energies near the top of the Coulomb barrier. This field of research has remained the focus of interest and with improved experimental techniques, new detailed high resolution data have been obtained. The workshop on ''Heavy Ion Collisions at Energies Close to the Coulomb Barrier'' was organized with the aim of reviewing the current understanding of the collision dynamics and to discuss future directions in this area of research. The topics discussed at the workshop were broadly classified under the titles: quasielastic reactions; fusion of heavy ions; and shape and spin dependence in heavy ion collisions. The last of these topics was included to review new data obtained with polarized heavy ions and their theoretical interpretations. This volume contains the invited and contributed talks as well as a few short presentations during panel discussions. (author)

  4. Mechanisms for pion production in heavy ion collisions

    International Nuclear Information System (INIS)

    Pfeiffer, M.

    1991-01-01

    In the following contribution some aspects concerning pion production in heavy ion collisions will be discussed. After a general introduction the properties of pions and the Δ-resonance will be briefly mentioned. In the following section some points refering to the pion production in a relativistic heavy ion collision will be discussed. In addition, the basic ideas of the applied models will be shown. In the last part results from existing experiments and possible interpretations will be presented. (orig.)

  5. Exotic phenomena in collisions of very heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Mueller, U.; Schramm, S.; de Reus, T.; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.

    1987-01-01

    Over the last decade their knowledge on atomic structure of superheavy quasimolecules in the range 110 ≤ Z/sub tot/ ≤ 188 has increased considerably. Heavy ion collisions, in which superheavy quasimolecules are formed for a short period of time, offer them a unique tool to investigate the electronic structure of ultra-high Z-systems, which are not otherwise accessible to experiment. Comparison of K-vacancy formation, δ-electron and positron emission with available experimental data suggests the validity of the quasimolecular picture, which will be taken as the theoretical framework of these calculations. To exemplify current theoretical investigations three different topics will be discussed. After a presentation of the underlying theoretical framework for ionization processes the possibility to employ δ-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions will be sketched. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 - 10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework is investigated. Finally phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms is briefly considered. 42 references, 5 figures

  6. Thermal, chemical and spectral equilibration in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Almási, Gábor András, E-mail: g.almasi@gsi.de [Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt (Germany); Wolf, György, E-mail: wolf.gyorgy@wigner.mta.hu [Wigner RCP, Budapest (Hungary)

    2015-11-15

    We have considered the equilibration in relativistic heavy ion collisions at energies 1–7 A GeV using our transport model. We applied periodic boundary conditions to close the system in a box. We found that the thermal equilibration takes place in the first 20–40 fm/c whose time is comparable to the duration of a heavy ion collision. The chemical equilibration is a much slower process and the system does not equilibrate in a heavy ion collision. We have shown that in the testparticle simulation of the Boltzmann equation the mass spectra of broad resonances follow instantaneously their in-medium spectral functions as expected from the Markovian approximation to the Kadanoff–Baym equations employed via the (local) gradient expansion.

  7. New insights from 3D simulations of heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Denicol, Gabriel [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Monnai, Akihiko [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ryu, Sangwook [Department of Physics, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8 (Canada); Schenke, Björn [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-12-15

    Viscous relativistic hydrodynamics in 3+1 dimensions is applied to describe heavy ion collisions at RHIC and LHC. We present calculations of observables that are sensitive to the longitudinal structure of the created system. In particular we present pseudo-rapidity correlations and demonstrate their dependence on both the initial state and short range correlations introduced via a microscopic transport description. We further demonstrate the effect of a varying temperature dependence of the shear viscosity to entropy density ratio on rapidity dependent flow harmonics.

  8. The nuclear equation of state in effective relativistic field theories and pion yields in heavy-ion collisions

    International Nuclear Information System (INIS)

    Schoenhofen, M.; Cubero, M.; Gering, M.; Sambataro, M.; Feldmeier, H.; Noerenberg, W.

    1989-06-01

    Within the framework of relativistic field theory for nucleons, deltas, scalar and vector mesons, a systematic study of the nuclear equation of state and its relation to pion yields in heavy-ion collisions is presented. Not the compressibility but the effective nucleon mass at normal nuclear density turns out to be the most sensitive parameter. Effects from vaccum fluctuations are well modelled within the mean-field no-sea approximation by self-interaction terms for the scalar meson field. Incomplete thermalization in the fireball may be the reason for the low pion yields observed in heavy-ion collisions. (orig.)

  9. Population of multi-quark states in exotic multiplets and thermalization in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Scherer, S.; Bleicher, M.; Haussler, S.; Stoecker, H.

    2008-01-01

    The recent discussion about experimental evidence for pentaquark states has revitalized the interest in exotic hadrons. If such states really exist, it is natural to assume that they will be formed at the late hadronization stage of ultra-relativistic heavy ion collisions, given the success of quark recombination models in the description of hadronization. Here, we apply the qMD model to study the formation of color neutral exotic multi-quark clusters at hadronization. We search for color neutral clusters made up of up to six color charges, respectively. We thus obtain estimates for the numbers and phase space distributions of exotic hadronic states produced by clustering in heavy ion collisions, including the members of the pentaquark multiplets. We obtain particle abundances that are smaller than thermal model predictions. Moreover, the results obtained in recombination from ultra-relativistic heavy ion collisions can be compared to the estimates based on equal population of the corresponding multiplets, and to results from fully thermalized systems. We find that the distribution of exotic hadrons from recombination over large multiplets provides a sensitive signal for thermalization and decorrelation of the initial, non-equilibrium state of the collision. (author)

  10. Theory of collective dynamics: flow, fluctuations and correlations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Denicol, Gabriel S. [Physics Department, Brookhaven National Lab, Building 510A, Upton, NY, 11973 (United States); Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)

    2016-12-15

    I review recent developments in the hydrodynamic modeling of ultra-relativistic heavy ion collisions and the extraction of the properties of bulk QCD matter from heavy ion collision measurements. I briefly summarize the current framework used for the theoretical modeling of heavy ion collisions and report the recent progress on the extraction of the temperature dependence of the shear and bulk viscosity coefficients, the development of statistical tools for data-to-model comparison, and anisotropic hydrodynamics. All these recent developments in our field pave the way for more quantitative determination of the transport properties of bulk QCD matter from the experimental heavy ion collision program.

  11. Diffractive, diffusive, and statistical aspects of deep inelastic heavy-ion collisions

    International Nuclear Information System (INIS)

    Lee, S.Y.; McGrath, R.L.; Dean, D.R.

    1984-01-01

    Deep inelastic collisions between ''light'' heavy ions are considered in a formalism containing diffractive, diffusive, and statistical aspects. A closed-form diffractive cross section is derived, with the deflection function being parametrized in a classically-motivated way. A statistical argument is used to demonstrate how the observed double differential cross section is built up from different diffractive contributions each with its own weight. The form of the weighting function is derived. The observed forward-peaked exponentially-decaying form of deep inelastic collision angular distributions is accounted for. The possibility of exciting a nonzero spin state is explicitly included, enabling the same formalism to be used to explain the spin polarization occurring in deep inelastic collisions. This quantity is much more sensitive than the angular distribution to the choice of deflection function parametrization. Reasonable fits to data are obtained with only one free parameter, apart from an overall normalization factor

  12. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Kai-Jia Sun

    2017-11-01

    Full Text Available Based on the coalescence model for light nuclei production, we show that the yield ratio Op-d-t=NH3Np/Nd2 of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn=〈(δn2〉/〈n〉2 at kinetic freeze-out. From recent experimental data in central Pb+Pb collisions at sNN=6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS, we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at sNN=8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ∼144 MeV and baryon chemical potential of ∼385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.

  13. X-ray emission in slow highly charged ion-surface collisions

    International Nuclear Information System (INIS)

    Watanabe, H; Abe, T; Fujita, Y; Sun, J; Takahashi, S; Tona, M; Yoshiyasu, N; Nakamura, N; Sakurai, M; Yamada, C; Ohtani, S

    2007-01-01

    X-rays emitted in the collisions of highly charged ions with a surface have been measured to investigate dissipation schemes of their potential energies. While 8.1% of the potential energy was dissipated in the collisions of He-like I ions with a W surface, 29.1% has been dissipated in the case of He-like Bi ions. The x-ray emissions play significant roles in the dissipation of the potential energies in the interaction of highly charged heavy ions with the surface

  14. Heavy flavour production at CMS in heavy ion collisions

    CERN Document Server

    Nguyen, Matthew

    2015-01-01

    We review recent results relating to beauty production in heavy-ion collisions, in both the closed and open heavy flavor sectors, from the CMS experiment at the LHC. The sequential suppression of the ° states in PbPb collisions is thought to be evidence of the dissociation of quarkonia bound states in deconfined matter. Data from pPb collisions demonstrate that while cold nuclear effects appear to be subdominant in minimum bias collisions, there exists a non-trivial dependence on collision multiplicity that remains to be understood. The suppression of high p T particles in heavy-ion collisions, relative to the expectation from pp collisions, is typically interpreted in terms of energy loss of hard scattered parton in the dense nuclear medium. The flavor dependence of the energy loss may be accessed via measurements of b hadrons and b-tagged jets. Measurement of B mesons, via non-prompt J = y , at relatively low p T indicate a smaller suppression factor than D meson or inclusive charged hadrons. Data on b jet...

  15. On stabilization of the Rayleigh-Taylor instability for the imploding liner on account of ion-ion collisions

    International Nuclear Information System (INIS)

    Gordeev, Alexander V.

    2002-01-01

    The stabilization of the Rayleigh-Taylor instability for the imploding cylindrical liner in the limit of a low plasma density Π ω pi 2 δ2/c2 << 1 (δ -- the characteristic size of the current layer) is investigated, when the electron currents are much greater than the ion currents. The stabilization of the Rayleigh-Taylor instability for the parameter diapason νii/ωBi < (Z2M/m)1/2 is considered, when the plasma dissipation connected with the ion-ion collisions considerably superior the usual dissipation due to the electron-ion collisions. For the electric conductivity, caused by the ion-ion collisions and resulted in the minimum value σ ∼ enc/B, the effect of the partial stabilization of the Rayleigh-Taylor instability is demonstrated

  16. Towards relativistic heavy ion collisions 'by small steps towards the stars'

    International Nuclear Information System (INIS)

    Scott, D.K.

    1980-01-01

    Current attempts to search for the exotic processes occurring in relativistic heavy ion collisions are reviewed under the headings; peripheral collisions (peripheral collisions as a function of energy, new features at intermediate energies, ground state correlations, microscopic aspects), central collisions (low energy perspective, time scales in heavy ion collisions, spatial, temporal localization and the onset of the nuclear fireball, models of particle emission in central relativistic collisions, the heart of the matter, multiplicity selection, the emission of composite particles), a search for the exotic (the limits of temperature and pressure, temporal and spatial limits, the limits of nuclear matter and nuclei,). 229 references. (U.K.)

  17. Continuum states in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Garibotti, C.R. (Centro Atomico Bariloche and CONICET (Argentina)); Barrachina, R.O. (Centro Atomico Bariloche and CONICET (Argentina))

    1994-03-01

    We review the experimental and theoretical situation for ionization collisions of nude ions with neutral gas atoms, at intermediate and high impact energies. We consider particularly that part of the electron spectrum where emission is larger, corresponding to the joint action to the two ions. We discuss the evidence of this two-center interaction and how it is described by current theories. (orig.)

  18. QCD in heavy ion collisions

    International Nuclear Information System (INIS)

    Iancu, Edmond

    2014-01-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry

  19. QCD in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, Edmond [IPhT, Saclay (France)

    2014-07-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  20. Heavy flavours in ultra-relativistic heavy ions collisions

    International Nuclear Information System (INIS)

    Rosnet, Ph.

    2008-01-01

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons

  1. New results on Coulomb effects in meson production in relativistic heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Rybicki Andrzej

    2014-01-01

    Full Text Available We propose a new method of investigating the space-time evolution of meson production in heavy ion collisions, by making use of spectator-induced electromagnetic (“Coulomb” effects. The presence of two nuclear remnants (“spectator systems” in the non-central collision generates a strong Coulomb field, which modifies the trajectories of charged final state hadrons. This results in charge-dependent azimuthal anisotropies in final state meson emission. In our approach, this effect can be computed numerically by means of a high-statistics Monte Carlo simulation, using the distance between the meson formation zone and the spectator system as free parameter. Our simulation correctly describes the electromagnetic effect on azimuthal anisotropies observed for π+ and π−mesons in Au+Au collisions at lower RHIC energy, known from data recently reported by the STAR Collaboration. Similarly to our earlier studies of spectator-induced electromagnetic effects, also in the present study we find that these effects offer sensitivity to the position of the meson formation zone with respect to the spectator system. Therefore, we conclude that they can serve as a new tool to investigate the space-time evolution of meson production, and the dynamics of the heavy ion collision.

  2. Jet production in heavy ion collisions

    CERN Document Server

    Calucci, G

    2000-01-01

    We discuss the production of jets in heavy ion collisions at LHC. The process allows one to determine to a good accuracy the value of the impact parameter of the nuclear collision in each single inelastic event. The knowledge of the geometry is a powerful tool for a detailed analysis of the process, making it possible to test the various different elements which, in accordance with present theoretical ideas, take part to the production mechanism. (8 refs).

  3. Jet-Underlying Event Separation Method for Heavy Ion Collisions at the Relativistic Heavy Ion Collider

    OpenAIRE

    Hanks, J. A.; Sickles, A. M.; Cole, B. A.; Franz, A.; McCumber, M. P.; Morrison, D. P.; Nagle, J. L.; Pinkenburg, C. H.; Sahlmueller, B.; Steinberg, P.; von Steinkirch, M.; Stone, M.

    2012-01-01

    Reconstructed jets in heavy ion collisions are a crucial tool for understanding the quark-gluon plasma. The separation of jets from the underlying event is necessary particularly in central heavy ion reactions in order to quantify medium modifications of the parton shower and the response of the surrounding medium itself. There have been many methods proposed and implemented for studying the underlying event substructure in proton-proton and heavy ion collisions. In this paper, we detail a me...

  4. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  5. Fourier analysis of nonself-averaging quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions: quantum chaos in dissipative heavy-ion collisions?

    International Nuclear Information System (INIS)

    Kun, S.Yu.; Australian Nat. Univ., Canberra; Australian National Univ., Canberra, ACT

    1997-01-01

    We employ stochastic modelling of statistical reactions with memory to study quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. The Fourier analysis of excitation function oscillations is presented. It suggests that S-matrix spin and parity decoherence, damping of the coherent nuclear rotation and quantum chaos are sufficient conditions to explain the nonself-averaging of quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. (orig.)

  6. Universal pion freeze-out in heavy-ion collisions.

    Science.gov (United States)

    Adamová, D; Agakichiev, G; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanović, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B; Ludolphs, W; Maas, A; Marín, A; Milosević, J; Milov, A; Miśkowiec, D; Panebrattsev, Yu; Petchenova, O; Petrácek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schukraft, J; Sedykh, S; Shimansky, S; Slívová, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V

    2003-01-17

    Based on an evaluation of data on pion interferometry and on particle yields at midrapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda(f) reaches a value of about 1 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and beam energy from the Alternating Gradient Synchrotron to the Relativistic Heavy Ion Collider.

  7. Emission of H- fragments from collisions of OH+ ions with atoms and molecules

    International Nuclear Information System (INIS)

    Juhasz, Z.; Sulik, B.

    2010-01-01

    Compete text of publication follows. Detailed measurement of the kinematics of positive fragment ions from molecular collisions pro-vide useful information about the collision dynamics (see e.g. and references therein). In the present work, we turn our attention to negative fragments. Double differential emission spectra of negative charged particles have been measured in collisions of OH + ions with gas jets of Ar atoms and acetone (CH 3 -CO-CH 3 ) molecules at 7 keV impact energy. Among the emitted electrons, a relatively strong contribution of H - ions has been observed in both collision systems. According to a kinematic analysis, the observed H - ions were produced in close atom-atom collisions. For acetone, these ions originated from both the projectile and the target. The present ion impact energy range falls in the distal region of the Bragg peak. Therefore, a non negligible H - production in biological tissues could be relevant for ion therapy and for radiolysis in general. The present experiments were conducted at the 14.5 GHz Electron Cyclotron Resonance (ECR) ion source of the ARIBE facility, at the Grand Accelerateur National d'Ions Lourds (GANIL) in Caen, France. The molecular OH + ions were produced by introducing water vapor in the ECR plasma chamber. The extracted ions were collimated to a diameter of 2.5 mm before entering the collision chamber. In its center, the OH + projectiles crossed an effusive gas jet of either argon atoms or acetone molecules. In the collision area, the density of the gas target was typically of 10 13 cm -3 . The electrons and negative ions produced in the collision were detected by means of a single-stage spectrometer consisting of an electrostatic parallel-plate analyzer. Spectra taken at 30 deg observation angle are shown in Figure 1. Contributions from H - appear in clearly visible peaks. Kinematics shows that the peak at 410 eV in both panels is due emission of H - ions moving with nearly the projectile velocity. An H

  8. Impact Parameter Dependence of π"-/π"+ Ratio in Probing the Nuclear Symmetry Energy Using Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    He, Guo-Qiang; Wei, Gao-Feng; Lu, Yi-Xin; Cao, Xin-Wei

    2016-01-01

    The impact parameter dependence of π"-/π"+ ratio is examined in heavy-ion collisions at 400 MeV/nucleon within a transport model. It is shown that the sensitivity of π"-/π"+ ratio on symmetry energy shows a transition from central to peripheral collisions; that is, the stiffer symmetry energy leads to a larger π"-/π"+ ratio in peripheral collisions while the softer symmetry energy always leads this ratio to be larger in central collisions. After checking the kinematic energy distribution of π"-/π"+ ratio, we found this transition of sensitivity of π"-/π"+ ratio to symmetry energy is mainly from less energetic pions; that is, the softer symmetry energy gets the less energetic pions to form a smaller π"-/π"+ ratio in peripheral collisions while these pions generate a larger π"-/π"+ ratio in central collisions. Undoubtedly, the softer symmetry energy can also lead more energetic pions to form a larger π"-/π"+ ratio in peripheral collisions. Nevertheless, considering that most of pions are insufficiently energetic at this beam energy, we therefore suggest the π"-/π"+ ratio as a probe of the high-density symmetry energy effective only in central at most to midcentral collisions, thereby avoiding the possible information of low-density symmetry energy carried in π"-/π"+ ratio from peripheral collisions.

  9. Bose-Einstein correlations between hard photons produced in heavy ions collisions; Correlations Bose-Einstein entre photons durs produits dans les collisions d`ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Marques Moreno, F M

    1994-06-01

    Heavy-ion collisions offer the unique possibility to create in the laboratory nuclear matter far from equilibrium. The electromagnetic probe constituted by hard photons and the Bose-Einstein correlations were used to study the properties of such a matter (size, density, temperature...). It is shown how the formalism has evolved from Young experiments to heavy-ion collisions experiments. The experiments performed with the photon multidetector TAPS at Ganil are described. The systems studied are: {sup 86}KR + {sup nat}Ni at 60.0 A.MeV, and {sup 181}Ta + {sup 197}Au at 39.5 A.MeV. Results are presented concerning the production of gamma, pi{sup 0}, e{sup +-} and {gamma}{gamma} correlation. The results are interpreted with the help of static and dynamic calculations describing hard photon production in heavy ion collisions. For the first time in Nuclear Physics, the existence of the Bose-Einstein effect for photons in the range of gamma is demonstrated, and the existence of two different photon sources is postulated, reflecting the density oscillations taking place in the nuclear matter created in heavy-ion collisions. (from author) 55 figs., 22 tabs., 76 refs.

  10. Universal behavior of charged particle production in heavy ion collisions

    Science.gov (United States)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  11. Hard photons a probe of the heavy ion collision dynamics

    International Nuclear Information System (INIS)

    Schutz, Y.

    1994-01-01

    Heavy-ion collisions have proven to be a unique tool to study the nucleus in extreme states, with values of energy, spin and isospin far away from those encountered in the nucleus in its ground state. Heavy-ion collisions provide also the only mean to form and study in the laboratory nuclear matter under conditions of density and temperature which could otherwise only be found in stellar objects like neutron stars and super-novae. the goal of such studies is to establish the equation of state of nuclear matter and the method consist in searching the collective behaviour in which heavy-ion collisions differ from a superposition of many nucleon-nucleon collisions. Among the various probes of collective effects, like flow, multifragmentation, or subthreshold particles, we have selected hard photons because they provide, together with dileptons, the only unperturbed probe of a phase of the collision well localized in space and time. The origin of hard photons, defined as the photons building up the spectrum beyond the energy of the giant dipole resonance (E γ > 30∼MeV), is attributed predominantly to the bremsstrahlung radiation emitted incoherently in individual neutron-proton collisions. Their energy reflects the combination of the beam momentum and the momenta induced by the Fermi motion of the nucleons within the collision zone. Therefore, at intermediate energies, hard photons probe the dynamical phase space distribution of participant nucleons and they convey information on the densities reached in heavy-ion collisions, the size and life time of the dense photon source and the compressibility of nuclear matter. The techniques we have developed include intensity interferometry and exclusive measurements scanning with high resolution the whole range of impact parameters. The interpretation of our data is guided by dynamical phase space calculations of the BUU type

  12. Particle Interferometry for Relativistic Heavy-Ion Collisions

    CERN Document Server

    Wiedemann, Urs Achim; Wiedemann, Urs Achim; Heinz, Ulrich

    1999-01-01

    In this report we give a detailed account on Hanbury Brown/Twiss (HBT) particle interferometric methods for relativistic heavy-ion collisions. These exploit identical two-particle correlations to gain access to the space-time geometry and dynamics of the final freeze-out stage. The connection between the measured correlations in momentum space and the phase-space structure of the particle emitter is established, both with and without final state interactions. Suitable Gaussian parametrizations for the two-particle correlation function are derived and the physical interpretation of their parameters is explained. After reviewing various model studies, we show how a combined analysis of single- and two-particle spectra allows to reconstruct the final state of relativistic heavy-ion collisions.

  13. Towards high-density matter with relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Nagamiya, Shoji.

    1990-04-01

    Recent progress in nucleus-nucleus collisions at BNL and CERN suggests a hint that the formation of high-density nuclear matter could be possible with relativistic heavy-ion beams. What is the maximum density that can be achieved by heavy-ion collisions? Are there data which show evidence or hints on the formation of high density matter? Why is the research of high-density interesting? How about the future possibilities on this subject? These points are discussed. (author)

  14. Forward electron production in heavy ion-atom and ion-solid collisions

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1984-01-01

    A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table

  15. Heavy ion collisions and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Floerchinger, Stefan

    2016-12-15

    There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.

  16. Heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bertsch, G.; Amsden, A.A.

    1978-01-01

    Two types of measurement are proposed for the analysis of heavy ion collisions in the range of energy of 20--200 MeV/A. First, measurement of the longitudinal component of the kinetic energy of the collision products characterizes the impact parameter of the collision. The distribution in this quantity allows the dissipation in the theoretical models to be determined. A second kind of measurement is that of the coefficients of a spherical harmonic expansion of the angular distribution of the products. Besides giving independent information on the impact parameter and reaction dynamics, measurement of these coefficients offers the possibility of measuring the stiffness of the equation of state of nuclear matter. These ideas are explored in the context of a hydrodynamic model for the collision. In the purely hydrodynamic model there is a large measurable asymmetry in the angular distribution, but the dependence on the equation of state is small

  17. Hard probes in heavy ion collisions at the LHC: PDFs, shadowing and $pA$ collisions

    CERN Document Server

    Accardi, Alberto; Botje, M.; Brodsky, S.J.; Cole, B.; Eskola, K.J.; Fai, George I.; Frankfurt, L.; Fries, R.J.; Geist, Walter M.; Guzey, V.; Honkanen, H.; Kolhinen, V.J.; Kovchegov, Yu.V.; McDermott, M.; Morsch, A.; Qiu, Jian-wei; Salgado, C.A.; Strikman, M.; Takai, H.; Tapprogge, S.; Vogt, R.; Zhang, X.f.

    2003-01-01

    This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC''. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.

  18. Alignment and orientation in ion/endash/atom collisions

    International Nuclear Information System (INIS)

    Kimura, M.; Lane, N.F.

    1987-01-01

    Recent progress in the theoretical study of alignment and orientation in atom-atom and ion-atom collisions at intermediate energies is reviewed. Recent systematic studies of the alignment and orientation of electronic charge cloud distributions of excited states resulting from such collisions clearly have provided more detailed information about the underlying collision dynamics. However, since accurate determination of these parameters is quite difficult, both theoretically and experimentally, a close collaboration between theory and experiment is necessary for a deeper understanding of the collision dynamics. A more complete approach, where the full density matrix is determined, is also discussed

  19. Multiple-electron processes in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1989-03-01

    Research in atomic physics at the Lawrence Berkeley Laboratory Super-HILAC and Bevalac accelerators on multiple-electron processes in fast ion-atom collisions is described. Experiments have studied various aspects of the charge-transfer, ionization, and excitation processes. Examples of processes in which electron correlation plays a role are resonant transfer and excitation and Auger-electron emission. Processes in which electron behavior can generally be described as uncorrelated include ionization and charge transfer in high-energy ion-atom collisions. A variety of experiments and results for energies from 1 MeV/u to 420 MeV/u are presented. 20 refs., 15 figs

  20. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-08-01

    We review here the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterisation of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3 m e and life times in the range of 6x10 -14 s -10 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering. First we present some experimental methods for high efficiency positron spectroscopy in heavy ion collisions. Then we describe the discovery of positron creation induced by strong time changing Coulomb fields. (orig./HSI)

  1. Electromagnetic heavy-lepton pair production in relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Senguel, M.Y. [Atakent Mahallesi, 3. Etap, Halkali-Kuecuekcekmece, Istanbul (Turkey); Gueclue, M.C.; Mercan, Oe.; Karakus, N.G. [istanbul Technical University, Faculty of Science and Letters, Istanbul (Turkey)

    2016-08-15

    We calculate the cross sections of electromagnetic productions of muon- and tauon-pair productions from the ultra-relativistic heavy ion collisions. Since the Compton wavelengths of muon and tauon are comparable to the radius of the colliding ions, nuclear form factors play important roles for calculating the cross sections. Recent measurement (Abrahamyan et al., Phys Rev Lett 108:112502, 2012) indicates that the neutrons are differently distributed from the protons; therefore this affects the cross section of the heavy-lepton pair production. In order to see the effects of the neutron distributions in the nucleus, we used analytical expression of the Fourier transforms of the Wood-Saxon distribution. Cross section calculations show that the Wood-Saxon distribution function is more sensitive to the parameter R compared to the parameter a. (orig.)

  2. Measurement of charmonium production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00511724; The ATLAS collaboration

    2017-01-01

    The suppression of heavy charmonia states in heavy-ion collisions is a phenomenon understood as a consequence of quark gluon plasma formation in the hot, dense system formed in heavy ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions, cold nuclear effects may also affect heavy charmonia production. Therefore, a full assessment requires detailed studies on the effects present in both A+A and p+A collisions. Based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt $J/\\psi$ and $\\psi$(2S) productions via the dimuon decay final states. The production and excited-to-ground state ratios of heavy charmonia measured in both p+Pb and Pb+Pb collision data with respect to that measured in pp collision data will be presented in intervals of transverse momentum, rapidity and centrality.

  3. Jet Tomography in Heavy Ion Collisions

    CERN Document Server

    Wiedemann, Urs Achim

    2003-01-01

    We review recent calculations of the probability that a hard parton radiates an additional energy fraction due to scattering in spatially extended matter, and we discuss their application to the suppression of leading hadron spectra in heavy ion collisions at collider energies.

  4. Entropy of the system formed in heavy ion collision

    International Nuclear Information System (INIS)

    Gudima, K.K.; Schulz, H.; Toneev, V.D.

    1985-01-01

    In frames of a cascade model the entropy evolution in a system producted in heavy ion collisions is investigated. Entropy calculation is based on smoothing of the distribution function over the momentum space by the temperature field introduction. The resulting entropy per one nucleon is shown to be rather sensitive to phase space subdivision into cells at the stage of free scattering of reaction products. Compared to recent experimental results for specific entropy values inferred from the composite particle yield of 4π measurements, it is found that cascade calculations do not favour some particular entropy model treatments and suggest smaller entropy values than following from consideration within equilibrium statistics

  5. Current ideas on ion-atom collisions

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1975-09-01

    A survey is given of recent developments in the understanding of ion-atom collisions, with particular emphasis on processes leading to ion-induced X-rays. The inner-shell Coulomb ionization phenomena are discussed at some length, with stress on the near-quantitative picture that appears to emerge from simple-minded models. The phenomenon of Pauli excitations and the formation of quasi-molecules leading to united atom phenomena are qualitatively reviewed together with a brief mention of target recoil effects and electron capture processes. Selected background phenomena of importance in interpreting experiments are touched upon, such as various types of bremsstrahlung production. Implications of the recently-discovered interplay between Coulomb-induced processes and united atom phenomena are especially mentioned. It is suggested that this branch of collision physics is now (1975) reaching a point where new notions and more advanced and unifying models are greatly needed. (auth)

  6. Charge transfer and excitation in high-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Berkner, K.H.; McDonald, R.J.

    1986-11-01

    Coincidence measurements of charge transfer and simultaneous projectile electron excitation provide insight into correlated two-electron processes in energetic ion-atom collisions. Projectile excitation and electron capture can occur simultaneously in a collision of a highly charged ion with a target atom; this process is called resonant transfer and excitation (RTE). The intermediate excited state which is thus formed can subsequently decay by photon emission or by Auger-electron emission. Results are shown for RTE in both the K shell of Ca ions and the L shell of Nb ions, for simultaneous projectile electron loss and excitation, and for the effect of RTE on electron capture

  7. Spin effects in intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu Jun; Li Baoan; Xia Yin; Shen Wenqing

    2014-01-01

    In this paper, we report and extend our recent work where the nucleon spin-orbit interaction and its spin degree of freedom were introduced explicitly for the first time in the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model for heavy-ion reactions. Despite of the significant cancellation of the time-even and time-odd spin-related mean-field potentials from the spin-orbit interaction,an appreciable local spin polarization is observed in heavy-ion collisions at intermediate energies because of the dominating role of the time-odd terms. It is also found that the spin up-down differential transverse flow in heavy-ion collisions is a useful probe of the strength, density dependence, and isospin dependence of the in-medium spin-orbit interaction, and its magnitude is still considerable even at smaller systems. (authors)

  8. Propensity rules for orientation in singly-charged ion-atom collisions

    International Nuclear Information System (INIS)

    Nielsen, S.E.; Dubois, A.; Hansen, J.P.

    1990-01-01

    Orientation effects for electron capture and excitation in singly-charged ion-atom collisions are analysed using the atomic basis impact parameter method with full inclusion of electron translational factors. We find that the orientation preferences previously predicted for excitation in terms of propensity rules may still be observed when capture is present in ion-atom collisions. Furthermore, in spite of intricate behaviour of the direct capture couplings during the collision, we draw some parallel conclusions for the orientation of the capture states. We illustrate these perturbative predictions by close-coupling calculations for H + -Na(3s) collisions where clear propensity for orientation of the H(2p) capture state is demonstrated in impact parameter and velocity dependences. Finally we predict pronounced orientation effects for H(2s) and H(2p) capture in collisions of H + with initially oriented Na(3p) states. (author)

  9. Cross-sections of charge and electronic states change of particles at ion-ion and ion-molecule collisions

    International Nuclear Information System (INIS)

    Panov, M.N.; Afrosimov, V.V.; Basalaev, A.A.; Guschina, N.A.; Nikulin, V.K.

    2006-01-01

    The interactions of protons and alpha-particles with hydrocarbons are investigated. A quantum-mechanical computation of the electronic structure of all hydrocarbons from methane to butane and its fragment ions was performed in the Hartree-Fock RHF/UHF approximation using a GAMESS program (General Atomic Molecular Electron Structure System). The correlation energy was taken into account within the framework of MP2 perturbation theory. The structural parameters of the hydrocarbon molecules and their charged and neutral fragments were calculated in two cases: in the geometry of the parent molecule or of the relaxation states. The difference of the full energy of the same fragments in and out of brackets gives us the vibration excitation energies of the fragments at the moment of creation. Additional Mulliken effective charges (in electron charge units) of atoms in the fragments have been calculated. The calculations show that removing one electron from the ethane molecule without electronic excitation produced a single charged molecular ion in vibration state with binding energy of hydrogen atoms, some decimal eV. As results we obtain C 2 H 6 + and C 2 H 5 + . Additional fragmentation of hydrocarbon needs electronic excitation of produced single charged ions. Cross sections for electron capture and excitation processes in collisions between the hydrogen-like He + , B 4+ and O 7+ ions have been evaluated. The purpose of the theory within this project during the period under review was to get for the first time new data on Single-Electron Capture (SEC) and Excitation Processes (EP) in collisions of He + (1s) ions with hydrogen-like impurity ions B 4+ (1s) and O 7+ (1s) in the energy range for He + ions from 0.2 MeV to 3.0 MeV. The calculations were carried out by using the method of close-coupling equations with basis sets of eleven and ten quasimolecular two-electron states for reactions (1, 2) and (3, 4), respectively (entrance channel, seven charge transfer channels

  10. Electronic stopping in ion-fullerene collisions

    NARCIS (Netherlands)

    Schlathölter, T.A.; Hadjar, O.; Hoekstra, R.A.; Morgenstern, R.W.H.

    The electronic friction experienced by a multiply charged ion interacting with the valence electrons of a single fullerene is an important aspect of the collision dynamics. It manifests itself in a considerable loss of projectile kinetic energy transferred to the target, resulting in excitation. The

  11. Towards relativistic heavy ion collisions by small steps towards the stars

    International Nuclear Information System (INIS)

    Scott, D.K.

    1979-03-01

    A review lecture is given on current attempts to search for the exotic processes occurring in relativistic heavy ion collisions. From peripheral collisions the discussion proceeds to central collisions and lastly the search for the exotic, in which the tools developed for the study of peripheral and central collisions are used. 200 references

  12. Assessment of ion-atom collision data for magnetic fusion plasma edge modelling

    International Nuclear Information System (INIS)

    Phaneuf, R.A.

    1990-01-01

    Cross-section data for ion-atom collision processes which play important roles in the edge plasma of magnetically-confined fusion devices are surveyed and reviewed. The species considered include H, He, Li, Be, C, O, Ne, Al, Si, Ar, Ti, Cr, Fe, Ni, Cu, Mo, W and their ions. The most important ion-atom collision processes occurring in the edge plasma are charge-exchange reactions. Excitation and ionization processes are also considered. The scope is limited to atomic species and to collision velocities corresponding to plasma ion temperatures in the 2-200 eV range. Sources of evaluated or recommended data are presented where possible, and deficiencies in the data base are indicated. 42 refs., 1 fig., 4 tabs

  13. Measurement of quarkonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Tapia Araya, Sebastian; The ATLAS collaboration

    2017-01-01

    The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system formed in heavy-ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions , cold nuclear effects may also affect quarkonia production . Therefore, a full assessment requires detailed studies on the effects present in both A-A and p+A collisions. Based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt J/psi and psi(2S) productions as well as Upsilon production via the di-muon decay final states. The results are of the various measurements are discussed.

  14. Measurement of quarkonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Kremer, Jakub Andrzej; The ATLAS collaboration

    2017-01-01

    The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system formed in heavy-ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions, cold nuclear effects may also affect quarkonia production. Therefore, a full assessment requires detailed studies on the effects present in both A-A and p+A collisions. Based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt J/psi and psi(2S) productions as well as Upsilon production via the di-muon decay final states. The results of the various measurements are discussed

  15. Strangeness production in heavy ion collisions

    International Nuclear Information System (INIS)

    Redlich, K.

    2001-05-01

    Strangeness production in heavy ion collisions is discussed in a broad energy range from SIS to RHIC. In the whole energy range particle yields are showing high level of chemical equilibration which can be described by the unified freezeout conditions of fixed energy/particle ≅ 1GeV. The statistical model within the canonical formulation of strangeness conservation provides a framework to describe the observed enhancement of (multi)strange particles from p+A to A+A collisions measured at the SPS energy and predicts that this enhancement should be larger for decreasing collision energy. However, only at the SPS and RHIC chemical freezeout temperature is consistent within error with the critical value required for deconfinement and simultaneously strangeness is uncorrelated and distributed in the whole volume of the fireball. (orig.)

  16. Heavy quark photoproduction in ultraperipheral heavy ion collisions

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Nystrand, Joakim; Vogt, Ramona

    2002-01-01

    Heavy quarks are copiously produced in ultraperipheral heavy ion collisions. In the strong electromagnetic fields, cc-bar and bb-bar are produced by photonuclear and two-photon interactions. Hadroproduction can also occur in grazing interactions. We calculate the total cross sections and the quark transverse momentum and rapidity distributions, as well as the QQ-bar invariant mass spectra from the three production channels. We consider AA and pA collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider. We discuss techniques for separating the three processes and describe how the AA to pA production ratios might be measured accurately enough to study nuclear shadowing

  17. Fragment ion distribution in charge-changing collisions of 2-MeV Si ions with C60

    Science.gov (United States)

    Itoh, A.; Tsuchida, H.; Miyabe, K.; Majima, T.; Nakai, Y.

    2001-09-01

    We have measured positive fragment ions produced in collisions of 2 MeV Siq+ (q=0, 1, 2, 4) projectiles with a C60 molecular target. The measurement was performed with a time-of-flight coincidence method between fragment ions and charge-selected outgoing projectiles. For all the charge-changing collisions investigated here, the mass distribution of small fragment ions C+n (n=1-12) can be approximated fairly well by a power-law form of n-λ as a function of the cluster size n. The power λ derived from each mass distribution is found to change strongly according to different charge-changing collisions. As a remarkable experimental finding, the values of λ(loss) in electron loss collisions are almost the same for the same final charge states k irrespective of the initial charge q, exhibiting a nearly perfect linear relationship with k. We also performed calculations of the projectile ionization on the basis of the semiclassical approximation and obtained inelastic energy deposition for individual collision processes. The estimated energy deposition is found to have a simple correlation with the experimentally determined values of λ(loss).

  18. Jet Fragmentation Function Moments in Heavy Ion Collisions

    CERN Document Server

    Cacciari, Matteo; Salam, Gavin P; Soyez, Gregory

    2013-01-01

    The nature of a jet's fragmentation in heavy-ion collisions has the potential to cast light on the mechanism of jet quenching. However the presence of the huge underlying event complicates the reconstruction of the jet fragmentation function as a function of the momentum fraction z of hadrons in the jet. Here we propose the use of moments of the fragmentation function. These quantities appear to be as sensitive to quenching modifications as the fragmentation function directly in z. We show that they are amenable to background subtraction using the same jet-area based techniques proposed in the past for jet p_t's. Furthermore, complications due to correlations between background-fluctuation contributions to the jet's p_t and to its particle content are easily corrected for.

  19. Origins of the di-jet asymmetry in heavy ion collisions

    CERN Document Server

    Milhano, José Guilherme

    2016-01-01

    The di-jet asymmetry --- the measure of the momentum imbalance in a di-jet system --- is a key jet quenching observable. Using the event generator \\jewel we show that the di-jet asymmetry is dominated by fluctuations both in proton-proton and in heavy ion collisions. We discuss how in proton-proton collisions the asymmetry is generated through recoil and out-of-cone radiation. In heavy ion collisions two additional sources contribute to the asymmetry, namely energy loss fluctuations and differences in path length. The latter is shown to be a sub-leading effect. We discuss the implications of our results for the interpretation of this observable.

  20. Origins of the di-jet asymmetry in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Milhano, Jose Guilherme; Zapp, Korinna Christine [Universidade de Lisboa, CENTRA, Instituto Superior Tecnico, Lisbon (Portugal); CERN, Physics Department, Theory Unit, Geneva 23 (Switzerland)

    2016-05-15

    The di-jet asymmetry - the measure of the momentum imbalance in a di-jet system - is a key jet quenching observable. Using the event generator Jewel we show that the di-jet asymmetry is dominated by fluctuations both in proton-proton and in heavy-ion collisions. We discuss how in proton-proton collisions the asymmetry is generated through recoil and out-of-cone radiation. In heavy-ion collisions two additional sources can contribute to the asymmetry, namely energy loss fluctuations and differences in path length. The latter is shown to be a sub-leading effect. We discuss the implications of our results for the interpretation of this observable. (orig.)

  1. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    Energy Technology Data Exchange (ETDEWEB)

    Lestinsky, M.

    2007-04-18

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc{sup 18+} yield a high-precision measurement of the 2s-2p{sub 3/2} transition energy in this system. Operation of the two-electron-beam setup at high collision energy ({approx}1000 eV) is established using resonances of hydrogenlike Mg{sup 11+}, while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F{sup 6+}. (orig.)

  2. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    International Nuclear Information System (INIS)

    Lestinsky, M.

    2007-01-01

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc 18+ yield a high-precision measurement of the 2s-2p 3/2 transition energy in this system. Operation of the two-electron-beam setup at high collision energy (∼1000 eV) is established using resonances of hydrogenlike Mg 11+ , while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F 6+ . (orig.)

  3. Kinetic energy dissipation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Fedotov, S.I.; Jolos, R.V.; Kartavenko, V.G.

    1979-01-01

    Kinetic energy dissipation mechanism is considered in deep inelastic heavy-ion collisions. It is shown that the significant part of the kinetic energy loss can be explained by the excitation of the nuclear matter multipole vibrations. The main contribution of the energy dissipation is given by the time dependent heavy-ion interaction potential renormalized due to the nuclear excitations, rather than by the velocity proportional frictional forces

  4. Sigma meson in heavy ion collision

    International Nuclear Information System (INIS)

    Cristian, Ivan; Fuchs, Christian

    2004-01-01

    We want to present a short theoretical prediction of the behaviour of the sigma meson in heavy ion collisions. It is considered that the sigma meson is a pion-pion correlation, resulting from the decay of the N*(1440) resonance. There will be presented some QMD simulations. (authors)

  5. Subthreshold Production of Neutral Pions in Heavy Ion Collisions

    CERN Multimedia

    2002-01-01

    The pion production below the threshold at 290 MeV/u (corresponding to the minimum beam velocity at which pions can be produced in nucleon-nucleon collisions) is sensitive to coherent effects in the momentum distribution of the nucleons in the internuclear collision region. Such collective or coherent effects would manifest themselves in an enhancement of the observed cross section with respect to a prediction on the basis of model momentum distributions, e.g. from the Fermi gas model. \\\\ \\\\ With neutral pions such experiments can be extended to rather low energies and rather small cross sections (in the sub-@mb range) due to the fact that the @p|0's leave the composite nuclear system undisturbed by the Coulomb forces and that their decay $\\gamma$ rays can be detected with high efficiency also at very low pion momentum. In our experiments using |1|2C~ions of 60, 74 and 84~MeV/u and |1|80 of 84~MeV/u we were able to clearly sep from background from different sources. The large efficiency of the annular lead gl...

  6. Multiple electron capture in close ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1987-10-01

    Multiple electron capture is reported for Ca 17+ in Ar. Close collisions are defined by the observation of a coincident Ca K or Ar K x-ray. A large number of electrons is transferred to the projectile in a single close collision when the Ca ion projectile is of the order of the Ar L-shell electron velocity. The cross section for electron capture is reported

  7. Jet studies in heavy ion collisions with the ATLAS detector

    CERN Document Server

    Slovak, Radim; The ATLAS collaboration

    2016-01-01

    In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. ATLAS has provided a quantification of this jet suppression by the jet Raa measurement in run 1 of LHC. A factor of two suppression was seen in central heavy ion collisions with respect to pp collisions. The Raa exhibited only a week, if any, rapidity dependence, and a slow rise with increasing jet momentum. This talk summarizes the run 1 results on the inclusive jet production and the new results on dijet measurements.

  8. PVT modeling of reservoir fluids using PC-SAFT EoS and Soave-BWR EoS

    DEFF Research Database (Denmark)

    Yan, Wei; Varzandeh, Farhad; Stenby, Erling Halfdan

    2015-01-01

    non-cubic EoS models, such as the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) EoS and the Soave modified Benedict-Webb-Rubin (Soave-BWR) EoS, may partly replace the roles of these classical cubic models in the upstream oil industry. Here, we attempt to make a comparative study...... for the four models. For PVT prediction, the non-cubic models show advantages in some high pressure high temperature (HPHT) fluids but no clear advantages in general, indicating the necessity for further improvement of the characterization procedure....

  9. Colour rope model for extreme relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Biro, T.S.; Nielsen, H.B.; Knoll, J.

    1984-04-01

    Our goal is to investigate the possible cumulative effects of the colour fields of the observable meson multiplicity distribution in the central rapidity region in extreme relativistic heavy ion collisions. In the first Chapter we overview the space-time picture of the string formation in a central heavy ion collision. We take into account trivial geometrical factors in a straight line geometry. In the second Chapter we consider the colour chargation process of heavy ions as a random walk. We calculate the expectation value and the relative standard deviation of the total effective charge square. In the third Chapter we consider the stochastic decay of a K-fold string-rope to mesons by the Schwinger-mechanism. We calculate the expected lifetime of a K-fold string and the time for the first quark antiquark pair creation. In the fourth Chapter we deal with the meson production of a K-fold rope relative to that of a single string and hence we look for a scaling between A + A and p + p collisions. (orig./HSI)

  10. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules

    International Nuclear Information System (INIS)

    Larriba-Andaluz, Carlos; Hogan, Christopher J.

    2014-01-01

    Structural characterization of ions in the gas phase is facilitated by measurement of ion collision cross sections (CCS) using techniques such as ion mobility spectrometry. Further information is gained from CCS measurement when comparison is made between measurements and accurately predicted CCSs for model ion structures and the gas in which measurements are made. While diatomic gases, namely molecular nitrogen and air, are being used in CCS measurement with increasingly prevalency, the majority of studies in which measurements are compared to predictions use models in which gas molecules are spherical or non-rotating, which is not necessarily appropriate for diatomic gases. Here, we adapt a momentum transfer based CCS calculation approach to consider rotating, diatomic gas molecule collisions with polyatomic ions, and compare CCS predictions with a diatomic gas molecule to those made with a spherical gas molecular for model spherical ions, tetra-alkylammonium ions, and multiply charged polyethylene glycol ions. CCS calculations are performed using both specular-elastic and diffuse-inelastic collisions rules, which mimic negligible internal energy exchange and complete thermal accommodation, respectively, between gas molecule and ion. The influence of the long range ion-induced dipole potential on calculations is also examined with both gas molecule models. In large part we find that CCSs calculated with specular-elastic collision rules decrease, while they increase with diffuse-inelastic collision rules when using diatomic gas molecules. Results clearly show the structural model of both the ion and gas molecule, the potential energy field between ion and gas molecule, and finally the modeled degree of kinetic energy exchange between ion and gas molecule internal energy are coupled to one another in CCS calculations, and must be considered carefully to obtain results which agree with measurements

  11. Central collisions of heavy ions

    International Nuclear Information System (INIS)

    Fung, Sun-yiu.

    1991-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1990 to September 30, 1991. During this period, our program focuses on particle production at AGS energies, and correlation studies at the Bevalac in nucleus central collisions. We participated in the preparation of letters of intent for two RHIC experiments -- the OASIS proposal and the Di-Muon proposal -- and worked on two RHIC R ampersand D efforts -- a silicon strip detector project and a muon-identifier project. A small fraction of time was also devoted to physics programs outside the realm of heavy ion reactions by several individuals

  12. Bose-Einstein correlations between hard photons produced in heavy ions collisions

    International Nuclear Information System (INIS)

    Marques Moreno, F.M.

    1994-06-01

    Heavy-ion collisions offer the unique possibility to create in the laboratory nuclear matter far from equilibrium. The electromagnetic probe constituted by hard photons and the Bose-Einstein correlations were used to study the properties of such a matter (size, density, temperature...). It is shown how the formalism has evolved from Young experiments to heavy-ion collisions experiments. The experiments performed with the photon multidetector TAPS at Ganil are described. The systems studied are: 86 KR + nat Ni at 60.0 A.MeV, and 181 Ta + 197 Au at 39.5 A.MeV. Results are presented concerning the production of gamma, pi 0 , e +- and γγ correlation. The results are interpreted with the help of static and dynamic calculations describing hard photon production in heavy ion collisions. For the first time in Nuclear Physics, the existence of the Bose-Einstein effect for photons in the range of gamma is demonstrated, and the existence of two different photon sources is postulated, reflecting the density oscillations taking place in the nuclear matter created in heavy-ion collisions. (from author) 55 figs., 22 tabs., 76 refs

  13. Laser-induced charge exchange in ion-atom collisions

    International Nuclear Information System (INIS)

    Riera, A.

    1986-01-01

    The theory of laser-induced charge transfer (LICT) in ion-atom collisions is presented for the range of impact energies in which a quasimolecular description is appropriate. For each relative orientation of the AC field, LICT cross sections can be obtained with trivial modifications of standard programs. Simpler, perturbative expressions for the orientation-averaged cross sections are accurate for I v -1 6 W s cm -3 , and the analytical Landau-Zener perturbative expression often provides good estimates for these cross sections. The practical advantages of the dressed state formalism as an alternative approach are critically examined, and the general characteristics of LICT cross sections in multicharged ion-atom collisions are shown with the help of an example. (Auth.)

  14. Hard photons beyond proton-neutron Bremsstrahlung in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gudima, K.; Ploszajczak, M.

    1998-01-01

    The study of extremely high energy photons, pions and etas, produced in intermediate energy heavy-ion collisions is presented. Possibility of imaging the final-state phase space in these collisions by the Bose-Einstein correlations for photons is critically examined. (author)

  15. High-resolution measurements of x rays from ion-atom collisions

    International Nuclear Information System (INIS)

    Knudson, A.R.

    1974-01-01

    High resolution measurements of K x-ray spectra produced by ion-atom collisions at MeV energies are presented. These measurements indicate that a distribution of L-shell vacancies accompanies K-shell excitation. The variation of these spectra as a function of incident ion energy and atomic number is discussed. Difficulties in the analysis of these spectra due to rearrangement of vacancies between the time of the collision and the time of x-ray emission are considered. The use of high resolution x-ray measurements to obtain information on projectile ion vacancy configurations is demonstrated by data for Ar ions in KCl. X-ray spectra from Al projectiles in a variety of targets were measured and the effect of target composition on these spectra is discussed

  16. Study of Heavy Flavours from Muons Measured with the ALICE Detector in Proton-Proton and Heavy-Ion Collisions at the CERN-LHC

    CERN Document Server

    Zhang, X; Zhou, D; Crochet, P

    Ultra-relativistic heavy-ion collisions aim at investigating the properties ofstrongly-interacting matter at extreme conditions of temperature and energy density. According to quantum chromodynamics (QCD) calculations, under such conditions, the formation of a deconfined medium, the Quark-Gluon Plasma (QGP), is expected. Amongst the most important probes of the properties of the QGP, heavy quarks are of particular interest since they are expected to be produced in hard scattering processes during the early stage of the collision and subsequently interact with the hot and dense medium. Therefore, the measurement of quarkonium states and open heavy flavours should provide essential information on the properties of the system formed at the early stage of heavy-ion collisions. Indeed, open heavy flavours are expected to be sensitive to the energy density through the mechanism of in-medium energy loss of heavy quarks, while quarkonium production should be sensitive to the initial temperature of the system through ...

  17. Rescattering effects on intensity interferometry and initial conditions in relativistic heavy ion collisions

    Science.gov (United States)

    Li, Yang

    The properties of the quark-gluon plasma are being thoroughly studied by utilizing relativistic heavy ion collisions. After its invention in astronomy in the 1950s, intensity interferometry was found to be a robust method to probe the spatial and temporal information of the nuclear collisions also. Although rescattering effects are negligible in elementary particle collisions, it may be very important for heavy ion collisions at RHIC and in the future LHC. Rescattering after production will modify the measured correlation function and make it harder to extract the dynamical information from data. To better understand the data which are dimmed by this final state process, we derive a general formula for intensity interferometry which can calculate rescattering effects easily. The formula can be used both non-relativistically and relativistically. Numerically, we found that rescattering effects on kaon interferometry for RHIC experiments can modify the measured ratio of the outward radius to the sideward radius, which is a sensitive probe to the equation of state, by as large as 15%. It is a nontrivial contribution which should be included to understand the data more accurately. The second part of this thesis is on the initial conditions in relativistic heavy ion collisions. Although relativistic hydrodynamics is successful in explaining many aspects of the data, it is only valid after some finite time after nuclear contact. The results depend on the choice of initial conditions which, so far, have been very uncertain. I describe a formula based on the McLerran-Venugopalan model to compute the initial energy density. The soft gluon fields produced immediately after the overlap of the nuclei can be expanded as a power series of the proper time t. Solving Yang-Mills equations with color current conservation can give us the analytical formulas for the fields. The local color charges on the transverse plane are stochastic variables and have to be taken care of by random

  18. HBT measurements in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Zajc, W.A.

    1990-01-01

    The correlations in relative momentum between identical bosons are determined, in part, by the geometrical properties of the boson source. This fact was first exploited in hadron physics by Goldhaber, Goldhaber, Lee and Pais (GGLP) in 1960. In the intervening three decades, this approach has been applied to lepton-lepton, lepton-hadron, hadron-hadron, and heavy-ion collisions. A word about nomenclature: The correlations in relative momentum between identical mesons arise from Bose statistics. Even previous to GGLP, this fact was applied by Hanbury-Brown and Twiss to measure stellar radii via two-photon interferometry. Thus an alternative name for the GGLP effect is the HBT effect. An informal introduction to Hanbury-Brown-Twiss measurements in heavy ion collisions is presented. The systematic effects in interpreting such data are emphasized, rather than the implications of any single experiment

  19. Experimental investigation of the formation of negative hydrogen ions in collisions between positive ions and atomic or molecular targets

    International Nuclear Information System (INIS)

    Lattouf, Elie

    2013-01-01

    The formation of the negative hydrogen ion (H - ) in collisions between a positive ion and a neutral atomic or molecular target is studied experimentally at impact energies of a few keV. The doubly-differential cross sections for H - formation are measured as a function of the kinetic energy and emission angle for the collision systems OH + + Ar and O + + H 2 O at 412 eV/a.m.u. These H - ions can be emitted at high energies (keV) in hard quasi-elastic two-body collisions involving a large momentum transfer to the H center. However, H - anions are preferentially emitted at low energy (eV) due to soft many-body (≥ 2) collisions resulting in a low momentum transfer. The formation of H - ions by electron capture follows excitation or ionization of the molecule. The molecular fragmentation dynamics is modeled to simulate the emission of H - ions. The overall good agreement between the simulation and the experiment leads to the understanding of most of the experimental observations. (author) [fr

  20. Charge exchange and ionization of atoms in collisions with multicharged ions

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1987-01-01

    Single-electron transition in continuous and discrete spectra, induced by A atom and B +2 multicharged ion collision with the charge Z>3 are investigated. A theory of quantum transitions in multilevel systems with ion-atom collisions is considered. Main results on charge exchange in slow (v 0 Z 1/2 ) collisions are presented. For analysis of charge exchange analytical method, being generalization of decay model and of approximation of nonadiabatic coupling of two states, that are included into a developed approach as limiting cases, is developed. The calculation results are compared with the available experimental data

  1. Relation between hard photon production and impact parameter in heavy ion collisions at intermediate energies; Dependance de la production de photons durs avec le parametre d`impact dans les collisions entre ions lourds aux energies intermediaires

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Garcia, G.

    1994-06-01

    Hard photons produced in heavy-ions collisions at intermediate energies have been used in order to study hot and compresses nuclear matter created in these collisions (at Ganil). It was found that Bremsstrahlung radiation emitted in np collisions is the main mechanism of hard-photon production for the whole range of impact parameter. Moreover, it was observed a substantial decrease of the hardness of hard-photon spectrum. The BUU model reproduces very well the experimental results, showing that the hardness of the spectrum reflects, mainly, nuclear-matter compression in the first stage of the collision. A new method was developed to measure the density of the nuclear matter created at the beginning of the collision. BUU results and some experimental evidences point out that a significant contribution of hard photons are produced in the last stage of the collision: thermal hard photons. These photons are sensitive to the density oscillation of nuclear matter. Its production cross-section will constitute a measurement of the compressibility of nuclear matter and its spectrum a measure of the temperature. (from author) 64 figs., 60 refs.

  2. Baryon distribution in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Wong, C.

    1984-01-01

    In order to determine whether a pure quark-gluon plasma with no net baryon density can be formed in the central rapidity region in relativistic heavy-ion collisions, we estimate the baryon distribution by using a Glauber-type multiple-collision model in which the nucleons of one nucleus degrade in energy as they make collisions with nucleons in the other nucleus. As a test of this model, we study first nucleon-nucleus collisions at 100 GeV/c and compare the theoretical results with the experimental data of Barton et al. The results are then generalized to study the baryon distribution in nucleus-nucleus collisions. It is found that in the head-on collision of two heavy nuclei (A> or approx. =100), the baryon rapidity distributions have broad peaks and extend well into the central rapidity region. The energy density of the baryon in the central rapidity region is about 5--6 % of the total energy density at a center-of-mass energy of 30 GeV per nucleon and decreases to about 2--3 % at a center-of-mass energy of 100 GeV per nucleon. The stopping power for a baryon in nuclear matter is extracted

  3. Studies of relativistic heavy ion collisions at the AGS (Experiment 814)

    International Nuclear Information System (INIS)

    Cleland, W.E.

    1992-01-01

    During the past year, the Pittsburgh group has continued to work with the E814 collaboration in carrying out AGS Experiment 814. We present here a brief history of the experiment, followed by a detailed report of the analysis work being pursued at the University of Pittsburgh. As originally proposed, Experiment 814 is a study of both extreme peripheral collisions and the transition from peripheral to central collisions in relativistic heavy ion-nucleus interactions. We are studying relativistic heavy ion interactions with nuclei in two types of collisions: (a) extreme peripheral collisions of large impact parameter, and (b) central collisions with high transverse energy in the final state. The experiment emphasizes the measurement of overall event characteristics, in particular energy flow measurements and a precise measurement of the particle charge, momentum, and energy in the forward direction. This permits measurements of cross sections and rapidity densities as a function of the transverse energy for leading baryons emitted into regions of larger rapidity. Combining the energy flow measurements as a function of rapidity with the spectra of leading baryons provides information on the impact parameter dependence of the nuclear stopping of the projectile in relativistic heavy ion collisions. In 1988, the scope of Experiment 814 was enlarged to include a search for strange matter in central collisions, the first results of which have been published, and analysis on a longer run taken in 1990 is still under way

  4. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  5. Ultrarelativistic heavy ion collisions Theoretical overview

    International Nuclear Information System (INIS)

    Blaizot, Jean-Paul

    2006-01-01

    This is a short review of some theoretical aspects of the physics of ultra-relativistic heavy ion collisions. I review the main properties of the QCD phase diagram and recent developments in the physics of high gluon densities in the hadronic wavefunctions at high energy. Then I comment salient results obtained at RHIC

  6. Recommended data on proton-ion collision rate coefficients for Fe X-Fe XV ions

    International Nuclear Information System (INIS)

    Skobelev, I.; Murakami, I.; Kato, T.

    2006-01-01

    The proton-ion collisions are important for excitation of some ion levels in a high-temperature low density plasma. In the present work evaluation of data obtained for proton-induced transitions in Fe X - Fe XV ions with the help of different theoretical methods is carried out. It is suggested a simple analytical formula with 7 parameters allowing to describe dependency of proton rate coefficient on proton temperature in an enough wide temperature range. The values of free parameters have been determined by fitting of approximation formula to numerical data and are presented for recommended data together with fitting accuracies. By comparing of proton collision rates with electron ones it is shown that proton impact excitation processes may be important for Fe X, XI, XIII-XV ions. The results obtained can be used for plasma kinetics calculations and for development of spectroscopy methods of plasma diagnostics. (author)

  7. Nonrelativistic theory of heavy-ion collisions

    International Nuclear Information System (INIS)

    Bertsch, G.

    1984-01-01

    A wide range of phenomena is observed in heavy-ion collisions, calling for a comprehensive theory based on fundamental principles of many-particle quantum mechanics. At low energies, the nuclear dynamics is controlled by the mean field, as we know from spectroscopic nuclear physics. We therefore expect the comprehensive theory of collisions to contain mean-field theory at low energies. The mean-field theory is the subject of the first lectures in this chapter. This theory can be studied quantum mechanically, in which form it is called TDHF (time-dependent Hartree-Fock), or classically, where the equation is called the Vlasov equation. 25 references, 14 figures

  8. PIC simulation of the electron-ion collision effects on suprathermal electrons

    International Nuclear Information System (INIS)

    Wu Yanqing; Han Shensheng

    2000-01-01

    The generation and transportation of suprathermal electrons are important to both traditional ICF scheme and 'Fast Ignition' scheme. The author discusses the effects of electron-ion collision on the generation and transportation of the suprathermal electrons by parametric instability. It indicates that the weak electron-ion term in the PIC simulation results in the enhancement of the collisional absorption and increase of the hot electron temperature and reduction in the maximum electrostatic field amplitude while wave breaking. Therefore the energy and distribution of the suprathermal electrons are changed. They are distributed more close to the phase velocity of the electrostatic wave than the case without electron-ion collision term. The electron-ion collision enhances the self-consistent field and impedes the suprathermal electron transportation. These factors also reduce the suprathermal electron energy. In addition, the authors discuss the effect of initial condition on PIC simulation to ensure that the results are correct

  9. Sensitivity of the Game Control of Ship in Collision Situations

    Directory of Open Access Journals (Sweden)

    Lisowski Józef

    2015-12-01

    Full Text Available The paper introduces the application of the theory of deterministic sensitivity control systems for sensitivity analysis taking place in game control systems of moving objects, such as ships. The sensitivity of parametric model of game ship control process and game control in collision situations - sensitivity to changes in its parameters have been presented. First-order and k-th order sensitivity functions of parametric model of the process and game control are described. The structure of the game ship control system in collision situations and the mathematical model of game control process in the form of state equations are given. Characteristics of sensitivity functions of the model and game ship control process on the base of computer simulation in Matlab/Simulink software have been presented. At the end are given proposals regarding the use of sensitivity analysis to practical synthesis of computer-aided system navigator in potential collision situations.

  10. Fragmentation of C2H4 by charge-changing collisions of O2+ ions

    International Nuclear Information System (INIS)

    Sato, S.; Mizuno, T.; Yamada, T.; Imai, M.; Shibata, H.; Itoh, A.; Tsuchida, H.

    2009-01-01

    We investigated molecular fragmentation of C 2 H 4 in charge-changing collisions of 1.14MeV O 2+ ions. Branching ratios associated with decaying from temporary produced (C 2 H 4 ) r+ ions into various fragment channels were obtained. Dissociation via a C-C bond breaking is preferential in 1-electron loss collisions in comparison with 1-electron capture collisions. We confirmed that multiple ionization and dissociation rarely occur in electron capture collisions, while they occur rather strongly in electron loss collisions. (author)

  11. Jet fragmentation function moments in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Cacciari, Matteo [UPMC Univ. Paris 6 et CNRS UMR 7589, LPTHE, Paris (France); Universite Paris Diderot, Paris (France); Quiroga-Arias, Paloma [UPMC Univ. Paris 6 et CNRS UMR 7589, LPTHE, Paris (France); Salam, Gavin P. [UPMC Univ. Paris 6 et CNRS UMR 7589, LPTHE, Paris (France); CERN, Department of Physics, Theory Unit, Geneva 23 (Switzerland); Princeton University, Department of Physics, Princeton, NJ (United States); Soyez, Gregory [CNRS URA 2306, Institut de Physique Theorique, CEA Saclay, Gif-sur-Yvette (France)

    2013-03-15

    The nature of a jet's fragmentation in heavy-ion collisions has the potential to cast light on the mechanism of jet quenching. However, the presence of the huge underlying event complicates the reconstruction of the jet fragmentation function as a function of the momentum fraction z of hadrons in the jet. Here we propose the use of moments of the fragmentation function. These quantities appear to be as sensitive to quenching modifications as the fragmentation function directly in z. We show that they are amenable to background subtraction using the same jet-area-based techniques proposed in the past for jet p{sub t} 's. Furthermore, complications due to correlations between background-fluctuation contributions to the jet's p{sub t} and to its particle content are easily corrected for. (orig.)

  12. Jet fragmentation function moments in heavy ion collisions

    International Nuclear Information System (INIS)

    Cacciari, Matteo; Quiroga-Arias, Paloma; Salam, Gavin P.; Soyez, Gregory

    2013-01-01

    The nature of a jet's fragmentation in heavy-ion collisions has the potential to cast light on the mechanism of jet quenching. However, the presence of the huge underlying event complicates the reconstruction of the jet fragmentation function as a function of the momentum fraction z of hadrons in the jet. Here we propose the use of moments of the fragmentation function. These quantities appear to be as sensitive to quenching modifications as the fragmentation function directly in z. We show that they are amenable to background subtraction using the same jet-area-based techniques proposed in the past for jet p t 's. Furthermore, complications due to correlations between background-fluctuation contributions to the jet's p t and to its particle content are easily corrected for. (orig.)

  13. Photons from the early stages of relativistic heavy-ion collisions

    Science.gov (United States)

    Oliva, L.; Ruggieri, M.; Plumari, S.; Scardina, F.; Peng, G. X.; Greco, V.

    2017-07-01

    We present results about photon-production in relativistic heavy-ion collisions. The main novelty of our study is the calculation of the contribution of the early-stage photons to the photon spectrum. The initial stage is modeled by an ensemble of classical gluon fields which decay to a quark-gluon plasma via the Schwinger mechanism, and the evolution of the system is studied by coupling classical field equations to relativistic kinetic theory; photon production is then computed by including the pertinent collision processes into the collision integral. We find that the contribution of the early-stage photons to the direct photon spectrum is substantial for pT≈2 GeV and higher, the exact value depending on the collision energy; therefore, we identify this part of the photon spectrum as the sign of the early stage. Moreover, the amount of photons produced during the early stage is not negligible with respect to those produced by a thermalized quark-gluon plasma: We support the idea that there is no dark age in relativistic heavy-ion collisions.

  14. Electronic excitations in fast ion-solid collisions

    International Nuclear Information System (INIS)

    Burgdoerfer, J.

    1990-01-01

    We review recent developments in the study of electronic excitation of projectiles in fast ion-solid collisions. Our focus will be primarily on theory but experimental advances will also be discussed. Topics include the evidence for velocity-dependent thresholds for the existence of bound states, wake-field effects on excited states, the electronic excitation of channeled projectiles, transport phenomena, and the interaction of highly charged ions with surfaces. 44 refs., 14 figs

  15. Proton-ion collisions: behind the scenes of an exotic interaction

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    Protons to the right, ions to the left: the basic principle of proton-ion collisions at the LHC might seem straightforward. However, this is an almost unprecedented mode of collider operation, certainly unique at the energy provided by the LHC. In addition to being a remarkable technical achievement, this interaction between a proton and an ion can potentially contribute a lot to the understanding of the properties of matter in its primordial state.   Prior to last week, the LHC had only collided protons with protons and lead ions with lead ions. These were indeed the two operational schemes the LHC was designed for. However, since science can often evolve in directions that were not necessarily expected at the beginning of a project, over the years the scientific community has become more and more interested in the hybrid type of interaction – that between protons and ions. Last week’s collisions were only a test for the teams involved in the operation of the LHC, in prepara...

  16. Electron-ion collision rates in atomic clusters irradiated by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Moll, M; Hilse, P; Schlanges, M; Bornath, Th; Krainov, V P

    2010-01-01

    In atomic clusters irradiated by femtosecond laser pulses, plasmas with high density and high temperature are created. The heating is mainly caused by inverse bremsstrahlung, i.e. determined by electron-ion collisions. In the description of the scattering of electrons on noble gas ions in such plasmas, it is important to account for the inner structure of the ions and the screening by the surrounding plasma medium which can be accomplished by using suitable model potentials. In the wide parameter range met in experiments, the Born approximation is not applicable. Instead, the electron-ion collision frequency is calculated on the basis of classical momentum transport cross sections. Results are presented for xenon, krypton and argon ions in different charge states. A comparison of these results to those for the scattering on Coulomb particles with the same charge shows an enhancement of the collision frequency. The Born approximation, however, leads to an overestimation.

  17. Microscopic descriptions of high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Bodmer, A.R.

    1977-01-01

    The essentials of the equation-of-motion (EOM) approach are given and some of its significant and interesting results are described. A framework for the theoretical description of high-energy heavy-ion (HE-HI) collisions is presented; specifically included are a critical assessment of various approaches--EOM calculations, Boltzmann equations/cascade calculations, and hydrodynamics--their relationships and their respective domains of applicability, if any, to HE-HI collisions. 11 figures, 3 tables

  18. Towards relativistic heavy ion collisions by small steps towards the stars. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.K.

    1979-03-01

    A review lecture is given on current attempts to search for the exotic processes occurring in relativistic heavy ion collisions. From peripheral collisions the discussion proceeds to central collisions and lastly the search for the exotic, in which the tools developed for the study of peripheral and central collisions are used. 200 references. (JFP)

  19. Simultaneous electron capture and excitation in ion-atom collisions

    International Nuclear Information System (INIS)

    Tanis, J.A.; Bernstein, E.M.; Graham, W.G.; Clark, M.; Shafroth, S.M.; Johnson, B.M.; Jones, K.; Meron, M.

    1982-01-01

    A review of recent efforts to observe simultaneous electron capture-and-K-shell excitation in ion-atom collisions is presented. This process which has been referred to as resonant-transfer-and-excitation (RTE), is qualitatively analogous to dielectronic recombination (inverse Auger transition) in free-electron-ion collisions, and, hence, is expected to be resonant. Experimentally, events having the correct signature for simultaneous capture-and-excitation are isolated by detecting projectile K x rays in coincidence with ions which capture a single electron. In a recent experiment involving 70-160 MeV S 13+ ions incident on Ar, a maximum was observed in the yield of projectile K x rays associated with electron capture. This maximum is attributed to simultaneous capture - and excitation. The position (120 MeV) and width (60 MeV) of the observed maximum are in good agreement with theoretical calculations. The data indicate that RTE is an important mechanism for inner-shell vacancy production in the energy range studied

  20. Formation of heavy quarks in ultrarelativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schneider, S.M.; Greiner, W.; Soff, G.

    1992-02-01

    We investigate the production of heavy quarks in continuum and bound states in nuclear collisions. Creation for free banti b and tanti t quark pairs and for bottomonium and toponium in the ground state are computed at RHIC, LHC and SSC energies. Central and peripheral heavy-ion collisions are discussed. For top quark creation we assumed a mass range of 90 GeV ≤ m t ≤ 250 GeV. The creation rate for top quarks on peripheral collisions is estimated to be by a factor 40 to 130 smaller compared with corresponding central collisions. For m t = 130 GeV we calculated a creation rate of about 4760 top quark pairs per day at the LHC (3.5 TeV/u) for Pb-Pb collisions. (orig.)

  1. Discussing the possibility of observation of parity violation in heavy ion collisions

    International Nuclear Information System (INIS)

    Voloshin, Sergei A.

    2000-01-01

    It was recently argued that in heavy ion collisions the parity could be broken. This paper addresses the question of the possibility of the experimental detection of the effect. We discuss how parity violating effects would modify the final particle distributions and how one could construct variables sensitive to the effect, and which measurement would be the (most) conclusive. Discussing different observables we also discuss the question of whether the ''signals'' can be faked by ''conventional'' effects (such as anisotropic flow, etc.) and make estimates of the signals

  2. Jet Quenching in Relativistic Heavy Ion Collisions at the LHC

    CERN Document Server

    Angerami, Aaron

    Jet production in relativistic heavy ion collisions is studied using Pb+Pb collisions at a center of mass energy of 2.76 TeV per nucleon. The measurements reported here utilize data collected with the ATLAS detector at the LHC from the 2010 Pb ion run corresponding to a total integrated luminosity of 7 μb−1. The results are obtained using fully reconstructed jets using the anti-kt algorithm with a per-event background subtraction procedure. A centrality-dependent modification of the dijet asymmetry distribution is observed, which indicates a higher rate of asymmetric dijet pairs in central collisions relative to peripheral and pp collisions. Simultaneously the dijet angular correlations show almost no centrality dependence. These results provide the first direct observation of jet quenching. Measurements of the single inclusive jet spectrum, measured with jet radius parameters R = 0.2,0.3,0.4 and 0.5, are also presented. The spectra are unfolded to correct for the finite energy resolution introduced by bot...

  3. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  4. Study of heavy ion collisions with TAPS

    NARCIS (Netherlands)

    Löhner, H.

    The photon spectrometer TAPS is a versatile instrument to measure nuclear bremsstrahlung and neutral mesons via their gamma decay. The formation and evolution of compressed nuclear matter is studied in heavy ion collisions at relativistic energies by analyzing the yield and spectral distribution of

  5. Studying Heavy Ion Collisions Using Methods From Cosmic Microwave Background (CMB Analysis

    Directory of Open Access Journals (Sweden)

    Gaardhøje J. J.

    2014-04-01

    Full Text Available We present and discuss a framework for studying the morphology of high-multiplicity events from relativistic heavy ion collisions using methods commonly employed in the analysis of the photons from the Cosmic Microwave Background (CMB. The analysis is based on the decomposition of the distribution of the number density of (charged particles expressed in polar and azimuthal coordinates into a sum of spherical harmonic functions. We present an application of the method exploting relevant symmetries to the study of azimuthal correlations arizing from collective flow among charged particles produced in relativistic heavy ion collisions. We discuss perspectives for event-by- event analyses, which with increasing collision energy will eventually open entirely new dimensions in the study of ultrarelaticistic heavy ion reactions.

  6. Excitation of atoms and molecules in collisions with highly charged ions

    International Nuclear Information System (INIS)

    Watson, R.L.

    1992-01-01

    This report discusses research of multicharged nitrogen, oxygen and carbon monoxide molecular ions produced with collision with multicharged argon ions. Properties like ionization, dissociation, and excitation are investigated

  7. Hadron chemistry in heavy ion collisions

    International Nuclear Information System (INIS)

    Montvay, I.; Zimanyi, J.

    1978-06-01

    In the models for energetic heavy ion reactions it is assumed that during the reaction a hot and dense nuclear matter, a fireball is formed from all or a part of nucleons of the target and projectile nuclei. The process is similar to the chemical processes leading to dynamical equilibrium. The relaxation times necessary to establish ''chemical'' equilibrium among different hadrons in hot, dense hadronic matter is deducted in a statistical model. Consequences for heavy ion collisions are discussed. The possibility of Bose-Einstein pion condensation around the break-up time of the nuclear fireball is pointed out. (D.P.)

  8. Quantum screening effects on the ion-ion collisions in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Ki, Dae-Han; Jung, Young-Dae

    2010-01-01

    The quantum screening effects on the ion-ion collisions are investigated in strongly coupled semiclassical hydrogen plasmas. The method of stationary phase and effective interaction potential containing the quantum mechanical effect are employed to obtain the scattering phase shift and scattering cross section as functions of the impact parameter, collision energy, de Broglie wavelength, and Debye length. The result shows that the scattering phase and cross section decrease with increasing de Broglie wavelength. It is also shown that the scattering cross section increases with an increase of the Debye length. Hence, it is found that the quantum effect suppresses the scattering cross section. In addition, the quantum effect on the scattering cross section is found to be more important in small Debye length domains.

  9. Cern academic training programme 2011: Selected Topics in the Physics of Heavy Ion Collisions

    CERN Multimedia

    PH Department

    2011-01-01

    LECTURE SERIES 14, 15 & 16 March 2011 Selected Topics in the Physics of Heavy Ion Collisions 11:00-12:00 - Bldg. 222-R-001 - Filtration Plant In these lectures, I discuss some classes of measurements accessible in heavy ion collisions at the LHC. How can these observables be measured, to what extent can they be calculated, and what do they tell us about the dense mesoscopic system created during the collision? In the first lecture, I shall focus in particular on measurements that constrain the spatio-temporal picture of the collisions and that measure centrality, orientations and extensions. In the subsequent lectures, I then discuss on how classes of measurements allow one to characterize collective phenomena, and to what extent these measurements can constrain the properties of matter produced in heavy ion collisions. Organiser: Maureen Prola-Tessaur/PH-EDU  

  10. MARTINI: An event generator for relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Gale, Charles; Jeon, Sangyong

    2009-01-01

    We introduce the modular algorithm for relativistic treatment of heavy ion interactions (MARTINI), a comprehensive event generator for the hard and penetrating probes in high-energy nucleus-nucleus collisions. Its main components are a time-evolution model for the soft background, PYTHIA 8.1, and the McGill-Arnold, Moore, and Yaffe (AMY) parton-evolution scheme, including radiative as well as elastic processes. This allows us to generate full event configurations in the high p T region that take into account thermal quantum chromodynamic (QCD) and quantum electrodynamic (QED) effects as well as effects of the evolving medium. We present results for the neutral pion nuclear modification factor in Au+Au collisions at the BNL Relativistic Heavy Ion Collider as a function of p T for different centralities and also as a function of the angle with respect to the reaction plane for noncentral collisions. Furthermore, we study the production of high-transverse-momentum photons, incorporating a complete set of photon-production channels.

  11. Fast heavy ion collisions with C60: Collective excitation

    International Nuclear Information System (INIS)

    Kadhane, Umesh; Kelkar, A.H.; Misra, D.; Kumar, Ajay; Tribedi, L.C.

    2006-01-01

    Ionization and fragmentation of C 60 in collision with 5 MeV/μm O 6+ ions are studied using recoil ion ToF method. Relative ionization cross sections up to C 60 4+ are determined. The qualitative trend for different C 60 charge states was compared against simple plasmon excitation model

  12. Pauli-blocking effect in two-body collisions dominates the in-medium effects in heavy-ion reactions near Fermi energy

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yong-Zhong, E-mail: yzxing@tsnu.edu.cn [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); Zhang, H.F. [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Liu, Xiao-Bin [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); Zheng, Yu-Ming [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); China Institute of Atomic Energy, P.O. Box 275(18), Beijing 102413 (China)

    2017-01-15

    The dissipation phenomenon in the heavy-ion reaction at incident energy near Fermi energy is studied by simulating the reactions {sup 129}Xe + {sup 129}Sn and {sup 58}Ni + {sup 58}Ni with isospin-dependent quantum molecular dynamics model (IQMD). The isotropy ratio in terms of transverse and longitudinal energies of the free protons emitted in the final states of these reactions is quantitatively analyzed to explore the in-medium correlation of the binary collisions. Comparison of the calculations with the experimental data recently released by INDRA collaboration exhibits that the ratio is very sensitive to the Pauli blocking effect in two-body collisions and Pauli exclusion principle is indispensable in the theoretical simulations for the heavy-ion reactions near the Fermi energy.

  13. Collisions of antiprotons with hydrogen molecular ions

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2009-01-01

    Time-dependent close-coupling calculations of the ionization and excitation cross section for antiproton collisions with molecular hydrogen ions are performed in an impact energy range from 0.5 keV to 10 MeV. The Born-Oppenheimer and Franck-Condon approximations as well as the impact parameter...

  14. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    Science.gov (United States)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Phobos Collaboration

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √ SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/ overlinepp and e +e - data. / in nuclear collisions at high energy scales with √ s in a similar way as Nch in e +e - collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  15. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G. E-mail: glaurent@ganil.fr; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A

    2003-05-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O{sup 6+} + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O{sup 4+} (1s{sup 2}nln{sup '}l{sup '}) populated after double electron-capture events.

  16. Ion surface collisions on surfaces relevant for fusion devices

    International Nuclear Information System (INIS)

    Rasul, B.; Endstrasser, N.; Zappa, F.; Grill, V.; Scheier, P.; Mark, T.

    2006-01-01

    Full text: One of the great challenges of fusion research is the compatibility of reactor grade plasmas with plasma facing materials coating the inner walls of a fusion reactor. The question of which surface coating should be used is of particular interest for the design of ITER. The impact of energetic plasma particles leads to sputtering of wall material into the plasma. A possible solution for the coating of plasma facing walls would be the use of special carbon surfaces. Investigations of these various surfaces have been started at BESTOF ion-surface collision apparatus. Experiment beam of singly charged molecular ions of hydrocarbon molecules, i.e. C 2 H + 4 , is generated in a Nier-type electron impact ionization source at an electron energy of about 70 eV. In the first double focusing mass spectrometer the ions are mass and energy analyzed and afterwards refocused onto a surface. The secondary reaction products are monitored using a Time Of Flight mass spectrometer. The secondary ion mass spectra are recorded as a function of the collision energy for different projectile ions and different surfaces. A comparison of these spectra show for example distinct changes in the survival probability of the same projectile ion C 2 H + 4 for different surfaces. (author)

  17. Jets in heavy ion collisions with CMS

    CERN Document Server

    Salur, Sevil

    2016-01-01

    Jet physics in heavy ion collisions is a rich field which has been rapidly evolving since the first observations of medium interactions at RHIC through back-to-back hadron correlations and at LHC via reconstructed jets. In order to completely characterize the final state via jet-medium interactions and distinguish between competing energy loss mechanisms complementary and robust jet observables are investigated. Latest developments of jet finding techniques and their applications to heavy ion environments are discussed with an emphasis given on experimental results from CMS experiment.

  18. Reverse engineering of heavy-ion collisions: Unraveling initial conditions from anisotropic flow data

    International Nuclear Information System (INIS)

    Retinskaya, Ekaterina

    2014-01-01

    Ultra-Relativistic heavy-ion physics is a promising field of high energy physics connecting two fields: nuclear physics and elementary particle physics. Experimental achievements of the last years have provided an opportunity to study the properties of a new state of matter created in heavy-ion collisions called quark-gluon plasma. The initial state of two colliding nuclei is affected by fluctuations coming from wave- functions of nucleons. These fluctuations lead to the momentum anisotropy of the hadronic matter which is observed by the detectors. The system created in the collision behaves like a fluid, so the initial state is connected to the final state via hydrodynamic evolution. In this thesis we model the evolution with relativistic viscous hydrodynamics. Our results, combined with experimental data, give non trivial constraints on the initial state, thus achieving 'reverse engineering' of the heavy-ion collisions. The observable which characterizes the momentum anisotropy is the anisotropic flow v n . We present the first measurements of the first harmonic of the anisotropic flow called directed flow v 1 in Pb-Pb collisions at the LHC. We then perform the first viscous hydrodynamic modeling of directed flow and show that it is less sensitive to viscosity than higher harmonics. Comparison of these experimental data with the modeling allows to extract the values of the dipole asymmetry of the initial state, which provides constraints on the models of initial states. A prediction for directed flow v 1 in Au-Au collisions is also made for RHIC. We then perform a similar modeling of the second and third harmonics of the anisotropic flow, called respectively elliptic v 2 and triangular v 3 flow. A combined analysis of the elliptic and triangular flow data compared with viscous hydrodynamic calculations allows us to put constraints on initial ellipticity and triangularity of the system. These constraints are then used as a filter for different models of

  19. $J/\\psi$ Absorption in Heavy Ion Collisions

    CERN Document Server

    Maiani, Luciano; Polosa, Antonio; Riquer, V

    2004-01-01

    We present a new calculation of the pi-J/psi dissociation cross sections within the Constituent Quark-Meson Model recently introduced. To discuss the absorption of J/psi in heavy-ion collisions, we assume the J/psi to be produced inside a thermalized pion gas, as discussed by Bjorken, and introduce the corrections due to absorption by nuclear matter as well. We fit the absorption length of the J/psi to the data obtained at the CERN SPS by the NA50 Collaboration for Pb-Pb collisions. Collisions of lower centrality allow us to determine the temperature and the energy density of the pion gas. For both these quantities we find values close to those indicated by lattice gauge calculations for the transition to a quark-gluon plasma. A simple extrapolation to more central collisions, which takes into account the increase of the energy deposited due to the increased nucleon flux, fails to reproduce the break in J/psi absorption indicated by NA50, thus lending support to the idea that an unconfined quark-gluon phase m...

  20. Decay of the vacuum in heavy ion collisions

    International Nuclear Information System (INIS)

    Mueller, B.

    1984-10-01

    The neutral electron-positron vacuum state becomes unstable in very strong electric fields of nuclei with Z>173 and decays into a charged vacuum by spontaneous positron emission. Such giant nuclear systems can be formed in collisions of very heavy ions (U+U, U+Cm, etc.) for a period of 10 -20 s or more. Recent experimental results revealing line structures in the positron spectra observed in these collisions are discussed and their implications for quantum electrodynamics and nuclear physics are pointed out. (orig.)

  1. The production of Higgs bosons in high-energetic heavy-ion collisions

    International Nuclear Information System (INIS)

    Vidovic, M.

    1991-09-01

    The aim of this diploma thesis was to produce the Higgs boson in high-energetic, peripheral heavy-ion collisions by purely electromagnetic processes. In order to take only peripheral collisions into consideration and to avoid the strong hadronic background of central collisions the equivalent-photon method for the case of the Higgs boson was extended concerning an impact-parameter study. By this it was possible to exclude the contribution of central collisions by cut in the impact parameter at b=2R, in order to determine thus the production rate for purely peripheral collisions. (orig./HSI) [de

  2. Resonant Ion Pair Formation in Electron Collisions with Ground State Molecular Ions

    International Nuclear Information System (INIS)

    Zong, W.; Dunn, G.H.; Djuric, N.; Greene, C.H.; Neau, A.; Zong, W.; Larsson, M.; Al-Khalili, A.; Neau, A.; Derkatch, A.M.; Vikor, L.; Shi, W.; Rosen, S.; Le Padellec, A.; Danared, H.; Ugglas, M. af

    1999-01-01

    Resonant ion pair formation from collisions of electrons with ground state diatomic molecular ions has been observed and absolute cross sections measured. The cross section for HD + is characterized by an abrupt threshold at 1.9thinspthinspeV and 14 resolved peaks in the range of energies 0≤E≤14 eV . The dominant mechanism responsible for the structures appears to be resonant capture and stabilization, modified by two-channel quantum interference. Data on HF + show structure correlated with photoionization of HF and with dissociative recombination of electrons with this ion. copyright 1999 The American Physical Society

  3. Enhancement of strangeness in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Grassi, F.; Heiselberg, H.

    1990-01-01

    The theoretical and experimental conditions to obtain strange particle production in heavy ion collisions at high energies are discussed, by analysis of results obtained from Super Proton Synchrotron - CERN and Alternating Gradient Synchrotron in United States. (M.C.K.)

  4. Central collisions in intermediate energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1979-01-01

    The critical collisions in intermediate energy heavy-ion reactions are examined from both a microscopic and macroscopic viewpoint. In the microscopic description the proper tool is the extended TDHF approximation involving both the mean field and the particle collisions. To understand the underlying physics, the effect of the mean field and the effect of particle collisions are studied separately. It is found that th sudden increase in the density of the overlapping region can cause the volcano effect, leading to the complete disintegration of one of the nuclei. The self-consistent mean field also gives rise to the bunching instability when the two Fermi spheres of the colliding nucleons separate. The collision between nucleons, on the other hand, leads to irreversible dissipation, thermalization, and the possibility of a hydrodynamical description of the dynamics. Next is studied the dynamics of central collisions using the hydrodynamical description for many combinations of targets and projectiles at different energies. The formation of shock waves, sidesplash, and the complete disintegration of the whole nucleus are examined. Nuclear viscosity is found to affect the angular distribution of the reaction products and also the maximum compression ratio achieved during the collision. 28 references

  5. Hard photons and mesons as probes of heavy ion collision dynamics

    International Nuclear Information System (INIS)

    Metag, V.

    1991-01-01

    Hard photon production in heavy ion collisions has been studied by a large number of groups at various laboratory and a large body of data has been collected. Recent results reviewed are summarized here in a systematics for photon emission. A brief discussion of π 0 -production in heavy ion collisions will be given including first results with the Two Arm Photon spectrometer TAPS obtained at SIS. Furthermore, the new perspectives for the study of compressed nuclear matter by meson emission will be outlined. (orig.)

  6. Isospin effects on pt-differential flow in heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Bansal, Rubina; Jain, Anupriya; Kumar, Suneel

    2014-01-01

    This paper aims to study the role of isospin degree of freedom in heavy-ion collisions through the transverse momentum (p t ), neutron to proton ratio and system mass dependence of p t -differential transverse flow. Our study shows that (p t )-differential transverse flow dependence can act as sensitive probe to study symmetry energy and its density dependence compared to the energy of vanishing flow. Symmetry energy and its density dependence play a dominant role over the isospin-dependence of nucleon–nucleon cross-section at Fermi energy. (author)

  7. Initial state fluctuations and final state correlations in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Luzum, Matthew; Petersen, Hannah

    2014-01-01

    We review the phenomenology and theory of bulk observables in ultra-relativistic heavy-ion collisions, focusing on recent developments involving event-by-event fluctuations in the initial stages of a heavy-ion collision, and how they manifest in observed correlations. We first define the relevant observables and show how each measurement is related to underlying theoretical quantities. Then we review the prevailing picture of the various stages of a collision, including the state-of-the-art modeling of the initial stages of a collision and subsequent hydrodynamic evolution, as well as hadronic scattering and freeze-out in the later stages. We then discuss the recent results that have shaped our current understanding and identify the challenges that remain. Finally, we point out open issues and the potential for progress in the field. (topical review)

  8. Effective equation of state of hot and dense matter in nuclear collisions around FAIR energy

    Directory of Open Access Journals (Sweden)

    Bravina L.

    2015-01-01

    Full Text Available The chemical and thermal equilibration in the central zone of heavy-ion collisions at energies around FAIR is studied within two microscopic models. Two systems are utilized for the analysis: (i central cubic cell of fixed volume V = 125 fm3 and (ii expanding central area of uniformly distributed energy density. It is found that kinetic, thermal, and chemical equilibration of the expanding hadronic matter are nearly approached in both systems for the period of 10–18 fm/c. The expansion proceeds almost isentropically. The extracted equation of state (EOS in P − ɛ plane has a linear dependence P = aɛ, where a ≡ c2s slightly increases with the collision energy from 0.12 to 0.145. Linear dependencies for the EOS are found also in T − μB and T − μS planes. The characteristic kinks observed in the last two phase diagrams are linked to inelastic freeze-out in the expanding fireball.

  9. Event by event fluctuations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2001-01-01

    The authors discuss the physics underlying event-by-event fluctuations in relativistic heavy ion collisions. We will argue that the fluctuations of the ratio of positively over negatively charged particles may serve as a unique signature for the Quark Gluon Plasma.

  10. Calculations on Electron Capture in Low Energy Ion-Molecule Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Stancil, P.C. [Oak Ridge National Lab., TN (United States); Zygelman, B. [W.M. Keck Lab. for Computational Physics, Univ. of Nevada, Las Vegas, NV (United States); Kirby, K. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    1997-12-31

    Recent progress on the application of a quantal, molecular-orbital, close-coupling approach to the calculation of electron capture in collisions of multiply charged ions with molecules is discussed. Preliminary results for single electron capture by N{sup 2+} with H{sub 2} are presented. Electron capture by multiply charged ions colliding with H{sub 2} is an important process in laboratory and astrophysical plasmas. It provides a recombination mechanism for multiply charged ions in x-ray ionized astronomical environments which may have sparse electron and atomic hydrogen abundances. In the divertor region of a tokamak fusion device, charge exchange of impurity ions with H{sub 2} plays a role in the ionization balance and the production of radiative energy loss leading to cooling, X-ray and ultraviolet auroral emission from Jupiter is believed to be due to charge exchange of O and S ions with H{sub 2} in the Jovian atmosphere. Solar wind ions interacting with cometary molecules may have produced the x-rays observed from Comet Hyakutake. In order to model and understand the behavior of these environments, it is necessary to obtain total, electronic state-selective (ESS), and vibrational (or rotational) state-selective (VSS) capture cross sections for collision energies as low as 10 meV/amu to as high as 100 keV/amu in some instances. Fortunately, charge transfer with molecular targets has received considerable experimental attention. Numerous measurements have been made with flow tubes, ion traps, and ion beams. Flow tube and ion trap studies generally provide information on rate coefficients for temperatures between 800 K and 20,000 K. In this article, we report on the progress of our group in implementing a quantum-mechanical Molecular Orbital Close Coupling (MOCC) approach to the study of electron capture by multiply charged ions in collisions with molecules. We illustrate this with a preliminary investigation of Single Electron Capture (SEC) by N{sup 2+} with H

  11. Charged Particle, Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Raghunath Sahoo

    2015-01-01

    Full Text Available We review the charged particle and photon multiplicities and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons, and the transverse energy measurement.

  12. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    Science.gov (United States)

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  13. Ultra relativistic heavy ions collisions or the search for quark-gluon plasmas

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1985-03-01

    This paper reviews some aspects of the physics of ultra-relativistic heavy ion collisions. The qualitative changes expected in the properties of hadronic matter at high temperature and/or large baryon density are described in terms of simple models. We discuss a scenario giving the space-time evolution of a quark-gluon plasma. Finally we address the difficult question of the possible signatures of the formation of a quark-gluon plasma in heavy ion collisions

  14. Gauge/String Duality, Hot QCD and Heavy Ion Collisions

    CERN Document Server

    Casalderrey-Solana, Jorge; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim

    2011-01-01

    Over the last decade, both experimental and theoretical advances have brought the need for strong coupling techniques in the analysis of deconfined QCD matter and heavy ion collisions to the forefront. As a consequence, a fruitful interplay has developed between analyses of strongly-coupled non-abelian plasmas via the gauge/string duality (also referred to as the AdS/CFT correspondence) and the phenomenology of heavy ion collisions. We review some of the main insights gained from this interplay to date. To establish a common language, we start with an introduction to heavy ion phenomenology and finite-temperature QCD, and a corresponding introduction to important concepts and techniques in the gauge/string duality. These introductory sections are written for nonspecialists, with the goal of bringing readers ranging from beginning graduate students to experienced practitioners of either QCD or gauge/string duality to the point that they understand enough about both fields that they can then appreciate their in...

  15. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1992-01-01

    This Technical Progress Report describes the progress made on the research objectives during the past twelve months. This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic (specifically, noble gas and atomic hydrogen) targets at intermediate energies. These processes include: elastic scattering,single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H - is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements in progress will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion-atom collisions. This series of experiments required the construction of a new facility and the initial ion beam was accelerated through the apparatus in April 1991

  16. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters

    International Nuclear Information System (INIS)

    Adrouche, N.

    2006-09-01

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne 9+- argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne 9+ with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne 9+ beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  17. Application of hydrodynamics to heavy ion collisions

    International Nuclear Information System (INIS)

    Felsberger, Lukas

    2014-01-01

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  18. Application of hydrodynamics to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Felsberger, Lukas

    2014-12-02

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  19. Electrons with continuous energy distribution from energetic heavy ion collisions

    International Nuclear Information System (INIS)

    Berenyi, D.

    1984-01-01

    The properties and origin of continuous electron spectrum emitted in high energy heavy ion collisions are reviewed. The basic processes causing the characteristic regions of the continuous spectrum are described. The contribution of electrons ejected from the target and from the projectile are investigated in detail in the cases of light and heavy projectiles. The recently recognized mechanisms, electron-capture-to-continuum (ECC) and electron-loss-to-continuum (ELC), leading to a cusp in forward direction, and their theoretical interpretations are discussed. The importance of data from ion-atom collisions in the field of atomic physics and in applications are briefly summarized. (D.Gy)

  20. $W$ boson production in ultrarelativistic heavy-ion collisions at the CERN LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356981

    Ultrarelativistic heavy-ion collisions at the CERN Large Hadron Collider (LHC) are capable of producing a medium of deconfined quarks and gluons. This phase of nuclear matter is called a Quark-Gluon Plasma (QGP) and is believed to have been present during the first microseconds following the Big Bang. $\\Wboson$ bosons are a unique probe in a QGP since they do not carry color charge and thus do not interact with a strongly-coupled medium. Furthermore, the kinematics of $\\Wboson$ bosons are sensitive to the Bjorken momentum fraction $x$ of partons within nucleons, and therefore $\\Wboson$ bosons may also be used to constrain parton distribution functions and to detect the presence of nuclear effects. This thesis presents the measurement of $\\Wboson$ boson production in the dense nuclear environment created in $\\PbPb$ collisions at a per nucleon pair center-of-mass energy $\\sqrt{s_{\\mathrm{NN}}}=2.76\\TeV$. The data for this measurement were collected with the ATLAS detector in 2011 and correspond to a...

  1. Pion correlations in heavy ion collision

    International Nuclear Information System (INIS)

    Venema, L.

    1991-01-01

    Charged π-correlations are a well established experimental technique to obtain information about π-source sizes. This is, however, not the case for π 0 's, as they decay into photons, resulting in measurements of 4 photon correlations. Here is described what these correlations are, what the problems are to detect and interpret them. These correlations are an additional way to get more information out of the heavy ion collisions. (orig.)

  2. Onium Production in Heavy-Ion Collisions at the LHC - Signals and Backgrounds in the Two-Muon Channel

    CERN Document Server

    Morsch, Andreas; CERN. Geneva

    1995-01-01

    Suppression of Onium-resonances (J/y, y',  ,  ',  ") in heavy ion collisions at the LHC may give hints to the formation of a quark gluon plasma. We studied the production of these resonances decaying into µ+µ- pairs in PbPb, CaCa and for comparison in pp collisions. Background sources are ¹, Kµ decays (1m decay length was assumed) and open heavy flavour (charm and beauty) semimuonic decays which may also serve as a normalisation. We discuss in detail the signals and the different backgrounds for a forward detector (Q<15¡) which is sensitive down to small transverse momenta.

  3. Microscopic approach to subthreshold pion production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Tohyama, M.; Kaps, R.; Masak, D.; Mosel, U.

    1985-01-01

    A microscopic approach to subthreshold pion production in heavy-ion collisions is proposed, in which the wave function of the nucleon system is approximated in the time-dependent Hartree-Fock theory and an effective interaction for the pion-production process is taken from (p,π) reaction theories. The model is applied to pion production in 16 O + 16 O collisions. (orig.)

  4. Dynamics in ion-molecule collisions at high velocities: One- and two-electron processes

    International Nuclear Information System (INIS)

    Wang, Yudong.

    1992-01-01

    This dissertation addresses the dynamic interactions in ion-molecule collisions. Theoretical methods are developed for single and multiple electron transitions in fast collisions with diatomic molecules by heavy-ion projectiles. Various theories and models are developed to treat the three basic inelastic processes (excitation, ionization and charge transfer) involving one and more electrons. The development, incorporating the understanding of ion-atom collision theories with some unique characteristics for molecular targets, provides new insights into phenomena that are absent from collisions with atomic targets. The influence from the multiple scattering centers on collision dynamics is assessed. For diatomic molecules, effects due to a fixed molecular orientation or alignment are calculated and compared with available experimental observations. Compared with excitation and ionization, electron capture, which probes deeper into the target, presents significant two-center interference and strong orientation dependence. Attention has been given in this dissertation to exploring mechanisms for two-and multiple electron transitions. Application of independent electron approximation to transfer excitation from molecular hydrogen is studied. Electron-electron interaction originated from projectile and target nuclear centers is studied in conjunction with the molecular nature of target. Limitations of the present theories and models as well as possible new areas for future theoretical and experimental applications are also discussed. This is the first attempt to describe multi-electron processes in molecular dynamics involving fast highly charged ions

  5. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters; Diagnostic du plasma de la source d'ions ECR SIMPA par spectroscopie X, Collision d'ions neon hydrogenoides avec des agregats d'argon

    Energy Technology Data Exchange (ETDEWEB)

    Adrouche, N

    2006-09-15

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne{sup 9+-} argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne{sup 9+} with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne{sup 9+} beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  6. Electron capture in ion atom and ion-ion collisions

    International Nuclear Information System (INIS)

    Barat, M.

    1986-01-01

    Electron capture (EC) by positive ions in collision with various targets has remained one of the most important subjects of research since the early 30's. From a theoretical point of view, EC is obviously a coupled 3-body problem: at least two cores and an active electron that jumps between them. Practical interest in EC arose in a variety of fields. Recently a renewed interest arose from the physics of thermonuclear fusion, where capture by highly charged ionic impurities were found to be an important process in tokamak devices. For that reasons, a number of reviews were devoted to this subject during the past years, including lectures given in various NATO advanced science institutes. The aim of this lecture is not at all to add a new review to this list, but (i) to summarize the very basis of the present theoretical approaches at low and moderate collision energy, (ii) to pinpoint some crucial difficulties in the theoretical treatment, (iii) to select specific examples which, to the taste of the author, reflect some present practical interest, or some significant advances. 48 references, 38 figures, 1 table

  7. Approach to equilibrium in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Epelbaum, Thomas

    2014-01-01

    This thesis deals with the theory of the early stages of a heavy ion collision. Just after such a collision, the matter produced - called the Quark-Gluon-Plasma (QGP) - has been shown to be far out of thermal equilibrium. One would like to know whether the QGP thermalizes, and what is the typical time scale for this. Proving that the QGP thermalizes would also justify from first principles the hydrodynamical treatment of the subsequent evolution of a heavy ion collision. After having recalled some essential theoretical concepts, the manuscript addresses these questions in two different theories. In a first part, we study a scalar field theory. Starting from an out of equilibrium initial condition, one studies the approach to equilibrium in a fixed volume or in a one-dimensional expanding system. In both cases, clear signs of thermalization are obtained: an equation of state is formed, the pressure tensor becomes isotropic and the occupation number approaches a classical thermal distribution. These results are obtained thanks to the classical statistical approximation (CSA), that includes contributions beyond the Leading Order perturbative calculation. In a second part, the Color Glass Condensate - a quantum chromodynamics (QCD) effective theory well suited to describe the early life of the QGP - is used to treat more realistically the approach to thermalization in heavy ion collisions. After having derived some analytical prerequisites for the application of the CSA, the numerical simulations performed with the Yang-Mills equations show evidences of an early onset of hydrodynamical behavior of the QGP: the system becomes isotropic on short time scales, while the shear viscosity over entropy ratio is very small, which is characteristic of a quasi perfect fluid. (author) [fr

  8. Measurement of quarkonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Kremer, Jakub Andrzej; The ATLAS collaboration

    2017-01-01

    The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system formed in nucleus-nucleus collisions at the LHC. In addition to hot matter effects in heavy-ion collisions, cold nuclear effects may also affect quarkonia production. Therefore, a full assessment requires detailed studies on the effects present in both A+A and $\\textit{p}$+A collisions. Based on $\\textit{p}$+Pb data collected in 2013 and $\\textit{pp}$ and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt $J/\\psi$ and $\\psi\\left(2\\mathrm{S}\\right)$ productions as well as $\\Upsilon\\left(n\\mathrm{S}\\right)$ production via the di-muon decay final states. The results of the various measurements are discussed.

  9. Studying extremely peripheral collisions of relativistic heavy ions

    International Nuclear Information System (INIS)

    Fatyga, M.

    1990-01-01

    Relativistic heavy ion facilities have been proposed (and in some cases constructed) with an intent to search for a new state of matter, a quark gluon plasma. As with all tools in the experimental physics, one should always search for ways in which relativistic heavy ions can be used to study physical phenomena beyond this original goal. New possibilities for a study of higher order photonuclear excitations in extremely peripheral collisions of relativistic heavy ions are discussed in this contribution. Data on the electromagnetic and nuclear fragmentation of a 14.6Gev/nucleon 28 Si projectile are presented

  10. Selected Topics in the Physics of Heavy Ion Collisions (1/3)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    that constrain the spatio-temporal picture of the collisions and that measure centrality, orientations and extensions. In the subsequent lectures, I then discuss on how classes of measurements allow one to characterize collective phenomena, and to what extent these measurements can constrain the properties of matter produced in heavy ion collisions.

  11. Proceedings of the Budapest workshop on relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Csoergoe, T.; Hegyi, S.; Levai, P.

    1993-04-01

    This volume is the Proceedings of the Budapest workshop on relativistic heavy ion collisions held in Budapest, 10-13 Aug, 1992. The topics include experimental heavy ion physics, Bose-Einstein correlations, intermittency, relativistic transport theory, Quark-Gluon Plasma rehadronization, astronuclear physics and cosmology. All contributions were indexed and abstracted. (author)

  12. Particle-production mechanism in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bush, B.W.; Nix, J.R.

    1994-01-01

    We discuss the production of particles in relativistic heavy-ion collisions through the mechanism of massive bremsstrahlung, in which massive mesons are emitted during rapid nucleon acceleration. This mechanism is described within the framework of classical hadrodynamics for extended nucleons, corresponding to nucleons of finite size interacting with massive meson fields. This new theory provides a natural covariant microscopic approach to relativistic heavy-ion collisions that includes automatically spacetime nonlocality and retardation, nonequilibrium phenomena, interactions among all nucleons, and particle production. Inclusion of the finite nucleon size cures the difficulties with preacceleration and runaway solutions that have plagued the classical theory of self-interacting point particles. For the soft reactions that dominate nucleon-nucleon collisions, a significant fraction of the incident center-of-mass energy is radiated through massive bremsstrahlung. In the present version of the theory, this radiated energy is in the form of neutral scalar (σ) and neutral vector (ω) mesons, which subsequently decay primarily into pions with some photons also. Additional meson fields that are known to be important from nucleon-nucleon scattering experiments should be incorporated in the future, in which case the radiated energy would also contain isovector pseudoscalar (π + , π - , π 0 ), isovector scalar (δ + , δ - , δ 0 ), isovector vector (ρ + , ρ - , ρ 0 ), and neutral pseudoscalar (η) mesons

  13. Studies of collision mechanisms in electron capture by slow multiply charged ions

    International Nuclear Information System (INIS)

    Gilbody, H B; McCullough, R W

    2004-01-01

    We review measurements based on translational energy spectroscopy which are being used to identify and assess the relative importance of the various collision mechanisms involved in one-electron capture by slow multiply charged ions in collisions with simple atoms and molecules

  14. In-medium Modifications of Hadron Masses and Chemical Freeze-out in Ultra-relativistic Heavy-ion Collisions

    International Nuclear Information System (INIS)

    Florkowski, W.; Broniowski, W.

    1999-10-01

    We confront the hypothesis of chemical freeze-out in ultra-relativistic heavy-ion collisions with the hypothesis of large modifications of hadron masses in nuclear medium. We find that the thermal-model predictions for the ratios of particle multiplicities are sensitive to the values of in-medium hadronic masses. In particular, the π + /p ratio decreases by 35% when the masses of all hadrons (except for pseudo-Goldstone bosons) are scaled down by 30%. (author)

  15. Lead-ion collisions: the LHC achieves a new energy record

    CERN Multimedia

    John Jowett

    2015-01-01

    After the Bevatron (Berkeley, 1954) – which broke the energy barrier of billions of electronvolts – and the Tevatron (Fermilab, 1987) – which reached a trillion electronvolts – the LHC is now reaching the peta- (quadrillion) electronvolt level with its heavy-ion collisions (see here). However, one should remember that the average energy per colliding nucleon pair, within the 1 PeV “fireball”, is 5 TeV (compared to 13 TeV in the recent proton-proton collisions).   Heavy-ion collision events from the ALICE, ATLAS, CMS and LHCb experiments. Two of the great particle accelerators of the past were named after the symbolic energy barrier that they broke. The Bevatron (for "billions of electronvolts synchrotron"), at Berkeley in 1954, was the first to break the barrier of a billion electronvolts or BeV (now known as a gigaelectronvolt or GeV) in the centre-of-mass, by a large enough margin to create the laboratory’s ...

  16. Thoughts on non-perturbative thermalization and jet quenching in heavy ion collisions

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2006-01-01

    We start by presenting physical arguments for the impossibility of perturbative thermalization leading to (non-viscous) Bjorken hydrodynamic description of heavy ion collisions. These arguments are complimentary to our more formal argument presented in [Yu.V. Kovchegov, hep-ph/0503038]. We argue that the success of hydrodynamic models in describing the quark-gluon system produced in heavy ion collisions could only be due to non-perturbative strong coupling effects. We continue by studying non-perturbative effects in heavy ion collisions at high energies. We model non-perturbative phenomena by an instanton ensemble. We show that non-perturbative instanton vacuum fields may significantly contribute to jet quenching in nuclear collisions. At the same time, the instanton ensemble contribution to thermalization is likely to be rather weak, leading to non-perturbative thermalization time comparable to the time of hadronization. This example illustrates that jet quenching is not necessarily a signal of a thermalized medium. Indeed, since the instanton models do not capture all the effects of QCD vacuum (e.g., they do not account for confinement), there may be other non-perturbative effects facilitating thermalization of the system

  17. Jets and Jet-like Correlations in Heavy Ion and p+p Collisions at PHENIX

    International Nuclear Information System (INIS)

    2010-01-01

    Jets from heavy ion collisions provide a measurement of the medium-induced parton energy loss and the in-medium fragmentation properties. The medium modification effects are determined by comparing to a p+p baseline measurement, but the high multiplicity background in a heavy ion collision inhibits the direct application of traditional jet reconstruction techniques and novel approaches are needed to deal with this environment. Alternatively, angular correlations between the hadronic fragments of energetic partons can be used to understand the hot dense matter produced in relativistic heavy ion collisions. The yield and shape modifications of the away side peaks as function of transverse momentum compared to p+p has been interpreted as a medium response to parton energy loss. Direct photon-hadron correlations are another excellent channel to study jets from heavy ion collisions. Photons do not interact strongly with the medium and thus the photon approximately balances the momentum of the opposing jet, allowing the measurement of the effective modification to the fragmentation function through jet energy loss in the medium.

  18. Entropy of a system formed in the collision of heavy ions

    International Nuclear Information System (INIS)

    Gudima, K.K.; Roepke, G.; Toneev, V.D.; Schulz, H.

    1987-01-01

    In the framework of the cascade model, we study the evolution of the entropy of a system formed in the collision of heavy ions. The method of calculating the entropy is based on a smoothing of the momentum distribution function by means of introducing a temperature field. It is shown that the resulting entropy per nucleon is very sensitive to the specific partitioning of phase space into cells in the free-expansion phase of the reaction. From comparison with experiment it is found that the cascade calculations do not show a preference for a particular model calculation of the entropy, but predict that the entropy is smaller than the values following from equilibrium statistics

  19. Strange particle measurements from the EOS TPC

    International Nuclear Information System (INIS)

    Justice, M.

    1995-02-01

    A high statistics sample of Λ's produced in 2 GeV/nucleon 5 8Ni + nat Cu collisions has been obtained with the EOS Time Projection Chamber at the Bevalac. The coverage of the EOS TPC is essentially 100% for y > y cm and extends down to P T = 0 where interesting effects such as collective radial expansion may be important. In addition, the detection of a majority of the charged particles in the TPC, along with the presence of directed flow for protons and heavier fragments at this beam energy, allows for the correlation of A production with respect to the event reaction plane. Our preliminary analysis indicates the first observation of a sidewards flow signature for A's. Comparisons with the cascade code ARC are made

  20. Multivariable hypergeometric functions for ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gasaneo, G.; Colavecchia, F.D.; Garibotti, C.R

    1999-06-03

    In this work we present a correlated wave function for a three-body continuum Coulomb problem. This state is described by the two-variables PHI{sub 2} hypergeometric function. We examine the properties of this function and their differences with previous uncorrelated models. The PHI{sub 2} wave function can be considered as a final state of ion-atom ionizing collisions, giving rise to both undistorted (Born-PHI{sub 2}) and distorted (EIS-PHI{sub 2}) models. We obtain double differential cross sections with the Born-PHI{sub 2} theory for proton-helium collisions in the intermediate to high energy regime. They exhibit all the main features of the electronic emission process and agree with the experimental data.

  1. Ultra-peripheral collisions of heavy ions at RHIC and the LHC

    CERN Document Server

    Nystrand, J

    2007-01-01

    This paper deals with so-called Ultra-Peripheral Collisions (UPCs) of heavy ions. These can be defined as collisions in which no hadronic interactions occur because of the large spatial separation between the projectile and target. The interactions are instead mediated by the electromagnetic field. Two types of ultra-peripheral collisions can be distinguished: purely electro-magnetic interactions (two-photon interactions) and photonuclear interactions, in which a photon from the projectile interacts with the hadronic component of the target.

  2. Evaluation of electon and nuclear bremsstrahlung in heavy ion collisions

    International Nuclear Information System (INIS)

    Gippner, P.

    1975-01-01

    The detection of quasimolecular X-ray continua provides the possibility of investigating the electron shells of quasimolecules transiently formed during adiabatic heavy ion-atomic collision. The contribution of the electron and nuclear bremsstrahlung to quasimolecular X-ray continua observed in bombarding various targets with 65 and 96 MeV Nb ions were estimated

  3. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla

    1968-01-01

    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  4. ELECTRON-CAPTURE IN HIGHLY-CHARGED ION-ATOM COLLISIONS

    NARCIS (Netherlands)

    MORGENSTERN, R

    1993-01-01

    An attempt is made to identify the most important mechanisms responsible for the rearrangement of electrons during collisions between multiply charged ions and atoms at keV energies. It is discussed to which extent the influence of binding energy, angular momentum of heavy particles and electrons,

  5. Heavy-ion peripheral collisions in the Fermi energy domain: fragmentation processes or dissipative collisions

    International Nuclear Information System (INIS)

    Borderie, B.; Rivet, M.F.; Tassan-Got, L.

    1990-01-01

    For several years a new field in nuclear physics has been opened by the opportunity to accelerate heavy ions through an energy domain including the Fermi energy of nucleons. This new domain has to be seen as a link between dissipative processes observed at low energies, dominated by mean field considerations, and high energy collisions for which nucleon-nucleon collisions play an important role. This paper reviews our present knowledge on peripheral collisions. A reminder of contiguous energy domains is done as well as their extension in the new field. Specific calculations are also presented. Finally a wide comparison between experiments and calculations is performed. A fast dissipative stage proves to be responsible for the dominant mechanisms involved, at least when the incident energy is lower than 50 MeV/nucleon

  6. Fine structures of atomic excited states: precision atomic spectroscopy and electron-ion collision process

    International Nuclear Information System (INIS)

    Gao Xiang; Cheng Cheng; Li Jiaming

    2011-01-01

    Scientific research fields for future energies such as inertial confinement fusion researches and astrophysics studies especially with satellite observatories advance into stages of precision physics. The relevant atomic data are not only enormous but also of accuracy according to requirements, especially for both energy levels and the collision data. The fine structure of high excited states of atoms and ions can be measured by precision spectroscopy. Such precision measurements can provide not only knowledge about detailed dynamics of electron-ion interactions but also a bench mark examination of the accuracy of electron-ion collision data, especially incorporating theoretical computations. We illustrate that by using theoretical calculation methods which can treat the bound states and the adjacent continua on equal footing. The precision spectroscopic measurements of excited fine structures can be served as stringent tests of electron-ion collision data. (authors)

  7. Jets in heavy ion collisions with the ATLAS detector

    CERN Document Server

    Santos, Helena; The ATLAS collaboration

    2018-01-01

    Jets constitute a golden probe to study the quark gluon plasma produced in heavy ion collisions at the LHC. Being produced at the early stages of the collisions, they are expected to be modified as propagating through the hot and dense medium. A signature of the modification is the energy loss lowering the jet yields at a given transverse momentum. A factor of two suppression is observed in central Pb+Pb collisions with respect to pp collisions. Other signatures are the modification of the dijet momentum balance and the modification of fragmentation functions. This talk will present the currently available jet results from ATLAS in Run 2. The high statistical significance of this data sample collected by ATLAS in Run 2 allows precision measurements of these observables in a wide range of transverse momentum, centrality and rapidity intervals.

  8. Constituent quarks and multi-strange baryon production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Sahoo, Raghunath; Behera, Nirbhay K.; Nandi, Basanta K.; Varma, Raghava

    2009-01-01

    Relativistic heavy-ion collisions aim at creating matter at extreme conditions of energy density and temperature which is governed by the partonic degrees of freedom called Quark-Gluon Plasma (QGP). In the early phase of ultra-relativistic heavy ion collisions, when a hot and dense region is formed in the core of the reaction zone, different quark flavors are produced copiously. The produced matter then undergoes transverse expansion and the produced particles suffer multiple scattering among themselves. The formation of the hadrons from the partonic phase is accomplished through further expansion and cooling of the system

  9. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-01-01

    The authors review the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterization of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3m and lifetimes in the range of 6 x 10 - 14 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering

  10. Universal pion freeze-out in heavy-ion collisions

    CERN Document Server

    Adamova, D; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Zeev; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B C; Ludolphs, W; Maas, A; Marin, A; Milosevic, J; Milov, A; Miskowiec, D; Panebratsev, Yu A; Petchenova, O Yu; Petracek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schükraft, Jürgen; Sedykh, S; Shimansky, S S; Slivova, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, Itzhak; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V; Schmitz, W

    2003-01-01

    Based on an evaluation of recent systematic data on two-pion interferometry and on measured particle yields at mid-rapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda_f reaches a value of approximately 2.5 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and its value is constant at all currently available beam energies from AGS to RHIC.

  11. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... The recent results on direct photons and dileptons in high-energy heavy-ion collisions, obtained particularly at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the ...

  12. One- and two-body dissipation in peripheral heavy ion collisions

    International Nuclear Information System (INIS)

    Bartel, J.; Feldmeier, H.

    1980-01-01

    For peripheral collisions of heavy ions we solve the man-body Schroedinger equation in second order time-dependent perturbation theory. The two nuclei interact via a two-body interaction of finite range. With controllable approximations we get to a sensible comparison between 1p-1h excitations caused by the coherent Hartree part and direct 2p-2h excitations both created by the same two-body interaction. The results of the calculation show that for peripheral collisions almost all excitation energy originates from one-body dissipation. Furthermore we encounter large virtual excitations during the collision indicating a non Markovian process. (orig.)

  13. An investigation of collision propagation in energetic ion initiated cascades in copper

    International Nuclear Information System (INIS)

    Chakarov, I.R.; Webb, R.P.; Smith, R.; Beardmore, K.

    1995-01-01

    Using simple Binary Collision simulations of energetic ion initiated collision cascades, particles are considered to undergo a series of binary collisions with their surroundings. In Molecular Dynamics simulation it is difficult to even define what is meant by a collision as the interaction potentials are infinite in nature and consequently all particles are considered to interact with all other particles. By making a suitable definition of a collision for Molecular Dynamics we are able to compare the temporal behaviour of the number of collisions occurring during the propagation of a collision cascade between the two different calculation schemes. An investigation is made of the number of collisions as a function of time occurring in collision cascades. We compare these results to the time ordered version of MARLOWE. By making further definitions about what makes a many body collision, we further investigate the numbers of many body collisions occurring during a number of collision cascades. (orig.)

  14. Performance of a position sensitive Si(Li) x-ray detector dedicated to Compton polarimetry of stored and trapped highly-charged ions

    International Nuclear Information System (INIS)

    Weber, G; Braeuning, H; Hess, S; Maertin, R; Spillmann, U; Stoehlker, Th

    2010-01-01

    We report on a novel two-dimensional position sensitive Si(Li) detector dedicated to Compton polarimetry of x-ray radiation arising from highly-charged ions. The performance of the detector system was evaluated in ion-atom collision experiments at the ESR storage ringe at GSI, Darmstadt. Based on the data obtained, the polarimeter efficiency is estimated in this work.

  15. Effective stopping of relativistic structural heavy ions at collisions with atoms

    International Nuclear Information System (INIS)

    Matveev, V.I.

    2002-01-01

    One develops the unperturbed theory of energy losses at collision of atoms with structural high-charged heavy ions moving with relativistic velocity. One derived a simple formula for efficient braking. The structural ions in terms of this paper are considered to mean partially ionized ions of heavy elements compressing ion nucleus and some bound electrons compensating partially for ion nucleus charge. Account of ion charge magnitude is determined to result in essential increase of efficient braking of ion in contrast to braking of point nucleus of Z* charge [ru

  16. On Application of Non-cubic EoS to Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Yan, Wei; Michelsen, Michael Locht; Stenby, Erling Halfdan

    Compositional reservoir simulation uses almost exclusively cubic equations of state (EoS) such as the SRK EoS and the PR EoS. This is in contrast with process simulation in the downstream industry where more recent and advanced thermodynamic models are quickly adopted. Many of these models are non-cubic...... EoS, such as the PC-SAFT EoS. A major reason for the use of the conventional cubic EoS in reservoir simulation is the concern over computation time. Flash computation is the most time consuming part in compositional reservoir simulation, and the extra complexity of the non-cubic EoS may significantly...... increase the time consumption. In addition to this, the non-cubic EoS also needs a C7+ characterization. The main advantage of the non-cubic EoS is that it provides for a more accurate descrition of fluid properties, and it is therefore of interest to investigate the computational aspects of using...

  17. Femtoscopic analysis of baryon correlations in ultra-relativistic heavy-ion collisions registered by ALICE

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00361630

    Heavy-ion collisions at ultra-relativistic energies give a unique possibility to create and to analyse the Quark-Gluon Plasma predicted by the theory of Quantum Chromodynamics. The research on the properties of such state of matter is crucial for understanding the features of the strongly interacting system. Experimental results reveal the collective behaviour of matter created in the heavy-ion collisions at ultra-relativistic energies. The existence of this effect can be verified by the measurement of the transverse mass dependence of the source size extracted using different particle species. Such characteristics can be determined using the analysis technique called femtoscopy. This method is based on the correlations of particles with small relative momenta which originate from the effects of Quantum Statistics as well as the strong and Coulomb Final State Interactions. A recent analysis of the particle production at the highest available collision energies of heavy-ion collisions reveals the puzzling res...

  18. Event-By-Event Initial Conditions for Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Rose, S; Fries, R J

    2017-01-01

    The early time dynamics of heavy ion collisions can be described by classical fields in an approximation of Quantum ChromoDynamics (QCD) called Color Glass Condensate (CGC). Monte-Carlo sampling of the color charge for the incoming nuclei are used to calculate their classical gluon fields. Following the recent work by Chen et al. we calculate the energy momentum tensor of those fields at early times in the collision event-by-event. This can then be used for subsequent hydrodynamic evolution of the single events. (paper)

  19. Event-By-Event Initial Conditions for Heavy Ion Collisions

    Science.gov (United States)

    Rose, S.; Fries, R. J.

    2017-04-01

    The early time dynamics of heavy ion collisions can be described by classical fields in an approximation of Quantum ChromoDynamics (QCD) called Color Glass Condensate (CGC). Monte-Carlo sampling of the color charge for the incoming nuclei are used to calculate their classical gluon fields. Following the recent work by Chen et al. we calculate the energy momentum tensor of those fields at early times in the collision event-by-event. This can then be used for subsequent hydrodynamic evolution of the single events.

  20. Correlations of neutral pions in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Peitzmann, T.; Beckmann, P.; Berger, F.; Glewing, G.; Dragon, L.; Glasow, R.; Kampert, K.H.; Loehner, H.; Purschke, M.; Santo, R.; Albrecht, R.; Bock, R.; Claesson, G.; Gutbrod, H.H.; Kolb, B.W.; Lund, I.; Schmidt, H.R.; Siemiarczuk, T.; Awes, T.C.; Baktash, C.; Ferguson, R.L.; Lee, I.Y.; Obenshain, F.E.; Plasil, F.; Soerensen, S.P.; Young, G.R.; Eklund, A.; Garpman, S.; Gustafsson, H.A.; Idh, J.; Kristiansson, P.; Oskarsson, A.; Otterlund, I.; Persson, S.; Stenlund, E.; Franz, A.; Poskanzer, A.M.; Ritter, H.G.

    1989-01-01

    Correlations of 4 photons representing neutral pions have been studied in ultrarelativistic heavy ion collisions. Data were taken in the WA80 experiment at the CERN-SPS with a 200 A GeV oxygen beam. The π 0 are detected via their decay photons with a high-granularity lead glass array. Special features of interferometry using neutral pions will be discussed. The extracted preliminary parameters for high p T pions emitted near midrapidity in O+Au collisions lead to rather small effective source sizes. (orig.)

  1. Medium response to jets in heavy ion collisions

    Science.gov (United States)

    Tachibana, Yasuki

    2018-01-01

    A short overview on recent progress in studies of medium response to jet quenching in heavy ion collisions is presented. We show the typical features of medium response and give comment on their connection to jet observables by introducing the work done by the author and collaborators as an example.

  2. Shannon information entropy in heavy-ion collisions

    Science.gov (United States)

    Ma, Chun-Wang; Ma, Yu-Gang

    2018-03-01

    The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-ion collisions (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc., are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron collisions, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-ion collision physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.

  3. Outer-shell transitions in collisions between multiply charged ions and atoms

    International Nuclear Information System (INIS)

    Bloemen, E.W.P.

    1980-01-01

    The study of collisions between multiply charged ions and atoms (molecules) is of importance in different areas of research. Usually, the most important process is capture of an electron from the target atom into the projectile ion. In most cases the electron goes to an excited state of the projectile ion. These electron capture processes are studied. The author also studied direct excitation of the target atom and of the projectile ion. (Auth.)

  4. Head-on collisions of electrostatic solitons in multi-ion plasmas

    International Nuclear Information System (INIS)

    Verheest, Frank; Hellberg, Manfred A.; Hereman, Willy A.

    2012-01-01

    Head-on collisions between two electrostatic solitons are dealt with by the Poincaré-Lighthill-Kuo method of strained coordinates, for a plasma composed of a number of cold (positive and negative) ion species and Boltzmann electrons. The nonlinear evolution equations for both solitons and their phase shift due to the collision, resulting in time delays, are established. A Korteweg-de Vries description is the generic conclusion, except when the plasma composition is special enough to replace the quadratic by a cubic nonlinearity in the evolution equations, with concomitant repercussions on the phase shifts. Applications include different two-ion plasmas, showing positive or negative polarity solitons in the generic case. At critical composition, a combination of a positive and a negative polarity soliton is possible.

  5. Approach to equilibrium in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zimanyi, J.

    1981-01-01

    With the aim to clarify somewhat the question of equilibration in the following we investigate the approach to equilibrium of particle composition and momentum distribution of the particles within the firecloud formed in the central collision of energetic heavy ions. (orig.)

  6. Neutralization of H-- in energetic collisions with multiply charged ions

    International Nuclear Information System (INIS)

    Melchert, F.; Benner, M.; Kruedener, S.; Schulze, R.; Meuser, S.; Huber, K.; Salzborn, E.; Uskov, D.B.; Presnyakov, L.P.

    1995-01-01

    Employing the crossed-beam technique, we have measured absolute cross sections for neutralization of H -- ions in collisions with multiply charged ions Ne q+ (q≤4) and Ar q+ , Xe q+ (q≤8) at center-of-mass energies ranging from 20 to 200 keV. . . It is found that th cross sections are independent of the target ion species. The data are in excellent agreement with quantum calculations. A universal scaling law for the neutralization cross section is given

  7. Ultra-relativistic heavy ion collisions in a multi-string model

    International Nuclear Information System (INIS)

    Werner, K.

    1987-01-01

    We present a model for ultra-relativistic heavy ion collisions based on color string formation and subsequent independent string fragmentation. Strings are formed due to color exchange between quarks at each individual nucleon nucleon collision. The fragmentation is treated as in e + e - or lepton nucleon scattering. Calculation for pp, pA, and AA were carried out using the Monte Carlo code VENUS for Very Energetic Nuclear Scattering (version 1.0). 20 refs., 6 figs

  8. Collective processes in heavy-ion collisions with atomic nuclei. Dissipation of energy and angular momentum

    International Nuclear Information System (INIS)

    Kuzminski, J.

    1980-01-01

    The collective processes in collision of heavy-ions with atomic nuclei are discussed. Measured data on the S+Ti collision at Esub(LAB)=105, 130 and 144 MeV have been analysed in terms of a ''fission-like'' processes which seem to be a special case of deep inelastic collisions whose total available kinetic energy is completely dissipated. Applying transport theory it was possible to introduce a ''clock'' for measuring the time scale of nuclear processes in collision of heavy-ions by measuring the FWHM of mass distribution of emitted reaction products. Experimental data on continuum gamma spectra from Cu+Au collision at Esub(LAB)=400 MeV are presented and the angular momentum dissipation in this reaction is discussed. (author)

  9. QCD Jets and particle correlations in heavy-ion collisions

    CERN Document Server

    Nguyen, Matthew

    2017-01-01

    Measurements of jets and particle correlations in nucleus-nucleus collisions are intended to probe QCD interactions in the high temperature phase, where matter is understood to behave as a quark-gluon plasma. Two probes are reviewed: jets which are used to study the energy loss of hard-scattered partons in this medium and particle correlations which are used to understand collective effects of the bulk matter. Whereas collisions of lighter systems, namely proton-ion and proton-proton, initially served primarily as control experiments, certain (but not all) effects first observed in nucleus-nucleus collisions have proven to be pervasive in these systems. Comparative measurements in these three systems have broadened our understanding of many-body QCD phenomena, and raised new questions. This talk reviewed these recent developments.

  10. Some remarks on the statistical model of heavy ion collisions

    International Nuclear Information System (INIS)

    Koch, V.

    2003-01-01

    This contribution is an attempt to assess what can be learned from the remarkable success of this statistical model in describing ratios of particle abundances in ultra-relativistic heavy ion collisions

  11. Numerical analysis of energy density and particle density in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Fu Yuanyong; Lu Zhongdao

    2004-01-01

    Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)

  12. Isospin effect of coulomb interaction on momentum dissipation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Liu Jianye; Guo Wenjun; Li Xiguo; Xing Yongzhong

    2004-01-01

    The authors investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. The authors also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section. In this case, Coulomb interaction does not changes obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential. (author)

  13. Overview on collision processes of highly charged ions with atoms present status and problems

    International Nuclear Information System (INIS)

    Janev, R.K.

    1983-05-01

    This paper provides a brief discussion on the present status of the collision physics of highly charged ions with atoms. The emphasis is on the main achievements in understanding and describing the most important collision processes, and as charge transfer, ionization and Auger-type processes, and even more on those open problems which, due either to their scientific or practical importance, represent challenges to current research in this field. The paper concentrates on general ideas and problems whose development and solutions have advanced or will advance our basic understanding of the collision dynamics of multiply charged ions with atoms

  14. Mean field instabilities in dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Colonna, M.; Guarnera, A.; Istituto Nazionale di Fisica Nucleare, Bologna; Catania Univ.; Di Torro, M.; Catania Univ.

    1995-01-01

    We discuss new reaction mechanisms that may occur in semi-peripheral heavy ion collisions at intermediate energies. In particular we focus on the dynamics of the overlapping zone, showing the development of neck instabilities, coupled with the possibility of an increasing amount amount of dynamical fluctuations. In a very selected beam energy range between 40 and 70 MeV/u we observe an important interplay between stochastic nucleon exchange and the random nature of nucleon-nucleon collisions. Expected consequences are intermediate mass fragment emissions from the neck region and large variances in the projectile-like and target-like observables. The crucial importance of a time matching between the growth of mean field instabilities and the separation of the interacting system is stressed. Some hints towards the observation of relatively large instability effects in deep inelastic collisions at lower energy are finally suggested. (authors). 29 refs., 5 figs., 2 tabs

  15. Electron emission following collisions between multi-charged ions and D2 molecules

    International Nuclear Information System (INIS)

    Laurent, G.

    2004-05-01

    Dissociative ionisation mechanisms induced in collisions involving a highly charged ion (S 15+ , 13.6 MeV/u) and a molecular deuterium target, have been studied through momentum vector correlations of both the D + fragments and the electrons produced. An experimental apparatus has been developed in order to detect in coincidence all the charged particles produced during the collision. The measurement of their momentum vectors, which allows one to determine both their kinetic energy and direction of emission with respect to the projectile one, combines Time of Flight, Position Sensitive Detection, and multi-coincidence techniques. The correlation of the fragment and electron kinetic energies enables not only to determine branching ratios between the dissociative ionisation pathways, but also to separate unambiguously kinetic energy distributions of fragments associated to each process. Finally, the angular distributions of ejected electrons, as a function of the orientation of the molecular axis with respect to the projectile direction, are deduced from the spatial correlation. Measurements are compared to theoretical angular distributions obtained using the CDW-EIS (Continuum Distorted Wave-Eikonal Initial State) method. (author)

  16. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.

  17. Geometric and electronic structures of molecular ions from high energy collisions

    International Nuclear Information System (INIS)

    Groeneveld, K.O.

    1983-01-01

    This chapter examines the characteristics of heavy ion collision and of beam foil spectroscopy. It discusses the kinematic consequences of the high energies and presents results from ''Coulomb explosion'' and structure determination of molecular ions. It demonstrates that studies of molecular ions with accelerators can provide electronic and geometric structure information of molecules or molecular ions and points out that the understanding of the microscopic processes at such high energies is incomplete and needs further experimental and theoretical efforts

  18. Influence of the nuclear autocorrelation function on the positron production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Tomoda, T.; Weidenmueller, H.A.

    1983-01-01

    The influence of a nuclear reaction on atomic positron production in heavy-ion collisions is investigated. Using statistical concepts, we describe the nuclear S matrix for a heavy-ion induced reaction as a statistically fluctuating function of energy. The positron production rate is then dependent on the autocorrelation function of this S matrix, and on the ratio of the ''direct'' versus the ''fluctuating'' part of the nuclear cross section. Numerical calculations show that in this way, current experimental results on positron production in heavy-ion collisions can be reproduced in a semiquantitative fashion

  19. Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-Ion Collisions

    Science.gov (United States)

    Upsal, Isaac; STAR Collaboration

    2017-11-01

    Collisions between heavy nuclei at ultra-relativistic energies form a color-deconfined state of matter known as the quark-gluon plasma. This state is well described by hydrodynamics, and non-central collisions are expected to produce a fluid characterized by strong vorticity in the presence of strong external magnetic fields. The STAR Collaboration at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) has measured collisions between gold nuclei at center of mass energies √{sNN} = 7.7- 200 GeV. We report the first observation of globally polarized Λ and Λ bar hyperons, aligned with the angular momentum of the colliding system. These measurements provide important information on partonic spin-orbit coupling, the vorticity of the quark-gluon plasma, and the magnetic field generated in the collision.

  20. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  1. Large amounts of antiproton production by heavy ion collision

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    To produce large amounts of antiprotons, on the order of several grams/year, use of machines to produce nuclear collisions are studied. These can be of either proton-proton, proton-nucleus and nucleus-nucleus in nature. To achieve high luminosity colliding beams, on the order of 10 41 m/cm 2 , a self-colliding machine is required, rather than a conventional circular colliding type. The self-colliding machine can produce additional antiprotons through successive collisions of secondary particles, such as spectator nucleons. A key problem is how to collect the produced antiprotons without capture by beam nuclei in the collision zone. Production costs for anti-matter are projected for various energy source options and technology levels. Dedicated facilities using heavy ion collisions could produce antiproton at substantially less than 1 million $/milligram. With co-production of other valuable products, e.g., nuclear fuel for power reactors, antiproton costs could be reduced to even lower values

  2. Large amounts of antiproton production by heavy ion collision

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    To produce large amounts of antiprotons, on the order of several grams/year, use of machines to produce nuclear collisions are studied. These can be of either proton-proton, proton-nucleus and nucleus-nucleus in nature. To achieve high luminosity colliding beams, on the order of 10/sup 41/ m/cm/sup 2/, a self-colliding machine is required, rather than a conventional circular colliding type. The self-colliding machine can produce additional antiprotons through successive collisions of secondary particles, such as spectator nucleons. A key problem is how to collect the produced antiprotons without capture by beam nuclei in the collision zone. Production costs for anti-matter are projected for various energy source options and technology levels. Dedicated facilities using heavy ion collisions could produce antiproton at substantially less than 1 million $/milligram. With co-production of other valuable products, e.g., nuclear fuel for power reactors, antiproton costs could be reduced to even lower values.

  3. Semiclassical approach to sequential fission in peripheral heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Strazzeri Andrea

    2016-01-01

    Full Text Available A closed-form theoretical approach describing in a single picture both the evaporation component and the fast nonequilibrium component of the sequential fission of projectilelike fragments in a semiperipheral heavy-ion collision is derived and then applied to the dynamical fission observed in the 124Sn+64Ni semiperipheral collision at 35A MeV. Information on opposite polarization effects of the fissioning projectilelike fragments and on their “formation-to-fast fission lifetimes” are obtained.

  4. Baryon production and the centrality dependence of limiting fragmentation in heavy ion collision

    International Nuclear Information System (INIS)

    Mondal, M.M.; Chattopadhyay, S.

    2006-01-01

    In experiments with the relativistic heavy ion collisions the primary goals is to study the particle distribution in pseudorapidity variable. From the study of the distribution information of the collision mechanism such as the study of hypothesis of limiting fragmentation can be made

  5. Complete strangeness measurements in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Tomasik, Boris [Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia); Czech Technical University in Prague, FNSPE, Prague 1 (Czech Republic); Kolomeitsev, Evgeni E. [Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia)

    2016-08-15

    We discuss strangeness production in heavy-ion collisions within and around the energy range of the planned NICA facility. We describe a minimal statistical model, in which the total strangeness yield is fixed by the observed or calculated K{sup +} multiplicity. We show how the exact strangeness conservation can be taken into account on event-by-event basis in such a model. We argue that from strange particle yields one can reveal information about the collision dynamics and about possible modifications of particle properties in medium. This can be best achieved if the complete strangeness measurement is performed, i.e. kaons, antikaons, hyperons and multistrange hyperons are registered in the same experimental setup. In particular, production of hadrons containing two and more strange quarks, like Ξ and Ω baryons could be of interest. (orig.)

  6. Double electron transfer in ion-atom collisions

    International Nuclear Information System (INIS)

    Martinez, A.E

    1990-01-01

    Continuum distorted wave (CDW) and CDW-EIS (electron-ion scattering) approximations are used to study the resonant double capture by collision of alpha particles on He targets for intermediate and high energies. Calculations of total cross-sections based on the Independent Event Approximation are presented. A good agreement with experimental results was found, even without the inclusion of the dynamic and angular correlation of captured electrons. (Author). 11 refs., 1 fig

  7. Study of heavy ions collision at SIS energies with the detector FOPI; Etude des collisions d'ions lourds aux energies de SIS avec le detecteur FOPI

    Energy Technology Data Exchange (ETDEWEB)

    Bastid, N

    1999-09-23

    The present work has been carried out in the framework of experiments performed with the FOPI detector at the SIS/ESR accelerator facility of GSI-Darmstadt. It is devoted to the study of central and semi-central heavy ion collisions at beam energies ranging from 100 MeV to 2 GeV per nucleon. We present first generalities on relativistic heavy ion collisions then the FOPI detector with a special attention to the FOPI Inner Wall constructed by the Clermont-Ferrand group. The main results of the FOPI collaboration obtained with light and intermediate mass fragments and kaons are presented. A systematic study of the different forms of collection motion of nuclear matter, radial flow in very central reactions, sideward flow and squeeze-out in semi-central collisions, is performed. Further exciting possibilities concerning production and propagation of strangeness at SIS energies will be offered soon with the upgrade of the FOPI detector. The FOPI data have introduced constraints on parameters of theoretical models. Important progress concerning the knowledge of the properties of nuclear matter, the dynamics of the collisions and in-medium effects have been achieved. (author)

  8. Theory of the l-state population of Rydberg states formed in ion-solid collisions

    International Nuclear Information System (INIS)

    Kemmler, J.; Burgdoerfer, J.; Reinhold, C.O.

    1991-01-01

    The experimentally observed high-l-state population of ions excited in ion-solid interactions differs sharply from l-state populations produced in ion-atom collisions. We have studied the population dynamics of electronic excitation and transport within the framework of a classical transport theory for O 2+ (2-MeV/u) ions traversing C foils. The resulting delayed-photon-emission intensities are found to be in very good agreement with experiment. Initial phase-space conditions have been obtained from both classical-trajectory Monte Carlo calculations and random initial distributions. We find evidence that the very-high-l-state populations produced in ion-solid collisions are the result of a diffusion to high-l states under the influence of multiple scattering in the bulk of the solid

  9. Memory effects in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Greiner, C.; Wagner, K.; Reinhard, P.

    1994-01-01

    We consider equilibration in relativistic nuclear dynamics starting from a nonequilibrium Green's-functions approach. The widely used Boltzmann-Uehling-Uhlenbeck equation is obtained only as the Markovian limit (i.e., negligible memory time). The actual memory time in energetic nuclear collisions turns out to be ∼2--3 fm/c, which interferes substantially with the time scale of the relaxation process. The memory kernels of the collision process will be presented. Because of their more involved structure, depending sensitively on the kinematical regime, both less and more stopping power is observed in the reaction compared to the Markovian description

  10. Study of jet quenching in heavy ion collisions at LHC using ATLAS detector

    CERN Document Server

    Štefko, Pavol

    2015-01-01

    Quark-Gluon Plasma (QGP) is one of the most extreme states of matter which exists only in extraordinary conditions of heavy-ion collisions that can be achieved at particle accelerators. Interactions between the partons and the hot, dense QGP are expected to cause the loss of the jet energy, which is phenomenon called jet quenching. In this talk we provide an introduction to the problematics of ultra-relativistic heavy ion collisions and we show how the jet quenching can be used to analyze the properties of QGP. We also present some “work in progress” results of the jet analysis done on the data taken by the ATLAS detector during the 2011 heavy-ion run at the LHC. Jets are studied as a function of collision centrality and dijet energy imbalance. Dijets are observed to be increasingly asymmetric with increasing centrality. The study of charged particles indicates an increase of yields of low- p T tracks in events with strongly quenched jets

  11. An equation-of-state-meter of quantum chromodynamics transition from deep learning.

    Science.gov (United States)

    Pang, Long-Gang; Zhou, Kai; Su, Nan; Petersen, Hannah; Stöcker, Horst; Wang, Xin-Nian

    2018-01-15

    A primordial state of matter consisting of free quarks and gluons that existed in the early universe a few microseconds after the Big Bang is also expected to form in high-energy heavy-ion collisions. Determining the equation of state (EoS) of such a primordial matter is the ultimate goal of high-energy heavy-ion experiments. Here we use supervised learning with a deep convolutional neural network to identify the EoS employed in the relativistic hydrodynamic simulations of heavy ion collisions. High-level correlations of particle spectra in transverse momentum and azimuthal angle learned by the network act as an effective EoS-meter in deciphering the nature of the phase transition in quantum chromodynamics. Such EoS-meter is model-independent and insensitive to other simulation inputs including the initial conditions for hydrodynamic simulations.

  12. Quantum molecular dynamics study on energy transfer to the secondary electron in surface collision process of an ion

    International Nuclear Information System (INIS)

    Shibahara, M; Satake, S; Taniguchi, J

    2008-01-01

    In the present study the quantum molecular dynamics method was applied to an energy transfer problem to an electron during ionic surface collision process in order to elucidate how energy of ionic collision transfers to the emitted electrons. Effects of various physical parameters, such as the collision velocity and interaction strength between the observed electron and the classical particles on the energy transfer to the electron were investigated by the quantum molecular dynamics method when the potassium ion was collided with the surface so as to elucidate the energy path to the electron and the predominant factor of energy transfer to the electron. Effects of potential energy between the ion and the electron and that between the surface molecule and the electron on the electronic energy transfer were shown in the present paper. The energy transfer to the observed secondary electron through the potential energy term between the ion and the electron was much dependent on the ion collision energy although the energy increase to the observed secondary electron was not monotonous through the potential energy between the ion and surface molecules with the change of the ion collision energy

  13. Collision induced fragmentation of fast molecular ions in solids and gases

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1979-01-01

    A brief review is given of recent high resolution measurements on fragments arising from the collision-induced dissociation of fast (MeV) molecular ions. For solid targets, strong wake effects are observed. For gaseous targets, excited electronic states of the projectile ions play an important role. Measurements of this type provide useful information on the charge states of fast ions traversing matter. The experimental techniques show promise as a unique method for determining the geometrical structures of the molecular-ion projectiles. 41 references

  14. Constituent quarks and enhancement of multi-strange baryons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Behera, Nirbhay Kumar; Nandi, Basanta Kumar; Sahoo, Raghunath

    2011-01-01

    Heavy-ion collisions at relativistic energies aim to produce a state of matter which is governed by partonic degrees of freedom, known as Quark-Gluon Plasma (QGP). In the central rapidity region, strangeness enhancement has been proposed as a potential signature of QGP. It has been observed that a quark participant scaling of the multi-strange baryon production and also a strangeness scaling of the enhancement. This confirms that the partonic degrees of freedom is playing a major role in the particle production mechanism and may therefore significantly determine the formation of QGP in heavy ion collisions

  15. Production of spectator hypermatter in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Botvina, A. S.; Gudima, K. K.; Steinheimer, J.; Bleicher, M.; Mishustin, I. N.

    2011-01-01

    Possible formation of large hyperfragments in relativistic heavy-ion collisions is studied within two transport models, the Dubna cascade model and UrQMD model. Our goal is to explore a new mechanism for the formation of strange nuclear systems via capture of hyperons by relatively cold spectator matter produced in semiperipheral collisions. We investigate basic characteristics of the produced hyperspectators and estimate the production probabilities of multistrange systems. Advantages of the proposed mechanisms over an alternative coalescence process are analyzed. We also discuss how such hyperfragments can be detected by taking into account the background of free hyperons. This investigation is important for the development of new experimental methods for producing hypernuclei in peripheral relativistic nucleus-nucleus collisions, which are now underway at GSI and are planned for the future FAIR and NICA facilities.

  16. Formation time of hadrons and density of matter produced in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Pisut, J.; Zavada, P.

    1994-06-01

    Densities of interacting hadronic matter produced in Oxygen-Lead and Sulphur-Lead collisions at 200 GeV/nucleon are estimated as a function of the formation time of hadrons. Uncertainties in our knowledge of the critical temperature T c and of the formation time of hadrons τ 0 permit at present three scenarios: an optimistic one (QGP has already been produced in collisions of Oxygen and Sulphur with heavy ions and will be copiously in Lead collisions), a pessimistic one (QGP cannot be produced at 200 GeV/nucleon) and an intermediate one (QGP has not been produced in Oxygen and Sulphur Interactions with heavy ions and will be at best produced only marginally in Pb-collisions). The last option is found to be the most probable. (author)

  17. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Photons; dileptons; Relativistic Heavy Ion Collider; Large Hadron Collider; quark ... the collisions produces relatively high pT photons, often referred to ..... energy have been found for identified charged hadrons at RHIC [25].

  18. From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Venugopalan, R.

    2010-07-22

    We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.

  19. Doubly charmed baryon production in heavy ion collisions

    Science.gov (United States)

    Yao, Xiaojun; Müller, Berndt

    2018-04-01

    We give an estimate of Ξcc ++ production rate and transverse momentum spectra in relativistic heavy ion collisions. We use Boltzmann transport equations to describe the dynamical evolution of charm quarks and diquarks inside quark-gluon plasma. In-medium formation and dissociation rates of charm diquarks are calculated from potential nonrelativistic QCD for the diquark sector. We solve the transport equations by Monte Carlo simulations. For 2.76 TeV Pb-Pb collisions with 0-10% centrality, the number of Ξcc ++ produced in the transverse momentum range 0-5 GeV and rapidity from -1 to 1 is roughly 0.02 per collision. We repeat the calculation with a melting temperature 250 MeV above which no diquarks can be formed. The number of Ξcc ++ produced in the same kinematic region is about 0.0125 per collision. We discuss how to study diquarks at finite temperature on a lattice and construct the antitriplet free energy in a gauge invariant but path dependent way. We also comment on extensions of the calculation to other doubly heavy baryons and doubly heavy tetraquarks and the feasibility of experimental measurements.

  20. Binary encounter electron production in ion-atom collisions

    International Nuclear Information System (INIS)

    Grabbe, S.; Bhalla, C.P.; Shingal, R.

    1993-01-01

    The binary encounter electrons are produced by hard collisions between the target electrons and the energetic projectiles. Richard et al. found the measured double differential cross section for BEe production at zero degree laboratory scattering angle, in collisions of F q+ with H 2 and He targets, to increase as the charge state of the projectile was decreased. The binary encounter electron production has recently been a subject of detailed investigations. We have calculated the differential elastic scattering cross sections of electrons from several ions incorporating the exchange contribution of the continuum and the bound orbitals in addition to the static potential. The double differential binary encounter electron production cross sections are presented using the impulse approximation

  1. Asymmetric fission and evaporation of Cr+60 (r = 2-4) fullerene ions in ion-C60 collisions: III. Universal behaviour of fission

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, D; Bordenave-Montesquieu, A; Rentenier, A; Moretto-Capelle, P

    2005-01-01

    The behaviour of the asymmetrical fission (AF) scheme (correlated ion distributions) against the collision conditions is investigated using H + x (x = 1-3) and He + projectiles in the 1-130 keV collision energy range. The present work is an extension of our recent publications on this topic using 11 keV protons (Rentenier et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2429 and 2455). The threshold for AF is observed at 2 keV proton energy corresponding to a maximum deposited energy equal to about 41 eV. The main result concerns the fragment distributions resulting from AF of C r+ 60 ions, and secondary dissociation of even-n C + n fragments, which are both found to remain independent of the projectile species and collision velocity. These findings indicate that they are insensitive to the internal energy distributions of the parent ions. In addition, a contribution of binary collisions between the projectile and individual carbon atoms of the C 60 molecule to AF is identified in the C + 1 production at the lowest collision velocities, the so-called impulsive fragmentation

  2. Chemical potentials of π- and π+ in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gorenstejn, M.I.; Shin Nan Yang.

    1991-01-01

    We consider a chemical nonequilibrium model to describe the pion production in Ar+KCl and La+La collisions at initial energies E lab /A=(0.5-1.8) GeV/nucl. The excess of low energy π - is interpreted as the manifestation of positive chemical potential of π - at the thermal freeze out. We find that in collisions between nuclei with large atomic numbers the chemical potential of π + is smaller than that of π - . This leads to the prediction of a much less excess of low-energy π + , than as measured in the π - case, in heavy-ion collisions at bombarding energies in the region of 1 GeV/nucl. 17 refs.; 2 figs. (author)

  3. Projectile ionization in fast heavy-ion--atom collisions

    International Nuclear Information System (INIS)

    Schneider, D.; Prost, M.; Stolterfoht, N.; Nolte, G.; Du Bois, R.

    1983-01-01

    Electron emission following the ionization of projectile ions has been investigated systematically in collisions with Ne/sup q/+ and Ar/sup q/+ ions at several hundred MeV incident on different target gases. The projectile electrons are concentrated within one maximum, the electron-loss peak (ELP). The variation of the shape and intensity of the ELP with the projectile energy, its charge state, the observation angle, and the target gas has been measured. Theoretical predictions which are based on the binary-encounter approximation show, in general, good agreement with the experimental data. The contributions of the different subshells to the ELP are deduced. It is shown that electronic screening of the target nucleus plays an important role in the ionization process of the projectile ions

  4. Transport phenomena in dissipative heavy-ion collisions: the one-body dissipation approach

    International Nuclear Information System (INIS)

    Feldmeier, H.

    1987-01-01

    The paper reviews dissipative collisions between two atomic nuclei, with the help of the classical description of Brownian movement and the Langevin equation. The 'one-body dissipation model' for dissipative heavy-ion collisions is discussed, and its predictions are compared with measured data. Special attention is paid to the non-equilibrium relation between friction and diffusion. (U.K.)

  5. Origin of transverse momentum in relativistic heavy-ion collisions: Microscopic study

    International Nuclear Information System (INIS)

    Blaettel, B.; Koch, V.; Lang, A.; Weber, K.; Cassing, W.; Mosel, U.

    1991-01-01

    We study the origin of the transverse momentum distribution in heavy-ion collisions within a relativistic transport approach. To achieve a better understanding of the reaction dynamics, we decompose the total p t distribution into a mean-field, N-N collision, and Fermi-momentum part. We find that the origin of the transverse momentum strongly depends on the rapidity region. Our investigation of the impact-parameter and mass dependence suggests that peripheral collisions may be useful to investigate the momentum dependence of the mean-field in the nucleus-nucleus case, whereas the mass dependence could give hints about the N-N-collision part. Only after these two issues are settled it may be possible to extract information about the density dependence in central collisions, which may, however, necessitate reactions at even higher energies than the 800 MeV/nucleon considered in this work

  6. Modification of reconstructed gamma-jets in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tan; He, Yayun; Wang, Enke [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Wang, Xin-Nian [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division Mailstop 70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94740 (United States)

    2016-12-15

    We use the Linear Boltzmann Transport model to study gamma-triggered jets in high-energy heavy-ion collisions. Since both recoiled partons from elastic scattering and radiated gluons from inelastic processes and their further propagation are considered, the model can provide a description of not only the medium modification of reconstructed jets but also the energy flow in the underlying hydrodynamic background. In this study, we discuss the modification of jet shape and jet fragmentation function of γ-jet in central Pb+Pb collisions and in particular the energy flow induced by the jet-medium interaction.

  7. Monte-Carlo simulation of heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    We present Monte-Carlo simulations for heavy-ion collisions combining PYTHIA and the McGill-AMY formalism to describe the evolution of hard partons in a soft background, modelled using hydrodynamic simulations. MARTINI generates full event configurations in the high p T region that take into account thermal QCD and QED effects as well as effects of the evolving medium. This way it is possible to perform detailed quantitative comparisons with experimental observables.

  8. Transverse Momentum Distribution of Vector Mesons Produced in Ultraperipheral Relativistic Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Hencken, Kai; Baur, Gerhard; Trautmann, Dirk

    2006-01-01

    We study the transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions (UPCs). In UPCs there is no strong interaction between the nuclei, and the vector mesons are produced in photon-nucleus collisions where the (quasireal) photon is emitted from the other nucleus. Exchanging the role of both ions leads to interference effects. A detailed study of the transverse momentum distribution, which is determined by the transverse momentum of the emitted photon, the production process on the target, and the interference effect, is done. We study the unrestricted cross section and the one with an additional electromagnetic excitation of one or both ions; in the latter case small impact parameters are emphasized

  9. Inelastic collisions of heavy ions and their reaction mechanisms; Collisions inelastiques d'ions lourds et mecanismes de reaction

    Energy Technology Data Exchange (ETDEWEB)

    Scarpaci, J.A

    2004-06-01

    This work is dedicated to the study of inelastic collisions of heavy ions. Most experiments took place in Ganil facility. The 2 first chapters introduce the notion of inelastic scattering of heavy ions. The third chapter deals with target excitation, giant monopolar or dipolar or quadrupolar resonances ant the multi-phonon concept and presents relevant experimental results from the Ca{sup 40} + Ca{sup 40} nuclear reaction at 50 MeV/A. The fourth chapter is dedicated to nuclear processes involved in inelastic collisions: pick-up break-up mechanisms, the angular distribution of emitted protons and the towing mode. These notions are applied to the reaction Zr{sup 90}(Ar{sup 40}, Ar{sup 40}'). The fifth chapter presents the solving of the time dependent Schroedinger equation (TDSE) applied to the wave function of a particle plunged in a variable potential. TDSE solving is applied to the break-up of Be{sup 11}. These calculations have been validated by comparing them with experimental results from the nuclear reaction Ti{sup 48}(Be{sup 11}, Be{sup 10} + n + {gamma}) that is described in the chapter 6. The last chapter presents the advantages of inelastic scattering considered as a tool to study exotic nuclei.

  10. Electron transfer processes in ion collisions with atomic hydrogen. Final report for period February 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Bayfield, J.E.

    1976-07-01

    Results of experiments completed with Yale equipment coupled to the Oak Ridge Test Bench and Tandem Accelerator facilities are presented. Electron transfer cross sections have been measured at keV collision energies for B, C, N and O ions colliding with H, H 2 , Ar and He gas targets. The ion charge states studied range from +2 through +5. Also reported are cross sections for Si and Fe ions on H, H 2 and Ar at energies between 1.5 and 14 MeV, with charge states varying between +5 and +13. Also measured were the cross sections for H + collisions with H, H 2 and Ar for energies between 0.8 and 2.5 MeV. At keV energies the cross sections for highly charged B, C, N and O ions are found to be 1 x 10 -14 cm 2 . The cross sections for 4 MeV Fe ions scale roughly with the square of the ion charge, and have values as high as 0.5 x 10 -14 cm 2 for Fe 10+ + H collisions. A strong energy dependence is found for Fe ion collisions between 4 and 14 MeV. Previous results for MeV H + + Ar collisions are nicely reproduced, while our first results for the fundamental MeV H + - H collision problem are cross sections higher than many theoretical predictions

  11. MEGHNAD – A multi element detector array for heavy ion collision ...

    Indian Academy of Sciences (India)

    When heavy ion beam available from such machines fall on a target and undergo collision, very rich and often pristine fields of research open up. In order to carry on such activities, we have taken up a project to build a multi element gamma, heavy ion and neutron array of detectors (MEGHNAD) to detect and study the ...

  12. Spectroscopic and electron-ion collision data for plasma impurities

    International Nuclear Information System (INIS)

    Faenov, A.; Marchand, R.; Tawara, H.; Vainshtein, L.; Wiese, W.

    1992-01-01

    This Working Group Report briefly reviews and summarizes the available spectroscopic and electron-ion collision data for plasma impurities. Included are lithium, neon, and argon, which, although they are not plasma impurities per se, are introduced into the plasma through the application of diagnostic techniques. 32 refs, 2 tabs

  13. Interference in Exclusive Vector Meson Production in Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Nystrand, Joakim

    2000-01-01

    Vector mesons are produced copiously in peripheral relativistic heavy-ion collisions. Virtual photons from one ion can fluctuate into quark-antiquark pairs and scatter from the second ion, emerging as vector mesons. The emitter and target are indistinguishable, so emission from the two ions will interfere. Vector mesons have negative parity so the interference is destructive, reducing the production of mesons with small transverse momentum. The mesons are short lived, and decay before emission from the two ions can overlap. However, the decay-product wave functions overlap and interfere since they are produced in an entangled state, providing an example of the Einstein-Podolsky-Rosen paradox. (c) 2000 The American Physical Society

  14. Effect of position and momentum constraints on charge distribution in heavy-ion collisions

    International Nuclear Information System (INIS)

    Rajni; Kumar, Suneel

    2012-01-01

    The rich phenomenology of multifragmentation has been widely explored after two decades of its discovery. It has been experimentally shown that in one single heavy ion collision many intermediate mass fragments (IMFs) are produced, where IMFs are defined as fragments with 5 ≤ A ≤ A tot /6. In the earlier literature, the multifragmentation was studied by Jakobsson et al. who measured the charge particle distribution along with their kinetic energy spectra in 16 O/ 36 Ar induced reaction between 25 and 200 MeV/nucleon representing the various phenomena in heavy ion collisions

  15. Hydrodynamical description of 200A GeV/c S+Au collisions: Hadron and electromagnetic spectra

    International Nuclear Information System (INIS)

    Sollfrank, J.; Huovinen, P.; Kataja, M.; Ruuskanen, P.V.; Prakash, M.; Venugopalan, R.

    1997-01-01

    We study relativistic S+Au collisions at 200A GeV/c using a hydrodynamical approach. We test various equations of state (EOS close-quote s), which are used to describe the strongly interacting matter at densities attainable in the CERN-SPS heavy ion experiments. For each EOS, suitable initial conditions can be determined to reproduce the experimental hadron spectra; this emphasizes the ambiguity between the initial conditions and the EOS in such an approach. Simultaneously, we calculate the resulting thermal photon and dielectron spectra, and compare with experiments. If one allows the excitation of resonance states with increasing temperature, the electromagnetic signals from scenarios with and without phase transition are very similar and are not resolvable within the current experimental resolution. Only EOS close-quote s with a few degrees of freedom up to very high temperatures can be ruled out presently. We deduce an upper bound of about 250 MeV for the initial temperature from the single photon spectra of WA80. With regard to the CERES dilepton data, none of the EOS close-quote s considered, in conjunction with the standard leading order dilepton rates, succeed in reproducing the observed excess of dileptons below the ρ peak. Our work, however, suggests that an improved measurement of the photon and dilepton spectra has the potential to strongly constrain the EOS. copyright 1997 The American Physical Society

  16. Delta-electron emission in fast heavy ion atom collisions

    International Nuclear Information System (INIS)

    Schmidt-Boecking, H.; Ramm, U.; Berg, H.; Kelbch, C.; Feng Jiazhen; Hagmann, S.; Kraft, G.; Ullrich, J.

    1991-01-01

    The δ-electron emission processes occuring in fast heavy ion atom collisons are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed. (orig.)

  17. Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC ...

    Indian Academy of Sciences (India)

    model, to describe the microscopic evolution and decoupling of the hadronic ... progress on hydrodynamic modelling, investigation on the flow data and the ... and to describe and predict the soft particle physics in relativistic heavy-ion collisions [4]. It is based on the conservation laws of energy, momentum and net charge ...

  18. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Universidade Federal do Rio de Janeiro; Baur, G.

    1987-10-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. There is nowadays a vivid interest in this field due to the construction of relativistic heavy ion accelerators. Certainly, the most important purpose of these relativistic heavy ion machines is the study of nuclear matter under extreme conditions. In central nucleus-nucleus collisions one hopes to observe new forms of nuclear matter, like the quark-gluon plasma. On the other hand, very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. There has been many interesting theoretical and experimental developments on this subject, and new areas of research were opened. Of special interest is, e.g., the case of nuclear fragmentation. This is accomplished through the excitation of giant resonances or by direct breakt-up of the nuclei by means of their electromagnetic interaction. It is shown that this process can be used to study nuclear structure properties which are not accessible by means of the traditional electromagnetic excitation at nonrelativistic energies. The creation of particles is also of interest due the large cross sections, specially in the case of electron-positron pair creation. Although to explain the many processes originated in this way one can develop very elaborate and complicated calculations, the results can be understood in very simple terms because of our almost complete comprehension of the electromagntic interaction. For those processes where the electromagntic interaction plays the dominant role this is clearly a very useful tool for the investigation of the structures created by the strong interaction in the nuclei or hadrons. (orig.)

  19. Ion-Collision Emission Excitation Cross Sections for Xenon Electric Thruster Plasmas

    National Research Council Canada - National Science Library

    Sommerville, Jason D; King, Lyon B; Chiu, Yu-Hui; Dressler, Rainer A

    2008-01-01

    .... The cross sections are derived from ion beam luminescence spectra produced at single-collision conditions and at pressures for which radiation trapping effects were shown to be negligible. The Xe(exp...

  20. Electron emission in collisions of intermediate energy ions with atoms

    International Nuclear Information System (INIS)

    Garibotti, C.R.

    1988-01-01

    The aim of this work, is the analysis of the processes of electronic emission produced in the collisions of small ions (H + , He ++ ) of intermediate energy (50 a 200 KeV/amu) with light gaseous targets. (A.C.A.G.) [pt

  1. Evidence for chiral symmetry restoration in heavy-ion collisions

    Science.gov (United States)

    Moreau, P.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Bratkovskaya, E. L.

    2017-11-01

    We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range √{sNN} = 3- 20GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for particle production. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at √{sNN} = 3- 20GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. Our results provide a microscopic explanation for the horn structure in the excitation function of the K+ /π+ ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to √{sNN} ≈ 7GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the appearance/disappearance of the horn structure is investigated as a function of the system size. We additionally present an analysis of strangeness production in the (T ,μB)-plane (as extracted from the PHSD for central Au+Au collisions) and discuss the perspectives to identify a possible critical point in the phase diagram.

  2. Transport theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Norenberg, W.

    1979-01-01

    The lectures present the formulation of a transport theory, the derivation of a practicable transport equation (Fokker-Planck equation) and the evaluation of transport coefficients for dissipative (or deeply inelastic) heavy-ion collisions. The applicability of the theoretical concept is tested with remarkable success in the analyses of various experimental information (mass transfer, angular-momentum dissipation and energy loss). Some critical remarks on the present situation of transport theories are added. Future developments are outlined. (author)

  3. Effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions

    Science.gov (United States)

    Jaiswal, Amaresh; Bhaduri, Partha Pratim

    2018-04-01

    We study the effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions. We use the Glauber model to generate initial conditions and ignore hydrodynamic expansion in the transverse direction. We employ the Beer-Lambert law to allow for the transmittance of produced hadrons in the medium and calculate the anisotropy generated due to the suppression of particles traversing through the medium. To separate non-flow contribution due to surface bias effects, we ignore hydrodynamic expansion in the transverse direction and consider purely longitudinal boost-invariant expansion. We calculate the transverse momentum dependence of elliptic flow, generated from an anisotropic escape mechanism due to surface bias effects, for various centralities in √{sN N}=200 GeV Au +Au collisions at the Relativistic Heavy Ion Collider and √{sN N}=2.76 TeV Pb +Pb collisions at the Large Hadron Collider. We find that the surface bias effects make a sizable contribution to the total elliptic flow observed in heavy-ion collisions, indicating that the viscosity of the QCD matter extracted from hydrodynamic simulations may be underestimated.

  4. Dependence of isospin fractionation process on the neutron-proton ratio of a colliding system in intermediate energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xing Yongzhong; Liu Jianye; Fang Yutian; Guo Wenjun

    2004-01-01

    The degree of isospin fractionation is measured by the ratio of saturated neutron-proton: i.e. the ratio of gas phase (nucleon emission) to that of liquid phase (fragment emission) in heavy ion collisions. The authors have studied the dependence of the degree of isospin fractionation on the neutron-proton ratio in the colliding system by using isospin-dependent quantum molecular dynamical model. The calculated results show that the degree of isospin fractionation depends sensitively on the symmetry potential and weakly on the isospin effect of nucleon-nucleon cross section. In particular, the degree of isospin fractionation increases with increasing neutron-proton ratio in the colliding system for the neutron-rich system, in this process the neutron-rich gas phase and neutron-poor liquid phase are produced. The degree of isospin fractionation is very sensitive to the degree of symmetry potential. On the contrary, for the neutron-poor system the neutron-poor gas phase and neutron-rich liquid phase are produced. In this case, the degree of isospin fractionation is not sensitive to the symmetry potential. The authors also find that the role of momentum dependent interaction in the isospin fractionation process is not obvious. The authors propose that our calculated results can compared directly with the experimental data to get the information about the symmetry potential in the intermediate energy heavy-ion collisions

  5. The rise and fall of the ridge in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, P., E-mail: prsorensen@bnl.gov [Brookhaven National Laboratory, Physics Department, Upton, NY 11973 (United States); Bolliet, B. [ENS de Lyon, Lyon Cedex 07 (France); Mocsy, A. [Pratt Institute, Department of Math and Science, Brooklyn, NY 11205 (United States); Pandit, Y. [Kent State University, Physics Department, Kent, OH 44242 (United States); Pruthi, N. [Panjab University, Physics Department, Chandigarh 160014 (India)

    2011-11-03

    Recent data from heavy ion collisions at RHIC show unexpectedly large near-angle correlations that broaden longitudinally with increasing centrality. The amplitude of this ridge-like correlation rises rapidly, reaches a maximum, and then falls in the most central collisions. In this Letter we explain how this behavior can be uniquely explained by initial-state coordinate-space anisotropies converted into final-state momentum-space correlations. We propose v{sub n}{sup 2}/{epsilon}{sub n,part}{sup 2} as a useful way to study length scales and provide a prediction for the ridge in Pb + Pb collisions at {radical}(s{sub NN})=2.76 TeV.

  6. Overview of quarkonium production in heavy-ion collisions at LHC

    CERN Document Server

    AUTHOR|(CDS)2071615

    2015-01-01

    Quarkonium has been regarded as one of the golden probes to identify the phase transition from confined hadronic matter to the deconfined quark-gluon plasma (QGP) in heavy-ion collisions. Recent data on the yields and momentum distributions of $J/\\psi$ and $\\Upsilon$ families in pp, pPb, and PbPb collisions at the Large Hadron Collider (LHC) are reviewed. The possible implications related to the propagation of quarkonia in the deconfined hot, dense matter and the modified parton distribution function (PDF) in cold nuclei are also discussed.

  7. Entropy lowering in ion-atom collisions

    International Nuclear Information System (INIS)

    Nguyen, H.; Bredy, R.; Camp, H.A.; DePaola, B.D.; Lee, T.G.; Awata, T.

    2005-01-01

    In ion-atom collisions, the charge transfer cross section is typically a strong function of the energy defect or Q value, typically with smaller energy defects giving rise to higher capture probabilities. In some theoretical treatments, for example those based on the Demkov model, the cross section is a strong function of the magnitude of the Q value, but is independent of its sign. In order to test this predicted sign independence, one must compare capture cross sections from energetically symmetric collision channels. In this work, relative capture cross sections, differential in scattering angle, are measured and compared for the energetically symmetric channels: Rb + +Rb(5s)→Rb(5p)+Rb + and Rb + +Rb(5p)→Rb(5s)+Rb + . It is found that not only are the two cross sections not equal, but that in this case the endoergic channel was 3 times more likely. That is, the entropy reducing channel was preferred. An intuitive model, based on molecular potential curves, is suggested. The endoergic propensity is found to be consistent with this model

  8. Azimuthal correlations of pions in relativistic heavy ion collisions at 1 GeV/nucl

    International Nuclear Information System (INIS)

    Bass, S.A.; Hartnack, C.; Nantes Univ., 44; Stoecker, H.; Greiner, W.

    1995-01-01

    Triple differential cross sections of pions in heavy ion collisions at 1 GeV/nucl. are studied with the IQMD model. After discussing general properties of Δ resonance and pion production we focus an azimuthal correlations: At projectile- and target-rapidities we observe an anticorrelation in the in-plane transverse momentum between pions and protons. At c.m.-rapidity, however, we find that high p t pions are being preferentially emitted perpendicular to the event-plane. We investigate the causes of those correlations and their sensitivity on the density and momentum dependence of the real and imaginary part of the nucleon and pion optical potential. (orig.)

  9. Probing the nuclear matter at high baryon and isospin density with heavy ion collisions

    International Nuclear Information System (INIS)

    Di Toro, M.; Colonna, M.; Ferini, G.

    2010-01-01

    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. High Energy Collisions are studied in order to access nuclear matter properties at high density. Particular attention is devoted to the selection of observables sensitive to the poorly known symmetry energy at high baryon density, of large fundamental interest, even for the astrophysics implications. Using fully consistent covariant transport simulations built on effective field theories we are testing isospin observables ranging from nucleon/cluster emissions, collective flows (in particular the elliptic, squeeze out, part) and meson production. The possibility to shed light on the controversial neutron/proton effective mass splitting in asymmetric matter is also stressed. The "symmetry" repulsion at high baryon density will also lead to an "earlier" hadron-deconfinement transition in n-rich matter. The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Nonlinear relativistic mean field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Isospin effects appear to be rather significant. The binodal transition line of the (T,ρ B ) diagram is lowered in a region accessible to heavy ion collisions in the energy range of the new planned FAIR/NICA facilities. Some observable effects of the mixed phase are suggested, in particular a neutron distillation mechanism. Theoretically a very important problem appears to be the suitable treatment of the isovector part of the interaction in effective QCD lagrangian approaches. (author)

  10. Negative ion collisions. Progress report, April 1, 1994 - March 31, 1997

    International Nuclear Information System (INIS)

    Champion, R.L.

    1996-08-01

    During the last three years, the experimental activities have concentrated on several somewhat distinct projects. First, the author has measured total cross sections for electron detachment and charge transfer for collisions of various negative ions with atomic hydrogen and the molecular target, O 3 (ozone). The second type of gas phase experiments investigated the collisional decomposition of the molecular ion H 3 + . Specifically he has measured total cross sections for dissociation and proton transfer with an apparatus utilizing a static gas target cell. The targets include hydrogen, deuterium and the rare gases. He has extended these experiments to include D 3 + in a crossed beam configuration in order to provide a more detailed understanding of the collisional dynamics for these reactants. In the area of ion-surface collisions he has measured sputtering yields for O - and electrons arising from collisions of ions with an Al/O surface. The amount of oxygen on the surface is carefully controlled and the kinetic energy distributions of the ejected anions and electrons have been determined. He has been able to develop a theoretical model which, to a large degree, can describe the process. In a slightly speculative endeavor, he has begun investigating the role of atom-catalyzed field emission, i.e., the extent to which an unoccupied negative ion state for an atom near a surface--under the influence of a strong electric field--can serve as a stepping-stone for electron field emission. Very brief accounts of these activities will be given in this report in section 2. Detailed discussions of the experimental results and their analyses published during the contract period may be found in the following articles which have appeared in the archival literature. Copies of these publications are appended to this report as section 4

  11. On the quantum mechanics of deep inelastic collisions between heavy ions

    International Nuclear Information System (INIS)

    Toledo Piza, A.F.R. de

    1981-06-01

    An overview of the quantum-mechanical foundations of the dynamical behaviour of deep inelastic collisions between heavy ions is given. The use of time dependent Hartree-Fock method is stressed. (L.C.) [pt

  12. Theoretical treatment of electron capture and excitation in two-electron system ion-atom, atom-atom collisions at low to intermediate energy

    International Nuclear Information System (INIS)

    Kimura, M.

    1986-01-01

    A review of various theoretical treatments which have been used to study electron-capture and excitation processes in two-electron-system ion-atom, atom-atom collisions at low to intermediate energy is presented. Advantages as well as limitations associated with these theoretical models in application to practical many-electron ion-atom, atom-atom collisions are specifically pointed out. Although a rigorous theoretical study of many-electron systems has just begun so that reports of theoretical calculations are scarce to date in comparison to flourishing experimental activities, some theoretical results are of great interest and provide important information for understanding collision dynamics of the system which contains many electrons. Selected examples are given for electron capture in a multiply charged ion-He collision, ion-pair formation in an atom-atom collision and alignment and orientation in a Li + + He collision. (Auth.)

  13. Electron-positron-paircreation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-09-01

    Recent experiments to study e + -e - paircreation in heavy ion atom collisions at energies close to the Coulomb barrier are reviewed. For high combined charges of the collision system Z u = Z 1 +Z 2 one finds pairs produced by the strong time changing Coulomb field with cross sections rising proportional to Z u 16 . The characteristics of the e + production line Z u and scattering angle dependence as well as their spectral distribution is well understood theoretically. Superimposed on the e + continua, e + lines were discovered with energies independent on Z u but with cross sections which rise with Z u 22 . The line energies are grouped around 250 and 340 keV for all systems with 164 u + -e - pairs. This is indicated by e + -e - coincidence experiments which show evidence for energy and angle correlated e + -e - emission expected for a particle decay. (orig.)

  14. Effects of external field on elastic electron-ion collision in a plasma

    International Nuclear Information System (INIS)

    Na, Sang-Chul; Jung, Young-Dae

    2008-01-01

    The field effects on elastic electron-ion collision are investigated in a plasma with the presence of the external field. The eikonal method and effective interaction potential including the far-field term caused by the external field is employed to obtain the eikonal phase shift and eikonal cross section as functions of the field strength, external frequency, impact parameter, collision energy, thermal energy and Debye length. The result shows that the effect of the external field on the eikonal cross section is given by the second-order eikonal phase. In addition, the external field effects suppress the eikonal cross section as well as eikonal phase for the elastic electron-ion collision. The eikonal phase and cross section are found to be increased with an increase of the frequency of the external field. It is also shown that the eikonal cross section increases with an increase of the thermal energy and Debye length.

  15. Electromagnetic excitation of 136Xe in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.D.

    1991-11-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR at the Society for Heavy Ion Research in Darmstadt a detector system for relativistic neutrons was developed, constructed, and applied in first experiments. An essential research aim is the study of collective states after electromagnetic excitation in relativistic heavy ion collisions. In peripheral collisions high-energy virtual photons are exchanged. This leads to the excitation of giant resonances, especially of the giant dipole and quadrupole resonance. An essential decay channel of giant resonances in heavy nuclei is the emission of neutrons, followed by the emission of γ radiation below the particle threshold. These decay channels were studied with the detector system developed by the LAND collaboration. A first experiment on the electromagnetic excitation was performed with a 136 Xe beam at an energy of 700 MeV/u and Pb respectively C targets. (orig./HSI) [de

  16. Projectile X-ray emission in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Shadi Mohammad Ibrahim

    2010-03-16

    This work reports on the study of the projectile X-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. For the K{sub {alpha}}{sub 1} and K{sub {alpha}}{sub 2} transitions originating from the excitation of the He-like uranium ions, no alignment was observed. In contrast, the Ly{sub {alpha}}{sub 1} radiation from the simultaneous ionization-excitation process of the He-like uranium ions shows a clear alignment. The experimental value leads to the inclusion of a magnetic term in the interaction potential. The capture process of target electrons into the highly-charged heavy ions was studied using H-like uranium ions at an incident energy of 220 MeV/u, impinging on N{sub 2} gas-target. It was shown that, the strongly aligned electrons captured in 2p{sub 3/2} level couple with the available 1s{sub 1/2} electron which shows no initial directional preference. The magnetic sub-state population of the 2p{sub 3/2} electron is redistributed according to the coupling rules to the magnetic sub-states of the relevant two-electron states. This leads to the large anisotropy in the corresponding individual ground state transitions contributing to the K{sub {alpha}}{sub 1} emission. From the K{sub {alpha}}{sub 1}/K{sub {alpha}}{sub 2} ratio, the current results show that the incoherent addition of the E1 and M2 transition components yield to an almost isotropic emission of the total K{sub {alpha}}{sub 1}. In contrast to the radiative electron capture, the experimental results for the K-shell single excitation of He-like uranium ions indicate that only the {sup 1}P{sub 1} level contributes to the K{sub {alpha}}{sub 1} transition. For this case, the anisotropy parameter {beta}{sub 20} was found to be -0.20{+-}0.03. This work also reports on the study of a two

  17. Ultrarelativistic heavy-ion collisions. Proceedings of the International Workshop XXX on Gross Properties of Nuclei and Nuclear Excitations

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2002-01-01

    The following topics were dealt with: Experimental results on ultrarelativistic heavy ion collisions, QCD thermodynamics, equilibration in relativistic heavy ion collisions, lattice QCD, space- time evolution and Hanbury-Brown-Twiss correlations, vector meson production, high-p T and small-x physics. (HSI)

  18. Bimodality in heavy ions collisions: systematic and comparisons

    International Nuclear Information System (INIS)

    Mercier, D.

    2008-11-01

    During the last few years, bi-modality in heavy ions collisions has been observed for different systems, on large energy scale (from 35 MeV/u up to 1 GeV/u). In this thesis, the bimodal behaviour of the largest fragment distribution (Zmax) is studied for different INDRA data sets. For peripheral collisions (Au+Au from 60 to 150 MeV/u, Xe+Sn 80-100 MeV/u), the influence of sorting and selections on bi-modality is tested. Then, two different approaches based on models are considered. In the first one (ELIE), bi-modality would reflect mainly the collision geometry and the Fermi motion of the nucleon. In the second one (SMM), bi-modality would reflect a phase transition of nuclear matter. The data are in favour of the second model. Zmax can then be considered as an order parameter of the transition. A re-weighting procedure producing a flat excitation energy distribution is used to achieve comparisons between various bombarding energies and theoretical predictions based on a canonical approach. A latent heat of the transition is extracted. For central collisions (Ni+Ni from 32 to 74 MeV/u and Xe+Sn from 25 to 50 MeV/u) single source events are isolated by a Discriminant Factor Analysis. Bi-modality is then looked for, in cumulating the different incident energies and in applying the re-weighting procedure of the corresponding excitation energy as done for peripheral collisions. The bi-modality behaviour is less manifest for central collisions than for peripheral ones. The possible reasons of this difference are discussed. (author)

  19. Electron-vibrational transitions under molecular ions collisions with slow electrons

    International Nuclear Information System (INIS)

    Andreev, E.A.

    1993-01-01

    A concept of a multichannel quantum defect is considered and basic theoretic ratios of inelastic collisional processes with the participation of molecular positive ions and slow electrons playing an important role both in atmospheric and laboratory plasma, are presented. The problem of scattering channel number limitation with the provision of S-matrix unique character is considered. Different models of electron rotation-vibrational connection under collision of two-atom molecular ions with slow electrons are analysed. Taking N 2 + as an example, a high efficiency of transitions between different electron states of a molecular ion is shown. 73 refs., 9 figs., 1 tab

  20. Strategy to improve the quantitative LC-MS analysis of molecular ions resistant to gas-phase collision induced dissociation: application to disulfide-rich cyclic peptides.

    Science.gov (United States)

    Ciccimaro, Eugene; Ranasinghe, Asoka; D'Arienzo, Celia; Xu, Carrie; Onorato, Joelle; Drexler, Dieter M; Josephs, Jonathan L; Poss, Michael; Olah, Timothy

    2014-12-02

    Due to observed collision induced dissociation (CID) fragmentation inefficiency, developing sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assays for CID resistant compounds is especially challenging. As an alternative to traditional LC-MS/MS, we present here a methodology that preserves the intact analyte ion for quantification by selectively filtering ions while reducing chemical noise. Utilizing a quadrupole-Orbitrap MS, the target ion is selectively isolated while interfering matrix components undergo MS/MS fragmentation by CID, allowing noise-free detection of the analyte's surviving molecular ion. In this manner, CID affords additional selectivity during high resolution accurate mass analysis by elimination of isobaric interferences, a fundamentally different concept than the traditional approach of monitoring a target analyte's unique fragment following CID. This survivor-selected ion monitoring (survivor-SIM) approach has allowed sensitive and specific detection of disulfide-rich cyclic peptides extracted from plasma.

  1. An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Hard probes

    Directory of Open Access Journals (Sweden)

    Panagiota Foka

    2016-11-01

    Full Text Available The first collisions of lead nuclei, delivered by the CERN Large Hadron Collider (LHC at the end of 2010, at a centre-of-mass energy per nucleon pair sNN= 2.76 TeV, marked the beginning of a new era in ultra-relativistic heavy-ion physics. The study of the properties of the produced hot and dense strongly-interacting matter at these unprecedented energies is currently experimentally pursued by all four big LHC experiments, ALICE, ATLAS, CMS, and LHCb. The more than a factor 10 increase of collision energy at LHC, relative to the previously achieved maximal energy at other collider facilities, results in an increase of production rates of hard probes. This review presents selected experimental results focusing on observables probing hard processes in heavy-ion collisions delivered during the first three years of the LHC operation. It also presents the first results from Run 2 heavy-ion data at the highest energy, as well as from the studies of the reference pp and p–Pb systems, which are an integral part of the heavy-ion programme. Keywords: Large Hadron Collider, Heavy-ion collisions, High energy physics

  2. Heavy Flavor Physics in Heavy-Ion Collisions with STAR Heavy Flavor Tracker

    International Nuclear Information System (INIS)

    Yifei Zhang

    2010-01-01

    Heavy quarks are a unique tool to probe the strongly interacting matter created in relativistic heavy-ion collisions at RHIC energies. Due to their large mass, energetic heavy quarks are predicted to lose less energy than light quarks by gluon radiation when they traverse a Quark-Gluon Plasma. In contrast, recent measurements of non-photonic electrons from heavy quark decays at high transverse momentum (p T ) show a jet quenching level similar to that of the light hadrons. Heavy quark are produced mainly at early stage in heavy-ion collisions, thus they are proposed to probe the QCD medium and to be sensitive to bulk medium properties. Ultimately, their flow behavior may help establish whether light quarks thermalize. But due to the absence of the measurement of B-mesons and precise measurement of D-mesons, it is difficult to separate bottom and charm contributions experimentally in current non-photonic electron measurements for both spectra and elliptic flow v 2 . Therefore, topological reconstruction of D-mesons and identification of electrons from charm and bottom decays are crucial to understand the heavy flavor production and their in medium properties. The Heavy Flavor Tracker (HFT) is a micro-vertex detector utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precise measurement of charmed and bottom hadrons. We present a study on the open charm nuclear modification factor, elliptic flow v 2 and λ c measurement as well as the measurement of bottom mesons via a semi-leptonic decay. (author)

  3. n dependence of l-changing collisions between He+ ions and Na

    International Nuclear Information System (INIS)

    MacAdam, K.B.; Crosby, D.A.; Rolfes, R.

    1980-01-01

    l-changing collisions were observed in a crossed He + -ion/Na--Rydberg-atom beam experiment. Transitions nd → (l > or = 3) induced in Na by ion impact at 450 and 600 eV were studied for n=20--34. Cross sections vary approximately as n 5 and have magnitudes of order 10 8 A 2 , a few hundred times the geometric cross section of the Rydberg atoms

  4. A Review on ϕ Meson Production in Heavy-Ion Collision

    Directory of Open Access Journals (Sweden)

    Md. Nasim

    2015-01-01

    Full Text Available The main aim of the relativistic heavy-ion experiment is to create extremely hot and dense matter and study the QCD phase structure. With this motivation, experimental program started in the early 1990s at the Brookhaven Alternating Gradient Synchrotron (AGS and the CERN Super Proton Synchrotron (SPS followed by Relativistic Heavy Ion Collider (RHIC at Brookhaven and recently at Large Hadron Collider (LHC at CERN. These experiments allowed us to study the QCD matter from center-of-mass energies (sNN 4.75 GeV to 2.76 TeV. The ϕ meson, due to its unique properties, is considered as a good probe to study the QCD matter created in relativistic collisions. In this paper we present a review on the measurements of ϕ meson production in heavy-ion experiments. Mainly, we discuss the energy dependence of ϕ meson invariant yield and the production mechanism, strangeness enhancement, parton energy loss, and partonic collectivity in nucleus-nucleus collisions. Effect of later stage hadronic rescattering on elliptic flow (v2 of proton is also discussed relative to corresponding effect on ϕ meson v2.

  5. Effects of momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei

    International Nuclear Information System (INIS)

    Li Baoan; Das, Champak B.; Das Gupta, Subal; Gale, Charles

    2004-01-01

    Using an isospin- and momentum-dependent transport model we study effects of the momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei. It is found that symmetry potentials with and without the momentum-dependence but corresponding to the same density-dependent symmetry energy E sym (ρ) lead to significantly different predictions on several E sym (ρ)-sensitive experimental observables especially for energetic nucleons. The momentum- and density-dependence of the symmetry potential have to be determined simultaneously in order to extract the E sym (ρ) accurately. The isospin asymmetry of midrapidity nucleons at high transverse momenta is particularly sensitive to the momentum-dependence of the symmetry potential. It is thus very useful for investigating accurately the equation of state of dense neutron-rich matter

  6. Collision experiment on highly ionized ions using vacuum spark source

    International Nuclear Information System (INIS)

    Takagi, S.; Ohtani, S.; Kadota, K.; Fujita, J.

    1982-03-01

    Cross sections for one-electron capture by Fe 6 + in H 2 are measured below 10 keV by using a vacuum spark ion source. It is found that the cross sections show little dependence on the collision energy and this value is about 6 x 10 - 15 cm 2 . This ion source, which has no electrode for ion extraction, can produce ions from several hundreds eV to several tens of keV and the maximum charge state of 16 in Fe at 125J discharge energy. With ion selection system of 2.7 m time-of-flight and an electrostatic analyzer of 1% resolving power, 10 2 - 10 3 ions/pulse are obtained. Because of poor reproducibility of ion beam, charge-transferred ions and unreacted ions are measured simultaneously with a microchannel plate which has two anodes behind. By utilizing the feature of pulsed ion beam and this ion selection system, it is possible to obtain cross sections for various charge states of ions simultaneously. (author)

  7. Ultrarelativistic heavy ion collisions: the first billion seconds

    Energy Technology Data Exchange (ETDEWEB)

    Baym, Gordon

    2016-12-15

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter – the quark-gluon plasma primarily – and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  8. Transverse flow of kaons in heavy-ion collisions

    CERN Document Server

    Zheng Yu Ming; Fuchs, C; Faessler, A; Xiao Wu; Hua Da Ping; Yan Yu Peng

    2002-01-01

    The transverse flow of positively charged kaons from heavy-ion collisions at intermediate energy is investigated within the framework of the quantum molecular dynamics model. The calculated results show that the experimental data are only consistent with those including the kaon mean-field potential from the chiral Lagrangian. This indicates that the transverse flow pattern of kaons is a useful probe of the kaon potential in a nuclear medium

  9. Charm and strangeness of ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Gerschel, C.

    1994-01-01

    Charmonium and strangeness production in collisions induced by ultrarelativistic sulfur or silicon ions is reviewed. A suppression of charmonium production and a strangeness enhancement are observed. Predicted as potential signatures of the quark gluon plasma formation, their interpretation is still very much debated. The status of the discussion will be given as well as the expected evolutions with the forthcoming Pb beams. (author). 45 refs., 11 figs., 1 tab

  10. What we have (not)learned from the ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Paic, Guy

    2009-01-01

    The field of ultrarelativistic heavy ion collisions is today a flourishing activity both on the experimental and on the theoretical side. Although the theoretical justifications to study these collisions was given already more than three decades ago and the experimental studies have a history of more than 25 years we are still very much in the dark as to the details of the processes and of the characteristics of the matter created in collisions. Increasing the energy of collisions has brought new insights but has also resulted with new challenges. In the present paper I will try from a personal perspective to report on the answers we have collected and on the problems we are faced with. The account is partial, taking into account that it is impossible to render justice to every aspect of the field.

  11. Electron and molecular ion collisions relevant to divertor plasma

    International Nuclear Information System (INIS)

    Takagi, H.

    2005-01-01

    We introduce the concept of the multi-channel quantum defect theory (MQDT) and show the outline of the MQDT newly extended to include the dissociative states. We investigate some molecular processes relevant to the divertor plasma by using the MQDT: the dissociative recombination, dissociative excitation, and rotation-vibrational transition in the hydrogen molecular ion and electron collisions. (author)

  12. Correlated charge-changing ion-atom collisions

    International Nuclear Information System (INIS)

    Tanis, J.A.

    1992-04-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant DE-FG02-87ER13778 from March 16, 1991 through March 15, 1992. This work involves the experimental investigation of fundamental atomic processes in collisions of charged projectiles with neutral targets or electrons, with particular emphasis on two-electron interactions and electron correlation effects. Processes involving combinations of excitation, ionization, and charge transfer are investigated utilizing coincidence techniques in which projectiles charge-changing events are associated with x-ray emission, target recoil ions, or electron emission. New results have been obtained for studies involving (1) resonant recombination of atomic ions, (2) double ionization of helium, and (3) continuum electron emission. Experiments were conducted using accelerators at the Lawrence Berkeley Laboratory, Argonne National Laboratory, Michigan State University, Western Michigan University, and the Institute of Nuclear Research, Debrecen, Hungary. Brief summaries of work completed and work in progress are given in this report

  13. Hard scattering contribution to particle production in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Pareek, Pooja; Mishra, Aditya Nath; Sahoo, Pragati; Sahoo, Raghunath

    2014-01-01

    Global observables like the multiplicity of produced charged particles and transverse energy, are the key observables used to characterize the properties of the matter created in heavy-ion collisions. In order to study the dependence of the charged particle density on colliding system, center of mass energy and collision centrality, there have been measurements starting few GeV to TeV energies at LHC. There is a need to understand the particle production contribution coming from the QCD hard processes, which scale with number of binary nucleon-nucleon collisions, N coll and soft processes scaling with number of participant nucleons, N part

  14. Systematics of Charged Particle Production in Heavy-Ion Collisions with the PHOBOS Detector at Rhic

    Science.gov (United States)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-03-01

    The multiplicity of charged particles produced in Au+Au collisions as a function of energy, centrality, rapidity and azimuthal angle has been measured with the PHOBOS detector at RHIC. These results contribute to our understanding of the initial state of heavy ion collisions and provide a means to compare basic features of particle production in nuclear collisions with more elementary systems.

  15. A flow paradigm in heavy-ion collisions

    Science.gov (United States)

    Yan, Li

    2018-04-01

    The success of hydrodynamics in high energy heavy-ion collisions leads to a flow paradigm, to understand the observed features of harmonic flow in terms of the medium collective expansion with respect to initial state geometrical properties. In this review, we present some essential ingredients in the flow paradigm, including the hydrodynamic modeling, the characterization of initial state geometry and the medium response relations. The extension of the flow paradigm to small colliding systems is also discussed. Supported by Natural Sciences and Engineering Research Council of Canada

  16. Densities and temperatures at fragment formation in heavy-ion collision

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan)

    1998-07-01

    In order to clarify whether the liquid-gas phase transition is relevant to the multi-fragment formation found in intermediate energy heavy-ion collisions, we estimate the densities and temperatures at fragment formation in Au+Au collisions at incident energies of 150 MeV/A and 400 MeV/A within the Quantum Molecular Dynamics (QMD) model with and without quantum fluctuations implemented according to the Quantal Langevin (QL) model. The calculated results show that the IMFs are mainly produced inside the unstable region of nuclear matter, which supports the idea of the fragment formation from supercooled nuclear matter. (author)

  17. Direct processes in ion-atom collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Rodriguez Chariarse, V.D.

    1990-01-01

    This thesis deals with direct processes induced by Zp charge ion impact on one or two electron atoms and ions at intermediate energies. At a first step, a one-dimensional collision model is used in order to prove the different theoretical methods available to study collisions at such energy range, such as: perturbative and related variational principles, and distorted wave methods. The best description of both, symmetric and asymmetric collision type, is achieved by the distorted wave methods, particularly the ones using the exact impulsive wave function. As a next step, the appropriate formulations of the wave functions employed in the one-dimensional model to describe the real 3-dimensional Coulomb interaction case are examined by using the Eikonal and impulse hypothesis. In this way, the VPS and Eikonal wave functions are reviewed, and furtherly, the Eikonal form of the extended impulse wave function is derived. The Eikonal impulse approximation (EIA) is introduced. This is a distorted wave method using the Eikonal and extended impulse wave functions. The choice of the EIA prior version, i.e., the one using extended impulse wave function in the final channel for excitation is widely discussed and justified. (Author) [es

  18. Relativistic ion collisions as the source of hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Botvina, A.S. [J.W. Goethe University, Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Russian Academy of Sciences, Institute for Nuclear Research, Moscow (Russian Federation); Bleicher, M.; Steinheimer, J. [J.W. Goethe University, Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Pochodzalla, J. [J. Gutenberg-Universitaet, Helmholtz-Institut Mainz, Mainz (Germany); J. Gutenberg-Universitaet Mainz, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2016-08-15

    We shortly review the theory of hypernuclei production in relativistic ion collisions, that is adequate to future experiments at BM rate at N, NICA, and FAIR. Within a hybrid approach we use transport, coalescence and statistical models to describe the whole process. We demonstrate that the origin of hypernuclei can be explained by typical baryon interactions, that is similar to the production of conventional nuclei. In particular, heavy hypernuclei are coming mostly from projectile and target residues, whereas light hypernuclei can be produced at all rapidities. The yields of hypernuclei increase considerably above the energy threshold for Λ hyperon production, and there is a tendency to saturation of yields of hypernuclei with increasing the beam energy up to few TeV. There are unique opportunities in relativistic ion collisions which are difficult to realize in traditional hypernuclear experiments: The produced hypernuclei have a broad distribution in masses and isospin. They can even reach beyond the neutron and proton drip-lines and that opens a chance to investigate properties of exotic hypernuclei. One finds also the abundant production of multi-strange nuclei, of bound and unbound hypernuclear states with new decay modes. In addition, we can directly get an information on the hypermatter both at high and low temperatures. (orig.)

  19. Fragmentation of molecular ions in slow electron collisions

    International Nuclear Information System (INIS)

    Novotny, Steffen

    2008-01-01

    The fragmentation of positively charged hydrogen molecular ions by the capture of slow electrons, the so called dissociative recombination (DR), has been investigated in storage ring experiments at the TSR, Heidelberg, where an unique twin-electron-beam arrangement was combined with high resolution fragment imaging detection. Provided with well directed cold electrons the fragmentation kinematics were measured down to meV collision energies where pronounced rovibrational Feshbach resonances appear in the DR cross section. For thermally excited HD + the fragmentation angle and the kinetic energy release were studied at variable precisely controlled electron collision energies on a dense energy grid from 10 to 80 meV. The anisotropy described for the first time by Legendre polynomials higher 2 nd order and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged DR rate coefficient. Ro-vibrationally resolved DR experiments were performed on H 2 + produced in distinct internal excitations by a novel ion source. Both the low-energy DR rate as well as the fragmentation dynamics at selected resonances were measured individually in the lowest two vibrational and first three excited rotational states. State-specific DR rates and angular dependences are reported. (orig.)

  20. Fragmentation of molecular ions in slow electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Steffen

    2008-06-25

    The fragmentation of positively charged hydrogen molecular ions by the capture of slow electrons, the so called dissociative recombination (DR), has been investigated in storage ring experiments at the TSR, Heidelberg, where an unique twin-electron-beam arrangement was combined with high resolution fragment imaging detection. Provided with well directed cold electrons the fragmentation kinematics were measured down to meV collision energies where pronounced rovibrational Feshbach resonances appear in the DR cross section. For thermally excited HD{sup +} the fragmentation angle and the kinetic energy release were studied at variable precisely controlled electron collision energies on a dense energy grid from 10 to 80 meV. The anisotropy described for the first time by Legendre polynomials higher 2{sup nd} order and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged DR rate coefficient. Ro-vibrationally resolved DR experiments were performed on H{sub 2}{sup +} produced in distinct internal excitations by a novel ion source. Both the low-energy DR rate as well as the fragmentation dynamics at selected resonances were measured individually in the lowest two vibrational and first three excited rotational states. State-specific DR rates and angular dependences are reported. (orig.)

  1. Angular correlations of coincident electron-positron pairs in heavy ion collisions

    International Nuclear Information System (INIS)

    Graf, O.

    1988-10-01

    In the present thesis angular correlations of coincident electron-positron pairsnin heavy ion collisions are studied. It is meant as a contribution to the answer of fundamental questions in the quantum electrodynamics of strong fields. (orig./HSI) [de

  2. Proceedings of RIKEN BNL Research Center Workshop entitled Hydrodynamics in Heavy Ion Collisions and QCD Equation of State (Volume 88)

    Energy Technology Data Exchange (ETDEWEB)

    Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.

    2008-04-21

    The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.

  3. Exclusive processes in electron-ion collisions in the dipole formalism

    Energy Technology Data Exchange (ETDEWEB)

    Cazaroto, E. R.; Navarra, F. S. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05314-970 Sao Paulo, SP (Brazil); Carvalho, F. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Campus Diadema, Rua Prof. Artur Riedel, 275, Jd. Eldorado, 09972-270 Diadema, SP (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900 Pelotas, RS (Brazil)

    2013-03-25

    We compare the predictions of two saturation models for production of vector mesons and of photons in electron-ion collisions. The models considered are the b-CGC and the rcBK. The calculations were made in the kinematical range of the LHeC and of the future eRHIC.

  4. Ekpyrosis and inflationary dynamics in heavy ion collisions: the role of quantum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Dusling, K.; Venugopalan, R.; Gelis, F.

    2011-05-23

    We summarize recent significant progress in the development of a first-principles formalism to describe the formation and evolution of matter in very high energy heavy ion collisions. The key role of quantum fluctuations both before and after a collision is emphasized. Systematic computations are now feasible to address early time isotropization, flow, parton energy loss and the Chiral Magnetic Effect.

  5. P and CP violation and new thermalization scenario in heavy ion collisions

    International Nuclear Information System (INIS)

    Zhitnitsky, Ariel R.

    2011-01-01

    The violation of local P and CP invariance in QCD has been a subject of intense discussions for the last couple of years as a result of very interesting ongoing results coming from RHIC. Separately, a new thermalization scenario for heavy ion collisions through the event horizon as a manifestation of the Unruh effect, has been also suggested. In this paper we argue that these two, naively unrelated phenomena, are actually two sides of the same coin as they are deeply rooted into the same fundamental physics related to some very nontrivial topological features of QCD. We formulate the universality conjecture for P and CP odd effects in heavy ion collisions analogous to the universal thermal behaviour observed in all other high energy interactions.

  6. Mass and angular distributions of the reaction products in heavy ion collisions

    Science.gov (United States)

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Kayumov, B. M.; Tashkhodjaev, R. B.

    2018-05-01

    The optimal reactions and beam energies leading to synthesize superheavy elements is searched by studying mass and angular distributions of fission-like products in heavy-ion collisions since the evaporation residue cross section consists an ignorable small part of the fusion cross section. The intensity of the yield of fission-like products allows us to estimate the probability of the complete fusion of the interacting nuclei. The overlap of the mass and angular distributions of the fusion-fission and quasifission products causes difficulty at estimation of the correct value of the probability of the compound nucleus formation. A study of the mass and angular distributions of the reaction products is suitable key to understand the interaction mechanism of heavy ion collisions.

  7. Heavy Ion Collisions at the LHC - Last Call for Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d' Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise

  8. Comparison of models of high energy heavy ion collision

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1977-01-01

    Some of the main theoretical developments on heavy ion collisions at energies (0.1 to 2.0) GeV/nuc are reviewed. The fireball, firestreak, hydrodynamic (1-fluid, 2-fluids), ''row on row'', hard sphere and intranuclear cascades, and classical equations of motion models are discussed in detail. Results are compared to each other and to measured Ne + U → p + X reactions

  9. Measurement of quarkonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Tapia Araya, Sebastian; The ATLAS collaboration

    2017-01-01

    The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system produced in interactions of heavy ions at high energy. In addition to hot matter effects, cold nuclear effects can play an important role in quarkonia production. Therefore, a full assessment of different physics scenarios requires detailed studies on the effects present in Pb+Pb and p+Pb collisions in comparison to the pp collisions. Results of the studies based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC by the ATLAS experiment at the centre of mass energy of 5.02 TeV allowed studying prompt and non-prompt J/ψ and ψ(2S) productions as well as Υ(nS) (n = 1, 2, 3) production via the di-muon decay final states. The results of the measurements presented as a function rapidity and transverse momentum as well as the ratios between different species and systems are presented and discussed in the talk.

  10. Vector mesons in dense matter and dilepton production in heavy ion collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Elvira

    2008-02-15

    The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)

  11. Vector mesons in dense matter and dilepton production in heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Santini, Elvira

    2008-01-01

    The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)

  12. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  13. Monte-Carlo simulation of heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    Results from the Modular Algorithm for Relativistic Treatment of heavy IoN Interactions (MARTINI) are presented. This comprehensive event generator for the hard and penetrating probes in high energy nucleus-nucleus collisions employs a time evolution model for the soft background, PYTHIA 8.1 and the McGill-AMY parton evolution scheme including radiative as well as elastic processes. It generates full event configurations in the high p T region, allowing to perform the same processing as with experimental data, such as multi-particle correlation analyses and full jet reconstruction. (author)

  14. Production of pions and anomalous projectile fragments in heavy ion collisions

    International Nuclear Information System (INIS)

    Noren, B.

    1988-05-01

    Results are presented from investigations of the mean free path (mfp) of multiply charged fragments, produced by 1.8 A GeV argon nuclei. The mfp's have been studied experimentally, and no dependence of the mfp on the distance from the preceeding collision is observed. In a Monte Carlo simulation, the mfp estimators are investigated for different statistics, with or without an enhanced reaction probability. Intermediate energy heavy ion collisions have been studied using the carbon beam produced at the CERN SC-accelerator. Cross-sections for pion + and pion - have been measured over a wide range of angles and targets. Also, coincidence measurements with projectile-like fragments have been performed. The pion - /pion + ratio has been studied for C+Li, C+C, C+Pb, C+ 116 Sn and C+ 124 Sn. Inconsistencies in the target mass dependence of the pion yield disappear if a correction for reabsorption in the target nucleus is included. The projectile breakup is significantly stronger for pion producing collisions than for the average collision, thus indicating a much stronger abundance of central collisions. (With 32 refs.) (author)

  15. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    Science.gov (United States)

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  16. Origin of the finite nuclear spin and its effect in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Cao Xiguang; Fu Yao

    2012-01-01

    The heavy-ion phase-space exploration (HIPSE) model is used to discuss the origin of the nuclear spin in intermediate energy heavy-ion collision (HIC). The spin of maximal projectile-like fragment is found to depend strongly on impact parameter of a reaction system,while it relates weakly to the collision violence. Some interesting multi-fragmentation phenomena related to the spin are shown. We also found that the excitation energy in the de-excitation stage plays a robust role at the de-excitation stage in HIC. (authors)

  17. Collective azimuthal alignment and transverse momentum conservation in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bock, R.; Gutbrod, H.H.; Siemiarczuk, T.

    1987-08-01

    It is shown that transverse momentum conservation in the three-source Fai and Randrup statistical model does not explain the collective azimuthal alignment as observed in heavy-ion collisions at Bevelac energies. (orig.)

  18. Statistical model predictions for p+p and Pb+Pb collisions at LHC

    NARCIS (Netherlands)

    Kraus, I.; Cleymans, J.; Oeschler, H.; Redlich, K.; Wheaton, S.

    2009-01-01

    Particle production in p+p and central collisions at LHC is discussed in the context of the statistical thermal model. For heavy-ion collisions, predictions of various particle ratios are presented. The sensitivity of several ratios on the temperature and the baryon chemical potential is studied in

  19. Studies of relativistic heavy ion collisions. Final report, July 16, 1987-December 31, 1997

    International Nuclear Information System (INIS)

    Madansky, L.

    1997-01-01

    As a member of the DLS collaboration, the Hopkins group participated in all aspects of the experiment and the analysis of the results. The recent work involved measurements of dielectrons from p-p, p-d collisions as well as heavy ion Ca-Ca collisions at high densities. These results show the expected effects of bremsstrahlung vector meson decay and Dalitz decay but still show that some varieties of the low mass cross-sections disagree with various theoretical estimates, which could indicate other effects of high nuclear density. The Hopkins group has also been an initial member of the STAR collaboration and helped initiate the proposal for jet searches in the heavy ion experiments at RHIC. The group was instrumental in initiating the first stage of an electro-magnetic calorimeter for these experiments. The group also joined (E896) the Ho experiment. This work was primarily devoted to finding the existence of an elementary system containing strange quarks. An initial experiment was done recently at which Hopkins provided various beam counters. The final work is expected to commence in the fall of '98. Finally, the group has contributed to a number of experiments involving polarization effects in nuclear collisions, searching for production of antimatter, and other aspects of relativistic collisions of heavy ions using the facilities at Brookhaven National Laboratory (BNL)

  20. Pion and kaon correlations in high energy heavy-ion collisions. Annual report, April 1, 1995 - March 31, 1996

    International Nuclear Information System (INIS)

    Wolf, K.L.

    1996-01-01

    Data analysis is in progress for recent experiments performed by the NA44 collaboration with the first running of 160 A GeV 208 Pb-induced reactions at the CERN SPS. Identified singles spectra were taken for pions, kaons, protons, deuterons, antiprotons and antideuterons. Two-pion interferometry measurements were made for semi-central-triggered 208 Pb + Pb collisions. An upgraded multiple-particle spectrometer allows high statistics data sets of identified particles to be collected near mid-rapidity. A second series of experiments will be performed in the fall of 1995 with more emphasis on identical kaon interferometry and on the measurement of rare particle spectra and correlations. Modest instrumentation upgrades by TAMU are designed to increase the trigger function for better impact parameter selection and improved collection efficiency of valid events. An effort to achieve the highest degree of projectile-target stopping is outlined and it is argued that an excitation function on the SPS is needed to better understand reaction mechanisms. Analysis of experimental results is in the final stages at LBL in the EOS collaboration for two-ion interferometry in the 1.2 A GeV Au+Au reaction, taken with full event characterization

  1. Hadronic degrees of freedom in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Otsuka, Naohiko

    2001-01-01

    Relativistic heavy-ion collisions at AGS energies are studied by using an new developed hadronic cascade model, HANDEL which includes a few hadronic degrees of freedom. The spectra of hadron-hadron, hadron-nucleus and nucleus-nucleus reactions at AGS energies are well reproduced by HANDEL. It is confirmed that the infinite matter described by HANDEL has particle fractions which are expected from grand canonical ensemble. When we compare the thermal evolution of Au+Au collision from HANDEL with the result from JAM which has larger hadronic degree of freedoms, we find both models give similar evolution of temperature, against naive expectation. We argue that this results can be interpretated if the particles in formation time works as the additional effective hadronic degrees of freedom. (author)

  2. An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Bulk properties and dynamical evolution

    Directory of Open Access Journals (Sweden)

    Panagiota Foka

    2016-11-01

    Full Text Available The first collisions of lead nuclei, delivered by the CERN Large Hadron Collider (LHC at the end of 2010, at a centre-of-mass energy per nucleon pair sNN= 2.76 TeV, marked the beginning of a new era in ultra-relativistic heavy-ion physics. Following the Run 1 period, LHC also successfully delivered Pb–Pb collisions at the collision energy sNN= 5.02 TeV at the end of 2015. The study of the properties of the produced hot and dense strongly-interacting matter at these unprecedented energies is experimentally pursued by all four big LHC experiments, ALICE, ATLAS, CMS, and LHCb. This review presents selected experimental results from heavy-ion collisions delivered during the first three years of the LHC operation focusing on the bulk matter properties and the dynamical evolution of the created system. It also presents the first results from Run 2 heavy-ion data at the highest energy, as well as from the studies of the reference pp and p–Pb systems, which are an integral part of the heavy-ion programme. Keywords: Large hadron collider, Heavy-ion collisions, High energy physics

  3. Pion production - a probe for coherence in medium energy heavy ion collisions

    International Nuclear Information System (INIS)

    Stachel, J.

    1985-01-01

    Neutral pion production is observed in heavy ion collisions at beam energies as low as 25 MeV/u, where this process is consumming the major portion of the total center of mass energy available. At these low beam energies single nucleon nucleon collision models and also models that incorporate the cooperative sharing of the beam energy of several nucleons do not reproduce the data. Rather, the data presented here call for a fully coherent production mechanism. (orig.)

  4. High energy structures in heavy ion collisions: a multiphonon description

    International Nuclear Information System (INIS)

    Chomaz, P.; Blumenfeld, Y.; Frascaria, N.

    1984-01-01

    Energy spectra of fragments from the 36 Ar + 208 Pb reaction at 11 MeV/n exhibit structures at high excitation energies. These structures are interpreted in terms of target multi-phonon excitations built from giant resonances. The importance of such processes for the kinetic energy dissipation in heavy ion collisions is emphasized

  5. Time-dependent shell-model theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Ayik, S.; Noerenberg, W.

    1982-01-01

    A transport theory is formulated within a time-dependent shell-model approach. Time averaging of the equations for macroscopic quantities lead to irreversibility and justifies weak-coupling limit and Markov approximation for the (energy-conserving) one- and two-body collision terms. Two coupled equations for the occupation probabilities of dynamical single-particle states and for the collective variable are derived and explicit formulas for transition rates, dynamical forces, mass parameters and friction coefficients are given. The applicability of the formulation in terms of characteristic quantities of nuclear systems is considered in detail and some peculiarities due to memory effects in the initial equilibration process of heavy-ion collisions are discussed. (orig.)

  6. Modeling chiral criticality and its consequences for heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Almási, Gábor András, E-mail: g.almasi@gsi.de [Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt (Germany); Friman, Bengt, E-mail: b.friman@gsi.de [Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt (Germany); ExtreMe Matter Institute (EMMI), D-64291 Darmstadt (Germany); Redlich, Krzysztof, E-mail: krzysztof.redlich@ift.uni.wroc.pl [ExtreMe Matter Institute (EMMI), D-64291 Darmstadt (Germany); University of Wrocław - Faculty of Physics and Astronomy, PL-50-204 Wrocław (Poland); Department of Physics, Duke University, Durham, NC 27708 (United States)

    2016-12-15

    We explore the critical fluctuations near the chiral critical endpoint (CEP) in a chiral effective model and discuss possible signals of the CEP, recently explored experimentally in nuclear collision. Particular attention is paid to the dependence of such signals on the location of the phase boundary and the CEP relative to the chemical freeze-out conditions in nuclear collisions. We argue that in effective models, standard freeze-out fits to heavy-ion data should not be used directly. Instead, the relevant quantities should be examined on lines in the phase diagram that are defined self-consistently, within the framework of the model. We discuss possible choices for such an approach.

  7. Vorticity and particle polarization in heavy ion collisions (experimental perspective

    Directory of Open Access Journals (Sweden)

    Voloshin Sergei A.

    2018-01-01

    Full Text Available The recent measurements of the global polarization and vector meson spin alignment along the system orbital momentum in heavy ion collisions are briefly reviewed. A possible connection between the global polarization and the chiral anomalous effects is discussed along with possible experimental checks. Future directions, in particular those aimed on the detailed mapping of the vorticity fields, are outlined. The Blast Wave model is used for an estimate of the anisotropic flow effect on the vorticity component along the beam direction. We also point to a possibility of a circular pattern in the vorticity field in asymmetric, e.g. Cu+Au, central collisions.

  8. A model for high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Myers, W.D.

    1978-01-01

    A model is developed for high-energy heavy-ion collisions that treats the variation across the overlap region of the target and projectile in the amount of energy and momentum that is deposited. The expression for calculating any observable takes the form of a sum over a series of terms, each one of which consists of a geometric, a kinematic, and a statistical factor. The geometrical factors for a number of target projectile systems are tabulated. (Auth.)

  9. Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density

    Science.gov (United States)

    Bratkovskaya, E. L.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Moreau, P.

    2017-07-01

    The effect of the chiral symmetry restoration (CSR) on observables from heavy-ion collisions is studied in the energy range \\sqrt{{s}NN}=3-20 {GeV} within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear σ - ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon Σ-term we adopt Σ π ≈ 45 MeV which corresponds to some ‘world average’. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at \\sqrt{{s}NN}=3-20 {GeV}, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive. Our results provide a microscopic explanation for the “horn” structure in the excitation function of the K +/π + ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to \\sqrt{{s}NN}≈ 7 {GeV}, while the drop at higher energies is associated to the appearance of a deconfined partonic medium.

  10. Two views on the Bjorken scenario for ultra-relativistic heavy-ion collisions

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    The sketch describes the Bjorken scenario foreseen for the collision of ultra-relativistic heavy-ions, leading to the creation of strongly-interacting hot and dense deconfined matter, the so-called Quark-Gluon Plasma (QGP).

  11. Observation of the Antimatter Nuclei in Relativistic Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Yoo, I.-K.

    2013-01-01

    Recently antimatter hyper-triton nuclei ( 3 Λ¯ H ¯) and antimatter helium nuclei ( 4 2 He ¯ ) are discovered with the Solenoidal Tracker At RHIC detector in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) (STAR Collaboration in Science 328(5974):58-62, 2010; STAR Collaboration in Nature 473:353-356, 2011). In this presentation, discoveries of antimatter particle are historically scanned and the recent observations at RHIC are reported in details as well as potential possibilities of discovery of antimatter nuclei at ALICE. (author)

  12. Atomic collision studies at moderate projectile velocities using highly charged, decelerated heavy ions from the GSI-UNILAC

    International Nuclear Information System (INIS)

    Mokler, P.H.; Hoffmann, D.H.H.; Schoenfeldt, W.A.; Maor, D.

    1984-01-01

    Beams of highly ionized, very heavy atoms at moderate velocities have been produced at the UNILAC using the acceleration-stripping-deceleration method. The available ion species range from Kr 33+ to U 66+ in the energy region between 2 and 5 MeV/u. A survey on first experiments at GSI using these moderate velocity, few electron, heavy ion beams is given. The effectiveness of the method is demonstrated for Xesup(q+)-Xe collision experiments with 41 <= q <= 45. Results on vacancy transfer between inner quasimolecular levels for close collisions, and on distant collision electron capture are reported. (orig.)

  13. Vibrational and cascade dissociation of H{sub 2}{sup +} ions by collision with gas molecules; Dissociation vibrationnelle et dissociation en cascade d'ions H{sub 2}{sup +} par collisions avec les molecules d'un gaz

    Energy Technology Data Exchange (ETDEWEB)

    Verveer, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-07-01

    Protons produced by collisional dissociation of H{sub 2}{sup +} ions have an energy spectrum with a narrow central peak. For a part the protons in this peak are produced by vibrational dissociation and for another part by a cascade of two collisions. For H{sub 2}{sup +} ions of 50 to 150 keV the cross section for vibrational dissociation is about 4.1 10{sup -19} cm{sup 2}/molecule in hydrogen and 1.1 10{sup -18} cm{sup 2}/molecule in argon. (author) [French] Les protons resultant de la dissociation par collisions d'ions H{sub 2}{sup +} dans un gaz ont un spectre d'energie qui presente un pic central tres etroit. Les protons dans ce pic proviennent, pour une part de la dissociation vibrationnelle et pour l'autre part d'une suite de deux collisions. Dans le domaine d'energie des ions H{sub 2}{sup +} de 50 a 150 keV la section efficace de dissociation vibrationnel vaut 4.1 10{sup -19} cm{sup 2}/molecule pour l'hydrogene et 1,1 10{sup -18} cm{sup 2}/molecule pour l'argon.

  14. Time evolution of the mass exchange in grazing heavy-ion collisions

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Deak, F.; Kiss, A.; Seres, Z.

    1989-10-01

    On the basis of a macroscopical approach to the description of two interpenetrating quantum objects, the equations of two-fluid hydrodynamics for the cohesion stage of deeply inelastic heavy-ion collisions are formulated. The elasticity of the ions is analyzed in peripheral mass exchange reactions at intermediate energies. The system of closed equations of Newtonian mechanics, which simultaneously describes the motion of the ions along classical trajectories as well as the mass time evolution during the interaction period are derived and solved. The role of mass exchange in the friction force is discussed. (author) 22 refs.; 2 figs

  15. Jet measurements in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Havener, Laura Brittany; The ATLAS collaboration

    2017-01-01

    In relativistic heavy-ion collisions, a hot medium with a high density of unscreened colour charges is produced. Jets are produced by parton-parton scatterings in the early stages of the collision, and are observed to be attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. Another manifestation of energy loss is the modification of both dijet transverse energy balance, and a similar modification of photon-jet correlations. Finally, the internal structure of jets is also observed to be modified, from a careful study of fragmentation functions. In this talk, the latest ATLAS results on single jet suppression, dijet suppression, photon-jet correlations, and modification of the jet internal structure in both p+Pb and Pb+Pb collisions, compared to pp, will be presented.

  16. Ion heating due to rotation and collision in magnetized plasma

    International Nuclear Information System (INIS)

    Anderegg, F.; Stern, R.A.; Skiff, F.; Hammel, B.A.; Tran, M.Q.; Paris, P.J.; Kohler, P.

    1986-01-01

    The E x B rotation and associated collisional ion heating of noble-gas magnetized plasmas are investigated with high resolution by means of laser-induced fluorescence and electrical probes. Plasma rotation results from a radial potential gradient which can be controlled by biasing of the discharge electrodes. The time and space evolution of the potential, the rotation velocity v/sub t//sub h//sub e//sub t//sub a/, and the ion perpendicular temperature indicate that heating is due to the randomization of v/sub t//sub h//sub e//sub t//sub a/ by ion-neutral collisions, and leads to temperature increases as high as a factor of 50 over initial values

  17. Studies on low energy ion-atom collisions by means of electron-spectroscopy

    International Nuclear Information System (INIS)

    Hirosi Suzuki

    1991-01-01

    The typical results of studies on autoionization processes produced by low energy ion-atom collisions are given by means of the ejected electron spectroscopy, which have been performed by Atomic Physics Group of Sophia University

  18. Electron-electron interaction and transfer ionization in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Voitkiv, A B

    2008-01-01

    Recently it was pointed out that electron capture occurring in fast ion-atom collisions can proceed via a mechanism which earlier was not considered. In the present paper we study this mechanism in more detail. Similarly as in radiative capture, where the electron transfer occurs due to the interaction with the radiation field and proceeds via emission of a photon, within this mechanism the electron capture is caused by the interaction with another atomic electron leading mainly to the emission of the latter. In contrast to the electron-electron Thomas capture, this electron-electron (E-E) mechanism is basically a first-order one having similarities to the kinematic and radiative capture channels. It also possesses important differences with the latter two. Leading to transfer ionization, this first-order capture mechanism results in the electron emission mainly in the direction opposite to the motion of the projectile ion. The same, although less pronounced, feature is also characteristic for the momenta of the target recoil ions produced via this mechanism. It is also shown that the action of the E-E mechanism is clearly seen in recent experimental data on the transfer ionization in fast proton-helium collisions.

  19. Lepton-pair production by bremsstrahlung in central relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Lippert, T.; Becker, U.; Gruen, N.; Scheid, W.; Soff, G.

    1988-03-01

    We study the production of lepton-pairs by classical bremsstrahlung in central relativistic heavy-ion collisions. For the stopping of the nuclei we assume a simple model of point charges and a deceleration time. Pair creation probabilities are calculated in first order perturbation theory. (orig.)

  20. Coupling constant corrections in a holographic model of heavy ion collisions

    NARCIS (Netherlands)

    Grozdanov, Sašo; Schee, Wilke van der

    2017-01-01

    We initiate a holographic study of coupling-dependent heavy ion collisions by analysing for the first time the effects of leading-order, inverse coupling constant corrections. In the dual description, this amounts to colliding gravitational shock waves in a theory with curvature-squared terms. We

  1. Inductively coupled plasma mass spectrometry with hexapole collision cell: figures of merit and applications

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen]|[Radiation Physics and Chemistry Problems Inst., Minsk (Belarus); Becker, J.S. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen

    2000-11-01

    The use of gas-filled multipole collision cells represents important progress in ICP-MS instrumentation. It enables an increase in element sensitivity based on the improvement of ion transmission efficiency from near thermalization and collisional focusing of ions. In addition, gas-phase ion-molecule chemistry can be applied in order to reduce mass spectral interferences via charge transfer reaction of interfering ions with reaction gas or via fragmentation of interfering molecular ions by collision-induced dissociation. The application of a hexapole collision cell in quadrupole based ICP-MS (HEX-ICP-QMS) was studied systematically in order to characterize the analytical figures of merit of this approach. Additionally, the performance of different solution introduction systems as well as an inductively coupled plasma shielded torch was studied for use with HEX-ICP-QMS. (orig.)

  2. Studies of relativistic heavy ion collisions at the AGS (E814/E877)

    International Nuclear Information System (INIS)

    Cleland, W.E.

    1993-01-01

    Efforts have continued in the area of peripheral and central collisions of relativistic heavy ions. In the area of peripheral collisions, the analysis of the 1n and 2p decay channels has been completed. In the area of central collisions, the first measurement of the E T distributions in Au + Au collisions, through the use of the participant calorimeter, was completed, and the results were compared with those obtained in collisions with Si projectiles. In addition, a thorough study of two-particle correlation functions was carried out by use of the data from the silicon pad multiplicity detector. Differential cross sections for 14.6-GeV/c 28 Si on Al, Cu, and Pb, and 11.4-GeV/c 197 Au on Al, Cu, Au, and Pb are given. 32 figs., 4 tabs., 24 refs

  3. Comment on the classical-trajectory Monte Carlo method for ion-atom collisions

    International Nuclear Information System (INIS)

    Cohen, J.S.

    1982-01-01

    It is shown that the procedure described by Olson and Salop for classical-trajectory Monte Carlo treatment of ion-atom collisions does not provide a uniform statistical distribution of all the parameters defining the initial conditions of a trajectory. Impact-ionization and charge-transfer cross sections for collisions of H + with H at H energies between 25 and 600 keV are recalculated eliminating this failing and compared with those obtained using the procedure of Olson and Salop and with experimental results

  4. Ion induced optical emission for surface and depth profile analysis

    International Nuclear Information System (INIS)

    White, C.W.

    1977-01-01

    Low-energy ion bombardment of solid surfaces results in the emission of infrared, visible, and ultraviolet radiation produced by inelastic ion-solid collision processes. The emitted optical radiation provides important insight into low-energy particle-solid interactions and provides the basis for an analysis technique which can be used for surface and depth profile analysis with high sensitivity. The different kinds of collision induced optical radiation emitted as a result of low-energy particle-solid collisions are reviewed. Line radiation arising from excited states of sputtered atoms or molecules is shown to provide the basis for surface and depth profile analysis. The spectral characteristics of this type of radiation are discussed and applications of the ion induced optical emission technique are presented. These applications include measurements of ion implant profiles, detection sensitivities for submonolayer quantities of impurities on elemental surfaces, and the detection of elemental impurities on complex organic substrates

  5. Minijet thermalization and diffusion of transverse momentum correlation in high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Pang Longgang; Wang Qun; Wang Xinnian; Xu Rong

    2010-01-01

    Transverse momentum correlations in the azimuthal angle of hadrons produced owing to minijets are first studied within the HIJING Monte Carlo model in high-energy heavy-ion collisions. Quenching of minijets during thermalization is shown to lead to significant diffusion (broadening) of the correlation. Evolution of the transverse momentum density fluctuation that gives rise to this correlation in azimuthal angle in the later stage of heavy-ion collisions is further investigated within a linearized diffusion-like equation and is shown to be determined by the shear viscosity of the evolving dense matter. This diffusion equation for the transverse momentum fluctuation is solved with initial values given by HIJING and together with the hydrodynamic equation for the bulk medium. The final transverse momentum correlation in azimuthal angle is calculated along the freeze-out hypersurface and is found to be further diffused for higher values of the shear viscosity to entropy density ratio, η/s∼0.2-0.4. Therefore the final transverse momentum correlation in azimuthal angle can be used to study the thermalization of minijets in the early stage of heavy-ion collisions and the viscous effect in the hydrodynamic evolution of strongly coupled quark-gluon plasma.

  6. Asymmetric fission and evaporation of C{sup r+}{sub 60} (r = 2-4) fullerene ions in ion-C{sub 60} collisions: III. Universal behaviour of fission

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, D; Bordenave-Montesquieu, A; Rentenier, A; Moretto-Capelle, P [LCAR-IRSAMC, UMR 5589 Universite Paul Sabatier-CNRS, 118 rte de Narbonne, 31062 Toulouse Cedex (France)

    2005-04-14

    The behaviour of the asymmetrical fission (AF) scheme (correlated ion distributions) against the collision conditions is investigated using H{sup +}{sub x} (x = 1-3) and He{sup +} projectiles in the 1-130 keV collision energy range. The present work is an extension of our recent publications on this topic using 11 keV protons (Rentenier et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2429 and 2455). The threshold for AF is observed at 2 keV proton energy corresponding to a maximum deposited energy equal to about 41 eV. The main result concerns the fragment distributions resulting from AF of C{sup r+}{sub 60} ions, and secondary dissociation of even-n C{sup +}{sub n} fragments, which are both found to remain independent of the projectile species and collision velocity. These findings indicate that they are insensitive to the internal energy distributions of the parent ions. In addition, a contribution of binary collisions between the projectile and individual carbon atoms of the C{sub 60} molecule to AF is identified in the C{sup +}{sub 1} production at the lowest collision velocities, the so-called impulsive fragmentation.

  7. The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Schenke, Bjoern [BNL Physics Department

    2014-12-18

    The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with each other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.

  8. Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-Ion Collisions

    Czech Academy of Sciences Publication Activity Database

    Upsal, I.; Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Rusňák, Jan; Rusňáková, O.; Šimko, Miroslav; Šumbera, Michal; Vértési, Robert

    2017-01-01

    Roč. 967, č. 11 (2017), s. 760-763 ISSN 0375-9474 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * heavy ion collisions * quark-gluon plasma Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.916, year: 2016

  9. Recent Progress in Constraining the Equation of State of Dense Neutron-Rich Nuclear Matter with Heavy-Ion Reactions

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Wen Dehua; Xiao Zhigang; Xu Chang; Yong Gaochan; Zhang Ming

    2010-01-01

    The nuclear symmetry energy E sym (ρ) is the most uncertain part of the Equation of State (EOS) of dense neutron-rich nuclear matter. In this talk, we discuss the underlying physics responsible for the uncertain E sym (ρ) especially at supra-saturation densities, the circumstantial evidence for a super-soft E sym (ρ) from analyzing π - /π + ratio in relativistic heavy-ion collisions and its impacts on astrophysics and cosmology.

  10. Investigating heavy-ion collisions with neutral mesons in the ALICE calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Sahlmueller, Baldo [Goethe-Universitaet Frankfurt (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    One of the main purposes of the LHC is the investigation of the quark-gluon plasma produced in heavy-ion collisions. In order to interpret such measurements, the initial state of such collisions, i.e. the lead nucleus, and its effects on observables such as the modification of hadron transverse momentum spectra have to be understood. This initial state is studied in p-Pb collisions. Furthermore, pp collisions function as baseline measurement for the aforementioned larger systems and are necessary to extract fundamental parameters such as fragmentation functions. The π{sup 0} and η mesons can be measured in electromagnetic calorimeters via their two-photon decays. In the first run of the LHC, ALICE comprised two different calorimeters, PHOS and EMCAL, that offer different advantages and the possibility of two independent measurements of the same observables such as the transverse momentum distribution of neutral mesons. We present the status of ALICE measurements of neutral mesons with the EMCAL and PHOS detectors. The focus is on technical aspects of the analyses and present results from pp and p-Pb collisions. Furthermore, we give an outlook to future measurements in the second LHC run that will start in 2015.

  11. Collisions of Beq+ and Bq+ ions with H, H2 and He

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Janev, R.K.; Tawara, H.; Kimura, M.; Krstic, P.S.; Peach, G.; Mazing, M.A.

    1991-01-01

    This Working Group Report discusses the available data on cross sections for collisions of beryllium ions and boron ions with atomic and molecular hydrogen and helium for the purpose of applications for plasma diagnostics and modelling of the plasma edge for low energies, and for plasma diagnostics and energy deposition for high energies. In particular, charge exchange, excitation, ionization and two-electron processes are discussed. 43 refs, 1 tab

  12. Search for a double-collision mechanism as a possible interpretation for ionization by low-energy light-ion impact

    International Nuclear Information System (INIS)

    Avaldi, L.; Magno, C.; Milazzo, M.; Rota, A.

    1981-01-01

    In a previous work the authors proposed, in the frame of the binary-encounter approximation (BEA) of the inner-shell atomic ionization by ion bombardment, a correction to the ion energy in order to account for the Coulomb repulsion by the atomic nucleus. Such corrected cross-section values numerically coincide with those of the PWBA model, but, as a consequence of the correction, they obtain a much higher-energy ionization threshold than the binding energy, which has no experimental evidence. In the present work it is shown that ionization below such a threshold can be explained by a double-collision mechanism which involves intermediate electron states and can directly be derived from the impulsive nature of the binary-collision model. Calculations have been performed by supposing a statistical independence between these two collisions. Relativistic corrections have not been taken into account. A remarkable agreement is obtained between the curves corresponding to single- and double-collision classical processes, since they match at the bombarding threshold ion energy. (author)

  13. Measurements of inelastic collisions between homonuclear ions: Na+, K+ and Rb+

    International Nuclear Information System (INIS)

    Peart, B.; Forrest, R.A.; Dolder, K.

    1981-01-01

    Cross sections have been measured for the formation of X 2+ by collisions between X + ions (X = Na, K or Rb) with centre of mass energies between 19.3 and 87.6 keV. The results were compared with similar measurements for Li + and Cs + previously made by Peart and coworkers (J. Phys. B.; 14:1655 and 3457 (1981)), but no simple empirical or theoretical scaling law could be found to relate results for the five single-charged alkali ions. (author)

  14. The multistring model VENUS for ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Werner, K.

    1988-02-01

    The event generator VENUS is based on a multistring model for heavy ion collisions at ultrarelativistic energies. The model is a straightforward extension of a successful model for soft proton-proton scattering, the latter one being consistent with e/sup /plus//e/sup /minus// annihilation and deep inelastic lepton scattering. Comparisons of VENUS results with pA and recent AA data alow some statements about intranuclear cascading. 18 refs., 7 figs

  15. Correlated charge changing ion-atom collisions. Progress report, March 15, 1985-March 14, 1986

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Tanis, J.A.

    1986-04-01

    X-ray emission associated with projectile charge-changing events in ion-atom collisions has been used to isolate and investigate excitation, ionization, and charge transfer, as well as combinations of these processes. New measurements were made of K-shell and L-shell resonant transfer and excitation (RTE) for 210 to 300 MeV 20 Ca/sup 10,11+/ + H 2 collisions and 230 to 610 MeV 41 Nb 31+ + H 2 collisions, respectively. Nonresonant transfer and excitation (NTE) was studied for 40 to 160 MeV S 13+ + Ne. Single-electron capture and loss measurements, requiring accel-decel techniques, were made for 2.5 to 200 MeV S 13+ on He. In the case of Ca/sup 16,17,18,19 + / + H 2 collisions the single capture cross cross sections exhibit a nonmonotonic energy dependence which we attribute to RTE. Double-electron capture in single collisions was investigated for S 13+ + He and Ne and Ar 15+ + Ne and the cross sections were found to be 10 to 100 times smaller than the single-capture cross sections. Measured two-electron loss cross sections for Ca/sup q + / ions incident on H 2 vary with charge state and depend strongly on whether L- or K-shell electrons are removed. Measurements of simultaneous projectile excitation and electron loss for several collision systems indicate that K-vacancy production occurs primarily through excitation rather than loss of the 1s electron. 13 refs

  16. Hard and soft physics of relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Tywoniuk, Konrad

    2008-01-01

    Already over thirty years ago [ 174] it was suggested that it would be interesting to explore new phenomena 'by distributing high energy or high nucleon density over a relatively large volume:' It was soon realized that colliding heavy ions at high energies would provide such conditions. The conditions at RHIC and LHC correspond to the early universe 1 μ after the Big Bang. But does the mini Big Bang created in the laboratory really resemble the cosmological 'bigger brother'? Are the timescales long enough for the particles to 'dissolve' into their smaller constituents? What are the intermediate stages, before the 'dissolving' and also after, when particles are formed? At which energy (or energy density) does this 'melting' happen? More fundamentally, what is the difference between proton-proton and nucleus-nucleus collisions at very high energies? At the LHC one expects that the plasma phase will live much longer than at RHIC. What will be the signatures of this super-QGP? One should be able to answer all of this questions, but, unfortunately, at the present moment we are not. It is therefore very important to understand what the relevant degrees of freedom are in theses extreme situations. Investigation of deep inelastic scattering at very high energies and, in particular, low-x shadowing effects on nuclei can give important information on properties of dense quark-gluon systems. By comparing data at different energies on both proton-nucleus and nucleus-nucleus collisions and interpret them in a comprehensive framework, we hope to learn more about the dynamics leading to the features we see in the data. The thesis consists of two parts. In the first part we will give a short introduction to topics relevant to high-energy collisions while the second part contains the papers written during the thesis work. In Chapter 2 we give a brief account of the main experimental results from heavy-ion experiments. The choice of topics and interpretation of the results is

  17. K0/K+ ratio in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Ivanov, Yu.B.; Russkikh, V.N.

    1996-11-01

    It is shown that ratio of production yields of K 0 and K + mesons in collisions of isotopically asymmetric nuclei at incident energies ∼ 1 GeV/nucleon is related directly enough to temperature of nuclear matter at the initial stage of the collision. Sensitivity of the K 0 /K + ratio to the temperature variation is analyzed. Ambiguities, associated with interpretation of this quantity as a probe of nuclear temperature, are discussed. It is argued that the K 0 /K + ratio is a fairly model-independent quantity, provided channels with Δ isobars dominate the kaon production. (orig.)

  18. Theoretical contributions to coherent pion production in subthreshold and relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Deutchman, P.A.; Norbury, J.W.; Townsend, L.W.

    1986-01-01

    The analysis results from a microscopic calculation for pion production in heavy-ion collisions at intermediate to relativistic energies both above and below pion threshold are presented and the most important terms that contribute to the pion spectrum are determined. The energy dependence and the effects on the pion spectrum due to the various parameters in the theory are examined. The model is applied to coherent pion-production in 16 O + 12 C collisions. (orig.)

  19. The Diogene detector and relativistic heavy ion collisions. First experiments at Saturne

    International Nuclear Information System (INIS)

    Alard, J.P.; Augerat, J.; Babinet, R.

    1983-01-01

    Relativistic heavy ion collisions are important for a study of nuclear matter properties, at high density temperature. The use of high multiplicity detectors, with a 4π solid angle, permit more exclusive experiments which are essential for an approach of collision mechanisms and for the observation of eventual exotic phenomena. Also, we present some preliminary results, obtained with a 800 MeV/nucl α particle beam and concerning the performances of the Diogene detector actually setted up at the Laboratoire National Saturne at Saclay [fr

  20. Positron creation in heavy ion collisions: The influence of the magnetic field

    International Nuclear Information System (INIS)

    Soff, G.; Reinhardt, J.

    1988-03-01

    We calculate the creation of positrons in heavy-ion collisions including the influence of the magnetic dipole field produced by the moving nuclei. Contrary to a recent claim we find no narrow structures in the positron energy spectrum. (orig.)

  1. Effective interaction: From nuclear reactions to neutron stars

    Indian Academy of Sciences (India)

    pact stars. The nuclear EoS for β-equilibrated neutron star (NS) matter obtained using density-dependent effective nucleon–nucleon interaction satisfies the constraints from the observed flow data from heavy-ion collisions. The energy density of quark matter is lower than that of the nuclear EoS at higher densities implying ...

  2. Formation and disintegration of high-density nuclear matter in heavy-ion collisions

    International Nuclear Information System (INIS)

    Kitazoe, Yasuhiro; Matsuoka, Kazuo; Sano, Mitsuo

    1976-01-01

    The formation of high-density nuclear matter which may be expected to be attained in high-energy heavy-ion collisions and the subsequent disintegration of dense matter are investigated by means of the hydrodynamics. Head-on collisions of identical nuclei are considered in the nonrelativistic approximation. The compressed density cannot exceed 4 times of the normal one so long as the freedom of only nucleons is considered, and can become higher than 4 times when other freedoms such as the productions of mesons and also nucleon isobars are additionally taken into account. The angular distributions for ejected particles predominate both forwards and backwards at low collision energies, corresponding to the formation of nuclear density less than 2 times of the normal density and become isotropic at the point of 2 times of the normal one. As the collision energy increases further, lateral ejection is intensified gradually. (auth.)

  3. Recent disruption of an asteroid from the Eos family

    Science.gov (United States)

    Novaković, B.; Tsirvoulis, G.

    2014-07-01

    A key difficulty with searching for partially differentiated asteroids arises from the fact that a crust covers the exterior of the body, and, consequently, should hide the melted interior. This motivates an alternative approach of examining members of asteroid families, i.e., fragments of single large bodies, many of which were in the size regime capable of igneous differentiation, that have been disrupted by catastrophic collisions. Such families could provide a stratigraphic cross section across the interior of the parent asteroid [1]. With more than 10,000 known members, the Eos dynamical family is one of the most numerous and earliest recognized asteroid families [2]. Interestingly, the estimated ˜220-km-diameter parent body [3] is well within the size range capable of differentiation. Thus, existing family members should contain fragments of the deep interior. The Eos family has the highest diversity of taxonomic classes than any other known family [4]. Many members are of K spectral type, which is uncommon outside the family, and is similar to the spectra of CV, CK, CO, and CR carbonaceous chondrites [5]. This diversity leads to the suggestion that the Eos parent body was partially differentiated [4,6]. Thus, the Eos family may not only be a remnant of a partially differentiated parent body, but it could be the source of the CV-CK meteorite group. Here we report the discovery of a young subfamily of the Eos asteroid family. It may help understanding the mineralogical nature of the Eos asteroid family and of its parent body. By applying the hierarchical clustering method [7], we find an extremely compact 16-body cluster within the borders of the Eos family. We name the cluster (6733) 1992 EF, after its largest member. The statistical significance of this new cluster is estimated to be above 99%, indicating that its members share a common origin. All members of the cluster are found to be dynamically stable over long timescales. Backward numerical orbital

  4. Coupled channel calculations for electron-positron pair production in collisions of heavy ions

    CERN Document Server

    Gail, M; Scheid, W

    2003-01-01

    Coupled channel calculations are performed for electron-positron pair production in relativistic collisions of heavy ions. For this purpose the wavefunction is expanded into different types of basis sets consisting of atomic wavefunctions centred around the projectile ion only and around both of the colliding nuclei. The results are compared with experimental data from Belkacem et al (1997 Phys. Rev. A 56 2807).

  5. The study of hadron dynamics in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Venema, L.B.

    1994-01-01

    In this thesis, pion emission patterns were studied in two reaction systems Ar + Ca and Au + Au at 1 GeV/u, with the aim to improve the understanding of the pion production in relativistic heavy ion collisions. The study of the high energy tail of the π 0 -momentum spectrum was regarded as promising because of its sensitivity to compression since it did not appear in small reaction systems. Experiments were performed with TAPS together with the Forward Wall of the FoPi-collaboration at GSI. The combined measurement of charged particle multiplicities in the Forward Wall and the particles entering TAPS enabled an exclusive study of the pion production. TAPS was tested in separate experiments and its capabilities were demonstrated by measuring different reaction products, like photons, charged particles and neutrons. The data analysis involved new methods to treat the background contamination below the invariant mass peak of the π 0 -meson due to the geometry of the detector and to perform particle identification in a high particle multiplicity environment. (orig.)

  6. Molecular growth in clusters of polycyclic aromatic hydrocarbons induced by collisions with ions

    International Nuclear Information System (INIS)

    Delaunay, Rudy

    2016-01-01

    This thesis concerns the experimental study of the interaction between low energy ions (keV range) and neutral isolated molecules or clusters of polycyclic aromatic hydrocarbons (PAH) in the gas phase. The use of ionising radiations on these complex molecular systems of astrophysical interest allowed to highlight processes of statistical fragmentation, corresponding to the redistribution of the energy through the degrees of freedom of the target, and non-statistical fragmentation, linked to binary collisions of the ions on the nuclei of the target. A mechanism of intermolecular growth in clusters of PAH is observed. It is associated to the ultrafast (≤ ps) formation of fragments inside the clusters following binary collisions. The presence of a molecular environment around the fragments formed during the interaction may initiate a process of reactivity between the fragments and the molecules of the clusters. More precisely, the study focusses on the importance of the electronic stopping power SE and the nuclear stopping power SN of the projectile ion. It shows that the molecular growth is enhanced when SN is higher than SE. This can be explained by the fact that the deposit of energy is mainly due to the interaction with the nuclei of the target. The process of growth has been observed for all the molecules of PAH studied during this thesis and also for nitrogenated analogues of the molecule of anthracene. This demonstrates that molecular growth may be efficiently induced by collisions of low energy ions with clusters of PAH. (author) [fr

  7. Expectations and realities in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1988-06-01

    Interpretations of some recent results from experiments done at the CERN-SPS on relativistic heavy-ion collisions are discussed. A cautionary note is given for the observed J//Psi/ suppression due to the hadronic interaction of J//Psi/ in the final state. The multiplicity dependence of average transverse momentum has many complications, and is unsuitable as an indicator of phase transition. Multiplicity fluctuation may be a better diagnostic tool. No indication of any collective behavior has been seen in the recent experiments. 30 refs., 3 figs

  8. Artificial neural network modelling in heavy ion collisions

    International Nuclear Information System (INIS)

    El-dahshan, E.; Radi, A.; El-Bakry, M.Y.; El Mashad, M.

    2008-01-01

    The neural network (NN) model and parton two fireball model (PTFM) have been used to study the pseudo-rapidity distribution of the shower particles for C 12, O 16, Si 28 and S 32 on nuclear emulsion. The trained NN shows a better fitting with experimental data than the PTFM calculations. The NN is then used to predict the distributions that are not present in the training set and matched them effectively. The NN simulation results prove a strong presence modeling in heavy ion collisions

  9. Entropy production in the relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Holme, A.K.; Csernai, L.P.; Levai, P.; Papp, G.

    1989-09-01

    A short overview is given on the most important possibilities of entropy production in the relativistic heavy ion collisions, which is connected to the shock phenomena. The E802 experiment is considered as an example, where one can determine the specific entropy content from measured strange particle ratios. The received large entropy value (S/N B ∼ 14) can be explained by assuming quark-gluon plasma formation. The possibility of overcooling of quark-gluon plasma and its deflagration are also investigated. (author) 22 refs.; 4 figs

  10. A method of measurement of lifetimes of excited ion levels, using orientation transfer by Penning collisions

    International Nuclear Information System (INIS)

    Hamel, J.; Barrat, J.-P.

    1978-01-01

    A method for measuring the lifetimes of ionic excited levels is described. This method uses the transfer of coherence in a Penning collision using metastable optically oriented He 2 3 S 1 atoms. If R.F. transitions are induced in the (2 3 S 1 )He level, a transverse component of the magnetic moment of this level is created, which precesses coherently at the angular frequency ω of the R.F. field. The helium transverse orientation is partially transferred to the ions produced by Penning collisions. After the collision, the orientation transferred precesses around the external magnetic field at the Larmor frequency ω 0 ' of the ion excited level. The degree of orientation of the excited ion level depends, in the stationary state, on the average phase shift, during the lifetime tau prime of this level, between the Larmor precession at angular frequency ω 0 ' and the forced precession of helium (at angular frequency ω). The orientation of the ions is monitored by the modulation of the light emitted during their radiative decay. It is possible to determine the lifetime tau prime by measuring the degree of modulation of the reemitted light as a function of ω [fr

  11. Sixteenth International Conference on the physics of electronic and atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B. (eds.)

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  12. Sixteenth International Conference on the physics of electronic and atomic collisions

    International Nuclear Information System (INIS)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter

  13. K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms

    OpenAIRE

    KHABIBULLAEV, P. K.

    2014-01-01

    A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.

  14. Hypothetical interaction mechanisms for heavy-ion collisions between 20 and 50 MeV/u

    International Nuclear Information System (INIS)

    Ngo, C.; Dalili, D.; Lucas, R.

    1985-01-01

    A brief survey of some aspects of heavy-ion interaction mechanisms, at bombarding energies between 20 and 50 MeV/u is presented. The maximum energy content of a nuclear system, the most probable linear momentum transfer and the possible existence of a ''calefaction'' phenomenon in heavy-ion collisions have also been investigated

  15. Strange particle correlations measured by the Star experiment in ultra-relativistic heavy ion collisions a RHIC; Etude des correlations de particules etranges mesurees par l'experience STAR dans les collisions d'ions lourds ultra-relativistes au RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Renault, G

    2004-09-01

    Non-identical correlation functions allow to study the space-time evolution of the source of particles formed in ultra-relativistic heavy ion collisions. The STAR experiment is dedicated to probe the formation of a new state of nuclear matter called Quark Gluon Plasma. The proton - lambda correlation function is supposed to be more sensitive to bigger source sizes than the proton - proton because of the absence of the final state Coulomb interaction. In this thesis, proton - lambda, anti-proton - anti-lambda, anti-proton - lambda and proton - anti-lambda correlation functions are studied in Au+Au collisions at {radical}S{sub NN} = 200 GeV using an analytical model. The proton - lambda and anti-proton - anti-lambda correlation functions exhibit the same behavior as in previous measurements. The anti-proton - lambda and proton - anti-lambda correlation functions, measured for the first time, show a very strong signal corresponding to the baryon - anti-baryon annihilation channel. Parameterizing the correlation functions has allowed to characterize final state interactions. (author)

  16. Emission of low-energetic electrons in collisions of heavy ions with solid targets

    International Nuclear Information System (INIS)

    Lineva, Natallia

    2008-07-01

    At the UNILAC accelerator, we have initiated a project with the objective to investigate lowenergy electrons, emitted from solid, electrically conductive targets after the impact of swift light and heavy ions. For this purposes, we have installed, optimized, and put into operation an electrostatic toroidal electron spectrometer. First, investigations of electrons, emitted from solid-state targets after the bombardment with a monochromatic electron beam from an electron gun, has been carried out. The proposed method combines the results of the measurements with the results of dedicated Monte Carlo simulations. The method has been elaborated in a case study for carbon targets. The findings have been instrumental for the interpretation of our measurements of electrons emitted in collisions of swift ions with the same carbon targets. Our investigations focused on following ion beams: protons and (H + 3 )-molecules of the same energy, as well as on carbon ions with two different energies. Thin carbon, nickel, argon and gold foils has been used as targets. Electrons in the energy range between 50 eV and 1 keV have been investigated. The measured electron distributions, both integral as well as differential with respect to the polar angle, have been compared to simple standard theories for gases as well as to the results of TRAX simulations, the latter being based on data from gaseous targets. Dedicated TRAX simulations have been performed only for the carbon targets, applying the method mentioned above. Within our experimental uncertainties, we observe a good agreement of the measured and TRAX simulated data. That leads us to the conclusion that - as a first order approximation - the electron emission pattern from ion-atom collisions in solid-state targets and the one from single collisions in gases are similar. (orig.)

  17. Head-on collision of ion-acoustic solitary waves in a Thomas-Fermi plasma containing degenerate electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    El-Shamy, E.F., E-mail: emadel_shamy@hotmail.co [Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Damietta-Branch, New Damietta 34517, Damietta (Egypt); Moslem, W.M., E-mail: wmmosle@hotmail.co [Department of Physics, Faculty of Science-Port Said, Suez Canal University (Egypt); Shukla, P.K., E-mail: ps@tp4.rub.d [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2009-12-28

    Head-on collision between two ion acoustic solitary waves in a Thomas-Fermi plasma containing degenerate electrons and positrons is investigated using the extended Poincare-Lighthill-Kuo (PLK) method. The results show that the phase shifts due to the collision are strongly dependent on the positron-to-electron number density ratio, the electron-to-positron Fermi temperature ratio and the ion-to-electron Fermi temperature ratio. The present study might be helpful to understand the excitation of nonlinear ion-acoustic solitary waves in a degenerate plasma such as in superdense white dwarfs.

  18. Collective phenomena in relativistic heavy-ion collisions

    Science.gov (United States)

    Wang, Shan

    1998-12-01

    Collective motion in the final state of relativistic nucleus-nucleus collisions, produced by the release of compressional energy built-up during the stage of maximum density, is widely accepted as a good observable to test models and a useful tool to probe the nuclear equation of state. This dissertation presents an experimental study of nuclear collisions at the Bevalac accelerator at Lawrence Berkeley National Laboratory, with special emphasis on collective phenomena. The main detector used is a time projection chamber with more than two million pixels. Using high statistics measurements of all charged final- state fragments in Au + Au reactions at 0.25, 0.4, 0.6, 0.8, 1.0, and 1.15A GeV, we present a new method to unify the description of light fragment spectra and the three main categories of collective motion: sideward flow, squeeze-out, and transverse expansion. In this alternative representation, the speed of collective expansion is shown to be slowest in the plane of the reaction, and is modulated sinusoidally according to fragment azimuth relative to this plane. This simple yet complete characterization of squeeze-out leads to its interpretation as an in-plane retardation of collective expansion. We test momentum space power law behavior by studying the momentum-space densities of fragments up to 4He. We conclude that the simple momentum-space power law consistently describes light participant fragment production at p⊥/A/ge0.2 GeV/c over a remarkably wide range of transverse momentum, azimuth relative to the reaction plane, rapidity, multiplicity and beam energy in intermediate-energy heavy-ion collisions and in particular, the increase in sideward flow with fragment mass is well described by a momentum- space power law under these conditions. This behavior is consistent with composite fragment formation through a statistical coalescence mechanism in momentum space. Our conclusion supports the use of models without composite formation to interpret flow

  19. HDF-EOS Dump Tools

    Science.gov (United States)

    Prasad, U.; Rahabi, A.

    2001-05-01

    The following utilities developed for HDF-EOS format data dump are of special use for Earth science data for NASA's Earth Observation System (EOS). This poster demonstrates their use and application. The first four tools take HDF-EOS data files as input. HDF-EOS Metadata Dumper - metadmp Metadata dumper extracts metadata from EOS data granules. It operates by simply copying blocks of metadata from the file to the standard output. It does not process the metadata in any way. Since all metadata in EOS granules is encoded in the Object Description Language (ODL), the output of metadmp will be in the form of complete ODL statements. EOS data granules may contain up to three different sets of metadata (Core, Archive, and Structural Metadata). HDF-EOS Contents Dumper - heosls Heosls dumper displays the contents of HDF-EOS files. This utility provides detailed information on the POINT, SWATH, and GRID data sets. in the files. For example: it will list, the Geo-location fields, Data fields and objects. HDF-EOS ASCII Dumper - asciidmp The ASCII dump utility extracts fields from EOS data granules into plain ASCII text. The output from asciidmp should be easily human readable. With minor editing, asciidmp's output can be made ingestible by any application with ASCII import capabilities. HDF-EOS Binary Dumper - bindmp The binary dumper utility dumps HDF-EOS objects in binary format. This is useful for feeding the output of it into existing program, which does not understand HDF, for example: custom software and COTS products. HDF-EOS User Friendly Metadata - UFM The UFM utility tool is useful for viewing ECS metadata. UFM takes an EOSDIS ODL metadata file and produces an HTML report of the metadata for display using a web browser. HDF-EOS METCHECK - METCHECK METCHECK can be invoked from either Unix or Dos environment with a set of command line options that a user might use to direct the tool inputs and output . METCHECK validates the inventory metadata in (.met file) using The

  20. Nuclear fragmentation energy and momentum transfer distributions in relativistic heavy-ion collisions

    Science.gov (United States)

    Khandelwal, Govind S.; Khan, Ferdous

    1989-01-01

    An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.

  1. Open heavy flavor and other hard probes in ultra-relativistic heavy-ion collisions

    OpenAIRE

    Uphoff, Jan

    2014-01-01

    In this thesis hard probes are studied in the partonic transport model BAMPS (Boltzmann Approach to MultiParton Scatterings). Employing Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the quark gluon plasma phase in ultra-relativistic heavy-ion collisions by propagating all particles in space and time and carrying out their collisions according to the Boltzmann equation. Since hard probes are produced in hard processes with a large momentum transfer, the value of...

  2. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1991-01-01

    This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic targets at intermediate energies. The immediate goal is to study elastic scattering, single electron detachment, and target excitation/ionization in H - scattering from noble gas targets. For the target inelastic processes, these cross sections are unknown both experimentally and theoretically. The present measurements will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion collisions. This series of experiments required the construction of a new facility, and significant progress toward its operation has been realized during this period. The proposed research is described in this report. The progress on and the status of the apparatus is also detailed in this report

  3. Electron excitation collision strengths for positive atomic ions: a collection of theoretical data

    International Nuclear Information System (INIS)

    Merts, A.L.; Mann, J.B.; Robb, W.D.; Magee, N.H. Jr.

    1980-03-01

    This report contains data on theoretical and experimental cross sections for electron impact excitation of positive atomic ions. It is an updated and corrected version of a preliminary manuscript which was used during an Atomic Data Workshop on Electron Excitation of Ions held at Los Alamos in November 1978. The current status of quantitative knowledge of collisional excitation collision strengths is shown for highly stripped ions where configuration mixing, relativistic and resonance effects may be important. The results show a reasonably satisfactory state for first-row isoelectronic ions and indicate that a considerable amount of work remains to be done for second-row and heavier ions

  4. Global features of nucleus-nucleus collisions in ultrarelativistic domain

    International Nuclear Information System (INIS)

    Savina, M.V.; Shmatov, S.V.; Slavin, N.V.; Zarubin, P.I.

    1998-01-01

    HIJING generator simulation of nucleus-nucleus collisions at ultrarelativistic energies is presented. It is shown that the global characteristics of nucleus-nucleus collisions, such as distribution of a charged multiplicity, total and electromagnetic transverse energy over pseudorapidity are rather sensitive to some predictions of models of high-exited nuclear medium formation, namely parton energy losses in dense nuclear matter. These losses result in appearance of a broad maximum in global variable distributions over pseudorapidity. The most profound of this effect occurs at central heavy ion collisions at LHC energy

  5. Isospin equilibrium and non-equilibrium in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Chen Liewen; Ge Lingxiao; Zhang Xiaodong; Zhang Fengshou

    1997-01-01

    The equilibrium and non-equilibrium of the isospin degree of freedom are studied in terms of an isospin-dependent QMD model, which includes isospin-dependent symmetry energy, Coulomb energy, N-N cross sections and Pauli blocking. It is shown that there exists a transition from the isospin equilibrium to non-equilibrium as the incident energy from below to above a threshold energy in central, asymmetric heavy-ion collisions. Meanwhile, it is found that the phenomenon results from the co-existence and competition of different reaction mechanisms, namely, the isospin degree of freedom reaches an equilibrium if the incomplete fusion (ICF) component is dominant and does not reach equilibrium if the fragmentation component is dominant. Moreover, it is also found that the isospin-dependent N-N cross sections and symmetry energy are crucial for the equilibrium of the isospin degree of freedom in heavy-ion collisions around the Fermi energy. (author)

  6. Correlated electron-ion collisions in a strong laser field; Korrelierte Elektron-Ion-Stoesse in starken Laserfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Ristow, T.

    2007-12-17

    Electron-ion-collisions in plasmas in the presence of an ultra-short intensive laser pulse can cause high energy transfers to the electrons. During the collision the oscillation energy of the electron in the laser field is changed into drift energy. In this regime, multi-photon processes, known from the ionization of neutral atoms (Above-Threshold Ionization), and successive, so called correlated collisions, are important. The subject of the thesis is a study of binary Coulomb collisions in strong laser fields. The collisions are treated both in the context of classical Newtonian mechanics and in the quantum-mechanical framework by the Schroedinger equation. In the classical case a simplified instantaneous collision model and a complete dynamical treatment are discussed. Collisions can be treated instantaneously, if the ratio of the impact parameter to the quiver amplitude is small. The energy distributions calculated in this approximation show an elastic peak and a broad plateau due to rescattered electrons. At incident velocities smaller than the quiver velocity, correlated collisions are observed in the electron trajectories of the dynamical model. This effect leads to characteristic momentum distributions of the electrons, that are explicitly calculated and compared with the results of the instantaneous model. In addition, the time-dependence of the collisions is discussed in the framework of a singular perturbation theory. The complete description of the Coulomb scattering requires a quantum-mechanical description. A time-dependent method of wave-packet scattering is used and the corresponding time-dependent three-dimensional Schroedinger equation is solved by an implicit ADImethod on a spatial grid. The momentum and the energy distributions of the scattered electrons are calculated by the Fourier transformation of the wavefunction. A comparison of the scattering from a repulsive and an attractive potential is used to distinguish between simple collisions and

  7. From e+e- to Heavy Ion Collisions - Proceedings of the XXX International Symposium on Multiparticle Dynamics

    Science.gov (United States)

    Csörgő, Tamás Hegyi, Sándor Kittel, Wolfram

    * Polarization and spin alignment in multihadronic Z0 decays * Jet physics at HERA * Final state studies at HERA * A gauge-invariant subtraction technique for non-inclusive observables in QCD * Baryon transport in dual models and the possibility of a backward peak in diffraction * ASTROPARTICLE PHYSICS * Cosmic rays in the energy range of the knee - Recent results from KASCADE * Imaging atmospheric Čerenkov telescopes: Techniques and results * Extensive air shower simulations with CORSIKA and the influence of high-energy hadronic interaction models * Future directions in astroparticle physics and the AUGER experiment * p+A COLLISIONS * pp and pA collisions at CERN SPS * Charmonium attenuation and the quark-gluon plasma * Gluon depletion and J/ψ suppression in pA collisions * CORRELATIONS AND FLUCTUATIONS - EXPERIMENT * Experimental correlation analysis: Foundations and practice * Intermittency and correlations at LEP and at HERA * Moments of the charged-particle multiplicity distribution in Z decays at LEP * On the scale of visible jets in high energy electron-positron collisions * HBT in relativistic heavy ion collisions * Comparison of the pion emission function in hadron-hadron and heavy ion collisions * Multiparticle correlations at LEP1 * Inter-W Bose-Einstein correlations ellipse ... or not? * Colour reconnection at LEP2 * CORRELATIONS AND FLUCTUATIONS - THEORY * Correlations and fluctuations - introduction * Coherence and incoherence in Bose-Einstein correlations * Bose-Einstein correlations in cascade processes and non-extensive statistics * A systematic approach to anomalous phenomena at high energies * Reconstruction of hadronization stage in Pb+Pb collisions at 158A GeV/c * Status of ring-like correlations and wavelets * Fluctuation probes of quark deconfinement * PQCD structure and hadronization in jets and heavy-ion collisions * Net-baryon fluctuations at the QCD critical point * Fractional Fokker-Planck equation in time variable and oscillation of cumulant

  8. Mass and charge distribution in heavy-ion collisions

    International Nuclear Information System (INIS)

    Beck, F.; Dworzecka, M.; Feldmeier, H.

    1978-01-01

    A statistical model based on the independent particle picture is used to calculate mass and charge distributions in deep inelastic heavy-ion collisions. Different assumptions on volume and charge equilibrations are compared with measured variances of charge distributions. One combination of assumptions is clearly favoured by experiment, and gives a reasonable description of the variance versus energy loss curves up to energy losses of about 200 MeV in the heavy systems Kr+Ho and Xe+Bi, and up to about 60 MeV for the light system Ar+Ca [af

  9. Phase transition dynamics in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Csernai, L.P.; Zabrodin, E.E.; Moscow State Univ.

    1993-01-01

    We investigate various problems related to the dynamics of a first-order phase transition from quarkgluon plasma to hadronic matter in ultra-relativistic heavy ion collisions. These include nucleation, growth and fusion of hadronic bubbles in either the Bjorken longitudinal hydrodynamic expansion model or the Cooper-Frye-Schonberg spherical hydrodynamic expansion model. With reasonable input parameters the conversion of one phase into the other is relatively close to the idealized adiabatic Maxwell construction, although one can choose parameters such that the conversion is strongly out of equilibrium. (orig.)

  10. Phase transition dynamics in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Csernai, L.P.; Kapusta, J.I.; Kluge, Gy.; Hungarian Academy of Sciences, Budapest; Zabrodin, E.E.; Moskovskij Gosudarstvennyj Univ., Moscow

    1992-12-01

    Various problems were investigated concerning the dynamics of a first-order phase transition from quark-gluon plasma to hadronic matter in ultra-relativistic heavy ion collisions. These include nucleation, growth and fusion of hadronic bubbles in either the Bjorken longitudinal hydrodynamic expansion model or the Cooper-Frye-Schonberg spherical hydrodynamic expansion model. With reasonable input parameters the conversion of one phase into the other is relatively close to the idealized adiabatic Maxwell construction, although one can choose parameters such that the conversion is strongly out of equilibrium. (author) 10 refs.; 7 figs

  11. Recent measurements of low energy charge exchange cross sections for collisions of multicharged ions on neutral atoms and molecules

    International Nuclear Information System (INIS)

    Havener, Charles C.

    2001-01-01

    At ORNL Multicharged Ion Research Facility (MIRF), charge exchange (CX) cross sections have been measured for multicharged ions (MCI) on neutral atoms and molecules. The ORNL ion-atom merged-beam apparatus was used to measure single electron capture by MCI from H at eV/amu energies. A gas cell was used to measure single and double electron capture by MCI from a variety of molecular targets at keV collision energies. The merged-beams experiment has been successful in providing benchmark total electron capture measurements for several collision systems with a variety of multicharged ions on H or D

  12. Non-planar ion-acoustic solitary waves and their head-on collision in a plasma with nonthermal electrons and warm adiabatic ions

    Energy Technology Data Exchange (ETDEWEB)

    Han Jiuning; He Yonglin; Chen Yan; Zhang Kezhi; Ma Baohong [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China)

    2013-01-15

    By using the model of Cairns et al.[Geophys. Rev. Lett. 22, 2709 (1995)], the head-on collision of cylindrical/spherical ion-acoustic solitary waves in an unmagnetized non-planar plasma consisting of warm adiabatic ions and nonthermally distributed electrons is investigated. The extended Poincare-Lighthill-Kuo perturbation method is used to derive the modified Korteweg-de Vries equations for ion-acoustic solitary waves in this plasma system. The effects of the plasma geometry m, the ion to electron temperature ratio {sigma}, and the nonthermality of the electron distribution {alpha} on the interaction of the colliding solitary waves are studied. It is found that the plasma geometries have a big impact on the phase shifts of solitary waves. Also it is important to note that the phase shifts induced by the collision of compressive and rarefactive solitary waves are very different. We point out that this study is useful to the investigations about the observations of electrostatic solitary structures in astrophysical as well as in experimental plasmas with nonthermal energetic electrons.

  13. Dynamical and statistical aspects of intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Knoll, J.

    1987-01-01

    The lectures presented deal with three different topics relevant for the discussion of nuclear collisions at medium to high energies. The first lecture concerns a subject of general interest, the description of statistical systems and their dynamics by the concept of missing information. If presents an excellent scope to formulate statistical theories in such a way that they carefully keep track of the known (relevant) information while maximizing the ignorance about the irrelevant, unknown information. The last two lectures deal with quite actual questions of intermediate energy heavy-ion collisions. These are the multi-fragmentation dynamics of highly excited nuclear systems, and the so called subthreshold particle production. All three subjects are self-contained, and can be read without the knowledge about the other ones. (orig.)

  14. Pion production in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Norbury, J.W.

    1983-01-01

    A Lorentz-invariant differential cross section for pion production in peripheral, relativistic, heavy ion collisions is calculated for the collisions of an 16 O projectile onto a 12 C target. The pions are produced via excitations of a Δ(3,3) resonant state in the projectile with simultaneous excitation of an M1 giant resonance in the target. A second order amplitude describing resonance formation and decay is derived within the context of second order, time-dependent perturbation theory and a corresponding transition rate is evaluated. This is then applied to the problem of pion production and a differential cross section is calculated using a simple product-of-states model. The whole theory is then re-formulated within a second quantized particle-hole model which describes the basic process of M1 giant resonance formation as well as the formation and decay of the intermediate Δ(3,3) resonance. Subsequently, a new Lorentz-invariant differential cross section is calculated from the particle-hole amplitude. The theoretical cross section is compared with some experimental data and the agreement is found to be satisfactory given the nature of the data and the assumptions of the theory

  15. Recoil ion charge state distributions in low energy Arq+ - Ar collisions

    International Nuclear Information System (INIS)

    Vancura, J.; Marchetti, V.; Kostroun, V.O.

    1992-01-01

    We have measured the recoil ion charge state distributions in Ar q+ -- Ar (8≤q≤16) collisions at 2.3 qkeV and 0.18qkeV by time of flight (TOF) spectroscopy. For Ar 8-16+ , recoil ion charge states up to 6+ are clearly present, indicating that the 3p subshell in the target atom is being depleted, while for Ar 10-16+ , there is evidence that target 3s electrons are also being removed. Comparison of the recoil ion charge state spectra at 2.3 and 0.18 qkeV shows that for a given projectile charge, there is very little dependence of the observed recoil target charge state distribution on projectile energy

  16. Rho0 Photoproduction in Ultra-Peripheral Relativistic Heavy Ion Collisions with STAR

    Energy Technology Data Exchange (ETDEWEB)

    STAR Coll

    2007-12-20

    Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR collaboration presents a measurement of {rho}{sup 0} and direct {pi}{sup +}{pi}{sup -} photoproduction in ultra-peripheral relativistic heavy ion collisions at {radical}s{sub NN} = 200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross-section of {sigma}(AuAu {yields} Au*Au* {rho}{sup 0}) = 530 {+-} 19 (stat.) {+-} 57 (syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The {rho}{sup 0} transverse momentum spectrum (p{sub T}{sup 2}) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus; we find {sigma}{sub inc}/{sigma}{sub coh} = 0.29 {+-} 0.03 (stat.) {+-} 0.08 (syst.). The ratio of direct {pi}{sup +}{pi}{sup -} production is comparable to that observed in {gamma}p collisions at HERA, and appears to be independent of photon energy. Finally, the measured {rho}{sup 0} spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.

  17. Studies of relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Madansky, L.

    1989-01-01

    This report presents the progress in our program of Relativistic Heavy Ion studies. The first phase of experiments on lepton pairs is almost complete and the results from the initial part of this program are presented in copies of three publications. It appears that the origin of lepton pairs is the annihilation of pions. The evidence for this seems to be the shape of the dilepton mass spectrum, the cross-section as a function of energy which seems to scale with pion production, and the general kinematic behavior of the lepton pairs themselves. We present progress on the development of Ring Imaging Cerenkov counters for dilepton observations in general, and a short report on a high resolution method counter proposal that could be adapted to RHIC counters in general. Publication of results on hyperon polarization with incident polarized proton beams is also presented. These results use the phenomenological approach that could be useful in understanding hyperon production in heavy ion collisions. In this connection, a proposal for studying high density nuclear matter with incident antiprotons is presented. Progress on the TPC detectors developed by the BNL group for heavy ion research is reported, along with recent analysis of polarization with incident silicon beams. Finally, the most recent results on subthreshold antiproton production is presented. These latter results are several orders of magnitude more than expected and they point to some kind of coherent hadronic phenomena even at extremely low energies

  18. X-ray emission in heavy ion collisions. Final report

    International Nuclear Information System (INIS)

    Watson, R.L.

    1984-01-01

    A detailed accounting of the yearly activities of the research program entitled X-ray Emission in Heavy Ion Collisions may be found in the annual progress reports submitted in accordance with the terms of the contract. The principal goals of the program to be summarized herein were (a) to delineate the mechanisms whereby highly ionized atoms in the condensed phase deexcite and return to charge neutrality, (b) to investigate the charge quenching processes acting to reduce the charge states of highly ionized projectiles, and (c) to attain a better understanding of the interactions occurring between highly charged ions and solid surfaces. These projects all relate to problems associated with the ultimate application of controlled thermonuclear reactions as a practical energy source

  19. Charge exchange and ionization in atom-multiply-charged ion collisions

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1988-01-01

    This study investigates one-electron transitions to the continuous and discrete spectra induced by a collision of atom A and multiply-charged ion B +Z with nuclear charge Z > 3. An analytical method is developed the charge-exchange reaction; this method is a generalization of the decay model and the approximation of nonadiabatic coupling of two states that are used as limiting cases in the proposed approach

  20. Low-Energy Charge Transfer in Multiply-Charged Ion-Atom Collisions Studied with the Combined SCVB-MOCC Approach

    Directory of Open Access Journals (Sweden)

    B. Zygelman

    2002-03-01

    Full Text Available A survey of theoretical studies of charge transfer involving collisions of multiply-charged ions with atomic neutrals (H and He is presented. The calculations utilized the quantum-mechanical molecular-orbital close-coupling (MOCC approach where the requisite potential curves and coupling matrix elements have been obtained with the spin-coupled valence bond (SCVB method. Comparison is made among various collision partners, for equicharged systems, where it is illustrated that even for total charge transfer cross sections, scaling-laws do not exist for low-energy collisions (i.e. < 1 keV/amu. While various empirical scaling-laws are well known in the intermediateand high-energy regimes, the multi-electron configurations of the projectile ions results in a rich and varied low-energy dependence, requiring an explicit calculation for each collision-partner pair. Future charge transfer problems to be addressed with the combined SCVB-MOCC approach are briefly discussed.

  1. Elliptic Flow, Initial Eccentricity and Elliptic Flow Fluctuations in Heavy Ion Collisions at RHIC

    Science.gov (United States)

    Nouicer, Rachid; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holzman, B.; Iordanova, A.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2008-12-01

    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.

  2. Measurement Of The Heavy-Ion Collision Event Characteristics With The Atlas Experiment At The Lhc

    Directory of Open Access Journals (Sweden)

    Iwona Grabowska-Bołd

    2015-01-01

    Full Text Available Heavy-ion collisions at extreme energies can reproduce conditionspresent in the early Universe. The new state of very dense and hotmatter of deconfined quarks and gluons, called the Quark GluonPlasma~(QGP, is observed. This state is characterised by very lowviscosity resembling the properties of a perfect fluid. In suchmedium, the density fluctuations can be easily spread. In experimentalpractice, the size of these fluctuations is estimated by measuring theangular correlation of produced particles. The aim of this paper isto present measurements of the azimuthal anisotropy of chargedparticles produced in heavy-ion collisions using the ATLAS detector atthe LHC. Two measurement techniques are presented and compared.

  3. An ultra-sensitive instrument for collision activated dissociation mass spectrometry with high mass resolution

    International Nuclear Information System (INIS)

    Louter, G.J.

    1982-01-01

    During the last decade Collision Activated Dissociation Mass Spectrometry (CAD-MS) has developed into an important and sometimes unique technique for the structure elucidation of ions. An extensive description of the double stage MS is given, which has been especially devloped for CAD-MS. A high mass resolution and a very high sensitivity are obtained by application of special techniques like post-acceleration of fragment ions, quadrupole (Q-pole) lenses and an electro-optical, simultaneous ion detection system. The operation of the rather complex ion-optics is demonstrated by application of a computer simulation of the tandem MS. Special attention is given to the action of the four Q-pole lenses and the second sector magnet upon curvature and position of the mass focal plane. Two mass calibration methods are described for the fragment spectra. The so-called polynomial-method applies a fifth-order polynomial approximation of the functional relation between position on the detector and corresponding relative momentum of fragment ions. The second method uses the matrix model of the instrument. The detector consists of two channelplates (CEMA), a fibre optics slab, coated with a phosphor layer, a camera objective and a 1024-channels photodiode-array. A bio-chemical and an organic-chemical application of the instrument are given. As bio-chemical application the peak m/z 59 in the pyrolysis mass spectrum of complete mycobacteria is identified. As an example of organic-chemical application the fragmentation process of 2,3-butadienoic acid has been investigated. (Auth.)

  4. EOS developments

    Science.gov (United States)

    Sindrilaru, Elvin A.; Peters, Andreas J.; Adde, Geoffray M.; Duellmann, Dirk

    2017-10-01

    CERN has been developing and operating EOS as a disk storage solution successfully for over 6 years. The CERN deployment provides 135 PB and stores 1.2 billion replicas distributed over two computer centres. Deployment includes four LHC instances, a shared instance for smaller experiments and since last year an instance for individual user data as well. The user instance represents the backbone of the CERNBOX service for file sharing. New use cases like synchronisation and sharing, the planned migration to reduce AFS usage at CERN and the continuous growth has brought EOS to new challenges. Recent developments include the integration and evaluation of various technologies to do the transition from a single active in-memory namespace to a scale-out implementation distributed over many meta-data servers. The new architecture aims to separate the data from the application logic and user interface code, thus providing flexibility and scalability to the namespace component. Another important goal is to provide EOS as a CERN-wide mounted filesystem with strong authentication making it a single storage repository accessible via various services and front- ends (/eos initiative). This required new developments in the security infrastructure of the EOS FUSE implementation. Furthermore, there were a series of improvements targeting the end-user experience like tighter consistency and latency optimisations. In collaboration with Seagate as Openlab partner, EOS has a complete integration of OpenKinetic object drive cluster as a high-throughput, high-availability, low-cost storage solution. This contribution will discuss these three main development projects and present new performance metrics.

  5. Investigation of impact-parameter dependent double differential electron emission probabilities in proton-helium collisions

    International Nuclear Information System (INIS)

    Schiwietz, G.

    1986-07-01

    The process of ionization in ion-atom collisions was investigated. Thus absolute double differential electron emission yields were measured for the collision system H + +He. The experimental results are compared with theoretical results partially calculated in this work. For the coincidence measurements an electron time-of-flight spectrometer with a large solid angle was constructed. For the measurement of the scattered projectiles a fast position sensitive ion detector and a data preprocessing unit were developed. (orig.)

  6. Final Report for Project ``Theory of ultra-relativistic heavy-ion collisions''

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich W. Heinz

    2012-11-09

    In the course of this project the Ohio State University group led by the PI, Professor Ulrich Heinz, developed a comprehensive theoretical picture of the dynamical evolution of ultra-relativistic heavy-ion collisions and of the numerous experimental observables that can be used to diagnose the evolving and short-lived hot and dense fireball created in such collisions. Starting from a qualitative understanding of the main features based on earlier research during the last decade of the twentieth century on collisions at lower energies, the group exploited newly developed theoretical tools and the stream of new high-quality data from the Relativistic Heavy Ion Collider at Brookhaven National Laboratory (which started operations in the summer of the year 2000) to arrive at an increasingly quantitative description of the experimentally observed phenomena. Work done at Ohio State University (OSU) was instrumental in the discovery during the years 2001-2003 that quark-gluon plasma (QGP) created in nuclear collisions at RHIC behaves like an almost perfect liquid with minimal viscosity. The tool of relativistic fluid dynamics for viscous liquids developed at OSU in the years 2005-2007 opened the possibility to quantitatively determine the value of the QGP viscosity empirically from experimental measurements of the collective flow patterns established in the collisions. A first quantitative extraction of the QGP shear viscosity, with controlled theoretical uncertainty estimates, was achieved during the last year of this project in 2010. OSU has paved the way for a transition of the field of relativistic heavy-ion physics from a qualitative discovery stage to a new stage of quantitative precision in the description of quark-gluon plasma properties. To gain confidence in the precision of our theoretical understanding of quark-gluon plasma dynamics, one must test it on a large set of experimentally measured observables. This achievement report demonstrates that we have, at

  7. Production of strange clusters in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dover, C.B.; Baltz, A.J.; Pang, Yang; Schlagel, T.J.; Kahana, S.H.

    1993-02-01

    We address a number of issues related to the production of strangeness in high energy heavy ion collisions, including the possibility that stable states of multi-strange hyperonic or quark matter might exist, and the prospects that such objects may be created and detected in the laboratory. We make use of events generated by the cascade code ARC to estimate the rapidity distribution dN/dy of strange clusters produced in Si+Au and Au+Au collisions at AGS energies. These calculations are performed in a simple coalescence model, which yields a consistent description of the strange cluster (d, 3 HE, 3 H, 4 He) production at these energies. If a doubly strange, weakly bound ΛΛ dibaryon exists, we find that it is produced rather copiously in Au+Au collisions, with dN/dy ∼0.1 at raid-rapidity. If one adds another non-strange or strange baryon to a cluster, the production rate decreases by roughly one or two orders of magnitude, respectively. For instance, we predict that the hypernucleus ΛΛ 6 He should have dN/dy ∼5 x 10 -6 for Au+Au central collisions. It should be possible to measure the successive Λ → pπ- weak decays of this object. We comment on the possibility that conventional multi-strange hypernuclei may serve as ''doorway states'' for the production of stable configurations of strange quark matter, if such states exist

  8. Report on the Oak Ridge workshop on Monte Carlo codes for relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Awes, T.C.; Sorensen, S.P.

    1988-01-01

    In order to make detailed predictions for the case of purely hadronic matter, several Monte Carlo codes have been developed to describe relativistic nucleus-nucleus collisions. Although these various models build upon models of hadron-hadron interactions and have been fitted to reproduce hadron-hadron collision data, they have rather different pictures of the underlying hadron collision process and of subsequent particle production. Until now, the different Monte Carlo codes have, in general, been compared to different sets of experimental data, according to which results were readily available to the model builder or which Monte Carlo code was readily available to an experimental group. As a result, it has been difficult to draw firm conclusions about whether the observed deviations between experiments and calculations were due to deficiencies in the particular model, experimental discrepancies, or interesting effects beyond a simple superposition of nucleon-nucleon collisions. For this reason, it was decided that it would be productive to have a structured confrontation between the available experimental data and the many models of high-energy nuclear collisions in a manner in which it could be ensured that the computer codes were run correctly and the experimental acceptances were properly taken into account. With this purpose in mind, a Workshop on Monte Carlo Codes for Relativistic Heavy-Ion Collisions was organized at the Joint Institute for Heavy Ion Research at Oak Ridge National Laboratory from September 12--23, 1988. This paper reviews this workshop. 11 refs., 6 figs

  9. Charge breeding investigation in EBIS/T and collision study of ions with cold atoms for HITRAP

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Alexey

    2010-01-29

    Highly charged ions (HCI) at low velocities or at rest are interesting systems for various atomic physics experiments. For investigations on HCI of heavy stable or radioactive nuclides the HITRAP (Highly charged Ion TRAP) decelerator facility has been set up at GSI to deliver cooled beams of HCI at an energy of 5 keV/q. The HCI are produced in a stripper foil at relativistic energies and are decelerated in several steps at ESR storage ring and HITRAP before they are delivered to experimental setups. One of the experiments is the investigation of multi-electron charge exchange in collisions of heavy HCI with cold atoms using novel MOTRIMS technique. Collision experiments on light ions from an ECR ion source colliding with cold atoms in a MOT have been performed and the results are described. An electron beam ion trap (EBIT) has been tested and optimized for commissioning of the HITRAP physics experiments. The process of charge breeding in the EBIT has been successfully studied with gaseous elements and with an alkaline element injected from an external ion source. (orig.)

  10. Charge breeding investigation in EBIS/T and collision study of ions with cold atoms for HITRAP

    International Nuclear Information System (INIS)

    Sokolov, Alexey

    2010-01-01

    Highly charged ions (HCI) at low velocities or at rest are interesting systems for various atomic physics experiments. For investigations on HCI of heavy stable or radioactive nuclides the HITRAP (Highly charged Ion TRAP) decelerator facility has been set up at GSI to deliver cooled beams of HCI at an energy of 5 keV/q. The HCI are produced in a stripper foil at relativistic energies and are decelerated in several steps at ESR storage ring and HITRAP before they are delivered to experimental setups. One of the experiments is the investigation of multi-electron charge exchange in collisions of heavy HCI with cold atoms using novel MOTRIMS technique. Collision experiments on light ions from an ECR ion source colliding with cold atoms in a MOT have been performed and the results are described. An electron beam ion trap (EBIT) has been tested and optimized for commissioning of the HITRAP physics experiments. The process of charge breeding in the EBIT has been successfully studied with gaseous elements and with an alkaline element injected from an external ion source. (orig.)

  11. Anisotropy and linear polarization of radiative processes in energetic ion-atom collisions; Untersuchung zur Anisotropie und linearen Polarisation radiativer Prozesse in energiereichen Ion-Atom-Stoessen

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Guenter

    2010-06-16

    In the present thesis the linear polarization of radiation emitted in energetic ion-atom collisions at the ESR storage ring was measured by applying a novel type of position, timing and energy sensitive X-ray detector as a Compton polarimeter. In contrast to previous measurements, that mainly concentrate on studies of the spectral and angular distribution, the new detectors allowed the first polarization study of the Ly-{alpha}{sub 1} radiation (2p{sub 3/2}{yields}1s{sub 1/2}) in U{sup 91+}. Owing to the high precision of the polarimeters applied here, the experimental results indicate a significant depolarization of the Ly-{alpha}{sub 1} radiation caused by the interference of the E1 and M2 transition branches. Moreover, the current investigation shows that measurements of the linear polarization in combination with angular distribution studies provide a model-independent probe for the ratio of the E1 and M2 transition amplitudes and, consequently, of the corresponding transition probabilities. In addition, a first measurement of the linear polarization as well as an angular distribution study of the electron-nucleus Bremsstrahlung arising from ion-atom collisions was performed. The experimental results obtained were compared to exact relativistic calculations and, in case of the Bremsstrahlung, to a semirelativistic treatment. In general, good agreement was found between theoretical predictions and experimental findings. (orig.)

  12. Coincidence measurements of slow recoil ions with projectile ions in 42-MeV Arq+-Ar collisions

    International Nuclear Information System (INIS)

    Tonuma, T.; Kumagai, H.; Matsuo, T.; Tawara, H.

    1989-01-01

    Slow Ar recoil-ion production cross sections by projectiles of 1.05-MeV/amu Ar q+ (q=4,6,8,10,12,14) were measured using a projectile-ion--recoil-ion coincidence technique. The present results indicate that the average recoil ion charges left-angle i right-angle increase with increasing the incident projectile charge q and the number of the lost and captured electrons from and/or into projectiles, whereas the projectile charge-changing cross sections for loss ionization decrease steeply with increasing q for low-charge-state projectiles, and those for transfer ionization increase rapidly with increasing q for high-charge-state projectiles. For Ar projectiles with q=10, which corresponds to the equilibrium charge state of Ar projectiles at the present collision energy, the average recoil-ion charges are nearly the same in both loss and transfer ionization, and a pure ionization process plays a much more important role in producing highly charged recoil ions, in contrast to projectile electron loss or transfer processes, which play a role in other projectile charge states

  13. Energy scan in heavy-ion collisions and search for a critical point

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Zborovský, Imrich

    2012-01-01

    Roč. 75, č. 6 (2012), s. 700-706 ISSN 1063-7788 R&D Projects: GA MŠk LA08002; GA MŠk LA08015 Institutional support: RVO:61389005 Keywords : heavy-ion collisions * specific heat Subject RIV: BE - Theoretical Physics Impact factor: 0.539, year: 2012

  14. Hot nuclei and search for multifragmentation in medium-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Doubre, H.

    1988-01-01

    Some recent determinations of the excitation energies and temperatures of composite systems formed in intermediate-energy heavy-ion collisions are described and the issue of a limiting temperature is discussed. Several examples of experimental investigations of an eventual occurrence of a multifragmentation process are also described

  15. Constraining the EOS of Neutron-Rich Nuclear Matter and Properties of Neutron Stars with Heavy-Ion Reactions

    International Nuclear Information System (INIS)

    Li Baoan; Worley, Aaron; Chen, L.-W.; Ko, Che Ming; Krastev, Plamen G.; Wen Dehua; Xiao Zhigang; Zhang Ming; Xu Jun; Yong Gaochan

    2009-01-01

    Heavy-ion reactions especially those induced by radioactive beams provide useful information about the density dependence of the nuclear symmetry energy, thus the Equation of State of neutron-rich nuclear matter, relevant for many astrophysical studies. The latest developments in constraining the symmetry energy at both sub- and supra-saturation densities from analyses of the isopsin diffusion and the π - /π + ratio in heavy-ion collisions using the IBUU04 transport model are discussed. Astrophysical ramifications of the partially constrained symmetry energy on properties of neutron star crusts, gravitational waves emitted by deformed pulsars and the w-mode oscillations of neutron stars are presented briefly.

  16. Empirical description of the element production cross sections in dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Wollersheim, H.J.

    1984-06-01

    Correlations between experimental observables yield analytical expressions for the energy dsigma/dE and element distributions dsigma/dZ, d 2 sigma/dZdE in dissipative collisions. These empirical formulas are applied to twelve heavy ion systems at bombarding energies well above the Coulomb barrier. The element production can be calculated for all kinetic energies of the reaction fragments from the quasi-elastic region down to a minimum total kinetic energy Vsub(c)sup(def) which is the result of the Coulomb repulsion of two deformed nuclei prior to scission. In cases where the dissipative collisions are the dominant part of the reaction process, the deformed Coulomb energy can also be deduced from the total reaction cross section. For these heavy ion systems the empirical formulas depend only on quantities of the ingoing channels. Especially, the normalization of the Gaussian shaped element distributions indicates that the reminiscence on the entrance channel is not completely lost in dissipative collisions. For the 209 Bi + 136 Xe reaction at a laboratory bombarding energy of 1130 MeV the energy and element distributions are calculated which show an excellent agreement with the experimental data. (orig.)

  17. Correlated charge-changing ion-atom collisions. Progress report, 16 February 1993--15 April 1994

    International Nuclear Information System (INIS)

    Tanis, J.A.

    1994-04-01

    This report summarizes the progress and accomplishments of research supported by DOE. This work involves the experimental investigation of fundamental atomic processes in collisions of few-electron, charged projectile ions with neutral gas targets or electrons. The major emphasis is the study of collision processes involving two active electrons, and particularly those in which the electron-electron interaction plays a role. New results have been obtained for studies involving (1) continuum-electron emission, (2) double ionization of helium and Li + , and (3) resonant recombination of atomic ions. Experiments were conducted using accelerators at Western Michigan University, Michigan State University, Indiana University, Lawrence Livermore Laboratory, and the Institute of Nuclear Research, Debrecen, Hungary. Brief summaries of work completed and work in progress are given

  18. Rencontres de Moriond QCD 2012: Probing the nature of heavy-ion collisions

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Wednesday began with presentations by experiments worldwide on their investigations into the intriguing nature of the Quark Gluon Plasma (QGP). The ALICE Collaboration examined further preliminary results from the LHC’s 2010 Pb-Pb run, observing that particles containing strange quarks were more abundant than they are in proton-proton collisions – indicating the presence of QGP. They also presented results from the so-called “soft probes” that allow scientists to look at the collective behaviour of the QGP medium.  The ATLAS and CMS Collaborations provided a very different approach to the study heavy ion physics: examining particle energy loss in the QGP by looking at the momentum of particle jets leaving the medium. ATLAS reported their results on a variety of studies using jets, charged hadrons and weak bosons produced in heavy-ion collisions during the 2010 run. Presenting their results from the 2011 run, the CMS Collaboration found that there is energy...

  19. Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Socolowski, O. Jr.

    2010-01-01

    Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated φφ pairs at the Relativistic Heavy Ion Collider (RHIC) energies.

  20. ''Atomic'' Bremsstrahlung or polarizational radiation in collision of many-electron ions

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Solov'yov, A.V.

    1991-01-01

    In this work the so-called ''Atomic'' bremsstrahlung (AB) or polarizational radiation, created in collisions of atoms or ions, is discussed. This kind of radiation arises due to the polarization of the electron shell of colliding particles. It is created by the structured projectiles and targets if the constituents are electrically charged. 6 refs, 2 figs