WorldWideScience

Sample records for iodine-125 induced dna

  1. Iodine-125 induced DNA strand breakage: Contributions of different physical and chemical radiation action mechanisms

    International Nuclear Information System (INIS)

    Li, W.

    2002-01-01

    The decay of the radioisotope 125 I into 125 Te is typically followed by the emission of two groups of approximately 10 electrons each. In deoxyribonucleic acid (DNA) with 125 I incorporated, these electrons produce various types of damage to DNA, e.g. single and double strand breaks. They occur through direct actions of physical tracks, or indirect actions of radicals produced in water. Among the direct actions one should consider not only the excitation and ionization of DNA by electrons but also the neutralization of highly charged 125m Te ions with electrons from neighboring molecules. The present work begins with a detailed description of electron tracks with the use of the PARTRAC code, compares results with recent experiments, and concludes with a firm assessment of the contribution to the strand break yields from the neutralization effect. (orig.)

  2. Reactions of iodine-125 with gaseous ethene induced via EC-decay of xenon-125

    International Nuclear Information System (INIS)

    Franken, K.; Coenen, H.H.

    1990-01-01

    Decay-induced reactions of nucleogenic iodine species in situ via the 125 Xe(EC) 125 I decay were examined in gaseous ethene. Vinyl iodide is the only monomeric compound found in pure ethene with 0.7% radiochemical yield besides 10% radioiodinated oligomers, which were analyzed by gel permeation chromatography. Addition of rare gases increases the yield of C 2 H 3 I up to 3.3% and of oligomers to about 25%. The effect of different rare gasese indicates substitution reactions of thermal iodine cations in 1 D 2 and 1 S 2 excited states with a 25% and in the 2 P 1 and 2 P 0 states with 75% contribution. Endothermic and homolytic reactions could be excluded for vinyl iodide generation. Radical besides ionic induced oligomerization, however, seem to occur since traces of oxygen increase the organic product yields. The chain length of oligomers formed is strongly reduced in the presence of rare gases, oxygen and especially of H-acidic compounds (HX, X = OH, OCH 3 , OC 2 H 5 ). Latter additives were also effective in trapping the intermediately formed ethene-iodonium complex giving rise to 1-iodo-2-X-ethanes. In presence of 1% HCl the production of 125 ICH 2 CH 2 Cl proceeded with preparative radiochemical yields of up to 70%. This occurs by primary formation of 125 ICl and subsequent addition to ethene. (orig.)

  3. Mock iodine-125 radiation source

    International Nuclear Information System (INIS)

    Coffey, D.L.

    1976-01-01

    An intimate mixture of americium-241 and iodine-129 provides an energy spectrum that reliably simulates the spectrum of iodine-125 in a well-type detector. As such, it may be used as a long-lived standard to calibrate instruments such as well scintillation spectrometers in which measurements are to be made involving iodine-125

  4. DNA-PKcs Expression Is a Predictor of Biochemical Recurrence After Permanent Iodine 125 Interstitial Brachytherapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Sarah [Department of Pathology, INSERM UMR1069, CHU/Université de Tours, Tours (France); Department of Radiation Oncology, CHU/Université de Poitiers, Poitiers (France); Guerif, Stéphane; Garcia, Alexandre [Department of Radiation Oncology, CHU/Université de Poitiers, Poitiers (France); Debiais, Céline [Department of Pathology, CHU/Université de Poitiers, Poitiers (France); Irani, Jacques [Department of Urology, CHU/Université de Poitiers, Poitiers (France); Fromont, Gaëlle, E-mail: gaelle.fromont-hankard@univ-tours.fr [Department of Pathology, INSERM UMR1069, CHU/Université de Tours, Tours (France)

    2016-07-01

    Purpose: Predictive factors for biochemical recurrence (BCR) in localized prostate cancer (PCa) after brachytherapy are insufficient to date. Cellular radiosensitivity depends on DNA double-strand breaks, mainly repaired by the nonhomologous end-joining (NHEJ) system. We analyzed whether the expression of NHEJ proteins can predict BCR in patients treated by brachytherapy for localized PCa. Methods and Materials: From 983 PCa cases treated by brachytherapy between March 2000 and March 2012, 167 patients with available biopsy material suitable for in situ analysis were included in the study. The median follow-up time was 47 months. Twenty-nine patients experienced BCR. All slides were reviewed to reassess the Gleason score. Expression of the key NHEJ proteins DNA-PKcs, Ku70, and Ku80, and the proliferation marker Ki67, was studied by immunohistochemistry performed on tissue microarrays. Results: The Gleason scores after review (P=.06) tended to be associated with BCR when compared with the score initially reported (P=.74). Both the clinical stage (P=.02) and the pretreatment prostate-specific antigen level (P=.01) were associated with biochemical failure. Whereas the expression of Ku80 and Ki67 were not predictive of relapse, positive DNA-PKcs nuclear staining (P=.003) and higher Ku70 expression (P=.05) were associated with BCR. On multivariate analysis, among pretreatment variables, only DNA-PKcs (P=.03) and clinical stage (P=.02) remained predictive of recurrence. None of the patients without palpable PCa and negative DNA-PKcs expression experienced biochemical failure, compared with 32% of men with palpable and positive DNA-PKcs staining that recurred. Conclusions: Our results suggest that DNA-PKcs could be a predictive marker of BCR after brachytherapy, and this might be a useful tool for optimizing the choice of treatment in low-risk PCa patients.

  5. Autoradiography for iodine-125 seeds

    International Nuclear Information System (INIS)

    Alberti, W.; Divoux, S.; Pothmann, B.; Tabor, P.; Hermann, K.P.; Harder, D.

    1993-01-01

    To study the interior design of model 6702 and 6711 iodine-125 seeds, contact autoradiographs were performed using mammography film. Improved resolution was obtained using a pin-hole camera with a hole of 0.1 mm x 0.1 mm. With these techniques, qualitative determination of the relative activity distribution within each seed was possible. The number of the activated resin spheres and the positions of the centers of these spheres can be exactly determined. A model calculation shows that variations in the arrangement of the activated spheres within a seed have a moderate influence on the dose distribution at source distances below 10 mm. Knowing the exact source configuration may be useful when comparing dose calculations with measured data for model 6702 125 I seeds which are currently employed in ophthalmic plaque and implant therapy of other tumors. 16 refs., 5 figs., 2 tabs

  6. Regulation of autophagy via PERK-eIF2α effectively relieve the radiation myelitis induced by iodine-125.

    Directory of Open Access Journals (Sweden)

    Zuozhang Yang

    Full Text Available Radiation myelitis is the most serious complication in clinical radiotherapy for spinal metastases. We previously showed that (125I brachytherapy induced apoptosis of spinal cord neurons accompanied by autophagy. In this study, we further investigated the mechanism by which (125I radiation triggered autophagy in neural cells. We found that autophagy induced by (125I radiation was involved in endoplasmic reticulum (ER stress and mainly dependent on PERK-eIF2α pathway. The expressions of LC3II, ATG12 and PI3K were significantly suppressed in PERK knockout neural cells. Meanwhile, the expressions of phosphorylated-Akt s473 and caspase3/8 all significantly increased in neural cells transfected with a PERK siRNA and which enhanced apoptosis of neurons after (125I radiation. The results were consistent with that by MTT and Annexin-FITC/PT staining. In animal model of banna pigs with radiation myelitis caused by (125I brachytherapy, we have successfully decreased PERK expression by intrathecal administration of the lentivirus vector. The apoptosis rate was significantly higher than that in control group and which deteriorated radiation myelitis of banna pigs. Thus, autophagy caused by (125I radiation was mainly as an attempt of cell survival at an early stage, but it would be a self-destructive process and promoted the process of apoptosis and necrosis radiated by (125I for more than 72 hours. The study would be useful and helpful to maximize efficiency of radiation therapy in clinical therapy.

  7. Iodine-125 radiation of posterior uveal melanoma

    International Nuclear Information System (INIS)

    Packer, S.

    1987-01-01

    Twenty-eight cases of posterior choroidal melanoma were treated with iodine-125 in gold eye plaques. Eleven cases were located within 3.0 mm of the optic nerve (group A), nine were within 3.0 mm of the fovea (group B), and eight were within 3.0 mm of the optic nerve and fovea (group C). The mean follow-up of group A was 46.3 months; group B, 25.5 months; and group C, 42.7 months. Complications included macular edema, cataract and tumor growth. Visual acuity remained within two lines of that tested preoperatively for 4 of 11 patients in group A, 4 of 9 in group B, and 5 of 8 in group C. These results with iodine-125 suggest it as an appropriate treatment for patients with choroidal melanoma located near optic nerve and/or macula

  8. Iodine-125 radiation of posterior uveal melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Packer, S.

    1987-12-01

    Twenty-eight cases of posterior choroidal melanoma were treated with iodine-125 in gold eye plaques. Eleven cases were located within 3.0 mm of the optic nerve (group A), nine were within 3.0 mm of the fovea (group B), and eight were within 3.0 mm of the optic nerve and fovea (group C). The mean follow-up of group A was 46.3 months; group B, 25.5 months; and group C, 42.7 months. Complications included macular edema, cataract and tumor growth. Visual acuity remained within two lines of that tested preoperatively for 4 of 11 patients in group A, 4 of 9 in group B, and 5 of 8 in group C. These results with iodine-125 suggest it as an appropriate treatment for patients with choroidal melanoma located near optic nerve and/or macula.

  9. Iodine-125 seeds for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Feher, Anselmo; Moura, Joao A.; Moura, Eduardo S.; Nagatomi, Helio R.; Manzoli, Jose E.; Souza, Carla D., E-mail: elisaros@ipen.b, E-mail: czeituni@pobox.co, E-mail: afeher@ipen.b, E-mail: jmoura31@yahoo.com.b, E-mail: esmoura@ipen.b, E-mail: hrnagato@ipen.b, E-mail: jemanzoli@ipen.b, E-mail: cdsouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Karam, Dib, E-mail: dib.karan@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Artes, Ciencias e Humanidades

    2009-07-01

    In Brazil, cancer has become one of the major public health problems. An estimate by the Health Ministry showed that 466,430 people had the disease in the country in 2008. The prostate cancer is the second largest death cause among men. The National Institute of Cancer estimated the occurrence of 50,000 new cases for 2009. Some of these patients are treated with Brachytherapy, using Iodine-125 seeds. By this technique, small seeds with Iodine-125, a radioactive material, are implanted in the prostate. The advantages of radioactive seed implants are the preservation of healthy tissues and organs near the prostate, besides the low rate of impotence and urinary incontinence. The Energy and Nuclear Research Institute - IPEN, which belongs to the Nuclear Energy National Commission - CNEN, established a program for the development of the technique and production of Iodine-125 seeds in Brazil. The estimate for the 125-Iodine seeds demand is of 8,000 seeds/month and the laboratory to be implanted will need this production capacity. The purpose of this paper is to explain the project status and show some data about the seeds used in the country. The project will be divided in two phases: technological development of a prototype and a laboratory implementation for the seeds production. (author)

  10. Study on iodine-125 production technique

    International Nuclear Information System (INIS)

    Liu Yishu; Han Dongqiao; Lu Changlong; Sun Wenhao; Bao Jianying; Wang Aimin

    1999-11-01

    125 I is produced with natural xenon as target material. The target preparation process is presented. Required xenon is frozen in 100 ml aluminum container by liquid nitrogen and sealed by cold-welding for irradiation in reactor. I - can be adsorbed on Platinum Coated Copper (PCC) in the media of dilute sulfuric acid, pH 3 PCC. In the range of its adsorption capacity, the adsorption efficiency of iodine-125 on PCC is greater than 99.9%. All the radioiodine can be adsorbed on PCC quantifiably and the impurities pass through the column. The elution efficiency of 125 I from PCC column greatly depends on the concentration of eluant NaOH, the amount of adsorbed 125 I - and flow rate as well. The aluminum dissolved from Al container has no apparent effects on both adsorption and elution efficiency. The contents of adsorbent material Cu and Pt is extremely low ( 125 I produced by using PCC chromatographic technique can meet the requirement of RIA kits labelling and other uses

  11. Irradiation of malignant eyelid melanoma with iodine 125 plaque

    International Nuclear Information System (INIS)

    Stanowsky, A.; Krey, H.F.; Kopp, J.; Kanitz, W.; Wagner, T.

    1990-01-01

    We used contact irradiation with iodine 125 seeds to treat a large, exulcerative, nodular, amelanotic malignant eyelid melanoma with metastasis to the regional lymph nodes in an 80-year-old man. The procedure was similar to iodine 125 plaque irradiation of malignant choroidal melanoma; special equipment, however, was needed to protect the eye from radiation exposure. The response of the malignant eyelid melanoma to iodine 125 plaque irradiation was similar to that of malignant melanomas of the choroid. No complications were observed in a follow-up period of 15 months

  12. Irradiation of malignant eyelid melanoma with iodine 125 plaque

    Energy Technology Data Exchange (ETDEWEB)

    Stanowsky, A.; Krey, H.F.; Kopp, J.; Kanitz, W.; Wagner, T. (Eye Clinic, Central Clinic, Augsburg (West Germany))

    1990-07-15

    We used contact irradiation with iodine 125 seeds to treat a large, exulcerative, nodular, amelanotic malignant eyelid melanoma with metastasis to the regional lymph nodes in an 80-year-old man. The procedure was similar to iodine 125 plaque irradiation of malignant choroidal melanoma; special equipment, however, was needed to protect the eye from radiation exposure. The response of the malignant eyelid melanoma to iodine 125 plaque irradiation was similar to that of malignant melanomas of the choroid. No complications were observed in a follow-up period of 15 months.

  13. Quality asurance of iodinated (125 I) human fibrinogen

    International Nuclear Information System (INIS)

    Vines, E.J.

    1980-05-01

    The radiopharmaceutical iodinated ( 125 I) human fibrinogen is currently used for the detection of deep vein thrombosis in the legs, a fairly common post-surgical complication. A comprehensive quality assurance programme for ( 125 I) - human fibrinogen has been determined for routine use at the Australian Radiation Laboratory, with adaptions necessary for hospital quality control testing

  14. Quality Assurance Procedure Development in Iodine-125 Seeds Production

    International Nuclear Information System (INIS)

    Moura, J.A.; Moura, E.S.; Sprenger, F.E.

    2009-01-01

    Brachytherapy using Iodine-125 seeds has been used in prostate cancer treatment. In the quality control routine during seed production, leak tests are made to detect any leakage of radioactive material from inside the titanium shield. Leak tests are made according to the International Standard Organization- Radiation protection - sealed radioactive sources - ISO 9978 standard, and require liquid transfer between recipients. If any leakage happens, there will be contamination of the liquid and tubing. This study aims to establish decontamination routines for tubing, allowing its repeated use, in the automated assay process

  15. Dosimetric study in iodine-125 seeds for brachytherapy application

    International Nuclear Information System (INIS)

    Zeituni, Carlos Alberto

    2008-01-01

    The demand for iodine-125 seeds for use in brachytherapy treatments has experienced an increase along recent years in Brazil and all over the world. All iodine-125 seed must have its operational parameters measured and/or calculated every time changes in the production process are carried out. A complete dosimetric measurement is very expensive, and it is recommended that this procedure must be repeated at least once a year. Thus, this work developed a methodology for the entire dosimetric process. This methodology is based on the scarce information available in the literature, once almost all the methodology used in large industrial laboratories is commercial secret. The proposed methodology was tested using seeds of Amersham-Oncura-Ge Healthcare, which is the largest seed manufactory in the world. In this new methodology, an automatic reader was employed in order to reduce the time required in the selection process of the TLD-100 dosimeters used and a postprocessing of the obtained spectra was carried out. A total of 142 dosimeters were used and only 29 have been selected using the new methodology. Measurements were performed using slabs of Solid Water RW1 to simulate measuring in the 'water', using three different experimental apparatus and each measurement was repeated at least three times. The TLD-100 calibration was performed using a Dermopan II - Siemens. The measured values showed a good agreement with the ones available in the literature. Finally, these measured values were compared with calculated ones obtained by a semiempirical simulation program, showing a good agreement and, therefore, demonstrating the validity of the proposed methodology regarding dosimetric calculations. (author)

  16. Study of CT-guided iodine-125 implantation in the treatment of rabbit VX2 tumor

    International Nuclear Information System (INIS)

    He Kewu; Gao Bin; Li Jiajia

    2008-01-01

    Objective: To evaluate the effect of CT-guided iodine-125 seed( 125 I) implantation to rabbit model VX2 tumor cell apoptosis. Methods: VX2 tumor cells were implanted into muscle of 40 rabbits legs, 3 weeks later, as the diameter of tumor reached 2 cm available for test. Randomly selected the sampling tumor on one leg of rabbit as for the test team and tumor on the contralateral leg as for control team. Under CT guidance, 125 I seeds were implanted into 20 tumor lesions of the test team, and hollow seeds were implanted into 20 tumor lesions of the control team. Instantly, 72 h, 1, 2, 3 w after operation, percutaneous tumor tissue sampling was done 0.5-1.0 cm and 1.0-1.5 cm away from seed implanted site under CT guidance; and apoptosis was investigated by FCM. Results: Instantly, 72 h, 1, 2, 3 w after treatment with iodine-125 ( 125 I) implantation, the tissue sampling away from seed 0.5-1.0 cm showed the apoptosis rates of control team and test team were respectively as follows: (5.43±0.67)% and (5.48±0.66)%, (P>0.05), (5.45±0.58)% and (11.60±0.87)%, (P O.05)of the control team and test team. Conclusions: 125 I seeds implantation can induce tumor cell apoptosis, beginning at 72 h and reached peak at 2 w and kept the high level here afterword. The apoptosis rate descended rapidly along with the increase of distance away from the 125 I seedling. (authors)

  17. Automation system for quality control in manufacture of iodine-125 sealed sources used in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria E.C.M.; Moura, Joao A.; Costa, Osvaldo L.; Calvo, Wilson A.P., E-mail: somessar@ipen.b, E-mail: afeher@ipen.b, E-mail: sprenger@ipen.b, E-mail: elisaros@ipen.b, E-mail: olcosta@ipen.b, E-mail: wapcalvo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The objective of this work is to develop an automation system for Quality Control in the production of Iodine-125 sealed sources, after undergoing the process of laser beam welding. These sources, also known as Iodine-125 seeds are used, successfully, in the treatment of cancer by brachytherapy, with low-dose rates. Each small seed is composed of a welded titanium capsule with 0.8 mm diameter and 4.5 mm in length, containing Iodine-125 adsorbed on an internal silver wire. The seeds are implanted in the human prostate to irradiate the tumor and treat the cancerous cells. The technology to automate the quality control system in the manufacture of Iodine-125 seeds consists in developing and associate mechanical parts, electronic components and pneumatic circuits to control machines and processes. The automation technology for Iodine-125 seed production developed in this work employs programmable logic controller, step motors, drivers of control, electrical-electronic interfaces, photoelectric sensors, interfaces of communication and software development. Industrial automation plays an important role in the production of Iodine-125 seeds, with higher productivity and high standard of quality, facilitating the implementation and operation of processes with good manufacturing practices. Nowadays, the Radiation Technology Center at IPEN-CNEN/SP imports and distributes 36,000 Iodine-125 seeds per year for clinics and hospitals in the whole country. However, the Brazilian potential market is of 8,000 Iodine-125 seeds per month. Therefore, the local production of these radioactive seeds has become a priority for the Institute, aiming to reduce the price and increase the supply to the population in Brazil. (author)

  18. Local radiolytic effectiveness of Auger electrons of iodine-125 in benzene-iodine solutions

    International Nuclear Information System (INIS)

    Uenak, P.; Uenak, T.

    1987-01-01

    High radiotoxicity of iodine-125 has been mainly attributed to the local radiolytic effects of Auger electrons on biological systems. In the present study, experimental and theoretical results are compared. The agreement between the experimental and theoretical results explains that the energy absorption of iodine aggregates has an important role in the radiolytic effectiveness of Auger electrons and iodine-125 in benzene-iodine solutions. (author) 18 refs.; 3 figs

  19. Automation system for quality control in manufacture of iodine-125 sealed sources used in brachytherapy

    International Nuclear Information System (INIS)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria E.C.M.; Moura, Joao A.; Costa, Osvaldo L.; Calvo, Wilson A.P.

    2011-01-01

    The objective of this work is to develop an automation system for Quality Control in the production of Iodine-125 sealed sources, after undergoing the process of laser beam welding. These sources, also known as Iodine-125 seeds are used, successfully, in the treatment of cancer by brachytherapy, with low-dose rates. Each small seed is composed of a welded titanium capsule with 0.8 mm diameter and 4.5 mm in length, containing Iodine-125 adsorbed on an internal silver wire. The seeds are implanted in the human prostate to irradiate the tumor and treat the cancerous cells. The technology to automate the quality control system in the manufacture of Iodine-125 seeds consists in developing and associate mechanical parts, electronic components and pneumatic circuits to control machines and processes. The automation technology for Iodine-125 seed production developed in this work employs programmable logic controller, step motors, drivers of control, electrical-electronic interfaces, photoelectric sensors, interfaces of communication and software development. Industrial automation plays an important role in the production of Iodine-125 seeds, with higher productivity and high standard of quality, facilitating the implementation and operation of processes with good manufacturing practices. Nowadays, the Radiation Technology Center at IPEN-CNEN/SP imports and distributes 36,000 Iodine-125 seeds per year for clinics and hospitals in the whole country. However, the Brazilian potential market is of 8,000 Iodine-125 seeds per month. Therefore, the local production of these radioactive seeds has become a priority for the Institute, aiming to reduce the price and increase the supply to the population in Brazil. (author)

  20. Brazilian demand for Iodine-125 seeds in cancer treatment after a decade of medical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Osvaldo L. da; Souza, Daiane C.B. de; Feher, Anselmo; Moura, João A.; Souza, Carla D.; Oliveira, Henrique B. de; Peleiras Junior, Fernando S.; Zeituni, CArlos A.; Rostelaro, Maria E.C.M., E-mail: olcosta@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Iodine-125 and palladium-103 are radionuclides employed to made medical devices used in cancer treatment known as brachytherapy seeds. These radioactive sealed sources are applied in brain and ophthalmic cancer as a temporary implant to irradiate the tumor and in permanent implants to prostatic cancer. Brazilian Nuclear Energy Commission (CNEN) has the monopoly in Brazil of iodine-125 brachytherapy seeds distribution which is executed for Nuclear and Energy Research Institute (IPEN-CNEN/SP). Along a decade of use in Brazil more than 240 thousand seeds were implanted in patients or used to treat cancer tumors. In this article the Brazilian demand for iodine-125 brachytherapy seeds is analyzed. The demand behavior along a decade of using loose, strand, ophthalmic and brain brachytherapy seeds are shown. The annual quantity of seeds demanded by Brazil has dropped since 2012. The loose seeds which represented until 30% from total brachytherapy seeds used in Brazil decreased to less than 3%. The brain brachytherapy seeds had low demand along the decade and presented zero demand in several years. Concurrent treatment techniques are listed and main trends are discussed. The influence of Brazilian economic crisis and the demand behavior of the main hospitals and clinics that use Iodine-125 brachytherapy are shown. (author)

  1. Recurrent primary lumbar vertebra chondrosarcoma: Marginal resection and Iodine-125 seed therapy

    Directory of Open Access Journals (Sweden)

    Chunpeng Ren

    2014-01-01

    Full Text Available Chondrosarcomas are uncommon in the spinal column. En bloc excisions with wide margins are of critical importance but not always feasible in spine. We report the outcome in a case of recurrent lumbar vertebral chondrosarcoma treated with marginal resection and iodine-125 seeds placed in the resected tumor bed.

  2. Iodine-125 brachytherapy as upfront and salvage treatment for brain metastases. A comparative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Romagna, Alexander; Schwartz, Christoph; Tonn, Joerg-Christian; Kreth, Friedrich-Wilhelm [Ludwig-Maximilians-University, Department of Neurosurgery, Munich (Germany); Egensperger, Rupert [Ludwig-Maximilians-University, Center for Neuropathology and Prion Research, Munich (Germany); Watson, Juliana; Belka, Claus; Nachbichler, Silke Birgit [Ludwig-Maximilians-University, Department of Radiation-Oncology, Munich (Germany)

    2016-11-15

    Outcome and toxicity profiles of salvage stereotactic ablative radiation strategies for recurrent pre-irradiated brain metastases are poorly defined. This study compared risk-benefit profiles of upfront and salvage iodine-125 brachytherapy (SBT) for small brain metastases. As the applied SBT treatment algorithm required histologic proof of metastatic brain disease in all patients, we additionally aimed to elucidate the value of biopsy before SBT. Patients with small untreated (n = 20) or pre-irradiated (n =28) suspected metastases intended for upfront or salvage SBT, respectively, were consecutively included. Temporary iodine-125 implants were used (median reference dose: 50 Gy, median dose rate: 15 cGy/h). Cumulative biologically effective doses (BED) were calculated and used for risk assessment. Treatment toxicity was classified according to Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG/EORTC) criteria. Upfront SBT was initiated in 20 patients and salvage SBT in 23. In 5 patients, salvage SBT was withheld because of proven radiation-induced lesions. Treatment groups exhibited similar epidemiologic data except for tumor size (which was slightly smaller in the salvage group). One-year local/distant tumor control rates after upfront and salvage SBT were similar (94 %/65 % vs. 87 %/57 %, p = 0.45, respectively). Grade I/II toxicity was suffered by 2 patients after salvage SBT (cumulative BED: 192.1 Gy{sub 3} and 249.6 Gy{sub 3}). No toxicity-related risk factors were identified. SBT combines diagnostic yield with effective treatment in selected patients. The low toxicity rate in the salvage group points to protective radiobiologic characteristics of continuous low-dose rate irradiation. Upfront and salvage SBT are similarly effective and safe. Histologic reevaluation should be reconsidered after previous radiotherapy to avoid under- or overtreatment. (orig.) [German] Daten zu Risiko und Effizienz ablativer

  3. Multistation iodine-125 continuous air monitor with minicomputer alarm and data reduction

    International Nuclear Information System (INIS)

    Garfield, D.K.

    1978-01-01

    The components, operation, and calibration are described of a Multistation Continuous Air Monitor for the analysis of Iodine-125 and the functions of the Minicomputer in providing alarm functions and data reduction to units specified by regulation for permanent records. The sensitivity and accuracy, as well as the justification for purchase and comparison of costs with other types of air monitoring systems are also described

  4. Development of an encapsulation method using plasma arc welding to produce iodine-125 seeds for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Anselmo; Calvo, Wilson A.P.; Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Somessari, Samir L.; Costa, Osvaldo L.; Moura, Joao A.; Moura, Eduardo S.; Souza, Carla D.; Rela, Paulo R., E-mail: afeher@ipen.b, E-mail: wapcalvo@ipen.b, E-mail: elisaros@ipen.b, E-mail: somessar@ipen.b, E-mail: olcosta@ipen.b, E-mail: esmoura@ipen.b, E-mail: cdsouza@ipen.b, E-mail: prela@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer is public health problem in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing Iodine-125 radioisotope are implanted into the prostate gland. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed Iodine-125. The Plasma Arc Welding (PAW) is one of the viable techniques for sealing process. The equipment used in this technique is less costly than in other processes, such as, Laser Beam Welding (LBW). The main purpose of this work was the development of an encapsulation method using PAW. The development of this work has presented the following phases: cutting and cleaning titanium tube, determination of the welding parameters, development of a titanium tube holding device for PAW, sealed sources validation according to ISO 2919 - Sealed Radioactive Sources - General Requirements and Classification, and metallographic assays. The developed procedure to seal Iodine-125 seeds using PAW has shown high efficiency, satisfying all the established requirements of ISO 2919. The results obtained in this work will give the possibility to establish a routine production process according to the orientations presented in resolution RDC 17 - Good Manufacturing Practices to Medical Products defined by the ANVISA - National Agency of Sanitary Surveillance. (author)

  5. Development of an encapsulation method using plasma arc welding to produce iodine-125 seeds for brachytherapy

    International Nuclear Information System (INIS)

    Feher, Anselmo; Calvo, Wilson A.P.; Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Somessari, Samir L.; Costa, Osvaldo L.; Moura, Joao A.; Moura, Eduardo S.; Souza, Carla D.; Rela, Paulo R.

    2011-01-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer is public health problem in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing Iodine-125 radioisotope are implanted into the prostate gland. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed Iodine-125. The Plasma Arc Welding (PAW) is one of the viable techniques for sealing process. The equipment used in this technique is less costly than in other processes, such as, Laser Beam Welding (LBW). The main purpose of this work was the development of an encapsulation method using PAW. The development of this work has presented the following phases: cutting and cleaning titanium tube, determination of the welding parameters, development of a titanium tube holding device for PAW, sealed sources validation according to ISO 2919 - Sealed Radioactive Sources - General Requirements and Classification, and metallographic assays. The developed procedure to seal Iodine-125 seeds using PAW has shown high efficiency, satisfying all the established requirements of ISO 2919. The results obtained in this work will give the possibility to establish a routine production process according to the orientations presented in resolution RDC 17 - Good Manufacturing Practices to Medical Products defined by the ANVISA - National Agency of Sanitary Surveillance. (author)

  6. Iodine-125 metaraminol: A new platelet specific labeling agent

    International Nuclear Information System (INIS)

    Ohmomo, Y.; Yokoyama, A.; Kawaii, K.; Horiuchi, K.; Saji, H.; Torizuka, K.

    1984-01-01

    In the search for a platelet specific labeling agent, Metaraminol (MA), which is a sympatomimetic amine used for the treatment of hypotension, cardiogenic shock and well recognized as a drug actively incorporated and accumulated in platelet, attracted the authors' attention. Using the classical chloramine-T iodination method, a high labeling efficiency near 98%, reaching a specific activity up to about 1000 Ci/mmole was obtained. Upon the harvest of platelet, only as platelet rich plasma (PRP), the labeling with this radiopharmaceutical was easily performed by incubation at 37 0 C for 10 min. Labeling efficiency as high as 63.0 +- 3.1% at 24 x 10/sup 8/ cells/ml was obtained. In in-vitro studies, the unaltered state of I-125 MA labeled platelet, with their cellular functions fully retained was demonstrated. Pharmacological study indicated a specific incorporation of I-125 MA by active transport system similar to that of 5-HT, along with passive diffusion. Then the in-vivo study carried out in rabbits with induced thrombi on the femoral artery, showed rather rapid disappearance of the I-125 MA labeled autologous platelet radioactivity, from circulating blood reaching as high thrombus-to-blood activity ratio as 19.8+-4.3 within 30 min post-administration. This new platelet labeling agent, I-125 MA, has many advantages over the use of IN-111 oxine and holds considerable promise for thrombus imaging with single photon emission CT upon the availability of I-123 MA

  7. Development of an automation system for iodine-125 brachytherapy seed production by (Nd:YAG) laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir Luiz

    2010-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by (Nd:YAG) laser welding, which has been used successfully in Low Dose Rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8mm in diameter and 4.5mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources becomes a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a largest number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with Good Manufacturing Practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing Programmable Logic Controller (PLC), stepper motors, drivers, (Nd:YAG) laser welding machine, photoelectric sensors and supervisory. (author)

  8. Development of an automation system for iodine-125 brachytherapy seed production by ND:YAG laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria Elisa C.M.; Costa, Fabio E.; Calvo, Wilson A.P.

    2009-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices. The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a Programmable Logic Controller, a stepper motor, an Nd:YAG laser welding machine and a supervisory. (author)

  9. Quantification of the simple and double strand breaks following the disintegration of iodine-125 in situ in chromosomal fiber

    International Nuclear Information System (INIS)

    Oudira, H.; Saifi, A.

    2010-01-01

    The principal objective of this study is to compare the radiochemical yields of the simple and double strand breaks (C.S.B. and C.D.B.) generated in the propellers of the molecule of DNA, following the taking in consideration of two electronic spectra of disintegration of iodine-125. Indeed, the combined use of the Monte Carlo method of the type step by step and the equation of diffusion (∂ C i / ∂ t = D i Δ 2 C i + S) makes it possible to simulate the transport of the electrons, and the chemical reactions due to the diffusion of the entities created throughout the physico-chemical and chemical process considered (e-aq, H, OH, H 2 , H 2 O 2 , and H 3 O + ). In this study, we take in consideration a complex model of DNA (nucleosome) and its envelope of hydration like we also take in consideration of the radio-protector effect of the inhibitors such as the Formiat (Formiat the sodium, HCOO - ). Moreover, the comparison of our results to those obtained by other models, highlights on one hand an unquestionable agreement and on the other hand the power and the capacity of adaptation of the codes worked out to various models of DNA. (authors)

  10. Experimental iodine-125 seed irradiation of intracerebral brain tumors in nude mice

    Directory of Open Access Journals (Sweden)

    Haveman Jaap

    2007-09-01

    Full Text Available Abstract Background High-dose radiotherapy is standard treatment for patients with brain cancer. However, in preclinical research external beam radiotherapy is limited to heterotopic murine models– high-dose radiotherapy to the murine head is fatal due to radiation toxicity. Therefore, we developed a stereotactic brachytherapy mouse model for high-dose focal irradiation of experimental intracerebral (orthotopic brain tumors. Methods Twenty-one nude mice received a hollow guide-screw implanted in the skull. After three weeks, 5 × 105 U251-NG2 human glioblastoma cells were injected. Five days later, a 2 mCi iodine-125 brachytherapy seed was inserted through the guide-screw in 11 randomly selected mice; 10 mice received a sham seed. Mice were euthanized when severe neurological or physical symptoms occurred. The cumulative irradiation dose 5 mm below the active iodine-125 seeds was 23.0 Gy after 13 weeks (BEDtumor = 30.6 Gy. Results In the sham group, 9/10 animals (90% showed signs of lethal tumor progression within 6 weeks. In the experimental group, 2/11 mice (18% died of tumor progression within 13 weeks. Acute side effects in terms of weight loss or neurological symptoms were not observed in the irradiated animals. Conclusion The intracerebral implantation of an iodine-125 brachytherapy seed through a stereotactic guide-screw in the skull of mice with implanted brain tumors resulted in a significantly prolonged survival, caused by high-dose irradiation of the brain tumor that is biologically comparable to high-dose fractionated radiotherapy– without fatal irradiation toxicity. This is an excellent mouse model for testing orthotopic brain tumor therapies in combination with radiation therapy.

  11. Experimental iodine-125 seed irradiation of intracerebral brain tumors in nude mice

    International Nuclear Information System (INIS)

    Verhoeff, Joost JC; Stalpers, Lukas JA; Coumou, Annet W; Koedooder, Kees; Lavini, Cristina; Van Noorden, Cornelis JF; Haveman, Jaap; Vandertop, William P; Furth, Wouter R van

    2007-01-01

    High-dose radiotherapy is standard treatment for patients with brain cancer. However, in preclinical research external beam radiotherapy is limited to heterotopic murine models– high-dose radiotherapy to the murine head is fatal due to radiation toxicity. Therefore, we developed a stereotactic brachytherapy mouse model for high-dose focal irradiation of experimental intracerebral (orthotopic) brain tumors. Twenty-one nude mice received a hollow guide-screw implanted in the skull. After three weeks, 5 × 10 5 U251-NG2 human glioblastoma cells were injected. Five days later, a 2 mCi iodine-125 brachytherapy seed was inserted through the guide-screw in 11 randomly selected mice; 10 mice received a sham seed. Mice were euthanized when severe neurological or physical symptoms occurred. The cumulative irradiation dose 5 mm below the active iodine-125 seeds was 23.0 Gy after 13 weeks (BED tumor = 30.6 Gy). In the sham group, 9/10 animals (90%) showed signs of lethal tumor progression within 6 weeks. In the experimental group, 2/11 mice (18%) died of tumor progression within 13 weeks. Acute side effects in terms of weight loss or neurological symptoms were not observed in the irradiated animals. The intracerebral implantation of an iodine-125 brachytherapy seed through a stereotactic guide-screw in the skull of mice with implanted brain tumors resulted in a significantly prolonged survival, caused by high-dose irradiation of the brain tumor that is biologically comparable to high-dose fractionated radiotherapy– without fatal irradiation toxicity. This is an excellent mouse model for testing orthotopic brain tumor therapies in combination with radiation therapy

  12. A new inexpensive customized plaque for choroidal melanoma iodine-125 plaque therapy

    International Nuclear Information System (INIS)

    Vine, A.K.; Tenhaken, R.K.; Diaz, R.F.; Maxson, B.B.; Lichter, A.S.

    1989-01-01

    The authors have developed a new inexpensive precious metal alloy plaque for use in customized iodine-125 plaque therapy. Each plaque is formed from two flat circular gold/palladium foils which are used in dental crown work. Using a simple manual mechanism, the two forms are stamped over a customized acrylic die shaped to the dimensions of the tumor base plus a 2-mm margin. Completed plaques consist of a back wall, a 2-mm side wall, and a 1.5-mm wide lip with holes for suture placement. Advantages include: simple construction from inexpensive components, customized shape, and iodine seeds that are readily visible on plane radiographs

  13. Prostate-specific antigen bounce following permanent iodine-125 prostate brachytherapy

    International Nuclear Information System (INIS)

    Azuma, Koji; Kikugawa, Tadahiko; Fukumoto, Tetsuya

    2013-01-01

    The purpose of this study was to evaluate a temporary increase in the prostate-specific antigen (PSA) level, so-called PSA bounce, which occurs following permanent iodine-125 prostate brachytherapy. From June 2006 to July 2011, 64 patients with localized prostate cancer were treated with brachytherapy by using iodine-125 implants. Seventeen patients received neoadjuvant hormonal therapy to reduce the prostate volume. After the treatment, patients were followed up with a PSA measurement every 3 months for the first 2 years and every 6 months thereafter. The median follow-up duration was 34.5 months (range, 3.5 to 64.0 months). PSA bounce was noted in 20 (31%) out of the 64 patients. The median time to PSA bounce was 13.3 months (range, 5.8 to 44.7 months), and 18 (90%) out of the 20 patients experienced an initial PSA increase within 24 months. The median bounce magnitude was 0.25 ng/mL (range, 0.10 to 1.36 ng/mL). PSA failure was observed in 2 (3%) out of the 64 patients, and PSA bounce was not a predictor of PSA recurrence. PSA bounce was significantly associated with post-treatment V100 and D90, but not with clinical stage, pretreatment PSA, Gleason score, neoadjuvant hormonal therapy status, or PSA failure. PSA bounce following brachytherapy is considerably common. No significant difference was found in biochemical failure-free survival between patients with and those without PSA bounce. Physicians must take PSA bounce following radiotherapy into consideration in order to avoid unnecessary salvage hormonal treatment. (author)

  14. Urethral and bladder dosimetry of total and focal salvage Iodine-125 prostate brachytherapy : Late toxicity and dose constraints

    NARCIS (Netherlands)

    Peters, Max; Van Der Voort Van Zyp, Jochem; Hoekstra, Carel; Westendorp, Hendrik; Van De Pol, Sandrine; Moerland, Marinus; Maenhout, Metha; Kattevilder, Rob; Van Vulpen, Marco

    2015-01-01

    Introduction Salvage Iodine-125 brachytherapy (I-125-BT) constitutes a curative treatment approach for patients with organ-confined recurrent prostate cancer after primary radiotherapy. Currently, focal salvage (FS) instead of whole-gland or total salvage (TS) is being investigated, to reduce severe

  15. Dosimetric and Late Radiation Toxicity Comparison Between Iodine-125 Brachytherapy and Stereotactic Radiation Therapy for Juxtapapillary Choroidal Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Krema, Hatem, E-mail: htmkrm19@yahoo.com [Department of Ocular Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Heydarian, Mostafa [Department of Radiation Medicine, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Beiki-Ardakani, Akbar [Department of Radiation Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Weisbrod, Daniel [Department of Ocular Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Xu, Wei [Department of Biostatistics, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Laperriere, Normand J.; Sahgal, Arjun [Department of Radiation Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada)

    2013-07-01

    Purpose: To compare the dose distributions and late radiation toxicities for {sup 125}I brachytherapy (IBT) and stereotactic radiation therapy (SRT) in the treatment of juxtapapillary choroidal melanoma. Methods: Ninety-four consecutive patients with juxtapapillary melanoma were reviewed: 30 have been treated with IBT and 64 with SRT. Iodine-125 brachytherapy cases were modeled with plaque simulator software for dosimetric analysis. The SRT dosimetric data were obtained from the Radionics XKnife RT3 software. Mean doses at predetermined intraocular points were calculated. Kaplan-Meier estimates determined the actuarial rates of late toxicities, and the log–rank test compared the estimates. Results: The median follow-up was 46 months in both cohorts. The 2 cohorts were balanced with respect to pretreatment clinical and tumor characteristics. Comparisons of radiation toxicity rates between the IBT and SRT cohorts yielded actuarial rates at 50 months for cataracts of 62% and 75% (P=.1), for neovascular glaucoma 8% and 47% (P=.002), for radiation retinopathy 59% and 89% (P=.0001), and for radiation papillopathy 39% and 74% (P=.003), respectively. Dosimetric comparisons between the IBT and SRT cohorts yielded mean doses of 12.8 and 14.1 Gy (P=.56) for the lens center, 17.6 and 19.7 Gy (P=.44) for the lens posterior pole, 13.9 and 10.8 Gy (P=.30) for the ciliary body, 61.9 and 69.7 Gy (P=.03) for optic disc center, and 48.9 and 60.1 Gy (P<.0001) for retina at 5-mm distance from tumor margin, respectively. Conclusions: Late radiation-induced toxicities were greater with SRT, which is secondary to the high-dose exposure inherent to the technique as compared with IBT. When technically feasible, IBT is preferred to treat juxtapapillary choroidal melanoma.

  16. The development of a human eye model for ophthalmic iodine-125 brachytherapy dosimetry

    International Nuclear Information System (INIS)

    Mourao, A.P.; Campos, T.P.R.

    2008-01-01

    Full text: Radiotherapy is used to treat malign tumors. Radiotherapy is an alternative to enucleation in ocular tumors. However, the irradiation of ocular region can bring damages due high doses, mainly in the crystalline lens and in the bone tissue in growth phase. Brachytherapy instead of teletherapy looks for reducing doses in the crystalline lens and the adjacent tissues of the ocular globe (orbital region), minimizing side effects. Herein, some encapsulated radioisotopes in radioactive seeds applied to the ocular brachytherapy are available. Thus, a three-dimensional computational voxel model of the ocular region with its heterogeneous tissues, globe and adjacent tissues is developed. This computational model is used to simulate orbital irradiation with radioactive seeds positioned on the sclera surface through the MCNP5 code. The computational simulation allows evaluating how doses are spatially distributed in the orbital volume in treatments with the radioactive seeds of iodine-125. Therefore, the results allow comparing the spatial doses distribution obtained through the MCNP5 simulation for those two distinct types of radioactive seeds. Bench markets from literature validates the proposed simulations. (author)

  17. Radiation exposure to operating room staff during prostate brachytherapy using iodine-125 seeds

    International Nuclear Information System (INIS)

    Gagna, G.; Amabile, J.C.; Laroche, P.; Gauron, C.

    2011-01-01

    The French defense radiation protection service (SPRA) and the French national institute for research and safety (INRS) conducted a joint study to assess the radiation exposure to operating room staff during prostate brachytherapy using iodine-125 seeds at the Val-de-Grace military hospital. The purpose of the study was the assessment of the effective doses, the equivalent doses to the extremities and lens received by a novice team, the different ambient dose equivalent rates measurements and the delineation of areas. After six brachy-therapies, all the recorded doses with whole-body InLight R OSL and nanoDot R dosimeters remained below the detection limit for the whole staff. The dose rate measured at the end of implantation by an AT1123 R survey meter is about 170 μSv/h at the perineum of the patient. The controlled area limit is estimated to be about 20 cm from the patient perineum. From these results, the authors propose recommendations for the categorization of workers, the delineation of areas and the dose monitoring procedures. This study demonstrates that real-time ultrasound-guided trans-perineal prostate brachytherapy delivers low dose to the operators because of the radioactive source characteristics and the instrumentation providing an effective radiation protection for the surgical team. (authors)

  18. Assessment of the risks associated with Iodine-125 handling production sources for brachytherapy

    International Nuclear Information System (INIS)

    Souza, Daiane C.B.; Rostelato, Maria Elisa C.; Vicente, Roberto; Zeituni, Carlos A.; Tiezzi, Rodrigo; Costa, Osvaldo L.; Souza, Carla D.; Peleias Junior, Fernando S.; Rodrigues, Bruna T.; Souza, Anderson S.; Batista, Talita Q.; Melo, Emerson R.; Camargo, Anderson R.; Karam Junior, Dib

    2015-01-01

    In Brazil, prostate cancer is the second most frequent disease, with an estimated 68,800 new cases in 2013. This type of cancer can be treated with brachytherapy, which uses sealed sources of Iodine-125 implanted permanently in the prostate. These sources are currently imported at a high cost, making public treatment in large scale impractical. To reduce costs and to meet domestic demand, the laboratory for production of brachytherapy sources at the Nuclear and Energy Research Institute (IPEN) is currently nationalizing the production of this radioisotope. Iodine is quite volatile making the handling of its radioactive isotopes potentially dangerous. The aim of this paper is to evaluate the risks to which workers are exposed during the production and handling of the sources. The research method consisted initially of a literature review on the toxicity of iodine, intake limits, related physical risks, handling of accidents, generation of radioactive wastes, etc. The results allowed for establishing safety and radioprotection policies in order to ensure efficient and safe production in all stages and the implementation of good laboratory practices. (author)

  19. Use of brachytherapy with permanent implants of iodine-125 in localized prostate cancer

    International Nuclear Information System (INIS)

    Bladou, F.; Serment, G.; Salem, N.; Simonian, M.; Rosello, R.; Ternier, F.

    2002-01-01

    Approximately 15,000 cases of early stage prostate cancer T1 and T2 are diagnosed every year in France by testing for PSA and performing prostatic biopsies. The treatment of these localized forms is based in most cases on radical prostatectomy or nn external beam radiotherapy. Although the ontological results obtained by these two therapeutic methods are satisfactory and equivalent in the long term, the side effects can be important. For a number of years, trans-perineal brachytherapy using permanent implants of iodine -125 or palladium-103 has proved itself as an alternative therapy with equivalent medium to long-term results. The low urinary, digestive and sexual side effects of prostate brachytherapy are important reasons for the enthusiasm among patients and the medical community for this therapy and the growing number of applications and centres which practice it. In September 1998 we started the prostate brachytherapy programmes- in Marseilles with close collaboration between the department of urology of the Hopital Salvator, and the departments of radiotherapy, medical imaging and medical physics of the Institut Paoli-Calmettes. To date, around 250 patients with localized adenocarcinoma of the prostate have benefited from this alternative therapy in our centre. Preliminary results, with a 3 year-follow-up, are comparable to results published in the literature by pioneer teams. (authors)

  20. Iodine-125 Chitosan-Vitamin C complex. Preparation, characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Elbarbary, Ahmed M. [National Center for Radiation Research and Technology, Cairo (Egypt). Polymer Chemistry Dept.; Shafik, H.M.; Ebeid, N.H.; Ayoub, S.M. [Atomic Energy Authority, Cairo (Egypt). Hot Lab. Center; Othman, Sameh H. [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Center

    2015-07-01

    In heterogeneous conditions, water soluble Chitosan-Vitamin C Complex (CSVC) is successfully synthesized via the ionic interaction between γ-degraded CS and VC. Chitosan (CS) of low molecular weight (MW) is prepared using γ-irradiation method. The coupling of CS and vitamin C (VC) is carried out by the chemical treatment of VC with the γ-degraded CS. The formation of CSVC complex instead of physical mixture is confirmed by FT-IR and UV spectrometry. Characterization by transmission electron microscope (TEM) and dynamic light scattering (DLS) shows the formation of a nanostructure in 40 nm range. The preparation of labeled CSVC was performed using chloramines-T oxidation method. The labeling feasibility of CSVC nanostructure by Iodine-125 ({sup 125}I) is investigated. The optimized conditions of labeling are thought to be 50 μg of oxidizing agent, pH 3, and one minute reaction time. The Biodistribution activity of {sup 125}I radiolabeled CSVC nanostructure ({sup 125}I-CSVC) is examined on a group of different ascites tumor bearing mice. Calculation of the biodistribution percentages shows that the tumor, liver, and kidney are the targeting organs of {sup 125}I-CSVC nanostructure.

  1. Patterns of failure after iodine-125 seed implantation for prostate cancer

    International Nuclear Information System (INIS)

    Lamb, David S.; Greig, Lynne; Russell, Grant L.; Nacey, John N.; Broome, Kim; Studd, Rod; Delahunt, Brett; Iupati, Douglas; Jain, Mohua; Rooney, Colin; Murray, Judy; Lamb, Peter J.; Bethwaite, Peter B.

    2014-01-01

    Purpose: To determine the site of relapse when biochemical failure (BF) occurs after iodine-125 seed implantation for prostate cancer. Materials and methods: From 2001–2009, 500 men underwent implantation in Wellington, New Zealand. Men who sustained BF were placed on relapse guidelines that delayed restaging and intervention until the prostate-specific antigen (PSA) was ⩾20 ng/mL. Results: Most implants (86%) had a prostate D90 of ⩾90%, and multivariate analysis showed that this parameter was not a variable that affected the risk of BF. Of 21 BFs that occurred, the site of failure was discovered to be local in one case and distant in nine cases. Restaging failed to identify the site of relapse in two cases. In nine cases the trigger for restaging had not been reached. Conclusions: If post-implant dosimetry is generally within the optimal range, distant rather than local failure appears to be the main cause of BF. Hormone treatment is therefore the most commonly indicated secondary treatment intervention (STI). Delaying the start of STI prevents the unnecessary treatment of men who undergo PSA ‘bounce’ and have PSA dynamics initially mimicking those of BF

  2. Towards in vivo nuclear microscopy: iodine-125 imaging in mice using micro-pinholes

    International Nuclear Information System (INIS)

    Beekman, Freek J.; McElroy, David P.; Hoffman, Edward J.; Berger, Frank; Gambhir, Sanjiv S.; Cherry, Simon R.

    2002-01-01

    Position-sensitive gamma-radiation detectors equipped with collimators have been used for in vivo imaging of the distribution of radiolabelled molecules in laboratory animals and humans for several decades. To date, the best image resolution achieved in a rodent is on the order of 1 mm. Here we demonstrate how a basic and compact gamma camera can be constructed for in vivo radionuclide imaging in small animals, at much higher spatial resolution. Resolution improvements were obtained by combining dense, shaped, micro-pinhole apertures with iodine-125, an isotope with low energy emissions, ease of incorporation into a wide range of molecules, and straightforward translation into the clinic via other isotopes of iodine that are suitable for nuclear medicine imaging. 125 I images of test distributions and a mouse thyroid have been obtained at a resolution of as high as 200 μm using this simple bench-top camera. Possible future applications and extension to ultra-high-resolution emission tomography are discussed. (orig.)

  3. Iodine-125 irradiation of choroidal melanoma: clinical experience from the Prince of Wales and Sydney Eye Hospitals

    International Nuclear Information System (INIS)

    Mameghan, H.; Karolis, Ch.; Fisher, R.; Mameghan, J.; Billson, F.A.; Donaldson, E.J.; Giblin, M.E.; Hunyor, A.B.L.

    1992-01-01

    The records of 53 patients treated for choroidal melanoma between 1985 and 1989 were examined. The aim of this study was to assess the safety and short-term results of iodine-125 episcleral plaque therapy. There were 28 males and 25 females aged 20 to 77 years, treated for single tumours with a median diameter of 9 mm (range 5 to 16 mm) and with a median thickness of 4 mm (range 2 to 10 mm). The plaques containing iodine-125 seeds were chosen according to tumour size: 10 mm (16 patients); 15 mm (36 patients); 20 mm (one patient). All patients were alive at last follow-up (median 1.3 years, range 4 months to 3.3 years). Four patients underwent enucleation for melanoma progression. Thirty patients have developed some type of complication (more than one complication occurred in the same eye in 12 patients); retinitis (19), optic neuropathy (7); cataract (4), rubeosis iridis (2). Overall, visual acuity deteriorated in 32 patients, remained stable in 12 patients and improved in 9 patients. It was therefore concluded that iodine-125 plaque therapy appears to offer patients good prospects of tumour control and preservation of useful vision. 16 refs., 4 tabs

  4. Statistical differences and systematic effect on measurement procedure in thermoluminescent dosimetry of the Iodine-125 brachytherapy seed

    Energy Technology Data Exchange (ETDEWEB)

    Zeituni, Carlos A.; Moura, Eduardo S.; Rostelato, Maria Elisa C.M.; Manzoli, Jose E.; Moura, Joao Augusto; Feher, Anselmo, E-mail: czeituni@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil); Karam, Dib [Universidade de Sao Paulo (USP Leste), Sao Paulo, SP (Brazil). Escola de Artes, Ciencias e Humanidades

    2009-07-01

    In order to provide the dosimetry for Iodine-125 seed production in Brazil, Harshaw thermoluminescent dosimeters (TLD-100) will be used. Even if measurements with TLD-100 of the same batch of fabrication are performed, the response will not be the same. As a consequence, they must be measured one by one. These dosimeters are LiF type with a micro-cube (1 mm x 1 mm x 1 mm) shape. Irradiations were performed using Iodine-125 seeds to guarantee the same absorbed dose of 5 Gy in each dosimeter. It has been used a Solid Water Phantom with three concentrically circle with 20 mm, 50 mm and 70 mm diameters. The angle of positions used was 0 deg, 30 deg, 60 deg and 90 deg. Of course there are 2 positions in 0 deg and 90 deg and 4 positions in 30 deg and 60 deg. These complete procedures were carried out five times in order to compare the data and minimize the systematic error. The iodine-125 seed used in the experiment was take off in each measure and put again turning his position 180 deg to guarantee the systematic error was minimized. This paper presents also a little discussion about the statistical difference in the measurement and the calculation procedure to determine the systematic error in these measurements. (author)

  5. Post-operative treatment of malignant salivary gland tumours of the palate with iodine-125 brachytherapy

    International Nuclear Information System (INIS)

    Stannard, Clare E.; Hering, Egbert; Hough, Jan; Knowles, Ruth; Munro, Roger; Hille, Jos

    2004-01-01

    Background and purpose: Malignant minor salivary gland tumours are usually small and clinically indistinguishable from benign lesions. Surgery is the treatment of choice with post-operative radiotherapy for involved margins or unfavourable histology. We assessed the results of a series of such patients treated with iodine-125 brachytherapy in the form of a temporary applicator or implant. Patients and methods: There were nine patients with T1/T2 tumours of the hard and/or soft palate that had been excised. All had close or involved margins. Six were treated with a dental applicator alone, two with an applicator and additional I-125 seeds in tubes and one with an implant alone. The applicator consists of two layers of plastic made from a dental impression enclosing a predetermined number of I-125 seeds, 9-39, glued to one surface and a layer of ash metal to protect the tongue. It was inserted 1-3 months post-operatively and delivered 35-62 Gy, median 56 Gy, at 5-7 mm depth over 58-156 h, median 120 h, at 0.26-0.67 Gy/h, median 0.45 Gy/h. Results: The patients have been followed up for 32-158 months, median 50 months, and there were no recurrences. The applicator was well tolerated. A confluent mucositis developed which lasted 3-4 weeks. One patient developed a mucosal ulcer which healed spontaneously. Conclusions: Brachytherapy is an effective way of delivering post-operative radiotherapy to the hard and soft palate in patients with malignant salivary gland tumours that have been incompletely excised or have unfavourable histology. Local control is excellent, treatment time is short and morbidity is minimal

  6. Computed tomography-guided iodine-125 interstitial implantation as an alternative treatment option for lung cancer.

    Science.gov (United States)

    Jiang, G; Li, Z; Ding, A; Zhou, F; Jiao, W; Tang, D; Qiu, W; Yue, L; Xu, W

    2015-02-01

    The aim was to evaluate the safety, feasibility and efficacy of computed tomography (CT)-guided percutaneous interstitial brachytherapy using radioactive iodine-125 ( 125 I) seeds for the treatment of lung cancer. Included in this study were 45 male and 35 female patients aged 52-85 years (mean 72-year) who were diagnosed with lung cancer. Of the 80 cases of lung cancer, 38 were pathologically confirmed as squamous cell carcinoma, 29 as adenocarcinoma, 2 as small cell lung cancer, and 11 as metastatic lung cancer. Percutaneous interstitial implantation of radioactive 125 I seeds was performed under CT guidance. The treatment planning system was used to reconstruct three-dimensional images of the tumor to determine the quantity and distribution of 125 I seeds to be implanted. Under CT guidance, 125 I seeds were embedded into the tumor, with the matched peripheral dose set at 100-130 Gy. Follow-up CT scan was done in 2-month to explore the treatment efficacy. The procedure was successful in all patients. No major procedure-associated death occurred. The duration of follow-up was 6-month. Complete response (CR) was seen in 38 cases (47.5%), partial response (PR) in 27 cases (33.75%), stable disease (SD) in 10 cases (12.5%), and progressive disease in 5 cases (6.25%), with a local control rate (CR + PR + SD) of 93.75%. The 2-, 4- and 6-month overall response rate (CR + PR) was 78%, 83% and 81%, respectively. Implantation of CT-guided 125 I seeds is a safe and effective alternative option for the treatment of lung cancer.

  7. Computed tomographic-guided iodine-125 interstitial implants for malignant thoracic tumors

    International Nuclear Information System (INIS)

    Huang, Qiming; Chen, Jin; Chen, Qunlin; Lai, Qingquan; Cai, Siqing; Luo, Kaidong; Lin, Zhengyu

    2013-01-01

    Purpose: To evaluate the feasibility and efficacy of percutaneous interstitial brachytherapy using iodine-125 ( 125 I) radioactive seeds under computed tomographic (CT) guidance for malignant thoracic tumors. Materials and methods: Forty-one patients (34 males, 7 females; 18–90 years; mean, 63.7 years) with 77 lesions (3 in the mediastinum, 7 in the chest wall, 67 in the lung) underwent percutaneous interstitial implantation of 125 I radioactive seeds under CT guidance. A treatment planning system (TPS) was employed to calculate the number and distribution of seeds preoperatively. An 18-G needle was inserted into the lesions under CT guidance and send the seeds according to TPS. Two patients with mediastinal lesions undergoing seed implantation received an artificial pneumothorax. One patient with lung carcinoma adjacent to the anterior mediastinum underwent seed implantation through the sternum. Follow-up CT was done every 2 months postoperatively. Results: The procedure was successful in all patients. No major procedure-associated death occurred. The mean duration of follow-up was 19.4 ± 1.3 months (3–49 months). A complete response (CR) was seen in 49 lesions (63.6%), partial response (PR) in 9 lesions (11.7%), stable disease (SD) in 12 lesions (12.8%), and progressive disease (PD) in 7 lesions (7.4%). The overall response rate (CR + PR) was 75.3%; the local control rate (CR + PR + SD) was 90.9%. The 1-, 2- and 3-year progression-free rates for local tumors were 91%, 88% and 88%, respectively. The 1-, 2- and 3-year survival rates were 87%, 74% and 68%, respectively. Conclusion: Implantation of CT-guided 125 I seeds is feasible and effective for patients with malignant thoracic tumors

  8. Outcomes of Iodine-125 Plaque Brachytherapy for Uveal Melanoma With Intraoperative Ultrasonography and Supplemental Transpupillary Thermotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Badiyan, Shahed N. [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, St. Louis, Missouri (United States); Rao, Rajesh C. [Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri (United States); Apicelli, Anthony J.; Acharya, Sahaja; Verma, Vivek; Garsa, Adam A.; DeWees, Todd; Speirs, Christina K.; Garcia-Ramirez, Jose; Esthappan, Jacqueline; Grigsby, Perry W. [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, St. Louis, Missouri (United States); Harbour, J. William, E-mail: JWHarbour@med.miami.edu [Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri (United States); Ocular Oncology Service, Department of Ophthalmology, Bascom Palmer Eye Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (United States)

    2014-03-15

    Purpose: To assess the impact on local tumor control of intraoperative ultrasonographic plaque visualization and selective application of transpupillary thermotherapy (TTT) in the treatment of posterior uveal melanoma with iodine-125 (I-125) episcleral plaque brachytherapy (EPB). Methods and Materials: Retrospective analysis of 526 patients treated with I-125 EPB for posterior uveal melanoma. Clinical features, dosimetric parameters, TTT treatments, and local tumor control outcomes were recorded. Statistical analysis was performed using Cox proportional hazards and Kaplan-Meier life table method. Results: The study included 270 men (51%) and 256 women (49%), with a median age of 63 years (mean, 62 years; range, 16-91 years). Median dose to the tumor apex was 94.4 Gy (mean, 97.8; range, 43.9-183.9) and to the tumor base was 257.9 Gy (mean, 275.6; range, 124.2-729.8). Plaque tilt >1 mm away from the sclera at plaque removal was detected in 142 cases (27%). Supplemental TTT was performed in 72 patients (13.7%). One or 2 TTT sessions were required in 71 TTT cases (98.6%). After a median follow-up of 45.9 months (mean, 53.4 months; range, 6-175 months), local tumor recurrence was detected in 19 patients (3.6%). Local tumor recurrence was associated with lower dose to the tumor base (P=.02). Conclusions: Ultrasound-guided plaque localization of I-125 EPB is associated with excellent local tumor control. Detection of plaque tilt by ultrasonography at plaque removal allows supplemental TTT to be used in patients at potentially higher risk for local recurrence while sparing the majority of patients who are at low risk. Most patients require only 1 or 2 TTT sessions.

  9. Iodine-125 thin seeds decrease prostate swelling during transperineal interstitial permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Beydoun, Nadine; Bucci, Joseph A.; Chin, Yaw S.; Malouf, David

    2014-01-01

    Prostate swelling following seed implantation is a well-recognised phenomenon. The purpose of this intervention was to assess whether using thinner seeds reduces post-implant swelling with permanent prostate brachytherapy. Eighteen consecutive patients eligible for prostate seed brachytherapy underwent seed implantation using iodine-125 (I-125) thin seeds. Operative time, dosimetry, prostate swelling and toxicity were assessed and compared with standard I-125 stranded seed controls, sourced from the department's brachytherapy database. A learning curve was noted with the thin seeds in terms of greater bending and deviation of needles from their intended path. This translated into significantly longer total operative time (88 vs 103 minutes; P=0.009, 95% confidence interval (CI) 4.1-24.3) and time per needle insertion (2.6 vs 3.7 minutes; P<0.001, 95% CI 0.5-1.3) for the thin seeds. Day 30 prostate volumes were significantly smaller in the thin seed group compared with standard seeds (40.9cc vs 46.8cc; P=0.001, 95% CI 1.5-5.6). The ratio of preoperative transrectal ultrasound to day 30 post-implant CT volume was also smaller in the thin seed group (1.2±0.1 for standard seeds vs 1.1±0.1 for thin seeds). Post-implant dosimetric parameters were comparable for both groups. No significant differences were seen in acute urinary morbidity or quality of life between the two groups. I-125 thin seeds are associated with an initial learning curve, with longer operative time, even for experienced brachytherapists. The significant reduction in day 30 prostate volumes with the thin seeds has useful implications in terms of optimising dose coverage to the prostate in the early period post-implantation, as well as improving the accuracy of post-implant dosimetric assessments.

  10. Survival benefit of chemoembolization plus Iodine125 seed implantation in unresectable hepatitis B-related hepatocellular carcinoma with PVTT: a retrospective matched cohort study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mingsheng; Wang, Haofan; Chen, Junwei; Bai, Mingjun; Wang, Long; Zhu, Kangshun; Jiang, Zaibo; Guan, Shouhai; Li, Zhengran; Qian, Jiesheng; Li, Mingan; Pang, Pengfei; Shan, Hong [Sun Yat-sen University, Department of Radiology, the Third Affiliated Hospital, Guangzhou (China); Sun Yat-Sen University, Department of Interventional Radiology, Ling-nan Hospital, Guangzhou (China); Sun Yat-sen University, Interventional Radiology Institute, Guangzhou (China); Lin, Qu [Sun Yat-sen University, Department of Oncology, the Third Affiliated Hospital, Guangzhou (China)

    2016-10-15

    To investigate the survival benefit of transarterial chemoembolization (TACE) plus Iodine125 seed implantation (TACE-Iodine125) in hepatitis B-related HCC patients with portal vein tumour thrombus (PVTT) and the underlying prognostic factors. A retrospective matched cohort study was performed on consecutive HCC patients with PVTT from January 2011 to June 2014. Seventy patients (TACE-Iodine125 group) who underwent TACE-Iodine125 were compared with a historical case-matched control group of 140 patients (TACE group) who received TACE alone. The survival of patients and the underlying prognostic factors were analysed. The median survival times of the TACE-Iodine125 and TACE groups were 11.0 and 7.5 months, respectively (p < 0.001). The survival probability at 12, 24, and 36 months was 50 %, 14.5 %, and 14.5 % vs. 25 %, 9 %, and 5 % in the TACE-Iodine125 and TACE groups, respectively (p < 0.001). The PVTT responders had better survival than the PVTT non-responders (p < 0.001). For the PVTT non-responders, there were no differences in the survival curves between the groups (p = 0.353). Multivariate analysis showed that type III PVTT (p < 0.001) and APS (p < 0.001) were independent predictors of poor prognosis. In contrast, the treatment modality of TACE-Iodine125 (p < 0.001) and PVTT response (p = 0.001) were favourable prognostic features. TACE combined with Iodine125 seed implantation may be a good choice for selected HB-HCC patients with PVTT. (orig.)

  11. Immunospecific red cell binding of iodine 125-labeled immunoglobulin G erythrocyte autoantibodies

    International Nuclear Information System (INIS)

    Masouredis, S.P.; Branks, M.J.; Garratty, G.; Victoria, E.J.

    1987-01-01

    The primary interaction of autoantibodies with red cells has been studied by using labeled autoantibodies. Immunoglobulin G red cell autoantibodies obtained from IgG antiglobulin-positive normal blood donors were labeled with radioactive iodine and compared with alloanti-D with respect to their properties and binding behavior. Iodine 125 -labeled IgG autoantibody migrated as a single homogeneous peak with the same relative mobility as human IgG on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric focusing pattern of labeled autoantibodies varied from donor to donor but was similar to that of alloanti-D, consisting of multiple IgG populations with isoelectric points in the neutral to alkaline range. 125 I-autoantibody bound to all human red cells of common Rh phenotypes. Evidence for immunospecific antibody binding of the labeled autoantibody was based on variation in equilibrium binding to nonhuman and human red cells of common and rare phenotypes, enhanced binding after red cell protease modification, antiglobulin reactivity of cell-bound IgG comparable to that of cell-bound anti-D, and saturation binding in autoantibody excess. Scatchard analysis of two 125 I-autoantibody preparations yielded site numbers of 41,500 and 53,300 with equilibrium constants of 3.7 and 2.1 X 10(8) L X mol-1. Dog, rabbit, rhesus monkey, and baboon red cells were antigen(s) negative by quantitative adsorption studies adsorbing less than 3% of the labeled autoantibody. Reduced ability of rare human D--red blood cells to adsorb the autoantibody and identification of donor autoantibodies that bind to Rh null red blood cells indicated that eluates contained multiple antibody populations of complex specificities in contrast to anti-D, which consists of a monospecific antibody population. Another difference is that less than 70% of the autoantibody IgG was adsorbed by maximum binding red blood cells as compared with greater than 85% for alloanti-D

  12. Assessment of corrective factors for the LNHB reference measurement in terms of Kr air for iodine 125

    International Nuclear Information System (INIS)

    Gouriou, J.; Aubineau-Laniece, I.; Cutarella, D.; Plagnard, J.

    2010-01-01

    The LNHB (Laboratoire National Henri Becquerel) is currently developing a new primary reference for low dose rate curietherapy with iodine 125 in terms of reference kerma in air. This includes an innovative sensor: an ionization chamber with a toroidal air wall. The authors present Monte Carlo calculations performed for the determination of corrective factors to be applied to come down to reference conditions or to correct possible measurement errors. Calculations have been performed for the specific geometries of BEBIG sources which are used for ophthalmic and prostatic curietherapy treatments

  13. Measurement of the increase in the capillary permeability in skin with Evans blue labelled with iodine-125 or 131

    International Nuclear Information System (INIS)

    Sugarava, S.; Goncalves, J.M.

    1976-01-01

    The quantitative evaluation of bradykinin and histamine with Evans blue labelled with iodine -125 or 131 is described. The activity upon vascular permeability was performed in the abdominal wall of rats injecting intravenously solution of labelled Evans blue and 0,1 ml of vasoactive drugs solution intradermally. Skin discs were cut with circular punch for external counting, quantitative results being compared with control discs. By using this method, satisfactory log dose-reponse curves were obtained for bradykinin and histamine that followed the general trend of S - shaped curves [pt

  14. Study and methodology development for quality control in the production process of iodine-125 radioactive sealed sources applied to brachytherapy

    International Nuclear Information System (INIS)

    Moura, Joao Augusto

    2009-01-01

    Today cancer is the second cause of death by disease in several countries, including Brazil. Excluding skin cancer, prostate cancer is the most incident in the population. Prostate tumor can be treated by several ways, including brachytherapy, which consists in introducing sealed radioactive sources (Iodine - 125 seeds) inside the tumor. The target region of treatment receives a high radiation dose, but healthy neighbor tissues receive a significantly reduced radiation dose. The seed is made of a welding sealed titanium capsule, 0.8 mm external diameter and 4.5 mm length, enclosing a 0.5 mm diameter silver wire with Iodine-125 adsorbed. After welded, the seeds have to be submitted to a leak test to prevent any radioactive material release. The aims of this work were: (a) the study of the different leakage test methods applied to radioactive seeds and recommended by the ISO 997820, (b) the choice of the appropriate method and (c) the flowchart determination of the process to be used during the seeds production. The essays exceeded the standards with the use of ultra-sound during immersion and the corresponding benefits to leakage detection. Best results were obtained with the immersion in distilled water at 20 degree C for 24 hours and distilled water at 70 degree C for 30 minutes. These methods will be used during seed production. The process flowchart has all the phases of the leakage tests according to the sequence determined in the experiments. (author)

  15. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Adrian A, E-mail: a.walsh@nanobiosols.com [Liverpool Science Park, Nano Biosols Ltd (United Kingdom)

    2017-04-15

    Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.

  16. Red cell autoantibodies characterized by competitive inhibition of iodine 125 Rh alloantibody binding and by immunoprecipitation of membrane proteins

    International Nuclear Information System (INIS)

    Pierce, S.W.; Victoria, E.J.; Masouredis, S.P.

    1990-01-01

    The relationship between determinants recognized by warm-type immunoglobulin G red cell autoantibodies and the Rh antigens was characterized by autoantibody competitive inhibition of iodine 125 Rh alloantibody binding and autoantibody immunoprecipitation of iodine 125 red blood cell membrane proteins. The majority of blood donor autoantibody recognized epitopes that are closely related to Rh antigens as determined by competitive inhibition studies. Eighteen of 20 (90%) autoantibodies inhibited anti-Rh(c) binding, 15 inhibited anti-Rh(E), 5 inhibited anti-Rh(D), and only 2 failed to inhibit any of the three Rh alloantibodies tested. Autoantibodies that inhibited anti-Rh(D) also inhibited anti-Rh(c) and anti-Rh(E) and all those that inhibited anti-Rh(E) also inhibited anti-Rh(c). Autoantibodies that inhibited all three Rh alloantibodies immunoprecipitated 30 kd membrane polypeptides, as did two of the three autoantibodies that inhibited only anti-Rh(c) and anti-Rh(E). One autoantibody in this group and two autoantibodies that inhibited only anti-Rh(c), as well as an autoantibody that did not inhibit any of the Rh alloantibodies, immunoprecipitated only a single membrane polypeptide identified as band 3. The majority of normal donor red blood cell autoantibodies inhibited the binding of Rh alloantibodies, which indicates that they either bound to the Rh polypeptides or to epitopes on band 3 that were closely associated with the Rh complex

  17. Use of iodine-125 brachytherapy in treatment of choroidal melanomas, technic and preliminary analysis of 78 patients

    International Nuclear Information System (INIS)

    Quetin, P.; Schumacher, C.; Schraub, S.; Meyer, L.; Polto, F.; Sahel, J.; Magnenet, P.; Andres, E.

    2001-01-01

    Purpose. - Iodine 125 curietherapy is one of the conservative treatments of uveal melanoma. The technique used to achieve these results was simplified through the physical characteristics of the radioelement and the optimized-dosimetry program employed. Patients and methods. - 78 patients with choroidal melanoma were treated with iodine 125. About 100 Gy were delivered to the superior pole of the tumour. The minimal length of follow-up was 17 months and the average, 67 months. Results. -There was 88% local control, leading to lowered visual acuity in 76 % of the cases. Radiation retinopathy, directly related to proximity to the macula, is the principle etiology. Seven patients died of hepatic metastasis, five patients were enucleated. Four patients were further treated with proton-therapy to make up for non-control locally. Conclusion. -One dose of 100 Gy to the superior pole of the tumor seemed to lead to good local control, with the exception of complications related to proximity to the macula and the optic nerve. In this attempt to optimize irradiation, the time lapse between any benefit in local control derived from irradiation and post-therapeutic complications observed remains insufficient to evaluate any relationship. (authors)

  18. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine

    Science.gov (United States)

    Walsh, Adrian A.

    2017-04-01

    Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.

  19. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine

    International Nuclear Information System (INIS)

    Walsh, Adrian A

    2017-01-01

    Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.

  20. Iris melanoma management with iodine-125 plaque radiotherapy in 144 patients: impact of melanoma-related glaucoma on outcomes.

    Science.gov (United States)

    Shields, Carol L; Shah, Sanket U; Bianciotto, Carlos G; Emrich, Jacqueline; Komarnicky, Lydia; Shields, Jerry A

    2013-01-01

    To evaluate the outcomes of iris melanoma managed with plaque radiotherapy on the basis of the initial presence or absence of glaucoma. Retrospective, comparative case series. A total of 144 patients. Custom-designed iodine-125 plaque radiotherapy delivering planned 8000 cGy to melanoma apex using transcorneal application. Tumor control and treatment-related complications. Of 144 patients with iris melanoma, glaucoma was present at the initial visit in 58 (40%). Causes of elevated intraocular pressure included angle infiltration by melanoma in 50 patients (86%), angle neovascularization in 4 patients (7%), and hyphema in 4 patients (7%). At presentation, the eyes displaying iris melanoma with glaucoma (vs. without glaucoma) were statistically more likely to display angle tumor (66% vs. 43%), with minimal thickness (1.9 vs. 2.9 mm), and melanoma seeding in iris stroma (7 vs. 3 clock hours) and angle (5 vs. 2 clock hours). Plaque radiotherapy was performed in all cases. Kaplan-Meier estimates at 7 years post-treatment revealed no statistical differences in outcomes of local recurrence (14% vs. 15%), enucleation (14% vs. 11%), or metastasis (2% vs. 0%) comparing eyes with and without glaucoma. Of the entire group, multivariate analysis for factors predictive of recurrence included partial (vs. complete) anterior segment irradiation and postradiotherapy glaucoma. Factors related to enucleation included diabetes mellitus, poor initial visual acuity, higher radiation dose to tumor apex, and tumor recurrence. There were no factors predictive of metastasis. Iodine-125 plaque radiotherapy provides adequate tumor control for iris melanoma with a low metastatic potential of 1% at 7 years. Iris melanoma with secondary glaucoma showed a statistically significant greater likelihood of flat tumor with iris and angle seeding and no difference in outcomes compared with eyes without glaucoma. The author(s) have no proprietary or commercial interest in any materials discussed in this

  1. SU-E-T-12: A Comparative Dosimetric Study of Pre and Post Prostate Iodine-125 Permanent Seed Implants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X; Rahimian, J; Goy, B; Cosmatos, H; Qian, Y [Kaiser Permanente, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Post-implant dosimetry has become the gold standard for prostate implant evaluation. The goal of this research is to compare the dosimetry between pre-plan and post-plan in permanent prostate seed implant brachytherapy. Methods: A retrospective study of 91 patients treated with Iodine-125 prostate seed implant between year 2012∼2014 were performed. All plans were created using a VariSeed 8.0 planning system. Pre-plan ultrasound images were acquired using 0.5 cm slice thickness. Post-plan CT images acquired about 1–4 weeks after implant, fused with the preplan ultrasound images. The prostate and urethra contours were generated using the fusion of ultrasound and CT images. Iodine-125 seed source activities varied between 0.382 to 0.414 mCi per seed. The loading patterns varied slightly between patients depending on the prostate size. Statistical analysis of pre and post plans for prostate and urethra volumes, V100%, V150% and D90, and urethra D10 were performed and reported. Results: The pre and post implant average prostate size was 36.90cc vs. 38.58cc; V100% was 98.33% vs. 96.89%; V150% was 47.09% vs. 56.95%; D90 was 116.35Gy vs. 116.12Gy, urethra volume was 1.72cc vs. 1.85cc, urethra D10% was 122.0% vs. 135.35%, respectively. There was no statistically significant difference between the pre and post-plan values for D90(p-value=0.43). However, there are significant differences between other parameters most likely due to post surgical edema; prostate size (p-value= 0.00015); V100% (p-value=3.7803E-07); V150% (p-value=1.49E-09); urethra volume (p-value= 2.77E-06); Urethra D10 (p-value=7.37E-11). Conclusion: The post-plan dosimetry using CT image set showed similar D90 dose coverage to the pre-plan using the ultrasound image dataset. The study showed that our prostate seed implants have consistently delivered adequate therapeutic dose to the prostate while sparing urethra. Future studies to correlate dose versus biochemical response using patients’ PSA

  2. Biodistribution and dosimetric study in medullary thyroid cancer xenograft using bispecific antibody and iodine-125-labeled bivalent hapten.

    Science.gov (United States)

    Hosono, M; Hosono, M N; Kraeber-Bodéré, F; Devys, A; Thédrez, P; Fiche, M; Gautherot, E; Barbet, J; Chatal, J F

    1998-09-01

    The purpose of this study was to evaluate biodistributions and absorbed doses of anti-carcinoembryonic antigen (CEA)/anti-diethylenetriamine pentaacetic acid (DTPA)-indium (anti-DTPA-In) bispecific monoclonal antibody (BsMAb) F6-734 and 125I-labeled DTPA-indium dimer hapten (125I-di-DTPA-In hapten) in athymic mice xenografted with human medullary thyroid cancer. Bispecific monoclonal antibodies F6-679 (anti-CEA/antihistamine) and G7A5-734 (antimelanoma/anti-di-DTPA-In) were used as irrelevant BsMAbs. Athymic mice inoculated with TT medullary thyroid cancer cells expressing CEA were administered BsMAbs F6-734, F6-679 or G7A5-734 and then, 48 hr later, 125I-di-DTPA-In hapten. Iodine-125-labeled F6 F(ab')2 fragment was injected into other groups of mice. Biodistributions were examined at 30 min and 5, 24, 48 and 96 hr after injection of 125I-di-DTPA-In hapten or 125I-labeled F6 F(ab')2. In mice injected with BsMAb F6-734 and 125I-di-DTPA-In hapten, tumor uptake was 9.1%+/-2.1%, 8.7%+/-3.5%, 8.0%+/-2.3%, 5.1%+/-0.9% and 3.5%+/-1.5% of the injected dose/g at 30 min and 5, 24, 48 and 96 hr, and tumor-to-blood, tumor-to-liver and tumor-to-kidney ratios were 37.0+/-12.5, 32.3+/-10.9 and 10.4+/-2.7 at 24 hr. Iodine-125-F6 F(ab')2 fragment showed a tumor uptake of 7.39% injected dose/g and tumor-to-blood, tumor-to-liver and tumor-to-kidney ratios of 1.8+/-0.6, 7.3+/-2.9 and 3.6+/-1.6 at 24 hr. In mice injected with F6-679 or G7A5-734, tumor uptake and tumor-to-normal tissue ratios were much lower than in the mice injected with F6-734. These results were confirmed by autoradiographic studies that demonstrated clear tumor-to-normal tissue contrast. This two-step targeting method seems very potent for the diagnosis and therapy of human medullary thyroid cancer and other CEA-producing tumors because it combines high tumor uptake and low normal tissue background.

  3. Relation of immediate and delayed thallium-201 distribution to localization of iodine-125 antimyosin antibody in acute experimental myocardial infarction

    International Nuclear Information System (INIS)

    Khaw, B.A.; Strauss, H.W.; Pohost, G.M.; Fallon, J.T.; Katus, H.A.; Haber, E.

    1983-01-01

    Thallium-201 (TI-201) distribution in acute experimental myocardial infarction (MI) (n . 18) was compared with cardiac-specific antimyosin Fab (AM-Fab) uptake, a specific marker for myocardial necrosis. When antimyosin was injected 4 hours after ligation with TI-201 administered 23 hours 55 minutes later and measurement of myocardial distribution determined 5 minutes after intravenous administration of TI-201, (1) TI-201 distribution closely correlated with microsphere regional blood flow, and (2) an inverse exponential relation to iodine-125 (I-125) AM-Fab uptake was apparent. In another group of 4 animals, TI-201 and AM-Fab were administered intravenously 4 hours after MI, and 36 hours later myocardial distribution was measured. This delayed TI-201 distribution had a close inverse linear correlation with I-125 AM-Fab uptake. This inverse linear relation also was apparent in 28-hour-old MIs in dogs (n . 4) where collateral circulation had been established. TI-201 was administered intravenously at 27 hours after MI, and TI-201 distribution was determined 1 hour later. The present study demonstrated that whereas immediate TI-201 distribution is flow-limited, delayed TI-201 distribution is a marker of cell viability which, due to prolonged circulation time and redistribution, is not flow-limited

  4. Relationship between two year PSA nadir and biochemical recurrence in prostate cancer patients treated with iodine-125 brachytherapy

    Directory of Open Access Journals (Sweden)

    Carlos Antônio da Silva Franca

    2014-04-01

    Full Text Available Objective To evaluate the relationship between two year PSA nadir (PSAn after brachytherapy and biochemical recurrence rates in prostate cancer patients. Materials and Methods In the period from January 1998 to August 2007, 120 patients were treated with iodine-125 brachytherapy alone. The results analysis was based on the definition of biochemical recurrence according to the Phoenix Consensus. Results Biochemical control was observed in 86 patients (71.7%, and biochemical recurrence, in 34 (28.3%. Mean PSAn was 0.53 ng/ml. The mean follow-up was 98 months. The patients were divided into two groups: group 1, with two year PSAn < 0.5 ng/ml after brachytherapy (74 patients; 61.7%, and group 2, with two year PSAn ≥ 0.5 ng/ml after brachytherapy (46 patients; 38.3%. Group 1 presented biochemical recurrence in 15 patients (20.3%, and group 2, in 19 patients (43.2% (p < 0.02. The analysis of biochemical disease-free survival at seven years, stratified by the two groups, showed values of 80% and 64% (p < 0.02, respectively. Conclusion Levels of two year PSAn ≥ 0.5 ng/ml after brachytherapy are strongly correlated with a poor prognosis. This fact may help to identify patients at risk for disease recurrence.

  5. Development of computational models for the simulation of isodose curves on dosimetry films generated by iodine-125 brachytherapy seeds

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano M.; Meira-Belo, Luiz C.; Reis, Sergio C.; Grynberg, Suely E., E-mail: amsantos@cdtn.b [Center for Development of Nuclear Technology (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The interstitial brachytherapy is one modality of radiotherapy in which radioactive sources are placed directly in the region to be treated or close to it. The seeds that are used in the treatment of prostate cancer are generally cylindrical radioactive sources, consisting of a ceramic or metal matrix, which acts as the carrier of the radionuclide and as the X-ray marker, encapsulated in a sealed titanium tube. This study aimed to develop a computational model to reproduce the film-seed geometry, in order to obtain the spatial regions of the isodose curves produced by the seed when it is put over the film surface. The seed modeled in this work was the OncoSeed 6711, a sealed source of iodine-125, which its isodose curves were obtained experimentally in previous work with the use of dosimetric films. For the films modeling, compositions and densities of the two types of dosimetric films were used: Agfa Personal Monitoring photographic film 2/10, manufactured by Agfa-Geavaert; and the model EBT radiochromic film, by International Specialty Products. The film-seed models were coupled to the Monte Carlo code MCNP5. The results obtained by simulations showed to be in good agreement with experimental results performed in a previous work. This indicates that the computational model can be used in future studies for other seeds models. (author)

  6. In vivo imaging of insulin receptors by PET: preclinical evaluation of iodine-125 and iodine-124 labelled human insulin

    International Nuclear Information System (INIS)

    Iozzo, P.; Osman, S.; Glaser, M.; Knickmeier, M.; Ferrannini, E.; Pike, V.W.; Camici, P.G.; Law, M.P.

    2002-01-01

    [A 14 -*I]iodoinsulin was prepared for studies to assess the suitability of labeled iodoinsulin for positron emission tomography (PET). Iodine-125 was used to establish the methods and for preliminary studies in rats. Further studies and PET scanning in rats were carried out using iodine-124. Tissue and plasma radioactivity was measured as the uptake index (UI={cpm·(g tissue) -1 }/{cpm injected·(g body weight) -1 }) at 1 to 40 min after intravenous injection of either [A 14 - 125 I]iodoinsulin or [A 14 - 124 I]iodoinsulin. For both radiotracers, initial clearance of radioactivity from plasma was rapid (T 1/2 ∼ 1 min), reaching a plateau (UI = 2.8) at ∼ 5 min which was maintained for 35 min. Tissue biodistributions of the two radiotracers were comparable; at 10 min after injection, UI for myocardium was 2.4, liver, 4.0, pancreas, 5.4, brain, 0.17, kidney, 22, lung, 2.3, muscle, 0.54 and fat, 0.28. Predosing rats with unlabelled insulin reduced the UI for myocardium (0.95), liver (1.8), pancreas (1.2) and brain (0.08), increased that for kidney (61) but had no effect on that for lung (2.5), muscle (0.50) or fat (0.34). Analysis of radioactivity in plasma demonstrated a decrease of [ 125 I]iodoinsulin associated with the appearance of labeled metabolites; the percentage of plasma radioactivity due to [ 125 I]iodoinsulin was 40% at 5 min and 10% at 10 min. The heart, liver and kidneys were visualized using [ 124 I]iodoinsulin with PET

  7. Clinical efficacy of computed tomography-guided iodine-125 seed implantation therapy in patients with advanced spinal metastatic tumors

    Directory of Open Access Journals (Sweden)

    Zhang LY

    2015-12-01

    Full Text Available Liyun Zhang,1,2,* Jian Lu,2,* Zhongmin Wang,3 Yingsheng Cheng,4 Gaojun Teng,5 Kemin Chen4 1Medical College of Soochow University, Suzhou, 2Department of Radiology, Shanghai Ruijin Hospital Luwan Branch, 3Department of Radiology, Shanghai Ruijin Hospital, 4Department of Radiology, Shanghai the Sixth People Hospital, Shanghai, 5Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China *These authors contributed equally to this work Objective: The purpose of this study was to examine the safety and clinical efficacy of computed tomography (CT-guided radioactive iodine-125 (125I seed implantation treatment in patients with spinal metastatic tumors.Methods: We retrospectively analyzed 20 cases of spinal metastatic tumors, including nine men and eleven women aged 50–79 years (mean age: 61.1 years. We used treatment planning system (TPS to construct three-dimensional images of the spinal metastatic tumors and to determine what number and dose rate distribution to use for the 125I seeds. The matched peripheral dose of the 125I seed implantation was 90–130 Gy. Twenty-four spinal metastatic tumors were treated by CT-guided radioactive 125I seed implantation. A median of 19 (range: 4–43 125I seeds were implanted.Results: Twenty cases were followed for a median of 15.3 months (range: 7–32 months. The rate of pain relief was 95%. The median control time for all of the patients was 12.5 months. The 3-, 6-, and 12-month cumulative local control rates were 100%, 95%, and 60%, respectively. The median survival time for all of the patients was 16 months. The cumulative 6- and 12-month survival rates were 100% and 78.81%, respectively. No major complications were observed. No 125I seeds were lost or migrated to other tissues or organs.Conclusion: CT-guided radioactive 125I seed implantation is a safe, effective, and minimally

  8. Study and parameters survey for iodine-125 source dosimetry to be applied in brachytherapy; Estudo e levantamentos de parametros para dosimetria de fontes de iodo-125 aplicadas em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Eduardo Santana de

    2011-07-01

    The use of brachytherapy technique with iodine-125 seeds to prostate cancer treatment has been used for decades with good clinical outcomes. To aim the Brazilian population necessities, IPEN-CNEN/SP developed the iodine-125 seed prototype with national technology. The objectives of this work are the development and the study of dosimetric procedures associates with the experimental acquisition of the useful parameters for the iodine-125 dosimetric characterization and to evaluate if the developed procedures, in this work, have the basic conditions to determinate the dosimetric analysis, that are fundamental for clinical procedures. The dosimeters selected for the analysis are the TLD-100 (LiF:Mg,Ti), initially these dosimeters were submitted for two selection steps to choose the dosimeters more reproducible for the dosimetric analysis. The two steps were the selection by the mass of the dosimeters and the reproducibility after four irradiation series in a Cobalt-60 irradiator (CTR-IPEN). Afterwards these steps, the dosimeters were irradiated in linear accelerator with 6 MV energy (Service of Radiotherapy - Hospital Israelita Albert Einstein) to yield the individual calibration factors to each dosimeter. After, the dosimeters were used to the irradiations with iodine-125 seed, 6711 model, (GE-Healthcare). The irradiations and others analysis with iodine-125 seeds yield the useful values for the determination of the parameters suggested by the AAPM (American Association of Physicists in Medicine): constant of dose rate, geometry function, dose radial function and anisotropy function. The results showed good agreement with the values published by the literature, for the same iodine- 125 model, this fact confirms that the realized parameters will be able to be used for the IPEN-CNEN iodine-125 seeds dosimetry and quality control. (author)

  9. Iodine-125 in the fresh water environment in England; measurements along the pathway from sewage discharge to thyroid glands and determinations of absorbed dose to humans

    International Nuclear Information System (INIS)

    Howe, J.R.; Bowlt, C.

    1992-01-01

    Iodine-125 has been measured in the fresh water supply in England, particularly in the Thames Valley. 125 I discarded into the sewage drainage system, travels in the liquid effluent into rivers. When mains water is abstracted downstream from such discharges low levels of 125 I ( 125 I. However it was never possible to establish more than a semi-quantitative relationship between their activity levels and those of their surroundings. In general, levels of 125 I have shown a 3-4 fold increase in the fresh water environment during the 1980's. (Author)

  10. The Efficacy and Safety of Iodine-125 Brachytherapy Combined with Chemotherapy in Treatment of Advanced Lung Cancer: A Meta-Analysis

    International Nuclear Information System (INIS)

    Qiu, H.; Wang, J.; Ji, J.; Ma, G.; Zhang, L.; Shao, Z.

    2017-01-01

    The aim of this study was to systematically review the efficacy and safety of iodine-125 brachytherapy combined with chemotherapy in patients with advanced lung cancer. PubMed, MEDLINE, EBSCO, FMJS and Web of Science were searched to obtain randomized controlled trials (RCTs), published in English and Chinese, until February 2016. The evaluating indicators were complete response (CR), partial response (PR), stable disease (SD), progressive disease (PD), overall response rate (ORR), disease control rate (DCR), one-year overall survival, two-year overall survival and adverse events. Revman 5.2 software was used for data syntheses and analyses. A total of 296 patients enrolled in 5 RCTs were ultimately included in this study based on our selection criteria, and 150 patients received chemotherapy alone, while another 146 patients received the combination therapy of iodine-125 brachytherapy and chemotherapy. The results showed that iodine-125 brachytherapy combined with chemotherapy was superior to chemotherapy alone in CR (risk ratio [RR] = 3.66, 95% confidence interval [CI]: 2.08 to 6.44, p<0.001), PR (RR = 1.47, 95% CI: 1.16 to 1.86, p=0.001), ORR (RR = 1.85, 95% CI: 1.54 to 2.22, p<0.001), DCR (RR = 1.19, 95% CI: 1.10 to 1.29, p<0.001), one-year overall survival (RR = 1.46, 95% CI: 1.12 to 1.92, p=0.006) and PD (RR = 0.20, 95% CI: 0.09 to 0.43, p<0.001); meanwhile, there was no significant difference in two-year overall survival (RR = 1.30, 95% CI: 0.72 to 2.37, p=0.39). In terms of adverse events, the combination therapy significantly increased the incidence of pneumothorax (RR = 4.93, 95% CI: 1.94 to 12.55, p=<0.001); however, no significant differences were found in the incidence of other adverse events. This study indicated that the combination therapy of iodine-125 brachytherapy and chemotherapy could improve the therapeutic efficacy of advanced lung cancer without increasing the incidence of adverse events, except pneumothorax. (author)

  11. Radio-guided occult lesion localisation using iodine-125 seeds ('ROLLIS') for removal of impalpable breast lesions: first Australian experience

    International Nuclear Information System (INIS)

    Taylor, Donna B.; Bourke, Anita G.; Westcott, Eliza

    2015-01-01

    Approximately one-third of breast cancers are impalpable and require pre-operative image-guided localisation. Hook-wire localisation (HWL) is commonly used but has several disadvantages. Use of a low-activity radioactive iodine-125 seed is a promising alternative technique used in the USA and the Netherlands. This pilot study describes the first use of this in Australia. In this prospective pilot study, 21 participants with biopsy-proven breast cancer underwent radio guided occult lesion localisation using iodine-125 seed(s) (ROLLIS) with insertion of a hook-wire for back up. Sentinel node biopsy was performed where indicated. Ease of hook-wire and seed insertion, duration of the procedure, dependence on the seed versus hook-wire during surgery, lesion location within the specimen, histopathology including size of radial margins, the ease of seed retrieval in pathology, and safe return of seeds for disposal were documented. Radiation dosimetry of staff was performed. All seeds were placed within 3.5 mm of the lesion. All lesions and seeds were removed. One participant needed re-excision for involved margins. Radiologists and surgeons both preferred ROLLIS. Surgeons were able to depend on the seed for localisation in all but one case. Sentinel node biopsy was successfully performed when required. Pathologists found seed retrieval quick and easy, with no detrimental effect on tissue processing. No radiation doses measurably above background were received by staff. ROLLIS is an easily learnt, safe and effective alternative technique to standard HWL.

  12. Iodine 125 Brachytherapy With Vitrectomy and Silicone Oil in the Treatment of Uveal Melanoma: 1-to-1 Matched Case-Control Series

    Energy Technology Data Exchange (ETDEWEB)

    McCannel, Tara A., E-mail: TMcCannel@jsei.ucla.edu; McCannel, Colin A.

    2014-06-01

    Purpose: We initially reported the radiation-attenuating effect of silicone oil 1000 centistokes for iodine 125. The purpose of this report was to compare the clinical outcomes in case patients who had iodine 125 brachytherapy with vitrectomy and silicone oil 1000 centistokes with the outcomes in matched control patients who underwent brachytherapy alone. Methods and Materials: Consecutive patients with uveal melanoma who were treated with iodine 125 plaque brachytherapy and vitrectomy with silicone oil with minimum 1-year follow-up were included. Control patients who underwent brachytherapy alone were matched for tumor size, location, and sex. Baseline patient and tumor characteristics and tumor response to radiation, final visual acuity, macular status, central macular thickness by ocular coherence tomography (OCT), cataract progression, and metastasis at last follow-up visit were compared. Surgical complications were also determined. Results: Twenty case patients met the inclusion criteria. The average follow-up time was 22.1 months in case patients and 19.4 months in control patients. The final logMAR vision was 0.81 in case patients and 1.1 in control patients (P=.071); 8 case patients and 16 control patients had abnormal macular findings (P=.011); and the average central macular thickness by OCT was 293.2 μm in case patients and 408.5 μm in control patients (P=.016). Eleven case patients (55%) and 1 control patient (5%) had required cataract surgery at last follow-up (P=.002). Four patients in the case group and 1 patient in the control group experienced metastasis (P=.18). Among the cases, intraoperative retinal tear occurred in 3 patients; total serous retinal detachment and macular hole developed in 1 case patient each. There was no case of rhegmatogenous retinal detachment, treatment failure, or local tumor dissemination in case patients or control patients. Conclusions: With up to 3 years of clinical follow-up, silicone oil during brachytherapy

  13. Iodine 125 Brachytherapy With Vitrectomy and Silicone Oil in the Treatment of Uveal Melanoma: 1-to-1 Matched Case-Control Series

    International Nuclear Information System (INIS)

    McCannel, Tara A.; McCannel, Colin A.

    2014-01-01

    Purpose: We initially reported the radiation-attenuating effect of silicone oil 1000 centistokes for iodine 125. The purpose of this report was to compare the clinical outcomes in case patients who had iodine 125 brachytherapy with vitrectomy and silicone oil 1000 centistokes with the outcomes in matched control patients who underwent brachytherapy alone. Methods and Materials: Consecutive patients with uveal melanoma who were treated with iodine 125 plaque brachytherapy and vitrectomy with silicone oil with minimum 1-year follow-up were included. Control patients who underwent brachytherapy alone were matched for tumor size, location, and sex. Baseline patient and tumor characteristics and tumor response to radiation, final visual acuity, macular status, central macular thickness by ocular coherence tomography (OCT), cataract progression, and metastasis at last follow-up visit were compared. Surgical complications were also determined. Results: Twenty case patients met the inclusion criteria. The average follow-up time was 22.1 months in case patients and 19.4 months in control patients. The final logMAR vision was 0.81 in case patients and 1.1 in control patients (P=.071); 8 case patients and 16 control patients had abnormal macular findings (P=.011); and the average central macular thickness by OCT was 293.2 μm in case patients and 408.5 μm in control patients (P=.016). Eleven case patients (55%) and 1 control patient (5%) had required cataract surgery at last follow-up (P=.002). Four patients in the case group and 1 patient in the control group experienced metastasis (P=.18). Among the cases, intraoperative retinal tear occurred in 3 patients; total serous retinal detachment and macular hole developed in 1 case patient each. There was no case of rhegmatogenous retinal detachment, treatment failure, or local tumor dissemination in case patients or control patients. Conclusions: With up to 3 years of clinical follow-up, silicone oil during brachytherapy

  14. Procedure for determination of the decontamination of piping in the production of iodine-125 seeds; Procedimento para determinacao da descontaminacao de tubulacoes, na producao de sementes de iodo-125

    Energy Technology Data Exchange (ETDEWEB)

    Moura, J.A.; Moura, E.S.; Sprenger, F.E.; Nagatomi, H.R.; Zeituni, C.A.; Feher, A.; Manzoli, J.E.; Souza, C.D.; Rostelato, M.E.C.M., E-mail: elisaros@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Iodine-125 seeds are radioactive sources used in the prostate cancer treatment. This work objective was to determine the necessary conditions and procedures for decontamination of liquid transfer tubes when a radioactive material leakage occurs during the process of seed quality control

  15. (UVB)-induced DNA damage

    African Journals Online (AJOL)

    Jane

    2011-08-17

    Aug 17, 2011 ... E-mail: renu2498@hotmail.com. Abbreviations: POE, Pandanus ordoratissimus extract; KSCs, keratinocyte stem cells; AAG, ascorbyl glucoside. as the major cause of human skin cancer. It is well established that UVB induced DNA damage by photoi- somerization, resulting in the formation of the 6-4 photo-.

  16. Long-term Results of the UCSF-LBNL Randomized Trial: Charged Particle With Helium Ion Versus Iodine-125 Plaque Therapy for Choroidal and Ciliary Body Melanoma.

    Science.gov (United States)

    Mishra, Kavita K; Quivey, Jeanne M; Daftari, Inder K; Weinberg, Vivian; Cole, Tia B; Patel, Kishan; Castro, Joseph R; Phillips, Theodore L; Char, Devron H

    2015-06-01

    Relevant clinical data are needed given the increasing national interest in charged particle radiation therapy (CPT) programs. Here we report long-term outcomes from the only randomized, stratified trial comparing CPT with iodine-125 plaque therapy for choroidal and ciliary body melanoma. From 1985 to 1991, 184 patients met eligibility criteria and were randomized to receive particle (86 patients) or plaque therapy (98 patients). Patients were stratified by tumor diameter, thickness, distance to disc/fovea, anterior extension, and visual acuity. Tumors close to the optic disc were included. Local tumor control, as well as eye preservation, metastases due to melanoma, and survival were evaluated. Median follow-up times for particle and plaque arm patients were 14.6 years and 12.3 years, respectively (P=.22), and for those alive at last follow-up, 18.5 and 16.5 years, respectively (P=.81). Local control (LC) for particle versus plaque treatment was 100% versus 84% at 5 years, and 98% versus 79% at 12 years, respectively (log rank: P=.0006). If patients with tumors close to the disc (eye preservation (P=.01). CPT was a significant predictor of prolonged disease-free survival (log rank: P=.001). Particle therapy resulted in significantly improved local control, eye preservation, and disease-free survival as confirmed by long-term outcomes from the only randomized study available to date comparing radiation modalities in choroidal and ciliary body melanoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Experimental radiotherapy of the R1H rhabdomyosarcoma of the rat: combined use of interstitial iodine-125-brachytherapy and fractionated X-irradiation

    International Nuclear Information System (INIS)

    Doll, D.

    1995-01-01

    The study described here investigated into the therapeutic effects that split-dose x-radiation combined with interstitial iodine-125 brachytherapy would have on two different lines of the R1H rhabdomyosarcoma of the rat. The following parameters were examined: local tumour control rate; growth delay; net growth delay; position, movement and loss of seeds; tumour shape. The following results were obtained: The local tumour control rate for tumours externally treated with two seeds was by 42 Gy higher than that determined for the group treated with external irradiation alone. A procedure was developed to calculate the most appropriate distance for the seeds on the basis of tumour axes and volumes. The relationship between growth delay and mean maximum distance of the seed from the tumour margin could be ascertained on a quantitative basis. The influence of the tumour shape on the result of treatment was confirmed. Although the seeds were still active at the time of recidivation and treatment was not yet terminated, it was possible to show that the tumour bed effect, which tends to distort the growth delay calculations and may even occur in externally treated seed animals, could largely be avoided in the evaluation of this study. (orig./MG) [de

  18. Complex cell geometry and sources distribution model for Monte Carlo single cell dosimetry with iodine 125 radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, F.X. [Université Toulouse III-Paul Sabatier, INPT, LAPLACE, F-31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Paillas, S. [IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier F-34298 (France); INSERM, U1194, Montpellier F-34298 (France); Pouget, J.P [IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier F-34298 (France); INSERM, U1194, Montpellier F-34298 (France); Université de Montpelllier, F-34090 Montpellier (France); Institut régional du Cancer de Montpellier, F-34298 Montpellier (France); Incerti, S. [Université Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Bardiès, M. [Inserm, UMR1037 CRCT, F-31000 Toulouse (France); Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse (France); Bordage, M.C., E-mail: marie-claude.bordage@inserm.fr [Université Toulouse III-Paul Sabatier, INPT, LAPLACE, F-31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Inserm, UMR1037 CRCT, F-31000 Toulouse (France); Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse (France)

    2016-01-01

    In cellular dosimetry, common assumptions consider concentric spheres for nucleus and cell and uniform radionuclides distribution. These approximations do not reflect reality, specially in the situation of radioimmunotherapy with Auger emitters, where very short-ranged electrons induce hyper localised energy deposition. A realistic cellular dosimetric model was generated to give account of the real geometry and activity distribution, for non-internalizing and internalizing antibodies (mAbs) labelled with Auger emitter I-125. The impact of geometry was studied by comparing the real geometry obtained from confocal microscopy for both cell and nucleus with volume equivalent concentric spheres. Non-uniform and uniform source distributions were considered for each mAbs distribution. Comparisons in terms of mean deposited energy per decay, energy deposition spectra and energy-volume histograms were calculated using Geant4. We conclude that realistic models are needed, especially when energy deposition is highly non-homogeneous due to source distribution.

  19. Prescribing to tumor apex in episcleral plaque iodine-125 brachytherapy for medium-sized choroidal melanoma: A single-institutional retrospective review.

    Science.gov (United States)

    Vonk, David Thomas; Kim, Yongbok; Javid, Cameron; Gordon, John D; Stea, Baldassarre

    2015-01-01

    To report an institutional experience with episcleral plaque brachytherapy for medium-sized uveal melanoma. Variations in prescription dose point and dose rate were compared with Collaborative Ocular Melanoma Study (COMS) Group. A retrospective review was performed for 116 patients treated with iodine-125 plaque brachytherapy. About 85 Gy was prescribed to either the tumor apex (108 patients) or at 5 mm (8 patients) with dose rate ranging from 50.6 to 98.2 cGy/h. Patients were followed up for local tumor control, eye preservation, and vision retention. Dose and dose rate to tumor and sensitive structures were calculated. Multivariate and univariate analyses were performed to investigate correlation between clinical outcomes and dose/dose rate variables. Patients in this study were slightly older with worse visual acuity at baseline, but tumor size and position and ratio of ciliary body involvement were comparable to COMS population. Outcomes data were comparable to COMS: 95.3% local tumor control at 5 years and 77.7% vision preservation at 3 years. Only 4 patients needed enucleation because of tumor growth. Significant correlation was found between enucleation and tumor height and maximal scleral dose/dose rate as well as vision retention and tumor height and macula dose/dose rate. For tumors with <5 mm height, prescribing to tumor apex enabled to decrease dose to all sensitive structures without any loss of local control. Although dose rate was lowered to 50.6 cGy/h from the American Brachytherapy Society guidelines (60-105 cGy/h) because of limited availability of operating room (i.e., weekly), there was no difference in either local tumor control or complications. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. Radiation-induced electron migration along DNA

    International Nuclear Information System (INIS)

    Fuciarelli, A.F.; Sisk, E.C.; Miller, J.H.; Zimbrick, J.D.

    1994-04-01

    Radiation-induced electron migration along DNA is a mechanism by which randomly produced stochastic energy deposition events can lead to nonrandom types of damage along DNA manifested distal to the sites of the initial energy deposition. Electron migration along DNA is significantly influenced by the DNA base sequence and DNA conformation. Migration along 7 base pairs in oligonucleotides containing guanine bases was observed for oligonucleotides irradiated in solution which compares to average migration distances of 6 to 10 bases for Escherichia coli DNA irradiated in solution and 5.5 base pairs for Escherichia coli DNA irradiated in cells. Evidence also suggests that electron migration can occur preferentially in the 5' to 3' direction along DNA. Our continued efforts will provide information regarding the contribution of electron transfer along DNA to formation of locally multiply damaged sites created in DNA by exposure to ionizing radiation

  1. Processive DNA demethylation via DNA deaminase-induced lesion resolution.

    Directory of Open Access Journals (Sweden)

    Don-Marc Franchini

    Full Text Available Base modifications of cytosine are an important aspect of chromatin biology, as they can directly regulate gene expression, while DNA repair ensures that those modifications retain genome integrity. Here we characterize how cytosine DNA deaminase AID can initiate DNA demethylation. In vitro, AID initiated targeted DNA demethylation of methyl CpGs when in combination with DNA repair competent extracts. Mechanistically, this is achieved by inducing base alterations at or near methyl-cytosine, with the lesion being resolved either via single base substitution or a more efficient processive polymerase dependent repair. The biochemical findings are recapitulated in an in vivo transgenic targeting assay, and provide the genetic support of the molecular insight into DNA demethylation. This targeting approach supports the hypothesis that mCpG DNA demethylation can proceed via various pathways and mCpGs do not have to be targeted to be demethylated.

  2. Clinical outcome of intermediate risk prostate cancer treated with iodine 125 mono-therapy: The Hotel-Dieu of Quebec experience

    International Nuclear Information System (INIS)

    Zebentout, O.; Apardian, R.; Beaulieu, L.; Harel, F.; Martin, A.G.; Vigneault, E.; Beaulieu, L.; Harel, F.; Beaulieu, L.

    2010-01-01

    Purpose To describe the biochemical failure-free survival (B.F.F.S.), G.U. toxicity and erectile dysfunction in intermediate risk prostate cancer treated with iodine 125 mono-therapy ( 125 I). Patients and methods Between October 1994 and October 2007, 1282 patients were treated with 125 I at the Hotel Dieu de Quebec. Two hundred patients were intermediate risk prostate cancer. One hundred and fifty-seven had enough follow-up to be evaluated in this study. Biochemical failure-free survival is reported using Phoenix definition. Acute and late G.U. toxicity was described using the International Prostate Symptoms Score (I.P.S.S.) as well as with the rate of bladder catheter. Erectile dysfunction was also reported. Results The mean age of the patients was 65.6 years (S.D. = 6 years) and the mean pretreatment P.S.A. was 8.7 ng/ml. About half of the patients (51%) were T2b/T2c. About 44.6% had a P.S.A. greater than 10 and 4.5% had Gleason score of 7/10. More than half of the patients received a short course of hormones of less than 6 months for cyto-reduction (57.4%). The median follow-up was 60 months. Biochemical failure-free survival at 60-month and 96-month were 87.1% and 81% according to Phoenix definition. The mean I.P.S.S. rose from 5 immediately after the implant to 15 1 month after and then slowly decreased to 8 at 24 months. Acute urinary retention with bladder catheter occurred in 10.9% of patients. Only 4.3% presented erectile dysfunction at 5 months post-implant. Conclusion 125 I mono-therapy for intermediate risk prostate implant gives biochemical failure-free survivals at 5 years and 8 years comparable to those obtained with high dose external beam radiotherapy. G.U. toxicity and erectile dysfunction were low and acceptable. Therefore, the use of 125 I alone in this group of patients could be presented and discussed with the patient in the waiting of phase III validation. (authors)

  3. Long-term Results of the UCSF-LBNL Randomized Trial: Charged Particle With Helium Ion Versus Iodine-125 Plaque Therapy for Choroidal and Ciliary Body Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Kavita K., E-mail: Kavita.mishra@ucsf.edu [Department of Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Quivey, Jeanne M.; Daftari, Inder K. [Department of Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Lawrence Berkeley National Laboratory, Berkeley, California (United States); Weinberg, Vivian [Department of Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Cole, Tia B. [The Tumori Foundation, San Francisco, California (United States); Patel, Kishan [Department of Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Castro, Joseph R.; Phillips, Theodore L. [Department of Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Lawrence Berkeley National Laboratory, Berkeley, California (United States); Char, Devron H. [The Tumori Foundation, San Francisco, California (United States); Department of Ophthalmology, University of California-San Francisco, San Francisco, California (United States); Department of Ophthalmology, Stanford University, Palo Alto, California (United States)

    2015-06-01

    Purpose: Relevant clinical data are needed given the increasing national interest in charged particle radiation therapy (CPT) programs. Here we report long-term outcomes from the only randomized, stratified trial comparing CPT with iodine-125 plaque therapy for choroidal and ciliary body melanoma. Methods and Materials: From 1985 to 1991, 184 patients met eligibility criteria and were randomized to receive particle (86 patients) or plaque therapy (98 patients). Patients were stratified by tumor diameter, thickness, distance to disc/fovea, anterior extension, and visual acuity. Tumors close to the optic disc were included. Local tumor control, as well as eye preservation, metastases due to melanoma, and survival were evaluated. Results: Median follow-up times for particle and plaque arm patients were 14.6 years and 12.3 years, respectively (P=.22), and for those alive at last follow-up, 18.5 and 16.5 years, respectively (P=.81). Local control (LC) for particle versus plaque treatment was 100% versus 84% at 5 years, and 98% versus 79% at 12 years, respectively (log rank: P=.0006). If patients with tumors close to the disc (<2 mm) were excluded, CPT still resulted in significantly improved LC: 100% versus 90% at 5 years and 98% versus 86% at 12 years, respectively (log rank: P=.048). Enucleation rate was lower after CPT: 11% versus 22% at 5 years and 17% versus 37% at 12 years, respectively (log rank: P=.01). Using Cox regression model, likelihood ratio test, treatment was the most important predictor of LC (P=.0002) and eye preservation (P=.01). CPT was a significant predictor of prolonged disease-free survival (log rank: P=.001). Conclusions: Particle therapy resulted in significantly improved local control, eye preservation, and disease-free survival as confirmed by long-term outcomes from the only randomized study available to date comparing radiation modalities in choroidal and ciliary body melanoma.

  4. DNA Damage Induced Neuronal Death

    National Research Council Canada - National Science Library

    Kisby, Glen

    1999-01-01

    ... (nitrogen mustard or HN2) and the neurotoxic DNA-damaging agent methylazoxymethanol (MAM) using neuronal and astrocyte cell cultures from different brain regions of mice with perturbed DNA repair...

  5. Considerações radiodosimétricas da braquiterapia ocular com iodo-125 e rutênio/ródio-106 Radiodosimetric considerations on ocular brachytherapy with iodine-125 and ruthenium/rhodium-106

    Directory of Open Access Journals (Sweden)

    Arnaldo Prata Mourão

    2009-02-01

    Full Text Available OBJETIVO: Analisar, por meio de um modelo computacional da região ocular, as características da distribuição da dose utilizando placas contendo iodo-125 e rutênio/ródio-106. MATERIAIS E MÉTODOS: Foi utilizado um modelo computacional de voxels da região ocular incluindo os diversos tecidos, com a placa posicionada sobre a esclera. O código Monte Carlo foi utilizado para simular a irradiação. A distribuição da dose é apresentada por curvas de isodoses. RESULTADOS: As simulações computacionais apresentam a distribuição da dose no interior do bulbo e nas estruturas externas. Os resultados permitem comparar a distribuição espacial das doses geradas por partículas beta e por fótons. As simulações mostram que a aplicação de sementes de iodo-125 implica alta dose no cristalino, enquanto o rutênio/ródio-106 produz alta dose na superfície da esclera. CONCLUSÃO: A dose no cristalino depende da espessura do tumor, da posição e do diâmetro da placa, e do radionuclídeo utilizado. No presente estudo, a fonte de rutênio/ródio-106 é recomendada para tumores de dimensões reduzidas. A irradiação com iodo-125 gera doses maiores no cristalino do que a irradiação com rutênio/ródio-106. O valor máximo de dose no cristalino corresponde a 12,75% do valor máximo de dose com iodo-125 e apenas 0,005% para rutênio/ródio-106.OBJECTIVE: To analyze dose distribution utilizing plaques with iodine-125 and ruthenium/rhodium-106 in a computational model of the ocular region. MATERIALS AND METHODS: A voxel-based computational model including the different tissues of the ocular region was utilized with the plaque positioned on the sclera. The Monte Carlo code was utilized for simulating irradiation. The dose distribution is demonstrated by isodoses curves. RESULTS: Computational simulations demonstrate the dose distribution inside the ocular bulb as well as in adjacent outside structures. The results have allowed the authors to compare

  6. Use of brachytherapy with permanent implants of iodine-125 in localized prostate cancer; La curietherapie par implants permanents d'I-125 dans le cancer localise de la prostate

    Energy Technology Data Exchange (ETDEWEB)

    Bladou, F.; Serment, G. [Hopital Salvador, Service d' Urologie, 13 - Marseille (France); Salem, N.; Simonian, M. [Hopital Salvador, Dept. de Radiotherapie, 13 - Marseille (France); Rosello, R.; Ternier, F. [Institut Paoli-Calmettes, Dept. de Radiologie, 13 - Marseille (France)

    2002-07-01

    Approximately 15,000 cases of early stage prostate cancer T1 and T2 are diagnosed every year in France by testing for PSA and performing prostatic biopsies. The treatment of these localized forms is based in most cases on radical prostatectomy or nn external beam radiotherapy. Although the ontological results obtained by these two therapeutic methods are satisfactory and equivalent in the long term, the side effects can be important. For a number of years, trans-perineal brachytherapy using permanent implants of iodine -125 or palladium-103 has proved itself as an alternative therapy with equivalent medium to long-term results. The low urinary, digestive and sexual side effects of prostate brachytherapy are important reasons for the enthusiasm among patients and the medical community for this therapy and the growing number of applications and centres which practice it. In September 1998 we started the prostate brachytherapy programmes- in Marseilles with close collaboration between the department of urology of the Hopital Salvator, and the departments of radiotherapy, medical imaging and medical physics of the Institut Paoli-Calmettes. To date, around 250 patients with localized adenocarcinoma of the prostate have benefited from this alternative therapy in our centre. Preliminary results, with a 3 year-follow-up, are comparable to results published in the literature by pioneer teams. (authors)

  7. Radiation exposure to operating room staff during prostate brachytherapy using iodine-125 seeds; Exposition radiologique de l'equipe operatoire au cours de curietherapies de prostate par implants permanents d'iode-125

    Energy Technology Data Exchange (ETDEWEB)

    Gagna, G.; Amabile, J.C.; Laroche, P. [Service de protection radiologique des armees (SPRA), 1 bis rue du Lieutenant Raoul Batany, 92141 Clamart Cedex (France); Gauron, C. [Institut national de recherche et de securite (INRS), Departement Etudes et Assistance Medicales, 30 rue Olivier Noyer, 75680 Paris Cedex 14 (France)

    2011-04-15

    The French defense radiation protection service (SPRA) and the French national institute for research and safety (INRS) conducted a joint study to assess the radiation exposure to operating room staff during prostate brachytherapy using iodine-125 seeds at the Val-de-Grace military hospital. The purpose of the study was the assessment of the effective doses, the equivalent doses to the extremities and lens received by a novice team, the different ambient dose equivalent rates measurements and the delineation of areas. After six brachy-therapies, all the recorded doses with whole-body InLight{sup R} OSL and nanoDot{sup R} dosimeters remained below the detection limit for the whole staff. The dose rate measured at the end of implantation by an AT1123{sup R} survey meter is about 170 {mu}Sv/h at the perineum of the patient. The controlled area limit is estimated to be about 20 cm from the patient perineum. From these results, the authors propose recommendations for the categorization of workers, the delineation of areas and the dose monitoring procedures. This study demonstrates that real-time ultrasound-guided trans-perineal prostate brachytherapy delivers low dose to the operators because of the radioactive source characteristics and the instrumentation providing an effective radiation protection for the surgical team. (authors)

  8. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  9. Structural changes of linear DNA molecules induced by cisplatin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhiguo, E-mail: cn.zguoliu@yahoo.com [State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Liu, Ruisi; Zhou, Zhen; Zu, Yuangang; Xu, Fengjie [State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2015-02-20

    Interaction between long DNA molecules and activated cisplatin is believed to be crucial to anticancer activity. However, the exact structural changes of long DNA molecules induced by cisplatin are still not very clear. In this study, structural changes of long linear double-stranded DNA (dsDNA) and short single-stranded DNA (ssDNA) induced by activated cisplatin have been investigated by atomic force microscopy (AFM). The results indicated that long DNA molecules gradually formed network structures, beads-on-string structures and their large aggregates. Electrostatic and coordination interactions were considered as the main driving forces producing these novel structures. An interesting finding in this study is the beads-on-string structures. Moreover, it is worth noting that the beads-on-string structures were linked into the networks, which can be ascribed to the strong DNA–DNA interactions. This study expands our knowledge of the interactions between DNA molecules and cisplatin. - Highlights: • We investigate structural changes of dsDNA and ssDNA induced by cisplatin. • AFM results indicated long dsDNA formed network, beads-on-string and aggregates. • ssDNA can form very similar structures as those of long linear dsDNA. • A possible formation process of theses novel structure is proposed.

  10. Gene activation by induced DNA rearrangements

    International Nuclear Information System (INIS)

    Schnipper, L.E.; Chan, V.; Sedivy, J.; Jat, P.; Sharp, P.A.

    1989-01-01

    A murine cell line (EN/NIH) containing the retroviral vector ZIPNeoSV(x)1 that was modified by deletion of the enhancer elements in the viral long terminal repeats has been used as an assay system to detect induced DNA rearrangements that result in activation of a transcriptionally silent reporter gene encoded by the viral genome. The spontaneous frequency of G418 resistance is less than 10(-7), whereas exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or the combination of UV irradiation plus TPA resulted in the emergence of drug resistant cell lines at a frequency of 5 per 10(6) and 67 per 10(6) cells, respectively. In several of the cell lines that were analyzed a low level of amplification of one of the two parental retroviral integrants was observed, whereas in others no alteration in the region of the viral genome was detected. To determine the effect of the SV40 large T antigen on induced DNA rearrangements, EN/NIH cells were transfected with a temperature sensitive (ts) mutant of SV40 T. Transfectants were maintained at the permissive temperature (33 degrees C) for varying periods of time (1-5 days) in order to vary SV40 T antigen exposure, after which they were shifted to 39.5 degrees C for selection in G418. The frequency of emergence of drug resistant cell clones increased with duration of exposure to large T antigen (9-52 per 10(6) cells over 1-5 days, respectively), and all cell lines analyzed demonstrated DNA rearrangements in the region of the neo gene. A novel 18-kilobase pair XbaI fragment was cloned from one cell line which revealed the presence of a 2.0-kilobase pair EcoRI segment containing an inverted duplication which hybridized to neo sequences. It is likely that the observed rearrangement was initiated by the specific binding of large T antigen to the SV40 origin of replication encoded within the viral genome

  11. Sequence dependence of electron-induced DNA strand breakage revealed by DNA nanoarrays

    DEFF Research Database (Denmark)

    Keller, Adrian; Rackwitz, Jenny; Cauët, Emilie

    2014-01-01

    sections for electron induced single strand breaks in specific 13 mer oligonucleotides we used atomic force microscopy analysis of DNA origami based DNA nanoarrays. We investigated the DNA sequences 5'-TT(XYX)3TT with X = A, G, C and Y = T, BrU 5-bromouracil and found absolute strand break cross sections...

  12. DNA damage-induced inflammation and nuclear architecture.

    Science.gov (United States)

    Stratigi, Kalliopi; Chatzidoukaki, Ourania; Garinis, George A

    2017-07-01

    Nuclear architecture and the chromatin state affect most-if not all- DNA-dependent transactions, including the ability of cells to sense DNA lesions and restore damaged DNA back to its native form. Recent evidence points to functional links between DNA damage sensors, DNA repair mechanisms and the innate immune responses. The latter raises the question of how such seemingly disparate processes operate within the intrinsically complex nuclear landscape and the chromatin environment. Here, we discuss how DNA damage-induced immune responses operate within chromatin and the distinct sub-nuclear compartments highlighting their relevance to chronic inflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Mitochondrial DNA exhibits resistance to induced point and deletion mutations

    Science.gov (United States)

    Valente, William J.; Ericson, Nolan G.; Long, Alexandra S.; White, Paul A.; Marchetti, Francesco; Bielas, Jason H.

    2016-01-01

    The accumulation of somatic mitochondrial DNA (mtDNA) mutations contributes to the pathogenesis of human disease. Currently, mitochondrial mutations are largely considered results of inaccurate processing of its heavily damaged genome. However, mainly from a lack of methods to monitor mtDNA mutations with sufficient sensitivity and accuracy, a link between mtDNA damage and mutation has not been established. To test the hypothesis that mtDNA-damaging agents induce mtDNA mutations, we exposed MutaTMMouse mice to benzo[a]pyrene (B[a]P) or N-ethyl-N-nitrosourea (ENU), daily for 28 consecutive days, and quantified mtDNA point and deletion mutations in bone marrow and liver using our newly developed Digital Random Mutation Capture (dRMC) and Digital Deletion Detection (3D) assays. Surprisingly, our results demonstrate mutagen treatment did not increase mitochondrial point or deletion mutation frequencies, despite evidence both compounds increase nuclear DNA mutations and demonstrated B[a]P adduct formation in mtDNA. These findings contradict models of mtDNA mutagenesis that assert the elevated rate of mtDNA mutation stems from damage sensitivity and abridged repair capacity. Rather, our results demonstrate induced mtDNA damage does not readily convert into mutation. These findings suggest robust mitochondrial damage responses repress induced mutations after mutagen exposure. PMID:27550180

  14. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  15. Terminal twist-induced writhe of DNA with intrinsic curvature.

    Science.gov (United States)

    Hu, Kai

    2007-04-01

    Supercoiling of a closed circular DNA rod may result from an application of terminal twist to the DNA rod by cutting the rod, rotating one of the cut faces as the other being fixed and then sealing the cut. According to White's formula, DNA supercoiling is probably accompanied by a writhe of the DNA axis. Deduced from the elastic rod model for DNA structure, an intrinsically straight closed circular DNA rod does not writhe as subject to a terminal twist, until the number of rotation exceeds a rod-dependent threshold. By contrast, a closed circular DNA rod with intrinsic curvature writhes instantly as subject to a terminal twist. This noteworthy character in fact belongs to many intrinsically curved DNA rods. By solving the dynamic equations, the linearization of the Euler-Lagrange equations governing intrinsically curved DNA rods, this paper shows that almost every clamped-end intrinsically curved DNA rod writhes instantly when subject to a terminal twist (clamped-end DNA rods include closed circular DNA rods and topological domains of open DNA rods). In terms of physical quantities, the exceptions are identified with points in R(6) whose projections onto R(5) (through ignoring the total energy density of a rod) form a subset of a quadratic hypersurface. This paper also suggests that the terminal twist induced writhe is due to the elasticity and the clamped-end boundary conditions of the DNA rods.

  16. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    The present study investigated the effect of a single bout of exhaustive exercise on the generation of DNA strand breaks and oxidative DNA damage under normal conditions and at high-altitude hypoxia (4559 meters for 3 days). Twelve healthy subjects performed a maximal bicycle exercise test...... exercise in altitude hypoxia. Exercise-induced generation of DNA strand breaks was not seen at sea level. In both environments, the level of FPG and endonuclease III-sensitive sites remained unchanged immediately after exercise. DNA strand breaks and oxidative DNA damage are probably produced by reactive...... oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity...

  17. Thermal enhancement of x-ray induced DNA crosslinking

    International Nuclear Information System (INIS)

    Bowden, G.T.; Kasunic, M.; Cress, A.E.

    1982-01-01

    Ionizing radiation appears to crosslink nuclear DNA with chromosomal proteins. Important cellular processes such as transcription and DNA replication are likely to be compromised as a result of the DNA crosslinking. Heat treatment (43/sup o/C) of mouse leukemia cells (L1210) before X irradiation (50 Gy) was found to cause a doubling of the radiation-induced DNA crosslinking as measured by alkaline elution technique. By using proteinase K, a very active protease, to eliminate DNA-protein crosslinking in the alkaline elution assay, it was shown that the thermally enhanced DNA crosslinking was attributed to an increase in DNA-protein crosslinking. However, utilizing a protein radiolabel technique under conditions of increased DNA-protein crosslinking, the amount of protein left on the filter in the elution assay was not increased. These data suggest that qualitative rather than large quantitative differences in the crosslinked chromosomal proteins exist between irradiated cells and cells treated with heat prior to irradiation

  18. DNA damage induced by radionuclide internal irradiation

    International Nuclear Information System (INIS)

    Cui Fengmei; Zhao Jingyong; Hong Chengjiao; Lao Qinhua; Wang Liuyi; Yang Shuqin

    2004-01-01

    Objective: To study the DNA damage of peripheral blood mononuclear cell (PBMC) in rats exposed to radionuclide internal irradiation. Methods: The radionuclides were injected into the rats and single cell get electrophoresis (SCGE) was performed to detect the length of DNA migration in the rat PBMC. Results: DNA migration in the rat PBMC increased with accumulative dose or dose-rate. It showed good relationship of dose vs. response and of dose-rate vs. response, both relationship could be described as linear models. Conclusion: Radionuclide internal irradiation could cause DNA damage in rat PBMC. (authors)

  19. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions.

    Directory of Open Access Journals (Sweden)

    Nan Li

    Full Text Available Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG. In this study we used mouse embryonic stem (MES and mouse embryonic fibroblast (MEF cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS. Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR defects.

  20. Asbestos induced oxidative injury to DNA.

    Science.gov (United States)

    Mahmood, N; Khan, S G; Ali, S; Athar, M; Rahman, Q

    1993-06-01

    DNA-damaging effects of asbestos in the presence of organic peroxides and hydroperoxides were investigated. The destabilization of the secondary structure of DNA, damage to deoxyribose sugar and DNA fidelity were measured, respectively, by S-1 nuclease hydrolysis, the formation of thiobarbituric acid (TBA)-reacting species and a melting temperature (Tm) profile using calf thymus DNA. S-1 nuclease hydrolysis and Tm determinations have shown that the presence of benzoylperoxide (BOOB), cumene hydroperoxide (COOH) or tertiary-butyl hydroperoxide (t-BOOH) increased asbestos-mediated DNA damage by a large factor compared either to asbestos alone or to peroxide or hydroperoxide alone. However, no formation of TBA-reacting species could be observed in this system. The quenchers of reactive oxygen species (ROS) afforded protection against DNA damage. These results suggest that asbestos in the presence of organic peroxides and hydroperoxides damage the DNA which is mediated by the generation of oxygen free radicals. The significance of these results in relation to the development of cancer of the respiratory tract among the asbestos exposed population is discussed.

  1. UV Laser-Induced DNA Photochemistry

    Science.gov (United States)

    1991-05-13

    until it reached an absorbance of Acoo-0.5. 500 ̂ 1 of M13 phage stock (containing 10" to 10" pfu/ml) was added to the culture. After one hour...RNA, as well as the formation of intra-molecular crosslinks in CQ phage DNA. They also studied the quantum yield of thymine degradation following...dilution (addition of 2.5 volumes distilled water), and ethanol precipitated. c) M13 RF DNA. Ml3mp7 and Ml3mpl8 replicative form (RF) DNA was purified

  2. Simulation of 125I-induced DNA strand breaks in a CAP-DNA complex

    International Nuclear Information System (INIS)

    Li, W.; Friedland, W.; Jacob, P.

    2000-01-01

    DNA strand breakage induced by decay of 125 I incorporated into the pyrimidine of a small piece of DNA with a specific base pair sequence has been investigated theoretically and experimentally (Lobachevsky and Martin 2000a, 2000b; Nikjoo et al., 1996; Pomplun and Terrissol, 1994; Charlton and Humm, 1988). Recently an attempt was made to analyse the DNA kinks in a CAP-DNA complex with 125 I induced DNA strand breakage (Karamychev et al., 1999). This method could be used as a so called radioprobing for such DNa distortions like other chemical and biological assays, provided that it has been tested and confirmed in a corresponding theoretical simulation. In the measurement, the distribution of the first breaks on the DNA strands starting from their labeled end can be determined. Based on such first breakage distributions, the simulation calculation could then be used to derive information on the structure of a given DNA-protein complex. The biophysical model PARTRAC has been applied successfully in simulating DNA damage induced by irradiation (Friedland et al., 1998; 1999). In the present study PARTRAC is adapted to a DNA-protein complex in which a specific sequence of 30 base pairs of DNA is connected with the catabolite gene activator protein (CAP). This report presents the first step of the analysis in which the CAP-DNA model used in NIH is overlaid with electron track structures in liquid water and the strand breaks due to direct ionization and due to radical attack are simulated. The second step will be to take into account the neutralization of the heavily charged tellurium and the protective effect of the CAP protein against radical attack. (orig.)

  3. Visualization of DNA clustered damage induced by heavy ion exposure

    International Nuclear Information System (INIS)

    Tomita, M.; Yatagai, F.

    2003-01-01

    Full text: DNA double-strand breaks (DSBs) are the most lethal damage induced by ionizing radiations. Accelerated heavy-ions have been shown to induce DNA clustered damage, which is two or more DNA lesions induced within a few helical turns. Higher biological effectiveness of heavy-ions could be provided predominantly by induction of complex DNA clustered damage, which leads to non-repairable DSBs. DNA-dependent protein kinase (DNA-PK) is composed of catalytic subunit (DNA-PKcs) and DNA-binding heterodimer (Ku70 and Ku86). DNA-PK acts as a sensor of DSB during non-homologous end-joining (NHEJ), since DNA-PK is activated to bind to the ends of double-stranded DNA. On the other hand, NBS1 and histone H2AX are essential for DSB repair by homologous recombination (HR) in higher vertebrate cells. Here we report that phosphorylated H2AX at Ser139 (named γ-H2AX) and NBS1 form large undissolvable foci after exposure to accelerated Fe ions, while DNA-PKcs does not recognize DNA clustered damage. NBS1 and γ-H2AX colocalized with forming discrete foci after exposure to X-rays. At 0.5 h after Fe ion irradiation, NBS1 and γ-H2AX also formed discrete foci. However, at 3-8 h after Fe ion irradiation, highly localized large foci turned up, while small discrete foci disappeared. Large NBS1 and γ-H2AX foci were remained even 16 h after irradiation. DNA-PKcs recognized Ku-binding DSB and formed foci shortly after exposure to X-rays. DNA-PKcs foci were observed 0.5 h after 5 Gy of Fe ion irradiation and were almost completely disappeared up to 8 h. These results suggest that NBS1 and γ-H2AX can be utilized as molecular marker of DNA clustered damage, while DNA-PK selectively recognizes repairable DSBs by NHEJ

  4. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    The present study investigated the effect of a single bout of exhaustive exercise on the generation of DNA strand breaks and oxidative DNA damage under normal conditions and at high-altitude hypoxia (4559 meters for 3 days). Twelve healthy subjects performed a maximal bicycle exercise test...... oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity...

  5. Delayed chromosomal instability induced by DNA damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1994-01-01

    Cellular exposure to DNA damaging agents rapidly results in a dose dependent increase in chromosomal breakage and gross structural chromosomal rearrangements. Over recent years, evidence has been accumulating indicating genomic instability can manifest multiple generations after cellular exposure to physical and chemical DNA damaging agents. Genomic instability manifests in the progeny of surviving cells, and has been implicated in mutation, gene application, cellular transformation, and cell killing. To investigate chromosome instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells surviving X-irradiation many generations after exposure. At higher radiation doses, chromosomal instability was observed in a relatively high frequency of surviving clones and, in general, those clones showed delayed chromosome instability also showed reduced survival as measured by colony forming ability

  6. The Cartography of UV-induced DNA Damage Formation and DNA Repair.

    Science.gov (United States)

    Hu, Jinchuan; Adar, Sheera

    2017-01-01

    DNA damage presents a barrier to DNA-templated biochemical processes, including gene expression and faithful DNA replication. Compromised DNA repair leads to mutations, enhancing the risk for genetic diseases and cancer development. Conventional experimental approaches to study DNA damage required a researcher to choose between measuring bulk damage over the entire genome, with little or no resolution regarding a specific location, and obtaining data specific to a locus of interest, without a global perspective. Recent advances in high-throughput genomic tools overcame these limitations and provide high-resolution measurements simultaneously across the genome. In this review, we discuss the available methods for measuring DNA damage and their repair, focusing on genomewide assays for pyrimidine photodimers, the major types of damage induced by ultraviolet irradiation. These new genomic assays will be a powerful tool in identifying key components of genome stability and carcinogenesis. © 2016 The American Society of Photobiology.

  7. UV-induced DNA repair in leukemic cell differentiation

    International Nuclear Information System (INIS)

    Nakamaki, Tsuyoshi; Sakashita, Akiko; Tomoyasu, Shigeru; Tsuruoka, Nobuyoshi; Ajiri, Teizo.

    1989-01-01

    Ultraviolet light (UV)-induced DNA repair during myeloid leukemic cell differentiation was examined. Human myeloid leukemic cells could be induced to differentiate in vitro into mature cells by various chemical inducers that lost their proliferating potencies. In spite of decrease of proliferation capacity, almost all these terminally differentiated myeloid leukemic cells invariably showed UV-induced unscheduled DNA synthesis (UDS) at low energy of UV irradiation (3-5 J/m 2 ). This indicated that the terminally differentiated myeloid leukemic cells are functionally quite different from mature granulocytes in chronic myeloid leukemia (CML) or in normal peripheral blood. In HL-60 cells, UV-survival was enhanced in the process of differentiation induced by 1.25% DMSO or 0.6 mM sodium n-butyrate. The degree of enhancement of UV-survival was correlated with the increased amount of UDS. The process of myeloid leukemic cell differentiation which is completed without loss of capacity performing repair DNA synthesis was one of the characteristics of the terminally differentiated myeloid leukemic cells induced by chemical inducers in vitro and this function may support the hypothesis that DNA breaking and rejoining are involved in a mechanism of cytodifferentiation. (author)

  8. An extended sequence specificity for UV-induced DNA damage.

    Science.gov (United States)

    Chung, Long H; Murray, Vincent

    2018-01-01

    The sequence specificity of UV-induced DNA damage was determined with a higher precision and accuracy than previously reported. UV light induces two major damage adducts: cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). Employing capillary electrophoresis with laser-induced fluorescence and taking advantages of the distinct properties of the CPDs and 6-4PPs, we studied the sequence specificity of UV-induced DNA damage in a purified DNA sequence using two approaches: end-labelling and a polymerase stop/linear amplification assay. A mitochondrial DNA sequence that contained a random nucleotide composition was employed as the target DNA sequence. With previous methodology, the UV sequence specificity was determined at a dinucleotide or trinucleotide level; however, in this paper, we have extended the UV sequence specificity to a hexanucleotide level. With the end-labelling technique (for 6-4PPs), the consensus sequence was found to be 5'-GCTC*AC (where C* is the breakage site); while with the linear amplification procedure, it was 5'-TCTT*AC. With end-labelling, the dinucleotide frequency of occurrence was highest for 5'-TC*, 5'-TT* and 5'-CC*; whereas it was 5'-TT* for linear amplification. The influence of neighbouring nucleotides on the degree of UV-induced DNA damage was also examined. The core sequences consisted of pyrimidine nucleotides 5'-CTC* and 5'-CTT* while an A at position "1" and C at position "2" enhanced UV-induced DNA damage. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  9. Use of iodine-125 brachytherapy in treatment of choroidal melanomas, technic and preliminary analysis of 78 patients; Traitement conservateur des melanomes choroidiens par curietherapie par l'iode 125, technique et analyse preliminaire d'une serie de 78 patients

    Energy Technology Data Exchange (ETDEWEB)

    Quetin, P.; Schumacher, C.; Schraub, S. [Centre Paul-Strauss, Dept. de Radiotherapie, 67 - Strasbourg (France); Meyer, L.; Polto, F.; Sahel, J. [Hopitaux Universitaires de Strasbourg, Clinique Ophtalmologique, 67 (France); Magnenet, P. [Centre Paul-Strauss, Dept. de Radiophysique, 67 - Strasbourg (France); Andres, E. [Hopital de Hautepierre, Medecine Interne, 67 - Strasbourg (France)

    2001-12-01

    Purpose. - Iodine 125 curietherapy is one of the conservative treatments of uveal melanoma. The technique used to achieve these results was simplified through the physical characteristics of the radioelement and the optimized-dosimetry program employed. Patients and methods. - 78 patients with choroidal melanoma were treated with iodine 125. About 100 Gy were delivered to the superior pole of the tumour. The minimal length of follow-up was 17 months and the average, 67 months. Results. -There was 88% local control, leading to lowered visual acuity in 76 % of the cases. Radiation retinopathy, directly related to proximity to the macula, is the principle etiology. Seven patients died of hepatic metastasis, five patients were enucleated. Four patients were further treated with proton-therapy to make up for non-control locally. Conclusion. -One dose of 100 Gy to the superior pole of the tumor seemed to lead to good local control, with the exception of complications related to proximity to the macula and the optic nerve. In this attempt to optimize irradiation, the time lapse between any benefit in local control derived from irradiation and post-therapeutic complications observed remains insufficient to evaluate any relationship. (authors)

  10. Mutagenicity of acrolein and acrolein-induced DNA adducts.

    Science.gov (United States)

    Liu, Xing-yu; Zhu, Mao-xiang; Xie, Jian-ping

    2010-01-01

    Acrolein mutagenicity relies on DNA adduct formation. Reaction of acrolein with deoxyguanosine generates alpha-hydroxy-1, N(2)-propano-2'-deoxyguanosine (alpha-HOPdG) and gamma-hydroxy-1, N(2)-propano-2'-deoxyguanosine (gamma-HOPdG) adducts. These two DNA adducts behave differently in mutagenicity. gamma-HOPdG is the major DNA adduct and it can lead to interstrand DNA-DNA and DNA-peptide/protein cross-links, which may induce strong mutagenicity; however, gamma-HOPdG can be repaired by some DNA polymerases complex and lessen its mutagenic effects. alpha-HOPdG is formed much less than gamma-HOPdG, but difficult to be repaired, which contributes to accumulation in vivo. Results of acrolein mutagenicity studies haven't been confirmed, which is mainly due to the conflicting mutagenicity data of the major acrolein adduct (gamma-HOPdG). The minor alpha-HOPdG is mutagenic in both in vitro and in vivo test systems. The role of alpha-HOPdG in acrolein mutagenicity needs further investigation. The inconsistent result of acrolein mutagenicity can be attributed, at least partially, to a variety of acrolein-DNA adducts formation and their repair in diverse detection systems. Recent results of detection of acrolein-DNA adduct in human lung tissues and analysis of P53 mutation spectra in acrolein-treated cells may shed some light on mechanisms of acrolein mutagenicity. These aspects are covered in this mini review.

  11. Induced pluripotent stem cells with a mitochondrial DNA deletion.

    Science.gov (United States)

    Cherry, Anne B C; Gagne, Katelyn E; McLoughlin, Erin M; Baccei, Anna; Gorman, Bryan; Hartung, Odelya; Miller, Justine D; Zhang, Jin; Zon, Rebecca L; Ince, Tan A; Neufeld, Ellis J; Lerou, Paul H; Fleming, Mark D; Daley, George Q; Agarwal, Suneet

    2013-07-01

    In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here, we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. Copyright © 2013 AlphaMed Press.

  12. Induced pluripotent stem cells with a pathological mitochondrial DNA deletion

    Science.gov (United States)

    Cherry, Anne B. C.; Gagne, Katelyn E.; McLoughlin, Erin M.; Baccei, Anna; Gorman, Bryan; Hartung, Odelya; Miller, Justine D.; Zhang, Jin; Zon, Rebecca L.; Ince, Tan A.; Neufeld, Ellis J.; Lerou, Paul H.; Fleming, Mark D.; Daley, George Q.; Agarwal, Suneet

    2013-01-01

    In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. PMID:23400930

  13. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  14. Layered graphene-mica substrates induce melting of DNA origami

    Science.gov (United States)

    Green, Nathaniel S.; Pham, Phi H. Q.; Crow, Daniel T.; Burke, Peter J.; Norton, Michael L.

    2018-04-01

    Monolayer graphene supported on mica substrates induce melting of cross-shaped DNA origami. This behavior can be contrasted with the case of origami on graphene on graphite, where an expansion or partially re-organized structure is observed. On mica, only well-formed structures are observed. Comparison of the morphological differences observed for these probes after adsorption on these substrates provides insights into the sensitivity of DNA based nanostructures to the properties of the graphene monolayer, as modified by its substrate.

  15. Photochromic switching of the DNA helicity induced by azobenzene derivatives

    Science.gov (United States)

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-06-01

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.

  16. Photochromic switching of the DNA helicity induced by azobenzene derivatives.

    Science.gov (United States)

    Deiana, Marco; Pokladek, Ziemowit; Olesiak-Banska, Joanna; Młynarz, Piotr; Samoc, Marek; Matczyszyn, Katarzyna

    2016-06-24

    The photochromic properties of azobenzene, involving conformational changes occurring upon interaction with light, provide an excellent tool to establish new ways of selective regulation applied to biosystems. We report here on the binding of two water-soluble 4-(phenylazo)benzoic acid derivatives (Azo-2N and Azo-3N) with double stranded DNA and demonstrate that the photoisomerization of Azo-3N leads to changes in DNA structure. In particular, we show that stabilization and destabilization of the B-DNA secondary structure can be photochemically induced in situ by light. This photo-triggered process is fully reversible and could be an alternative pathway to control a broad range of biological processes. Moreover, we found that the bicationic Azo-3N exhibited a higher DNA-binding constant than the monocationic Azo-2N pointing out that the number of positive charges along the photosensitive polyamines chain plays a pivotal role in stabilizing the photochrome-DNA complex.

  17. Hydration induced stress on DNA monolayers grafted on microcantilevers.

    Science.gov (United States)

    Domínguez, Carmen M; Kosaka, Priscila M; Mokry, Guillermo; Pini, Valerio; Malvar, Oscar; del Rey, Mercedes; Ramos, Daniel; San Paulo, Alvaro; Tamayo, Javier; Calleja, Montserrat

    2014-09-16

    Surface tethered single-stranded DNA films are relevant biorecognition layers for oligonucleotide sequence identification. Also, hydration induced effects on these films have proven useful for the nanomechanical detection of DNA hybridization. Here, we apply nanomechanical sensors and atomic force microscopy to characterize in air and upon varying relative humidity conditions the swelling and deswelling of grafted single stranded and double stranded DNA films. The combination of these techniques validates a two-step hybridization process, where complementary strands first bind to the surface tethered single stranded DNA probes and then slowly proceed to a fully zipped configuration. Our results also demonstrate that, despite the slow hybridization kinetics observed for grafted DNA onto microcantilever surfaces, ex situ sequence identification does not require hybridization times typically longer than 1 h, while quantification is a major challenge.

  18. Hypochlorite-induced damage to DNA, RNA, and polynucleotides

    DEFF Research Database (Denmark)

    Hawkins, Clare Louise; Davies, Michael Jonathan

    2002-01-01

    HOCl damage to DNA, RNA, and polynucleotides. Reaction of HOCl with these materials is shown to yield multiple semistable chloramines (RNHCl/RR'NCl), which are the major initial products, and account for 50-95% of the added HOCl. These chloramines decay by thermal and metal-ion catalyzed processes...... favored exocyclic amines. EPR experiments have also provided evidence for the rapid addition of pyrimidine-derived nitrogen-centered radicals to other nucleobases to give dimers and the oxidation of DNA by radicals derived from preformed nucleoside chloramines. Direct reaction of HOCl with plasmid DNA...... rationalize the preferential formation of chlorinated 2'-deoxycytidine and 2'-deoxyadenosine in DNA and suggest that DNA damage induced by HOCl, and preformed chloramines, occurs at sequence-specific sites....

  19. Chromium-induced DNA damge is mutagenic in mammalian systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.; Dixon, K. [Univ. of Cincinnati, OH (United States)

    1994-12-31

    To study the mutagenic mechanism of hexavalent chromium compounds, a SV40 virus-based shuttle vector system was used for mutation analysis. The plasmid pZ189 allowed us to induce mutations in mammalian cells, identify them in a bacterial system, and then sequence them. Naked DNA pZ189 was treated with Cr{sup 6+}, Cr{sup 5+} and Cr{sup 3+} compounds. The studies showed that DNA strand breaks were induced in the reduction process of Cr{sup 6+} by glutathione. On the average, 0.66 {mu}M Cr{sup 6+} induced about one nick/DNA molecule. The treated DNA also showed a decrease of biological activity upon transformation into E. coli cells. Hydroxyl radical (HO{center_dot}) scavengers, Tris and mannitol, suppressed the Cr-induced DNA damage. The DNA damage caused by the co-incubation of Cr{sup 6+} with glutathione was ionic-strength and pH dependent, which supported the hypothesis that Cr{sup 5+}, an intermediate agent, was the critical agent in Cr reduction causing DNA damage through radical species. Further, Cr{sup 5+} induced DNA damage in a kinetic pattern similar to the co-incubation of Cr{sup 6+} and glutathione. In contrast, Cr{sup 3+}, the final product of Cr{sup 6+} reduction, was not shown to be a DNA-damaging agent in phosphate buffer (pH 7.0). To evaluate if the Cr-treated DNA was mutagenic, a mutagenesis assay was carried out in which the chromium-treated plasmid was replicated in CV-1 monkey cells and mutation spectra were analyzed. Mutation frequency increased significantly for both Cr{sup 6+} and Cr{sup 5+} treated DNAs; the frequency was 0.18% and 0.80% for Cr{sup 6+} 1 and 10{mu}M respectively, and 0.14% and 0.21% for Cr{sup 5+} 0.25 and 0.125 {mu}M respectively compared to 0.01% in the untreated vector. The experiments suggested that one mechanism of Cr mutagenesis might be mediated by DNA damage caused by reactive radical species.

  20. Electrochemical DNA biosensor for detection of DNA damage induced by hydroxyl radicals.

    Science.gov (United States)

    Hájková, Andrea; Barek, Jiří; Vyskočil, Vlastimil

    2017-08-01

    A simple electrochemical DNA biosensor based on a glassy carbon electrode (GCE) was prepared by adsorbing double-stranded DNA (dsDNA) onto the GCE surface and subsequently used for the detection of dsDNA damage induced by hydroxyl radicals. Investigation of the mutual interaction between hydroxyl radicals and dsDNA was conducted using a combination of several electrochemical detection techniques: square-wave voltammetry for direct monitoring the oxidation of dsDNA bases, and cyclic voltammetry and electrochemical impedance spectroscopy as indirect electrochemical methods making use of the redox-active indicator [Fe(CN) 6 ] 4-/3- . Hydroxyl radicals were generated electrochemically on the surface of a boron-doped diamond electrode and chemically (via the Fenton's reaction or the auto-oxidation of Fe(II)). The extent of dsDNA damage by electrochemically generated hydroxyl radicals depended on the current density applied to the generating electrode: by applying 5, 10, and 50mAcm -2 , selected relative biosensor responses decreased after 3min incubation from 100% to 38%, 27%, and 3%, respectively. Chemically generated hydroxyl radicals caused less pronounced dsDNA damage, and their damaging activity depended on the form of Fe(II) ions: decreases to 49% (Fenton's reaction; Fe(II) complexed with EDTA) and 33% (auto-oxidation of Fe(II); Fe(II) complexed with dsDNA) were observed after 10min incubation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Study on DNA damages induced by UV radiation

    International Nuclear Information System (INIS)

    Doan Hong Van; Dinh Ba Tuan; Tran Tuan Anh; Nguyen Thuy Ngan; Ta Bich Thuan; Vo Thi Thuong Lan; Tran Minh Quynh; Nguyen Thi Thom

    2015-01-01

    DNA damages in Escherichia coli (E. coli) exposed to UV radiation have been investigated. After 30 min of exposure to UV radiation of 5 mJ/cm 2 , the growth of E. coli in LB broth medium was about only 10% in compared with non-irradiated one. This results suggested that the UV radiation caused the damages for E. coli genome resulted in reduction in its growth and survival, and those lesions can be somewhat recovered. For both solutions of plasmid DNAs and E. coli cells containing plasmid DNA, this dose also caused the breakage on single and double strands of DNA, shifted the morphology of DNA plasmid from supercoiled to circular and linear forms. The formation of pyrimidine dimers upon UV radiation significantly reduced when the DNA was irradiated in the presence of Ganoderma lucidum extract. Thus, studies on UV-induced DNA damage at molecular level are very essential to determine the UV radiation doses corresponding to the DNA damages, especially for creation and selection of useful radiation-induced mutants, as well as elucidation the protective effects of the specific compounds against UV light. (author)

  2. Interactions of acetylated histones with DNA as revealed by UV laser induced histone-DNA crosslinking

    International Nuclear Information System (INIS)

    Stefanovsky, V.Yu.; Dimitrov, S.I.; Angelov, D.; Pashev, I.G.

    1989-01-01

    The interaction of acetylated histones with DNA in chromatin has been studied by UV laser-induced crosslinking histones to DNA. After irradiation of the nuclei, the covalently linked protein-DNA complexes were isolated and the presence of histones in them demonstrated immunochemically. When chromatin from irradiated nuclei was treated with clostripain, which selectively cleaved the N-terminal tails of core histones, no one of them was found covalently linked to DNA, thus showing that crosslinking proceeded solely via the N-terminal regions. However, the crosslinking ability of the laser was preserved both upon physiological acetylation of histones, known to be restricted to the N-terminal tails, and with chemically acetylated chromatin. This finding is direct evidence that the postsynthetic histone acetylation does not release the N-terminal tails from interaction with DNA

  3. Mitochondrial DNA haplotypes induce differential patterns of DNA methylation that result in differential chromosomal gene expression patterns.

    Science.gov (United States)

    Lee, William T; Sun, Xin; Tsai, Te-Sha; Johnson, Jacqueline L; Gould, Jodee A; Garama, Daniel J; Gough, Daniel J; McKenzie, Matthew; Trounce, Ian A; St John, Justin C

    2017-01-01

    Mitochondrial DNA copy number is strictly regulated during development as naive cells differentiate into mature cells to ensure that specific cell types have sufficient copies of mitochondrial DNA to perform their specialised functions. Mitochondrial DNA haplotypes are defined as specific regions of mitochondrial DNA that cluster with other mitochondrial sequences to show the phylogenetic origins of maternal lineages. Mitochondrial DNA haplotypes are associated with a range of phenotypes and disease. To understand how mitochondrial DNA haplotypes induce these characteristics, we used four embryonic stem cell lines that have the same set of chromosomes but possess different mitochondrial DNA haplotypes. We show that mitochondrial DNA haplotypes influence changes in chromosomal gene expression and affinity for nuclear-encoded mitochondrial DNA replication factors to modulate mitochondrial DNA copy number, two events that act synchronously during differentiation. Global DNA methylation analysis showed that each haplotype induces distinct DNA methylation patterns, which, when modulated by DNA demethylation agents, resulted in skewed gene expression patterns that highlight the effectiveness of the new DNA methylation patterns established by each haplotype. The haplotypes differentially regulate α -ketoglutarate, a metabolite from the TCA cycle that modulates the TET family of proteins, which catalyse the transition from 5-methylcytosine, indicative of DNA methylation, to 5-hydroxymethylcytosine, indicative of DNA demethylation. Our outcomes show that mitochondrial DNA haplotypes differentially modulate chromosomal gene expression patterns of naive and differentiating cells by establishing mitochondrial DNA haplotype-specific DNA methylation patterns.

  4. UV-induced DNA-binding proteins in human cells

    International Nuclear Information System (INIS)

    Glazer, P.M.; Greggio, N.A.; Metherall, J.E.; Summers, W.C.

    1989-01-01

    To investigate the response of human cells to DNA-damaging agents such as UV irradiation, the authors examined nuclear protein extracts of UV-irradiated HeLa cells for the presence of DNA-binding proteins. Electrophoretically separated proteins were transferred to a nitrocellulose filter that was subsequently immersed in a binding solution containing radioactively labeled DNA probes. Several DNA-binding proteins were induced in HeLa cells after UV irradiation. These included proteins that bind predominantly double-stranded DNA and proteins that bind both double-stranded and single-stranded DNA. The binding proteins were induced in a dose-dependent manner by UV light. Following a dose of 12 J/m 2 , the binding proteins in the nuclear extracts increased over time to a peak in the range of 18 hr after irradiation. Experiments with metabolic inhibitors (cycloheximide and actinomycin D) revealed that de novo synthesis of these proteins is not required for induction of the binding activities, suggesting that the induction is mediated by protein modification

  5. Damage-induced DNA repair processes in Escherichia coli cells

    International Nuclear Information System (INIS)

    Slezarikova, V.

    1986-01-01

    The existing knowledge is summed up of the response of Escherichia coli cells to DNA damage due to various factors including ultraviolet radiation. So far, three inducible mechanisms caused by DNA damage are known, viz., SOS induction, adaptation and thermal shock induction. Greatest attention is devoted to SOS induction. Its mechanism is described and the importance of the lexA recA proteins is shown. In addition, direct or indirect role is played by other proteins, such as the ssb protein binding the single-strand DNA sections. The results are reported of a study of induced repair processes in Escherichia coli cells repeatedly irradiated with UV radiation. A model of induction by repeated cell irradiation discovered a new role of induced proteins, i.e., the elimination of alkali-labile points in the daughter DNA synthetized on a damaged model. The nature of the alkali-labile points has so far been unclear. In the adaptation process, regulation proteins are synthetized whose production is induced by the presence of alkylation agents. In the thermal shock induction, new proteins synthetize in cells, whose function has not yet been clarified. (E.S.)

  6. Photo-induced antimicrobial and DNA cleavage studies of ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 125, No. 5, September 2013, pp. 1015–1027. c Indian Academy of Sciences. Photo-induced antimicrobial and DNA cleavage studies ... †Present address: Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, India. #Present address: ..... C overnight and exam- ined for ...

  7. DNA and RNA induced enantioselectivity in chemical synthesis

    NARCIS (Netherlands)

    Roelfes, Gerard

    One of the hallmarks of DNA and RNA structures is their elegant chirality. Using these chiral structures to induce enantioselectivity in chemical synthesis is as enticing as it is challenging. In recent years, three general approaches have been developed to achieve this, including chirality transfer

  8. DNA binding induces conformational transition within human DNA topoisomerase I in solution.

    Science.gov (United States)

    Oleinikov, Vladimir; Sukhanova, Alyona; Mochalov, Konstantin; Ustinova, Olga; Kudelina, Irina; Bronstein, Igor; Nabiev, Igor

    2002-01-01

    We employed Raman and circular dichroism (CD) spectroscopy to probe the molecular structure of 68-kDa recombinant human DNA topoisomerase I (TopoI) in solution, in a complex with a 16-bp DNA fragment containing a camptothecin-enhanced TopoI cleavage site, and in a ternary complex with this oligonucleotide and topotecan. Raman spectroscopy reveals a TopoI secondary structure transition and significant changes in the hydrogen bonding of the tyrosine residues induced by the DNA binding. CD spectroscopy confirms the Raman data and identifies a DNA-induced (>7%) decrease of the TopoI alpha helix accompanied by at least a 6% increase of the beta structure. The Raman DNA molecular signatures demonstrated a bandshift that is expected for a net change in the environment of guanine C6 [double bond] O groups from pairing to solvent exposure. The formation of a ternary cleavage complex with TopoI, DNA, and topotecan as probed by CD spectroscopy reveals neither additional modifications of the TopoI secondary structure nor of the oligonucleotide structure, compared to the TopoI-oligonucleotide complex. Copyright 2002 Wiley Periodicals, Inc.

  9. Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations In Vivo

    Science.gov (United States)

    Kiraly, Orsolya; Gong, Guanyu; Olipitz, Werner; Muthupalani, Sureshkumar; Engelward, Bevin P.

    2015-01-01

    Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. PMID:25647331

  10. DNA repair in mammalian nerve cells. 1. DNA synthesis in cerebral cortex induced by γ-irradiation of rats

    International Nuclear Information System (INIS)

    Ivanov, V.A.; Terpilovskaya, O.N.; Kulikov, A.V.; Tret'yak, T.M.

    1987-01-01

    A study was made of the DNA synthesis in cerebral cortex of rats, aged 14 and 60 days, after gamma-irradiation in vivo in a dose of 7 Gy, the 3 H-thymidine incorporation into DNA being determined. 137 Cs-radiation induces additional DNA synthesis in the neocortex tissue and in neurons. In the cortex of 14 day-old rats, the induced DNA synthesis stops 2 hours after irradiation, whereas in the cortex of 60 day-old rats and in neurons of rats of both the age groups DNA synthesis is proceeding for 3-35 hours. Specificity of DNA reparation, processes in nondividing cells is discussed

  11. Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration.

    Science.gov (United States)

    Li, Na; Parrish, Marcus; Chan, Tze Khee; Yin, Lu; Rai, Prashant; Yoshiyuki, Yamada; Abolhassani, Nona; Tan, Kong Bing; Kiraly, Orsolya; Chow, Vincent T K; Engelward, Bevin P

    2015-08-01

    Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of 2 weeks in vivo. We show that influenza induces DNA damage to both, when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67-positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DNA double strand break (DSB) repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA damage both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome.

  12. Nek1 silencing slows down DNA repair and blocks DNA damage-induced cell cycle arrest.

    Science.gov (United States)

    Pelegrini, Alessandra Luíza; Moura, Dinara Jaqueline; Brenner, Bethânia Luise; Ledur, Pitia Flores; Maques, Gabriela Porto; Henriques, João Antônio Pegas; Saffi, Jenifer; Lenz, Guido

    2010-09-01

    Never in mitosis A (NIMA)-related kinases (Nek) are evolutionarily conserved proteins structurally related to the Aspergillus nidulans mitotic regulator NIMA. Nek1 is one of the 11 isoforms of the Neks identified in mammals. Different lines of evidence suggest the participation of Nek1 in response to DNA damage, which is also supported by the interaction of this kinase with proteins involved in DNA repair pathways and cell cycle regulation. In this report, we show that cells with Nek1 knockdown (KD) through stable RNA interference present a delay in DNA repair when treated with methyl-methanesulfonate (MMS), hydrogen peroxide (H(2)O(2)) and cisplatin (CPT). In particular, interstrand cross links induced by CPT take much longer to be resolved in Nek1 KD cells when compared to wild-type (WT) cells. In KD cells, phosphorylation of Chk1 in response to CPT was strongly reduced. While WT cells accumulate in G(2)/M after DNA damage with MMS and H(2)O(2), Nek1 KD cells do not arrest, suggesting that G(2)/M arrest induced by the DNA damage requires Nek1. Surprisingly, CPT-treated Nek1 KD cells arrest with a 4N DNA content similar to WT cells. This deregulation in cell cycle control in Nek1 KD cells leads to an increased sensitivity to genotoxic agents when compared to WT cells. These results suggest that Nek1 is involved in the beginning of the cellular response to genotoxic stress and plays an important role in preventing cell death induced by DNA damage.

  13. Circular Mitochondrial DNA: A Geant4-DNA User Application for Evaluating Radiation-induced Damage in Circular Mitochondrial DNA.

    Science.gov (United States)

    Tavakoli, Mohammad Bagher; Moradi, Habiballah; Khanahmad, Hossein; Hosseini, Mohsen

    2017-01-01

    The aim of this study was to develop a nucleotide geometrical model of the circular mitochondrial DNA (mt-DNA) structure using Geant4-DNA toolkit to predict the radiation-induced damages such as single-strand breaks (SSB), double-strand breaks (DSB), and some other physical parameters. Our model covers the organization of a circular human mt genetic system. The current model includes all 16,659 base pairs of human mt-DNA. This new mt-DNA model has been preliminarily tested in this work by determining SSB and DSB DNA damage yields and site-hit probabilities due to the impact of proton particles. The accuracy of the geometry was determined by three-dimensional visualization in various ring element numbers. The hit locations were determined with respect to a reference coordinate system, and the corresponding base pairs were stored in the ROOT output file. The coordinate determination according to the algorithm was consistent with the expected results. The output results contain the information about the energy transfers in the backbone region of the DNA double helix. The output file was analyzed by root analyzing tools. Estimation of SSBs and DSBs yielded similar results with the increment of incident particle linear energy transfer. In addition, these values seem to be consistent with the corresponding experimental determinations. This model can be used in numerical simulations of mt-DNA radiation interactions to perform realistic evaluations of DNA-free radical reactions. This work will be extended to supercoiled conformation in the near future.

  14. Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration

    Science.gov (United States)

    Sato, Ayako; Kajiya, Hiroshi; Mori, Nana; Sato, Hironobu; Fukushima, Tadao; Kido, Hirofumi

    2017-01-01

    The initial step of bone regeneration requires the migration of osteogenic cells to defective sites. Our previous studies suggest that a salmon DNA-based scaffold can promote the bone regeneration of calvarial defects in rats. We speculate that the salmon DNA may possess osteoinductive properties, including the homing of migrating osteogenic cells. In the present study, we investigated the influence of the salmon DNA on osteoblastic differentiation and induction of osteoblast migration using MG63 cells (human preosteoblasts) in vitro. Moreover, we analyzed the bone regeneration of a critical-sized in vivo calvarial bone defect (CSD) model in rats. The salmon DNA enhanced both mRNA and protein expression of the osteogenesis-related factors, runt-related transcription factor 2 (Runx2), alkaline phosphatase, and osterix (OSX) in the MG63 cells, compared with the cultivation using osteogenic induction medium alone. From the histochemical and immunohistochemical assays using frozen sections of the bone defects from animals that were implanted with DNA disks, many cells were found to express aldehyde dehydrogenase 1, one of the markers for mesenchymal stem cells. In addition, OSX was observed in the replaced connective tissue of the bone defects. These findings indicate that the DNA induced the migration and accumulation of osteogenic cells to the regenerative tissue. Furthermore, an in vitro transwell migration assay showed that the addition of DNA enhanced an induction of osteoblast migration, compared with the medium alone. The implantation of the DNA disks promoted bone regeneration in the CSD of rats, compared with that of collagen disks. These results indicate that the salmon DNA enhanced osteoblastic differentiation and induction of migration, resulting in the facilitation of bone regeneration. PMID:28060874

  15. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  16. A radioimmunoassay of chicken growth hormone using growth hormone produced by recombinant DNA technology: validation and observations of plasma hormone variations in genetically fat and lean chickens

    International Nuclear Information System (INIS)

    Picaper, G.; Leclercq, B.; Saadoun, A.; Mongin, P.

    1986-01-01

    A radioimmunoassay (RIA) of chicken growth hormone (c-GH) has been developed using growth hormone produced by recombinant DNA technology. The best rabbit antiserum was used at 1/300,000 final dilution. Hormone labelling by iodine-125, achieved by chloramine T, allowed a specific activity of 3.7 MBq/μg. The equilibrium curves show that optimal conditions of incubation were reached at room temperature for 24h. This RIA used a second sheep antibody which precipitated the whole c-GH bound to the first antibody in the presence of polyethylene glycol solution (6%) at room temperature for 30 min. In our conditions, sensitivity was about 30 pg of c-GH per tube. Coefficient of variation was around 10%. No cross reaction was found with avian LH and prolactin. Thyrotrophin-releasing hormone (TRH) injection to young chickens induced 20-fold higher plasma c-GH concentrations. Simultaneous injection of somatostatin and TRH slightly reduced these concentrations. Hypoglycemia induced by insulin led to a drop of the plasma c-GH concentration. Conversely, refeeding or glucose load induced slight increases of the c-GH level. Genetically fat chickens tended to exhibit higher plasma c-GH concentrations than lean chickens

  17. Hypoxia-inducible factor-1alpha DNA induced angiogenesis in a rat cerebral ischemia model.

    Science.gov (United States)

    Matsuda, Takeshi; Abe, Tatsuya; Wu, Jian Liang; Fujiki, Minoru; Kobayashi, Hidenori

    2005-07-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that regulates the adaptive response to hypoxia in mammalian cells. It consists of a regulatory subunit HIF-1alpha, which accumulates under hypoxic conditions, and a constitutively expressed subunit, HIF-1beta. In this study, we investigated HIF-1alpha naked DNA-induced angiogenesis in a cerebral ischemic model in vivo. We utilized a rat encephalo-myo-synangiosis (EMS) model and inoculated HIF-1alpha DNA into the brain surface or the temporal muscle. We analysed whether HIF-1alpha induced angiogenic factors and collateral circulation. A histological section treated with HIF-1alpha DNA showed an increased expression of HIF1 a and VEGF with collateral circulation, in comparison with control DNA (p angiogenesis development. These results suggest the feasibility of a novel approach for therapeutic collateral circulation of cerebral ischemia in which neovascularization may be achieved indirectly using a transcriptional regulatory strategy.

  18. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    International Nuclear Information System (INIS)

    Sangwijit, K.; Yu, L.D.; Sarapirom, S.; Pitakrattananukool, S.; Anuntalabhochai, S.

    2015-01-01

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 10 12 to 1 × 10 17 ions/cm 2 treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  19. cDNA libraries for virus-induced gene silencing.

    Science.gov (United States)

    Todd, Andrea T; Liu, Enwu; Page, Jonathan E

    2010-01-01

    Virus-induced gene silencing (VIGS) exploits endogenous plant antiviral defense mechanisms to posttranscriptionally silence the expression of targeted plant genes. VIGS is quick and relatively easy to perform and therefore serves as a powerful tool for high-throughput functional genomics in plants. Combined with the use of subtractive cDNA libraries for generating a collection of VIGS-ready cDNA inserts, VIGS can be utilized to screen a large number of genes to determine phenotypes resulting from the knockdown/knockout of gene function. Taking into account the optimal insert design for VIGS, we describe a methodology for producing VIGS-ready cDNA libraries enriched for inserts relevant to the biological process of interest.

  20. Urea selectively induces DNA synthesis in renal epithelial cells.

    Science.gov (United States)

    Cohen, D M; Gullans, S R

    1993-04-01

    Hyperosmotic stress with the functionally impermeant solute NaCl has been shown by us and others to inhibit cell growth and DNA synthesis. Several lines of evidence suggest that urea, the other principal renal medullary solute, may exert a growth-promoting effect on renal epithelial cells. Among these is the finding that urea upregulates expression at the mRNA level of two growth-associated immediate-early genes, Egr-1 and c-fos. In the present study, urea, in concentrations characteristic of the renal medulla, increased [3H]thymidine incorporation approximately threefold in confluent, growth-suppressed Madin-Darby canine kidney (MDCK) cells, whereas another readily membrane-permeant solute, glycerol, did not. Urea also overcame the inhibitory effect of hyperosmotic NaCl on DNA synthesis. The urea-induced increase in [3H]thymidine incorporation was also evident in the renal epithelial LLC-PK1 cell line, but not in renal nonepithelial and epithelial nonrenal cell types examined. In addition, it was associated with a 15% increase in total DNA content measured fluorometrically at 24 h of treatment. There was, however, no associated increase in cell proliferation as measured by cell number, total protein content, or cell cycle distribution. Urea also failed to induce polyploidy or aneuploidy. Therefore cells of renal epithelial origin may be uniquely capable of responding to hyperosmotic urea with increased DNA synthesis through an undefined and potentially novel mechanism.

  1. Radiation induced DNA damage and repair in mutagenesis

    International Nuclear Information System (INIS)

    Strniste, G.F.; Chen, D.J.; Okinaka, R.T.

    1987-01-01

    The central theme in cellular radiobiological research has been the mechanisms of radiation action and the physiological response of cells to this action. Considerable effort has been directed toward the characterization of radiation-induced DNA damage and the correlation of this damage to cellular genetic change that is expressed as mutation or initiating events leading to cellular transformation and ultimately carcinogenesis. In addition, there has been a significant advancement in their understanding of the role of DNA repair in the process of mutation leading to genetic change in cells. There is extensive literature concerning studies that address radiation action in both procaryotic and eucaryotic systems. This brief report will make no attempt to summarize this voluminous data but will focus on recent results from their laboratory of experiments in which they have examined, at both the cellular and molecular levels, the process of ionizing radiation-induced mutagenesis in cultured human cells

  2. Sulforaphane induces DNA single strand breaks in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sestili, Piero, E-mail: piero.sestili@uniurb.it [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Paolillo, Marco [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Lenzi, Monia [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy); Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Fimognari, Carmela [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-07-07

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 {mu}M SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value

  3. Sulforaphane induces DNA single strand breaks in cultured human cells

    International Nuclear Information System (INIS)

    Sestili, Piero; Paolillo, Marco; Lenzi, Monia; Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara; Fimognari, Carmela

    2010-01-01

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 μM SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value of

  4. Polymer- and salt-induced toroids of hexagonal DNA.

    OpenAIRE

    Ubbink, J; Odijk, T

    1995-01-01

    A model is proposed for polymer- and salt-induced toroidal condensates of DNA, based on a recent theory of the undulation enhancement of the electrostatic interaction in the bulk hexagonal phase of semiflexible polyions. In a continuum approximation, the thermodynamic potential of a monomolecular toroid may be split up in bulk, surface, and curvature contributions. With the help of an approximate analytical minimization procedure, the optimal torus dimensions are calculated as a function of t...

  5. X-ray induced degradation of DNA in Aspergillus nidulans cells comparative analysis of UV- and X-ray induced DNA degradation

    International Nuclear Information System (INIS)

    Zinchenko, V.V.; Babykin, M.M.

    1980-01-01

    Irradiating cells of Aspergillus nidulans of the wild type in the logarythmical growth phase with X-rays leads to a certain retention in DNA synthesis. This period is characterized by an insignificant fermentative DNA degradation connected with a process of its repair. There is no direct dependence between the radiation dose and the level of DNA degradation. The investigation of X-ray induced DNA degradation in a number of UVS-mutants permits to show the existence of two branches of DNA degradation - dependent and independent of the exogenic energy source. The dependence of DNA degradation on albumen synthesis prior to irradiation and after it, is demonstrated. It is supposed that the level of X-ray induced DNA degradation is determined by two albumen systems, one of which initiates degradation and the other terminates it. The comparative analysis of UV and X-ray induced DNA degradation is carried out

  6. Protein Self-Assembly and Protein-Induced DNA Morphologies

    Science.gov (United States)

    Mawhinney, Matthew T.

    The ability of biomolecules to associate into various structural configurations has a substantial impact on human physiology. The synthesis of protein polypeptide chains using the information encoded by DNA is mediated through the use of regulatory proteins, known as transcription factors. Some transcription factors perform function by inducing local curvature in deoxyribonucleic acid (DNA) strands, the mechanisms of which are not entirely known. An important architectural protein, eleven zinc finger CTCF (11 ZF CTCF) is involved in genome organization and hypothesized to mediate DNA loop formation. Direct evidence for these CTCF-induced DNA loops has yet to be observed. In this thesis, the effect of 11 ZF CTCF on DNA morphology is examined using atomic force microscopy, a powerful technique for visualizing biomolecules with nanometer resolution. The presence of CTCF is revealed to induce a variety of morphologies deviating from the relaxed state of control DNA samples, including compact circular complexes, meshes, and networks. Images reveal quasi-circular DNA/CTCF complexes consistent with a single DNA molecule twice wrapped around the protein. The structures of DNA and proteins are highly important for operations in the cell. Structural irregularities may lead to a variety of issues, including more than twenty human pathologies resulting from aberrant protein misfolding into amyloid aggregates of elongated fibrils. Insulin deficiency and resistance characterizing type 2 diabetes often requires administration of insulin. Injectable and inhalable delivery methods have been documented to result in the deposition of amyloid fibrils. Oligomers, soluble multiprotein assemblies, are believed to play an important role in this process. Insulin aggregation under physiological conditions is not well understood and oligomers have not yet been fully characterized. In this thesis, in vitro insulin aggregation at acidic and neutral pH is explored using a variety of techniques

  7. Visual characterization and quantitative measurement of artemisinin-induced DNA breakage

    Energy Technology Data Exchange (ETDEWEB)

    Cai Huaihong [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Yang Peihui [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: typh@jnu.edu.cn; Chen Jianan [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Liang Zhihong [Experiment and Technology Center, Jinan University, Guangzhou 510632 (China); Chen Qiongyu [Institute of Genetic Engineering, Jinan University, Guangzhou 510632 (China); Cai Jiye [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: tjycai@jnu.edu.cn

    2009-05-01

    DNA conformational change and breakage induced by artemisinin, a traditional Chinese herbal medicine, have been visually characterized and quantitatively measured by the multiple tools of electrochemistry, UV-vis absorption spectroscopy, atomic force microscopy (AFM), and DNA electrophoresis. Electrochemical and spectroscopic results confirm that artemisinin can intercalate into DNA double helix, which causes DNA conformational changes. AFM imaging vividly demonstrates uneven DNA strand breaking induced by QHS interaction. To assess these DNA breakages, quantitative analysis of the extent of DNA breakage has been performed by analyzing AFM images. Basing on the statistical analysis, the occurrence of DNA breaks is found to depend on the concentration of artemisinin. DNA electrophoresis further validates that the intact DNA molecules are unwound due to the breakages occur at the single strands. A reliable scheme is proposed to explain the process of artemisinin-induced DNA cleavage. These results can provide further information for better understanding the anticancer activity of artemisinin.

  8. The influence of DNA sequence on epigenome-induced pathologies

    Directory of Open Access Journals (Sweden)

    Meagher Richard B

    2012-07-01

    Full Text Available Abstract Clear cause-and-effect relationships are commonly established between genotype and the inherited risk of acquiring human and plant diseases and aberrant phenotypes. By contrast, few such cause-and-effect relationships are established linking a chromatin structure (that is, the epitype with the transgenerational risk of acquiring a disease or abnormal phenotype. It is not entirely clear how epitypes are inherited from parent to offspring as populations evolve, even though epigenetics is proposed to be fundamental to evolution and the likelihood of acquiring many diseases. This article explores the hypothesis that, for transgenerationally inherited chromatin structures, “genotype predisposes epitype”, and that epitype functions as a modifier of gene expression within the classical central dogma of molecular biology. Evidence for the causal contribution of genotype to inherited epitypes and epigenetic risk comes primarily from two different kinds of studies discussed herein. The first and direct method of research proceeds by the examination of the transgenerational inheritance of epitype and the penetrance of phenotype among genetically related individuals. The second approach identifies epitypes that are duplicated (as DNA sequences are duplicated and evolutionarily conserved among repeated patterns in the DNA sequence. The body of this article summarizes particularly robust examples of these studies from humans, mice, Arabidopsis, and other organisms. The bulk of the data from both areas of research support the hypothesis that genotypes predispose the likelihood of displaying various epitypes, but for only a few classes of epitype. This analysis suggests that renewed efforts are needed in identifying polymorphic DNA sequences that determine variable nucleosome positioning and DNA methylation as the primary cause of inherited epigenome-induced pathologies. By contrast, there is very little evidence that DNA sequence directly

  9. Quantitation of DNA Adducts Induced by 1,3-Butadiene

    Science.gov (United States)

    Sangaraju, Dewakar; Villalta, Peter W.; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5-10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  10. Novel DNA damage checkpoint in mitosis: Mitotic DNA damage induces re-replication without cell division in various cancer cells.

    Science.gov (United States)

    Hyun, Sun-Yi; Rosen, Eliot M; Jang, Young-Joo

    2012-07-06

    DNA damage induces multiple checkpoint pathways to arrest cell cycle progression until damage is repaired. In our previous reports, when DNA damage occurred in prometaphase, cells were accumulated in 4 N-DNA G1 phase, and mitosis-specific kinases were inactivated in dependent on ATM/Chk1 after a short incubation for repair. We investigated whether or not mitotic DNA damage causes cells to skip-over late mitotic periods under prolonged incubation in a time-lapse study. 4 N-DNA-damaged cells re-replicated without cell division and accumulated in 8 N-DNA content, and the activities of apoptotic factors were increased. The inhibition of DNA replication reduced the 8 N-DNA cell population dramatically. Induction of replication without cell division was not observed upon depletion of Chk1 or ATM. Finally, mitotic DNA damage induces mitotic slippage and that cells enter G1 phase with 4 N-DNA content and then DNA replication is occurred to 8 N-DNA content before completion of mitosis in the ATM/Chk1-dependent manner, followed by caspase-dependent apoptosis during long-term repair. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. IL-18 reduces ultraviolet radiation-induced DNA damage and thereby affects photoimmunosuppression.

    NARCIS (Netherlands)

    Schwarz, Agatha; Maeda, Akira; Ständer, Sonja; Steeg, Harry van; Schwarz, Thomas

    2006-01-01

    UV-induced DNA damage has been recognized as the major molecular trigger for photoimmunosuppression. IL-12 prevents UV-induced immunosuppression via its recently discovered capacity to reduce DNA damage presumably via induction of DNA repair. Because IL-18 shares some biological activities with

  12. Chromatin structure influence the sensitivity of DNA to ionizing radiation induced DNA damage

    International Nuclear Information System (INIS)

    Gupta, Sanjay

    2016-01-01

    Chromatin acts as a natural hindrance in DNA-damage recognition, repair and recovery. Histone and their variants undergo differential post-translational modification(s) and regulate chromatin structure to facilitate DNA damage response (DDR). During the presentation we will discuss the importance of chromatin organization and histone modification(s) during IR-induced DNA damage response in human liver cells. Our data shows G1-phase specific decrease of H3 serine10 phosphorylation in response to DNA damage is coupled with chromatin compaction in repair phase of DDR. The loss of H3Ser10P during DNA damage shows an inverse correlation with gain of γH2AX from a same mono-nucleosome in a dose-dependent manner. The loss of H3Ser10P is a universal phenomenon as it is independent of origin of cell lines and nature of genotoxic agents in G1 phase cells. The reversible reduction of H3Ser10P is mediated by opposing activities of phosphatase, MKP1 and kinase, MSK1 of the MAP kinase pathway. The present study suggests distinct reversible histone marks are associated with G1-phase of cell cycle and plays a critical role in chromatin organization which may facilitate differential sensitivity against radiation. Thus, the study raises the possibility of combinatorial modulation of H3Ser10P and histone acetylation with specific inhibitors to target the radio-resistant cancer cells in G1-phase and thus may serve as promising targets for cancer therapy. (author)

  13. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  14. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  15. In situ enzymology of DNA replication and ultraviolet-induced DNA repair synthesis in permeable human cells

    International Nuclear Information System (INIS)

    Dresler, S.; Frattini, M.G.; Robinson-Hill, R.M.

    1988-01-01

    Using permeable diploid human fibroblasts, the authors have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent K m values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 μM. For UV-induced DNA repair synthesis, the apparent K m values were substantially lower, ranging from 0.11 to 0.44 μM for AG1518 cells and from 0.06 to 0.24 μM for IMR-90 cells. Recent data implicate DNA polymerase δ in UV-induced repair synthesis and suggest that DNA polymerases α and δ are both involved in semiconservative replication. They measured K m values for dGTP and dTTP for polymerases α and δ, for comparison with the values for replication and repair synthesis. The deoxyribonucleotide K m values for DNA polymerase δ are much greater than the K m values for UV-induced repair synthesis, suggesting that when polymerase δ functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases. The K m values for UV-induced repair synthesis are 5-80-fold lower than deoxyribonucleotide concentrations that have been reported for intact cultured diploid human fibroblasts. For replication, however, the K m for dGTP is only slightly lower than the average cellular dGTP concentration that has been reported for exponentially growing human fibroblasts. This finding is consistent with the concept that nucleotide compartmentation is required for the attainment of high rates of DNA replication in vivo

  16. In situ enzymology of DNA replication and ultraviolet-induced DNA repair synthesis in permeable human cells

    Energy Technology Data Exchange (ETDEWEB)

    Dresler, S.; Frattini, M.G.; Robinson-Hill, R.M. (Washington Univ., St. Louis, MO (USA))

    1988-09-20

    Using permeable diploid human fibroblasts, the authors have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent K{sub m} values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 {mu}M. For UV-induced DNA repair synthesis, the apparent K{sub m} values were substantially lower, ranging from 0.11 to 0.44 {mu}M for AG1518 cells and from 0.06 to 0.24 {mu}M for IMR-90 cells. Recent data implicate DNA polymerase {delta} in UV-induced repair synthesis and suggest that DNA polymerases {alpha} and {delta} are both involved in semiconservative replication. They measured K{sub m} values for dGTP and dTTP for polymerases {alpha} and {delta}, for comparison with the values for replication and repair synthesis. The deoxyribonucleotide K{sub m} values for DNA polymerase {delta} are much greater than the K{sub m} values for UV-induced repair synthesis, suggesting that when polymerase {delta} functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases. The K{sub m} values for UV-induced repair synthesis are 5-80-fold lower than deoxyribonucleotide concentrations that have been reported for intact cultured diploid human fibroblasts. For replication, however, the K{sub m} for dGTP is only slightly lower than the average cellular dGTP concentration that has been reported for exponentially growing human fibroblasts. This finding is consistent with the concept that nucleotide compartmentation is required for the attainment of high rates of DNA replication in vivo.

  17. Lighting up left-handed Z-DNA: photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations.

    Science.gov (United States)

    Feng, Lingyan; Zhao, Andong; Ren, Jinsong; Qu, Xiaogang

    2013-09-01

    Left-handed Z-DNA has been identified as a transient structure occurred during transcription. DNA B-Z transition has attracted much attention because of not only Z-DNA biological importance but also their relation to disease and DNA nanotechnology. Recently, photoluminescent carbon dots, especially highly luminescent nitrogen-doped carbon dots, have attracted much attention on their applications to bioimaging and gene/drug delivery because of carbon dots with low toxicity, highly stable photoluminescence and controllable surface function. However, it is still unknown whether carbon dots can influence DNA conformation or structural transition, such as B-Z transition. Herein, based on our previous series work on DNA interactions with carbon nanotubes, we report the first example that photoluminescent carbon dots can induce right-handed B-DNA to left-handed Z-DNA under physiological salt conditions with sequence and conformation selectivity. Further studies indicate that carbon dots would bind to DNA major groove with GC preference. Inspired by carbon dots lighting up Z-DNA and DNA nanotechnology, several types of DNA logic gates have been designed and constructed based on fluorescence resonance energy transfer between photoluminescent carbon dots and DNA intercalators.

  18. Relationship between two year PSA nadir and biochemical recurrence in prostate cancer patients treated with iodine-125 brachytherapy; A relacao entre PSA nadir de dois anos e recidiva bioquimica no tratamento do cancer de prostata com braquiterapia de semente de iodo-125

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Carlos Antonio da Silva; Vieira, Sergio Lannes; Penna, Antonio Belmiro Rodrigues Campbell, E-mail: carlosfranca@cremerj.org.br [Instituto Brasileiro de Oncologia (IBO), Rio de Janeiro, RJ (Brazil); Radioterapia Botafogo, Rio de janeiro, RJ (Brazil); Carvalho, Antonio Carlos Pires [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Bernabe, Antonio Jose Serrano [Radioterapia Botafogo, Rio de janeiro, RJ (Brazil)

    2014-03-15

    Objective: to evaluate the relationship between two year PSA nadir (PSAn) after brachytherapy and biochemical recurrence rates in prostate cancer patients. Materials and methods: In the period from January 1998 to August 2007, 120 patients were treated with iodine-125 brachytherapy alone. The results analysis was based on the definition of biochemical recurrence according to the Phoenix Consensus. Results: biochemical control was observed in 86 patients (71.7%), and biochemical recurrence, in 34 (28.3%). Mean PSAn was 0.53 ng/ml. The mean follow-up was 98 months. The patients were divided into two groups: group 1, with two year PSAn < 0.5 ng/ml after brachytherapy (74 patients; 61.7%), and group 2, with two year PSAn ≥ 0.5 ng/ml after brachytherapy (46 patients; 38.3%). Group 1 presented biochemical recurrence in 15 patients (20.3%), and group 2, in 19 patients (43.2%) (p < 0.02). The analysis of biochemical disease-free survival at seven years, stratified by the two groups, showed values of 80% and 64% (p < 0.02), respectively. Conclusion: levels of two year PSAn ≥ 0.5 ng/ml after brachytherapy are strongly correlated with a poor prognosis. This fact may help to identify patients at risk for disease recurrence. (author)

  19. Increase in CpG DNA-induced inflammatory responses by DNA oxidation in macrophages and mice.

    Science.gov (United States)

    Yoshida, Hiroyuki; Nishikawa, Makiya; Kiyota, Tsuyoshi; Toyota, Hiroyasu; Takakura, Yoshinobu

    2011-07-15

    Unmethylated CpG dinucleotide (CpG motif) is involved in the exacerbation of DNA-associated autoimmune diseases. We investigated the effect of DNA containing 8-hydroxydeoxyguanosine (oxo-dG), a representative DNA biomarker for oxidative stress in the diseases, on CpG motif-dependent inflammatory responses. ODN1668 and ODN1720 were selected as CpG-DNA and non-CpG DNA, respectively. Deoxyguanosine in the CpG motif (G9) or outside the motif (G15) of ODN1668 was substituted with oxo-dG to obtain oxo(G9)-1668 and oxo(G15)-1668, respectively. Oxo(G15)-1668 induced a significantly higher amount of tumor necrosis factor (TNF)-α from RAW264.7 macrophage-like cells than ODN1668, whereas oxo(G9)-1668, oxo(G8)-1720, or oxo(G15)-1720 hardly did. CpG DNA-induced TNF-α production was significantly increased by addition of oxo(G8)-1720 or oxo(G15)-1720, but not of ODN1720. This oxo-dG-containing DNA-induced increase in TNF-α production was also observed in primary cultured macrophages isolated from wild-type mice, but not observed in those from Toll-like receptor (TLR)-9 knockout mice. In addition, TNF-α production by ligands for TLR3, TLR4, or TLR7 was not affected by oxo-dG-containing DNA. Then, the footpad swelling induced by subcutaneous injection of ODN1668 into mice was increased by coinjection with oxo(G8)-1720, but not with ODN1720. These results indicate that oxo-dG-containing DNA increases the CpG motif-dependent inflammatory responses, which would exacerbate DNA-related autoimmune diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders

    National Research Council Canada - National Science Library

    Kuo, Shue-Ru

    2001-01-01

    .... Both DNA-PK and the unknown factor are functioned as trans-acting inhibitors. RPA is the major eukaryotic single-stranded DNA binding protein required for DNA replication, repair and recombination...

  1. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Akari, E-mail: akari_yo@stu.musashino-u.ac.jp [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Kobayashi, Yume [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Tada, Shusuke [Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510 (Japan); Seki, Masayuki [Department of Biochemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai-shi, Miyagi 981-8558 (Japan); Enomoto, Takemi [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan)

    2014-09-12

    Highlights: • The UV sensitivity of POLH{sup −/−} cells was suppressed by disruption of WRNIP1. • In WRNIP1{sup −/−/−}/POLH{sup −/−} cells, mutation frequencies and SCE after irradiation reduced. • WRNIP1 defect recovered rate of fork progression after irradiation in POLH{sup −/−} cells. • WRNIP1 functions upstream of Polη in the translesion DNA synthesis pathway. - Abstract: WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH{sup −/−}) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.

  2. Mitochondrial DNA plasticity is an essential inducer of tumorigenesis.

    Science.gov (United States)

    Lee, W T Y; Cain, J E; Cuddihy, A; Johnson, J; Dickinson, A; Yeung, K-Y; Kumar, B; Johns, T G; Watkins, D N; Spencer, A; St John, J C

    2016-01-01

    Although mitochondrial DNA has been implicated in diseases such as cancer, its role remains to be defined. Using three models of tumorigenesis, namely glioblastoma multiforme, multiple myeloma and osteosarcoma, we show that mitochondrial DNA plays defining roles at early and late tumour progression. Specifically, tumour cells partially or completely depleted of mitochondrial DNA either restored their mitochondrial DNA content or actively recruited mitochondrial DNA, which affected the rate of tumorigenesis. Nevertheless, non-depleted tumour cells modulated mitochondrial DNA copy number at early and late progression in a mitochondrial DNA genotype-specific manner. In glioblastoma multiforme and osteosarcoma, this was coupled with loss and gain of mitochondrial DNA variants. Changes in mitochondrial DNA genotype affected tumour morphology and gene expression patterns at early and late progression. Importantly, this identified a subset of genes that are essential to early progression. Consequently, mitochondrial DNA and commonly expressed early tumour-specific genes provide novel targets against tumorigenesis.

  3. A proposal of a novel DNA modification mechanism induced by irradiation

    International Nuclear Information System (INIS)

    Oka, Toshitaka

    2016-01-01

    This article depicts a proposal of a novel DNA modification mechanism induced by irradiation, and is written as an award work from Japanese Society of Radiation Chemistry. The mechanism of DNA modification induced by K-shell photoabsorption of nitrogen and oxygen atoms was investigated by electron paramagnetic resonance and x-ray absorption near edge structure measurements of calf thymus DNA film. The EPR intensities for DNA film were twofold times larger than those estimated based on the photoabsorption cross section. This suggests that the DNA film itself forms unpaired electron species through the excitation of enhanced electron recapturing, known as the postcollision interaction process. (author)

  4. Human Cytomegalovirus Induces JC Virus DNA Replication in Human Fibroblasts

    Science.gov (United States)

    Heilbronn, Regine; Albrecht, Ingrid; Stephan, Sonja; Burkle, Alexander; Zur Hausen, Harald

    1993-12-01

    JC virus, a human papovavirus, is the causative agent of the demyelinating brain disease progressive multifocal leucoencephalopathy (PML). PML is a rare but fatal disease which develops as a complication of severe immunosuppression. Latent JC virus is harbored by many asymptomatic carriers and is transiently reactivated from the latent state upon immunosuppression. JC virus has a very restricted host range, with human glial cells being the only tissue in which it can replicate at reasonable efficiency. Evidence that latent human cytomegalovirus is harbored in the kidney similar to latent JC virus led to the speculation that during episodes of impaired immunocompetence, cytomegalovirus might serve as helper virus for JC virus replication in otherwise nonpermissive cells. We show here that cytomegalovirus infection indeed leads to considerable JC virus DNA replication in cultured human fibroblasts that are nonpermissive for the replication of JC virus alone. Cytomegalovirus-mediated JC virus replication is dependent on the JC virus origin of replication and T antigen. Ganciclovir-induced inhibition of cytomegalovirus replication is associated with a concomitant inhibition of JC virus replication. These results suggest that reactivation of cytomegalovirus during episodes of immunosuppression might lead to activation of latent JC virus, which would enhance the probability of subsequent PML development. Ganciclovir-induced repression of both cytomegalovirus and JC virus replication may form the rational basis for the development of an approach toward treatment or prevention of PML.

  5. Radiosensitive Down syndrome lymphoblastoid lines have normal ionizing-radiation-induced inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Ganges, M.B.; Robbins, J.H.; Jiang, H.; Hauser, C.; Tarone, R.E.

    1988-01-01

    The extent of X-ray-induced inhibition of DNA synthesis was determined in radiosensitive lymphoblastoid lines from 3 patients with Down syndrome and 3 patients with ataxia telangiectasia (AT). Compared to 6 normal control lines, the 3 AT lines were abnormally resistant to X-ray-induced inhibition of DNA synthesis, while the 3 Down syndrome lines had normal inhibition. These results demonstrate that radiosensitive human cells can have normal X-ray-induced inhibition of DNA synthesis and provide new evidence for the dissociation of radioresistant DNA synthesis. (author). 27 refs.; 1 fig.; 1 tab

  6. Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: Evidence that DNA polymerases δ and β are involved in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine

    International Nuclear Information System (INIS)

    Hammond, R.A.; Miller, M.R.; McClung, J.K.

    1990-01-01

    The involvement of DNA polymerases α, β, and δ in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase α) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors of MNNG-induced DNA repair synthesis in intact cells by measuring the amount of [ 3 H]thymidine incorporated into repair DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 μg of aphidicolin/mL, 6% by 10 μM BuPdGTP, 13% by anti-(DNA polymerse α) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 μg of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase α) antibodies into HF nuclei. These results indicate that both DNA polymerase δ and β are involved in repairing DNA damage caused by MNNG

  7. Are lesions induced by ionizing radiation direct blocks to DNA chain elongation

    International Nuclear Information System (INIS)

    Painter, R.B.

    1983-01-01

    Ionizing radiation blocks DNA chain elongation in normal diploid fibroblasts but not in fibroblasts from patients with ataxia-telangiectasia, even though there are no differences in the damage induced between the two cell types. This difference suggests that radiation-induced lesions in DNA are not themselves blocks to chain elongation in ataxia cells and raises the possibility that in normal cells a mediator exists between DNA damage and chain termination

  8. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Sangwijit, K. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Bang Khen, Chiang Mai 50290 (Thailand); Pitakrattananukool, S. [School of Science, University of Phayao, Muang, Phayao 56000 (Thailand); Anuntalabhochai, S. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand)

    2015-12-15

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 10{sup 12} to 1 × 10{sup 17} ions/cm{sup 2} treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  9. Fibronectin inhibits cytokine production induced by CpG DNA in macrophages without direct binding to DNA.

    Science.gov (United States)

    Yoshida, Hiroyuki; Nishikawa, Makiya; Yasuda, Sachiyo; Toyota, Hiroyasu; Kiyota, Tsuyoshi; Takahashi, Yuki; Takakura, Yoshinobu

    2012-10-01

    Fibronectin (FN) is known to have four DNA-binding domains although their physiological significance is unknown. Primary murine peritoneal macrophages have been shown to exhibit markedly lower responsiveness to CpG motif-replete plasmid DNA (pDNA), Toll-like receptor-9 (TLR9) ligand, compared with murine macrophage-like cell lines. The present study was conducted to examine whether FN having DNA-binding domains is involved in this phenomenon. The expression of FN was significantly higher in primary macrophages than in a macrophage-like cell line, RAW264.7, suggesting that abundant FN might suppress the responsiveness in the primary macrophages. However, electrophoretic analysis revealed that FN did not bind to pDNA in the presence of a physiological concentration of divalent cations. Surprisingly, marked tumor necrosis factor - (TNF-)α production from murine macrophages upon CpG DNA stimulation was significantly reduced by exogenously added FN in a concentration-dependent manner but not by BSA, laminin or collagen. FN did not affect apparent pDNA uptake by the cells. Moreover, FN reduced TNF-α production induced by polyI:C (TLR3 ligand), and imiquimod (TLR7 ligand), but not by LPS (TLR4 ligand), or a non-CpG pDNA/cationic liposome complex. The confocal microscopic study showed that pDNA was co-localized with FN in the same intracellular compartment in RAW264.7, suggesting that FN inhibits cytokine signal transduction in the endosomal/lysosomal compartment. Taken together, the results of the present study has revealed, for the first time, a novel effect of FN whereby the glycoprotein modulates cytokine signal transduction via CpG-DNA/TLR9 interaction in macrophages without direct binding to DNA through its putative DNA-binding domains. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Inhibition by hyperthermia of repair synthesis and chromatin reassembly of ultraviolet-induced damage to DNA

    International Nuclear Information System (INIS)

    Bodell, W.J.; Cleaver, J.E.; Roti Roti, J.L.

    1984-01-01

    The authors have investigated the effects of hyperthermia treatment on sequential steps of the repair of UV-induced DNA damage in HeLa cells. DNA repair synthesis was inhibited by 40% after 15 min of hyperthermia treatment at 45 0 C; greater inhibition of repair synthesis occurred with prolonged incubation at 45 0 C. Enzymatic digestion of repair-labeled DNA with Exonuclease III indicated that once DNA repair was initiated, the DNA repair patch was synthesized to completion and that ligation of the DNA repair patch occurred. Thus, the observed inhibition of UV-induced DNA repair synthesis by hyperthermia treatment may be the result of inhibition of enzymes involved in the initiating steps(s) of DNA repair. DNA repair patches synthesized in UV-irradiated cells labeled at 37 0 C with[ 3 H]Thd were 2.2-fold more sensitive to micrococcal nuclease digestion than was parental DNA; if the length of the labeling period was prolonged, the nuclease sensitivity of the repair patch synthesized approached that of the parental DNA. DNA repair patches synthesized at 45 0 C, however, remained sensitive to micrococcal nuclease digestion even after long labeling periods, indicating that heat treatment inhibits the reassembly of the DNA repair patch into nucleosomal structures. 23 references, 3 figures, 2 tables

  11. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  12. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp.

    NARCIS (Netherlands)

    Buma, A.G.J.; van Hannen, E.J; Veldhuis, M.J W; Gieskes, W.W C

    The effect of UV-B on the occurrence of DNA damage and consequences for the cell cycle were studied in the marine diatom Cyclotella sp. DNA damage was quantified by immunofluorescent detection of thymine dimers in nuclear DNA of single cells using flow cytometry. A total UV-B dose (biologically

  13. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp

    NARCIS (Netherlands)

    Buma, A.G.J.; Van Hannen, E.J.; Veldhuis, M.; Gieskes, W.W.C.

    1996-01-01

    The effect of UV-B on the occurrence of DNA damage and consequences for the cell cycle were studied in the marine diatom Cyclotella sp. DNA damage was quantified by immunofluorescent detection of thymine dimers in nuclear DNA of single cells using flow cytometry. A total UV-B dose (biologically

  14. Radiation induced chromosome aberrations and interphase DNA geometry

    International Nuclear Information System (INIS)

    Nasazzi, N.; Di Giorgio, M.; Otero, D.

    1995-01-01

    Ionizing radiation induces DNA double strand breaks (DSBs) and their interaction and illegitimate recombination produces chromosome aberrations. Stable chromosome aberrations comprise inter-chromosomal events (translocations) and intra-chromosomal events (inversions). Assuming DSBs induction and interaction is completely random and neglecting proximity effects, the expected ratio of translocations to inversions is F=86, based on chromosome arm lengths. We analyzed the number of translocations and inversions using G-banding, in 16 lymphocyte cultures from blood samples acutely irradiated with γ-rays (dose range: 0.5Gy-3Gy). Our results give F=13.5, significantly smaller than F=86. Literature data show similar small F values but strongly spread. The excess of inversions could be explained by a 'proximity effect', it means that more proximate DSBs have an extra probability of interaction. Therefore, it is possible to postulate a special chromosome arrangement during irradiation and the subsequent interval. We propose a model where individual chromosomes show spherical confinement with some degree of overlapping and DSBs induction proportional to cross section. We assume a DSBs interaction probability function with cut-off length = 1 μ. We propose that large spread in F data could be due to temporal variation in overlapping and spatial chromosome confinement. (author). 14 refs

  15. Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Luca A Petruccelli

    Full Text Available Histone deacetylase inhibitors (HDACi are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents.

  16. Vorinostat Induces Reactive Oxygen Species and DNA Damage in Acute Myeloid Leukemia Cells

    Science.gov (United States)

    Pettersson, Filippa; Retrouvey, Hélène; Skoulikas, Sophia; Miller, Wilson H.

    2011-01-01

    Histone deacetylase inhibitors (HDACi) are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML) cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC) reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents. PMID:21695163

  17. 5'-Phosphate oligodeoxynucleotides enhance the phosphodiester-CpG DNA-induced inflammatory response in macrophages.

    Science.gov (United States)

    Yoshida, Hiroyuki; Nishikawa, Makiya; Kiyota, Tsuyoshi; Uno, Shota; Toyota, Hiroyasu; Takahashi, Rei; Narita, Miwako; Takakura, Yoshinobu

    2011-02-01

    Dying cells release genomic DNA into the surroundings where the DNA is first degraded to oligodeoxynucleotides, then to nucleotides, nucleosides and so on. Given that the unmethylated CpG dinucleotide (CpG motif), which is characteristic of bacterial DNA, is also contained in mammalian DNA and has been reported to be involved in the exacerbation of DNA-associated autoimmune diseases, we investigated whether nucleotides and nucleosides affect immune responses to phosphodiester (PO)-CpG DNA. Addition of non-CpG DNA to RAW264.7, murine macrophage-like cells, induced no significant TNF-α production irrespective of treatment with DNase I; however, DNase I-treated, but not untreated, non-CpG DNA increased the PO-CpG DNA-mediated TNF-α production. This increase was not observed with phosphorothioate-CpG DNA or ligands for TLR3, TLR4 or TLR7. Deoxynucleotides with a 5'-phosphate showed similar effects to those of DNase I-treated non-CpG DNA, but DNase II-treated DNA or deoxynucleosides did not. Subcutaneous injection of PO-CpG DNA into the mouse footpad induced little swelling of the paw; however, significant swelling was observed when DNase I-treated DNA was co-injected with PO-CpG DNA. These results imply that PO-CpG DNA-dependent inflammatory responses are increased by DNA molecules with a 5'-phosphate; such molecules could therefore be considered as exacerbating factors for CpG motif-related inflammation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Characterization of hepatic DNA damage induced in rats by the pyrrolizidine alkaloid monocrotaline

    Energy Technology Data Exchange (ETDEWEB)

    Petry, T.W.; Bowden, G.T.; Huxtable, R.J.; Sipes, I.G.

    1984-04-01

    Hepatic DNA damage induced by the pyrrolizidine alkaloid monocrotaline was evaluated following i.p. administration to adult male Sprague-Dawley rats. Animals were treated with various doses ranging upward from 5 mg/kg, and hepatic nuclei were isolated 4 hr later. Hepatic nuclei were used as the DNA source in all experiments. DNA damage was characterized by the alkaline elution technique. A mixture of DNA-DNA interstrand cross-links and DNA-protein cross-links was induced. Following an injection of monocrotaline, 30 mg/kg i.p., DNA-DNA interstrand cross-linking reached a maximum within 12 hr or less and thereafter decreased over a protracted period of time. By 96 hr postadministration, the calculated cross-linking factor was no longer statistically different from zero. No evidence for the induction of DNA single-strand breaks was observed, although the presence of small numbers of DNA single-strand breaks could have been masked by the overwhelming predominance of DNA cross-links. These DNA cross-links may be related to the hepatocarcinogenic, hepatotoxic, and/or antimitotic effects of monocrotaline.

  19. Radiation-induced luminescence from dry and hydrated DNA and related macromolecules

    International Nuclear Information System (INIS)

    Al-Kazwini, A.T.; O'Neill, P.; Fielden, E.M.; Adams, G.E.

    1988-01-01

    The radiation-induced luminescence from three types of fibrous DNA and a series of polydeoxynucleotides was measured under vacuum or in the presence of oxygen at 77 and 293K. The in-pulse emission spectra, generated by electrons with energies 50% water by wt (1.2:1 w/w, H 2 O/DNA), the in-pulse luminescence spectrum is similar to that of dry DNA. These findings are discussed in terms of energy or charge migration induced in DNA upon irradiation and the possible effects of conformational changes, caused by hydration, on charge migration. (author)

  20. Spatial confinement induces hairpins in nicked circular DNA

    Science.gov (United States)

    Japaridze, Aleksandre; Orlandini, Enzo; Smith, Kathleen Beth; Gmür, Lucas; Valle, Francesco; Micheletti, Cristian

    2017-01-01

    Abstract In living cells, DNA is highly confined in space with the help of condensing agents, DNA binding proteins and high levels of supercoiling. Due to challenges associated with experimentally studying DNA under confinement, little is known about the impact of spatial confinement on the local structure of the DNA. Here, we have used well characterized slits of different sizes to collect high resolution atomic force microscopy images of confined circular DNA with the aim of assessing the impact of the spatial confinement on global and local conformational properties of DNA. Our findings, supported by numerical simulations, indicate that confinement imposes a large mechanical stress on the DNA as evidenced by a pronounced anisotropy and tangent–tangent correlation function with respect to non-constrained DNA. For the strongest confinement we observed nanometer sized hairpins and interwound structures associated with the nicked sites in the DNA sequence. Based on these findings, we propose that spatial DNA confinement in vivo can promote the formation of localized defects at mechanically weak sites that could be co-opted for biological regulatory functions. PMID:28201616

  1. Stress-induced DNA Damage biomarkers: Applications and limitations

    Science.gov (United States)

    Nikitaki, Zacharenia; Hellweg, Christine; Georgakilas, Alexandros; Ravanat, Jean-Luc

    2015-06-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism’s endogenous processes like replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damages play a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g. X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e. single, complex DNA lesions etc. that can be used as biomarkers. We critically compare DNA damage detection methods and their limitations. In addition to such DNA damage products, we suggest possible gene inductions that can be used to characterize responses to different types of stresses i.e. radiation, oxidative and replication stress, based on bioinformatic approaches and stringent meta-analysis of literature data.

  2. UV induced DNA-protein cross links in vitro and in vivo

    International Nuclear Information System (INIS)

    Kornhauser, A.

    1976-01-01

    The review was not intended to cover all the past year's literature in this field; only selective material published in 1974 and 1975 has been surveyed. Covalent linkage of DNA and RNA to proteins induced by UV is considered, but DNA-membrade attachment, amino acids covalently bound to DNA as functions of growth conditions and protein non-covalently bound to DNA involved in cell regulation are excluded. Studies of DNA-protein cross-links upon UV irradiation in chemical model systems, bacteria and tissue culture systems, and an in vivo mammalian system are all surveyed. (U.K.)

  3. A screening system to identify transcription factors that induce binding site-directed DNA demethylation.

    Science.gov (United States)

    Suzuki, Takahiro; Maeda, Shiori; Furuhata, Erina; Shimizu, Yuri; Nishimura, Hajime; Kishima, Mami; Suzuki, Harukazu

    2017-12-08

    DNA methylation is a fundamental epigenetic modification that is involved in many biological systems such as differentiation and disease. We and others recently showed that some transcription factors (TFs) are involved in the site-specific determination of DNA demethylation in a binding site-directed manner, although the reports of such TFs are limited. Here, we develop a screening system to identify TFs that induce binding site-directed DNA methylation changes. The system involves the ectopic expression of target TFs in model cells followed by DNA methylome analysis and overrepresentation analysis of the corresponding TF binding motif at differentially methylated regions. It successfully identified binding site-directed demethylation of SPI1, which is known to promote DNA demethylation in a binding site-directed manner. We extended our screening system to 15 master TFs involved in cellular differentiation and identified eight novel binding site-directed DNA demethylation-inducing TFs (RUNX3, GATA2, CEBPB, MAFB, NR4A2, MYOD1, CEBPA, and TBX5). Gene ontology and tissue enrichment analysis revealed that these TFs demethylate genomic regions associated with corresponding biological roles. We also describe the characteristics of binding site-directed DNA demethylation induced by these TFs, including the targeting of highly methylated CpGs, local DNA demethylation, and the overlap of demethylated regions between TFs of the same family. Our results show the usefulness of the developed screening system for the identification of TFs that induce DNA demethylation in a site-directed manner.

  4. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity

    International Nuclear Information System (INIS)

    Qin Xujun; Hudson, Laurie G.; Liu Wenlan; Timmins, Graham S.; Liu Kejian

    2008-01-01

    Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/or UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite (≤ 2 μM) alone did not induce significant DNA strand breaks, but greatly enhanced the DNA strand breaks induced by UVR. Further studies showed that 2 μM arsenite effectively inhibited PARP-1 activity. Zinc supplementation of arsenite-treated cells restored PARP-1 activity and significantly diminished the exacerbating effect of arsenite on UVR-induced DNA strand breaks. Importantly, neither arsenite treatment, nor zinc supplementation changed UVR-triggered reactive oxygen species (ROS) formation, suggesting that their effects upon UVR-induced DNA strand breaks are not through a direct free radical mechanism. Combination treatments of arsenite with PARP-1 inhibitor 3-aminobenzamide or PARP-1 siRNA demonstrate that PARP-1 is the target of arsenite. Together, these findings show that arsenite at low concentration exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity, which may represent an important mechanism underlying the co-carcinogenicity of arsenic

  5. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eun Ah Song

    2016-08-01

    Full Text Available The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA, shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies.

  6. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells.

    Science.gov (United States)

    Song, Eun Ah; Kim, Hyeyoung

    2016-08-03

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells' molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies.

  7. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Sangwijit, K.; Prakrajang, K.; Phanchaisri, B.; Thongkumkoon, P.; Thopan, P.; Singkarat, S.; Anuntalabhochai, S.

    2014-01-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence

  8. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  9. Inhibition of radiation-induced DNA strand breaks by hoechst 33258: OH-radical scavenging and DNA radical quenching

    International Nuclear Information System (INIS)

    Adhikary, A.; Bothe, E.; Von Sonntag, C.; Adhikary, A.

    1997-01-01

    The minor-groove-binding dye Hoechst 33258 has been found to protect pBR322 DNA in aqueous solution against radiation-induced single-strand breaks (ssb). This protective effect has been assumed to be largely due to the scavenging of the strand-break-generating OH radicals by Hoechst. From D 37 values for ssb at different Hoechst concentrations the value of the OH radical scavenging constant of DNA-bound Hoechst has been estimated at k Ho/DNA = 2.7 * 10 11 dm 3 mol -1 . This unexpectedly high value has led us to study the reactions of OH radicals with Hoechst in the absence and in the presence of double-stranded calf thymus DNA (ds DNA) by pulse radiolysis, and the formation of radiation-induced ssb by low angle laser light scattering. The D 37 /D 37 0 values at different Hoechst concentrations agree with the values obtained by Martin and al. and demonstrate the protection. However, this protection cannot be explained on the basis of OH radical scavenging alone using the above rate constants. There must, in addition, be some quenching of DNA radicals. Hoechst radicals are formed in the later ms time range, i.e a long time after the disappearance of the OH radicals. This delayed Hoechst radical formation has been assigned to a a reaction of DNA radicals with Hoechst, thereby inhibiting strand breakage. In confirmation, pulse radiolysis of aqueous solution of nucleotides in the presence of Hoechst yields a similar delayed Hoechst radical formation. The data indicate that in DNA the cross-section of this quenching has a diameter of 3 to 4 base pairs per Hoechst molecule. (N.C.)

  10. Metastasis suppressor NM23-H1 promotes repair of UV-induced DNA damage and suppresses UV-induced melanomagenesis.

    Science.gov (United States)

    Jarrett, Stuart G; Novak, Marian; Dabernat, Sandrine; Daniel, Jean-Yves; Mellon, Isabel; Zhang, Qingbei; Harris, Nathan; Ciesielski, Michael J; Fenstermaker, Robert A; Kovacic, Diane; Slominski, Andrzej; Kaetzel, David M

    2012-01-01

    Reduced expression of the metastasis suppressor NM23-H1 is associated with aggressive forms of multiple cancers. Here, we establish that NM23-H1 (termed H1 isoform in human, M1 in mouse) and two of its attendant enzymatic activities, the 3'-5' exonuclease and nucleoside diphosphate kinase, are novel participants in the cellular response to UV radiation (UVR)-induced DNA damage. NM23-H1 deficiency compromised the kinetics of repair for total DNA polymerase-blocking lesions and nucleotide excision repair of (6-4) photoproducts in vitro. Kinase activity of NM23-H1 was critical for rapid repair of both polychromatic UVB/UVA-induced (290-400 nm) and UVC-induced (254 nm) DNA damage, whereas its 3'-5' exonuclease activity was dominant in the suppression of UVR-induced mutagenesis. Consistent with its role in DNA repair, NM23-H1 rapidly translocated to sites of UVR-induced (6-4) photoproduct DNA damage in the nucleus. In addition, transgenic mice hemizygous-null for nm23-m1 and nm23-m2 exhibited UVR-induced melanoma and follicular infundibular cyst formation, and tumor-associated melanocytes displayed invasion into adjacent dermis, consistent with loss of invasion-suppressing activity of NM23 in vivo. Taken together, our data show a critical role for NM23 isoforms in limiting mutagenesis and suppressing UVR-induced melanomagenesis. ©2011 AACR.

  11. Iodine-125 brachytherapy for prostate cancer: first published Australian experience

    International Nuclear Information System (INIS)

    Joseph, David J.; Woo, Tony C.S.; Haworth, Annette

    2004-01-01

    With the emergence of new imaging and implant'techniques, prostate brachytherapy has become increasingly popular over the last decade. Brachytherapy promises to deliver twice the biologically effective dose as conventional external beam treatments without increasing the dose to tissues surrounding the prostate. However, there are few or no published Australian series of its efficacy in the clinic. We present the experience of one of the first centres in Australia to offer this service to its patients: a series from Sir Charles Gairdner Hospital in Western Australia. We present data on the efficacy of brachytherapy in maintaining prostate specific antigen levels, as well as the rate of urinary, rectal and sexual complications. Our results compare favourably with other brachytherapy and external beam treatment series. We believe that with the increasing trend towards dose escalation and novel therapies, standardized measurements of success and failure need to be better defined, and that randomized trials comparing modalities are needed to improve the management of prostate cancer Copyright (2004) Blackwell Publishing Asia Pty Ltd

  12. Preparation of iodine-125-labeled iothalamate for renal clearance measurements

    International Nuclear Information System (INIS)

    Rao, S.A.; Herold, T.J.; Dewanjee, M.K.

    1983-01-01

    Iothalamate, a derivative of benzoic acid, is used as a contrast medium for renal function studies, particularly for measurement of glomerular filtration rate. Its chemical composition and clearance properties are similar to those of diatrizoate. The structural differences between these groups of iodinated benzoic acid derivatives are dependent on the groups attached at the 3- and 5-positions of 2,4,6-tri-iodobenzoic acid. The renal clearance of sodium iothalamate in humans closely approximates that of inulin, and it is used as a replacement for inulin in determining glomerular filtration rate. /sup 125/I-labeled iothalamate sodium can be prepared by the exchange-labeling method at pH 4.0. Iothalamate must first be isolated from the contrast medium preparation and purified before radioiodination. After radioiodination, the product is purified by means of precipitation and is then converted to the sodium salt

  13. DOSIMETRIC STUDY IN IODINE-125 SEEDS FOR BRACHYTHERAPY APPLICATION

    OpenAIRE

    Carlos Alberto Zeituni

    2008-01-01

    A demanda por sementes de iodo-125 para uso em braquiterapia tem crescido muito ao longo dos últimos anos, tanto no Brasil quanto no mundo. Toda semente de iodo-125 deve ter seus parâmetros operacionais medidos e/ou calculados todas as vezes que for efetuada alguma modificação na produção. Um levantamento dosimétrico completo custa bastante caro, e recomenda-se que seja refeito pelo menos uma vez por ano. Neste contexto, o presente trabalho desenvolveu uma metodologia para todo o processo dos...

  14. Review of options for managing iodine-125 wastes

    International Nuclear Information System (INIS)

    Lock, P.J.; Wakerley, M.W.

    1991-01-01

    Data on the nature, radioactive content and management options used for I-125 wastes that are produced in England and Wales and fall within the provisions of the Radioactive Substances Act 1960 have been collated. The options for, and impacts of the disposal of these wastes have been reviewed and discussed. In addition storage for decay has been reviewed. The necessary storage requirements and methods of storage for the various waste forms have been examined. Conclusions are drawn with respect to the potential/suitability of the various waste management options. (author)

  15. Iodine-125 orbital brachytherapy with a prosthetic implant in situ

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, Clare [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Radiation Oncology; Maree, Gert; Munro, Roger [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Medical Physics; Lecuona, Karin [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Ophthalmology; Sauerwein, Wolfgang [Universitaetsklinikum Essen (Germany). Strahlenklinik, NCTeam

    2011-05-15

    Purpose: Brachytherapy is one method of irradiating the orbit after enucleation of an eye with a malignant tumor that has a potential to recur. It consists of 6 trains of I-125 seeds placed around the periphery of the orbit, a shorter central train, and a metal disc, loaded with seeds, placed beneath the eyelids. The presence of a prosthetic orbital implant requires omission of the central train and adjustment of the activity of the seeds in the anterior orbit around the prosthesis. Patients and Methods: This is a retrospective review of the technical modifications and outcome of 12 patients treated in this manner: 6 with retinoblastoma, 5 with malignant melanoma, and 1 with an intraocular rhabdomyosarcoma. The median dose was 35.5 Gy in 73 hours for retinoblastoma and 56 Gy in 141 hours for malignant melanoma. Patients with retinoblastoma and rhabdomyosarcoma also received chemotherapy. Results: The tubes can be placed satisfactorily around the prosthesis. The increased activity in the anterior half of the tubes produced comparable dose distributions. There have been no orbital recurrences, no extrusion of the prosthesis, and cosmesis is good. Conclusion: Insertion of a prosthetic implant at the time of enucleation greatly enhances the subsequent cosmetic appearance. This should be encouraged unless there is frank tumor in the orbit. Orbital brachytherapy without the central train continues to give excellent local control. The short treatment time and good cosmesis are added advantages. The patient is spared the expense and inconvenience of removing and replacing the prosthetic implant. (orig.)

  16. Nitric oxide-induced interstrand cross-links in DNA.

    Science.gov (United States)

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  17. DNA-Damage-Induced Type I Interferon Promotes Senescence and Inhibits Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Qiujing Yu

    2015-05-01

    Full Text Available Expression of type I interferons (IFNs can be induced by DNA-damaging agents, but the mechanisms and significance of this regulation are not completely understood. We found that the transcription factor IRF3, activated in an ATM-IKKα/β-dependent manner, stimulates cell-autonomous IFN-β expression in response to double-stranded DNA breaks. Cells and tissues with accumulating DNA damage produce endogenous IFN-β and stimulate IFN signaling in vitro and in vivo. In turn, IFN acts to amplify DNA-damage responses, activate the p53 pathway, promote senescence, and inhibit stem cell function in response to telomere shortening. Inactivation of the IFN pathway abrogates the development of diverse progeric phenotypes and extends the lifespan of Terc knockout mice. These data identify DNA-damage-response-induced IFN signaling as a critical mechanism that links accumulating DNA damage with senescence and premature aging.

  18. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Lu Dong; Li Wenjian; Wu Xin; Wang Jufang; Ma Shuang; Liu Qingfang; He Jinyu; Jing Xigang; Ding Nan; Dai Zhongying; Zhou Jianping

    2010-01-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20 Ne 10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  19. Nick translation detection in situ of cellular DNA strand break induced by radiation

    International Nuclear Information System (INIS)

    Maehara, Y.; Anai, H.; Kusumoto, T.; Sakaguchi, Y.; Sugimachi, K.

    1989-01-01

    DNA strand break in HeLa cells induced by radiation was detected using the in situ nick translation method. The cells were exposed to radiation of 3, 6, 12, 18, and 24 Gy in Lab-Tek tissue culture chamber/slides and were fixed with ethanol/acetic acid on the slide glass. The break sites in DNA were translated artificially in the presence of Escherichia coli DNA polymerase I and [ 3 H]-labeled dTTP. Autoradiographic observation was made of the level of break sites in the DNA. The DNA strand break appeared even with a 3 Gy exposure, increased 8.6 times at 24 Gy compared with the control cells, and this level correlated reciprocally to change in cell viability. This nick translation method provides a rapid in situ assay for determining radiation-induced DNA damage of cultured cells, in a semi-quantitative manner

  20. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Rezaei, Nousin; Liontos, Michalis

    2006-01-01

    Recent studies have indicated the existence of tumorigenesis barriers that slow or inhibit the progression of preneoplastic lesions to neoplasia. One such barrier involves DNA replication stress, which leads to activation of the DNA damage checkpoint and thereby to apoptosis or cell cycle arrest......, whereas a second barrier is mediated by oncogene-induced senescence. The relationship between these two barriers, if any, has not been elucidated. Here we show that oncogene-induced senescence is associated with signs of DNA replication stress, including prematurely terminated DNA replication forks...... and senescence markers cosegregate closely. Thus, senescence in human preneoplastic lesions is a manifestation of oncogene-induced DNA replication stress and, together with apoptosis, provides a barrier to malignant progression....

  1. Photo-induced antimicrobial and DNA cleavage studies of ...

    Indian Academy of Sciences (India)

    C overnight and exam- ined for antimicrobial and photosensitizing activities by measuring the produced inhibition zones. 2.2b DNA binding experiments: All the experiments involving interaction of the compound 1 with DNA were carried out in Tris–HCl buffer (50 mM Tris-HCl,. pH 7.2) at room temperature.26 Purification of ...

  2. Neurotensin enhances estradiol induced DNA synthesis in immature rat uterus

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, A.; Vijayan, E.

    1985-05-27

    Systemic administration of Neurotensin, a tridecapeptide, in immature rats treated with estradiol benzoate significantly enhances uterine DNA synthesis as reflected by the incorporation of /sup 3/H-thymidine. The peptide may have a direct action on the uterus. Substance P, a related peptide, had no effect on uterine DNA synthesis. 18 references, 4 tables.

  3. Sunlight-induced DNA damage in human mononuclear cells

    DEFF Research Database (Denmark)

    Møller, Peter; Wallin, Hakan; Holst, Erik

    2002-01-01

    to blood sampling. The 3 and 6 day periods before sampling influenced DNA damage the most. The importance of sunlight was further emphasized by a positive association of the DNA damage level to the amount of time the subjects had spent in the sun over a 3 day period prior to the sampling. The effect......In this study of 301 blood samples from 21 subjects, we found markedly higher levels of DNA damage (nonpyrimidine dimer types) in the summer than in the winter detected by single-cell gel electrophoresis. The level of DNA damage was influenced by the average daily influx of sunlight ... of sunlight was comparable to the interindividual variation, indicating that sunlight exposure and the individual's background were the two most important determinants for the basal level of DNA damage. Influence of other lifestyle factors such as exercise, intake of foods, infections, and age could...

  4. DNA-damage response during mitosis induces whole-chromosome missegregation.

    Science.gov (United States)

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  5. Effect of serotonin on the yield of UV-induced thymine dimers in DNA

    International Nuclear Information System (INIS)

    Frajkin, G.Ya.; Strakhovskaya, M.G.; Ivanova, Eh.V.

    1985-01-01

    Using fluorescence method serotonin interaction with DNA is studied and bond constant Ksub(c)=4.2x10 4 M -1 is defined. It is shown that bound serotonin reduces yield of UV-induced thymine dimers. Value of efficient distance of protective serotonin effect constituting part of DNA chain of 4 base pairs, is determined

  6. Depletion-induced instability in protein-DNA mixtures: Influence of protein charge and size

    NARCIS (Netherlands)

    Vries, de R.J.

    2006-01-01

    While there is abundant experimental and theoretical work on polymer-induced DNA condensation, it is still unclear whether globular proteins can condense linear DNA or not. We develop a simple analytical approximation for the depletion attraction between rodlike segments of semiflexible

  7. Probing Electron-Induced Bond Cleavage at the Single-Molecule Level Using DNA Origami Templates

    DEFF Research Database (Denmark)

    Keller, Adrian Clemens; Bald, Ilko; Rotaru, Alexandru

    2012-01-01

    specifically designed oligonucleotide targets that are attached to DNA origami templates. In this way, we use a highly selective approach to compare the efficiency of the electron-induced dissociation of a single disulfide bond with the more complex cleavage of the DNA backbone within a TT dinucleotide...

  8. Nuclear aggregates of polyamines in a radiation-induced DNA damage model.

    Science.gov (United States)

    Iacomino, Giuseppe; Picariello, Gianluca; Stillitano, Ilaria; D'Agostino, Luciano

    2014-02-01

    Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs-pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Microfabricated electrochemical sensor for the detection of radiation-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Rivas, G.; Ozsoz, M.; Grant, D.H.; Cai, X.; Parrado, C. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-04-01

    An electrochemical biosensor protocol for the detection of radiation-induced DNA damage is described. The procedure employs a dsDNA-coated screen-printed electrode and relies on changes in the guanine-DNA oxidation signal upon exposure to ultraviolet radiation. The decreased signal is ascribed primarily to conformational changes in the DNA and to the photoconversion of the guanine-DNA moiety to a nonelectroactive monomeric base product. Factors influencing the response of these microfabricated DNA sensors, such as irradiation time, wavelength, and distance, are explored, and future prospects are discussed. Similar results are given for the use of bare strip electrodes in connection with irradiated DNA solutions. 8 refs., 4 figs.

  10. Quantitative measurement of ultraviolet-induced damage in cellular DNA by an enzyme immunodot assay

    Energy Technology Data Exchange (ETDEWEB)

    Wakizaka, A.; Nishizawa, Y.; Aiba, N.; Okuhara, E.; Takahashi, S.

    1989-02-01

    A simple enzyme immunoassay procedure was developed for the quantitative determination of 254-nm uv-induced DNA damage in cells. With the use of specific antibodies to uv-irradiated DNA and horseradish peroxidase-conjugated antibody to rabbit IgG, the extent of damaged DNA in uv-irradiated rat spleen mononuclear cells was quantitatively measurable. Through the use of this method, the amount of damaged DNA present in 2 X 10(5) cells irradiated at a dose of 75 J/m2 was estimated to be 7 ng equivalents of the standard uv-irradiated DNA. In addition, when the cells, irradiated at 750 J/m2, were incubated for 1 h, the antigenic activity of DNA decreased by 40%, suggesting that a repair of the damaged sites in DNA had proceeded to some extent in the cells.

  11. Heavy Metals Induced DNA Damage and Total Antioxidant Status in Urtica dioica (Urticaceae)

    OpenAIRE

    Gjorgieva Ackova, Darinka; Kadifkova-Panovska, Tatjana; Ruskovska, Tatjana

    2011-01-01

    The objective of the present study was to investigate whether the exposure of a selected plant, Urtica dioica (Urticaceae) to heavy metals can induce direct DNA damage and significant changes in endogenous total antioxidants level of the plant.

  12. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients

    International Nuclear Information System (INIS)

    Pinar, Beatriz; Henríquez-Hernández, Luis Alberto; Lara, Pedro C; Bordon, Elisa; Rodriguez-Gallego, Carlos; Lloret, Marta; Nuñez, Maria Isabel; De Almodovar, Mariano Ruiz

    2010-01-01

    DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity

  13. Radiation-induced energy migration within solid DNA: The role of misonidazole as an electron trap

    International Nuclear Information System (INIS)

    Al-Kazwini, A.T.; O'Neill, P.; Adams, G.E.; Fielden, E.M.

    1990-01-01

    The in-pulse luminescence emission from solid DNA produced upon irradiation with electron pulses of energy below 260 keV has been investigated in vacuo at 293 K to gain an insight into the existence of radiation-induced charge/energy migration within DNA. The DNA samples contained misonidazole in the range 3 to 330 base pairs per misonidazole molecule. Under these conditions greater than 90% of the total energy is deposited in the DNA. The in-pulse radiation-induced luminescence spectrum of DNA was found to be critically dependent upon the misonidazole content of DNA. The luminescence intensity from the mixtures decreases with increasing content of misonidazole, and at the highest concentration, the intensity at 550 nm is reduced to 50% of that from DNA only. In the presence of 1 atm of oxygen, the observed emission intensity from DNA in the wavelength region 350-575 was reduced by 35-40% compared to that from DNA in vacuo. It is concluded that electron migration can occur in solid mixtures of DNA over a distance of up to about 100 base pairs

  14. Photodynamic DNA damage induced by phycocyanin and its repair in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    M. Pádula

    1999-09-01

    Full Text Available In the present study, we analyzed DNA damage induced by phycocyanin (PHY in the presence of visible light (VL using a set of repair endonucleases purified from Escherichia coli. We demonstrated that the profile of DNA damage induced by PHY is clearly different from that induced by molecules that exert deleterious effects on DNA involving solely singlet oxygen as reactive species. Most of PHY-induced lesions are single strand breaks and, to a lesser extent, base oxidized sites, which are recognized by Nth, Nfo and Fpg enzymes. High pressure liquid chromatography coupled to electrochemical detection revealed that PHY photosensitization did not induce 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo at detectable levels. DNA repair after PHY photosensitization was also investigated. Plasmid DNA damaged by PHY photosensitization was used to transform a series of Saccharomyces cerevisiae DNA repair mutants. The results revealed that plasmid survival was greatly reduced in rad14 mutants, while the ogg1 mutation did not modify the plasmid survival when compared to that in the wild type. Furthermore, plasmid survival in the ogg1 rad14 double mutant was not different from that in the rad14 single mutant. The results reported here indicate that lethal lesions induced by PHY plus VL are repaired differently by prokaryotic and eukaryotic cells. Morever, nucleotide excision repair seems to play a major role in the recognition and repair of these lesions in Saccharomyces cerevisiae.

  15. Processing of radiation-induced clustered DNA damage generates DSB in mammalian cells

    International Nuclear Information System (INIS)

    Gulston, M.K.; De Lara, C.M.; Davis, E.L.; Jenner, T.J.; O'Neill, P.

    2003-01-01

    Full text: Clustered DNA damage sites, in which two or more lesions are formed within a few helical turns of the DNA after passage of a single radiation track, are signatures of DNA modifications induced by ionizing radiation in mammalian cell. With 60 Co-radiation, the abundance of clustered DNA damage induced in CHO cells is ∼4x that of prompt double strand breaks (DSB) determined by PFGE. Less is known about the processing of non-DSB clustered DNA damage induced in cells. To optimize observation of any additional DSB formed during processing of DNA damage at 37 deg C, xrs-5 cells deficient in non-homologous end joining were used. Surprisingly, ∼30% of the DSB induced by irradiation at 37 deg C are rejoined within 4 minutes in both mutant and wild type cells. No significant mis-repair of these apparent DSB was observed. It is suggested that a class of non-DSB clustered DNA damage is formed which repair correctly within 4 min but, if 'trapped' prior to repair, are converted into DSB during the lysis procedure of PFGE. However at longer times, a proportion of non-DSB clustered DNA damage sites induced by γ-radiation are converted into DSB within ∼30 min following post-irradiation incubation at 37 deg C. The corresponding formation of additional DSB was not apparent in wild type CHO cells. From these observations, it is estimated that only ∼10% of the total yield of non DSB clustered DNA damage sites are converted into DSB through cellular processing. The biological consequences that the majority of non-DSB clustered DNA damage sites are not converted into DSBs may be significant even at low doses, since a finite chance exists of these clusters being formed in a cell by a single radiation track

  16. Continuous cytokine exposure of colonic epithelial cells induces DNA damage

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole Haagen

    2005-01-01

    Chronic inflammatory diseases of the intestinal tract are associated with an increased risk of colorectal cancer. As an example ulcerative colitis (UC) is associated with a production of reactive oxygen species (ROS), including nitrogen monoxide (NO), which is produced in high amounts by inducibl...... nitrogen oxide synthase (iNOS). NO as well as other ROS are potential DNA damaging agents. The aim was to determine the effect of long-term cytokine exposure on NO formation and DNA damage in epithelial cells....

  17. Overproduction of the poly(ADP-ribose)polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells.

    NARCIS (Netherlands)

    M. Molinete; W. Vermeulen (Wim); A. Bürkle; J. Mé nissier-de Murcia; J.H. Küpper; J.H.J. Hoeijmakers (Jan); G. de Murcia

    1993-01-01

    textabstractThe zinc-finger DNA-binding domain (DBD) of poly (ADP-ribose) polymerase (PARP, EC 2.4.2.30) specifically recognizes DNA strand breaks induced by various DNA-damaging agents in eukaryotes. This, in turn, triggers the synthesis of polymers of ADP-ribose linked to nuclear proteins during

  18. Ultrasound-induced DNA damage and signal transductions indicated by gammaH2AX

    Science.gov (United States)

    Furusawa, Yukihiro; Fujiwara, Yoshisada; Zhao, Qing-Li; Hassan, Mariame Ali; Ogawa, Ryohei; Tabuchi, Yoshiaki; Takasaki, Ichiro; Takahashi, Akihisa; Ohnishi, Takeo; Kondo, Takashi

    2011-09-01

    Ultrasound (US) has been shown to induce cancer cell death via different forms including apoptosis. Here, we report the potential of low-intensity pulsed US (LIPUS) to induce genomic DNA damage and subsequent DNA damage response. Using the ionizing radiation-induced DNA double-strand breaks (DSBs) as the positive control, we were able to observe the induction of DSBs (as neutral comet tails) and the subsequent formation of gammaH2AX-positive foci (by immunofluorescence detection) in human leukemia cells following exposure to LIPUS. The LIPUS-induced DNA damage arose most likely from the mechanical, but not sonochemical, effect of cavitation, based on our observation that the suppression of inertial cavitation abrogated the gammH2AX foci formation, whereas scavenging of free radical formation (e.g., hydroxyl radical) had no protective effect on it. Treatment with the specific kinase inhibitor of ATM or DNA-PKcs, which can phosphorylate H2AX Ser139, revealed that US-induced gammaH2AX was inhibited more effectively by the DNA-PK inhibitor than ATM kinase inhibitor. Notably, these inhibitor effects were opposite to those with radiation-induced gammH2AX. In conclusion, we report, for the first time that US can induce DNA damage and the DNA damage response as indicated by gammaH2AX was triggered by the cavitational mechanical effects. Thus, it is expected that the data shown here may provide a better understanding of the cellular responses to US.

  19. Detection of irradiation induced modifications in foodstuff DNA using 32p post-labelling

    International Nuclear Information System (INIS)

    Hoey, B.M.; Swallow, A.J.; Margison, G.P.

    1991-01-01

    DNA post-labelling has been used successfully to detect damage to DNA caused by a range of damaging agents. The assay results in a fingerprint of changes induced in DNA which might, in principle, be useful as a test for the detection of the irradiation of foods. The authors present their DNA extraction and 32 p post-labelling methods from chicken or cooked prawn samples and their analysis method (High Performance liquid chromatography). It's hoped that these results could form the basis of a test to detect if foods have been irradiated

  20. Enzymatic quantification of strand breaks of DNA induced by vacuum-UV radiation

    International Nuclear Information System (INIS)

    Ito, Takashi

    1986-01-01

    Hind3 digested plasmid DNA dried on an aluminum plate was irradiated by vacuum-UV at 160 and 195 nm using a synchrotron irradiation system. A change induced in the DNA, presumably a single strand break, was quantified by the aid of the strand break-derived stimulation of poly(ADP-ribose) synthetase activity. The end group of strand breaks so induced was recognized by the enzyme as effectively as that by DNase 1 treatment, suggesting a nicking as the major lesion inflicted on the DNA. The fluence (UV) dependent stimulation of poly(ADP-ribose) synthetase activity was much higher upon 160 nm irradiation than upon 195 nm irradiation. (Auth.)

  1. DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders

    National Research Council Canada - National Science Library

    Kuo, Shu-Ru

    2003-01-01

    .... We found that RPA purified from cells treated with adozelesin has the same single-stranded DNA binding activity and support nucleotide excision repair as normal RPA, but is not able to support SV40...

  2. Early Chk1 phosphorylation is driven by temozolomide-induced, DNA double strand break- and mismatch repair-independent DNA damage.

    Directory of Open Access Journals (Sweden)

    Motokazu Ito

    Full Text Available Temozolomide (TMZ is a DNA methylating agent used to treat brain cancer. TMZ-induced O6-methylguanine adducts, in the absence of repair by O6-methylguanine DNA methyltransferase (MGMT, mispair during DNA replication and trigger cycles of futile mismatch repair (MMR. Futile MMR in turn leads to the formation of DNA single and double strand breaks, Chk1 and Chk2 phosphorylation/activation, cell cycle arrest, and ultimately cell death. Although both pChk1 and pChk2 are considered to be biomarkers of TMZ-induced DNA damage, cell-cycle arrest, and TMZ induced cytotoxicity, we found that levels of pChk1 (ser345, its downstream target pCdc25C (ser216, and the activity of its upstream activator ATR, were elevated within 3 hours of TMZ exposure, long before the onset of TMZ-induced DNA double strand breaks, Chk2 phosphorylation/activation, and cell cycle arrest. Furthermore, TMZ-induced early phosphorylation of Chk1 was noted in glioma cells regardless of whether they were MGMT-proficient or MGMT-deficient, and regardless of their MMR status. Early Chk1 phosphorylation was not associated with TMZ-induced reactive oxygen species, but was temporally associated with TMZ-induced alkalai-labile DNA damage produced by the non-O6-methylguanine DNA adducts and which, like Chk1 phosphorylation, was transient in MGMT-proficient cells but persistent in MGMT-deficient cells. These results re-define the TMZ-induced DNA damage response, and show that Chk1 phosphorylation is driven by TMZ-induced mismatch repair-independent DNA damage independently of DNA double strand breaks, Chk2 activation, and cell cycle arrest, and as such is a suboptimal biomarker of TMZ-induced drug action.

  3. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    Science.gov (United States)

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  4. Carbon ion induced DNA double-strand breaks in melanophore B{sub 16}

    Energy Technology Data Exchange (ETDEWEB)

    Wei Zengquan; Zhou Guangming; Wang Jufang; He Jing; Li Qiang; Li Wenjian; Xie Hongmei; Cai Xichen; Tao Huang; Dang Bingrong; Han Guangwu [Chinese Academy of Sciences, Lanzhou (China). Inst. of Modern Physics; Gao Qingxiang [Lanzhou Univ. (China)

    1997-09-01

    DNA double-strand breaks (DSBs) in melanophore B{sub 16} induced by plateau and extended Bragg peak of 75 MeV/u {sup 12}C{sup 6+} ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B{sub 16}. Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau {proportional_to}85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  5. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Carbon ion induced DNA double-strand breaks in melanophore B16

    International Nuclear Information System (INIS)

    Wei Zengquan; Zhou Guangming; Wang Jufang; He Jing; Li Qiang; Li Wenjian; Xie Hongmei; Cai Xichen; Tao Huang; Dang Bingrong; Han Guangwu

    1997-01-01

    DNA double-strand breaks (DSBs) in melanophore B 16 induced by plateau and extended Bragg peak of 75 MeV/u 12 C 6+ ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B 16 . Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau ∝85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  7. Damage to the DNA of microorganisms from decay of incorporated 125I and the relationship of DNA damage to lethal effects

    International Nuclear Information System (INIS)

    Krisch, R.E.; Krasin, F.; Sauri, C.J.

    1975-01-01

    Iodine-125 decays by electron capture and is known to cause severe molecular damage to small organic molecules via vacancy cascades. In an examination of the biological effects of this decay mode we have labelled coliphages T1 and T4, as well as E. coli, with 125 I-5-iododeoxyuridine, which is incorporated into DNA in place of thymidine. Labelled organisms are generally stored in liquid nitrogen at -196 0 C during decay and are periodically assayed for loss of viability and for breakage of DNA, using neutral and alkaline sucrose gradient sedimentation techniques. Briefly, our experiments have demonstrated drastic damage to DNA from the decay of incorporated 125 I, as would be predicted from the data for small molecules. (auth)

  8. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells

    Directory of Open Access Journals (Sweden)

    Peixin Huang

    2015-06-01

    Full Text Available Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague–Dawley (SD rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1 and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR, ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo.

  9. Lac repressor: Crystallization of intact tetramer and its complexes with inducer and operator DNA

    International Nuclear Information System (INIS)

    Pace, H.C.; Lu, P.; Lewis, M.

    1990-01-01

    The intact lac repressor tetramer, which regulates expression of the lac operon in Escherichia coli, has been crystallized in the native form, with an inducer, and in a ternary complex with operator DNA and an anti-inducer. The crystals without DNA diffract to better than 3.5 angstrom. They belong to the monoclinic space group C2 and have cell dimensions a = 164.7 angstrom, b = 75.6 angstrom, and c = 161.2 angstrom, with α = γ = 90 degree and β = 125.5 degree. Cocrystals have been obtained with a number of different lac operator-related DNA fragments. The complex with a blunt-ended 16-base-pair strand yielded tetragonal bipyramids that diffract to 6.5 angstrom. These protein-DNA cocrystals crack upon exposure to the gratuitous inducer isopropyl β-D-thiogalactoside, suggesting a conformational change in the repressor-operator complex

  10. Cadmium/zinc-metallothionein induces DNA strand breaks in vitro.

    Science.gov (United States)

    Müller, T; Schuckelt, R; Jaenicke, L

    1991-01-01

    The in vitro DNA strand breaking activity of metallothionein (MT) containing Cd2+ and Zn2+ in a molar ratio of 5:2 is described. Studies with radical scavengers and electron paramagnetic resonance spectroscopy indicate that the DNA damage might be caused by a radical species formed by the native protein (i.e., MT) charged with the heavy metal ions. No DNA strand breaks are detectable with the heat-denatured MT or with Cd2+ or Zn2+ alone. Inhibition studies using EDTA as a metal ion chelator or N-ethylmaleimide to alkylate sulfhydryl groups suggest that both the bound heavy metal ions as well as the SH groups of the various cysteine residues of MT may be involved in the MT-dependent DNA cleavage. Further characterization showed that the DNA cleavage is more likely random than sequence- or base-specific. These observations may provide a clue in the search for initial events in Cd-related carcinogenicity.

  11. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    Science.gov (United States)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  12. Repair of radiation-induced DNA damage in rat epidermis as a function of age

    International Nuclear Information System (INIS)

    Sargent, E.V.; Burns, F.J.

    1985-01-01

    The rate of repair of radiation-induced DNA damage in proliferating rat epidermal cells diminished progressively with increasing age of the animal. The dorsal skin was irradiated with 1200 rad of 0.8 MeV electrons at various ages, and the amount of DNA damage was determined as a function of time after irradiation by the method of alkaline unwinding followed by S 1 nuclease digestion. The amount of DNA damage immediately after irradiation was not age dependent, while the rate of damage removal from the DNA decreased with increasing age. By fitting an exponential function to the relative amount of undamaged DNA as a function of time after irradiation, DNA repair halftimes of 20, 27, 69, and 107 min were obtained for 28, 100-, 200-, and 400-day-old animals, respectively

  13. Investigation of DNA double strand breaks induced by α particle and 7Li ions

    International Nuclear Information System (INIS)

    Kong Fuquan; Cai Minghui; Zhao Kui; Guo Jiyu; Ni Meinan; Sui Li; Yang Mingjian; Zhan Yong

    2006-01-01

    α particles and Lithium ions were produced by 241 Am radiation source and HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE) respectively to simulate ionizing radiation in Boron Neutron Capture Therapy (BNCT) process. Plasmid DNA in aqueous solution was irradiated and the DNA fragments were imaged by AFM. The image software ImageJ was used to measure the length of DNA fragments. The length distribution and conformation changes of DNA fragments were assessed. Our results showed that the mean length of DNA fragments as well as the fraction of linear and open circle DNA molecules decreased by dose. At higher dose, Lithium ions induced more pronounced relative biological effects than α particles. (author)

  14. Cation-Induced Stabilization and Denaturation of DNA Origami Nanostructures in Urea and Guanidinium Chloride.

    Science.gov (United States)

    Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian

    2017-11-01

    The stability of DNA origami nanostructures under various environmental conditions constitutes an important issue in numerous applications, including drug delivery, molecular sensing, and single-molecule biophysics. Here, the effect of Na + and Mg 2+ concentrations on DNA origami stability is investigated in the presence of urea and guanidinium chloride (GdmCl), two strong denaturants commonly employed in protein folding studies. While increasing concentrations of both cations stabilize the DNA origami nanostructures against urea denaturation, they are found to promote DNA origami denaturation by GdmCl. These inverse behaviors are rationalized by a salting-out of Gdm + to the hydrophobic DNA base stack. The effect of cation-induced DNA origami denaturation by GdmCl deserves consideration in the design of single-molecule studies and may potentially be exploited in future applications such as selective denaturation for purification purposes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. DNA-Tile Structures Induce Ionic Currents through Lipid Membranes.

    Science.gov (United States)

    Göpfrich, Kerstin; Zettl, Thomas; Meijering, Anna E C; Hernández-Ainsa, Silvia; Kocabey, Samet; Liedl, Tim; Keyser, Ulrich F

    2015-05-13

    Self-assembled DNA nanostructures have been used to create man-made transmembrane channels in lipid bilayers. Here, we present a DNA-tile structure with a nominal subnanometer channel and cholesterol-tags for membrane anchoring. With an outer diameter of 5 nm and a molecular weight of 45 kDa, the dimensions of our synthetic nanostructure are comparable to biological ion channels. Because of its simple design, the structure self-assembles within a minute, making its creation scalable for applications in biology. Ionic current recordings demonstrate that the tile structures enable ion conduction through lipid bilayers and show gating and voltage-switching behavior. By demonstrating the design of DNA-based membrane channels with openings much smaller than that of the archetypical six-helix bundle, our work showcases their versatility inspired by the rich diversity of natural membrane components.

  16. Local stability perturbation in DNA structure induced by chain discontinuities

    International Nuclear Information System (INIS)

    Jorcano, J.L.; Mingot, F.; Davila, C.A.

    1976-01-01

    The thermal dependence of parameter ''h'' (number of base pairs broken near to internucleotide breaks) is studied. At 25degC, 0,2 M Na + and pH 7, the ''h'' value is about 12. Far from DNA melting temperature, ''h'' is not dependent upon ionic strength and it depends very little on temperature. This behavior suggests a non cooperative, entropically driven chain unzipping from terminals. Near melting temperature, ''h'' shows a thermal dependence asymptotic to Tm, and correlated with DNA composition. It seems to correspond to the cooperative denaturation. ''h'' values have been calculated from double and single break probabilities evaluated from hydrodynamically determined molecular weight distributions. (author)

  17. Photoelectrochemical Sensors for the Rapid Detection of DNA Damage Induced by Some Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Jamaluddin Ahmed

    2010-06-01

    Full Text Available Photoelectrochemcal sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy2 (dppz2+ [bpy=2, 2′ -bipyridine, dppz=dipyrido( 3, 2-a: 2′ 3′-c phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy2 (dppz2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time – dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polysterene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals.

  18. Photoelectrochemical sensors for the rapid detection of DNA damage Induced by some nanoparticles

    International Nuclear Information System (INIS)

    Ahmed, M.J.; Zhang, B.T.; Guo, L.H.

    2010-01-01

    Photoelectrochemical sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy)2 (dppz)2+ [bpy=2, 2' -bipyridine, dppz=dipyrido (3, 2-a: 2' 3'-c) phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy)2 (dppz)2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine) was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time . dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polystyrene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals. (author)

  19. Structural changes of DNA in heavy ion-induced mutants on Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tano, S.; Shikazono, N.; Tanaka, A.; Yokota, Y.; Watanabe, H. [Japan Atomic Research Research Inst., Watanuki, Takasaki (Japan). Advanced Science Research Center

    1997-09-01

    In order to investigate the frequency of structural changes induced by high LET radiation in plants, a comparison was made between DNA fragments amplified by the polymerase chain reaction (PCR) from C ion- and electron-induced Arabidopsis mutants at GL and TT loci. (orig./MG)

  20. Structural changes of DNA in heavy ion-induced mutants on Arabidopsis

    International Nuclear Information System (INIS)

    Tano, S.; Shikazono, N.; Tanaka, A.; Yokota, Y.; Watanabe, H.

    1997-01-01

    In order to investigate the frequency of structural changes induced by high LET radiation in plants, a comparison was made between DNA fragments amplified by the polymerase chain reaction (PCR) from C ion- and electron-induced Arabidopsis mutants at GL and TT loci. (orig./MG)

  1. The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA.

    Science.gov (United States)

    Rand, Lucinda; Hinds, Jason; Springer, Burkhard; Sander, Peter; Buxton, Roger S; Davis, Elaine O

    2003-11-01

    In many species of bacteria most inducible DNA repair genes are regulated by LexA homologues and are dependent on RecA for induction. We have shown previously by analysing the induction of recA that two mechanisms for the induction of gene expression following DNA damage exist in Mycobacterium tuberculosis. Whereas one of these depends on RecA and LexA in the classical way, the other mechanism is independent of both of these proteins and induction occurs in the absence of RecA. Here we investigate the generality of each of these mechanisms by analysing the global response to DNA damage in both wild-type M. tuberculosis and a recA deletion strain of M. tuberculosis using microarrays. This revealed that the majority of the genes that were induced remained inducible in the recA mutant stain. Of particular note most of the inducible genes with known or predicted functions in DNA repair did not depend on recA for induction. Amongst these are genes involved in nucleotide excision repair, base excision repair, damage reversal and recombination. Thus, it appears that this novel mechanism of gene regulation is important for DNA repair in M. tuberculosis.

  2. Relationship between radiation induced activation of DNA repair genes and radiation induced apoptosis in human cell line A431

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Kim, Kyung Keun; Choi, Keun Hee

    2000-01-01

    The purpose of this study was to evaluate the relationship between radiation-induced acivation of DNA repair genes and radiation induced apoptosis in A431 cell line. Five and 25 Gys of gamma radiation were given to A431 cells by a Cs-137 cell irradiator. Apoptosis was evaluated by flow cytometry using annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression of DNA repair genes was evaluated by both Northern and Western blot analyses. The number of apoptotic cells increased with the increased radiation dose. It increased most significantly at 12 hours after irradiation. Expression of p53, p21, and ℎRAD50 reached the highest level at 12 hours after 5 Gy irradiation. In response to 25 Gy irradiation, ℎRAD50 and p21 were expressed maximally at 12 hours, but p53 and GADD45 genes showed the highest expression level after 12 hours. Induction of apoptosis and DNA repair by ionizing radiation were closely correlated. The peak time of inducing apoptosis and DNA repair was 12 hours in this study model. ℎRAD50, a recently discovered DNA repair gene, was also associated with radiation-induced apoptosis.=20

  3. Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells.

    Science.gov (United States)

    Zhang, Yue-Hui; Li, Hai-Dong; Li, Bo; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2014-02-01

    Panax ginseng is a Chinese medicinal herb. Ginsenosides are the main bioactive components of P. ginseng, and ginsenoside Rg3 is the primary ginsenoside. Ginsenosides can potently kill various types of cancer cells. The present study was designed to evaluate the potential genotoxicity of ginsenoside Rg3 in human osteosarcoma cells and the protective effect of ginsenoside Rg3 with respect to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced DNA damage and apoptosis in a normal human cell line (human fibroblasts). Four human osteosarcoma cell lines (MG-63, OS732, U-2OS and HOS cells) and a normal human cell line (human fibroblasts) were employed to investigate the cytotoxicity of ginsenosides Rg3 by MTT assay. Alkaline comet assay and γH2AX focus staining were used to detect the DNA damage in MG-63 and U-2OS cells. The extent of cell apoptosis was determined by flow cytometry and a DNA ladder assay. Our results demonstrated that the cytotoxicity of ginsenoside Rg3 was dose-dependent in the human osteosarcoma cell lines, and MG-63 and U-2OS cells were the most sensitive to ginsenoside Rg3. As expected, compared to the negative control, ginsenoside Rg3 significantly increased DNA damage in a concentration-dependent manner. In agreement with the comet assay data, the percentage of γH2AX-positive MG-63 and U-2OS cells indicated that ginsenoside Rg3 induced DNA double-strand breaks in a concentration-dependent manner. The results also suggest that ginsenoside Rg3 reduces the extent of MNNG-induced DNA damage and apoptosis in human fibroblasts.

  4. DNA polymerase kappa protects human cells against MMC-induced genotoxicity through error-free translesion DNA synthesis.

    Science.gov (United States)

    Kanemaru, Yuki; Suzuki, Tetsuya; Sassa, Akira; Matsumoto, Kyomu; Adachi, Noritaka; Honma, Masamitsu; Numazawa, Satoshi; Nohmi, Takehiko

    2017-01-01

    Interactions between genes and environment are critical factors for causing cancer in humans. The genotoxicity of environmental chemicals can be enhanced via the modulation of susceptible genes in host human cells. DNA polymerase kappa (Pol κ) is a specialized DNA polymerase that plays an important role in DNA damage tolerance through translesion DNA synthesis. To better understand the protective roles of Pol κ, we previously engineered two human cell lines either deficient in expression of Pol κ (KO) or expressing catalytically dead Pol κ (CD) in Nalm-6-MSH+ cells and examined cytotoxic sensitivity against various genotoxins. In this study, we set up several genotoxicity assays with cell lines possessing altered Pol κ activities and investigated the protective roles of Pol κ in terms of genotoxicity induced by mitomycin C (MMC), a therapeutic agent that induces bulky DNA adducts and crosslinks in DNA. We introduced a frameshift mutation in one allele of the thymidine kinase (TK) gene of the KO, CD, and wild-type Pol κ cells (WT), thereby establishing cell lines for the TK gene mutation assay, namely TK+/- cells. In addition, we formulated experimental conditions to conduct chromosome aberration (CA) and sister chromatid exchange (SCE) assays with cells. By using the WT TK+/- and KO TK+/- cells, we assayed genotoxicity of MMC. In the TK gene mutation assay, the cytotoxic and mutagenic sensitivities of KO TK+/- cells were higher than those of WT TK+/- cells. MMC induced loss of heterozygosity (LOH), base pair substitutions at CpG sites and tandem mutations at GpG sites in both cell lines. However, the frequencies of LOH and base substitutions at CpG sites were significantly higher in KO TK+/- cells than in WT TK+/- cells. MMC also induced CA and SCE in both cell lines. The KO TK+/- cells displayed higher sensitivity than that displayed by WT TK+/- cells in the SCE assay. These results suggest that Pol κ is a modulating factor for the genotoxicity of MMC and

  5. Challenges in Simulating Light-Induced Processes in DNA

    Directory of Open Access Journals (Sweden)

    Philipp Marquetand

    2016-12-01

    Full Text Available In this contribution, we give a perspective on the main challenges in performing theoretical simulations of photoinduced phenomena within DNA and its molecular building blocks. We distinguish the different tasks that should be involved in the simulation of a complete DNA strand subject to UV irradiation: (i stationary quantum chemical computations; (ii the explicit description of the initial excitation of DNA with light; (iii modeling the nonadiabatic excited state dynamics; (iv simulation of the detected experimental observable; and (v the subsequent analysis of the respective results. We succinctly describe the methods that are currently employed in each of these steps. While for each of them, there are different approaches with different degrees of accuracy, no feasible method exists to tackle all problems at once. Depending on the technique or combination of several ones, it can be problematic to describe the stacking of nucleobases, bond breaking and formation, quantum interferences and tunneling or even simply to characterize the involved wavefunctions. It is therefore argued that more method development and/or the combination of different techniques are urgently required. It is essential also to exercise these new developments in further studies on DNA and subsystems thereof, ideally comprising simulations of all of the different components that occur in the corresponding experiments.

  6. Continuous cytokine exposure of colonic epithelial cells induces DNA damage

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole Haagen

    2005-01-01

    tetrazolium bromide (MTT) test. Production of ROS was determined by the oxidation of 2',7'-dichlorodihydrofluorescein to a fluorescent 2',7'-dichlorofluorescein and measured by fluorescence reading and visualized by fluorescence microscopy. DNA stability was determined by single cell gel electrophoresis...

  7. Cytometric analysis of DNA changes induced by sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.J.; Sanders, K.M.; Ruddle, S.E.; Gross, C.L.

    1993-05-13

    Sulfur mustard is an alkylating agent which causes severe, potentially debilitating blisters following cutaneous exposure. Its mechanism of pathogenesis is unknown and no antidote exists to prevent its pathology. The biochemical basis of sulfur mustard's vesicating activity has been hypothesized to be a cascade of events beginning with alkylation of DNA. Using human cells in culture, we have assessed the effects of sulfur mustard on cell cycle activity using flow cytometry with propidium iodide. Two distinct patterns emerged, a Gl/S interface block at concentrations equivalent to vesicating doses (>50-micronM) and a G2 block at 10-fold lower concentrations. In addition, noticeable increases in amount of dye uptake were observed at 4 and 24 hours after sulfur mustard exposure. These increases are believed to be related to DNA repair activities and can be prevented by treatment of the cells with niacinamide, which inhibits DNA repair. Other drugs which provide alternate alkylating sites or inhibit cell cycle progression were shown to lower the cytotoxicity of sulfur mustard and to protect against its direct DNA damaging effects.

  8. induced by cadmium using random amplified polymorphic DNA

    African Journals Online (AJOL)

    darya

    2013-04-17

    Apr 17, 2013 ... under different concentration of cadmium showed some changes (increase or decrease). Changes observed in the DNA profiles such as modifications in band intensity and loss of bands may be due to the changes in oligonucleotide priming sites leading to genomic rearrangements, and less likely to point ...

  9. Biological effects induced by K photoionization in the DNA atoms

    International Nuclear Information System (INIS)

    Gobert, F.; Herve, M.A.; Penhoat, H. du; Touati, A.; Abel, F.; Lamoureux, M.; Politis, M.F.; Sabatier, L.; Chetioui, A.

    2001-01-01

    An experiment has been made at the Lure using ultra soft X radiations (340 eV) to check the hypothesis that the K ionizations of DNA atoms could be the critical events at the origin of ionizing radiations lethality and then despite of a low probability. (N.C.)

  10. Sensitive detection of DNA oxidation damage induced by nanomaterials.

    Science.gov (United States)

    Collins, Andrew; El Yamani, Naouale; Dusinska, Maria

    2017-06-01

    From a toxicological point of view, nanomaterials are of interest; because - on account of their great surface area relative to mass - they tend to be more reactive than the bulk chemicals from which they are derived. They might in some cases have the potential to damage DNA directly, or could act via the induction of oxidative stress. The comet assay (single cell gel electrophoresis) is widely used to measure DNA strand breaks and also oxidised bases, by including in the procedure digestion with lesion-specific enzymes such as formamidopyrimidine DNA glycosylase (which converts oxidised purines to breaks) or endonuclease III (recognising oxidised pyrimidines). We summarise reports in which these enzymes have been used to study a variety of nanomaterials in diverse cell types. We also stress that it is important to carry out tests of cell viability alongside the genotoxicity assay, since cytotoxicity can lead to adventitious DNA damage. Different concentrations of nanomaterials should be investigated, concentrating on a non-cytotoxic range; and incubating for short and longer periods can give valuable information about the mode of damage induction. The use of lesion-specific enzymes can substantially enhance the sensitivity of the comet assay in detecting genotoxic effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cell cycle stage dependent variations in drug-induced topoisomerase II mediated DNA cleavage and cytotoxicity

    International Nuclear Information System (INIS)

    Estey, E.; Adlakha, R.C.; Hittelman, W.N.; Zwelling, L.A.

    1987-01-01

    The DNA cleavage produced by 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) in mammalian cells is putatively mediated by topoisomerase II. The authors found that in synchronized HeLa cells the frequency of such cleavage was 4-15-fold greater in mitosis than in S while the DNA of G 1 and G 2 cells exhibited an intermediate susceptibility to cleavage. The hypersensitivity of mitotic DNA to m-AMSA-induced cleavage was acquired relatively abruptly in late G 2 and was lost similarly abruptly in early G 1 . The susceptibility of mitotic cells to m-AMSA-induced DNA cleavage was not clearly paralleled by an increase in topoisomerase II activity in 350 mM NaCl extracts from mitotic cells compared to similar extracts from cells in G 1 , S, or G 2 . Furthermore, equal amounts of decatenating activity from cells in mitosis and S produced equal amounts of m-AMSA-induced cleavage of simian virus 40 (SV40) DNA; i.e., the interaction between m-AMSA and extractable enzyme was similar in mitosis and S. The DNA of mitotic cells was also hypersensitive to cleavage by 4'-demethylepipodophyllotoxin 4-(4,6-O-ethylidene-β-D-glucopyranoside) (etoposide), a drug that produces topoisomerase II mediated DNA cleavage without binding to DNA. Cell cycle stage dependent fluctuations in m-AMSA-induced DNA cleavage may result from fluctuations in the structure of chromatin per se that occur during the cell cycle. Surprisingly, cell cycle stage dependent differences in m-AMSA-induced DNA cleavage did not correlate with differences in the susceptibility to the cytotoxic effects of the drug. In fact, cells in S were most sensitive to these effects. These results are an exception to the previously observed parallel between the susceptibility of mammalian cells to drug-induced DNA cleavage and the susceptibility of the cells to drug-induced cytotoxicity and indicate the complexity of any relationship between the two phenomena

  12. In vitro and in vivo assay of radio-induced damage in Escherichia Coli, DNA labelled on thymidilic fragment

    International Nuclear Information System (INIS)

    Bonicel, A.

    1977-01-01

    A technique of rapid assay for a particular and very important damage, N-formamido (DNA), is described. Using this technique, the importance of radio-induced DNA damage can be evaluated before the repair enzymatic system takes place [fr

  13. Role of extracellular DNA oxidative modification in radiation induced bystander effects in human endotheliocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kostyuk, Svetlana V. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Ermakov, Aleksei V., E-mail: avePlato@mail.ru [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Alekseeva, Anna Yu.; Smirnova, Tatiana D.; Glebova, Kristina V.; Efremova, Liudmila V. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Baranova, Ancha [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); School of System Biology, George Mason University, Fairfax, VA 22030 (United States); Veiko, Natalya N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2012-01-03

    The development of the bystander effect induced by low doses of irradiation in human umbilical vein endothelial cells (HUVECs) depends on extracellular DNA (ecDNA) signaling pathway. We found that the changes in the levels of ROS and NO production by human endothelial cells are components of the radiation induced bystander effect that can be registered at a low dose. We exposed HUVECs to X-ray radiation and studied effects of ecDNA{sup R} isolated from the culture media conditioned by the short-term incubation of irradiated cells on intact HUVECs. Effects of ecDNA{sup R} produced by irradiated cells on ROS and NO production in non-irradiated HUVECs are similar to bystander effect. These effects at least partially depend on TLR9 signaling. We compared the production of the nitric oxide and the ROS in human endothelial cells that were (1) irradiated at a low dose; (2) exposed to the ecDNA{sup R} extracted from the media conditioned by irradiated cells; and (3) exposed to human DNA oxidized in vitro. We found that the cellular responses to all three stimuli described above are essentially similar. We conclude that irradiation-related oxidation of the ecDNA is an important component of the ecDNA-mediated bystander effect.

  14. Correlation of binding efficacies of DNA to flavonoids and their induced cellular damage.

    Science.gov (United States)

    Das, Asmita; Majumder, Debashis; Saha, Chabita

    2017-05-01

    Flavonoids are dietary intakes which are bestowed with several health benefits. The most studied property of flavonoids is their antioxidant efficacy. Among the chosen flavonoids Quercetin, Kaempferol and Myricetin is catagorized as flavonols whereas Apigenin and Luteolin belong to the flavone group. In the present study anti-cancer properties of flavonoids are investigated on the basis of their binding efficacy to ct-DNA and their ability to induce cytotoxicity in K562 leukaemic cells. The binding affinities of the flavonoids with calf thymus DNA (ct-DNA) are in the order Quercetin>Myricetin>Luteolin>Kaempferol>Apigenin. Quercetin with fewer OH than myricetin has higher affinity towards DNA suggesting that the number and position of OH influence the binding efficacies of flavonoids to ct-DNA. CD spectra and EtBr displacement studies evidence myricetin and apigenin to be stronger intercalators of DNA compared to quercetin. From comet assay results it is observed that quercetin and myricetin when used in combination induce higher DNA damage in K562 leukemic cells than when tested individually. Higher binding efficacy has been recorded for quercetin to DNA at lower pH, which is the micro environment of cancerous cells, and hence quercetin can act as a potential anti-cancer agent. Presence of Cu also increases cellular damage as recorded by comet assay. Copyright © 2017. Published by Elsevier B.V.

  15. Damage to dry plasmid DNA induced by nanosecond XUV-laser pulses

    Science.gov (United States)

    Nováková, Eva; Davídková, Marie; Vyšín, Ludék; Burian, Tomáš; Grisham, Michael E.; Heinbuch, Scott; Rocca, Jorge J.; Juha, Libor

    2011-06-01

    Ionizing radiation induces a variety of DNA damages including single-strand breaks (SSBs), double-strand breaks (DSBs), abasic sites, modified sugar and bases. Most theoretical and experimental studies have been focused on DNA strand scissions, in particular production of DNA double-strand breaks. DSBs have been proven to be a key damage at a molecular level responsible for the formation of chromosomal aberrations, leading often to cell death. The complexity of lesions produced in DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. We have studied the nature of DNA damage induced directly by the pulsed 46.9 nm radiation provided by a capillary-discharge Ne-like Ar laser (CDL). Different surface doses were delivered with a repetition rate of a few Hz and an average pulse energy ~ 1 μJ. A simple model DNA molecule, i.e., dried closed-circular plasmid DNA (pBR322), was irradiated. The agarose gel electrophoresis method was used for determination of both SSB and DSB yields. Results are compared with a previous study of plasmid DNA irradiated with a single sub-nanosecond 1-keV X-ray pulse produced by a large-scale, double-stream gas puff target, illuminated by sub-kJ, near-infrared (NIR) focused laser pulses at the PALS facility (Prague Asterix Laser System).

  16. DNA-dependent protein kinase inhibits AID-induced antibody gene conversion.

    Directory of Open Access Journals (Sweden)

    Adam J L Cook

    2007-04-01

    Full Text Available Affinity maturation and class switching of antibodies requires activation-induced cytidine deaminase (AID-dependent hypermutation of Ig V(DJ rearrangements and Ig S regions, respectively, in activated B cells. AID deaminates deoxycytidine bases in Ig genes, converting them into deoxyuridines. In V(DJ regions, subsequent excision of the deaminated bases by uracil-DNA glycosylase, or by mismatch repair, leads to further point mutation or gene conversion, depending on the species. In Ig S regions, nicking at the abasic sites produced by AID and uracil-DNA glycosylases results in staggered double-strand breaks, whose repair by nonhomologous end joining mediates Ig class switching. We have tested whether nonhomologous end joining also plays a role in V(DJ hypermutation using chicken DT40 cells deficient for Ku70 or the DNA-dependent protein kinase catalytic subunit (DNA-PKcs. Inactivation of the Ku70 or DNA-PKcs genes in DT40 cells elevated the rate of AID-induced gene conversion as much as 5-fold. Furthermore, DNA-PKcs-deficiency appeared to reduce point mutation. The data provide strong evidence that double-strand DNA ends capable of recruiting the DNA-dependent protein kinase complex are important intermediates in Ig V gene conversion.

  17. DNA-damage-inducible (din) loci are transcriptionally activated in competent Bacillus subtilis

    International Nuclear Information System (INIS)

    Love, P.E.; Lyle, M.J.; Yasbin, R.E.

    1985-01-01

    DNA damage-inducible (din) operon fusions were generated in Bacillus subtilis by transpositional mutagenesis. These YB886(din::Tn917-lacZ) fusion isolates produced increased β-galactosidase when exposed to mitomycin C, UV radiation, or ethyl methanesulfonate, indicating that the lacZ structural gene had inserted into host transcriptional units that are induced by a variety of DNA-damaging agents. One of the fusion strains was DNA-repair deficient and phenotypically resembled a UV-sensitive mutant of B. subtilis. Induction of β-galactosidase also occurred in the competent subpopulation of each of the din fusion strains, independent of exposure to DNA-damaging agents. Both the DNA-damage-inducible and competence-inducible components of β-galactosidase expression were abolished by the recE4 mutation, which inhibits SOS-like (SOB) induction but does not interfere with the development of the component state. The results indicate that gene expression is stimulated at specific loci within the B. subtilis chromosome both by DNA-damaging agents and by the development of competence and that this response is under the control of the SOB regulatory system. Furthermore, they demonstrate that at the molecular level SOB induction and the development of competence are interrelated cellular events

  18. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein

    International Nuclear Information System (INIS)

    Carty, M.P.; Zernik-Kobak, M.; McGrath, S.; Dixon, K.

    1994-01-01

    We show that DNA replication activity in extracts of human HeLa cells decreases following UV irradiation. Alterations in replication activity in vitro parallel the UV-induced block in cell cycle progression of these cells in culture. UV irradiation also induces specific changes in the pattern of phosphorylation of the 34 kDa subunit of a DNA replication protein, human single-stranded DNA-binding protein (hSSB). The appearance of a hyperphosphorylated form of hSSB correlates with reduced in vitro DNA replication activity in extracts of UV-irradiated cells. Replication activity can be restored to these extracts in vitro by addition of purified hSSB. These results suggest that UV-induced DNA synthesis arrest may be mediated in part through phosphorylation-related alterations in the activity of hSSB, an essential component of the DNA replication apparatus. (Author)

  19. DNA-reactive protein monoepoxides induce cell death and mutagenesis in mammalian cells.

    Science.gov (United States)

    Tretyakova, Natalia Y; Michaelson-Richie, Erin D; Gherezghiher, Teshome B; Kurtz, Jamie; Ming, Xun; Wickramaratne, Susith; Campion, Melissa; Kanugula, Sreenivas; Pegg, Anthony E; Campbell, Colin

    2013-05-07

    Although cytotoxic alkylating agents possessing two electrophilic reactive groups are thought to act by cross-linking cellular biomolecules, their exact mechanisms of action have not been established. In cells, these compounds form a mixture of DNA lesions, including nucleobase monoadducts, interstrand and intrastrand cross-links, and DNA-protein cross-links (DPCs). Interstrand DNA-DNA cross-links block replication and transcription by preventing DNA strand separation, contributing to toxicity and mutagenesis. In contrast, potential contributions of drug-induced DPCs are poorly understood. To gain insight into the biological consequences of DPC formation, we generated DNA-reactive protein reagents and examined their toxicity and mutagenesis in mammalian cells. Recombinant human O(6)-alkylguanine DNA alkyltransferase (AGT) protein or its variants (C145A and K125L) were treated with 1,2,3,4-diepoxybutane to yield proteins containing 2-hydroxy-3,4-epoxybutyl groups on cysteine residues. Gel shift and mass spectrometry experiments confirmed that epoxide-functionalized AGT proteins formed covalent DPC but no other types of nucleobase damage when incubated with duplex DNA. Introduction of purified AGT monoepoxides into mammalian cells via electroporation generated AGT-DNA cross-links and induced cell death and mutations at the hypoxanthine-guanine phosphoribosyltransferase gene. Smaller numbers of DPC lesions and reduced levels of cell death were observed when using protein monoepoxides generated from an AGT variant that fails to accumulate in the cell nucleus (K125L), suggesting that nuclear DNA damage is required for toxicity. Taken together, these results indicate that AGT protein monoepoxides produce cytotoxic and mutagenic DPC lesions within chromosomal DNA. More generally, these data suggest that covalent DPC lesions contribute to the cytotoxic and mutagenic effects of bis-electrophiles.

  20. Proton-induced direct and indirect damage of plasmid DNA

    Czech Academy of Sciences Publication Activity Database

    Vyšín, Luděk; Pachnerová Brabcová, Kateřina; Štěpán, V.; Moretto-Capelle, P.; Bugler, B.; Legube, G.; Cafarelli, P.; Casta, R.; Champeaux, J. P.; Sence, M.; Vlk, M.; Wagner, Richard; Štursa, Jan; Zach, Václav; Incerti, S.; Juha, Libor; Davídková, Marie

    2015-01-01

    Roč. 54, č. 3 (2015), s. 343-352 ISSN 0301-634X R&D Projects: GA ČR GA13-28721S; GA MŠk LD12008; GA MŠk LM2011019 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : proton radiation * DNA plasmid * direct and indirect effects * clustered damage * repair enzymes Subject RIV: BO - Biophysics Impact factor: 1.923, year: 2015

  1. Eu3+-induced DNA condensation and chirality transfer

    Czech Academy of Sciences Publication Activity Database

    Wu, Tao; Bouř, Petr; Andrushchenko, Valery

    2016-01-01

    Roč. 23, č. 1 (2016), s. 26 ISSN 1211-5894. [Discussions in Structural Molecular Biology /14./. 17.03.2016-19.03.2016, Nové Hrady] R&D Projects: GA ČR(CZ) GJ16-08764Y; GA ČR GA15-09072S; GA ČR(CZ) GA16-04902S Institutional support: RVO:61388963 Keywords : DNA * lanthanides * circularly polarised luminescence Subject RIV: CF - Physical ; Theoretical Chemistry

  2. Metformin (dimethyl-biguanide induced DNA damage in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rubem R. Amador

    2012-01-01

    Full Text Available Metformin (dimethyl-biguanide is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays and in mice (micronucleus assays. Concentrations of 114.4 µg/mL and 572 µg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 µg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.

  3. Crystal Structure of the Lactose Operon Repressor and Its Complexes with DNA and Inducer

    Science.gov (United States)

    Lewis, Mitchell; Chang, Geoffrey; Horton, Nancy C.; Kercher, Michele A.; Pace, Helen C.; Schumacher, Maria A.; Brennan, Richard G.; Lu, Ponzy

    1996-03-01

    The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor, a product of the lacI gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-β-D-1-thiogalactoside (IPTG) and the lac repressor complexed with a 21-base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in a stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quaternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites on the genomic DNA.

  4. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete

    2013-01-01

    DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed...... knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...... replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling....

  5. The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma.

    Science.gov (United States)

    Belanger, KarryAnne K; Ameredes, Bill T; Boldogh, Istvan; Aguilera-Aguirre, Leopoldo

    2016-01-01

    Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways caused by changes in respiratory airflow during exercise. These changes, along with existing airway inflammatory conditions, are associated with increased cellular levels of reactive oxygen species (ROS) affecting important biomolecules including DNA, although the underlying molecular mechanisms have not been completely elucidated. One of the most abundant oxidative DNA lesions is 8-oxoguanine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) during the base excision repair (BER) pathway. Whole-genome expression analyses suggest a cellular response to OGG1-BER, involving genes that may have a role in the pathophysiology of EIA leading to mast cell degranulation, airway hyperresponsiveness, and bronchoconstriction. Accordingly, this review discusses a potential new hypothesis in which OGG1-BER-induced gene expression is associated with EIA symptoms.

  6. Staphylococcus aureus sepsis induces early renal mitochondrial DNA repair and mitochondrial biogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Raquel R Bartz

    Full Text Available Acute kidney injury (AKI contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control, 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection.

  7. Mechanisms of DNA repair and radio-induced mutagenesis in higher eukaryotes

    International Nuclear Information System (INIS)

    Averbeck, D.

    2000-01-01

    Cells of higher eukaryotes possess several very efficient systems for the repair of radiation-induced lesions in DNA. Different strategies have been adopted at the cellular level to remove or even tolerate various types of lesions in order to assure survival and limit the mutagenic consequences. In mammalian cells, the main DNA repair systems comprise direct reversion of damage, excision of damage and exchange mechanisms with intact DNA. Among these, the direct ligation of single strand breaks (SSB) by a DNA ligase and the multi-enzymatic repair systems of mismatch repair, base and nucleotide excision repair as well as the repair of double strand breaks (DSB) by homologous recombination or non homologous end-joining are the most important systems. Most of these processes are error-free except the non homologous end-joining pathway used for the repair of DSB. Moreover, certain lesions can be tolerated by more or less accurately acting polymerases capable of performing trans-lesion DNA syntheses. The DNA repair systems are intimately integrated in the network of cellular regulation. Some of their components are DNA damage inducible. Radiation-induced mutagenesis is largely due to unrepaired DNA damage but also involves error-prone repair processes like the repair of DSB by non-homologous end-joining. Generally, mammalian cells are well prepared to repair radiation-induced lesions. However, some questions remain to be asked about mechanistic details and efficiencies of the systems for removing certain types of radiation-damage and about their order and timing of action. The answers to these questions would be important for radioprotection as well as radiotherapy. (author)

  8. Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage.

    Directory of Open Access Journals (Sweden)

    Vengatesh Ganapathy

    Full Text Available Electronic cigarette (EC aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs.The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells.Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS and total antioxidant capacity (TAC were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively.EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1, an enzyme essential for the removal of oxidative DNA damage.Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public.

  9. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Mankgopo Magdeline Kgatle

    2017-01-01

    Full Text Available Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV, hepatitis B virus (HBV, and Epstein-Barr virus (EBV. Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. Untangling and understanding the underlying mechanisms that promote these detrimental effects remain the major objectives for ongoing research and hope for effective virus-induced cancer therapy. Here, we review current literature with an emphasis on how DNA damage influences HPV, HVB, and EBV replication and epigenetic alterations that are associated with carcinogenesis.

  10. Spectroscopic study of site selective DNA damage induced by intense soft X-rays

    International Nuclear Information System (INIS)

    Fujii, Kentaro

    2003-01-01

    To investigate the mechanisms of DNA damage induced by direct photon impact, we observed the near edge X-ray absorption fine structures (NEXAFS) of DNA nucleobases using monochromatic synchrotron soft X-rays around nitrogen and oxygen K-shell excitation regions. Each spectrum obtained has unique structure corresponding to π* excitation of oxygen or nitrogen 1s electron. These aspects open a way of nucleobase-selective photo-excitation in a DNA molecule using high resolution monochromatized soft X-rays. From the analysis of polarization-dependent intensities of the π* resonance peak, it is clarified that adenine, guanine an uracil form orientated surface structure. Furthermore from the direct measurement of positive ions desorbed from photon irradiated DNA components, it is revealed that the sugar moiety is a fragile site in a DNA molecule. (author)

  11. Spectroscopic study of site selective DNA damage induced by intense soft X-rays

    CERN Document Server

    Fujii, K

    2003-01-01

    To investigate the mechanisms of DNA damage induced by direct photon impact, we observed the near edge X-ray absorption fine structures (NEXAFS) of DNA nucleobases using monochromatic synchrotron soft X-rays around nitrogen and oxygen K-shell excitation regions. Each spectrum obtained has unique structure corresponding to pi* excitation of oxygen or nitrogen 1s electron. These aspects open a way of nucleobase-selective photo-excitation in a DNA molecule using high resolution monochromatized soft X-rays. From the analysis of polarization-dependent intensities of the pi* resonance peak, it is clarified that adenine, guanine an uracil form orientated surface structure. Furthermore from the direct measurement of positive ions desorbed from photon irradiated DNA components, it is revealed that the sugar moiety is a fragile site in a DNA molecule. (author)

  12. DGCR8 Mediates Repair of UV-Induced DNA Damage Independently of RNA Processing.

    Science.gov (United States)

    Calses, Philamer C; Dhillon, Kiranjit K; Tucker, Nyka; Chi, Yong; Huang, Jen-Wei; Kawasumi, Masaoki; Nghiem, Paul; Wang, Yemin; Clurman, Bruce E; Jacquemont, Celine; Gafken, Philip R; Sugasawa, Kaoru; Saijo, Masafumi; Taniguchi, Toshiyasu

    2017-04-04

    Ultraviolet (UV) radiation is a carcinogen that generates DNA lesions. Here, we demonstrate an unexpected role for DGCR8, an RNA binding protein that canonically functions with Drosha to mediate microRNA processing, in the repair of UV-induced DNA lesions. Treatment with UV induced phosphorylation on serine 153 (S153) of DGCR8 in both human and murine cells. S153 phosphorylation was critical for cellular resistance to UV, the removal of UV-induced DNA lesions, and the recovery of RNA synthesis after UV exposure but not for microRNA expression. The RNA-binding and Drosha-binding activities of DGCR8 were not critical for UV resistance. DGCR8 depletion was epistatic to defects in XPA, CSA, and CSB for UV sensitivity. DGCR8 physically interacted with CSB and RNA polymerase II. JNKs were involved in the UV-induced S153 phosphorylation. These findings suggest that UV-induced S153 phosphorylation mediates transcription-coupled nucleotide excision repair of UV-induced DNA lesions in a manner independent of microRNA processing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Genotoxicity induced by xenobiotics:the role of DNA adducts, individual susceptibility and DNA repair

    Czech Academy of Sciences Publication Activity Database

    Vodička, Pavel; Koskinen, M.; Štětina, R.; Vodičková, L.; Kuricová, M.; Hemminki, K.

    2002-01-01

    Roč. 10, č. 1 (2002), s. 322 ISSN 1107-3756. [World Congress on Advances in Oncology /7./ and International Symposium on Molecular Medicine /5./. Hersonissos, 10.10.2002-12.10.2002] R&D Projects: GA ČR GA310/01/0802 Institutional research plan: CEZ:AV0Z5039906 Keywords : DNA adducts Subject RIV: FM - Hygiene Impact factor: 2.063, year: 2002

  14. HIVIS-DNA or HIVISopt-DNA priming followed by CMDR vaccinia-based boosts induce both humoral and cellular murine immune responses to HIV

    Directory of Open Access Journals (Sweden)

    J Hinkula

    2017-06-01

    Conclusions: HIVIS-DNA was modified to obtain HIVISopt-DNA that had fewer plasmids, and additional epitopes. Even with one DNA prime followed by two MVA-CMDR boosts, humoral and cell-mediated immune responses were readily induced by priming with either DNA construct composition. Priming by HIV-DNA augmented neutralizing antibody responses revealed by boosting with the vaccinia-based heterologous sequences. Cellular and antibody responses covered selected strains representing HIV-1 subtypes A, B, C and CRF01_AE. We assume this is related to the inclusion of heterologous full genes in the vaccine schedule.

  15. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice.

    Science.gov (United States)

    Meira, Lisiane B; Bugni, James M; Green, Stephanie L; Lee, Chung-Wei; Pang, Bo; Borenshtein, Diana; Rickman, Barry H; Rogers, Arlin B; Moroski-Erkul, Catherine A; McFaline, Jose L; Schauer, David B; Dedon, Peter C; Fox, James G; Samson, Leona D

    2008-07-01

    Chronic inflammation increases cancer risk. While it is clear that cell signaling elicited by inflammatory cytokines promotes tumor development, the impact of DNA damage production resulting from inflammation-associated reactive oxygen and nitrogen species (RONS) on tumor development has not been directly tested. RONS induce DNA damage that can be recognized by alkyladenine DNA glycosylase (Aag) to initiate base excision repair. Using a mouse model of episodic inflammatory bowel disease by repeated administration of dextran sulfate sodium in the drinking water, we show that Aag-mediated DNA repair prevents colonic epithelial damage and reduces the severity of dextran sulfate sodium-induced colon tumorigenesis. Importantly, DNA base lesions expected to be induced by RONS and recognized by Aag accumulated to higher levels in Aag-deficient animals following stimulation of colonic inflammation. Finally, as a test of the generality of this effect we show that Aag-deficient animals display more severe gastric lesions that are precursors of gastric cancer after chronic infection with Helicobacter pylori. These data demonstrate that the repair of DNA lesions formed by RONS during chronic inflammation is important for protection against colon carcinogenesis.

  16. Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact

    International Nuclear Information System (INIS)

    Haeder, Donat-P.; Sinha, Rajeshwar P.

    2005-01-01

    Continuing depletion of stratospheric ozone and subsequent increases in deleterious ultraviolet (UV) radiation at the Earth's surface have fueled the interest in its ecological consequences for aquatic ecosystems. The DNA is certainly one of the key targets for UV-induced damage in a variety of aquatic organisms. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine pyrimidone photoproducts (6-4PPs) and their Dewar valence isomers. However, aquatic organisms have developed a number of repair and tolerance mechanisms to counteract the damaging effects of UV on DNA. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also play an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with the UV-induced DNA damage and repair in a number of aquatic organisms as well as methods of detecting DNA damage

  17. Effect of superposed electromagnetic noise on DNA damage of lens epithelial cells induced by microwave radiation.

    Science.gov (United States)

    Yao, Ke; Wu, Wei; Yu, Yibo; Zeng, Qunli; He, Jiliang; Lu, Deqiang; Wang, Kaijun

    2008-05-01

    To investigate the influence of the 1.8-GHz radiofrequency fields (RFs) of the Global System for Mobile Communications on DNA damage, intracellular reactive oxygen species (ROS) formation, cell cycle, and apoptosis in human lens epithelial cells (hLECs) and whether the effects induced by RF could be blocked by superposing of electromagnetic noise. After 24-hour intermittent exposure at the specific absorption rate of 1 W/kg, 2 W/kg, 3 W/kg, and 4 W/kg, the DNA damage of hLECs was examined by alkaline comet assay and immunofluorescence microscope detection of the phosphorylated form of histone variant H2AX (gammaH2AX) foci, respectively. ROS production was quantified by the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Cell cycle and cell apoptosis were determined by flow cytometry. DNA damage examined by alkaline comet assay was significantly increased after 3 W/kg and 4 W/kg radiation (P radiation (P microwave radiation and sham exposure groups (P > 0.05). All the effects mentioned were blocked when the RF was superposed with 2 muT electromagnetic noise. Microwave radiation induced hLEC DNA damage after G(0)/G(1) arrest does not lead to cell apoptosis. The increased ROS observed may be associated with DNA damage. Superposed electromagnetic noise blocks microwave radiation-induced DNA damage, ROS formation, and cell cycle arrest.

  18. The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Michihiro Takahama

    2017-09-01

    Full Text Available Cyclic GMP-AMP synthase (cGAS is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5, in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING, the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis.

  19. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Matthew L Hirsch

    Full Text Available Human embryonic stem cells (hESCs are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  20. Reversible DNA condensation induced by a tetranuclear nickel(II) complex.

    Science.gov (United States)

    Dong, Xindian; Wang, Xiaoyong; He, Yafeng; Yu, Zhen; Lin, Miaoxin; Zhang, Changli; Wang, Jing; Song, Yajie; Zhang, Yangmiao; Liu, Zhipeng; Li, Yizhi; Guo, Zijian

    2010-12-17

    DNA condensing agents play a critical role in gene therapy. A tetranuclear nickel(II) complex, [Ni(II)(4)(L-2H)(H(2)O)(6)(CH(3)CH(2)OH)(2)]·6NO(3) (L=3,3',5,5'-tetrakis{[(2-hydroxyethyl)(pyridin-2-ylmethyl)amino]methyl}biphenyl-4,4'-diol), has been synthesized as a nonviral vector to induce DNA condensation. X-ray crystallographic data indicate that the complex crystallizes in the monoclinic system with space group P2(1)/n, a=10.291(9), b=24.15(2), c=13.896(11) Å, and β=98.175(13)°. The DNA condensation induced by the complex has been investigated by means of UV/Vis spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, dynamic light scattering, atomic force microscopy, gel electrophoresis assay, and zeta potential analysis. The complex interacts strongly with DNA through electrostatic attraction and induces its condensation into globular nanoparticles at low concentration. The release of DNA from its compact state has been achieved using the chelator ethylenediaminetetraacetic acid (EDTA) for the first time. Other essential properties, such as DNA cleavage inactivity and biocompatibility, have also been examined in vitro. In general, the complex satisfies the requirements of a gene vector in all of these respects.

  1. Immune response induced by candidate Sarcoptes scabiei var. cuniculi DNA vaccine encoding paramyosin in mice.

    Science.gov (United States)

    Gu, Xiaobin; Xie, Yue; Wang, Shuxian; Peng, Xuerong; Lai, Songjia; Yang, Guangyou

    2014-07-01

    Sarcoptes scabiei is the causal agent of the highly contagious disease sarcoptic mange (scabies) that affects animals and humans worldwide. An increasing number of cases of treatment failure is being reported because of drug resistance. The development of a specific vaccine would be a sustainable option for control of this disease. In this study, we cloned and expressed a S. scabiei gene encoding paramyosin (PAR) and investigated the immune response elicited by DNA encoding PAR in mice. The ability of the DNA vaccine to express antigen in COS-7 cells was confirmed by RT-PCR and IFA. The immune response induced by DNA vaccine was investigated by ELISA, splenocyte proliferation assay, and cytokine production assay. Compared to the pVAX1 control group, the PAR DNA vaccination group showed the higher levels of IgG, IgG1, IgG2a, IgE, IgM, stronger lymphocyte proliferation in mouse spleen, and larger production of IL-2, IL-4, IL-5, and IFN-γ in the supernatant of cultures from splenocytes. These results indicated that the PAR DNA vaccine induced a mixed Th1/Th2 response in mice. In conclusion, our results revealed that the S. scabiei PAR DNA vaccine induced both a humoral and cellular immune response, which would provide basic data for the further study to develop an effective vaccine against sarcoptic mange.

  2. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    Science.gov (United States)

    Kim, G. J.; Kim, W.; Kim, K. T.; Lee, J. K.

    2010-01-01

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  3. Inducible repair in Escherichia coli B/r Hcr-: its relation to stable DNA synthesis

    International Nuclear Information System (INIS)

    Brozmanova, J.

    1983-01-01

    The influence of ultraviolet (UV) predose or thymine prestarvation on cell survival and on the restoration of DNA synthesis after UV irradiation and subsequent incubation with chloramphenicol has been studied. Both UV predose and thymine deprivation increased the fraction of surviving Escherichia coli B/r Hcr - cells and stimulated post-irradiation DNA synthesis. It is concluded that proteins induced by these pretreatments participated in the stimulation of DNA synthesis as well as in the enhancement of survival during incubation with chloramphenicol in UV-irradiated excision-deficient E. coli B/r Hcr - cells. (author)

  4. Spatiotemporal kinetics of γ-H2AX protein on charged particles induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Niu, H., E-mail: hniu@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Chang, H.C. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Cho, I.C. [Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chen, C.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, C.S. [Cancer Center of Taipei Veterans General Hospital, Taipei, Taiwan (China); Chou, W.T. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-08-15

    Highlights: • Charged particles can induce more complex DNA damages, and these complex damages have higher ability to cause the cell death or cell carcinogenesis. • In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in particle irradiated HeLa cells. • The HeLa cells were irradiated by 400 keV alpha-particles in four different dosages. • The result shows that a good linear relationship can be observed between foci number and radiation dose. • The data shows that the dissolution rate of γ-H2AX foci agree with the two components DNA repairing model, and it was decreasing as the radiation dose increased. • These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA repair. - Abstract: In several researches, it has been demonstrated that charged particles can induce more complex DNA damages. These complex damages have higher ability to cause the cell death or cell carcinogenesis. For this reason, clarifying the DNA repair mechanism after charged particle irradiation plays an important role in the development of charged particle therapy and space exploration. Unfortunately, the detail spatiotemporal kinetic of DNA damage repair is still unclear. In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in alpha-particle irradiated HeLa cells. The result shows that the intensity of γ-H2AX foci increased gradually, and reached to its maximum at 30 min after irradiation. A good linear relationship can be observed between foci intensity and radiation dose. After 30 min, the γ-H2AX foci intensity was decreased with time passed, but remained a large portion (∼50%) at 48 h passed. The data show that the dissolution rate of γ-H2AX foci agreed with two components DNA repairing model. These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA

  5. Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Olszewska, Wieslawa; Stryhn, Anette

    2004-01-01

    A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M2(82-90)), linked covalently to human beta2-microglobulin (beta2m). Cutaneous gene......-gun immunization of BALB/c mice with this construct induced an antigen-specific CD8+ T-cell memory. After intranasal RSV challenge, accelerated CD8+ T-cell responses were observed in pulmonary lymph nodes and virus clearance from the lungs was enhanced. The construct induced weaker CD8+ T-cell responses than those...... elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the beta2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion...

  6. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    Science.gov (United States)

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (pacetylsalicylic acid induces oxidative stress and DNA damage in D. magna. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation

    Directory of Open Access Journals (Sweden)

    James I. McDonald

    2016-06-01

    Full Text Available Advances in sequencing technology allow researchers to map genome-wide changes in DNA methylation in development and disease. However, there is a lack of experimental tools to site-specifically manipulate DNA methylation to discern the functional consequences. We developed a CRISPR/Cas9 DNA methyltransferase 3A (DNMT3A fusion to induce DNA methylation at specific loci in the genome. We induced DNA methylation at up to 50% of alleles for targeted CpG dinucleotides. DNA methylation levels peaked within 50 bp of the short guide RNA (sgRNA binding site and between pairs of sgRNAs. We used our approach to target methylation across the entire CpG island at the CDKN2A promoter, three CpG dinucleotides at the ARF promoter, and the CpG island within the Cdkn1a promoter to decrease expression of the target gene. These tools permit mechanistic studies of DNA methylation and its role in guiding molecular processes that determine cellular fate.

  8. Effects of hyperthermia on repair of radiation-induced DNA strand breaks

    International Nuclear Information System (INIS)

    Mills, M.D.; Meyn, R.E.

    1981-01-01

    Previous reports have suggested a relationship between the heat-induced changes in nucleoprotein and the hyperthermic enhancement of radiation sensitivity. In an effort to further understand these relationships, we measured the level of initial DNA strand break damage and the DNA strand break rejoining kinetics in Chinese hamster ovary cells following combined hyperthermia and ionizing radiation treatments. The amount of protein associated with DNA measured as the ratio of [ 3 H)leucine to [ 14 C]thymidine was also compared in chromatin isolated from both heated and unheated cells. The results of these experiments show that the initial level of radiation-induced DNA strand breaks is significantly enhanced by a prior hyperthermia treatment of 43 0 C for 30 min. Treatments at higher temperatures and longer treatments at the same temperature magnified this effect. Hyperthermia was also shown to cause a substantial inhibition of the DNA strand break rejoining after irradiation. Both the initial level of DNA damage and the rejoining kinetics recovered to normal levels with incubation at 37 0 C between the hyperthermia and radiation treatments. Recovery of these parameters coincided with the return of the amount of protein associated with DNA to normal values, further suggesting a relationship between the changes in nucleoprotein and the hyperthermic enhancement of radiation sensivivity

  9. Low energy electron induced damage to plasmid DNA pQE30

    Science.gov (United States)

    Kumar, S. V. K.; Pota, Tasneem; Peri, Dinakar; Dongre, Anushka D.; Rao, Basuthkar J.

    2012-07-01

    Low energy electrons (LEEs) are produced in copious amounts by the primary radiation used in radiation therapy. The damage caused to the DNA by these secondary electrons in the energy range 5-22 eV has been studied to understand their possible role in radiation induced damage. Electrons are irradiated on dried films of plasmid DNA (pQE30) and analysed using agarose gel electrophoresis. Single strand breaks (SSBs) induced by LEE to supercoiled plasmid DNA show resonance structures at 7, 12, and 15 eV for low doses and 6, 10, and ˜18 eV at saturation doses. The present measurements have an overall agreement with the literature that LEEs resonantly induce SSBs in DNA. Resonant peaks in the SSBs induced by LEEs at 7, 12, and 15 eV with the lowest employed dose in the current study are somewhat different from those reported earlier by two groups. The observed differences are perhaps related to the irradiation dose, conditions and the nature of DNA employed, which is further elaborated.

  10. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza [Department of Pharmaceutical Biotechnology and Biotechnology Research Centre, Faculty of Pharmacy, TUMS, Tehran (Iran, Islamic Republic of); Ahmadi, Abbas [Department of Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of); Baeeri, Maryam; Mohammadirad, Azadeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: mohammad.abdollahi@utoronto.ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of)

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage

  11. Influence of the complexity of radiation-induced DNA damage on enzyme recognition

    International Nuclear Information System (INIS)

    Palmer, Philip

    2002-01-01

    Ionising radiation is unique in inducing DNA clustered damage together with the simple isolated lesions. Understanding how these complex lesions are recognised and repaired by the cell is key to understanding the health risks associated with radiation exposure. This study focuses on whether ionising radiation-induced complex single-strand breaks (SSB) are recognised by DNA-PK and PARP, and whether the complexity of DSB influence their ligation by either DNA ligase lV/XRCC4 (LX) complex or T4 DNA ligase. Plasmid DNA, irradiated in aqueous solution using sparsely ionising γ-rays and densely ionising α-particles produce different yields of complex DNA damages, used as substrates for in vitro DNA-PK and PARP activity assays. The activity of DNA-PK to phosphorylate a peptide was determined using HF19 cell nuclear extracts as a source of DNA-PK. PARP ADP-ribosylation activity was determined using purified PARP enzyme. The activation of DNA-PK and PARP by irradiated DNA is due to SSB and not the low yield of DSB (linear plasmid DNA <10%). A ∼2 fold increase in DNA-PK activation and a ∼3-fold reduction in PARP activity seen on increasing the ionising density of the radiation (proportion of complex damage) are proposed to reflect changes in the complexity of SSB and may relate to damage signalling. Complex DSB synthesised as double-stranded oligonucleotides, with a 2 bp 5'-overhang, and containing modified lesions, 8-oxoguanine and abasic sites, at known positions relative to the termini were used as substrates for in vitro ligation by DNA ligase IV/XRCC4 or T4 ligase. The presence of a modified lesion 2 or 3 bp but not 4 bp from the 3'-termini and 2 or 6 bp from the 5'-termini caused a drastic reduction in the extent of ligation. Therefore, the presence of modified lesions near to the termini of a DSB may compromise their rejoining by non-homologous end-joining (NHEJ) involving the LX complex. (author)

  12. Elucidation of polymer induced DNA condensation. Visualisation at the single molecular level

    International Nuclear Information System (INIS)

    Martin, Alison Laura

    2002-01-01

    DNA condensation is a phenomenon that has stimulated interest from biologists, physicists, and polymer chemists for decades. At the cellular level, this process is key to the packing of DNA within the nuclear envelope, and the exposure of the appropriate nucleic acid sequences in order for transcription to occur, and proteins to be produced. The advent of gene therapy has led to an invigoration of this subject area. In order to successfully deliver to, and transfect target cells, many delivery vectors condense the therapeutic DNA into small compact particles. The nature of these particles have a considerable influence on the ultimate expression of the administered nucleic acid material. In addition, at its most fundamental, DNA itself is a classical polyelectrolyte polymer, the behaviour of which has applicability to other charged polymeric systems. There are two core interwound themes to this investigation; the visualisation of DNA condensate morphology at ultra-resolution, and the elucidation of the mechanisms of formation of these structures. The technique of atomic force microscopy is central to these investigations. Methodologies have been devised allowing the visualisation of the tertiary structure and conformational behaviour of individual DNA condensates in near in situ conditions. Condensation of the nucleic acid material has been induced by two classes of cation; small molecular cations, like those found within eukaryotic cells, and a range of cationic polymers. The cationic polymers investigated all have considerable potential as gene delivery vectors. The resultant DNA condensates have been assessed and contrasted in terms of their tertiary morphology, lateral dimensions, and structural volume. Assessments have also been made regarding the influence of the molecular architecture of the cationic moiety and the nature of the input nucleic acid material on the resultant DNA condensates. With regard to the elucidation of the mechanisms of DNA condensate

  13. PTEN Activation by DNA Damage Induces Protective Autophagy in Response to Cucurbitacin B in Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yanan Niu

    2016-01-01

    Full Text Available Cucurbitacin B (Cuc B, a natural product, induced both protective autophagy and DNA damage mediated by ROS while the detailed mechanisms remain unclear. This study explored the mechanism of Cuc B-induced DNA damage and autophagy. Cuc B decreased cell viability in concentration- and time-dependent manners. Cuc B caused long comet tails and increased expression of γ-H2AX, phosphorylation of ATM/ATR, and Chk1/Chk2. Cuc B induced autophagy as evidenced by monodansylcadaverine (MDC staining, increased expression of LC3II, phosphorylated ULK1, and decreased expression of phosphorylated AKT, mTOR. Cuc B induced apoptosis mediated by Bcl-2 family proteins and caspase activation. Furthermore, Cuc B induced ROS formation, which was inhibited by N-acetyl-L-cysteine (NAC. NAC pretreatment dramatically reversed Cuc B-induced DNA damage, autophagy, and apoptosis. Cuc B-induced apoptosis was reversed by NAC but enhanced by 3-methyladenine (3-MA, chloroquine (CQ, and silencing phosphatase and tensin homolog (PTEN. 3-MA and CQ showed no effect on Cuc B-induced DNA damage. In addition, Cuc B increased PTEN phosphorylation and silence PTEN restored Cuc B-induced autophagic protein expressions without affecting DNA damage. In summary, Cuc B induced DNA damage, apoptosis, and protective autophagy mediated by ROS. PTEN activation in response to DNA damage bridged DNA damage and prosurvival autophagy.

  14. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes.

    Science.gov (United States)

    Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M

    2018-01-30

    Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Oxidative Stress Induces Mitochondrial DNA Damage and Cytotoxicity through Independent Mechanisms in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yue Han

    2013-01-01

    Full Text Available Intrinsic oxidative stress through increased production of reactive oxygen species (ROS is associated with carcinogenic transformation, cell toxicity, and DNA damage. Mitochondrial DNA (mtDNA is a natural surrogate to oxidative DNA damage. MtDNA damage results in the loss of its supercoiled structure and is readily detectable using a novel, supercoiling-sensitive real-time PCR method. Our studies have demonstrated that mtDNA damage, as measured by DNA strand breaks and copy number depletion, is very sensitive to exogenous H2O2 but independent of endogenous ROS production in both prostate cancer and normal cells. In contrast, aggressive prostate cancer cells exhibit a more than 10-fold sensitivity to H2O2-induced cell toxicity than normal cells, and a cascade of secondary ROS production is a critical determinant to the differential response. We propose a new paradigm to account for different mechanisms governing cellular oxidative stress, cell toxicity, and DNA damage with important ramifications in devising new techniques and strategies in prostate cancer prevention and treatment.

  16. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    Science.gov (United States)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  17. Somatic mutations in stilbene estrogen-induced Syrian hamster kidney tumors identified by DNA fingerprinting

    Directory of Open Access Journals (Sweden)

    Roy Deodutta

    2004-01-01

    Full Text Available Abstract Kidney tumors from stilbene estrogen (diethylstilbestrol-treated Syrian hamsters were screened for somatic genetic alterations by Random Amplified Polymorphic DNA-polymerase chain-reaction (RAPD-PCR fingerprinting. Fingerprints from tumor tissue were generated by single arbitrary primers and compared with fingerprints for normal tissue from the same animal, as well as normal and tumor tissues from different animals. Sixty one of the arbitrary primers amplified 365 loci that contain approximately 476 kbp of the hamster genome. Among these amplified DNA fragments, 44 loci exhibited either qualitative or quantitative differences between the tumor tissues and normal kidney tissues. RAPD-PCR loci showing decreased and increased intensities in tumor tissue DNA relative to control DNA indicate that loci have undergone allelic losses and gains, respectively, in the stilbene estrogen-induced tumor cell genome. The presence or absence of the amplified DNA fragments indicate homozygous insertions or deletions in the kidney tumor DNA compared to the age-matched normal kidney tissue DNA. Seven of 44 mutated loci also were present in the kidney tissues adjacent to tumors (free of macroscopic tumors. The presence of mutated loci in uninvolved (non-tumor surrounding tissue adjacent to tumors from stilbene estrogen-treated hamsters suggests that these mutations occurred in the early stages of carcinogenesis. The cloning and sequencing of RAPD amplified loci revealed that one mutated locus had significant sequence similarity with the hamster Cyp1A1 gene. The results show the ability of RAPD-PCR to detect and isolate, in a single step, DNA sequences representing genetic alterations in stilbene estrogen-induced cancer cells, including losses of heterozygosity, and homozygous deletion and insertion mutations. RAPD-PCR provides an alternative molecular approach for studying cancer cytogenetics in stilbene estrogen-induced tumors in humans and experimental

  18. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy

    DEFF Research Database (Denmark)

    Rodríguez-Vargas, José Manuel; Ruiz-Magaña, María José; Ruiz-Ruiz, Carmen

    2012-01-01

    In response to nutrient stress, cells start an autophagy program that can lead to adaptation or death. The mechanisms underlying the signaling from starvation to the initiation of autophagy are not fully understood. In the current study we show that the absence or inactivation of PARP-1 strongly...... delays starvation-induced autophagy. We have found that DNA damage is an early event of starvation-induced autophagy as measured by ¿-H2AX accumulation and comet assay, with PARP-1 knockout cells displaying a reduction in both parameters. During starvation, ROS-induced DNA damage activates PARP-1......, leading to ATP depletion (an early event after nutrient deprivation). The absence of PARP-1 blunted AMPK activation and prevented the complete loss of mTOR activity, leading to a delay in autophagy. PARP-1 depletion favors apoptosis in starved cells, suggesting a pro-survival role of autophagy and PARP-1...

  19. Damage to cellular and isolated DNA induced by a metabolite of aspirin

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan)], E-mail: s-oikawa@doc.medic.mie-u.ac.jp; Kobayashi, Hatasu; Tada-Oikawa, Saeko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); JSPS Research Fellow (Japan); Isono, Yoshiaki [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Kawanishi, Shosuke [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507 (Japan); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan)

    2009-02-10

    Aspirin has been proposed as a possible chemopreventive agent. On the other hand, a recent cohort study showed that aspirin may increase the risk for pancreatic cancer. To clarify whether aspirin is potentially carcinogenic, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is correlated with the incidence of cancer, in cultured cells treated with 2,3-dihydroxybenzoic acid (2,3-DHBA), a metabolite of aspirin. 2,3-DHBA induced 8-oxodG formation in the PANC-1 human pancreatic cancer cell line. 2,3-DHBA-induced DNA single-strand breaks were also revealed by comet assay using PANC-1 cells. Flow cytometric analyses showed that 2,3-DHBA increased the levels of intracellular reactive oxygen species (ROS) in PANC-1 cells. The 8-oxodG formation and ROS generation were also observed in the HL-60 leukemia cell line, but not in the hydrogen peroxide (H{sub 2}O{sub 2})-resistant clone HP100 cells, suggesting the involvement of H{sub 2}O{sub 2}. In addition, an hprt mutation assay supported the mutagenicity of 2,3-DHBA. We investigated the mechanism underlying the 2,3-DHBA-induced DNA damage using {sup 32}P-labeled DNA fragments of human tumor suppressor genes. 2,3-DHBA induced DNA damage in the presence of Cu(II) and NADH. DNA damage induced by 2,3-DHBA was enhanced by the addition of histone peptide-6 [AKRHRK]. Interestingly, 2,3-DHBA and histone peptide-6 caused base damage in the 5'-ACG-3' and 5'-CCG-3' sequences, hotspots of the p53 gene. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Typical hydroxyl radical scavengers did not inhibit the DNA damage. These results suggest that ROS derived from the reaction of H{sub 2}O{sub 2} with Cu(I) participate in the DNA damage. In conclusion, 2,3-DHBA induces oxidative DNA damage and mutations, which may result in carcinogenesis.

  20. Damage to cellular and isolated DNA induced by a metabolite of aspirin

    International Nuclear Information System (INIS)

    Oikawa, Shinji; Kobayashi, Hatasu; Tada-Oikawa, Saeko; Isono, Yoshiaki; Kawanishi, Shosuke

    2009-01-01

    Aspirin has been proposed as a possible chemopreventive agent. On the other hand, a recent cohort study showed that aspirin may increase the risk for pancreatic cancer. To clarify whether aspirin is potentially carcinogenic, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is correlated with the incidence of cancer, in cultured cells treated with 2,3-dihydroxybenzoic acid (2,3-DHBA), a metabolite of aspirin. 2,3-DHBA induced 8-oxodG formation in the PANC-1 human pancreatic cancer cell line. 2,3-DHBA-induced DNA single-strand breaks were also revealed by comet assay using PANC-1 cells. Flow cytometric analyses showed that 2,3-DHBA increased the levels of intracellular reactive oxygen species (ROS) in PANC-1 cells. The 8-oxodG formation and ROS generation were also observed in the HL-60 leukemia cell line, but not in the hydrogen peroxide (H 2 O 2 )-resistant clone HP100 cells, suggesting the involvement of H 2 O 2 . In addition, an hprt mutation assay supported the mutagenicity of 2,3-DHBA. We investigated the mechanism underlying the 2,3-DHBA-induced DNA damage using 32 P-labeled DNA fragments of human tumor suppressor genes. 2,3-DHBA induced DNA damage in the presence of Cu(II) and NADH. DNA damage induced by 2,3-DHBA was enhanced by the addition of histone peptide-6 [AKRHRK]. Interestingly, 2,3-DHBA and histone peptide-6 caused base damage in the 5'-ACG-3' and 5'-CCG-3' sequences, hotspots of the p53 gene. Bathocuproine, a Cu(I) chelator, and catalase inhibited the DNA damage. Typical hydroxyl radical scavengers did not inhibit the DNA damage. These results suggest that ROS derived from the reaction of H 2 O 2 with Cu(I) participate in the DNA damage. In conclusion, 2,3-DHBA induces oxidative DNA damage and mutations, which may result in carcinogenesis

  1. Identification of potentially cytotoxic lesions induced by UVA photoactivation of DNA 4-thiothymidine in human cells.

    Science.gov (United States)

    Reelfs, Olivier; Macpherson, Peter; Ren, Xiaolin; Xu, Yao-Zhong; Karran, Peter; Young, Antony R

    2011-12-01

    Photochemotherapy-in which a photosensitizing drug is combined with ultraviolet or visible radiation-has proven therapeutic effectiveness. Existing approaches have drawbacks, however, and there is a clinical need to develop alternatives offering improved target cell selectivity. DNA substitution by 4-thiothymidine (S(4)TdR) sensitizes cells to killing by ultraviolet A (UVA) radiation. Here, we demonstrate that UVA photoactivation of DNA S(4)TdR does not generate reactive oxygen or cause direct DNA breakage and is only minimally mutagenic. In an organotypic human skin model, UVA penetration is sufficiently robust to kill S(4)TdR-photosensitized epidermal cells. We have investigated the DNA lesions responsible for toxicity. Although thymidine is the predominant UVA photoproduct of S(4)TdR in dilute solution, more complex lesions are formed when S(4)TdR-containing oligonucleotides are irradiated. One of these, a thietane/S(5)-(6-4)T:T, is structurally related to the (6-4) pyrimidine:pyrimidone [(6-4) Py:Py] photoproducts induced by UVB/C radiation. These lesions are detectable in DNA from S(4)TdR/UVA-treated cells and are excised from DNA more efficiently by keratinocytes than by leukaemia cells. UVA irradiation also induces DNA interstrand crosslinking of S(4)TdR-containing duplex oligonucleotides. Cells defective in repairing (6-4) Py:Py DNA adducts or processing DNA crosslinks are extremely sensitive to S(4)TdR/UVA indicating that these lesions contribute significantly to S(4)TdR/UVA cytotoxicity. © The Author(s) 2011. Published by Oxford University Press.

  2. Continuous cytokine exposure of colonic epithelial cells induces DNA damage

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole Haagen

    2005-01-01

    Chronic inflammatory diseases of the intestinal tract are associated with an increased risk of colorectal cancer. As an example ulcerative colitis (UC) is associated with a production of reactive oxygen species (ROS), including nitrogen monoxide (NO), which is produced in high amounts by inducible...

  3. Accelerated repair and reduced mutagenicity of DNA damage induced by cigarette smoke in human bronchial cells transfected with E.coli formamidopyrimidine DNA glycosylase.

    Directory of Open Access Journals (Sweden)

    Mara Foresta

    Full Text Available Cigarette smoke (CS is associated to a number of pathologies including lung cancer. Its mutagenic and carcinogenic effects are partially linked to the presence of reactive oxygen species and polycyclic aromatic hydrocarbons (PAH inducing DNA damage. The bacterial DNA repair enzyme formamidopyrimidine DNA glycosylase (FPG repairs both oxidized bases and different types of bulky DNA adducts. We investigated in vitro whether FPG expression may enhance DNA repair of CS-damaged DNA and counteract the mutagenic effects of CS in human lung cells. NCI-H727 non small cell lung carcinoma cells were transfected with a plasmid vector expressing FPG fused to the Enhanced Green Fluorescent Protein (EGFP. Cells expressing the fusion protein EGFP-FPG displayed accelerated repair of adducts and DNA breaks induced by CS condensate. The mutant frequencies induced by low concentrations of CS condensate to the Na(+K(+-ATPase locus (oua(r were significantly reduced in cells expressing EGFP-FPG. Hence, expression of the bacterial DNA repair protein FPG stably protects human lung cells from the mutagenic effects of CS by improving cells' capacity to repair damaged DNA.

  4. Normal formation and repair of γ-radiation-induced single and double strand DNA breaks in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Steiner, M.E.; Woods, W.G.

    1982-01-01

    Fibroblasts from patients with Down syndrome (Trisomy 21) were examined for repair capability of γ-radiation-induced single strand and double strand DNA breaks. Formation and repair of DNA breaks were determined by DNA alkaline and non-denaturing elution techniques. Down syndrome fibroblasts were found to repair single strand and double strand breaks as well as fibroblasts from normal controls. (orig.)

  5. Aflatoxin B₁-Induced Developmental and DNA Damage in Caenorhabditis elegans.

    Science.gov (United States)

    Feng, Wei-Hong; Xue, Kathy S; Tang, Lili; Williams, Phillip L; Wang, Jia-Sheng

    2016-12-26

    Aflatoxin B₁ (AFB₁) is a ubiquitous mycotoxin produced by toxicogenic Aspergillus species. AFB₁ has been reported to cause serious adverse health effects, such as cancers and abnormal development and reproduction, in animals and humans. AFB₁ is also a potent genotoxic mutagen that causes DNA damage in vitro and in vivo. However, the link between DNA damage and abnormal development and reproduction is unclear. To address this issue, we examined the DNA damage, germline apoptosis, growth, and reproductive toxicity following exposure to AFB₁, using Caenorhabditis elegans as a study model. Results found that AFB₁ induced DNA damage and germline apoptosis, and significantly inhibited growth and reproduction of the nematodes in a concentration-dependent manner. Exposure to AFB₁ inhibited growth or reproduction more potently in the DNA repair-deficient xpa-1 nematodes than the wild-type N2 strain. According to the relative expression level of pathway-related genes measured by real-time PCR, the DNA damage response (DDR) pathway was found to be associated with AFB₁-induced germline apoptosis, which further played an essential role in the dysfunction of growth and reproduction in C. elegans .

  6. DNA damage response during mitosis induces whole chromosome mis-segregation

    Science.gov (United States)

    Bakhoum, Samuel F.; Kabeche, Lilian; Murnane, John P.; Zaki, Bassem I.; Compton, Duane A.

    2014-01-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here we show that activation of the DNA damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and Plk1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or Chk2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, DDR during mitosis inappropriately stabilizes k-MTs creating a link between s-CIN and w-CIN. PMID:25107667

  7. Histone peptide AKRHRK enhances H2O2-induced DNA damage and alters its site specificity

    International Nuclear Information System (INIS)

    Midorikawa, Kaoru; Murata, Mariko; Kawanishi, Shosuke

    2005-01-01

    Histone proteins are involved in compaction of DNA and the protection of cells from oxygen toxicity. However, several studies have demonstrated that the metal-binding histone reacts with H 2 O 2 , leading to oxidative damage to a nucleobase. We investigated whether histone can accelerate oxidative DNA damage, using a minimal model for the N-terminal tail of histone H4, CH 3 CO-AKRHRK-CONH 2 , which has a metal-binding site. This histone peptide enhanced DNA damage induced by H 2 O 2 and Cu(II), especially at cytosine residues, and induced additional DNA cleavage at the 5'-guanine of GGG sequences. The peptide also enhanced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and ESR spin-trapping signal from H 2 O 2 and Cu(II). Cyclic redox reactions involving histone-bound Cu(II) and H 2 O 2 , may give rise to multiple production of radicals leading to multiple hits in DNA. It is noteworthy that the histone H4 peptide with specific sequence AKRHRK can cause DNA damage rather than protection under metal-overloaded condition

  8. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ifigeneia V. Mavragani

    2017-07-01

    Full Text Available Cellular effects of ionizing radiation (IR are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs, single strand breaks (SSBs and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1 repair resistant, increasing genomic instability (GI and malignant transformation and (2 can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity. Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  9. The protective effect of DNA on the rat cell membrane damage induced by ultraviolet radiation

    International Nuclear Information System (INIS)

    Ma Shouxiang; Zhong Jinyan

    1988-01-01

    The protective effect of DNA on the cell membrane damage induced by ultra-violet radiation was studied. Rat erythrocytes were used as experimental materials. Blood samples were taken from the rat, and centrifuged to separate the plasma. The cells were washed twice with isotonic saline, resuspended in normal saline solution and then irradiated by ultra-violet radiation. The DNA was added before or after irradiation. THe cell suspensions were kept at 5 deg C for 20 hours after irradiation, and then centrifuged. The supernatants were used for hemoglobin determination. The main results obtained may summarized as follows: the cell suspension of erythrocytes were irradiated for 5, 10 and 20 min. The amount of hemolysis induced by irradiation dosage revealed a direct proportional relationship. If DNA (20-40μg/ml) was applied before irradiation, the amount of hemolysis induced apparently decreased. The differences between the control and DNA treated were statistically significant, P<0.01, but insignificant for DNA added after irradiation

  10. 2-Aminopurine hairpin probes for the detection of ultraviolet-induced DNA damage

    International Nuclear Information System (INIS)

    El-Yazbi, Amira F.; Loppnow, Glen R.

    2012-01-01

    Highlights: ► Molecular beacon with 2AP bases detects DNA damage in a simple mix-and-read assay. ► Molecular beacons with 2AP bases detect damage at a 17.2 nM limit of detection. ► The 2AP molecular beacon is linear over a 0–3.5 μM concentration range for damage. - Abstract: Nucleic acid exposure to radiation and chemical insults leads to damage and disease. Thus, detection and understanding DNA damage is important for elucidating molecular mechanisms of disease. However, current methods of DNA damage detection are either time-consuming, destroy the sample, or are too specific to be used for generic detection of damage. In this paper, we develop a fluorescence sensor of 2-aminopurine (2AP), a fluorescent analogue of adenine, incorporated in the loop of a hairpin probe for the quantification of ultraviolet (UV) C-induced nucleic acid damage. Our results show that the selectivity of the 2AP hairpin probe to UV-induced nucleic acid damage is comparable to molecular beacon (MB) probes of DNA damage. The calibration curve for the 2AP hairpin probe shows good linearity (R 2 = 0.98) with a limit of detection of 17.2 nM. This probe is a simple, fast and economic fluorescence sensor for the quantification of UV-induced damage in DNA.

  11. Effect of structure on sensing performance of a target induced signaling probe shifting DNA-based (TISPS-DNA) sensor.

    Science.gov (United States)

    Yu, Xiang; Yu, Zhigang; Li, Fengqin; Xu, Yanmei; He, Xunjun; Xu, Lan; Shi, Wenbing; Zhang, Guiling; Yan, Hong

    2017-05-15

    A type of "signal on" displacement-based sensors named target induced signaling probe shifting DNA-based (TISPS-DNA) sensor were developed for a designated DNA detection. The signaling mechanism of the signaling probe (SP) shifting different from the classical conformation/flexibility change mode endows the sensor with high sensitivity. Through using thiolated or no thiolated capturing probe (CP), two 3-probe sensing structures, sensor-1 and sensor-2, were designed and constructed. The systematical comparing research results show that both sensors exhibit some similarities or big differences in sensing performance. On the one hand, the similarity in structures determines the similarity in some aspects of signaling mechanism, background signal, signal changing form, anti-fouling ability and versatility; on the other hand, the slight difference in structures also results in two opposite hybridization modes of gradual increasing resistance and gradual decreasing resistance which can affect the hybridization efficiency between the assistant probe (AP) and the SP, further producing some big differences in sensing performance, for example, apparently different signal enhancement (SE) change, point mutation discrimination ability and response speed. Under the optimized fabrication and detection conditions, both sensors feature high sensitivity for target DNAs with the detection limits of ∼10 fM for sensor-1 and ∼7 fM for sensor-2, respectively. Among many acquired sensing virtues, the sensor-1 shows a peculiar specificity adjustability which is also a highlight in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Antioxidant Status and DNA Damage Induced by Heavy Metals in Matricaria recutita L. (Asteraceae)

    OpenAIRE

    Gjorgieva Ackova, Darinka; Kadifkova-Panovska, Tatjana; Ruskovska, Tatjana

    2011-01-01

    In summary, this study has shown that heavy metals can induce antioxidant stress and DNA damage. Antioxidative system of M. recutita seems to be inducible by environmentally encountered heavy metals concentrations. Balance of different levels of plant metabolism is essential for eliminating toxic effects of metals and maintaining of structural and metabolic integrity. Thus, oxidative stress characterized by increased production of ROS could be an important mechanism of metal toxicity, though ...

  13. UV-inducible DNA repair in Acinetobacter calcoaceticus

    International Nuclear Information System (INIS)

    Berenstein, D.

    1987-01-01

    Bacterial mutation frequency after UV irradiation and phage mutation frequency under conditions of W-reactivation were determined in A. calcoaceticus. With the exception of streptomycin resistance, there was no increase in the frequency of the assayed markers above the background level. The increased survival of phage during W-reactivation was not followed by an increase in the frequency of mutation from turbid to clear plaque formers among phage survivors. The findings suggested that the UV-inducible repair pathway in A. calcoaceticus was error free. Post-irradiation incubation of UV-treated culture before phage infection resulted in a further increase of W-reactivation. As chloramphenicol inhibited this response, it was concluded that de novo protein synthesis was involved in the UV-inducible repair pathway in A. calcoaceticus. (Auth.)

  14. The eucalyptus oil ingredient 1,8-cineol induces oxidative DNA damage.

    Science.gov (United States)

    Dörsam, Bastian; Wu, Ching-Fen; Efferth, Thomas; Kaina, Bernd; Fahrer, Jörg

    2015-05-01

    The natural compound 1,8-cineol, also known as eucalyptol, is a major constituent of eucalyptus oil. This epoxy-monoterpene is used as flavor and fragrance in consumer goods as well as medical therapies. Due to its anti-inflammatory properties, 1,8-cineol is also applied to treat upper and lower airway diseases. Despite its widespread use, only little is known about the genotoxicity of 1,8-cineol in mammalian cells. This study investigates the genotoxicity and cytotoxicity of 1,8-cineol in human and hamster cells. First, we observed a significant and concentration-dependent increase in oxidative DNA damage in human colon cancer cells, as detected by the Formamidopyrimidine-DNA glycosylase (Fpg)-modified alkaline comet assay. Pre-treatment of cells with the antioxidant N-acetylcysteine prevented the formation of Fpg-sensitive sites after 1,8-cineol treatment, supporting the notion that 1,8-cineol induces oxidative DNA damage. In the dose range of DNA damage induction, 1,8-cineol did neither reduce the viability of colon cancer cells nor affected their cell cycle distribution, suggesting that cells tolerate 1,8-cineol-induced oxidative DNA damage by engaging DNA repair. To test this hypothesis, hamster cell lines with defects in BRCA2 and Rad51, which are essentials players of homologous recombination (HR)-mediated repair, were treated with 1,8-cineol. The monoterpene induced oxidative DNA damage and subsequent DNA double-strand breaks in the hamster cell lines tested. Intriguingly, we detected a significant concentration-dependent decrease in viability of the HR-defective cells, whereas the corresponding wild-type cell lines with functional HR were not affected. Based on these findings, we conclude that 1,8-cineol is weakly genotoxic, inducing primarily oxidative DNA damage, which is most likely tolerated in DNA repair proficient cells without resulting in cell cycle arrest and cell death. However, cells with deficiency in HR were compromised after 1,8-cineol

  15. DNA sequence analysis of X-ray induced Adh null mutations in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mahmoud, J.; Fossett, N.G.; Arbour-Reily, P.; McDaniel, M.; Tucker, A.; Chang, S.H.; Lee, W.R.

    1991-01-01

    The mutational spectrum for 28 X-ray induced mutations and 2 spontaneous mutations, previously determined by genetic and cytogenetic methods, consisted of 20 multilocus deficiencies (19 induced and 1 spontaneous) and 10 intragenic mutations (9 induced and 1 spontaneous). One of the X-ray induced intragenic mutations was lost, and another was determined to be a recombinant with the allele used in the recovery scheme. The DNA sequence of two X-ray induced intragenic mutations has been published. This paper reports the results of DNA sequence analysis of the remaining intragenic mutations and a summary of the X-ray induced mutational spectrum. The combination of DNA sequence analysis with genetic complementation analysis shows a continuous distribution in size of deletions rather than two different types of mutations consisting of deletions and 'point mutations'. Sequencing is shown to be essential for detecting intragenic deletions. Of particular importance for future studies is the observation that all of the intragenic deletions consist of a direct repeat adjacent to the breakpoint with one of the repeats deleted

  16. Helichrysetin Induces DNA Damage that Triggers JNK-Mediated Apoptosis in Ca Ski Cells.

    Science.gov (United States)

    Fong, Ho Yen; Abd Malek, Sri Nurestri; Yee, Hui Shin; Karsani, Saiful Anuar

    2017-01-01

    Cervical cancer has become one of the most common cancers in women and currently available treatment options for cervical cancer are very limited. Naturally occurring chalcones and its derivatives have been studied extensively as a potential anticancer agent in different types of cancer and helichrysetin is naturally occurring chalcone that possess potent antiproliferative activity toward human cancer cells. Inhibitory activity of helichrysetin was evaluated at different concentrations. Ability of helichrysetin to induce apoptosis and its relation with c-Jun N-terminal kinase (JNK)-mediated mechanism of apoptosis was assessed using flow cytometry and Western blotting. Helichrysetin inhibited Ca Ski cells at half maximal inhibitory concentration 30.62 ± 0.38 μM. This compound has the ability to induce DNA damage, mitochondrial membrane disruption, and loss of cell membrane integrity. We have shown that apoptosis was induced through the activation of JNK-mediated apoptosis by DNA damage in the cells then triggering p53-downstream apoptotic pathway with increased expression of pro-apoptotic proteins, Bax and caspase 3, and suppression of Bcl-2 anti-apoptotic protein. DNA damage in the cells also caused phosphorylation of protein ataxia-telangiectasia mutated, an activator of DNA damage response. We conclude that helichrysetin can inhibit Ca Ski cells through DNA damage-induced JNK-mediated apoptotic pathway highlighting the potential of this compound as anticancer agent for cervical cancer. Helichrysetin induced DNA damage in Ca Ski cellsDNA damage caused JNK-mediated phosphorylation of p53 resulting in p53-mediated apoptosisHelichrysetin is a potential DNA damage inducing agent through JNK activation to kill human cervical carcinoma cells. Abbreviations used: ATM: Ataxia-telangiectasia mutated, DAPI: 4',6-diamidino-2-phenylindole, DMSO: Dimethyl sulfoxide, FITC: Fluorescein isothiocyanate, IC 50 : Half maximal inhibitory concentration, JC1-5,5',6,6'-Tetrachloro: 1

  17. Macromolecular crowding induced elongation and compaction of single DNA molecules confined in a nanochannel.

    Science.gov (United States)

    Zhang, Ce; Shao, Pei Ge; van Kan, Jeroen A; van der Maarel, Johan R C

    2009-09-29

    The effect of dextran nanoparticles on the conformation and compaction of single DNA molecules confined in a nanochannel was investigated with fluorescence microscopy. It was observed that the DNA molecules elongate and eventually condense into a compact form with increasing volume fraction of the crowding agent. Under crowded conditions, the channel diameter is effectively reduced, which is interpreted in terms of depletion in DNA segment density in the interfacial region next to the channel wall. Confinement in a nanochannel also facilitates compaction with a neutral crowding agent at low ionic strength. The threshold volume fraction for condensation is proportional to the size of the nanoparticle, due to depletion induced attraction between DNA segments. We found that the effect of crowding is not only related to the colligative properties of the agent and that confinement is also important. It is the interplay between anisotropic confinement and osmotic pressure which gives the elongated conformation and the possibility for condensation at low ionic strength.

  18. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

    Science.gov (United States)

    Adhikari, Ek R.; Ptasinska, Sylwia

    2016-09-01

    A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed.

  19. Compound Poisson Processes and Clustered Damage of Radiation Induced DNA Double Strand Breaks

    International Nuclear Information System (INIS)

    Gudowska-Nowak, E.; Ritter, S.; Taucher-Scholz, G.; Kraft, G.

    2000-01-01

    Recent experimental data have demonstrated that DNA damage induced by densely ionizing radiation in mammalian cells is distributed along the DNA molecule in the form of clusters. The principal constituent of DNA damage are double-strand breaks (DSB) which are formed when the breaks occur in both DNA strands and are directly opposite or separated by only a few base pairs. DSBs are believed to be most important lesions produced in chromosomes by radiation; interaction between DSBs can lead to cell killing, mutation or carcinogenesis. The paper discusses a model of clustered DSB formation viewed in terms of compound Poisson process along with the predictive essay of the formalism in application to experimental data. (author)

  20. Model studies of radiation induced oxidation and reduction processes in DNA

    International Nuclear Information System (INIS)

    Hole, E.O.

    1992-01-01

    The papers presented in this thesis represent the major part of a systematic study of primary and secondary radiation induced damages in DNA. The magnetic resonance techniques EPR, ENDOR and FSE have been the experimental methods used. The study of radical formation in isolated DNA components under different environmental conditions demonstrates certain characteristics of the DNA components which are important in the study of DNA. It has been clearly demonstrated that the electrostatic environment, in particular the hydrogen bond pattern, is a vital factor for the secondary reaction scheme. Even radicals which are found in all related systems seem to be formed by different reaction pathways, depending upon the specific matrix. 92 refs., 2 figs., 6 tabs

  1. Repair of ultraviolet-light-induced DNA damage in Vibrio cholerae

    International Nuclear Information System (INIS)

    Das, G.; Sil, K.; Das, J.

    1981-01-01

    Repair of ultraviolet-light-induced DNA damage in a highly pathogenic Gram-negative bacterium, Vibrio cholerae, has been examined. All three strains of V. cholerae belonging to two serotypes, Inaba and Ogawa, are very sensitive to ultraviolet irradiation, having inactivation cross-sections ranging from 0.18 to 0.24 m 2 /J. Although these cells are proficient in repairing the DNA damage by a photoreactivation mechanism, they do not possess efficient dark repair systems. The mild toxinogenic strain 154 of classical Vibrios presumably lacks any excision repair mechanism and studies of irradiated cell DNA indicate that the ultraviolet-induced pyrimidine dimers may not be excised. Ultraviolet-irradiated cells after saturation of dark repair can be further photoreactivated. (Auth.)

  2. Analysis of damaged DNA / proteins interactions: Methodological optimizations and applications to DNA lesions induced by platinum anticancer drugs

    International Nuclear Information System (INIS)

    Bounaix Morand du Puch, Ch

    2010-10-01

    DNA lesions contribute to the alteration of DNA structure, thereby inhibiting essential cellular processes. Such alterations may be beneficial for chemotherapies, for example in the case of platinum anticancer agents. They generate bulky adducts that, if not repaired, ultimately cause apoptosis. A better understanding of the biological response to such molecules can be obtained through the study of proteins that directly interact with the damages. These proteins constitute the DNA lesions interactome. This thesis presents the development of tools aiming at increasing the list of platinum adduct-associated proteins. Firstly, we designed a ligand fishing system made of damaged plasmids immobilized onto magnetic beads. Three platinum drugs were selected for our study: cisplatin, oxali-platin and satra-platin. Following exposure of the trap to nuclear extracts from HeLa cancer cells and identification of retained proteins by proteomics, we obtained already known candidates (HMGB1, hUBF, FACT complex) but also 29 new members of the platinated-DNA interactome. Among them, we noted the presence of PNUTS, TOX4 and WDR82, which associate to form the recently-discovered PTW/PP complex. Their capture was then confirmed with a second model, namely breast cancer cell line MDA MB 231, and the biological consequences of such an interaction now need to be elucidated. Secondly, we adapted a SPRi bio-chip to the study of platinum-damaged DNA/proteins interactions. Affinity of HMGB1 and newly characterized TOX4 for adducts generated by our three platinum drugs could be validated thanks to the bio-chip. Finally, we used our tools, as well as analytical chemistry and biochemistry methods, to evaluate the role of DDB2 (a factor involved in the recognition of UV-induced lesions) in the repair of cisplatin adducts. Our experiments using MDA MB 231 cells differentially expressing DDB2 showed that this protein is not responsible for the repair of platinum damages. Instead, it appears to act

  3. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus

    International Nuclear Information System (INIS)

    Tong Tiezhu; Fan Huiying; Tan Yadi; Xiao Shaobo; Ling Jieyu; Chen Huanchun; Guo Aizhen

    2006-01-01

    Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28 4 were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d 3 DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD 5 ) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immune response by inducing IL-4 production. The IL-4 level for sgC-C3d 3 DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response

  4. Radioadaptive response. Efficient repair of radiation-induced DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji; Aritomi, Hisako; Morisita, Jun

    1996-01-01

    To verify the hypothesis that the induction of a novel, efficient repair mechanism for chromosomal DNA breaks may be involved in the radioadaptive response, the repair kinetics of DNA damage has been studied in cultured Chinese hamster V79 cells with single-cell gel electrophoresis. The cells were adapted by priming exposure with 5 cGy of γ-rays and 4-h incubation at 37C. There were no indication of any difference in the initial yields of DNA double-strand breaks induced by challenging doses from non-adapted cells and from adapted cells. The rejoining of DNA double-strand breaks was monitored over 120 min after the adapted cells were challenged with 5 or 1.5 Gy, doses at the same level to those used in the cytogenetical adaptive response. The rate of DNA damage repair in adapted cells was higher than that in non-adapted cells, and the residual damage was less in adapted cells than in non-adapted cells. These results indicate that the radioadaptive response may result from the induction of a novel, efficient DNA repair mechanism which leads to less residual damage, but not from the induction of protective functions that reduce the initial DNA damage

  5. Mitochondrial Targeted Endonuclease III DNA Repair Enzyme Protects against Ventilator Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Masahiro Hashizume

    2014-08-01

    Full Text Available The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA damage and ventilator induced lung injury (VILI. In the present study we determined whether mitochondrial targeted endonuclease III (EndoIII which cleaves oxidized pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP was reversed by EndoIII pretreatment. Moderate lung injury due to ventilation for 2 h at 40 cmH2O PIP produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio, and marked increases in MIP-2 and IL-6. Oxidative mtDNA damage and decreases in the total tissue glutathione (GSH and the GSH/GSSH ratio also occurred. All of these indices of injury were attenuated by mitochondrial targeted EndoIII. Massive lung injury caused by 2 h ventilation at 50 cmH2O PIP was not attenuated by EndoIII pretreatment, but all untreated mice died prior to completing the two hour ventilation protocol, whereas all EndoIII-treated mice lived for the duration of ventilation. Thus, mitochondrial targeted DNA repair enzymes were protective against mild and moderate lung damage and they enhanced survival in the most severely injured group.

  6. DNA Tetrahedron Delivery Enhances Doxorubicin-Induced Apoptosis of HT-29 Colon Cancer Cells

    Science.gov (United States)

    Zhang, Guiyu; Zhang, Zhiyong; Yang, Junen

    2017-08-01

    As a nano-sized drug carrier with the advantage of modifiability and proper biocompatibility, DNA tetrahedron (DNA tetra) delivery is hopeful to enhance the inhibitory efficiency of nontargeted anticancer drugs. In this investigation, doxorubicin (Dox) was assembled to a folic acid-modified DNA tetra via click chemistry to prepare a targeted antitumor agent. Cellular uptake efficiency was measured via fluorescent imaging. Cytotoxicity, inhibition efficiency, and corresponding mechanism on colon cancer cell line HT-29 were evaluated by MTT assay, cell proliferation curve, western blot, and flow cytometry. No cytotoxicity was induced by DNA tetra, but the cellular uptake ratio increased obviously resulting from the DNA tetra-facilitated penetration through cellular membrane. Accordingly, folic acid-DNA tetra-Dox markedly increased the antitumor efficiency with increased apoptosis levels. In details, 100 μM was the effective concentration and a 6-h incubation period was needed for apoptosis induction. In conclusion, nano-sized DNA tetrahedron was a safe and effective delivery system for Dox and correspondingly enhanced the anticancer efficiency.

  7. Biomarkers of DNA and cytogenetic damages induced by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    1999-01-01

    This paper presents and discusses results from the studies on various biomarkers of the DNA and cytogenetic damages induced by environmental chemicals or radiation. Results of the biomonitoring studies have shown that particularly in the condition of Poland, health hazard from radiation exposure is overestimated in contradistinction to the environmental hazard

  8. Efficient photoreactivation of UVBR-induced DNA damage in the sublittoral macroalga Rhodymenia pseudopalmata (Rhodophyta)

    NARCIS (Netherlands)

    Pakker, H; Beekman, C.A C; Breeman, Arno

    Repair of DNA damage induced by ultraviolet-B radiation (UVBR) was investigated in the sublittoral red alga Rhodymenia pseudopalmata at different temperatures, using immunofluorescent detection of thymine dimers. Photoreactivation of thymine dimers was completed within about 3 h at 6, 12 and 18

  9. UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili

    NARCIS (Netherlands)

    Ajon, Malgorzata; Froels, Sabrina; van Wolferen, Marleen; Stoecker, Kilian; Teichmann, Daniela; Driessen, Arnold J. M.; Grogan, Dennis W.; Albers, Sonja-Verena; Schleper, Christa; Ajon, Małgorzata

    2011-01-01

    Archaea, like bacteria and eukaryotes, contain proteins involved in various mechanisms of DNA repair, highlighting the importance of these processes for all forms of life. Species of the order Sulfolobales of hyperthermophilic crenarchaeota are equipped with a strongly UV-inducible type IV pilus

  10. p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage

    DEFF Research Database (Denmark)

    Borisova, Marina E; Voigt, Andrea; Tollenaere, Maxim A X

    2018-01-01

    quantitative phosphoproteomics and protein kinase inhibition to provide a systems view on protein phosphorylation patterns induced by UV light and uncover the dependencies of phosphorylation events on the canonical DNA damage signaling by ATM/ATR and the p38 MAP kinase pathway. We identify RNA-binding proteins...

  11. Ion-induced ionization and capture cross sections for DNA nucleobases impacted by light ions

    International Nuclear Information System (INIS)

    Champion, Christophe; Hanssen, Jocelyn; Galassi, Mariel E; Fojón, Omar; Rivarola, Roberto D; Weck, Philippe F

    2012-01-01

    Two quantum mechanical models (CB1 and CDW-EIS) are here presented for describing electron ionization and electron capture induced by heavy charged particles in DNA bases. Multiple differential and total cross sections are determined and compared with the scarce existing experimental data.

  12. UVBR-induced DNA damage in natural marine picoplankton assemblages in the tropical Atlantic Ocean

    NARCIS (Netherlands)

    Boelen, P; de Boer, MK; Kraay, GW; Veldhuis, MJW; Buma, AGJ

    2000-01-01

    UVBR (ultraviolet-B radiation: 280 to 315 nm)-induced DNA damage, measured as cyclobutane pyrimidine dimers (CPDs), was determined in size fractions of natural populations of bacterio- and phytoplankton collected in marine tropical waters. Mean biologically effective UVBR doses in the wind-mixed

  13. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells.

    Science.gov (United States)

    Singh, Kamaleshwar P; Treas, Justin; Tyagi, Tulika; Gao, Weimin

    2012-03-01

    Prolonged exposure to elevated levels of estrogen is a risk factor for breast cancer. Though increased cell growth and loss of DNA repair capacity is one of the proposed mechanisms for estrogen-induced cancers, the mechanism through which estrogen induces cell growth and decreases DNA repair capacity is not clear. DNA hypermethylation is known to inactivate DNA repair genes and apoptotic response in cancer cells. Therefore, the objective of this study was to determine the role of DNA hypermethylation in estrogen-induced cell growth and regulation of DNA repair genes expression in breast cancer cells. To achieve this objective, the estrogen-responsive MCF-7 cells either pretreated with 5-aza-2-deoxycytidine (5-aza-dC) or untreated (as control) were exposed to 17 beta-estradiol (E2), and its effect on cell growth and expression of DNA repair genes were measured. The result revealed that 5-aza-dC abrogates the E2-induced growth in MCF-7 cells. An increased expression of OGG1, MSH4, and MLH1 by 5-aza-dC treatment alone, suggest the DNA hypermethylation as a potential cause for decreased expression of these genes in MCF-7 cells. The decreased expression of ERCC1, XPC, OGG1, and MLH1 by E2 alone and its restoration by co-treatment with 5-aza-dC further suggest that E2 reduces the expression of these DNA repair genes potentially through promoter hypermethylation. Reactivation of mismatch repair (MMR) gene MLH1 and abrogation of E2-induced cell growth by 5-aza-dC treatment suggest that estrogen causes increased growth in breast cancer cells potentially through the inhibition of MMR-mediated apoptotic response. In summary, this study suggests that estrogen increases cell growth and decreases the DNA repair capacity in breast cancer cells, at least in part, through epigenetic mechanism. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. The use of recombinant DNA techniques to study radiation-induced damage, repair and genetic change in mammalian cells

    International Nuclear Information System (INIS)

    Thacker, J.

    1986-01-01

    A brief introduction is given to appropriate elements of recombinant DNA techniques and applications to problems in radiobiology are reviewed with illustrative detail. Examples are included of studies with both 254 nm ultraviolet light and ionizing radiation and the review progresses from the molecular analysis of DNA damage in vitro through to the nature of consequent cellular responses. The review is dealt with under the following headings: Molecular distribution of DNA damage, The use of DNA-mediated gene transfer to assess damage and repair, The DNA double strand break: use of restriction endonucleases to model radiation damage, Identification and cloning of DNA repair genes, Analysis of radiation-induced genetic change. (UK)

  15. Detection of mitochondrial DNA deletions in human cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu, Qing-Jie; Feng, Jiang-Bin; Lu, Xue; Li, Yu-Wen; Chen, De-Qing

    2008-01-01

    Full text: Purpose: To screen the novel mitochondrial DNA (mt DNA) deletions induced by ionizing radiation, and analyze the several kinds of mt DNA deletions, known as 3895 bp, 889 bp, 7436 bp or 4934 bp deletions. Methods: Long-range PCR with two pairs of primers, which could amplify the whole human mitochondrial genome, was used to analyze the lymphoblastoid cell line before and after exposed to 10 Gy 60 Co γ-rays. The limited condition PCR was used to certify the possible mt DNA deletion showed by long-range PCR. The PCR products were purified, cloned, sequenced and the sequence result were BLASTed. Regular PCR or nest-PCR were used to analyze the 3895 bp, 889 bp, 7436 bp or 4934 bp deletions before and after radiation exposure. The final PCR products were purified, sequenced and BALSTed on standard human mitochondrial genome sequence database. Results: (1) The predicted bands of mt DNA were observed on the control cell lines, and the possible mt DNA deletions were also detected on the irradiated cell lines. The deletions were certified by the limited condition PCR. The sequence BLAST results of the cloned PCR products showed that two kinds of deletions, 7455 bp deletion (nt 475-7929 in heavy strand) and 9225 bp deletion (nt 7714-369 in heavy strand), which were between two 8 bp direct repeats. Further bioinformatics analysis showed that the two deletions were novel deletions. (2) The 889 bp and 3895 bp deletion were not detected for the cell line samples not exposed to 60 Co γ-rays. The 889 bp and 3895 bp deletions were detected on samples exposed to 10 Gy 60 Co γ-rays. The BALST results showed that the 889 bp and 3895 deletions flanked nt 11688 bp-12576, nt 548 bp-4443, respectively. The 7436 bp deletion levels were not changed much before and after irradiation. (3) The 4934 bp deletions had the same pattern as 7436 bp deletion, but it could induced by radiation. Conclusions: Ionizing radiation could induce the human lymphoblastoid two novel mt DNA

  16. Heavy Metal-Induced Oxidative DNA Damage in Earthworms: A Review

    Directory of Open Access Journals (Sweden)

    Takeshi Hirano

    2010-01-01

    Full Text Available Earthworms can be used as a bio-indicator of metal contamination in soil, Earlier reports claimed the bioaccumulation of heavy metals in earthworm tissues, while the metal-induced mutagenicity reared in contaminated soils for long duration. But we examined the metal-induced mutagenicity in earthworms reared in metal containing culture beddings. In this experiment we observed the generation of 8-oxoguanine (8-oxo-Gua in earthworms exposed to cadmium and nickel in soil. 8-oxo-Gua is a major premutagenic form of oxidative DNA damage that induces GC-to-TA point mutations, leading to carcinogenesis.

  17. The DNA Damage Response Induced by Infection with Human Cytomegalovirus and Other Viruses

    Science.gov (United States)

    E, Xiaofei; Kowalik, Timothy F.

    2014-01-01

    Viruses use different strategies to overcome the host defense system. Recent studies have shown that viruses can induce DNA damage response (DDR). Many of these viruses use DDR signaling to benefit their replication, while other viruses block or inactivate DDR signaling. This review focuses on the effects of DDR and DNA repair on human cytomegalovirus (HCMV) replication. Here, we review the DDR induced by HCMV infection and its similarities and differences to DDR induced by other viruses. As DDR signaling pathways are critical for the replication of many viruses, blocking these pathways may represent novel therapeutic opportunities for the treatment of certain infectious diseases. Lastly, future perspectives in the field are discussed. PMID:24859341

  18. Tempol prevents genotoxicity induced by vorinostat: role of oxidative DNA damage.

    Science.gov (United States)

    Alzoubi, Karem H; Khabour, Omar F; Jaber, Aya G; Al-Azzam, Sayer I; Mhaidat, Nizar M; Masadeh, Majed M

    2014-05-01

    Vorinostat is a member of histone deacetylase inhibitors, which represents a new class of anticancer agents for the treatment of solid and hematological malignancies. Studies have shown that these drugs induce DNA damage in blood lymphocytes, which is proposed to be due to the generation of oxidative lesions. The increase in DNA damage is sometimes associated with risk of developing secondary cancer. Thus, finding a treatment that limits DNA damage caused by anticancer drugs would be beneficial. Tempol is a potent antioxidant that was shown to prevent DNA damage induced by radiation. In this study, we aimed to investigate the harmful effects of vorinostat on DNA damage, and the possible protective effects of tempol against this damage. For that, the spontaneous frequency of sister chromatid exchanges (SCEs), chromosomal aberrations (CAs), and 8-hydroxy-2-deoxy guanosine (8-OHdG) levels were measured in cultured human lymphocytes treated with vorinostat and/or tempol. The results showed that vorinostat significantly increases the frequency of SCEs, CAs and 8-OHdG levels in human lymphocytes as compared to control. These increases were normalized by the treatment of cells with tempol. In conclusion, vorinostat is genotoxic to lymphocytes, and this toxicity is reduced by tempol. Such results could set the stage for future studies investigating the possible usefulness of antioxidants co-treatment in preventing the genotoxicity of vorinostat when used as anticancer in human.

  19. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    Science.gov (United States)

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-09-30

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.

  20. ATM induces MacroD2 nuclear export upon DNA damage.

    Science.gov (United States)

    Golia, Barbara; Moeller, Giuliana Katharina; Jankevicius, Gytis; Schmidt, Andreas; Hegele, Anna; Preißer, Julia; Tran, Mai Ly; Imhof, Axel; Timinszky, Gyula

    2017-01-09

    ADP-ribosylation is a dynamic post-translation modification that regulates the early phase of various DNA repair pathways by recruiting repair factors to chromatin. ADP-ribosylation levels are defined by the activities of specific transferases and hydrolases. However, except for the transferase PARP1/ARDT1 little is known about regulation of these enzymes. We found that MacroD2, a mono-ADP-ribosylhydrolase, is exported from the nucleus upon DNA damage, and that this nuclear export is induced by ATM activity. We show that the export is dependent on the phosphorylation of two SQ/TQ motifs, suggesting a novel direct interaction between ATM and ADP-ribosylation. Lastly, we show that MacroD2 nuclear export temporally restricts its recruitment to DNA lesions, which may decrease the net ADP-ribosylhydrolase activity at the site of DNA damage. Together, our results identify a novel feedback regulation between two crucial DNA damage-induced signaling pathways: ADP-ribosylation and ATM activation. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Repair capacity for platinum-DNA adducts determines the severity of cisplatin-induced peripheral neuropathy.

    Science.gov (United States)

    Dzagnidze, Anna; Katsarava, Zaza; Makhalova, Julia; Liedert, Bernd; Yoon, Min-Suk; Kaube, Holger; Limmroth, Volker; Thomale, Juergen

    2007-08-29

    The pronounced neurotoxicity of the potent antitumor drug cisplatin frequently results in the onset of peripheral polyneuropathy (PNP), which is assumed to be initially triggered by platination products in the nuclear DNA of affected tissues. To further elucidate the molecular mechanisms, we analyzed in a mouse model the formation and processing of the main cisplatin-induced DNA adduct (guanine-guanine intrastrand cross-link) in distinct neuronal cell types by adduct-specific monoclonal antibodies. Comparison of the adduct kinetics in cisplatin-injected mice either proficient or deficient for nucleotide excision repair (NER) functions revealed the essential role of this DNA repair pathway in protecting differentiated cells of the nervous system from excessive formation of such lesions. Hence, chronic exposure to cisplatin resulted in an accelerated accumulation of unrepaired intrastrand cross-links in neuronal cells of mice with dysfunctional NER. The augmented adduct levels in dorsal root ganglion (DRG) cells of those animals coincided with an earlier onset of PNP-like functional disturbance of their sensory nervous system. Independently from the respective repair phenotype, the amount of persisting DNA cross-links in DRG neurons at a given cumulative dose was significantly correlated to the degree of sensory impairment as measured by electroneurography. Collectively, these findings suggest a new model for the processing of cisplatin adducts in primary neuronal cells and accentuate the crucial role of effectual DNA repair capacity in the target cells for the individual risk of therapy-induced PNP.

  2. Analysis of ionizing radiation-induced foci of DNA damage repair proteins

    International Nuclear Information System (INIS)

    Veelen, Lieneke R. van; Cervelli, Tiziana; Rakt, Mandy W.M.M. van de; Theil, Arjan F.; Essers, Jeroen; Kanaar, Roland

    2005-01-01

    Repair of DNA double-strand breaks by homologous recombination requires an extensive set of proteins. Among these proteins are Rad51 and Mre11, which are known to re-localize to sites of DNA damage into nuclear foci. Ionizing radiation-induced foci can be visualized by immuno-staining. Published data show a large variation in the number of foci-positive cells and number of foci per nucleus for specific DNA repair proteins. The experiments described here demonstrate that the time after induction of DNA damage influenced not only the number of foci-positive cells, but also the size of the individual foci. The dose of ionizing radiation influenced both the number of foci-positive cells and the number of foci per nucleus. Furthermore, ionizing radiation-induced foci formation depended on the cell cycle stage of the cells and the protein of interest that was investigated. Rad51 and Mre11 foci seemed to be mutually exclusive, though a small subset of cells did show co-localization of these proteins, which suggests a possible cooperation between the proteins at a specific moment during DNA repair

  3. RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice

    Science.gov (United States)

    Herold, Marco J.

    2016-01-01

    Neoplastic transformation is driven by oncogenic lesions that facilitate unrestrained cell expansion and resistance to antiproliferative signals. These oncogenic DNA lesions, acquired through errors in DNA replication, gene recombination, or extrinsically imposed damage, are thought to activate multiple tumor suppressive pathways, particularly apoptotic cell death. DNA damage induces apoptosis through well-described p53-mediated induction of PUMA and NOXA. However, loss of both these mediators (even together with defects in p53-mediated induction of cell cycle arrest and cell senescence) does not recapitulate the tumor susceptibility observed in p53−/− mice. Thus, potentially oncogenic DNA lesions are likely to also trigger apoptosis through additional, p53-independent processes. We found that loss of the BH3-only protein BIM accelerated lymphoma development in p53-deficient mice. This process was negated by concomitant loss of RAG1/2-mediated antigen receptor gene rearrangement. This demonstrates that BIM is critical for the induction of apoptosis caused by potentially oncogenic DNA lesions elicited by RAG1/2-induced gene rearrangement. Furthermore, this highlights the role of a BIM-mediated tumor suppressor pathway that acts in parallel to the p53 pathway and remains active even in the absence of wild-type p53 function, suggesting this may be exploited in the treatment of p53-deficient cancers. PMID:27621418

  4. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis by reactive oxygen species in ionizing radiation-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The aim of this study was to determine whether an increase of ROS level in cellular senescence induced by IR could mediate mtDNA deletion via impairment of mitochondria biogenesis in IMR-90 human lung fibroblast cells. Our results showed that IR induced cellular senescence, intracellular ROS, and mtDNA deletion, and in particular, suppressed the expression of mitochondrial biogenesis genes (NRF-1, TFAM). Furthermore, these IR-induced events were abolished using a potent antioxidant, NAC, which suggests that ROS is a key cause of mtDNA deletion in IR-induced cellular senescence, and that the alteration of mitochondrial biogenesis may mediate these processes

  5. Strand breaks in plasmid DNA following positional changes of Auger-electron-emitting radionuclides

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Kassis, A.I.

    1996-01-01

    The purpose of our studies is to elucidate the kinetics of DNA strand breaks caused by low-energy Auger electron emitters in close proximity to DNA. Previously we have studied the DNA break yields in plasmids after the decay of indium-111 bound to DNA or free in solution. In this work, we compare the DNA break yields in supercoiled DNA of iodine-125 decaying close to DNA following DNA intercalation, minor-groove binding, or surface binding, and at a distance form DNA. Supercoiled DNA, stored at 4 C to accumulate radiation dose from the decay of 125 I, was then resolved by gel electrophoresis into supercoiled, nicked circular, and linear forms, representing undamaged DNA, single-strand breaks, and double-strand breaks respectively. DNA-intercalated or groove-bound 125 I is more effective than surface-bound radionuclide or 125 I free in solution. The hydroxyl radical scavenger DMSO protects against damage by 125 I free in solution but has minimal effect on damage by groove-bound 125 I. (orig.)

  6. Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage

    Directory of Open Access Journals (Sweden)

    Jie Deng

    2018-04-01

    Full Text Available Oxidative DNA damage in bone marrow cells is the main side effect of chemotherapy drugs including cyclophosphamide (CTX. However, not all antioxidants are effective in inhibiting oxidative DNA damage. In this study, we report the beneficial effect of carnosine (β-alanyl-l-histidine, a special antioxidant with acrolein-sequestering ability, on CTX-induced bone marrow cell suppression. Our results show that carnosine treatment (100 and 200 mg/kg, i.p. significantly inhibited the generation of reactive oxygen species (ROS and 8-hydroxy-2′-deoxyguanosine (8-oxo-dG, and decreased chromosomal abnormalities in the bone marrow cells of mice treated with CTX (20 mg/kg, i.v., 24 h. Furthermore, carnosine evidently mitigated CTX-induced G2/M arrest in murine bone marrow cells, accompanied by reduced ratios of p-Chk1/Chk1 and p-p53/p53 as well as decreased p21 expression. In addition, cell apoptosis caused by CTX was also suppressed by carnosine treatment, as assessed by decreased TUNEL-positive cell counts, down-regulated expressions of Bax and Cyt c, and reduced ratios of cleaved Caspase-3/Caspase-3. These results together suggest that carnosine can protect murine bone marrow cells from CTX-induced DNA damage via its antioxidant activity. Keywords: Carnosine, Cyclophosphamide, Oxidative DNA damage, Sister chromatid exchange, Apoptosis, Cell cycle arrest

  7. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to

  8. Low-energy electron diffraction and induced damage in hydrated DNA

    International Nuclear Information System (INIS)

    Orlando, Thomas M.; Oh, Doogie; Chen Yanfeng; Aleksandrov, Alexandr B.

    2008-01-01

    Elastic scattering of 5-30 eV electrons within the B-DNA 5 ' -CCGGCGCCGG-3 ' and A-DNA 5 ' -CGCGAATTCGCG-3 ' DNA sequences is calculated using the separable representation of a free-space electron propagator and a curved wave multiple scattering formalism. The disorder brought about by the surrounding water and helical base stacking leads to a featureless amplitude buildup of elastically scattered electrons on the sugar and phosphate groups for all energies between 5 and 30 eV. However, some constructive interference features arising from diffraction are revealed when examining the structural waters within the major groove. These appear at 5-10, 12-18, and 22-28 eV for the B-DNA target and at 7-11, 12-18, and 18-25 eV for the A-DNA target. Although the diffraction depends on the base-pair sequence, the energy dependent elastic scattering features are primarily associated with the structural water molecules localized within 8-10 A spheres surrounding the bases and/or the sugar-phosphate backbone. The electron density buildup occurs in energy regimes associated with dissociative electron attachment resonances, direct electronic excitation, and dissociative ionization. Since diffraction intensity can be localized on structural water, compound H 2 O:DNA states may contribute to energy dependent low-energy electron induced single and double strand breaks

  9. Chemically induced DNA hypomethylation in breast carcinoma cells detected by the amplification of intermethylated sites

    International Nuclear Information System (INIS)

    Sadikovic, Bekim; Haines, Thomas R; Butcher, Darci T; Rodenhiser, David I

    2004-01-01

    Compromised patterns of gene expression result in genomic instability, altered patterns of gene expression and tumour formation. Specifically, aberrant DNA hypermethylation in gene promoter regions leads to gene silencing, whereas global hypomethylation events can result in chromosomal instability and oncogene activation. Potential links exist between environmental agents and DNA methylation, but the destabilizing effects of environmental exposures on the DNA methylation machinery are not understood within the context of breast cancer aetiology. We assessed genome-wide changes in methylation patterns using a unique methylation profiling technique called amplification of intermethylated sites (AIMS). This method generates easily readable fingerprints that represent the investigated cell line's methylation profile, based on the differential cleavage of DNA with methylation-specific isoschisomeric restriction endonucleases. We validated this approach by demonstrating both unique and reoccurring sites of genomic hypomethylation in four breast carcinoma cell lines treated with the cytosine analogue 5-azacytidine. Comparison of treated with control samples revealed individual bands that exhibited methylation changes, and these bands were excized and cloned, and the precise genomic location individually identified. In most cases, these regions of hypomethylation coincided with susceptible target regions previously associated with chromosome breakage, rearrangement and gene amplification. Similarly, we observed that acute benzopyrene exposure is associated with altered methylation patterns in these cell lines. These results reinforce the link between environmental exposures, DNA methylation and breast cancer, and support a role for AIMS as a rapid, affordable screening method to identify environmentally induced DNA methylation changes that occur in tumourigenesis

  10. DNA repair in B. subtilis: an inducible dimer-specific W-reactivation system

    International Nuclear Information System (INIS)

    Fields, P.I.; Yasbin, R.E.

    1982-01-01

    The W-reactivation system of Bacillus subtilis can repair pyrimidine dimers in bacteriophage DNA. This inducible repair system can be activated by treatment of the bacteria with uv, alkylating agents, cross-linking agents and gamma irradiation. However, bacteriophage treated with agents other than those that cause pyrimidine dimers to be produced was not repaired by this unique form of W-reactivation. In contrast, the W-reactivation system of Escherichia coli can repair a variety of damages placed in the bacteriophage DNA

  11. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    DEFF Research Database (Denmark)

    Lyckesvärd, Madeleine Nordén; Delle, Ulla; Kahu, Helena

    2014-01-01

    and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ((60)Co) and alpha particles from (211)At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity...... mechanism as (131)I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation...

  12. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Angeluts, A A; Esaulkov, M N; Kosareva, O G; Solyankin, P M; Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Gapeyev, A B; Pashovkin, T N [Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region (Russian Federation); Matyunin, S N [Section of Applied Problems at the Presidium of the Russian Academy of Sciences, Moscow (Russian Federation); Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-03-28

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 – 200 μW cm{sup -2} within the frequency range of 0.1 – 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes. (biophotonics)

  13. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    Science.gov (United States)

    Angeluts, A. A.; Gapeyev, A. B.; Esaulkov, M. N.; Kosareva, O. G.; Matyunin, S. N.; Nazarov, M. M.; Pashovkin, T. N.; Solyankin, P. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2014-03-01

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 - 200 μW cm-2 within the frequency range of 0.1 - 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes.

  14. The Role of DNA Methylation Changes in Radiation-Induced Bystander Effects in cranial irradiated Mice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Xue, Bei; Wang, Xinwen; Wang, Jiawen

    2016-07-01

    Heavy-ion radiation could lead to bystander effect in neighboring non-hit cells by signals released from directly-irradiated cells. The exact mechanisms of radiation-induced bystander effect in distant organ remain obscure, yet accumulating evidence points to the role of DNA methylation changes in bystander effect. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were cranial exposed to 40, 200, 2000mGy dose of carbon heavy-ion radiation, while the rest of the animal body was shielded. The γH2AX foci as the DNA damage biomarker in directly irradiation organ ear and the distant organ liver were detected on 0, 1, 2, 6, 12 and 24h after radiation, respectively. Methylation-sensitive amplifcation polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that cranial irradiated mice could induce the γH2AX foci and genomic DNA methylation changes significantly in both the directly irradiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate were highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation in ear. The global DNA methylation changes tended to occur in the CG sites. We also found that the numbers of γH2AX foci and the genomic methylation changes of heavy-ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo. Keywords: Heavy-ion radiation; Bystander effect; DNA methylation; γH2

  15. [Ionizing radiation-induced DNA damage and its repair in human cells]. Progress report, [April 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The excision of radiation-induced lesions in DNA by a DNA repair enzyme complex, namely the UvrABC nuclease complex, has been investigated. Irradiated DNA was treated with the enzyme complex. DNA fractions were analyzed by gas chromatography/isotope-dilution mass spectrometry. The results showed that a number pyrimidine- and purine-derived lesions in DNA were excised by the UvrABC nuclease complex and that the enzyme complex does not act on radiation-induced DNA lesions as a glycosylase. This means that it does not excise individual base products, but it excises oligomers containing these lesions. A number of pyrimidine-derived lesions that were no substrates for other DNA repair enzymes investigated in our laboratory were substrates for the UvrABC nuclease complex.

  16. Effects of chemical-induced DNA damage on male germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Holme, J.A.; Bjoerge, C.; Trbojevic, M.; Olsen, A.K.; Brunborg, G.; Soederlund, E.J. [National Inst. of Public Health, Oslo (Norway). Dept. of Environmental Medicine; Bjoeras, M.; Seeberg, E. [National Hospital, Oslo (Norway). Dept. of Microbiology; Scholz, T.; Dybing, E.; Wiger, R. [National Hospital, Oslo (Norway). Inst. for Surgical Research and Surgical Dept. B

    1998-12-31

    Several recent studies indicate declines in sperm production, as well as increases in the incidence of genitourinary abnormalities such as testicular cancer, cryptorchidism and hypospadias. It is not known if these effects are due to exposure to chemical pollutants or if other ethiological factors are involved. Animal studies indicate that chemicals will induce such effects by various genetic, epigenetic or non-genetic mechanisms. Recently, much attention has been focused on embryonic/fetal exposure to oestrogen-mimicking chemicals (Toppari et al., 1996). However, the possibility that chemicals may cause reproductive toxicity by other mechanisms such as interactions with DNA, should not be ignored. DNA damage in germ cells may lead to the production of mutated spermatozoa, which in turn may result in spontaneous abortions, malformations and/or genetic defects in the offspring. Regarding the consequences of DNA alterations for carcinogenesis it is possible that genetic damage may occur germ cells, but the consequences are not expressed until certain genetic events occur in postnatal life. Transmission of genetic risk is best demonstrated by cancer-prone disorders such as hereditary retinoblastoma and the Li-Fraumeni syndrome. A number of experiments indicate that germ cells and proliferating cells may be particularly sensitive to DNA damaging agents compared to other cells. Furthermore, several lines of evidence have indicated that one of the best documented male reproductive toxicants, 1,2-dibrome-3-chloropropane (DBCP), causes testicular toxicity through DNA damage. It is possible that testicular cells at certain maturational stages are more subject to DNA damage, have less efficient DNA repair, or have different thresholds for initiating apoptosis following DNA damage than other cell types. (orig.)

  17. The Incorporation of Ribonucleotides Induces Structural and Conformational Changes in DNA.

    Science.gov (United States)

    Meroni, Alice; Mentegari, Elisa; Crespan, Emmanuele; Muzi-Falconi, Marco; Lazzaro, Federico; Podestà, Alessandro

    2017-10-03

    Ribonucleotide incorporation is the most common error occurring during DNA replication. Cells have hence developed mechanisms to remove ribonucleotides from the genome and restore its integrity. Indeed, the persistence of ribonucleotides into DNA leads to severe consequences, such as genome instability and replication stress. Thus, it becomes important to understand the effects of ribonucleotides incorporation, starting from their impact on DNA structure and conformation. Here we present a systematic study of the effects of ribonucleotide incorporation into DNA molecules. We have developed, to our knowledge, a new method to efficiently synthesize long DNA molecules (hundreds of basepairs) containing ribonucleotides, which is based on a modified protocol for the polymerase chain reaction. By means of atomic force microscopy, we could therefore investigate the changes, upon ribonucleotide incorporation, of the structural and conformational properties of numerous DNA populations at the single-molecule level. Specifically, we characterized the scaling of the contour length with the number of basepairs and the scaling of the end-to-end distance with the curvilinear distance, the bending angle distribution, and the persistence length. Our results revealed that ribonucleotides affect DNA structure and conformation on scales that go well beyond the typical dimension of the single ribonucleotide. In particular, the presence of ribonucleotides induces a systematic shortening of the molecules, together with a decrease of the persistence length. Such structural changes are also likely to occur in vivo, where they could directly affect the downstream DNA transactions, as well as interfere with protein binding and recognition. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Pro-oxidant induced DNA damage in human lymphoblastoid cells: homeostatic mechanisms of genotoxic tolerance.

    Science.gov (United States)

    Seager, Anna L; Shah, Ume-Kulsoom; Mikhail, Jane M; Nelson, Bryant C; Marquis, Bryce J; Doak, Shareen H; Johnson, George E; Griffiths, Sioned M; Carmichael, Paul L; Scott, Sharon J; Scott, Andrew D; Jenkins, Gareth J S

    2012-08-01

    Oxidative stress contributes to many disease etiologies including ageing, neurodegeneration, and cancer, partly through DNA damage induction (genotoxicity). Understanding the i nteractions of free radicals with DNA is fundamental to discern mutation risks. In genetic toxicology, regulatory authorities consider that most genotoxins exhibit a linear relationship between dose and mutagenic response. Yet, homeostatic mechanisms, including DNA repair, that allow cells to tolerate low levels of genotoxic exposure exist. Acceptance of thresholds for genotoxicity has widespread consequences in terms of understanding cancer risk and regulating human exposure to chemicals/drugs. Three pro-oxidant chemicals, hydrogen peroxide (H(2)O(2)), potassium bromate (KBrO(3)), and menadione, were examined for low dose-response curves in human lymphoblastoid cells. DNA repair and antioxidant capacity were assessed as possible threshold mechanisms. H(2)O(2) and KBrO(3), but not menadione, exhibited thresholded responses, containing a range of nongenotoxic low doses. Levels of the DNA glycosylase 8-oxoguanine glycosylase were unchanged in response to pro- oxidant stress. DNA repair-focused gene expression arrays reported changes in ATM and BRCA1, involved in double-strand break repair, in response to low-dose pro-oxidant exposure; however, these alterations were not substantiated at the protein level. Determination of oxidatively induced DNA damage in H(2)O(2)-treated AHH-1 cells reported accumulation of thymine glycol above the genotoxic threshold. Further, the H(2)O(2) dose-response curve was shifted by modulating the antioxidant glutathione. Hence, observed pro- oxidant thresholds were due to protective capacities of base excision repair enzymes and antioxidants against DNA damage, highlighting the importance of homeostatic mechanisms in "genotoxic tolerance."

  19. Evaluation of Cassia tora Linn. against Oxidative Stress-induced DNA and Cell Membrane Damage

    Science.gov (United States)

    Kumar, R Sunil; Narasingappa, Ramesh Balenahalli; Joshi, Chandrashekar G; Girish, Talakatta K; Prasada Rao, Ummiti JS; Danagoudar, Ananda

    2017-01-01

    Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy. PMID:28584491

  20. Evaluation of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage

    Directory of Open Access Journals (Sweden)

    R Sunil Kumar

    2017-01-01

    Full Text Available Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.

  1. The ada operon of Mycobacterium tuberculosis encodes two DNA methyltransferases for inducible repair of DNA alkylation damage.

    Science.gov (United States)

    Yang, Mingyi; Aamodt, Randi M; Dalhus, Bjørn; Balasingham, Seetha; Helle, Ina; Andersen, Pernille; Tønjum, Tone; Alseth, Ingrun; Rognes, Torbjørn; Bjørås, Magnar

    2011-06-10

    The ada operon of Mycobacterium tuberculosis, which encodes a composite protein of AdaA and AlkA and a separate AdaB/Ogt protein, was characterized. M. tuberculosis treated with N-methyl-N'-nitro-N-nitrosoguanidine induced transcription of the adaA-alkA and adaB genes, suggesting that M. tuberculosis mount an inducible response to methylating agents. Survival assays of the methyltransferase defective Escherichia coli mutant KT233 (ada ogt), showed that expression of the adaB gene rescued the alkylation sensitivity. Further, adaB but not adaA-alkA complemented the hypermutator phenotype of KT233. Purified AdaA-AlkA and AdaB possessed methyltransferase activity. These data suggested that AdaB counteract the cytotoxic and mutagenic effect of O(6)-methylguanine, while AdaA-AlkA most likely transfers methyl groups from innocuous methylphosphotriesters. AdaA-AlkA did not possess alkylbase DNA glycosylase activity nor rescue the alkylation sensitivity of the E. coli mutant BK2118 (tag alkA). We propose that AdaA-AlkA is a positive regulator of the adaptive response in M. tuberculosis. It thus appears that the ada operon of M. tuberculosis suppresses the mutagenic effect of alkylation but not the cytotoxic effect of lesions such as 3-methylpurines. Collectively, these data indicate that M. tuberculosis hypermutator strains with defective adaptive response genes might sustain robustness to cytotoxic alkylation DNA damage and confer a selective advantage contributing to host adaptation. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. 8-oxoG DNA Glycosylase-1 Inhibition Sensitizes Neuro-2a Cells to Oxidative DNA Base Damage Induced by 900 MHz Radiofrequency Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Xiaoya Wang

    2015-09-01

    Full Text Available Background/Aims: The purpose of this study was to explore the in vitro putative genotoxicity during exposure of Neuro-2a cells to radiofrequency electromagnetic fields (RF-EMFs with or without silencing of 8-oxoG DNA glycosylase-1 (OGG1. Methods: Neuro-2a cells treated with or without OGG1 siRNA were exposed to 900 MHz Global System for Mobile Communication (GSM Talk signals continuously at a specific absorption rate (SAR of 0, 0.5, 1 or 2 W/kg for 24 h. DNA strand breakage and DNA base damage were measured by the alkaline comet assay and a modified comet assay using formamidopyrimidine DNA glycosylase (FPG, respectively. Reactive oxygen species (ROS levels and cell viability were monitored using the non-fluorescent probe 2, 7-dichlorofluorescein diacetate (DCFH-DA and CCK-8 assay. Results: Exposure to 900 MHz RF-EMFs with insufficient energy could induce oxidative DNA base damage in Neuro-2a cells. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS. Without OGG1 siRNA, 2 W/kg RF-EMFs induced oxidative DNA base damage in Neuro-2a cells. Interestingly, with OGG1 siRNA, RF-EMFs could cause DNA base damage in Neuro-2a cells as low as 1 W/kg. However, neither DNA strand breakage nor altered cell viability was observed. Conclusion: Even if further studies remain conducted we support the hypothesis that OGG1 is involved in the process of DNA base repair and may play a pivotal role in protecting DNA bases from RF-EMF induced oxidative damage.

  3. 8-oxoG DNA glycosylase-1 inhibition sensitizes Neuro-2a cells to oxidative DNA base damage induced by 900 MHz radiofrequency electromagnetic radiation.

    Science.gov (United States)

    Wang, Xiaoya; Liu, Chuan; Ma, Qinglong; Feng, Wei; Yang, Lingling; Lu, Yonghui; Zhou, Zhou; Yu, Zhengping; Li, Wei; Zhang, Lei

    2015-01-01

    The purpose of this study was to explore the in vitro putative genotoxicity during exposure of Neuro-2a cells to radiofrequency electromagnetic fields (RF-EMFs) with or without silencing of 8-oxoG DNA glycosylase-1 (OGG1). Neuro-2a cells treated with or without OGG1 siRNA were exposed to 900 MHz Global System for Mobile Communication (GSM) Talk signals continuously at a specific absorption rate (SAR) of 0, 0.5, 1 or 2 W/kg for 24 h. DNA strand breakage and DNA base damage were measured by the alkaline comet assay and a modified comet assay using formamidopyrimidine DNA glycosylase (FPG), respectively. Reactive oxygen species (ROS) levels and cell viability were monitored using the non-fluorescent probe 2, 7-dichlorofluorescein diacetate (DCFH-DA) and CCK-8 assay. Exposure to 900 MHz RF-EMFs with insufficient energy could induce oxidative DNA base damage in Neuro-2a cells. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS). Without OGG1 siRNA, 2 W/kg RF-EMFs induced oxidative DNA base damage in Neuro-2a cells. Interestingly, with OGG1 siRNA, RF-EMFs could cause DNA base damage in Neuro-2a cells as low as 1 W/kg. However, neither DNA strand breakage nor altered cell viability was observed. Even if further studies remain conducted we support the hypothesis that OGG1 is involved in the process of DNA base repair and may play a pivotal role in protecting DNA bases from RF-EMF induced oxidative damage. © 2015 The Author(s) Published by S. Karger AG, Basel.

  4. Caffeine potentiates or protects against radiation-induced DNA and chromosomal damage in human lymphocytes depending on temperature and concentration

    International Nuclear Information System (INIS)

    Stoilov, L.M.; Mullenders, L.H.F.; Natarajan, A.T.

    1994-01-01

    The effect of caffeine on radiation-induced chromosomal aberrations and DNA strand breaks in unstimulated human lymphocytes was investigated. When present prior to and during the radiation exposure, caffeine treatment was found to cause either potentiation or protection against induction of chromosomal aberrations depending on the concentration and temperature. When the nucleoid sedimentation technique was applied, enhancement or reduction of radiation-induced DNA strand breaks by caffeine was also found to be dependent on temperature and caffeine concentration. It is proposed that caffeine, in addition to its suspected ability to influence DNA repair, can also influence the induction of DNA damage, leading to alterations in the yield of chromosomal aberrations

  5. Experimental setup and first measurement of DNA damage induced along and around an antiproton beam

    DEFF Research Database (Denmark)

    Kavanagh, J. N.; Currell, F. J.; Timson, D. J.

    2010-01-01

    a further enhancement due to their annihilation at the end of the path. The work presented here aimed to establish and validate an experimental procedure for the quantification of plasmid and genomic DNA damage resulting from antiproton exposure. Immunocytochemistry was used to assess DNA damage in directly......Radiotherapy employs ionizing radiation to induce lethal DNA lesions in cancer cells while minimizing damage to healthy tissues. Due to their pattern of energy deposition, better therapeutic outcomes can, in theory, be achieved with ions compared to photons. Antiprotons have been proposed to offer...... and indirectly exposed human fibroblasts irradiated in both plateau and Bragg peak regions of a 126 MeV antiproton beam at CERN. Cells were stained post irradiation with an anti-γ-H2AX antibody. Quantification of the γ-H2AX foci-dose relationship is consistent with a linear increase in the Bragg peak region...

  6. Study on the DNA-protein crosslinks induced by chromium (VI) in SPC-A1

    Science.gov (United States)

    Liu, Yanqun; Ding, Jianjun; Lu, Xiongbing; You, Hao

    2018-01-01

    Objective: This study was designed to investigate the effect of chromium (VI) on DNA-protein crosslinks (DPC) of SPC-A1 cells. Methods: We exposed SPC-A1 cells were cultured in 1640 medium and treated with the SPC-A1 cells in vitro to different concentrations of Hexavalent chromium Cr(VI) for 2h, the KC1-SDS precipitation assay were used to measure the DNA-protein cross-linking effect. Results: All the different concentrations of Cr(VI) could cause the increase of DPC coefficient in SPC-A1 cells. But this effect was not significant (P>0.05) at low concentrations; while in high concentration Cr(VI) induced SPC-A1 cells could produce DNA-protein cross-linking effect significantly (PDNA-protein crosslink.

  7. Can VHS virus bypass the protective immunity induced by DNA vaccination in rainbow trout?

    DEFF Research Database (Denmark)

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus...... in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non......DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability...

  8. DNA repair by MGMT, but not AAG, causes a threshold in alkylation-induced colorectal carcinogenesis.

    Science.gov (United States)

    Fahrer, Jörg; Frisch, Janina; Nagel, Georg; Kraus, Alexander; Dörsam, Bastian; Thomas, Adam D; Reißig, Sonja; Waisman, Ari; Kaina, Bernd

    2015-10-01

    Epidemiological studies indicate that N-nitroso compounds (NOC) are causally linked to colorectal cancer (CRC). NOC induce DNA alkylations, including O (6)-methylguanine (O (6)-MeG) and N-methylated purines, which are repaired by O (6)-MeG-DNA methyltransferase (MGMT) and N-alkyladenine-DNA glycosylase (AAG)-initiated base excision repair, respectively. In view of recent evidence of nonlinear mutagenicity for NOC-like compounds, the question arises as to the existence of threshold doses in CRC formation. Here, we set out to determine the impact of DNA repair on the dose-response of alkylation-induced CRC. DNA repair proficient (WT) and deficient (Mgmt (-/-), Aag (-/-) and Mgmt (-/-)/Aag (-/-)) mice were treated with azoxymethane (AOM) and dextran sodium sulfate to trigger CRC. Tumors were quantified by non-invasive mini-endoscopy. A non-linear increase in CRC formation was observed in WT and Aag (-/-) mice. In contrast, a linear dose-dependent increase in tumor frequency was found in Mgmt (-/-) and Mgmt (-/-)/Aag (-/-) mice. The data were corroborated by hockey stick modeling, yielding similar carcinogenic thresholds for WT and Aag (-/-) and no threshold for MGMT lacking mice. O (6)-MeG levels and depletion of MGMT correlated well with the observed dose-response in CRC formation. AOM induced dose-dependently DNA double-strand breaks in colon crypts including Lgr5-positive colon stem cells, which coincided with ATR-Chk1-p53 signaling. Intriguingly, Mgmt (-/-) mice displayed significantly enhanced levels of γ-H2AX, suggesting the usefulness of γ-H2AX as an early genotoxicity marker in the colorectum. This study demonstrates for the first time a non-linear dose-response for alkylation-induced colorectal carcinogenesis and reveals DNA repair by MGMT, but not AAG, as a key node in determining a carcinogenic threshold. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Nascent stages of DNA radiolysis: secondary electron and reactive ion induced damage

    International Nuclear Information System (INIS)

    Huels, M.A.

    2000-01-01

    Full text: It is by now well understood that most of the energy deposited in solids by ionizing radiation is converted within less than attoseconds into the production of ions, radicals, and ballistic low-energy secondary electrons. The latter are known to decompose small molecules even at electron energies well below molecular ionization thresholds regardless of molecular aggregation state, and have recently been shown to induce substantial yields of single and double strand breaks in supercoiled DNA. In that study, we found that the electron-energy dependent strand break yields have a strong maximum near 10 eV, which was attributed to the decomposition of transient molecular anion (TMA) states, i.e. resonances. The localization of these resonances on the different components of DNA leads to dissociations into anion and radical fragments within femtoseconds, where subsequent fragment reactions on similar timescales are thought to lead to the final observed DNA damage. In order to unravel this sequence of secondary electron and reactive ion induced events, and to better understand their fundamental reaction pathways, we have performed, and will present: (a) measurements of the basic mechanisms by which low-energy (0-30 eV) electrons induce damage to different components of DNA, e.g. H 2 0, deoxyribose analogs, bases, as well as other organic model systems, and (b) measurements of the basic reaction pathways by which some of the energetic ion fragments observed in (a) induce further damage in simple hydrocarbon films, as well as solids of DNA components, or their structural analogs. Our experiments show that: (i) for electron energies below 15 eV dissociative electron attachment (i.e. resonances) results in exocyclic and complex endocyclic bond cleavages in any of the molecular systems studied, leading to the formation of a vast variety of reactive radical and anion fragments, whereas above 15 eV electronic excitations and ionizations (nonresonant mechanisms) may

  10. Increased mammogram-induced DNA damage in mammary epithelial cells aged in vitro.

    Directory of Open Access Journals (Sweden)

    Laia Hernández

    Full Text Available Concerned about the risks of mammography screening in the adult population, we analyzed the ability of human mammary epithelial cells to cope with mammogram-induced DNA damage. Our study shows that an X-ray dose of 20 mGy, which is the standard dose received by the breast surface per two-view mammogram X-ray exploration, induces increased frequencies of DNA double-strand breaks to in vitro aged-but not to young-human mammary epithelial cells. We provide evidence that aged epithelial breast cells are more radiosensitive than younger ones. Our studies point to an inefficient damage response of aged cells to low-dose radiation, this being due to both delayed and incomplete mobilization of repair proteins to DNA strand breaks. This inefficient damage response is translated into an important delay in double-strand break disappearance and consequent accumulation of unrepaired DNA breaks. The result of this is a significant increase in micronuclei frequency in the in vitro aged mammary epithelial cells exposed to doses equivalent to a single mammogram X-ray exploration. Since our experiments were carried out in primary epithelial cell cultures in which cells age at the same time as they undergo replication-dependent telomere shortening, we needed to determine the contribution of these two factors to their phenotype. In this paper, we report that the exogenous expression of human telomerase retrotranscriptase in late population doubling epithelial cells does not rescue its delayed repair phenotype. Therefore, retarded DNA break repair is a direct consequence of cellular aging itself, rather than a consequence of the presence of dysfunctional telomeres. Our findings of long-lasting double strand breaks and incomplete DNA break repair in the in vitro aged epithelial cells are in line with the increased carcinogenic risks of radiation exposures at older ages revealed by epidemiologic studies.

  11. Nanodosimetric Simulation of Direct Ion-Induced DNA Damage Using Different Chromatin Geometry Models.

    Science.gov (United States)

    Henthorn, N T; Warmenhoven, J W; Sotiropoulos, M; Mackay, R I; Kirkby, K J; Merchant, M J

    2017-12-01

    Monte Carlo based simulation has proven useful in investigating the effect of proton-induced DNA damage and the processes through which this damage occurs. Clustering of ionizations within a small volume can be related to DNA damage through the principles of nanodosimetry. For simulation, it is standard to construct a small volume of water and determine spatial clusters. More recently, realistic DNA geometries have been used, tracking energy depositions within DNA backbone volumes. Traditionally a chromatin fiber is built within the simulation and identically replicated throughout a cell nucleus, representing the cell in interphase. However, the in vivo geometry of the chromatin fiber is still unknown within the literature, with many proposed models. In this work, the Geant4-DNA toolkit was used to build three chromatin models: the solenoid, zig-zag and cross-linked geometries. All fibers were built to the same chromatin density of 4.2 nucleosomes/11 nm. The fibers were then irradiated with protons (LET 5-80 keV/μm) or alpha particles (LET 63-226 keV/μm). Nanodosimetric parameters were scored for each fiber after each LET and used as a comparator among the models. Statistically significant differences were observed in the double-strand break backbone size distributions among the models, although nonsignificant differences were noted among the nanodosimetric parameters. From the data presented in this article, we conclude that selection of the solenoid, zig-zag or cross-linked chromatin model does not significantly affect the calculated nanodosimetric parameters. This allows for a simulation-based cell model to make use of any of these chromatin models for the scoring of direct ion-induced DNA damage.

  12. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks.

    Science.gov (United States)

    Tse, Margaret J; Chu, Brian K; Roy, Mahua; Read, Elizabeth L

    2015-10-20

    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Formation, Accumulation, and Hydrolysis of Endogenous and Exogenous Formaldehyde-Induced DNA Damage

    Science.gov (United States)

    Yu, Rui; Lai, Yongquan; Hartwell, Hadley J.; Moeller, Benjamin C.; Doyle-Eisele, Melanie; Kracko, Dean; Bodnar, Wanda M.; Starr, Thomas B.; Swenberg, James A.

    2015-01-01

    Formaldehyde is not only a widely used chemical with well-known carcinogenicity but is also a normal metabolite of living cells. It thus poses unique challenges for understanding risks associated with exposure. N2-hydroxymethyl-dG (N2-HOMe-dG) is the main formaldehyde-induced DNA mono-adduct, which together with DNA-protein crosslinks (DPCs) and toxicity-induced cell proliferation, play important roles in a mutagenic mode of action for cancer. In this study, N2-HOMe-dG was shown to be an excellent biomarker for direct adduction of formaldehyde to DNA and the hydrolysis of DPCs. The use of inhaled [13CD2]-formaldehyde exposures of rats and primates coupled with ultrasensitive nano ultra performance liquid chromatography-tandem mass spectrometry permitted accurate determinations of endogenous and exogenous formaldehyde DNA damage. The results show that inhaled formaldehyde only reached rat and monkey noses, but not tissues distant to the site of initial contact. The amounts of exogenous adducts were remarkably lower than those of endogenous adducts in exposed nasal epithelium. Moreover, exogenous adducts accumulated in rat nasal epithelium over the 28-days exposure to reach steady-state concentrations, followed by elimination with a half-life (t1/2) of 7.1 days. Additionally, we examined artifact formation during DNA preparation to ensure the accuracy of nonlabeled N2-HOMe-dG measurements. These novel findings provide critical new data for understanding major issues identified by the National Research Council Review of the 2010 Environmental Protection Agency’s Draft Integrated Risk Information System Formaldehyde Risk Assessment. They support a data-driven need for reflection on whether risks have been overestimated for inhaled formaldehyde, whereas underappreciating endogenous formaldehyde as the primary source of exposure that results in bone marrow toxicity and leukemia in susceptible humans and rodents deficient in DNA repair. PMID:25904104

  14. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa.

    Science.gov (United States)

    Kellenberger, Roman T; Schlüter, Philipp M; Schiestl, Florian P

    2016-01-01

    Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP) analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities.

  15. The Effect of a Grape Seed Extract on Radiation-Induced DNA Damage in Human Lymphocytes

    Science.gov (United States)

    Dicu, Tiberius; Postescu, Ion D.; Foriş, Vasile; Brie, Ioana; Fischer-Fodor, Eva; Cernea, Valentin; Moldovan, Mircea; Cosma, Constantin

    2009-05-01

    Plant-derived antioxidants due to their phenolic compounds content are reported as potential candidates for reducing the levels of oxidative stress in living organisms. Grape seed extracts are very potent antioxidants and exhibit numerous interesting pharmacologic activities. Hydroethanolic (50/50, v/v) standardized extract was obtained from red grape seed (Vitis vinifera, variety Burgund Mare—BM). The total polyphenols content was evaluated by Folin-Ciocalteu procedure and expressed as μEq Gallic Acid/ml. The aim of this study was to evaluate the potential antioxidant effects of different concentrations of BM extract against 60Co γ-rays induced DNA damage in human lymphocytes. Samples of human lymphocytes were incubated with BM extract (12.5, 25.0 and 37.5 μEq GA/ml, respectively) administered at 30 minutes before in vitro irradiation with γ-rays (2 Gy). The DNA damage and repair in lymphocytes were evaluated using alkaline comet assay. Using the lesion score, the radiation-induced DNA damage was found to be significantly different (pextract (except the lymphocytes treated with 37.5 μEq GA/ml BM extract). DNA repair analyzed by incubating the irradiated cells at 37° C and 5% CO2 atmosphere for 2 h, indicated a significant difference (pextract, immediately and two hours after irradiation. These results suggest radioprotective effects after treatment with BM extract in human lymphocytes.

  16. Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair

    Directory of Open Access Journals (Sweden)

    Rajesh P. Rastogi

    2010-01-01

    Full Text Available DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR (mainly UV-B: 280–315 nm is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs, 6-4 photoproducts (6-4PPs, and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER, nucleotide excision repair (NER, and mismatch repair (MMR. Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining, SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms.

  17. Immunostaining of UVA-induced DNA damage in erythrocytes of medaka (Oryzias latipes).

    Science.gov (United States)

    Sayed, Alaa El-Din Hamid; Mitani, Hiroshi

    2017-06-01

    Some authors have recently reported that UVA induces double-strand breaks (DSBs) in DNA. Only a few researchers have reported on the induction of DSBs upon UVA exposure, as measured using the Comet assay and γ-H2AX as markers of DSB formation. In the present study, we have investigated for the first time the dose-dependent induction of DSBs by UVA in medaka (Oryzias latipes) erythrocytes. Adult female medaka fish were exposed to UVA for 15, 30, and 60min/day for three continuous days; an unirradiated control group was kept in the same laboratory conditions. At 0h and 24h after UVA exposure, blood was collected to detect DNA damage and repair. The number of γ-H2AX foci was higher than the control value at 0h after UVA exposure and decreased within a 24h. the comet assay showed that DNA repair began during the recovery period. These findings confirm our pervious findings of genotoxic effects after UVA exposure in medaka erythrocytes and suggest that the replication-independent formation of UVA-induced DSBs is mediated through the generation of reactive oxygen species. In conclusion, these results suggest that DNA damage and repair occur after UVA exposure in medaka fish. UVA is the main component of solar UV radiation and is used for artificial UV exposure. Our results may have implications for skin cancer research. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.; Chang, G. [Johnson Research Foundation, Philadelphia, PA (United States); Horton, N.C. [Univ. of Pennsylvania, Philadelphia, PA (United States)] [and others

    1996-03-01

    The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor a product of the lacl gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-B-D-1thiogalactoside (IPTG) and the lac repressor complexed with a 21 base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and the repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quarternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites in the genomic DNA. 76 refs., 11 figs., 1 tab.

  19. Targeting Oxidatively Induced DNA Damage Response in Cancer: Opportunities for Novel Cancer Therapies

    Directory of Open Access Journals (Sweden)

    Pierpaola Davalli

    2018-01-01

    Full Text Available Cancer is a death cause in economically developed countries that results growing also in developing countries. Improved outcome through targeted interventions faces the scarce selectivity of the therapies and the development of resistance to them that compromise the therapeutic effects. Genomic instability is a typical cancer hallmark due to DNA damage by genetic mutations, reactive oxygen and nitrogen species, ionizing radiation, and chemotherapeutic agents. DNA lesions can induce and/or support various diseases, including cancer. The DNA damage response (DDR is a crucial signaling-transduction network that promotes cell cycle arrest or cell death to repair DNA lesions. DDR dysregulation favors tumor growth as downregulated or defective DDR generates genomic instability, while upregulated DDR may confer treatment resistance. Redox homeostasis deeply and capillary affects DDR as ROS activate/inhibit proteins and enzymes integral to DDR both in healthy and cancer cells, although by different routes. DDR regulation through modulating ROS homeostasis is under investigation as anticancer opportunity, also in combination with other treatments since ROS affect DDR differently in the patients during cancer development and treatment. Here, we highlight ROS-sensitive proteins whose regulation in oxidatively induced DDR might allow for selective strategies against cancer that are better tailored to the patients.

  20. Electrophoresis examination of strand breaks in plasmid DNA induced by low-energy nitrogen ion irradiation

    International Nuclear Information System (INIS)

    Zhao Yong; Tan Zheng; Du Yanhua; Qiu Guanying

    2003-01-01

    To study the effect on plasmid DNA of heavy ion in the energy range of keV where nuclear stopping interaction becomes more important or even predominant, thin film of plasmid pGEM-3Zf(-) DNA was prepared on aluminum surface and irradiated in vacuum ( -3 Pa) by low-energy nitrogen ions with energy of 30 keV (LET=285 keV/μm) at various fluence ranging from 2 x 10 10 to 8.2 x 10 13 ions/cm 2 . DNA strand breaks were analyzed by neutral electrophoresis followed by quantification with image analysis software. Low-energy nitrogen ion irradiation induced single-, double- and multiple double-strand breaks (DSB) and multiple DSB as the dominating form of DNA damages. Moreover, the linear fluence-response relationship at a low fluence range suggests that DSBs are induced predominantly by single ion track. However, strand break production is limited to a short range in the irradiated samples

  1. Repair of ultraviolet light-induced DNA damage in cholera bacteriophages

    Energy Technology Data Exchange (ETDEWEB)

    Palit, B.N.; Das, G.; Das, J. (Indian Inst. of Chemical Biology, Calcutta. Dept. of Biophysics)

    1983-08-01

    DNA repair-proficient and -deficient strains of Vibrio cholerae were used to examine host cell reactivation, Weigle reactivation and photoreactivation of u.v.-irradiated cholera bacteriophages. U.v. light-induced DNA damage in phages of different morphological and serological groups could be efficiently photoreactivated. Host cell reactivation of irradiated phages of different groups was different on the same indicator host. Phage phi149 was the most sensitive, and phi138 the most resistant to u.v. irradiation. While phi138 showed appreciable host cell reactivation, this was minimal for phi149. Attempts to demonstrate Weigle reactivation of u.v.-irradiated cholera phages were not successful, although u.v.-induced filamentation of host cells was observed.

  2. Repair of ultraviolet light-induced DNA damage in cholera bacteriophages

    International Nuclear Information System (INIS)

    Palit, B.N.; Das, G.; Das, J.

    1983-01-01

    DNA repair-proficient and -deficient strains of Vibrio cholerae were used to examine host cell reactivation, Weigle reactivation and photoreactivation of u.v.-irradiated cholera bacteriophages. U.v. light-induced DNA damage in phages of different morphological and serological groups could be efficiently photoreactivated. Host cell reactivation of irradiated phages of different groups was different on the same indicator host. Phage phi149 was the most sensitive, and phi138 the most resistant to u.v. irradiation. While phi138 showed appreciable host cell reactivation, this was minimal for phi149. Attempts to demonstrate Weigle reactivation of u.v.-irradiated cholera phages were not successful, although u.v.-induced filamentation of host cells was observed. (author)

  3. Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage

    DEFF Research Database (Denmark)

    Savorani, Cecilia; Manfé, Valentina; Biskup, Edyta

    2015-01-01

    (CTCL), a disease that is progressive, chemoresistant and refractory to treatment. We tested the effect of ellipticine in three cell lines with different p53 status: MyLa2000 (p53(wt/wt)), SeAx ((G245S)p53) and Hut-78 ((R196Stop)p53). Ellipticine caused apoptosis in MyLa2000 and SeAx and restored...... the transcriptional activity of (G245S)p53 in SeAx. However, p53 siRNA knockdown experiments revealed that p53 was not required for ellipticine-induced apoptosis in CTCL. The lipophilic antioxidant α-tocopherol inhibited ellipticine-dependent apoptosis and we linked the apoptotic response to the oxidative DNA damage....... Our results provide evidence that ellipticine-induced apoptosis is exerted through DNA damage and does not require p53 activation in T-cell lymphoma....

  4. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lazović, S.; Maletić, D.; Puač, N.; Malović, G.; Petrović, Z. Lj. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Leskovac, A.; Filipović, J.; Joksić, G. [Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade (Serbia)

    2014-09-22

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  5. Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Sonja Koopal

    2007-09-01

    Full Text Available Kaposi sarcoma is a tumor consisting of Kaposi sarcoma herpesvirus (KSHV-infected tumor cells that express endothelial cell (EC markers and viral genes like v-cyclin, vFLIP, and LANA. Despite a strong link between KSHV infection and certain neoplasms, de novo virus infection of human primary cells does not readily lead to cellular transformation. We have studied the consequences of expression of v-cyclin in primary and immortalized human dermal microvascular ECs. We show that v-cyclin, which is a homolog of cellular D-type cyclins, induces replicative stress in ECs, which leads to senescence and activation of the DNA damage response. We find that antiproliferative checkpoints are activated upon KSHV infection of ECs, and in early-stage but not late-stage lesions of clinical Kaposi sarcoma specimens. These are some of the first results suggesting that DNA damage checkpoint response also functions as an anticancer barrier in virally induced cancers.

  6. Ginkgo biloba protects against intermittent hypoxia-induced memory deficits and hippocampal DNA damage in rats.

    Science.gov (United States)

    Abdel-Wahab, Basel A; Abd El-Aziz, Samy M

    2012-03-15

    The aim of the present study was to explore the potential protective effect of Ginkgo biloba extract (EGb 761) on intermittent hypoxia (IH)-induced memory deficits and oxidative stress in rats. The passive avoidance reflex (PAR) test was employed to assess the effect of concurrent EGb 761 treatment in different dose levels on the memory deficits that were induced by concurrent long-term exposure to IH (21 days). The levels of hippocampal malondialdehyde (MDA), nitric oxide (NO), and intracellular glutathione (GSH) and the activity of glutathione peroxidase (GSH-Px) were estimated. In addition, serum and hippocampal 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were assessed to study the effect of EGb 761 on hippocampal oxidative DNA damage induced by IH. Exposure to long-term IH in rats induced marked memory impairment that was indicated by a significant decrease in the retention latency in the PAR test. This effect was accompanied by a significant increase in hippocampal oxidative stress and DNA damage. EGb 761 that was administered in either 50- or 100-mg/kg doses per day reversed IH-induced memory deficits, an effect that was accompanied by a significant decrease in hippocampal MDA and NO levels. The antioxidant defence (GSH and GSH-Px) that was depressed by IH was significantly reactivated by EGb 761. Furthermore, serum and hippocampal levels of 8-OHdG that were elevated by IH were significantly reduced. EGb 761 can protect against IH-induced memory impairment, oxidative stress and neuronal DNA damage, possibly through multiple mechanisms involving its potential anti-oxidative effect. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. DNA and chromosome breaks induced by 123I-estrogen in CHO cells

    International Nuclear Information System (INIS)

    Schwartz, J.L.

    1997-01-01

    The effects of the Auger electron-emitting isotope I-123, covalently bound to estrogen, on DNA single- and double-strand breakage and on chromosome breakage was determined in estrogen positive Chinese hamster ovary (CHO-ER) cells. Exposure to the 123 I-estrogen induced both single- and double-strand breaks with a ratio of single- to double-strand breaks of 2.2. The corresponding ratio with 60 Co gamma rays was 15.6. The dose-response was biphasic suggesting that either receptor sites are saturated at high does, or that there is a nonrandom distribution of breaks induced by the 123 I-estrogen. The 123 I-estrogen treatment induced chromosome aberrations with an efficiency of about 1 aberration for each 1,000 disintegrations per cell. This corresponds to the mean lethal dose of 123 I-estrogen for these cells suggesting that the lethal event induced by the Auger electron emitter bound to estrogen is a chromosome aberration. Most of the chromosome-type aberrations were dicentrics and rings, suggesting that 123 I-estrogen-induced chromosome breaks are rejoined. The F-ratio, the ratio of dicentrics to centric rings, was 5.8 ± 1.7, which is similar to that seen with high LET radiations. Their results suggest that I-123 bound to estrogen is an efficient clastogenic agent, that the cytotoxic damage produced by I-123 bound to estrogen is very like high LET-induced damage, and the I-123 in the estrogen-receptor-DNA complex is probably in close proximity to the sugar-phosphate backbone of the DNA

  8. Diabetes Induces Aberrant DNA Methylation in the Proximal Tubules of the Kidney.

    Science.gov (United States)

    Marumo, Takeshi; Yagi, Shintaro; Kawarazaki, Wakako; Nishimoto, Mitsuhiro; Ayuzawa, Nobuhiro; Watanabe, Atsushi; Ueda, Kohei; Hirahashi, Junichi; Hishikawa, Keiichi; Sakurai, Hiroyuki; Shiota, Kunio; Fujita, Toshiro

    2015-10-01

    Epigenetic mechanisms may underlie the progression of diabetic kidney disease. Because the kidney is a heterogeneous organ with different cell types, we investigated DNA methylation status of the kidney in a cell type-specific manner. We first identified genes specifically demethylated in the normal proximal tubules obtained from control db/m mice, and next delineated the candidate disease-modifying genes bearing aberrant DNA methylation induced by diabetes using db/db mice. Genes involved in glucose metabolism, including Sglt2, Pck1, and G6pc, were selectively hypomethylated in the proximal tubules in control mice. Hnf4a, a transcription factor regulating transporters for reabsorption, was also selectively demethylated. In diabetic mice, aberrant hypomethylation of Agt, Abcc4, Cyp4a10, Glut5, and Met and hypermethylation of Kif20b, Cldn18, and Slco1a1 were observed. Time-dependent demethylation of Agt, a marker of diabetic kidney disease, was accompanied by histone modification changes. Furthermore, inhibition of DNA methyltransferase or histone deacetylase increased Agt mRNA in cultured human proximal tubular cells. Aberrant DNA methylation and concomitant changes in histone modifications and mRNA expression in the diabetic kidney were resistant to antidiabetic treatment with pioglitazone. These results suggest that an epigenetic switch involving aberrant DNA methylation causes persistent mRNA expression of select genes that may lead to phenotype changes of the proximal tubules in diabetic kidney disease. Copyright © 2015 by the American Society of Nephrology.

  9. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-01-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  10. DNA Damage Induced MutS Homologue hMSH4 Acetylation

    Directory of Open Access Journals (Sweden)

    Chengtao Her

    2013-10-01

    Full Text Available Acetylation of non-histone proteins is increasingly recognized as an important post-translational modification for controlling the actions of various cellular processes including DNA repair and damage response. Here, we report that the human MutS homologue hMSH4 undergoes acetylation following DNA damage induced by ionizing radiation (IR. To determine which acetyltransferases are responsible for hMSH4 acetylation in response to DNA damage, potential interactions of hMSH4 with hTip60, hGCN5, and hMof were analyzed. The results of these experiments indicate that only hMof interacts with hMSH4 in a DNA damage-dependent manner. Intriguingly, the interplay between hMSH4 and hMof manipulates the outcomes of nonhomologous end joining (NHEJ-mediated DNA double strand break (DSB repair and thereby controls cell survival in response to IR. This study also shows that hMSH4 interacts with HDAC3, by which HDAC3 negatively regulates the levels of hMSH4 acetylation. Interestingly, elevated levels of HDAC3 correlate with increased NHEJ-mediated DSB repair, suggesting that hMSH4 acetylation per se may not directly affect the role of hMSH4 in DSB repair.

  11. Experimental setup and first measurement of DNA damage induced along and around an antiproton beam

    International Nuclear Information System (INIS)

    Kavanagh, J.N.; Currell, F.J.; Prise, K.M.; Schettino, G.; Currell, F.J.; Timson, D.J.; Holzscheiter, M.H.; Bassler, N.; Herrmann, R.

    2010-01-01

    Radiotherapy employs ionizing radiation to induce lethal DNA lesions in cancer cells while minimizing damage to healthy tissues. Due to their pattern of energy deposition, better therapeutic outcomes can, in theory, be achieved with ions compared to photons. Antiprotons have been proposed to offer a further enhancement due to their annihilation at the end of the path. The work presented here aimed to establish and validate an experimental procedure for the quantification of plasmid and genomic DNA damage resulting from antiproton exposure. Immunocytochemistry was used to assess DNA damage in directly and indirectly exposed human fibroblasts irradiated in both plateau and Bragg peak regions of a 126 MeV antiproton beam at CERN. Cells were stained post irradiation with an anti-γ-H2AX antibody. Quantification of the γ-H2AX foci-dose relationship is consistent with a linear increase in the Bragg peak region. A qualitative analysis of the foci detected in the Bragg peak and plateau region indicates significant differences highlighting the different severity of DNA lesions produced along the particle path. Irradiation of desalted plasmid DNA with 5 Gy antiprotons at the Bragg peak resulted in a significant portion of linear plasmid in the resultant solution. (authors)

  12. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    International Nuclear Information System (INIS)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A.; Queensland Univ., St. Lucia; Queensland Univ. St. Lucia

    1982-01-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m 2 . These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes. (author)

  13. UV-induced unscheduled DNA synthesis in cultured human epidermal and dermal cells

    International Nuclear Information System (INIS)

    Hosomi, Jiro; Kuroki, Toshio

    1985-01-01

    DNA repair in human epidermal cells, a target of skin carcinogenesis, was examined by measuring unscheduled DNA synthesis on autoradiographs. Epidermal cells were obtained from normal subjects and all experiments were performed on primary cultures. UV-irradiation induced unscheduled DNA synthesis in human epidermal cells dose-dependently at doses of 5 to 20 J/m 2 . The range of induction varied 3-fold in 9 cultures derived from different donors. No correlation was found between the extent of unscheduled DNA synthesis and the age or sex of the donors. For comparison, human dermal fibroblasts and mouse epidermal and dermal cells were examined under the same conditions. In human dermal cells, the number of grains was about 3.3 times that in epidermal cells. Mouse epidermal cells isolated from newborn C3H/He and Sencar mice showed almost the same extent of unscheduled DNA synthesis as human cells, but the response of dermal fibroblasts of mice was about 2 to 3 times less than that of human fibroblasts. The relevance of these differences among individuals, cell types and species is discussed. (author)

  14. NEIL2 protects against oxidative DNA damage induced by sidestream smoke in human cells.

    Directory of Open Access Journals (Sweden)

    Altaf H Sarker

    Full Text Available Secondhand smoke (SHS is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS, the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon-quantitative PCR (LA-QPCR assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer.

  15. DNA vaccine constructs expressing Mycobacterium tuberculosis-specific genes induce immune responses.

    Science.gov (United States)

    Hanif, S N M; Al-Attiyah, R; Mustafa, A S

    2010-11-01

    RD1 PE35, PPE68, EsxA, EsxB and RD9 EsxV genes are present in Mycobacterium tuberculosis genome but deleted in Mycobacterium bovis BCG. The aim of this study was to clone these genes into DNA vaccine vectors capable of expressing them in eukaryotic cells as fusion proteins, fused with immunostimulatory signal peptides of human interleukin-2 (hIL-2) and tissue plasminogen activator (tPA), and evaluate the recombinant DNA vaccine constructs for induction of antigen-specific cellular immune responses in mice. DNA corresponding to the aforementioned RD1 and RD9 genes was cloned into DNA vaccine plasmid vectors pUMVC6 and pUMVC7 (with hIL-2 and tPA signal peptides, respectively), and a total of 10 recombinant DNA vaccine constructs were obtained. BALB/c mice were immunized with the parent and recombinant plasmids and their spleen cells were tested for antigen-induced proliferation with antigens of M. tuberculosis and pure proteins corresponding to the cloned genes. The results showed that antigen-specific proliferation responses were observed for a given antigen only with spleen cells of mice immunized with the homologous recombinant DNA vaccine construct. The mice immunized with the parent plasmids did not show positive immune responses to any of the antigens of the cloned genes. The ability of the DNA vaccine constructs to elicit cellular immune responses makes them an attractive weapon as a safer vaccine candidate for preventive and therapeutic applications against tuberculosis. © 2010 The Authors. Scandinavian Journal of Immunology © 2010 Blackwell Publishing Ltd.

  16. Generation and Characterization of Induced Pluripotent Stem Cells from Patients with mtDNA Mutations.

    Science.gov (United States)

    Hämäläinen, Riikka H; Suomalainen, Anu

    2016-01-01

    Generation of induced pluripotent stem cells from patient cells has revolutionized disease modeling in recent years. One research area, where disease models have previously been scarce, is disorders with mutations in mitochondrial DNA. These are a common cause for human disease and often cause very tissue specific phenotypes with vast clinical heterogeneity. iPS technology has now opened up new possibilities for mechanistic studies of these diseases.

  17. Gamma Irradiation Does Not Induce Detectable Changes in DNA Methylation Directly following Exposure of Human Cells

    OpenAIRE

    Lahtz, Christoph; Bates, Steven E.; Jiang, Yong; Li, Arthur X.; Wu, Xiwei; Hahn, Maria A.; Pfeifer, Gerd P.

    2012-01-01

    Environmental chemicals and radiation have often been implicated in producing alterations of the epigenome thus potentially contributing to cancer and other diseases. Ionizing radiation, released during accidents at nuclear power plants or after atomic bomb explosions, is a potentially serious health threat for the exposed human population. This type of high-energy radiation causes DNA damage including single- and double-strand breaks and induces chromosomal rearrangements and mutations, but ...

  18. Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog

    Czech Academy of Sciences Publication Activity Database

    Sivá, Monika; Svoboda, Michal; Veverka, Václav; Trempe, J. F.; Hofmann, K.; Kožíšek, Milan; Hexnerová, Rozálie; Sedlák, František; Belza, Jan; Brynda, Jiří; Šácha, Pavel; Hubálek, Martin; Starková, Jana; Flaisigová, Iva; Konvalinka, Jan; Grantz Šašková, Klára

    2016-01-01

    Roč. 6, Jul 27 (2016), č. článku 30443. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : human DNA-damage-inducible 2 protein * proteasome * ubiquitin * retroviral protease-like domain Subject RIV: CE - Biochemistry Impact factor: 4.259, year: 2016 http://www.nature.com/articles/srep30443

  19. Selective protection of zidovudine-induced DNA-damage by the antioxidants WR-1065 and tempol.

    Science.gov (United States)

    Olivero, Ofelia A; Ongele, Michael O; Braun, Hannan M; Marrogi, Ariadna; Divi, Kathyiani; Mitchell, James B; Poirier, Miriam C

    2014-08-01

    The cytokinesis-block micronucleus cytome (CBMN) assay, introduced by Fenech, was used to demonstrate different types of DNA damage in MOLT-3 human lymphoblastoid cells exposed to 10 μM zidovudine (AZT). In addition, we explored the cytoprotective potential of two antioxidants, WR-1065 and Tempol, to decrease AZT-induced genotoxicity. Binucleated cells, arrested by Cytochalasin B (Cyt B), were evaluated for micronuclei (MN), caused by DNA damage or chromosomal loss, and chromatin nucleoplasmic bridges (NPBs), caused by telomere attrition. Additionally, nuclear buds (NBUDs), caused by amplified DNA, and apoptotic and necrotic (A/N) cells were scored. We hypothesized that AZT exposure would increase the frequency of genotoxic end points, and that the antioxidants Tempol and WR-1065 would protect against AZT-induced genotoxicity. MOLT-3 cells were exposed to 0 or 10 µM AZT for a total of 76 hr. After the first 24 hr, 0 or 5 µM WR-1065 and/or 0 or 200 µM Tempol were added for the remainder of the experiment. For the last 28 hr (of 76 hr), Cyt B was added to arrest replication after one cell division, leaving a predominance of binucleated cells. The nuclear division index (NDI) was similar for all treatment groups, indicating that the exposures did not alter cell viability. MOLT-3 cells exposed to AZT alone had significant (P Tempol and WR-1065 protected against AZT-induced MN formation (P Tempol, reduced the levels of A/N (P = 0.041). In cells exposed to AZT/Tempol there were significantly reduced levels of NBUDs, compared to cells exposed to AZT alone (P = 0.015). Cells exposed to AZT/WR-1065 showed reduced levels of NPBs, compared to cells exposed to AZT alone (P = 0.037). Thus WR-1065 and Tempol protected MOLT-3 cells against specific types of AZT-induced DNA damage. © 2014 Wiley Periodicals, Inc.

  20. Autoradiographic study of gamma-ray induced unscheduled DNA synthesis in bean root meristem cells

    International Nuclear Information System (INIS)

    Liu Zhenshen; Qiu Quanfa; Chen Dongli

    1989-01-01

    The gamma-ray induced unscheduled DNA synthesis in root meristem cells of Vica faba was studied autoradiographically by calculating the number of cells with different 3H-thymidine labelling degree. It was found that the level of unscheduled synthesis in cells with intermediate dose (500 R) irradiation was higher than that in cells with lower dose (250 R) irradiation; however, higher dose (1000 R) irradiation would inhibit the reparative replication

  1. Excision of UV-induced pyrimidine dimers from DNA of Chinese hamster CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Barenfel' d, L.S.; Bikhanskaya, F.L. (AN SSSR, Leningrad. Inst. Tsitologii)

    1983-10-01

    The sedimentation method in alkali gradients of saccharose when using UV-endonuclease from Micrococcus lutenius has been applied to investigate cleavage of UV-induced pyrimidine dimers from DNA cells (CHO). It is shown that essential part of pyrimidine dimers (approximately 80%) are cleaved during 26 h of postradiation incubation while during the first 17 h after UV-radiation (4J/m/sup 2/) reparation proceeds negligibly (approximately 15%).

  2. Oxidative stress and DNA damage in broad bean (Vicia faba L.) seedlings induced by thallium.

    Science.gov (United States)

    Radić, Sandra; Cvjetko, Petra; Glavas, Katarina; Roje, Vibor; Pevalek-Kozlina, Branka; Pavlica, Mirjana

    2009-01-01

    Thallium (Tl) is a metal of great toxicological concern because it is highly toxic to all living organisms through mechanisms that are yet poorly understood. Since Tl is accumulated by important crops, the present study aimed to analyze the biological effects induced by bioaccumulation of Tl in broad bean (Vicia faba L.) as well as the plant's antioxidative defense mechanisms usually activated by heavy metals. Thallium toxicity was related to production of reactive oxygen species in leaves and roots of broad bean seedlings following short-term (72 h) exposure to thallium (I) acetate (0, 0.5, 1, 5, and 10 mg/L) by evaluating DNA damage and oxidative stress parameters as well as antioxidative response. The possible antagonistic effect of potassium (K) was tested by combined treatment with 5 mg/L of Tl (Tl+) and 10 mg/L of potassium (K+) acetate. Accumulation of Tl+ in roots was 50 to 250 times higher than in broad bean shoots and was accompanied by increase in dry weight and proline. Despite responsive antioxidative defense (increased activities of superoxide dismutase, ascorbate peroxidase, and pyrogallol peroxidase), Tl+ caused oxidative damage to lipids and proteins as evaluated by malondialdehyde and carbonyl group levels, and induced DNA strand breaks. Combined treatment caused no oxidative alternations to lipids and proteins though it induced DNA damage. The difference in Tl-induced genotoxicity following both acellular and cellular exposure implies indirect DNA damage. Results obtained indicate that oxidative stress is involved in the mechanism of Tl toxicity and that the tolerance of broad bean to Tl is achieved, at least in part, through the increased activity of antioxidant enzymes.

  3. An effective method for detection and analysis of DNA damage induced by heavy-ion beams

    International Nuclear Information System (INIS)

    Kazama, Y.; Saito, H.; Fujiwara, M.; Matsuyama, T.; Hayashi, Y.; Ryuto, H.; Fukunishi, N.; Abe, T.

    2007-01-01

    We have developed an efficient system to detect and analyze DNA mutations induced by heavy-ion beams in Arabidopsis thaliana. In this system, a stable transgenic Arabidopsis line that constitutively expresses a yellow fluorescent protein (YFP) by a single-copy gene at a genomic locus was constructed and irradiated with heavy-ion beams. The YFP gene is a target of mutagenesis, and its loss of function or expression can easily be detected by the disappearance of YFP signals in planta under microscopy. With this system, a sup(12)Csup(6+)- induced mutant with single deletion and multiple base changes was isolated

  4. Optimized cDNA libraries for virus-induced gene silencing (VIGS using tobacco rattle virus

    Directory of Open Access Journals (Sweden)

    Page Jonathan E

    2008-01-01

    Full Text Available Abstract Background Virus-induced gene silencing (VIGS has emerged as a method for performing rapid loss-of-function experiments in plants. Despite its expanding use, the effect of host gene insert length and other properties on silencing efficiency have not been systematically tested. In this study, we probed the optimal properties of cDNA fragments of the phytoene desaturase (PDS gene for efficient VIGS in Nicotiana benthamiana using tobacco rattle virus (TRV. Results NbPDS inserts of between 192 bp and 1304 bp led to efficient silencing as determined by analysis of leaf chlorophyll a levels. The region of the NbPDS cDNA used for silencing had a small effect on silencing efficiency with 5' and 3' located inserts performing more poorly than those from the middle. Silencing efficiency was reduced by the inclusion of a 24 bp poly(A or poly(G homopolymeric region. We developed a method for constructing cDNA libraries for use as a source of VIGS-ready constructs. Library construction involved the synthesis of cDNA on a solid phase support, digestion with RsaI to yield short cDNA fragments lacking poly(A tails and suppression subtractive hybridization to enrich for differentially expressed transcripts. We constructed two cDNA libraries from methyl-jasmonate treated N. benthamiana roots and obtained 2948 ESTs. Thirty percent of the cDNA inserts were 401–500 bp in length and 99.5% lacked poly(A tails. To test the efficiency of constructs derived from the VIGS-cDNA libraries, we silenced the nicotine biosynthetic enzyme, putrescine N-methyltransferase (PMT, with ten different VIGS-NbPMT constructs ranging from 122 bp to 517 bp. Leaf nicotine levels were reduced by more than 90% in all plants infected with the NbPMT constructs. Conclusion Based on the silencing of NbPDS and NbPMT, we suggest the following design guidelines for constructs in TRV vectors: (1 Insert lengths should be in the range of ~200 bp to ~1300 bp, (2 they should be positioned in

  5. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier.

    Science.gov (United States)

    Santos, Margarida A; Faryabi, Robert B; Ergen, Aysegul V; Day, Amanda M; Malhowski, Amy; Canela, Andres; Onozawa, Masahiro; Lee, Ji-Eun; Callen, Elsa; Gutierrez-Martinez, Paula; Chen, Hua-Tang; Wong, Nancy; Finkel, Nadia; Deshpande, Aniruddha; Sharrow, Susan; Rossi, Derrick J; Ito, Keisuke; Ge, Kai; Aplan, Peter D; Armstrong, Scott A; Nussenzweig, André

    2014-10-02

    Self-renewal is the hallmark feature both of normal stem cells and cancer stem cells. Since the regenerative capacity of normal haematopoietic stem cells is limited by the accumulation of reactive oxygen species and DNA double-strand breaks, we speculated that DNA damage might also constrain leukaemic self-renewal and malignant haematopoiesis. Here we show that the histone methyl-transferase MLL4, a suppressor of B-cell lymphoma, is required for stem-cell activity and an aggressive form of acute myeloid leukaemia harbouring the MLL-AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukaemic blasts, which protects mice from death related to acute myeloid leukaemia. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 protects MLL4(-/-) MLL-AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM or BRCA1 sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. Indeed, we show that restriction-enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL-AF9 blasts, which requires cyclin-dependent kinase inhibitor p21(Cip1) (Cdkn1a) activity. In summary, we have uncovered an unexpected tumour-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in acute myeloid leukaemia.

  6. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    International Nuclear Information System (INIS)

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-01-01

    Highlights: ► We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. ► Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. ► Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. ► DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. ► DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X L expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  7. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  8. Ganglioside GT1b protects human spermatozoa from hydrogen peroxide-induced DNA and membrane damage.

    Science.gov (United States)

    Gavella, Mirjana; Garaj-Vrhovac, Verica; Lipovac, Vaskresenija; Antica, Mariastefania; Gajski, Goran; Car, Nikica

    2010-06-01

    We have reported previously that various gangliosides, the sialic acid containing glycosphingolipids, provide protection against sperm injury caused by reactive oxygen species (ROS). In this study, we investigated the effect of treatment of human spermatozoa with ganglioside GT1b on hydrogen peroxide (H(2)O(2))-induced DNA fragmentation and plasma membrane damage. Single-cell gel electrophoresis (Comet assay) used in the assessment of sperm DNA integrity showed that in vitro supplemented GT1b (100 microm) significantly reduced DNA damage induced by H(2)O(2) (200 microm) (p < 0.05). Measurements of Annexin V binding in combination with the propidium iodide vital dye labelling demonstrated that the spermatozoa pre-treated with GT1b exhibited a significant increase (p < 0.05) in the percentage of live cells with intact membrane and decreased phosphatidylserine translocation after exposure to H(2)O(2). Flow cytometry using the intracellular ROS-sensitive fluorescence dichlorodihydrofluorescein diacetate dye employed to investigate the transport of the extracellularly supplied H(2)O(2) into the cell interior revealed that ganglioside GT1b completely inhibited the passage of H(2)O(2) through the sperm membrane. These results suggest that ganglioside GT1b may protect human spermatozoa from H(2)O(2)-induced damage by rendering sperm membrane more hydrophobic, thus inhibiting the diffusion of H(2)O(2) across the membrane.

  9. Proliferating cell nuclear antigen binds DNA polymerase-β and mediates 1-methyl-4-phenylpyridinium-induced neuronal death.

    Directory of Open Access Journals (Sweden)

    Zhentao Zhang

    Full Text Available The mechanisms leading to dopaminergic neuronal loss in the substantia nigra of patients with Parkinson disease (PD remain poorly understood. We recently reported that aberrant DNA replication mediated by DNA polymerase-β (DNA pol-β plays a causal role in the death of postmitotic neurons in an in vitro model of PD. In the present study, we show that both proliferating cell nuclear antigen (PCNA and DNA pol-β are required for MPP(+-induced neuronal death. PCNA binds to the catalytic domain of DNA pol-β in MPP(+-treated neurons and in post-mortem brain tissues of PD patients. The PCNA-DNA pol-β complex is loaded into DNA replication forks and mediates DNA replication in postmitotic neurons. The aberrant DNA replication mediated by the PCNA-DNA pol-β complex induces p53-dependent neuronal cell death. Our results indicate that the interaction of PCNA and DNA pol-β contributes to neuronal death in PD.

  10. Mutations in BALB mitochondrial DNA induce CCL20 up-regulation promoting tumorigenic phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Sligh, James [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Janda, Jaroslav [University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Jandova, Jana, E-mail: jjandova@email.arizona.edu [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States)

    2014-11-15

    Highlights: • Alterations in mitochondrial DNA are commonly found in various human cancers. • Mutations in BALB mitochondrial DNA induce up-regulation of chemokine CCL20. • Increased growth and motility of mtBALB cells is associated with CCL20 levels. • mtDNA changes in BALB induce in vivo tumor growth through CCL20 up-regulation. • Mutations in mitochondrial DNA play important roles in keratinocyte neoplasia. - Abstract: mtDNA mutations are common in human cancers and are thought to contribute to the process of neoplasia. We examined the role of mtDNA mutations in skin cancer by generating fibroblast cybrids harboring a mutation in the gene encoding the mitochondrial tRNA for arginine. This somatic mutation (9821insA) was previously reported in UV-induced hyperkeratotic skin tumors in hairless mice and confers specific tumorigenic phenotypes to mutant cybrids. Microarray analysis revealed and RT-PCR along with Western blot analysis confirmed the up-regulation of CCL20 and its receptor CCR6 in mtBALB haplotype containing the mt-Tr 9821insA allele compared to wild type mtB6 haplotype. Based on reported role of CCL20 in cancer progression we examined whether the hyper-proliferation and enhanced motility of mtBALB haplotype would be associated with CCL20 levels. Treatment of both genotypes with recombinant CCL20 (rmCCL20) resulted in enhanced growth and motility of mtB6 cybrids. Furthermore, the acquired somatic alteration increased the in vivo tumor growth of mtBALB cybrids through the up-regulation of CCL20 since neutralizing antibody significantly decreased in vivo tumor growth of these cells; and tumors from anti-CCL20 treated mice injected with mtBALB cybrids showed significantly decreased CCL20 levels. When rmCCL20 or mtBALB cybrids were used as chemotactic stimuli, mtB6 cybrids showed increased motility while anti-CCL20 antibody decreased the migration and in vivo tumor growth of mtBALB cybrids. Moreover, the inhibitors of MAPK signaling and NF

  11. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Koturbash, Igor, E-mail: ikoturbash@uams.edu [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Miousse, Isabelle R. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Sridharan, Vijayalakshmi [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Nzabarushimana, Etienne; Skinner, Charles M. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melnyk, Stepan B.; Pavliv, Oleksandra [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Hauer-Jensen, Martin [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205 (United States); Nelson, Gregory A. [Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA 92354 (United States); Boerma, Marjan [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2016-05-15

    Highlights: • Radiation-induced dynamic changes in cardiac DNA methylation were detected. • Early LINE-1 hypomethylation was followed by hypermethylation at a later time-point. • Radiation affected one-carbon metabolism in the heart tissue. • Irradiation resulted in accumulation of satellite DNA mRNA transcripts. - Abstract: DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation—proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ({sup 56}Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or {sup 56}Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with {sup 56}Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and

  12. Modulation of radiation induced DNA damage by natural products in hemopoietic tissue of mice

    International Nuclear Information System (INIS)

    Jayakumar, S.; Bhilwade, H.N.; Chaubey, R.C.

    2014-01-01

    Ionizing radiation is known to induce oxidative stress through generation of ROS leading to a variety of DNA lesions. However, the most dangerous DNA lesions which are responsible for the origin of lethal effects, mutagenesis, genomic instability and carcinogenesis are the DSBs. During recent years efforts are being made to identify phytochemicals, antioxidants or neutraxeuticals which can reduce harmful effect of radiation during accidental exposure or prevent normal tissue injury during radiotherapy. In the present study, we have investigated the radioprotective role of curcumin, a dietary antioxidant, taurine, malabaricone-C, and umbelliferone, for their radioprotective properties in hemopoietic cells of mice. Groups of mice-were fed 1% of curcumin in diet for three weeks. Similarly other groups of mice were injected i.p. with 50 mg/kg body weight of taurine for five consecutive days. After the completion of the treatment mice pre-treated with curcumin and taurine were exposed to 3 Gy of gamma rays. Malabaricone-C was tested for its radiomodulation potential in vitro, in spleenocytes of mouse. Spleenocytes were isolated and treated with different concentrations (0.5-25 ìM) of malabaricone-C. Immediately after irradiation, alkaline comet assay were performed using standard procedures. Twenty four post radiation exposure mice were sacrificed for micronucleus test. Results of these studies showed significant reduction in DNA damage by curcumin. The micronucleus data showed marginal increase in the frequency of micronucleated erythrocytes in curcumin fed group as compared to the controls. Mice receiving curcumin for 3 weeks in diet followed by gamma radiation (3 Gy), showed approximately 50% reduction in the frequency of micro nucleated polychromatic erythrocytes. Pre-treatment of mice with taurine significantly (p < 0.01) reduced the frequency of gamma rays induced mn-PCEs in bone marrow tissue. Malabaricone-C at 1.5 ìM concentration showed very good protection

  13. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2014-12-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity.

  14. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    International Nuclear Information System (INIS)

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2014-01-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity

  15. Resveratrol Induces Premature Senescence in Lung Cancer Cells via ROS-Mediated DNA Damage

    Science.gov (United States)

    Luo, Hongmei; Yang, Aimin; Schulte, Bradley A.; Wargovich, Michael J.; Wang, Gavin Y.

    2013-01-01

    Resveratrol (RV) is a natural component of red wine and grapes that has been shown to be a potential chemopreventive and anticancer agent. However, the molecular mechanisms underlying RV's anticancer and chemopreventive effects are incompletely understood. Here we show that RV treatment inhibits the clonogenic growth of non-small cell lung cancer (NSCLC) cells in a dose-dependent manner. Interestingly, the tumor-suppressive effect of low dose RV was not associated with any significant changes in the expression of cleaved PARP and activated caspase-3, suggesting that low dose RV treatment may suppress tumor cell growth via an apoptosis-independent mechanism. Subsequent studies reveal that low dose RV treatment induces a significant increase in senescence-associated β–galactosidase (SA-β-gal) staining and elevated expression of p53 and p21 in NSCLC cells. Furthermore, we show that RV-induced suppression of lung cancer cell growth is associated with a decrease in the expression of EF1A. These results suggest that RV may exert its anticancer and chemopreventive effects through the induction of premature senescence. Mechanistically, RV-induced premature senescence correlates with increased DNA double strand breaks (DSBs) and reactive oxygen species (ROS) production in lung cancer cells. Inhibition of ROS production by N-acetylcysteine (NAC) attenuates RV-induced DNA DSBs and premature senescence. Furthermore, we show that RV treatment markedly induces NAPDH oxidase-5 (Nox5) expression in both A549 and H460 cells, suggesting that RV may increase ROS generation in lung cancer cells through upregulating Nox5 expression. Together, these findings demonstrate that low dose RV treatment inhibits lung cancer cell growth via a previously unappreciated mechanism, namely the induction of premature senescence through ROS-mediated DNA damage. PMID:23533664

  16. Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide.

    Science.gov (United States)

    Shen, Boxuan; Linko, Veikko; Dietz, Hendrik; Toppari, J Jussi

    2015-01-01

    DNA origami is a widely used method for fabrication of custom-shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick-like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved "C"-shaped and angular "L"-shaped origamis were trapped with nanoscale precision and single-structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thiol-linkers. In general, structural deformations of the origami during the DEP trapping are highly dependent on the shape and the construction of the structure. The SQL brick turned out to be the most robust structure under the high DEP forces, and accordingly, its single-structure trapping yield was also highest. In addition, the electrical conductivity of single immobilized plain brick-like structures was characterized. The electrical measurements revealed that the conductivity is negligible (insulating behavior). However, we observed that the trapping process of the SQL brick equipped with thiol-linkers tended to induce an etched "nanocanyon" in the silicon dioxide substrate. The nanocanyon was formed exactly between the electrodes, that is, at the location of the DEP-trapped origami. The results show that the demonstrated DEP-trapping technique can be readily exploited in assembling and arranging complex multilayered origami geometries. In addition, DNA origamis could be utilized in DEP-assisted deformation of the substrates onto which they are attached. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. ATM-activated autotaxin (ATX) propagates inflammation and DNA damage in lung epithelial cells: a new mode of action for silica-induced DNA damage?

    Science.gov (United States)

    Zheng, Huiyuan; Högberg, Johan; Stenius, Ulla

    2017-12-07

    Silica exposure is a common risk factor for lung cancer. It has been claimed that key elements in cancer development are activation of inflammatory cells that indirectly induce DNA damage and proliferative stimuli in respiratory epithelial cells. We studied DNA damage induced by silica particles in respiratory epithelial cells and focused the role of the signaling enzyme autotaxin (ATX). A549 and 16 bronchial epithelial cells (16HBE) lung epithelial cells were exposed to silica particles. Reactive oxygen species (ROS), NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome activation, ATX, ataxia telangiectasia mutated (ATM), and DNA damage (γH2AX, pCHK1, pCHK2, comet assay) were end points. Low doses of silica induced NLRP3 activation, DNA damage accumulation, and ATM phosphorylation. A novel finding was that ATM induced ATX generation and secretion. Not only silica but also rotenone, camptothecin and H2O2 activated ATX via ATM, suggesting that ATX is part of a generalized ATM response to double-strand breaks (DSBs). Surprisingly, ATX inhibition mitigated DNA damage accumulation at later time points (6-16 h), and ATX transfection caused NLRP3 activation and DNA damage. Furthermore, the product of ATX enzymatic activity, lysophosphatidic acid, recapitulated the effects of ATX transfection. These data indicate an ATM-ATX-dependent loop that propagates inflammation and DSB accumulation, making low doses of silica effective inducers of DSBs in epithelial cells. We conclude that an ATM-ATX axis interconnects DSBs with silica-induced inflammation and propagates these effects in epithelial cells. Further studies of this adverse outcome pathway may give an accurate assessment of the lowest doses of silica that causes cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Measurement of DNA breakage and breakage repair in mice spleen cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Wang Qin; Xue Jingying; Li Jin; Mu Chuanjie; Fan Feiyue

    2007-01-01

    Objective: To investigate the radioresistance mechanism of IBM-2 mice through measuring DNA single-strand break(SSB) and double-strands break (DSB) as well as their repair. Methods: Pulsed-field gel electrophoresis was used to measure DSB and SSB in IRM-2 mice and their parental mice ICR/JCL and 615 mice after exposure to different doses of γ-ray at different postirradiation time. Results: The initial DNA damages, ie the quantities of DSB and SSB in unirradiation IRM-2 mice were less serious than that of their parental mice ICR/JCL and 615 alice(P<0.01). The percent- age of DSB and SSB in IBM -2 mice was significantly lower than that of ICB/JCL and 615 mice after exposure to various doses of γ-ray(P<0.01 and P<0.05). There were not statistic differences in DSB and SSB repair between IRM-2 mice and their parental mice after exposure to 2Gy radiation. The DNA damage repair rate induced by 4Gy and 8Gy radiation in IRM - 2 mice was rapid, ie the repair rate of SSB and DSB after 0.5h and 1h postirradiation in IRM-2 mice was higher than that of their' parental mice (P<0.01 and P<0.05). And remaining damages after repair in IRM-2 mice were lower than that of ICR/JCL and 615 mice. Conclusion: The DNA damages in IBM-2 mice were lower than that of their parental mice after exposure to ionizing radiation. Moreover, the repair rate of SSB and DSB was higher than that of their parental mice, which perhaps were the radioresistance causes of IBM-2 mice. Therefore IRM-2 mice are naturally resistant to DNA damages induced by ionizing radiation. (authors)

  19. Antidepressant administration modulates stress-induced DNA methylation and DNA methyltransferase expression in rat prefrontal cortex and hippocampus

    DEFF Research Database (Denmark)

    Sales, Amanda J; Joca, Sâmia R L

    2018-01-01

    Stress and antidepressant treatment can modulate DNA methylation in promoter region of genes related to neuroplasticity and mood regulation, thus implicating this epigenetic mechanism in depression neurobiology and treatment. Accordingly, systemic administration of DNA methyltransferase (DNMT...

  20. DNA damage and methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study).

    Science.gov (United States)

    Kwiatkowska, Marta; Reszka, Edyta; Woźniak, Katarzyna; Jabłońska, Ewa; Michałowicz, Jaromir; Bukowska, Bożena

    2017-07-01

    Glyphosate is a very important herbicide that is widely used in the agriculture, and thus the exposure of humans to this substance and its metabolites has been noted. The purpose of this study was to assess DNA damage (determination of single and double strand-breaks by the comet assay) as well as to evaluate DNA methylation (global DNA methylation and methylation of p16 (CDKN2A) and p53 (TP53) promoter regions) in human peripheral blood mononuclear cells (PBMCs) exposed to glyphosate. PBMCs were incubated with the compound studied at concentrations ranging from 0.1 to 10 mM for 24 h. The study has shown that glyphosate induced DNA lesions, which were effectively repaired. However, PBMCs were unable to repair completely DNA damage induced by glyphosate. We also observed a decrease in global DNA methylation level at 0.25 mM of glyphosate. Glyphosate at 0.25 mM and 0.5 mM increased p53 promoter methylation, while it did not induce statistically significant changes in methylation of p16 promoter. To sum up, we have shown for the first time that glyphosate (at high concentrations from 0.5 to 10 mM) may induce DNA damage in leucocytes such as PBMCs and cause DNA methylation in human cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Damage induced by hydroxyl radicals generated in the hydration layer of γ-irradiated frozen aqueous solution of DNA

    International Nuclear Information System (INIS)

    Ohshima, Hideki; Matsuda, Akira; Kuwabara, Mikinori; Iida, Yoshiharu.

    1996-01-01

    Aqueous DNA solutions with or without the spin trap α-phenyl-N-tert-butylnitrone (PBN) were exposed to γ-rays at 77 K. After thawing the solutions, three experiments were carried out to confirm the generation of OH radicals in the hydration layer of DNA and to examine whether they act as an inducer of DNA strand breaks and base alterations. Observation with the EZR-spin tapping method showed ESR signals from PBN-OH adducts in the solution containing PBN and DNA, but there were few signals in the solution containing PBN alone, suggesting that reactive OH radicals were produced in the hydration layer of γ-irradiated DNA and were effectively scavenged by PBN, and that unreactive OH radicals were produced in the free water layer of γ-irradiated DNA. Agarose gel electrophoresis of DNA proved that PBN had no effect on the formation of strand breaks, whereas examination with the high-performance liquid chromatography-eloctrochemical detection (HPLC-ECD) method showed that PBN suppressed the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). From these results it was concluded that OH radicals generated in the hydration layer of γ-irradiated DNA did not induce DNA strand breaks but induced base alterations. (author)

  2. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    Directory of Open Access Journals (Sweden)

    S.G. Ferreira

    2013-08-01

    Full Text Available The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP, an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg. Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water. Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE of chromosomal aberrations in pinealectomized (PINX animals treated with melatonin and CP (2.50 ± 0.50/100 cells was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells, thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.

  3. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    International Nuclear Information System (INIS)

    Ferreira, S.G.; Peliciari-Garcia, R.A.; Takahashi-Hyodo, S.A.; Rodrigues, A.C.; Amaral, F.G.; Berra, C.M.; Bordin, S.; Curi, R.; Cipolla-Neto, J.

    2013-01-01

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy

  4. Effects of melatonin on DNA damage induced by cyclophosphamide in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.G.; Peliciari-Garcia, R.A. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas I, Universidade de São Paulo, São Paulo, SP (Brazil); Takahashi-Hyodo, S.A. [Área de Ciências da Saúde, Universidade Braz Cubas, Mogi das Cruzes, SP (Brazil); Rodrigues, A.C. [Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Amaral, F.G. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas I, Universidade de São Paulo, São Paulo, SP (Brazil); Berra, C.M. [Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil); Bordin, S.; Curi, R.; Cipolla-Neto, J. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas I, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-03-08

    The antioxidant and free radical scavenger properties of melatonin have been well described in the literature. In this study, our objective was to determine the protective effect of the pineal gland hormone against the DNA damage induced by cyclophosphamide (CP), an anti-tumor agent that is widely applied in clinical practice. DNA damage was induced in rats by a single intraperitoneal injection of CP (20 or 50 mg/kg). Animals received melatonin during the dark period for 15 days (1 mg/kg in the drinking water). Rat bone marrow cells were used for the determination of chromosomal aberrations and of formamidopyrimidine DNA glycosylase enzyme (Fpg)-sensitive sites by the comet technique and of Xpf mRNA expression by qRT-PCR. The number (mean ± SE) of chromosomal aberrations in pinealectomized (PINX) animals treated with melatonin and CP (2.50 ± 0.50/100 cells) was lower than that obtained for PINX animals injected with CP (12 ± 1.8/100 cells), thus showing a reduction of 85.8% in the number of chromosomal aberrations. This melatonin-mediated protection was also observed when oxidative lesions were analyzed by the Fpg-sensitive assay, both 24 and 48 h after CP administration. The expression of Xpf mRNA, which is involved in the DNA nucleotide excision repair machinery, was up-regulated by melatonin. The results indicate that melatonin is able to protect bone marrow cells by completely blocking CP-induced chromosome aberrations. Therefore, melatonin administration could be an alternative and effective treatment during chemotherapy.

  5. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  6. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  7. Enhancing repair of radiation-induced strand breaks in cellular DNA as a radiotherapeutic potential

    International Nuclear Information System (INIS)

    Nair, C.K.K.

    2014-01-01

    Protection of mammalian organisms including man from deleterious effects of ionizing radiation is of paramount importance and development of effective approaches to combat radiation damages using non-toxic radioprotectors is of considerable interest for defence, nuclear industries, radiation accidents, space travels, etc., besides the protection of normal tissues during radiotherapy of tumours. Many synthetic as well as natural compounds have been investigated in the recent past for their efficacy to protect the biological systems from radiation induced damages. They include sulfhydryl compounds, antioxidants, plant extracts, immune-modulators, and other agents. However, the inherent toxicity of many of the synthetic agents at the effective radio-protective concentration warranted further search for safer and more effective radio-protectors. In this context, therapeutic radioprotectors which are effective on post irradiation administration are of special relevance. One of the property that can be applied while screening for such radiation protective therapeutics is their ability to enhance repair of radiation-induced lesions in cellular DNA in terms of cellular repair index based on the parameters of the DNA following comet assay. Post irradiation administration of some natural and synthetic agents have shown their potential to enhance repair of radiation-induced strand breaks in cellular DNA in mice. These include phytoceuticals such as gallic acid, sesamol etc., extracts of medicinal plants such as Andrographis panniculata, and a few synthetic compounds such as tocopherol-mono-glucoside. The talk will give an overview of the work on DNA repair enhancement by a few natural and synthetic agents. (author)

  8. Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion.

    Science.gov (United States)

    Luthra, Priya; Aguirre, Sebastian; Yen, Benjamin C; Pietzsch, Colette A; Sanchez-Aparicio, Maria T; Tigabu, Bersabeh; Morlock, Lorraine K; García-Sastre, Adolfo; Leung, Daisy W; Williams, Noelle S; Fernandez-Sesma, Ana; Bukreyev, Alexander; Basler, Christopher F

    2017-04-04

    Ebola virus (EBOV) protein VP35 inhibits production of interferon alpha/beta (IFN) by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication. IMPORTANCE Ebola virus and other emerging RNA viruses are significant but unpredictable public health threats. Therapeutic approaches with broad-spectrum activity could provide an attractive response to such infections. We describe a novel assay that can identify small molecules that overcome Ebola virus-encoded innate immune evasion mechanisms. This assay identified as hits cancer chemotherapeutic drugs, including doxorubicin. Follow-up studies provide new insight into how doxorubicin induces interferon (IFN) responses, revealing activation of both the DNA damage response kinase ATM and the DNA sensor cGAS and its partner signaling protein STING. The studies further demonstrate that the ATM and cGAS-STING pathways of IFN induction are a point of vulnerability not only for Ebola virus but for other RNA viruses as well, because viral innate immune antagonists consistently fail to

  9. Protection of halogenated DNA from strand breakage and sister-chromatid exchange induced by the topoisomerase I inhibitor camptothecin

    International Nuclear Information System (INIS)

    Orta, Manuel Luis; Mateos, Santiago; Cantero, Gloria; Wolff, Lisa J.; Cortes, Felipe

    2008-01-01

    The fundamental nuclear enzyme DNA topoisomerase I (topo I), cleaves the double-stranded DNA molecule at preferred sequences within its recognition/binding sites. We have recently reported that when cells incorporate halogenated nucleosides analogues of thymidine into DNA, it interferes with normal chromosome segregation, as shown by an extraordinarily high yield of endoreduplication, and results in a protection against DNA breakage induced by the topo II poison m-AMSA [F. Cortes, N. Pastor, S. Mateos, I. Dominguez, The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes, DNA Repair 2 (2003) 719-726; G. Cantero, S. Mateos, N. Pastor; F. Cortes, Halogen substitution of DNA protects from poisoning of topoisomerase II that results in DNA double-strand breaks (DSBs), DNA Repair 5 (2006) 667-674]. In the present investigation, we have assessed whether the presence of halogenated nucleosides in DNA diminishes the frequency of interaction of topo I with DNA and thus the frequency with which the stabilisation of cleavage complexes by the topo I poison camptothecin (CPT) takes place, in such a way that it protects from chromosome breakage and sister-chromatid exchange. This protective effect is shown to parallel a loss in halogen-substituted cells of the otherwise CPT-increased catalytic activity bound to DNA

  10. Obesity-induced sperm DNA methylation changes at satellite repeats are reprogrammed in rat offspring

    Directory of Open Access Journals (Sweden)

    Neil A Youngson

    2016-01-01

    Full Text Available There is now strong evidence that the paternal contribution to offspring phenotype at fertilisation is more than just DNA. However, the identity and mechanisms of this nongenetic inheritance are poorly understood. One of the more important questions in this research area is: do changes in sperm DNA methylation have phenotypic consequences for offspring? We have previously reported that offspring of obese male rats have altered glucose metabolism compared with controls and that this effect was inherited through nongenetic means. Here, we describe investigations into sperm DNA methylation in a new cohort using the same protocol. Male rats on a high-fat diet were 30% heavier than control-fed males at the time of mating (16-19 weeks old, n = 14/14. A small (0.25% increase in total 5-methyl-2Ͳ-deoxycytidine was detected in obese rat spermatozoa by liquid chromatography tandem mass spectrometry. Examination of the repetitive fraction of the genome with methyl-CpG binding domain protein-enriched genome sequencing (MBD-Seq and pyrosequencing revealed that retrotransposon DNA methylation states in spermatozoa were not affected by obesity, but methylation at satellite repeats throughout the genome was increased. However, examination of muscle, liver, and spermatozoa from male 27-week-old offspring from obese and control fathers (both groups from n = 8 fathers revealed that normal DNA methylation levels were restored during offspring development. Furthermore, no changes were found in three genomic imprints in obese rat spermatozoa. Our findings have implications for transgenerational epigenetic reprogramming. They suggest that postfertilization mechanisms exist for normalising some environmentally-induced DNA methylation changes in sperm cells.

  11. Low Dose Iron Treatments Induce a DNA Damage Response in Human Endothelial Cells within Minutes.

    Directory of Open Access Journals (Sweden)

    Inês G Mollet

    Full Text Available Spontaneous reports from patients able to report vascular sequelae in real time, and recognition that serum non transferrin bound iron may reach or exceed 10μmol/L in the blood stream after iron tablets or infusions, led us to hypothesize that conventional iron treatments may provoke acute vascular injury. This prompted us to examine whether a phenotype could be observed in normal human endothelial cells treated with low dose iron.Confluent primary human endothelial cells (EC were treated with filter-sterilized iron (II citrate or fresh media for RNA sequencing and validation studies. RNA transcript profiles were evaluated using directional RNA sequencing with no pre-specification of target sequences. Alignments were counted for exons and junctions of the gene strand only, blinded to treatment types.Rapid changes in RNA transcript profiles were observed in endothelial cells treated with 10μmol/L iron (II citrate, compared to media-treated cells. Clustering for Gene Ontology (GO performed on all differentially expressed genes revealed significant differences in biological process terms between iron and media-treated EC, whereas 10 sets of an equivalent number of randomly selected genes from the respective EC gene datasets showed no significant differences in any GO terms. After 1 hour, differentially expressed genes clustered to vesicle mediated transport, protein catabolism, and cell cycle (Benjamini p = 0.0016, 0.0024 and 0.0032 respectively, and by 6 hours, to cellular response to DNA damage stimulus most significantly through DNA repair genes FANCG, BLM, and H2AFX. Comet assays demonstrated that 10μM iron treatment elicited DNA damage within 1 hour. This was accompanied by a brisk DNA damage response pulse, as ascertained by the development of DNA damage response (DDR foci, and p53 stabilization.These data suggest that low dose iron treatments are sufficient to modify the vascular endothelium, and induce a DNA damage response.

  12. Detection, characterization and measure of a new radiation-induced damage in isolated and cellular DNA

    International Nuclear Information System (INIS)

    Regulus, P.

    2006-10-01

    Deoxyribonucleic acid (DNA) contains the genetic information and chemical injury to this macromolecule may have severe biological consequences. We report here the detection of 4 new radiation-induced DNA lesions by using a high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) approach. For that purpose, the characteristic fragmentation of most 2'-deoxy-ribo nucleosides, the loss of 116 Da corresponding to the loss of the 2-deoxyribose moiety, was used in the so-called neutral loss mode of the HPLC-MS/MS. One of the newly detected lesions, named dCyd341 because it is a 2'-deoxycytidine modification exhibiting a molecular weight of 341 Da, was also detected in cellular DNA. Characterization of this modified nucleoside was performed using NMR and exact mass determination of the product obtained by chemical synthesis. A mechanism of formation was then proposed, in which the first event is the H-abstraction at the C4 position of a 2-deoxyribose moiety. Then, the sugar modification produced exhibits a reactive aldehyde that, through reaction with a vicinal cytosine base, gives rise to dCyd341. dCyd341 could be considered as a complex damage since its formation involves a DNA strand break and a cross-link between a damaged sugar residue and a vicinal cytosine base located most probably on the complementary DNA strand. In addition to its characterization, preliminary biological studies revealed that cells are able to remove the lesion from DNA. Repair studies have revealed the ability of cells to excise the lesion. Identification of the repair systems involved could represent an interesting challenge. (author)

  13. Zinc chromate induces chromosome instability and DNA double strand breaks in human lung cells

    International Nuclear Information System (INIS)

    Xie Hong; Holmes, Amie L.; Young, Jamie L.; Qin Qin; Joyce, Kellie; Pelsue, Stephen C.; Peng Cheng; Wise, Sandra S.; Jeevarajan, Antony S.; Wallace, William T.; Hammond, Dianne; Wise, John Pierce

    2009-01-01

    Hexavalent chromium Cr(VI) is a respiratory toxicant and carcinogen, with solubility playing an important role in its carcinogenic potential. Zinc chromate, a water insoluble or 'particulate' Cr(VI) compound, has been shown to be carcinogenic in epidemiology studies and to induce tumors in experimental animals, but its genotoxicity is poorly understood. Our study shows that zinc chromate induced concentration-dependent increases in cytotoxicity, chromosome damage and DNA double strand breaks in human lung cells. In response to zinc chromate-induced breaks, MRE11 expression was increased and ATM and ATR were phosphorylated, indicating that the DNA double strand break repair system was initiated in the cells. In addition, our data show that zinc chromate-induced double strand breaks were only observed in the G2/M phase population, with no significant amount of double strand breaks observed in G1 and S phase cells. These data will aid in understanding the mechanisms of zinc chromate toxicity and carcinogenesis

  14. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells

    Science.gov (United States)

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. PMID:28936177

  15. DNA Damage Signaling Is Induced in the Absence of Epstein-Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA.

    Science.gov (United States)

    Wang'ondu, Ruth; Teal, Stuart; Park, Richard; Heston, Lee; Delecluse, Henri; Miller, George

    2015-01-01

    Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.

  16. Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity

    International Nuclear Information System (INIS)

    Dittmann, Klaus; Mayer, Claus; Rodemann, Hans-Peter

    2005-01-01

    Background and purpose: Inhibition of EGFR-function can induce radiosensitization in tumor cells. Purpose of our investigation was to identify the possible molecular mechanism of radiosensitization following treatment with anti-EGFR-antibody C225 (Cetuximab). Materials and methods: The effect of C225 on radiation response was determined in human cell lines of bronchial carcinoma (A549) and breast adenoma cells (MDA MB 231). The molecular effects of C225 on EGFR-function after irradiation were analyzed applying western blotting, immune-precipitation and kinase assays. Effects on DNA-repair were detected by quantification of γ-H2AX positive foci 24 h after irradiation. Results: The EGFR specific antibody C225 induced radiosensitization in A549 and also in MDA MB 231 cells. Radiosensitization in A549 was associated with blockage of radiation-induced EGFR transport into the nucleus, and immobilized the complex of EGFR with DNA-dependent protein kinase (DNA-PK) in the cytoplasm. As a consequence radiation-induced DNA-PK activation was abolished, a process that is essential for DNA-repair after radiation exposure. Likewise C225 treatment increased the residual amount of γ-H2AX-positive foci 24 h after irradiation in A549 and in MDA MB 231 cells. Conclusions: Our results suggest that irradiation induced DNA-PK activation-essential for DNA repair-may be hampered specifically by use of the anti-EGFR-antibody C225. This process is associated with radiosensitization

  17. DNaseI Protects against Paraquat-Induced Acute Lung Injury and Pulmonary Fibrosis Mediated by Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Guo Li

    2015-01-01

    Full Text Available Background. Paraquat (PQ poisoning is a lethal toxicological challenge that served as a disease model of acute lung injury and pulmonary fibrosis, but the mechanism is undetermined and no effective treatment has been discovered. Methods and Findings. We demonstrated that PQ injures mitochondria and leads to mtDNA release. The mtDNA mediated PBMC recruitment and stimulated the alveolar epithelial cell production of TGF-β1 in vitro. The levels of mtDNA in circulation and bronchial alveolar lavage fluid (BALF were elevated in a mouse of PQ-induced lung injury. DNaseI could protect PQ-induced lung injury and significantly improved survival. Acute lung injury markers, such as TNFα, IL-1β, and IL-6, and marker of fibrosis, collagen I, were downregulated in parallel with the elimination of mtDNA by DNaseI. These data indicate a possible mechanism for PQ-induced, mtDNA-mediated lung injury, which may be shared by other causes of lung injury, as suggested by the same protective effect of DNaseI in bleomycin-induced lung injury model. Interestingly, increased mtDNA in the BALF of patients with amyopathic dermatomyositis-interstitial lung disease can be appreciated. Conclusions. DNaseI targeting mtDNA may be a promising approach for the treatment of PQ-induced acute lung injury and pulmonary fibrosis that merits fast tracking through clinical trials.

  18. Optimal functional levels of activation-induced deaminase specifically require the Hsp40 DnaJa1

    Science.gov (United States)

    Orthwein, Alexandre; Zahn, Astrid; Methot, Stephen P; Godin, David; Conticello, Silvestro G; Terada, Kazutoyo; Di Noia, Javier M

    2012-01-01

    The enzyme activation-induced deaminase (AID) deaminates deoxycytidine at the immunoglobulin genes, thereby initiating antibody affinity maturation and isotype class switching during immune responses. In contrast, off-target DNA damage caused by AID is oncogenic. Central to balancing immunity and cancer is AID regulation, including the mechanisms determining AID protein levels. We describe a specific functional interaction between AID and the Hsp40 DnaJa1, which provides insight into the function of both proteins. Although both major cytoplasmic type I Hsp40s, DnaJa1 and DnaJa2, are induced upon B-cell activation and interact with AID in vitro, only DnaJa1 overexpression increases AID levels and biological activity in cell lines. Conversely, DnaJa1, but not DnaJa2, depletion reduces AID levels, stability and isotype switching. In vivo, DnaJa1-deficient mice display compromised response to immunization, AID protein and isotype switching levels being reduced by half. Moreover, DnaJa1 farnesylation is required to maintain, and farnesyltransferase inhibition reduces, AID protein levels in B cells. Thus, DnaJa1 is a limiting factor that plays a non-redundant role in the functional stabilization of AID. PMID:22085931

  19. Magnitude and direction of DNA bending induced by screw-axis orientation: influence of sequence, mismatches and abasic sites.

    Science.gov (United States)

    Curuksu, Jeremy; Zakrzewska, Krystyna; Zacharias, Martin

    2008-04-01

    DNA-bending flexibility is central for its many biological functions. A new bending restraining method for use in molecular mechanics calculations and molecular dynamics simulations was developed. It is based on an average screw rotation axis definition for DNA segments and allows inducing continuous and smooth bending deformations of a DNA oligonucleotide. In addition to controlling the magnitude of induced bending it is also possible to control the bending direction so that the calculation of a complete (2-dimensional) directional DNA-bending map is now possible. The method was applied to several DNA oligonucleotides including A(adenine)-tract containing sequences known to form stable bent structures and to DNA containing mismatches or an abasic site. In case of G:A and C:C mismatches a greater variety of conformations bent in various directions compared to regular B-DNA was found. For comparison, a molecular dynamics implementation of the approach was also applied to calculate the free energy change associated with bending of A-tract containing DNA, including deformations significantly beyond the optimal curvature. Good agreement with available experimental data was obtained offering an atomic level explanation for stable bending of A-tract containing DNA molecules. The DNA-bending persistence length estimated from the explicit solvent simulations is also in good agreement with experiment whereas the adiabatic mapping calculations with a GB solvent model predict a bending rigidity roughly two times larger.

  20. Early life DNA vaccination with the H gene of Canine distemper virus induces robust protection against distemper

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent

    2009-01-01

    Young mink kits (n = 8)were vaccinated withDNA plasmids encoding the viral haemagglutinin protein (H) of a vaccine strain of Canine distemper virus (CDV). Virus neutralising (VN) antibodieswere induced after 2 immunisations and after the third immunisation all kits had high VN antibody titres...... demonstrate that early life DNA vaccination with the H gene of a CDV vaccine strain induced robust protective immunity against a recent wild type CDV....

  1. DNA radio-induced tandem lesions: formation, introduction in oligonucleotides and repair

    International Nuclear Information System (INIS)

    Bourdat, Anne-Gaelle

    2000-01-01

    Cell killing induced by excited photosensitizers, ionizing radiation or radiomimetic drugs can not be only explained by the formation of single DNA lesions. Thus, multiply damaged sites, are likely to have harmful biological consequences. One example of tandem base damage induced by . OH radical in X-irradiated aqueous solution of DNA oligomers is N-(2-deoxy-β-D-erythro-pentofuranosyl)-formyl-amine (dβF)/8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). In order to investigate the biological significance of such a tandem lesion, both 8-oxodGuo and dβF were introduced in synthetic oligonucleotides at vicinal positions using the solid phase phosphoramidite method with the 'Pac phosphoramidite' chemistry. The purity of the synthetic DNA fragments and the integrity of modified nucleosides was confirmed using different complementary techniques: HPLC, PAGE, ESI MS, MALDI-TOF MS and capillary electrophoresis. Using the above synthetic substrates, investigations were carried out in order to determine the substrate specificity and the excision mechanism of three glycosylases involved in the base excision repair pathway: endonuclease III, Fpg and yOggl. Both tandem lesions were substrates for the BER enzymes. However, the tandem lesion are not completely excised by the repair enzymes. The rates of excision as inferred from the determination of the ratios of Vm/Km Michaelis kinetics constants were not found to be significantly affected by the presence of the tandem lesions. MALDI-TOF mass spectrometry was used in order to gain insights into mechanistic aspects of oligonucleotide cleavage by the BER enzymes. During in vitro DNA synthesis by Taq DNA polymerase, Klenow fragment exo- and DNA polymerase β, tandem base damage were found to block the progression of the enzymes. Finally, the level of tandem base damage in the DNA exposed to γ-ray using the liquid chromatography coupled to electro-spray ionization tandem mass spectrometry was determined. Both dβF-8

  2. The effect of caffeine and adenine on radiation induced suppression of DNA synthesis, and cell survival

    International Nuclear Information System (INIS)

    Wilcoxson, L.T.; Griffiths, T.D.

    1984-01-01

    Exposure of cultured mammalian cells to ionizing radiation or UV light results in a transient decrease in the rate of DNA synthesis. This depression in synthetic rate may be attenuated or deferred via a post-irradiation treatment with caffeine or adenine. It has been suggested that this attenuation may increase the fixation of damage and, therefore, increase radiation sensitivity. However, it has been previously reported that, for V79 cells treated with caffeine or adenine, no correlation exists between the extent of depression and cell survival. The present investigation expands upon these findings by examining the effect of caffeine or adenine post-irradiation treatment on two cell lines with normal UV sensitivity, mouse 3T3 and CHO AA8 cells, and one UV sensitive cell line, CHO UV5 cells. Both caffeine and adenine have been found to reduce, or delay, the suppression in DNA synthesis in all three cell lines. Surprisingly, caffeine appeared to induced even the UV5 cells to recover DNA synthetic ability. The amount of reduction in suppression of DNA synthesis, however, varies between the different cell lines and no consistent relationship with cell survival has emerged

  3. Role of DNA damage repair capacity in radiation induced adaptive response

    International Nuclear Information System (INIS)

    Yuan Dexiao; Pan Yan; Zhao Meijia; Chen Honghong; Shao Cunlin

    2009-01-01

    This work was to explore γ-ray induced radioadaptive response (RAR) in Chinese hamster ovary(CHO) cell lines of different DNA damage repair capacities. CHO-9 cells and the two repair-deficient strains, EM-C11(DNA single strand break repair deficient) and XR-C1(DNA double strand break repair deficient), were irradiated with a priming dose of 0.08 Gy or 0.016 Gy. After 4 or 7 hours, they were irradiated again with a challenging dose of 1 Gy. The micronucleus induction and plating efficiency of the cells were assayed. Under 0.08 Gy priming dose and 4-h interval, just the CHO-9 cells showed RAR, while with the 7-h interval the CHO-9 and EM-C11 showed RAR, but XR-C1 did not. When the cells were pretreated with a lower priming dose of 0.016 Gy in a 4-h time interval, all the three cell lines showed RAR to subsequent 1 Gy irradiation. It can be concluded that RAR is not only related to the priming dose and time interval, but also has close dependence on the ability of DNA damage repair. (authors)

  4. Correlation of photobleaching, oxidation and metal induced fluorescence quenching of DNA-templated silver nanoclusters.

    Science.gov (United States)

    Morishita, Kiyoshi; MacLean, James L; Liu, Biwu; Jiang, Hui; Liu, Juewen

    2013-04-07

    Few-atom noble metal nanoclusters have attracted a lot of interest due to their potential applications in biosensor development, imaging and catalysis. DNA-templated silver nanoclusters (AgNCs) are of particular interest as different emission colors can be obtained by changing the DNA sequence. A popular analytical application is fluorescence quenching by Hg(2+), where d(10)-d(10) metallophilic interaction has often been proposed for associating Hg(2+) with nanoclusters. However, it cannot explain the lack of response to other d(10) ions such as Zn(2+) and Cd(2+). In our effort to elucidate the quenching mechanism, we studied a total of eight AgNCs prepared by different hairpin DNA sequences; they showed different sensitivity to Hg(2+), and DNA with a larger cytosine loop size produced more sensitive AgNCs. In all the cases, samples strongly quenched by Hg(2+) were also more easily photobleached. Light of shorter wavelengths bleached AgNCs more potently, and photobleached samples can be recovered by NaBH4. Strong fluorescence quenching was also observed with high redox potential metal ions such as Ag(+), Au(3+), Cu(2+) and Hg(2+), but not with low redox potential ions. Such metal induced quenching cannot be recovered by NaBH4. Electronic absorption and mass spectrometry studies offered further insights into the oxidation reaction. Our results correlate many important experimental observations and will fuel the further growth of this field.

  5. DNA Vaccines Encoding Toxoplasma gondii Cathepsin C 1 Induce Protection against Toxoplasmosis in Mice.

    Science.gov (United States)

    Han, Yali; Zhou, Aihua; Lu, Gang; Zhao, Guanghui; Sha, Wenchao; Wang, Lin; Guo, Jingjing; Zhou, Jian; Zhou, Huaiyu; Cong, Hua; He, Shenyi

    2017-10-01

    Toxoplasma gondii cathepsin C proteases (TgCPC1, 2, and 3) are important for the growth and survival of T. gondii. In the present study, B-cell and T-cell epitopes of TgCPC1 were predicted using DNAstar and the Immune Epitope Database. A TgCPC1 DNA vaccine was constructed, and its ability to induce protective immune responses against toxoplasmosis in BALB/c mice was evaluated in the presence or absence of the adjuvant α-GalCer. As results, TgCPC1 DNA vaccine with or without adjuvant α-GalCer showed higher levels of IgG and IgG2a in the serum, as well as IL-2 and IFN-γ in the spleen compared to controls (PBS, pEGFP-C1, and α-Galcer). Upon challenge infection with tachyzoites of T. gondii (RH), pCPC1/α-Galcer immunized mice showed the longest survival among all the groups. Mice vaccinated with DNA vaccine without adjuvant (pCPC1) showed better protective immunity compared to other controls (PBS, pEGFP-C1, and α-Galcer). These results indicate that a DNA vaccine encoding TgCPC1 is a potential vaccine candidate against toxoplasmosis.

  6. Umbelliferone suppresses radiation induced DNA damage and apoptosis in hematopoietic cells of mice

    International Nuclear Information System (INIS)

    Jayakumar, S.; Bhilwade, H.N.; Chaubey, R.C.

    2012-01-01

    Radiotherapy is one of the major modes of treatment for different types of cancers. But the success of radiotherapy is limited by injury to the normal cells. Protection of the normal cells from radiation damage by radioprotectors can increase therapeutic efficiency. These radioprotectors can also be used during nuclear emergency situations. Umbelliferone (UMB) is a wide spread natural product of the coumarin family. It occurs in many plants from the Apiaceae family. In the present study radioprotective effect of UMB was investigated in vitro and in vivo. Anti genotoxic effect of Umbelliferone was tested by treating the splenic lymphocytes with various doses of UMB (6.5 μM - 50 μM) prior to radiation (6Gy) exposure. After the radiation exposure, extent of DNA damage was assessed by comet assay at 5 mm and two hours after radiation exposure. At both the time points, it was observed that the pretreatment of UMB reduced the radiation induced DNA damage to a significant extent in comparison to radiation control. UMB pretreatment also significantly reduced the radiation induced apoptosis enumerated by propidium iodide staining assay. Results of clonogenic survival assay using intestinal cell line showed that pretreatment with UMB significantly protected against radiation induced loss of colony forming units. To assess the anti genotoxic role of umbelliferone in vivo two different doses of UMB (20 mg/Kg and 40 mg/Kg of body weight) were injected into Swiss mice or with vehicle and exposed to radiation. Thirty minutes after the radiation comet assay was performed in peripheral leukocytes. Frequency of micro nucleated erythrocytes was scored in bone marrow cells. It was observed that UMB alone did not cause any significant increase in DNA damage in comparison to control. Animals which are exposed to radiation alone showed significant increase in DNA damage and micronuclei frequency. But animals treated with UMB prior to the radiation exposure showed significant decrease

  7. Venlafaxine protects against stress-induced oxidative DNA damage in hippocampus during antidepressant testing in mice.

    Science.gov (United States)

    Abdel-Wahab, Basel A; Salama, Ragaa H

    2011-11-01

    Venlafaxine (VLF) is an approved antidepressant that is claimed to have superior clinical efficacy to comparable drugs. Recently, many studies showed the relationship between depression and increased oxidative stress. This study investigated the relationship between the antidepressant effect of VLF and its ability to protect animals against stress-induced oxidative lipid peroxidation and DNA damage induced during antidepressant testing. The antidepressant effect of long-term treatment (21 days) of VLF in doses 5, 10 and 20mg/kg/day, i.p. was tested using forced swimming test (FST) and tail suspension test (TST). The effects of VLF on hippocampal lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH), total antioxidant (TAC) levels and glutathione-S-transferase (GST) activity were tested. Furthermore, the corresponding changes in serum and hippocampal 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured. Long-term VLF treatment showed a significant, antidepressant effect in both FST and TST. VLF could decrease the hippocampal MDA and NO and to increase hippocampal GSH and TAC levels and GST activity in the tested animals. Only GSH and TAC levels were increased by VLF in the non-tested animals. In addition, both serum and hippocampal 8-OHdG levels were significantly reduced by VLF in animals exposed to antidepressant tests. Long-term VLF treatment in the effective antidepressant doses can protect against stress-induced oxidative cellular and DNA damage. This action may be through antagonizing the oxidative stress and enhancing the antioxidant defense mechanisms. Consequently, pharmacological modulation of stress-induced oxidative DNA damage as a possible stress-management approach should be an important avenue of further research. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Gamma irradiation does not induce detectable changes in DNA methylation directly following exposure of human cells.

    Science.gov (United States)

    Lahtz, Christoph; Bates, Steven E; Jiang, Yong; Li, Arthur X; Wu, Xiwei; Hahn, Maria A; Pfeifer, Gerd P

    2012-01-01

    Environmental chemicals and radiation have often been implicated in producing alterations of the epigenome thus potentially contributing to cancer and other diseases. Ionizing radiation, released during accidents at nuclear power plants or after atomic bomb explosions, is a potentially serious health threat for the exposed human population. This type of high-energy radiation causes DNA damage including single- and double-strand breaks and induces chromosomal rearrangements and mutations, but it is not known if ionizing radiation directly induces changes in the epigenome of irradiated cells. We treated normal human fibroblasts and normal human bronchial epithelial cells with different doses of γ-radiation emitted from a cesium 137 ((137)Cs) radiation source. After a seven-day recovery period, we analyzed global DNA methylation patterns in the irradiated and control cells using the methylated-CpG island recovery assay (MIRA) in combination with high-resolution microarrays. Bioinformatics analysis revealed only a small number of potential methylation changes with low fold-difference ratios in the irradiated cells. These minor methylation differences seen on the microarrays could not be verified by COBRA (combined bisulfite restriction analysis) or bisulfite sequencing of selected target loci. Our study shows that acute γ-radiation treatment of two types of human cells had no appreciable direct effect on DNA cytosine methylation patterns in exposed cells.

  9. Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation.

    Directory of Open Access Journals (Sweden)

    Zeynep Baharoglu

    2010-10-01

    Full Text Available Conjugation is one mechanism for intra- and inter-species horizontal gene transfer among bacteria. Conjugative elements have been instrumental in many bacterial species to face the threat of antibiotics, by allowing them to evolve and adapt to these hostile conditions. Conjugative plasmids are transferred to plasmidless recipient cells as single-stranded DNA. We used lacZ and gfp fusions to address whether conjugation induces the SOS response and the integron integrase. The SOS response controls a series of genes responsible for DNA damage repair, which can lead to recombination and mutagenesis. In this manuscript, we show that conjugative transfer of ssDNA induces the bacterial SOS stress response, unless an anti-SOS factor is present to alleviate this response. We also show that integron integrases are up-regulated during this process, resulting in increased cassette rearrangements. Moreover, the data we obtained using broad and narrow host range plasmids strongly suggests that plasmid transfer, even abortive, can trigger chromosomal gene rearrangements and transcriptional switches in the recipient cell. Our results highlight the importance of environments concentrating disparate bacterial communities as reactors for extensive genetic adaptation of bacteria.

  10. Gamma irradiation does not induce detectable changes in DNA methylation directly following exposure of human cells.

    Directory of Open Access Journals (Sweden)

    Christoph Lahtz

    Full Text Available Environmental chemicals and radiation have often been implicated in producing alterations of the epigenome thus potentially contributing to cancer and other diseases. Ionizing radiation, released during accidents at nuclear power plants or after atomic bomb explosions, is a potentially serious health threat for the exposed human population. This type of high-energy radiation causes DNA damage including single- and double-strand breaks and induces chromosomal rearrangements and mutations, but it is not known if ionizing radiation directly induces changes in the epigenome of irradiated cells. We treated normal human fibroblasts and normal human bronchial epithelial cells with different doses of γ-radiation emitted from a cesium 137 ((137Cs radiation source. After a seven-day recovery period, we analyzed global DNA methylation patterns in the irradiated and control cells using the methylated-CpG island recovery assay (MIRA in combination with high-resolution microarrays. Bioinformatics analysis revealed only a small number of potential methylation changes with low fold-difference ratios in the irradiated cells. These minor methylation differences seen on the microarrays could not be verified by COBRA (combined bisulfite restriction analysis or bisulfite sequencing of selected target loci. Our study shows that acute γ-radiation treatment of two types of human cells had no appreciable direct effect on DNA cytosine methylation patterns in exposed cells.

  11. Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX.

    Science.gov (United States)

    Hu, Yang; Shi, Guang; Zhang, Laichen; Li, Feng; Jiang, Yuanling; Jiang, Shuai; Ma, Wenbin; Zhao, Yong; Songyang, Zhou; Huang, Junjiu

    2016-08-31

    Activation of telomerase or alternative lengthening of telomeres (ALT) is necessary for tumours to escape from dysfunctional telomere-mediated senescence. Anti-telomerase drugs might be effective in suppressing tumour growth in approximately 85-90% of telomerase-positive cancer cells. However, there are still chances for these cells to bypass drug treatment after switching to the ALT mechanism to maintain their telomere integrity. But the mechanism underlying this switch is unknown. In this study, we used telomerase-positive cancer cells (HTC75) to discover the mechanism of the telomerase-ALT switch by inducing telomere-specific DNA damage, alpha-thalassemia X-linked syndrome protein (ATRX) knockdown and deletion of death associated protein (DAXX). Surprisingly, two important ALT hallmarks in the ALT-like HTC75 cells were observed after treatments: ALT-associated promyelocytic leukaemia bodies (APBs) and extrachromosomal circular DNA of telomeric repeats. Moreover, knocking out hTERT by utilizing the CRISPR/Cas9 technique led to telomere elongation in a telomerase-independent manner in ALT-like HTC75 cells. In summary, this is the first report to show that inducing telomeric DNA damage, disrupting the ATRX/DAXX complex and inhibiting telomerase activity in telomerase-positive cancer cells lead to the ALT switch.

  12. Ultraviolet B (UVB) induced DNA damage affects alternative splicing in skin cells

    International Nuclear Information System (INIS)

    Nieto Moreno, N.; Dujardin, G.; Kornblihtt, A.R.; Muñoz, M.J.

    2011-01-01

    The ultraviolet (UV) radiation from the Sun that reaches the Earth’s surface is a combination of low (UVA, 320-400nm) and high (UVB, 290-320nm) energy light. UVB light causes two types of mutagenic DNA lesions: thymine dimers and (6-4)photo-products. UVB mutagenesis is critical in the generation of skin cancer. We have previously shown that RNA polymerase II (pol II) hyperphosphorylation induced by UVC (254 nm) irradiation of non-skin cells inhibits pol II elongation rates which in turn affects alternative splicing (AS) patterns favouring the synthesis of proapoptotic isoforms of key proteins like Bcl-x or Caspase 9 (C9). As UVC radiation is fully filtered by the ozone layer and AS regulation in skin pathologies has been poorly studied, we decided to extend our studies to human keratinocytes in culture treated with UVB (302nm) light. We observed an increase in pol II hyperphosphorylation, being this modification necessary for the change in AS of a model cassette exon. Moreover, UVB irradiation induces the pro-apoptotic mRNA isoforms of Bcl-x and C9 being these consistent with a key role of AS in response to DNA damage. Our results suggest that UVC and UVB light affect AS decisions through a similar mechanism. This indicates that lower energy irradiation, causing more limited DNA damage than UVC light, is sufficient to alter qualitatively patterns of gene expression in skin cells. (authors)

  13. NanoLC/ESI+ HRMS3 quantitation of DNA adducts induced by 1,3-butadiene.

    Science.gov (United States)

    Sangaraju, Dewakar; Villalta, Peter W; Wickramaratne, Susith; Swenberg, James; Tretyakova, Natalia

    2014-07-01

    Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI(+)-HRMS(3) analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5-1.5 ppm). EB-GII concentrations increased linearly from 1.15 ± 0.23 to 10.11 ± 0.45 adducts per 10(8) nucleotides in HT1080 cells treated with 0.5-10 μM EB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17 ± 0.05, 0.33 ± 0.08, and 0.50 ± 0.04 adducts per 10(8) nucleotides, respectively [corrected]. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20 ± 0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI(+)-HRMS(3) Orbitrap methodology to quantitative analysis of DNA adducts in vivo.

  14. Phenolic extracts of brewers' spent grain (BSG) as functional ingredients - assessment of their DNA protective effect against oxidant-induced DNA single strand breaks in U937 cells.

    Science.gov (United States)

    McCarthy, Aoife L; O'Callaghan, Yvonne C; Connolly, Alan; Piggott, Charles O; Fitzgerald, Richard J; O'Brien, Nora M

    2012-09-15

    Brewers' spent grain (BSG), a by-product of the brewing industry, contains high amounts of phenolic acids, which have antioxidant effects. The present study examined the ability of BSG extracts to protect against the genotoxic effects of oxidants, hydrogen peroxide (H(2)O(2)), 3-morpholinosydnonimine hydrochloride (SIN-1), 4-nitroquinoline 1-oxide (4-NQO) and tert-butylhydroperoxide (t-BOOH) in U937 cells. Four pale (P1-P4) and four black (B1-B4) BSG extracts were investigated. U937 cells were pre-incubated with BSG extracts, exposed to the oxidants and the DNA damage was measured by the Comet assay. The black BSG extracts (B1-B4) significantly protected against H(2)O(2)-induced DNA damage. Extract B2, which had the highest phenol content, provided the greatest protection. Extracts P2, B2, B3 and B4 provided significant protection against SIN-1-induced DNA damage. None of the extracts protected against DNA damage induced by t-BOOH and 4-NQO. The DNA protective effects of the BSG phenolic extracts may be related to iron chelation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Repair and gamma radiation-induced single- and double-strand breaks in DNA of Escherichia coli

    International Nuclear Information System (INIS)

    Petrov, S.I.

    1981-01-01

    Studies in the kinetics of repair of γ-radiation-induced single- and double-strand breaks in DNA of E. coli cells showed that double-strand DNA breaks are rejoined by the following two ways. The first way is conditioned by repair of single-strand breaks and represents the repair of ''oblique'' double-strand breaks in DNA, whereas the second way is conditioned by functioning of the recombination mechanisms and, to all appearance, represents the repair of ''direct'' double-strand breaks in DNA

  16. Host Noncoding Retrotransposons Induced by DNA Viruses: a SINE of Infection?

    Science.gov (United States)

    Tucker, Jessica M; Glaunsinger, Britt A

    2017-12-01

    Our genomes are dominated by repetitive elements. The majority of these elements derive from retrotransposons, which expand throughout the genome through a process of reverse transcription and integration. Short interspersed nuclear elements, or SINEs, are an abundant class of retrotransposons that are transcribed by RNA polymerase III, thus generating exclusively noncoding RNA (ncRNA) that must hijack the machinery required for their transposition. SINE loci are generally transcriptionally repressed in somatic cells but can be robustly induced upon infection with multiple DNA viruses. Recent research has focused on the gene expression and signaling events that are modulated by SINE ncRNAs, particularly during gammaherpesvirus infection. Here, we review the biology of these SINE ncRNAs, explore how DNA virus infection may lead to their induction, and describe how novel gene regulatory and immune-related functions of these ncRNAs may impact the viral life cycle. Copyright © 2017 American Society for Microbiology.

  17. DNA vaccination protects mice against Zika virus-induced damage to the testes

    Science.gov (United States)

    Griffin, Bryan D.; Muthumani, Kar; Warner, Bryce M.; Majer, Anna; Hagan, Mable; Audet, Jonathan; Stein, Derek R.; Ranadheera, Charlene; Racine, Trina; De La Vega, Marc-Antoine; Piret, Jocelyne; Kucas, Stephanie; Tran, Kaylie N.; Frost, Kathy L.; De Graff, Christine; Soule, Geoff; Scharikow, Leanne; Scott, Jennifer; McTavish, Gordon; Smid, Valerie; Park, Young K.; Maslow, Joel N.; Sardesai, Niranjan Y.; Kim, J. Joseph; Yao, Xiao-jian; Bello, Alexander; Lindsay, Robbin; Boivin, Guy; Booth, Stephanie A.; Kobasa, Darwyn; Embury-Hyatt, Carissa; Safronetz, David; Weiner, David B.; Kobinger, Gary P.

    2017-01-01

    Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract. PMID:28589934