WorldWideScience

Sample records for iodide nuclear detectors

  1. Introduction to fifth international workshop on mercuric iodide nuclear radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M.

    1982-01-01

    Mercuric iodide is a wide bandgap semiconductor, with Eg approx. = 2.14 eV at room temperature. Therefore, HgI/sub 2/ is totally different from the well-studied, narrower gap, elemental semiconductors such as Si and Ge, and also different in its physical and chemical properties from the known semiconductor binary zinc-blend compounds such as GaAs or InP. The purpose of studies in the last decade was to further our understanding of HgI/sub 2/; recent progress is reported. (WHK)

  2. Novel mercuric iodide polycrystalline nuclear particles counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ. of Jerusalem (Israel)]|[Sandia National Lab., Livermore, CA (United States); Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ. of Jerusalem (Israel)] [and others

    1996-12-31

    Polycrystalline mercuric iodide nuclear radiation detectors having areas between 0.01 to 100 cm{sup 2} and thicknesses 30 to 600 microns, have been fabricated with single, linear strip and square pixel contact. The large area detectors 10 to 600 cm{sup 2} were produced by industrial ceramic equipment while the smaller ones, about 1 cm{sup 2} area, were produced in the laboratory. The large detectors still had large leakage currents and the production process is being revised. The smaller detectors were tested and their response to lower and higher gamma energy, beta and even 100 GeV muons at CERN will be reported.

  3. Evaluation of mercuric iodide ceramic semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M.; Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ., Jerusalem (Israel); Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L. [LEPSI (ULP/IN2P3), Strasbourg (France)

    1998-02-01

    Mercuric iodide ceramic radiation detectors, which can act as nuclear particle counters, have been fabricated with single continuos electrical contacts and with linear strip contacts. They have been tested with different kinds of {gamma} and {beta} sources as well as in a high energy beam at CERN. The detectors were also successfully tested for radiation hardness with irradiation of 5*10{sup 14} neutrons/cm{sup 2}. The ratio of detected photons over the number of absorbed photons has been measured with {gamma} sources of different energies, and it ranges from 20% at 44 keV up to about 30% at 660 keV. An absolute efficiency of 70% has been measured for a 350 {mu}m thick detector for {beta} particles emitted by a {sup 90}Sr source. Charge collection efficiency, defined as the amount of charge induced on the electrodes by a mminimum ionizing particle (MIP) traversing the detector, has been measured in two samples. The average collected charge fits well with a linear curve with slope of 35 electrons/(kV/cm) per 100 {mu}m. This result is well described by a dynamic device simulation, where the free carrier mean lifetime is used as a free parameter, adjusted to a value of 1.5 ns, i.e. about 1/100 of the corresponding lifetime in single crystal HgI{sub 2} detectors. The response to MIP has also been studied with a high energy (100 GeV) muon beam in CERN. A preliminary beam profile is presented while a more detailed analysis is still in progress and will be presented elsewhere. These results together with the low cost of the material make ceramic HgI{sub 2} detectors excellent candidates for large area particle tracking and imaging applications, even in a radiation harsh environment. (orig.). 14 refs.

  4. Novel mercuric iodide polycrystalline nuclear particle counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ. of Jerusalem (Israel)]|[Sandia National Labs., Livermore, CA (United States); Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ. of Jerusalem (Israel); Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L. [LEPSI, Strasbourg (France)

    1997-12-01

    Polycrystalline mercuric iodide nuclear radiation detectors have been produced in a novel technology. Unlike the normal single-crystal technology, there is no intrinsic limit to the surface on which these detectors can be produced. Detectors with areas up to about 1.5 cm{sup 2}, thicknesses from 30 to 600 {micro}m, and with single electrodes as well as microstrip and pixel contacts have been fabricated and successfully tested with photons in the range of 40--660 keV, {beta} particle`s emitted from a Sr-Y source, and high energy (100 GeV) muons. Results on both charge collection and counting efficiency are reported as well as some very preliminary imaging results. The experimental results on charge collection have been compared with simulation, and a combined {mu}{tau} product 10{sup {minus}7} cm{sup 2}/V for electrons has been estimated.

  5. Bismuth tri-iodide radiation detector development

    Science.gov (United States)

    Gokhale, Sasmit S.

    Bismuth tri-iodide is an attractive material for room temperature radiation detection. BiI3 demonstrates a number of properties that are apt for semiconductor radiation detection, especially gamma ray spectroscopy. The high atomic number (ZBi = 83 and ZI = 53) and the relatively high density (5.78 g/cm3) cause the material to have good photon stopping power, while the large band-gap (1.67 eV ) allows it to function as a room temperature radiation detector without any cooling mechanism. This work presents the fabrication and characterization of BiI3 radiation detectors. For the purpose of this research detectors were fabricated by cutting BiI3 crystal boules, followed by mechanical and chemical surface treatments. Detectors with various electrode geometries enabling single polarity charge sensing were fabricated. The electrical characteristics and the radiation response of the detectors were measured. The radiation response measurement was performed at room temperature using a 241Am alpha particle source and a 241Am sealed gamma-ray source. The spectral resolutions of the detectors varied from 2.09% - 6.1% for 59.5 keV gamma-rays and between 26% - 40% for 5.48 MeV alpha particles. Charge carrier properties such as the electron and hole mobility and lifetime were also estimated. The electron mobility for an ultrapure BiI 3 detector was estimated to be approximately 433 cm 2/Vs while that for antimony doped BiI3 was estimated to be around 956 cm2/Vs and the mobility-lifetime product for electrons was estimated to be around 5.44 x 10-4 cm 2/V. Detector simulation was performed using the Monte Carlo simulation code MCNP5. A Matlab script which incorporates charge carrier trapping and statistical variation was written to generate a gamma-ray spectrum from the simulated energy deposition spectra. Measured and simulated spectra were compared to extract the charge carrier mobility-lifetime products, which for electrons and holes were estimated to be 5 x 10-3 cm2/V and 1.3 x

  6. Improved Stability of Mercuric Iodide Detectors for Anticoincidence Shields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize guard ring electrode structures and a new film growth technique to create improved polycrystalline mercuric iodide detectors for background...

  7. Imaging with polycrystalline mercuric iodide detectors using VLSI readout

    Energy Technology Data Exchange (ETDEWEB)

    Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L.; Schieber, M.; Zuck, A.; Melekhov, L.; Saado, Y.; Hermon, H.; Nissenbaum, J

    1999-06-01

    Potentially low cost and large area polycrystalline mercuric iodide room-temperature radiation detectors, with thickness of 100-600 {mu}m have been successfully tested with dedicated low-noise, low-power mixed signal VLSI electronics which can be used for compact, imaging solutions. The detectors are fabricated by depositing HgI{sub 2} directly on an insulating substrate having electrodes in the form of microstrips and pixels with an upper continuous electrode. The deposition is made either by direct evaporation or by screen printing HgI{sub 2} mixed with glue such as Poly-Vinyl-Butiral. The properties of these first-generation detectors are quite uniform from one detector to another. Also for each single detector the response is quite uniform and no charge loss in the inter-electrode space have been detected. Because of the low cost and of the polycrystallinity, detectors can be potentially fabricated in any size and shape, using standard ceramic technology equipment, which is an attractive feature where low cost and large area applications are needed. The detectors which act as radiation counters have been tested with a beta source as well as in a high-energy beam of 100 GeV muons at CERN, connected to VLSI, low noise electronics. Charge collection efficiency and uniformity have been studied. The charge is efficiently collected even in the space between strips indicating that fill factors of 100% could be reached in imaging applications with direct detection of radiation. Single photon counting capability is reached with VLSI electronics. These results show the potential of this material for applications demanding position sensitive, radiation resistant, room-temperature operating radiation detectors, where position resolution is essential, as it can be found in some applications in high-energy physics, nuclear medicine and astrophysics.

  8. Development of mercuric iodide detectors for XAS and XRD measurements

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K.; Iwanczyk, J.S.; Dabrowski, A.J.; Hedman, B.; Penner-Hakn, J.E.; Roe, A.L.; Hodgson, K.O.; Beyerle, A.

    1985-07-01

    A prototype element for an energy dispersive detector (EDD) array was constructed using a Mercuric Iodide detector. Both detector and front end FET could be thermoelectrically cooled. Tested at SSRL, the detector had 250 eV electronic noise and 315 eV resolution at 5.9 keV. K line fluorescence spectra were collected for selected elements between Cl (2622 eV) and Zn (8638 eV). Count rate capability to 60,000 cps was demonstrated. Several detector parameters were measured, including energy linearity, resolution vs. shaping time, and detector dead time. An EXAFS (extended x-ray absorption fine structure) spectrum was recorded and compared to simultaneously collected transmission data.

  9. Nuclear detonation, thyroid cancer and potassium iodide prophylaxis

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2011-01-01

    Full Text Available The recent nuclear disaster at Japan has raised global concerns about effects of radioactive leakage in the environment, associated hazards, and how they can be prevented. In this article, we have tried to explain about the guidelines laid down by World Health Organization for a potassium iodide prophylaxis following a nuclear disaster, and its mechanism of action in preventing thyroid cancer. Data was collected mainly from the studies carried out during the Chernobyl disaster of Russia in 1986 and the hazardous effects especially on the thyroid gland were studied. It was seen that radioactive iodine leakage from the nuclear plants mainly affected the thyroid gland, and especially children were at a higher risk at developing the cancers. Potassium Iodide prophylaxis can be administered in order to prevent an increase in the incidence of thyroid cancers in the population of an area affected by a nuclear disaster. However, one has to be cautious while giving it, as using it without indication has its own risks.

  10. Mercuric iodide semiconductor detectors encapsulated in polymeric resin

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao F. Trencher; Santos, Robinson A. dos; Ferraz, Caue de M.; Oliveira, Adriano S.; Velo, Alexandre F.; Mesquita, Carlos H. de; Hamada, Margarida M., E-mail: mmhamada@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Disch, Christian; Fiederle, Michael [Albert-Ludwigs Universität Freiburg - UniFreibrug, Freiburg Materials Research Center - FMF, Freiburg (Germany)

    2015-07-01

    The development of new semiconductor radiation detectors always finds many setback factors, such as: high concentration of impurities in the start materials, poor long term stability, the surface oxidation and other difficulties discussed extensively in the literature, that limit their use. In this work was studied, the application of a coating resin on HgI2 detectors, in order to protect the semiconductor crystal reactions from atmospheric gases and to isolate electrically the surface of the crystals. Four polymeric resins were analyzed: Resin 1: 50% - 100%Heptane, 10% - 25% methylcyclohexane, <1% cyclohexane; Resin 2: 25% - 50% ethanol, 25% - 50% acetone, <2,5% ethylacetate; Resin 3: 50% - 100% methylacetate, 5% - 10% n-butylacetate; Resin 4: 50% - 100% ethyl-2-cyanacrylat. The influence of the polymeric resin type used on the spectroscopic performance of the HgI{sub 2} semiconductor detector is, clearly, demonstrated. The better result was found for the detector encapsulated with Resin 3. An increase of up to 26 times at the stability time was observed for the detectors encapsulated compared to that non-encapsulated detector. (author)

  11. Potassium Iodide

    Science.gov (United States)

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be released ... damage the thyroid gland. You should only take potassium iodide if there is a nuclear radiation emergency and ...

  12. Modeling Sodium Iodide Detector Response Using Parametric Equations

    Science.gov (United States)

    2013-03-22

    and the source are kept in a constant geometry using a thin wooden plank . Both are moved back as a unit in 10 cm increments...using a thin wooden plank . Both are moved back as a unit in 10 cm increments. Similar to the MCNP model, the source and detector remained in a...simulated  particles   Error  %  Max   Backscatter  0  9.29E‐04  1%  100%  10  3.86E‐04  2%  42%  20  1.98E‐04  2%  21%  30  1.16E‐04  3%  13%  40  8.01E

  13. Use of mercuric iodide X-ray detectors with alpha backscattering spectrometers for space applications

    Science.gov (United States)

    Iwanczyk, J. S.; Wang, Y. J.; Dorri, N.; Dabrowski, A. J.; Economou, T. E.

    1991-01-01

    The authors present X-ray fluorescence (XRF) spectra of different extraterrestrial samples taken with a mercuric iodide (HgI2) spectrometer inserted into an alpha backscattering instrument identical to that used in the Soviet Phobos mission. The results obtained with the HgI2 ambient temperature detector are compared with those obtained using an Si(Li) cryogenically cooled detector. Efforts to design an optimized instrument for space application are also described. The results presented indicate that the energy resolution and sensitivity of HgI2 detectors are adequate to meet the performance needs of a number of proposed space applications, particularly those in which cooled silicon X-ray detectors are impractical or even not usable, such as for the target science programs on geoscience opportunities for lunar surface, Mars surface, and other comet and planetary missions being planned by NASA and ESA.

  14. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps.

    Science.gov (United States)

    Li, Baiyan; Dong, Xinglong; Wang, Hao; Ma, Dingxuan; Tan, Kui; Jensen, Stephanie; Deibert, Benjamin J; Butler, Joseph; Cure, Jeremy; Shi, Zhan; Thonhauser, Timo; Chabal, Yves J; Han, Yu; Li, Jing

    2017-09-07

    Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH3I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag(0)@MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

  15. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps

    KAUST Repository

    Li, Baiyan

    2017-09-01

    Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH3I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag0@MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

  16. Benchmark Gamma Spectroscopy Measurements of Uranium Hexafluoride in Aluminmum Pipe with a Sodium Iodide Detector

    Energy Technology Data Exchange (ETDEWEB)

    March-Leuba, Jose A [ORNL; Uckan, Taner [ORNL; Gunning, John E [ORNL; Brukiewa, Patrick D [ORNL; Upadhyaya, Belle R [ORNL; Revis, Stephen M [ORNL

    2010-01-01

    monitor (FM) and an enrichment monitor (EM). Development of the FM is primarily the responsibility of Oak Ridge National Laboratory, and development of the EM is primarily the responsibility of Los Alamos National Laboratory. The FM will measure {sup 235}U mass flow rate by combining information from measuring the UF{sub 6} volumetric flow rate and the {sup 235}U density. The UF{sub 6} flow rate will be measured using characteristics of the process pumps used in product and tail UF{sub 6} header process lines of many GCEPs, and the {sup 235}U density will be measured using commercially available sodium iodide (NaI) gamma ray scintillation detectors. This report describes the calibration of the portion of the FM that measures the {sup 235}U density. Research has been performed to define a methodology and collect data necessary to perform this calibration without the need for plant declarations. The {sup 235}U density detector is a commercially available system (GammaRad made by Amptek, www.amptek.com) that contains the NaI crystal, photomultiplier tube, signal conditioning electronics, and a multichannel analyzer (MCA). Measurements were made with the detector system installed near four {sup 235}U sources. Two of the sources were made of solid uranium, and the other two were in the form of UF{sub 6} gas in aluminum piping. One of the UF{sub 6} gas sources was located at ORNL and the other at LANL. The ORNL source consisted of two pipe sections (schedule 40 aluminum pipe of 4-inch and 8-inch outside diameter) with 5.36% {sup 235}U enrichment, and the LANL source was a 4-inch schedule 40 aluminum pipe with 3.3% {sup 235}U enrichment. The configurations of the detector on these test sources, as well as on long straight pipe configurations expected to exist at GCEPs, were modeled using the computer code MCNP. The results of the MCNP calculations were used to define geometric correction factors between the test source and the GCEP application. Using these geometric correction

  17. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    Akhil Jhingan

    2015-09-01

    The study of heavy-ion-induced fusion–fission reactions require nuclear instrumentation that include particle detectors such as proportional counters, ionization chambers, silicon detectors, scintillation detectors, etc., and the front-end electronics for these detectors. Using the detectors mentioned above, experimental facilities have been developed for carrying out fusion–fission experiments. This paper reviews the development of detector instrumentation at IUAC.

  18. Trapping radiodine, in the form of methyl iodide, on nuclear carbon

    Energy Technology Data Exchange (ETDEWEB)

    Nacapricha, D. [Mahidol Univ., Bangkok (Thailand); Taylor, C. [John Moores Univ., Liverpool (United Kingdom)

    1996-12-31

    Studies have been performed on potassium-iodide-impregnated charcoals of the type used in the nuclear industry for trapping radioiodine released during nuclear fission. The effects of various parameters on the trapping efficiency of methyl iodide have been investigated. A variation in particle size within a bulk charcoal caused poor precision in K value measurements because of differences in surface area, pore volume, and bed density, leading to differences in the deposition of the impregnant. Precision is improved by sieving the charcoal to a narrower size because smaller particles have a higher porosity. This finding is supported by surface area and pore measurements. Two methods of impregnation are compared by measuring K values and the deposition of potassium iodide. Charcoal impregnated by rotary evaporation exhibits both higher K values and higher potassium iodide contents than sprayed charcoal. Two designs of spraying drum are compared: a drum with helical vanes allows more efficient deposition and more uniform distribution of impregnant than a drum with axial vanes. A decrease in the K value with increasing humidity correlates with the available surface area. A similar correlation exists between water content and available pore volume. Aging of potassium-iodide-impregnated charcoal, caused by the formation of oxygen complexes on the surface, is associated with significant falls in K value. K values of charcoals also can be restored to at least their original values by heat treatment in the absence of air. 12 refs., 6 figs., 1 tab.

  19. Replacement of monochromator and proportional gas counter by mercuric iodide detector in X-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Nissenbaum, J.; Levi, A.; Burger, A.; Schieber, M. (Hebrew Univ., Jerusalem (Israel). School of Applied Science and Technology)

    1983-02-01

    Low resolution and therefore low-cost mercuric iodide detectors have successfully been applied to replace the combination of a graphite monochromator and a proportional gas radiation counter used in X-ray diffractometers. The mercuric iodide detector requires a lower DC bias of only 200 V rather than the 1500 V bias needed for the proportional gas counter. The much better stopping power of HgI/sub 2/ allows higher counting efficiency and therefore a better signal-to-noise ratio. Results are shown for X-ray powder diffractions of polycrystalline cubic silicon and tetragonal HgI/sub 2/.

  20. Nuclear Electronics: Superconducting Detectors and Processing Techniques

    Science.gov (United States)

    Polushkin, Vladimir

    2004-06-01

    With the commercialisation of superconducting particles and radiation detectors set to occur in the very near future, nuclear analytical instrumentation is taking a big step forward. These new detectors have a high degree of accuracy, stability and speed and are suitable for high-density multiplex integration in nuclear research laboratories and astrophysics. Furthermore, superconducting detectors can also be successfully applied to food safety, airport security systems, medical examinations, doping tests & forensic investigations. This book is the first to address a new generation of analytical tools based on new superconductor detectors demonstrating outstanding performance unsurpassed by any other conventional devices. Presenting the latest research and development in nanometer technologies and biochemistry this book: * Discusses the development of nuclear sensing techniques. * Provides guidance on the design and use of the next generation of detectors. * Describes cryogenic detectors for nuclear measurements and spectrometry. * Covers primary detectors, front-end readout electronics and digital signal processing. * Presents applications in nanotechnology and modern biochemistry including DNA sequencing, proteinomics, microorganisms. * Features examples of two applications in X-ray electron probe nanoanalysis and time-of-flight mass spectrometry. This comprehensive treatment is the ideal reference for researchers, industrial engineers and graduate students involved in the development of high precision nuclear measurements, nuclear analytical instrumentation and advanced superconductor primary sensors. This book will also appeal to physicists, electrical and electronic engineers in the nuclear industry.

  1. Detection of nuclear radiations; Detectores de radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro Sanz, A.

    1959-07-01

    A summary of the lectures about the ordinary detectors of nuclear radiations given by the author in the Courses of Introduction to Nuclear Engineering held at the JEN up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied electronics to Nuclear Engineering so it has been intent to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author) 8 refs.

  2. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B. [Xsirius, Inc, Camarillo, CA (United States)

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.

  3. Development of crystals based in cesium iodide for application as radiation detectors; Desenvolvimento de cristais baseados em iodeto de cesio para aplicacao como detectores de radiacao

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Maria da Conceicao Costa

    2006-07-01

    Inorganic scintillators with fast luminescence decay time, high density and high light output have been the object of studies for application in nuclear physics, high energy physics, nuclear tomography and other fields of science and engineering. Scintillation crystals based on cesium iodide (CsI) are matters with relatively low higroscopy, high atomic number, easy handling and low cost, characteristics that favor their use as radiation detectors. In this work, the growth of pure CsI crystals, CsI:Br and CsI:Pb, using the Bridgman technique, is described. The concentration of the bromine doping element (Br) was studied in the range of 1,5x10{sup -1} M to 10{sup -2} M and the lead (Pb) in the range of 10{sup -2} M to 5x10{sup -4} M. To evaluate the scintillators developed, systematic measurements were carried out for luminescence emission and luminescence decay time for gamma radiation, optical transmittance assays, Vickers micro-hardness assays, determination of the doping elements distribution along the grown crystals and analysis of crystals response to the gamma radiation in the energy range of 350 keV to 1330 keV and alpha particles from a {sup 241}Am source, with energy of 5.54 MeV. It was obtained 13 ns to 19 ns for luminescence decay time for CsI:Br and CsI:Pb crystals. These results were very promising. The results obtained for micro-hardness showed a significant increase in function of the doping elements concentration, when compared to the pure CsI crystal, increasing consequently the mechanical resistance of the grown crystals. The validity of using these crystals as radiation sensors may be seen from the results of their response to gamma radiation and alpha particles. (author)

  4. Sodium Iodide Symporter for Nuclear Molecular Imaging and Gene Therapy: From Bedside to Bench and Back

    Directory of Open Access Journals (Sweden)

    Byeong-Cheol Ahn

    2012-01-01

    Full Text Available Molecular imaging, defined as the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms, can be obtained by various imaging technologies, including nuclear imaging methods. Imaging of normal thyroid tissue and differentiated thyroid cancer, and treatment of thyroid cancer with radioiodine rely on the expression of the sodium iodide symporter (NIS in these cells. NIS is an intrinsic membrane protein with 13 transmembrane domains and it takes up iodide into the cytosol from the extracellular fluid. By transferring NIS function to various cells via gene transfer, the cells can be visualized with gamma or positron emitting radioisotopes such as Tc-99m, I-123, I-131, I-124 and F-18 tetrafluoroborate, which are accumulated by NIS. They can also be treated with beta- or alpha-emitting radionuclides, such as I-131, Re-186, Re-188 and At-211, which are also accumulated by NIS. This article demonstrates the diagnostic and therapeutic applications of NIS as a radionuclide-based reporter gene for trafficking cells and a therapeutic gene for treating cancers.

  5. High Momentum Particle Identification Detector The Study of Cesium Iodide Quantum Efficiency Dependency on Substrate Material, Temperature and Quartz Window

    CERN Document Server

    Wisna, Gde Bimananda M

    2014-01-01

    The Cesium Iodide (CsI) is used as a material for detecting Cherenkov radiation produced by high momentum particle in High Momentum Particle Identification Detector (HMPID) at ALICE Experiment at CERN. This work provides investigation and analysis of The Quantum Efficiency (QE) result of CsI which is deposited on five samples substrates such as copper passivated red, copper passivated yellow, aluminium, copper coated with nickel and copper coated with nickel then coated with gold. The measurement of five samples is held under temperature $60^{0}$ C and $25^{0}$ C (room temperature) and also with optical quartz window which can be adjusted to limit the wavelength range which reach the CsI. The result shows there are dependency of substrate, temperature due to enhancement effect and also quartz windows usage on QE of CsI. The results of five samples is then compared and analyzed.

  6. Detector Requirements to Curb Nuclear Smuggling

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, S A

    2001-11-14

    The problem of stopping nuclear smuggling of terrorist nuclear devices is a complex one, owing to the variety of pathways by which such a device can be transported. To fashion new detection systems that improve the chances of detecting such a device, it is important to know the various requirements and conditions that would be imposed on them by both the types of devices that might be smuggled and by the requirement that it not overly interfere with the transportation of legitimate goods. Requirements vary greatly from low-volume border crossings to high-volume industrial container ports, and the design of systems for them is likely to be quite different. There is also a further need to detect these devices if they are brought into a country via illicit routes, i.e., those which do not pass through customs posts, but travel overland though open space or to a smaller, unguarded airport or seaport. This paper describes some generic uses of detectors, how they need to be integrated into customs or other law enforcement systems, and what the specifications for such detectors might be.

  7. Nuclear Track Detectors. Searches for Exotic Particles

    CERN Document Server

    Giacomelli, G

    2008-01-01

    We used Nuclear Track Detectors (NTD) CR39 and Makrofol for many purposes: i) Exposures at the SPS and at lower energy accelerator heavy ion beams for calibration purposes and for fragmentation studies. ii) Searches for GUT and Intermediate Mass Magnetic Monopoles (IMM), nuclearites, Q-balls and strangelets in the cosmic radiation. The MACRO experiment in the Gran Sasso underground lab, with ~1000 m^2 of CR39 detectors (plus scintillators and streamer tubes), established an upper limit for superheavy GUT poles at the level of 1.4x10^-16 cm^-2 s^-1 sr^-1 for 4x10^-5 detectors exposed for 4.22 y, gave an upper limit for IMMs of ~1.3x10^-15 cm^-2 s^-1 sr^-1. The experiments yielded interesting upper limits also on the fluxes of the other mentioned exotic particles. iii) Environmental studies, radiation monitoring, neutron dosimetry.

  8. Advances in the development of encapsulants for mercuric iodide X-ray detectors

    OpenAIRE

    Iwanczyk, J. S.; Wang, Y.J.; Bradley, J. G.; Albee, A. L.; Schnepple, W. F.

    1990-01-01

    Advances in the development of protective impermeable encapsulants with high transparency to ultra-low-energy X-rays for use on HgI_2 X-ray detectors are reported. Various X-ray fluorescence spectra from coated detectors are presented. The X-ray absorption in the encapsulants has been analyzed using characteristic radiation from various elements. Results suggest that low-energy cutoffs for the detectors are not determined solely by the encapsulating coatings presently employed but are also in...

  9. Review of the Development of Caesium Iodide Photocathodes for Application to Large RICH Detectors

    CERN Document Server

    Amadon, A; CERN. Geneva; Bourgeois, P; Braem, André; Breskin, Amos; Buzulutskov, A F; Chechik, R; Coluzza, C; Di Mauro, A; Friese, J; Homolka, J; Ljubicic, A; Margaritondo, G; Miné, P; Nappi, E; Dell'Orto, T; Paic, G; Piuz, François; Posa, F; Santiard, Jean-Claude; Sgobba, Stefano; Vasileiadis, G; Williams, T D

    1995-01-01

    CsI photocathodes were studied in order to evaluate their potential use as large photo converters in RICH detectors for the PID system at ALICE (LHC in heavy-ion collider mode). It has been demonstrated that a quantum efficiency comparable to the reference value obtained on small samples can be obtiained on CsI layers evaporated on large pad electrodes operated in a MWPC at atmospheric pressure. We present a survey of the results obtained in the laboratory on small samples irradiatedwtih UV-monochromatic beams and with RICH detectors of proximity-focusing geometry at a 3 GeV/c pion beam.

  10. Review of the development of cesium iodide photocathodes for application to large RICH detectors

    CERN Document Server

    Almeida, J; Besson, P; Bourgeois, P; Braem, André; Breskin, Amos; Buzulutskov, A F; Chechik, R; Coluzza, C; Di Mauro, A; Friese, J; Homolka, J; Ljubicic, A; Margaritondo, G; Miné, P; Nappi, E; Dell'Orto, T; Paic, G; Piuz, François; Posa, F; Santiard, Jean-Claude; Sgobba, Stefano; Vasileiadis, G; Williams, T D

    1995-01-01

    CsI photocathodes were studied in order to evaluate their potential use as large photo converters in RICH detectors for the PID system of ALICE at LHC in heavy-ion collider mode. It has been demonstrated that a quantum efficiency close to the reference value obtained on small samples can be obtained on CsI layers evaporated on large pad electrodes operated in a MWPC at atmospheric pressure. We present a survey of the results obtained in the laboratory on small samples irradiated with UV-monochromatic beams and with large area RICH detectors of proximity-focusing geometry in a 3 GeV/c pion beam.

  11. Proton and iodine-127 nuclear magnetic resonance studies on the binding of iodide by lactoperoxidase

    Energy Technology Data Exchange (ETDEWEB)

    Sakurada, J.; Takahashi, S.; Shimizu, T.; Hatano, M.; Nakamura, S.; Hosoya, T.

    1987-10-06

    Interaction of an iodide ion with lactoperoxidase was studied by the use of /sup 1/H NMR, /sup 127/I NMR, and optical difference spectrum techniques. /sup 1/H NMR spectra demonstrated that a major broad hyperfine-shifted signal at about 60 ppm, which is ascribed to the heme peripheral methyl protons, was shifted toward high field by adding KI, indicating the binding of iodide to the active site of the enzyme; the dissociation constant was estimated to be 38 mM at pH 6.1. The binding was further detected by /sup 127/I NMR, showing no competition with cyanide. Both /sup 1/H NMR and /sup 127/I NMR revealed that the binding of iodide to the enzyme is facilitated by the protonation of an ionizable group with a pK/sup a/ value of 6.0-6.8, which is presumably the distal histidyl residue. Optical difference spectra showed that the binding of an aromatic donor molecule to the enzyme is slightly but distinctly affected by adding KI. On the basis of these results, it was suggested that an iodide ion binds to lactoperoxidase outside the heme crevice but at the position close enough to interact with the distal histidyl residue which possibly mediates electron transport in the iodide oxidation reaction.

  12. Consequences of stoichiometric error on nuclear DNA content evaluation in Coffea liberica var. dewevrei using DAPI and propidium iodide.

    Science.gov (United States)

    Noirot, Michel; Barre, Philippe; Louarn, Jacques; Duperray, Christophe; Hamon, Serge

    2002-04-01

    The genome size of coffee trees (Coffea sp.) was assessed using flow cytometry. Nuclear DNA was stained with two dyes [4',6-diamino-2-phenylindole dihydrochloride hydrate (DAPI) and propidium iodide (PI)]. Fluorescence in coffee tree nuclei (C-PI or C-DAPI) was compared with that of the standard, petunia (P-PI or P-DAPI). If there is no stoichiometric error, then the ratio between fluorescence of the target nuclei and that of the standard nuclei (R-PI or R-DAPI) is expected to be proportional to the genome size. Between-tree differences in target : standard fluorescence ratios were noted in Coffea liberica var. dewevrei using propidium iodide and DAPI. For both dyes, between-tree differences were due to a lack of proportionality when comparing locations of the coffee peak and the petunia peak. Intraspecific genome size variations clearly cannot explain variations in the target : standard fluorescence ratio. The origin of the lack of proportionality between target and standard fluorescences differed for the two dyes. With propidium iodide, there was a regression line convergence point, and no between-tree differences were noted in this respect, whereas there was no such convergence with DAPI. An accurate estimate of genome size can thus be obtained with PI. Implications with respect to accessibility and binding mode are discussed.

  13. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    George, M.A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E. [Fisk Univ., Nashville, TN (United States). Dept. of Physics; Nason, D. [EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations

    1993-05-01

    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using Atomic Force Microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  14. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals

    Science.gov (United States)

    George, M. A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E.; Nason, D.

    1993-04-01

    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using atomic force microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position, and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  15. Development and characterization of the lead iodide semiconductor detector; Desenvolvimento e caracterizacao do detector semicondutor de iodeto de chumbo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone Braga de

    2001-07-01

    A methodology for purification and growth of PbI{sub 2} crystal as well as for its characterization as a room temperature radiation detector was developed in this work. Commercial salts were purified using the zone refining method and, for the purified material growth, the Bridgman method was used. To calculate the purification efficiency, studies of the decrease impurities concentrations were made in the salts and in three sections of the materials purified, using the neutron activation analysis technique. The results showed that the impurities segregate preferentially in the ingot final section. A significant decrease of the impurities concentration in function of the purification pass number was observed. The grown crystals presented good crystalline quality according to the results of the X-ray diffraction analysis. To evaluate the crystal as a semiconductor detector, measurements of dark leakage current, resistivity and the response of ({sup 241}Am) alpha particle and ({sup 241}Am, {sup 57}Co, {sup 133}Ba and {sup 137}Cs) gamma rays were carried out. The radiation response is strongly dependent on the crystals purity. The crystals purified with 500 passes exhibited energy resolution of 10% for {sup 241} Am alpha particle and the gamma rays resolution was compatible with the literature. The photosensibility of the PbI{sub 2} crystal found in the wavelength from 400 to 600 nm range suggests an another application at this crystal as a photodetector to be coupled to scintillators. (author)

  16. Fast RICH Detector with a Caesium Iodide Photocathode at Atmospheric Pressure

    CERN Document Server

    Di Mauro, A; CERN. Geneva; Ljubicic, A; Paic, G; Piuz, François; Posa, F; Ribeiro, R S; Scognetti, T; Williams, T D

    1994-01-01

    CsI photocathodes of 30 30 cm2 size have been operated in a fast RICH detector composed of a NaF radiator and a multiwire proportional chamber with a cathode-pad readout. Results are presented from tests with a 3 GeV / c proton beam. A Cherenkov angular resolution of 8 mrad is obtained by detecting a mean of 8 photoelectrons per ring. Methods are described for counting the Cherenkov photon and evaluating the differential quantum efficiency of the CsI photocathode. The results obtained with photons impinging at a large angle on the CsI layer are presented and discussed in comparison with higher quantum efficiencies observed under different experimental conditions.

  17. Light yield determination in large sodium iodide detectors applied in the search for dark matter

    Science.gov (United States)

    Oliván, M. A.; Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Martínez, M.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2017-07-01

    Application of NaI(Tl) detectors in the search for galactic dark matter particles through their elastic scattering off the target nuclei is well motivated because of the long standing DAMA/LIBRA highly significant positive result on annual modulation, still requiring confirmation. For such a goal, it is mandatory to reach very low threshold in energy (at or below the keV level), very low radioactive background (at a few counts/keV/kg/day), and high detection mass (at or above the 100 kg scale). One of the most relevant technical issues is the optimization of the crystal intrinsic scintillation light yield and the efficiency of the light collecting system for large mass crystals. In the frame of the ANAIS (Annual modulation with NaI Scintillators) dark matter search project large NaI(Tl) crystals from different providers coupled to two photomultiplier tubes (PMTs) have been tested at the Canfranc Underground Laboratory. In this paper we present the estimates of the NaI(Tl) scintillation light collected using full-absorption peaks at very low energy from external and internal sources emitting gammas/electrons, and single-photoelectron events populations selected by using very low energy pulses tails. Outstanding scintillation light collection at the level of 15 photoelectrons/keV can be reported for the final design and provider chosen for ANAIS detectors. Taking into account the quantum efficiency of the PMT units used, the intrinsic scintillation light yield in these NaI(Tl) crystals is above 40 photons/keV for energy depositions in the range from 3 up to 25 keV. This very high light output of ANAIS crystals allows triggering below 1 keV, which is very important in order to increase the sensitivity in the direct detection of dark matter.

  18. Scintillation properties of SrI_2(Eu^2+) (Strontium iodide doped with europium) for high energy astrophysical detectors: Nonproportionality as a function of temperature and at high gamma-ray energies

    CERN Document Server

    Perea, R S; Groza, M; Caudel, D; Nowicki, S; Burger, A; Stassun, K G; Peterson, T E

    2014-01-01

    Strontium iodide doped with europium is a new scintillator material being developed as an alternative to lanthanum bromide doped with cerium for use in high energy astrophysical detectors. As with all scintillators, the issue of nonproportionality is important because it affects the energy resolution of the detector. In this study, we investigate how the nonproportionality of strontium iodide doped with europium changes as a function of temperature 16 deg. C to 60 deg. C by heating the strontium iodide doped with europium scintillator separate from the photomultiplier tube. In a separate experiment, we also investigate the nonproportionality at high energies (up to 6 MeV) of strontium iodide doped with europium at a testing facility located at NASA Goddard Space Flight Center. We find that the nonproportionality increases nearly monotonically as the temperature of the strontium iodide doped with europium scintillator is increased, although there is evidence of non-monotonic behavior near 40 deg. C, perhaps du...

  19. Radiation-hard polycrystalline mercuric iodide semiconductor particle counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ., Jerusalem (Israel)]|[Sandia National Laboratories, Livermore Ca 94556 (United States); Zuck, A.; Melekhov, L.; Nissenbaum, J. [Hebrew Univ., Jerusalem (Israel); Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L. [LEPSI (ULP/IN2P3), Strasbourg (France)

    1998-06-01

    Mercuric iodide polycrystalline radiation detectors, which can act as nuclear particle counters and for large area imaging devices, have been fabricated using three different methods. Response to X- and gamma rays, beta particles and to 100GeV muons, as well as radiation hardness results are briefly described. (orig.) 8 refs.

  20. Characteristics of detectors for prevention of nuclear radiation terrorism

    Science.gov (United States)

    Kolesnikov, S. V.; Ryabeva, E. V.; Samosadny, V. T.

    2017-01-01

    There is description of one type of detectors in use for the task of nuclear terrorism cases prevention to determine the direction to the radioactive source and geometrical structure of radiation field. This type is a modular detector with anisotropic sensitivity. The principle of work of a modular detecting device is the simultaneous operation of several detecting modules with anisotropic sensitivity to gamma radiation.

  1. Age-dependent potassium iodide effect on the thyroid irradiation by 131I and 133I in the nuclear emergency.

    Science.gov (United States)

    Jang, M; Kim, H K; Choi, C W; Kang, C S

    2008-01-01

    The initial near-field exposure is primarily through inhalation in a nuclear emergency and the dominant contribution to the effective inhalation dose comes from radioiodine. Thyroid blockade by oral potassium iodide (KI) is efficient and practical for public in the nuclear emergency. Age-dependent radioprotective effect of KI on the thyroid irradiation by (131)I and (133)I has been derived using the simplified compartment model of iodine metabolism and WinSAAM program. Administration of KI within 2 h after (131)I and (133)I intake can block thyroid uptake significantly, yielding protective effect of 78.9% and 74.3%, respectively, for (131)I and (133)I for adults. The mean absorbed doses decrease with age, while protective effects of KI are similar for all age groups.

  2. Transient charge technique investigation of HgI/sub 2/ and CdSe nuclear detectors

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M.; Burger, A.; Nissenbaum, J.; Schieber, M.

    1987-02-01

    The use of the Transient Charge Technique (TCT) for the evaluation of high resistivity Mercuric Iodide and Cadmium Selenide nuclear radiation detectors is suggested. It has been shown that the real values of mobilities and trapping times of electrons and holes in HgI/sub 2/ can be easily obtained from the analysis of the voltage transient response to drift of charge carriers created by alpha particles. This allows one to evaluate the bulk transport properties of the material and, additionally, to estimate accurately the surface recombination velocity of the carriers. Preliminary results on the shape of voltage transients in CdSe are also reported, and the limitations of the use of the TCT for characterization of both materials are discussed.

  3. Determination of major sodium iodide symporter (NIS) inhibitors in drinking waters using ion chromatography with conductivity detector.

    Science.gov (United States)

    Cengiz, Mehmet Fatih; Bilgin, Ayse Kevser

    2016-02-20

    Goiter is an important health problem all over the world and iodine deficiency is its most common cause. Perchlorate, thiocyanate and nitrate (called as major NIS inhibitors) are known to competitively inhibit iodide uptake by the thyroid gland and thus, human exposure to major NIS inhibitors is a public health concern. In this study, an ion chromatographic method for the determination of most common NIS inhibitor ions in drinking waters was developed and validated. This is the first study where an analytical method is used for the determination of major NIS inhibitors in drinking water by an ion chromatography system in a single run. Chromatographic separations were achieved with an anion-exchange column and separated ions were identified by a conductivity detector. The method was found to be selective, linear, precise accurate and true for all of interested ions. The limits of the detections (LOD) were estimated at 0.003, 0.004 and 0.025mgL(-1) for perchlorate, thiocyanate and nitrate, respectively. Possible interference ions in drinking waters were examined for the best separation of NIS inhibitors. The excellent method validation data and proficiency test result (Z-score for nitrate: -0.1) of the FAPAS(®) suggested that the developed method could be applied for determination of NIS inhibitor residues in drinking waters. To evaluate the usefulness of the method, 75 drinking water samples from Antalya/Turkey were analyzed for NIS inhibitors. Perchlorate concentrations in the samples ranged from not detected (less than LOD) to 0.07±0.02mgL(-1) and the range of nitrate concentrations were found to be 3.60±0.01mgL(-1) and 47.42±0.40mgL(-1). No thiocyanate residues were detected in tested drinking water samples.

  4. HPGe detectors for low-temperature nuclear orientation

    CERN Document Server

    Zakoucky, D; Vénos, D; Golovko, V V; Kraev, I S; Phalet, T; Schuurmans, P; Severijns, N; Vereecke, B; Versyck, S

    2004-01-01

    Using the low-temperature nuclear orientation (LTNO) technique one can study various interesting properties of atomic nuclei and nuclear decay which can be deduced from the measurements of the angular distributions of charged particles emitted during the decay. However, the use of particle detectors working in conditions of LTNO devices (which are generally not available commercially) is a necessary precondition for the realization of these experiments. Planar HPGe detectors for detection of charged particles at "liquid helium" temperatures were developed and produced at NPI Rez. Relatively simple technology using vacuum evaporation and diffusion was employed. The performance of detectors at low temperatures was tested and their characteristics measured in a testing cryostat before using them in real experiments. The HPGe detectors were extensively used in a whole range of LTNO experiments with various physical objectives - in offline (IKS Leuven) as well as online (CERN-ISOLDE, Louvain-la- Neuve - LISOL) exp...

  5. iDREAM: an industrial detector for nuclear reactor monitoring

    Science.gov (United States)

    Gribov, I. V.; Gromov, M. B.; Lukjanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2016-02-01

    Prototype of industrial reactor antineutrino detector iDREAM is dedicated for an experiment to demonstrate the possibility of remote monitoring of PWR reactor operational modes by neutrino method in real-time in order to avoid undeclared exposure modes for nuclear fuel and unauthorized removal of isotopes. The prototype detector was started up in 2014. To test the detector elements and components of electronics distilled water has been used as a target, which enables the use of Cerenkov radiation from cosmic muons as a physical signal. Also parallel measuring of the long-term stability has been doing for samples of liquid organic scintillator doped with gadolinium and synthesized by different methods

  6. R&D for Better Nuclear Security: Radiation Detector Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E

    2009-04-02

    I am going to talk about the need for better materials for radiation detectors. I believe that government investment in this area can enable transformational technology change that could impact domestic nuclear security and also national nuclear security in some very positive and powerful ways. I'm not going to give you a lecture on how radiation detectors work, but I am going to tell you a bit about today's off-the-shelf technology and why it is not sufficient, what we need, and what security benefit you could get from improvements. I think we're at a critical point in time for some very impactful investments. In particular I'm going to focus on the use of gamma-ray radiation detectors at ports of entry. Not long before DHS was formed, Congress decreed that counter measures against the delivery of radiological and nuclear threats would be put in place at US ports of entry, under the authority of US Customs (later Customs and Border Protection in DHS). This included the screening of all cars and trucks passing through a port of entry. Existing off-the-shelf radiation detectors had to be selected for this purpose. Plans were made to make the most of the available technologies, but there are some inherent limitations of these detectors, plus the operational setting can bring out other limitations.

  7. Portable nuclear material detector and process

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Kenneth J (Aiken, SC); Fulghum, Charles K (Aiken, SC); Harpring, Lawrence J (North Augusta, SC); Huffman, Russell K (Augusta, GA); Varble, Donald L (Evans, GA)

    2008-04-01

    A portable, hand held, multi-sensor radiation detector is disclosed. The detection apparatus has a plurality of spaced sensor locations which are contained within a flexible housing. The detection apparatus, when suspended from an elevation, will readily assume a substantially straight, vertical orientation and may be used to monitor radiation levels from shipping containers. The flexible detection array can also assume a variety of other orientations to facilitate any unique container shapes or to conform to various physical requirements with respect to deployment of the detection array. The output of each sensor within the array is processed by at least one CPU which provides information in a usable form to a user interface. The user interface is used to provide the power requirements and operating instructions to the operational components within the detection array.

  8. First results on proton radiography with nuclear emulsion detectors

    CERN Document Server

    Braccini, S; Kreslo, I; Moser, U; Pistillo, C; Studer, S; Scampoli, P; Coray, A; Pedroni, E

    2010-01-01

    We propose an innovative method for proton radiography based on nuclear emulsion film detectors, a technique in which images are obtained by measuring the position and the residual range of protons passing through the patient's body. For this purpose, nuclear emulsion films interleaved with tissue equivalent absorbers can be used to reconstruct proton tracks with very high accuracy. This is performed through a fully automated scanning procedure employing optical microscopy, routinely used in neutrino physics experiments. Proton radiography can be used in proton therapy to obtain direct information on the average tissue density for treatment planning optimization and to perform imaging with very low dose to the patient. The first prototype of a nuclear emulsion based detector has been conceived, constructed and tested with a therapeutic proton beam. The first promising experimental results have been obtained by imaging simple phantoms.

  9. Diallyl phthalate (DAP) solid state nuclear track detector

    CERN Document Server

    Koguchi, Y; Ashida, T; Tsuruta, T

    2003-01-01

    Diallyl phthalate (DAP) solid state nuclear track detector is suitable for detecting heavy ions such as fission fragments, because it is insensitive to right ions such as alpha particles and protons. Detection efficiency of fission tracks is about 100%, which is unaffected under conditions below 240degC lasting for 1h or below 1 MGy of gamma-ray irradiation. Optimum etching condition for the DAP detector for detection of fission fragments is 2-4 h using 30% KOH aqueous solution at 90degC or 8-15 min using PEW-65 solution at 60degC. DAP detector is useful in detecting induced fission tracks for dating of geology or measuring intense heavy ions induced by ultra laser plasma. The fabrication of copolymers of DAP and CR-39 makes it possible to control the discrimination level for detection threshold of heavy ions. (author)

  10. Improved spectrometric characteristics of thallium bromide nuclear radiation detectors

    CERN Document Server

    Hitomi, K; Shoji, T; Suehiro, T; Hiratate, Y

    1999-01-01

    Thallium bromide (TlBr) is a compound semiconductor with a high atomic number and wide band gap. In this study, nuclear radiation detectors have been fabricated from the TlBr crystals. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using the materials purified by many pass zone refining. The crystals were characterized by measuring the resistivity, the mobility-lifetime (mu tau) product and the energy required to create an electron-hole pair (the epsilon value). Improved energy resolution has been obtained by the TlBr radiation detectors. At room temperature the full-width at half-maximum (FWHM) for the 59.5, 122 and 662 keV gamma-ray photo peak obtained from the detectors were 3.3, 8.8 and 29.5 keV, respectively. By comparing the saturated peak position of the TlBr detector with that of the CdTe detector, the epsilon value has been estimated to be about 5.85 eV for the TlBr crystal.

  11. Nuclear Track Detectors for Environmental Studies and Radiation Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Manzoor, S. [Department of Physics of the University of Bologna and INFN Sezione di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); PRD, PINSTECH, P.O. Nilore, Islamabad (Pakistan); COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan)], E-mail: manzoor@bo.infn.it; Balestra, S.; Cozzi, M.; Errico, M.; Giacomelli, G.; Giorgini, M. [Department of Physics of the University of Bologna and INFN Sezione di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Kumar, A. [Department of Physics of the University of Bologna and INFN Sezione di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Dept. of Physics, Sant Longowal Institute of Eng. and Tech., Longowal 148 106 India (India); Margiotta, A.; Medinaceli, E.; Patrizii, L. [Department of Physics of the University of Bologna and INFN Sezione di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Popa, V. [Department of Physics of the University of Bologna and INFN Sezione di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Institute of Space Sciences, Bucharest R-77125 (Romania); Qureshi, I.E. [PRD, PINSTECH, P.O. Nilore, Islamabad (Pakistan); COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Togo, V. [Department of Physics of the University of Bologna and INFN Sezione di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2007-10-15

    Several improvements were made for Nuclear Track Detectors (NTDs) used for environmental studies and for particle searches. A new method was used to determine the bulk etch rate of CR39 and Makrofol NTDs. It is based on the simultaneous measurement of the diameter and of the height of etch-pit cones caused by relativistic heavy ions (158 A GeV Pb{sup 82+} and In{sup 49+} ions) and their fragments. The use of alcohol in the etching solution improves the surface quality of NTDs and it raises their thresholds. The detectors were used for the determination of nuclear fragmentation cross sections of Iron and Silicon ions of 1.0 and 0.41 GeV/nucleon. These measurements are important for the determination of doses in hadrontherapy and for doses received by astronauts. The detectors were also used in the search of massive particles in the cosmic radiation, for the determination of the mass spectrum of cosmic rays and for the evaluation of Po{sup 210}{alpha}-decay and of natural radon concentrations.

  12. Ion range measurements using fluorescent nuclear track detectors

    DEFF Research Database (Denmark)

    Klimpki, G.; Osinga, J.-M.; Herrmann, R.;

    2013-01-01

    Fluorescent nuclear track detectors (FNTDs) show excellent detection properties for heavy charged particles and have, therefore, been investigated in this study in terms of their potential for in-vivo range measurements. We irradiated FNTDs with protons as well as with C, Mg, S, Fe and Xe ion beams...... (3–9 MeV/u) over a broad range of fluences (4.5e5–1.0e11 cm−2) with the detectors' optical c-axis positioned perpendicular to the beam direction. All measured ion ranges (for single track as well as track bulk intensity irradiations) deviate less than 3% from tabulated SRIM data (Ziegler et al., 2009...

  13. Determination of nuclear tracks parameters on sequentially etched PADC detectors

    Science.gov (United States)

    Horwacik, Tomasz; Bilski, Pawel; Koerner, Christine; Facius, Rainer; Berger, Thomas; Nowak, Tomasz; Reitz, Guenther; Olko, Pawel

    Polyallyl Diglycol Carbonate (PADC) detectors find many applications in radiation protection. One of them is the cosmic radiation dosimetry, where PADC detectors measure the linear energy transfer (LET) spectra of charged particles (from protons to heavy ions), supplementing TLD detectors in the role of passive dosemeter. Calibration exposures to ions of known LET are required to establish a relation between parameters of track observed on the detector and LET of particle creating this track. PADC TASTRAK nuclear track detectors were exposed to 12 C and 56 Fe ions of LET in H2 O between 10 and 544 keV/µm. The exposures took place at the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan in the frame of the HIMAC research project "Space Radiation Dosimetry-Ground Based Verification of the MATROSHKA Facility" (20P-240). Detectors were etched in water solution of NaOH with three different temperatures and for various etching times to observe the appearance of etched tracks, the evolution of their parameters and the stability of the etching process. The applied etching times (and the solution's concentrations and temperatures) were: 48, 72, 96, 120 hours (6.25 N NaOH, 50 O C), 20, 40, 60, 80 hours (6.25 N NaOH, 60 O C) and 8, 12, 16, 20 hours (7N NaOH, 70 O C). The analysis of the detectors involved planimetric (2D) measurements of tracks' entrance ellipses and mechanical measurements of bulk layer thickness. Further track parameters, like angle of incidence, track length and etch rate ratio were then calculated. For certain tracks, results of planimetric measurements and calculations were also compared with results of optical track profile (3D) measurements, where not only the track's entrance ellipse but also the location of the track's tip could be directly measured. All these measurements have been performed with the 2D/3D measurement system at DLR. The collected data allow to create sets of V(LET in H2 O) calibration curves suitable for short, intermediate and

  14. Investigation of Nuclear Fragmentation in Relativistic Heavy Ion Collisions Using Plastic - Nuclear - Track Detectors

    CERN Multimedia

    2002-01-01

    In this experiment CR39 plastic nuclear track detectors will be used which are sensitive to detect relativistic nuclear fragments with charges Z@$>$5. They will be analyzed using an automatic track measuring system which was developed at the University of Siegen.\\\\ \\\\ This allows to measure large quantities of tracks in these passive detectors and to perform high statistics experiments. We intend to measure cross sections for the production of nuclear fragments from heavy ion beams at the SPS. \\\\ \\\\ The energy independence of the cross sections predicted by the idea of limiting fragmentation will be tested at high energies. In exposures with different targets we plan to analyze the factorization of the fragmentation cross sections into a target depending factor and a factor depending on the beam particle and the fragment. The cross sections for one proton remov Coulomb dissociation. \\\\ \\\\ We plan to investigate Coulomb dissociation for different targets and different energies. Fragment and projectile charges ...

  15. Red mercuric iodide crystals obtained by isothermal solution evaporation: Characterization for mammographic X-ray imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, A.M.F.; Ugucioni, J.C.; Mulato, M.

    2014-02-11

    Millimeter-sized mercury iodide crystals were obtained by the isothermal evaporation technique using dimethylformamide (DMF), diethyl-ether/DMF mixture and THF. Different concentrations (18 mM and 400 mM) and solution temperature (25–80 °C) were used to obtain varied evaporation rates (0.1×10{sup −4}–5000×10{sup −4} ml/h). Different crystal sizes and shapes were obtained by changing solvents, mixture and initial solution volume. According to X-ray diffraction the samples are monocrystalline. The top surface was investigated by SEM. Optical band-gaps above 2 eV were obtained from photoacoustic spectroscopy. Photoluminescence spectra indicated band-to-band electronic transitions, and the presence of sub-band gap states. Excitons, structural defects and the presence of impurities are discussed and correlated to the electrical measurements. Crystals obtained using pure DMF as solvent showed better general properties, including under the exposure to mammographic X-ray energy range that led to sensibility of about 25 μC/Rcm{sup 2}.

  16. Influence of various geometries on detection efficiency of polystyrene, polyvinyl-toluene, and sodium iodide detectors using Geant4

    Directory of Open Access Journals (Sweden)

    Mirza Sikander M.

    2015-01-01

    Full Text Available In this work, comparative study on energy dependence of absorbed, intrinsic, photo-peak and absolute total efficiency of polystyrene plastic scintillation fiber and polyvinyl-toluene detectors with NaI(Tl scintillation detectors has been performed using Geant4 version 9.6 toolkit. The effects of geometry parameters on various efficiencies were investigated by varying detector radii, thickness and various source-to-detector configurations. These studies were carried out for both cylindrical and slab geometries for photon energy range of 10 keV-20 MeV using point isotropic sources and parallel beams of photons. Comparisons of the Geant4.9.6 based simulations for polystyrene scintillation fiber intrinsic efficiency as a function of photon energy and corresponding results obtained by earlier versions Geant4 (version 5.1 and Geant4 (version 8.1 show good agreements. The variation of the intrinsic efficiency with energy for polyvinyltoluene is also found to match very well with respective earlier results. This work confirms that the plastic scintillator based fibers and slab detectors are suitable for X-ray and low energy g-ray applications with energies typically below 50 keV with the optimum length of polystyrene scintillation fiber equal to 10 cm. For high energy range, cross talk remains an issue for polystyrene scintillation fiber and it is prominent in fibers having longer lengths and small diameters. Also, until the fiber radius is smaller than the incident photon beam, the fiber intrinsic efficiency increases with an increase in the radius.

  17. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Moshe [LNS at Avery Point, University of Connecticut, Groton, CT 06340-6097, USA and Wright Lab, Dept. of Physics, Yale University, New Haven, CT 06520-8124 and the Charged Particle Working Group (CPWG) of the Technical Design Report (TDR) (United States)

    2015-02-24

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  18. Potassium Iodide (KI)

    Science.gov (United States)

    ... Health Matters Information on Specific Types of Emergencies Potassium Iodide (KI) Language: English Español (Spanish) Recommend on Facebook ... can I get KI (potassium iodide)? What is Potassium Iodide (KI)? KI (potassium iodide) is a salt of ...

  19. Nuclear physics detector technology applied to plant biology research

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, Andrew G. [JLAB; Kross, Brian J. [JLAB; Lee, Seung Joo [JLAB; McKisson, John E. [JLAB; Xi, Wenze [JLAB; Zorn, Carl J. [JLAB; Howell, Calvin [DUKE; Crowell, A.S. [DUKE; Reid, C.D. [DUKE; Smith, Mark [MARYLAND U.

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  20. Quantum efficiency of cesium iodide photocathodes in the 120-220 nm spectral range traceable to a primary detector standard

    CERN Document Server

    Rabus, H; Richter, M; Ulm, G; Friese, J; Gernhäuser, R; Kastenmüller, A; Maier-Komor, P; Zeitelhack, K

    1999-01-01

    Differently prepared CsI samples have been investigated in the 120-220 nm spectral range for their quantum efficiency, spatial uniformity and the effect of radiation aging. The experiments were performed at the PTB radiometry laboratory at the Berlin synchrotron radiation facility BESSY. A calibrated GaAsP Schottky photodiode was used as transfer detector standard to establish traceability to the primary detector standard, because this type of photodiode - unlike silicon p-on-n photodiodes - proved to be of sufficiently stable response when exposed to vacuum ultraviolet radiation. The paper reviews the experimental procedures that were employed to characterize and calibrate the GaAsP photodiode and reports the results that were obtained on the investigated CsI photocathodes.

  1. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Westerdale, Shawn S. [Princeton U.

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and

  2. Silicon detector for a Compton Camera in Nuclear Medical Imaging

    CERN Document Server

    Meier, D; Jalocha, P; Sowicki, B; Kowal, M; Dulinski, W; Maehlum, G; Nygård, E; Yoshioka, K; Fuster, J A; Lacasta, C; Mikuz, M; Roe, S; Weilhammer, Peter; Hua, C H; Park, S J; Wilderman, S J; Zhang, L; Clinthorne, N H; Rogers, W L

    2001-01-01

    Electronically collimated gamma ca\\-me\\-ras based on Com\\-pton scattering in silicon pad sensors may improve imaging in nuclear medicine and bio-medical research. The work described here concentrates on the silicon pad detector developed for a prototype Compton camera. The silicon pad sensors are read out using low noise VLSI CMOS chips and novel fast triggering chips. Depending on the application a light weight and dense packaging of sensors and its readout electronics on a hybrid is required. We describe the silicon pad sensor and their readout with the newly designed hybrid. %The silicon detector of a Compton camera %may contain up to $10^5$~analogue channels requiring %a fast and low cost data acquisition system. We also describe a modular and low-cost data acquisition system (CCDAQ) based on a digital signal processor which is interfaced to the EPP port of personal computers. Using the CCDAQ and the hybrids energy spectra of gamma-ray photons from technetium ($^{\\rm 99m}_{43}$Tc) and americium ($^{241}_{...

  3. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  4. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  5. Uso de detectores de neutrinos para el monitoreo de reactores nucleares Uso de detectores de neutrinos para el monitoreo de reactores nucleares

    Directory of Open Access Journals (Sweden)

    Gerardo Moreno

    2012-02-01

    Full Text Available Se estudia la factibilidad del uso de los detectores de antineutrinos para el monitoreo de reactores nucleares. Usando un modelo sencillo de cascada de fisión a dos componentes, se ilustra la dependencia del número de antineutrinos detectados a una distancia L del reactor según la composición nuclear del combustible. Se explica el principio de detección de neutrinos de reactores en base al decaimiento beta inverso y se describe como los detectores de neutrinos pueden emplearse para el monitoreo de la producción de materiales fisibles en el reactor. Se comenta como generalizar este análisis al caso real de un reactor nuclear in situ y uno de los principales experimentos internacionales dedicados a este propósito. We study the feasibility to use antineutrinos detectors for monitoring of nuclear reactors. Using a simple model of fission shower with two components, we illustrate how the numbers of antineutrinos detected at a distance L from the reactor depend on the composition of the nuclear combustible. We explain the principles of reactor neutrino detection using inverse beta decays and we describe how neutrinos detectors can be used for monitoring the production of fissile materials within the reactors. We comment how to generalize this analysis to the realistic case of a nuclear reactor in situ and one of the main international experiments dedicated to study the use of neutrinos detectors as nuclear safeguards.

  6. Modeling of ballistic and trapping effects on the collection efficiency of holes and electrons separately for a planar mercuric iodide detector (HgI2

    Directory of Open Access Journals (Sweden)

    Cedric E. Beogo

    2016-07-01

    Full Text Available For the room temperature nuclear detector application, signal created in the detector depends not only to the energy of the incident photon but also to the position of the interaction. This can bring an incomplete charge collection caused by a deep-trapping or a ballistic deficit of charge carrier. Many scientists used to demonstrate their impact on the global efficiency of the charge collection. Here we show this effect, not globally but separately, according to the position where holes and electrons are created. It permits us to see the contribution of each kind of carrier in the signal formation. An analytical model of charge collection is developed firstly to take into account the deep-trapping only. Secondly, this model is improved adding the ballistic deficit effect. The deep-trapping contributes to reduce the efficiency of hole above all on thicker detector. In the other part, ballistic deficit reduce electron efficiency above all near anode in the negatively polarized detector.

  7. Application of fluorescent nuclear track detectors for cellular dosimetry

    Science.gov (United States)

    Rahmanian, S.; Niklas, M.; Abdollahi, A.; Jäkel, O.; Greilich, S.

    2017-04-01

    Ion beams radiotherapy with charged particles show greater relative biological effectiveness (RBE) compared to conventional photon therapy. This enhanced RBE is due to a localized energy deposition pattern, which is subject to large fluctuations on cellular scales. Fluorescent nuclear track detectors (FNTDs) based on Al2O3:C,Mg crystals coated with cells (Cell-Fit-HD) can provide information on individual cellular energy deposition. In this study we provide a theoretical framework to obtain the distribution of microscopic energy deposition and ionization density in cells exposed to ion beams and identifies contributions of five different sources of variations to the overall energy fluctuation at different depths of a biologically optimized spread-out Bragg peak. We show that fluctuation in the individual energy loss of the particles is the major source of variability while the fluctuation in particle hits plays a minor role. With the Cell-Fit-HD system the uncertainty arising from four of these sources, namely the nucleus area, the number of nuclear hits, the particle linear energy transfer and the chord length can be reduced and only energy loss straggling remains fundamentally unknown. The ability to quantify these factors results in a reduction of the uncertainty in cellular energy deposition from 24-55% down to only 7-12%. We have also shown current experimental results with FNTDs which show promising results, but need further improvements to reach the ideals predicted in this study.

  8. Device simulation and optimization of laterally-contacted-unipolar-nuclear detector

    CERN Document Server

    Lee, E Y

    1999-01-01

    Unipolar gamma-ray detectors offer the possibility of enhanced energy resolution and detection sensitivity over the conventional planar detectors. However, these detectors are difficult to understand and to fabricate, due to their three-dimensional geometry and multiple electrodes. Computer simulation offers a powerful way to design and to optimize these detectors, by giving the internal electric fields, weighting potentials, and spatially resolved detector responses. Simulation and optimization of an unipolar gamma-ray detector called laterally-contacted-unipolar-nuclear detector (LUND) are shown. For 662 keV gamma-rays from a sup 1 sup 3 sup 7 Cs source, the simulation and optimization of LUND resulted in improvement in the energy resolution from 1.6% to 1.3% and improvement in the active detector volume from 4% to 38% of the total detector volume.

  9. Radon epidemiology and nuclear track detectors: Methods, results and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, F. [Unit of Radioactivity and Related Health Effects, Technology and Health Department, Italian National Institute of Health, Viale Regina Elena 299, I-00161 Rome (Italy)]. E-mail: francesco.bochicchio@iss.it

    2005-11-15

    An important achievement of nuclear track detectors is that they render it possible to measure a large number of radon concentrations. These are necessary for epidemiological studies aimed to estimate the lung cancer risk due to exposure to radon and its decay products in dwellings. Many case-control studies were conducted in the last 15 years in Europe, North America and China, in order to avoid the uncertainties associated with the risk extrapolation from epidemiological studies on miners exposed in underground mines. In this review paper, the main methodological issues of these studies are introduced: confounding factors, the impact of radon exposure uncertainties on the estimated risk, the retrospective assessment of radon exposure through the measurement of Po210 surface concentration on glass objects, the interaction between radon and smoking, statistical methods to analyze data and combine studies, etc. As regards the estimated risk of lung cancer, the main characteristics and results of each study are reported and discussed, together with the results of meta-analyses and, most importantly, of the three recently published analyses that pool 2 Chinese, 7 North American, and 13 European studies. Finally, some conclusions are given and a brief reference is made to ongoing studies.

  10. Two-dimensional simulation of hydrogen iodide decomposition reaction using fluent code for hydrogen production using nuclear technology

    Directory of Open Access Journals (Sweden)

    Jung-Sik Choi

    2015-06-01

    Full Text Available The operating characteristics of hydrogen iodide (HI decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of H2O was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

  11. Systematic study of pre-irradiation effects in high efficiency CVD diamond nuclear particle detectors

    CERN Document Server

    Marinelli, M; Milani, E; Paoletti, A; Pillon, M; Tucciarone, A; Verona-Rinati, G

    2002-01-01

    Many outstanding properties of diamond can, in principle, lead to the development of radiation detectors with interesting capabilities. In particular, diamond-based nuclear particle detectors are good candidates to replace silicon-based detectors in several fields, e.g. in high-flux applications such as next generation particle-accelerator experiments or beam monitoring. However, the high concentration of defects (grain boundaries, impurities) in synthetic diamond films can strongly limit the detector's performance. A significant increase in the efficiency of CVD diamond detectors is achieved by means of pre-irradiation (pumping) with beta particles. We report here on a systematic study of the effects of pumping in high-quality microwave CVD diamond films. The efficiency (eta) and charge collection distance (CCD) of nuclear particle detectors based on these films depend on the methane content in the growth gas mixture and on the film thickness. Both efficiency and CCD behave in a markedly different way in the...

  12. Assessment of radiation exposure of nuclear medicine staff using personal TLD dosimeters and charcoal detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, F.; Garcia-Talavera, M.; Pardo, R.; Deban, L. [Valladolid Univ., Dept. de Quimica Analitica, Facultad de Ciencias (Spain); Garcia-Talavera, P.; Singi, G.M.; Martin, E. [Hospital Clinico Univ., Servicio de Medicina Nuclear, Salamanca (Spain)

    2006-07-01

    Although the main concern regarding exposure to ionizing radiation for nuclear medicine workers is external radiation, inhalation of radionuclides can significantly contribute to the imparted doses. We propose a new approach to assess exposure to inhalation of {sup 131}I based on passive monitoring using activated charcoal detectors. We compared the inhalation doses to the staff of a nuclear medicine department, based on the measurements derived from charcoal detectors placed at various locations, and the external doses monitored using personal TLD dosimeters. (authors)

  13. Photometric method of determining gold film thickness of nuclear radiation silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, B.A.; Zakharchuk, D.V.; Kovalev, I.I.; Nikolaeva, T.V.; Serushkina, E.S.

    1987-07-01

    The authors examine a photometric method of assessing a nuclear radiation silicon detector's gold film thickness based on the photocurrent from a light passed through the sputtered metal layer. The surface-barrier detectors of nuclear radiations with a gold front contact are characterized by a high sensitivity to light in the 0.4-1.0 micrometer wavelength band. The relative error of determining the gold film thickness using the method examined here is of the 7% order.

  14. Nuclear Material Accountability Applications of a Continuous Energy and Direction Gamma Ray Detector

    Energy Technology Data Exchange (ETDEWEB)

    David Gerts; Robert Bean; Marc Paff

    2010-07-01

    The Idaho National Laboratory has recently developed a detector system based on the principle of a Wilson cloud chamber that gives the original energy and direction to a gamma ray source. This detector has the properties that the energy resolution is continuous and the direction to the source can be resolved to desired fidelity. Furthermore, the detector has low power requirements, is durable, operates in widely varying environments, and is relatively cheap to produce. This detector is expected, however, to require significant time to perform measurements. To mitigate the significant time for measurements, the detector is expected to scale to very large sizes with a linear increase in cost. For example, the proof of principle detector is approximately 30,000 cm3. This work describes the technical results that lead to these assertions. Finally, the applications of this detector are described in the context of nuclear material accountability.

  15. Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors

    Science.gov (United States)

    Wei, W.-Z.; Liu, J.; Mei, D.-M.

    2016-07-01

    We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.

  16. Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors

    CERN Document Server

    Wei, W -Z; Mei, D -M

    2016-01-01

    We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.

  17. Nuclear structure studies at Saha Institute of Nuclear Physics using gamma detector arrays

    Indian Academy of Sciences (India)

    P Banerjee

    2001-07-01

    In-beam gamma-ray spectroscopy, carried out at the Saha Institute of Nuclear Physics in the recent past, using heavy-ion projectiles from the pelletron accelerator centres in the country and multi-detector arrays have yielded significant data on the structure of a large number of nuclei spanning different mass regions. The experiments included the study of two-fold -coincidence events for establishing decay schemes, directional correlation of oriented nuclei (DCO) for help in spin assignments and Doppler shift attenuation for lifetime information. The studies have led to the observation of rotational sequences of states in nuclei near closed shell in the mass = 110 region, vibrational spectra in nuclei with ∼ 60, interplay between single-particle and collective modes of excitation in the doubly-odd bromine isotopes, decoupled bands with large quadrupole deformation in 77Br, shape transition with rotational frequency within a band in 138Pm and octupole collectivity in 153Eu. Particle-rotor-model and cranked-shell-model calculations have been carried out to provide an understanding of the underlying nuclear structure

  18. An actively vetoed Clover gamma-detector for nuclear astrophysics at LUNA

    CERN Document Server

    Szucs, T; Broggini, C; Caciolli, A; Confortola, F; Corvisiero, P; Elekes, Z; Formicola, A; Fulop, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Imbriani, G; Junker, M; Lemut, A; Marta, M; Mazzocchi, C; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P

    2010-01-01

    An escape-suppressed, composite high-purity germanium detector of the Clover type has been installed at the Laboratory for Underground Nuclear Astrophysics (LUNA) facility, deep underground in the Gran Sasso Laboratory, Italy. The laboratory gamma-ray background of the Clover detector has been studied underground at LUNA and, for comparison, also in an overground laboratory. Spectra have been recorded both for the single segments and for the virtual detector formed by online addition of all four segments. The effect of the escape-suppression shield has been studied as well. Despite their generally higher intrinsic background, escape-suppressed detectors are found to be well suited for underground nuclear astrophysics studies. As an example for the advantage of using a composite detector deep underground, the weak ground state branching of the Ep = 223 keV resonance in the 24Mg(p,gamma)25Al reaction is determined with improved precision.

  19. Apparatus for nuclear logging employing sub wall mounted detectors and modular connector assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Perry, C.A.; Daigle, G.A.; Rountree, S.; Talmadge, G.; Grunbeck, J.; Wassell, M.

    1993-06-01

    A nuclear logging apparatus for logging a borehole formation is described comprising: a drill collar sub having a sub wall and having opposed ends; a radioactive source in said sub; at least one detector assembly in said sub, said detector assembly being spaced from said radioactive source and said detector assembly being positioned to detect radiation resulting from emissions emitted by said source; at least one chamber in said sub wall; at least one chamber cover, said chamber cover including attachment means for forming fluid tight and removable attachment to said at least one chamber; and said detector assembly being positioned in said at least one chamber.

  20. Indoor radon measurements by nuclear track detectors: Applications in secondary schools

    Directory of Open Access Journals (Sweden)

    Banjanac R.

    2006-01-01

    Full Text Available Indoor radon measurements by nuclear track detectors and application of the method in secondary schools in Serbia were performed in the spring 2004. Thirty detectors (type CR-39 were distributed to high school teachers in several cities in Serbia. After three months of the detectors exposure, they were sent back to the Low- Level Laboratory, Institute of Physics, Belgrade. After exposure, the CR-39 detectors were etched in a 6N NaOH at 700C for 3 hours. The tracks were counted by the semiautomatic track-counting system. The preliminary results are presented in this paper.

  1. A parameterization of nuclear track profiles in CR-39 detector

    Science.gov (United States)

    Azooz, A. A.; Al-Nia'emi, S. H.; Al-Jubbori, M. A.

    2012-11-01

    _v1_0 TRACK_VISION Computer program TRACK_VISION for simulating optical appearance of etched tracks in CR-39 nuclear track detectors. D. Nikezic, K.N. Yu Comput. Phys. Commun. 178(2008)591

  2. Nuclear Fragmentation Induced by Relativistic Projectiles Studied in the 4$\\pi$ Configuration of Plastic Track Detectors

    CERN Multimedia

    2002-01-01

    % EMU19 \\\\ \\\\ The collisions of heavy ions at relativistic energies have been studied to explore a number of questions related with hot and dense nuclear matter in order to extend our knowledge of nuclear equation-of-state. There are other aspects of these interactions which are studied to expound the process of projectile and/or target disintegrations. The disintegrations in question could be simply binary fissions or more complex processes leading to spallation or complete fragmentation. These important aspects of nuclear reactions are prone to investigations with nuclear track detectors. \\\\ \\\\One of the comparatively new track detector materials, CR-39, is sensitive enough to record particles of Z~$\\geq$~6 with almost 100\\% efficiency up to highly relativistic energies. The wide angle acceptance and exclusive measurements possible with plastic track detectors offer an opportunity to use them in a variety of situations in which high energy charged fragments are produced. The off-line nature of measuring tra...

  3. Biological feature of radioiodine-131 and use of potassium iodide in nuclear accident%131I的生物学特点和碘化钾在核事故中的应用

    Institute of Scientific and Technical Information of China (English)

    邢家骝; 丁勇; 方毅

    2011-01-01

    Japan 3·11 Fukushima nuclear accident releases a huge amount of radioiodine-131 and attracts public concern with it. This article discusses the feature of radioiodine-131 and the use of potassium iodide in nuclear accident.The potassium iodide has a good role in protecting thyroid.It should pay attention on taking time and dosage based on instruction issued by public health authority.%日本3·11福岛核事故释放出大量 131I,引起公众关注.本文讨论 131I的生物学特点和碘化钾在核事故中的应用.碘化钾有很好的保护甲状腺的作用,但要根据卫生当局的指令,注意服用的时机和剂量.

  4. Neutron Detection with Mercuric Iodide

    CERN Document Server

    Bell, Z A

    2003-01-01

    Mercuric iodide is a high-density, high-Z semiconducting material useful for gamma ray detection. This makes it convertible to a thermal neutron detector by covering it with a boron rich material and detecting the 478 keV gamma rays resulting from the sup 1 sup 0 B(n, alpha) sup 7 Li* reaction. However, the 374 barn thermal capture cross section of sup n sup a sup t Hg, makes the detector itself an attractive absorber, and this has been exploited previously. Since previous work indicates that there are no low-energy gamma rays emitted in coincidence with the 368 keV capture gamma from the dominant sup 1 sup 9 sup 9 Hg(n, gamma) sup 2 sup 0 sup 0 Hg reaction, only the 368 keV capture gamma is seen with any efficiency a relatively thin (few mm) detector. In this paper we report preliminary measurements of neutrons via capture reactions in a bare mercuric iodide crystal and a crystal covered in sup 1 sup 0 B-loaded epoxy. The covered detector is an improvement over the bare detector because the presence of both ...

  5. Some recent developments in nuclear charged particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Stelzer, H.

    1980-08-01

    The latest developments of large-area, position sensitive gas-filled ionization chambers are described. Multi-wire-proportional chambers as position-sensing and parallel-plate-avalanche counters as time-sensing detectors at low pressure (5 torr) have proven to be useful and reliable instruments in heavy ion physics. Gas (proportional) scintillation counters, used mainly for x-ray spectroscopy, have recently been applied as particle detectors. Finally, a brief description of a large plastic scintillator spectrometer, the Plastic Ball, is given and some of the first test and calibration data are shown.

  6. Spatial Mapping of the Mobility-Lifetime (microtau) Production in Cadmium Zinc Telluride Nuclear Radiation Detectors Using Transport Imaging

    Science.gov (United States)

    2013-06-01

    heavily dependent on the quality of semiconductor or scintillator material employed. The more uniformly the detector material collects charge, the...architecture. 2 B. DETECTOR THEORY In the most simplified case, semiconductor nuclear radiation detectors consist of detector material connected to...more electron-hole pairs make it to the detector contacts to reflect the intensity and wavelength of incident radiation. While scintillators and

  7. Study of the neutron radiography characteristics for the solid state nuclear track detector Makrofol-DE

    CERN Document Server

    Pugliesi, R

    2002-01-01

    In this work, the track-etch method was employed for Neutron Radiography purposes. A combination of the Solid State Nuclear Track Detector Makrofol-DE with a natural boron converter screen has been used to register the image. The radiography characteristics such as, track size, track production rate, characteristic curves and spatial resolution, have been studied. The detectors were irradiated up to neutron exposures about 5x10 sup 1 sup 0 n/cm sup 2 , in a radiography facility installed at the IEA-R1 Nuclear Research Reactor, and etched in a KOH aqueous solution at a constant temperature of 70 deg. C. The obtained results were compared with those reported by other and discussed according to the theory of the image formation in solid state nuclear track detectors. The experimental conditions to obtain the best image contrast, and the corresponding value of the spatial resolution, were also determined.

  8. Quasi-elastic events and nuclear effects with the K2K Sci-Fi detector

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Christopher W. E-mail: walter@budoe.bu.edu

    2002-11-01

    The near detector complex of the K2K long-baseline neutrino experiment contains a scintillating fiber tracking detector. It is capable of detecting not only the muon but also the outgoing proton in neutrino-nucleon scattering. This allows for the enhancement of quasi-elastic interactions in the data sample. However, a proper modeling of the nuclear re-interactions of the proton is necessary to achieve reliable results.

  9. The calibration of the solid state nuclear track detector LR 115 for radon measurements

    CERN Document Server

    Gericke, C; Jönsson, G; Freyer, K; Treutler, H C; Enge, W

    1999-01-01

    An experimental calibration of indoor room and outdoor soil detector devices which are based on LR 115 as sensitive element has taken place at the Swedish Radiation Protection Institute in Stockholm (Sweden) in 1994 and 1996, at the Physikalisch-Technischen Bundesanstalt in Braunschweig (Germany) in 1997 and at the Umweltforschungszentrum Leipzig-Halle (Germany) in 1997. Special properties of the used solid state nuclear track detector (SSNTD) material LR 115 have been measured to define the application of the experimental calibration.

  10. Polarographic determination of Iodide and Iodate, in Solutions Coming from Aerosols in Fission Products Containment Studies in Nuclear Power Stations; Determinacion Polarografica de Especies de Iodo (Ioduro y Iodato) en Soluciones Procedentes de Aerosoles, para Estudios de Contencion de Productos de Fision en Centrales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, M.; Ballesteros, O.; Fernandez, M.; Clavero, M.; Gonzalez, A. M. [Ciemat, Madrid (Spain)

    2000-07-01

    A polarographic method is described for the iodine species determination, iodide and iodate in water solutions. the iodate can be determined by differential pulse polarography. Calibration curves and the detection and determination limits have been obtained. Iodides is oxidized to iodate with sodium hypochlorite and the excess of oxidizing agent is destroyed with sodium sulphide. The concentration of iodide is calculated as the difference between the concentration of iodate in the sample before and after the oxidation. As an application, species of iodine in samples coming from the experimental plants GIRS (Gaseous Iodine Removal by Sprays) of Nuclear Fission Department of the CIEMAT, dedicated to fission products containment studies in nuclear power station, were determined. (Author) 10 refs.

  11. Electrical properties of solid iodo mercurates resulting from the reaction of HgI2 with alcaline iodides

    Science.gov (United States)

    Ponpon, J. P.; Amann, M.

    2005-01-01

    Potassium iodide solutions are currently used during the fabrication process of mercuric iodide based nuclear radiation detectors. However, KI treatment leaves the HgI2 surface covered with a residual compound (namely the potassium tri-iodo mercurate) which has a significant influence on the surface properties and stability of mercuric iodide devices and therefore on the detectors characteristics. Looking for other solutions to etch mercuric iodide, we found it interesting to investigate the electrical properties of the compounds which may form when etching HgI2 in NH4I, NaI, and RbI. For this purpose, solid iodo mercurates with the cations ammonium, sodium, and rubidium, have been prepared by reacting HgI2 with the solutions of interest. Study of the electrical properties of these samples and comparison with those of potassium tri-iodo mercurate ones, especially with respect to humidity, indicates noticeable stability differences in presence of water vapour. This could have interesting consequences on the surface cleaning of mercuric iodide.

  12. The HERMES recoil photon-detector and nuclear p{sub t}-Broadening at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Haarlem, Y. van

    2007-09-15

    The first part of this work consists of hardware research and development done in order to construct and test a photon-detector as one of the three detectors of the HERMES recoil detector. The HERMES recoil detector consists of a target cell, a silicon-detector, a scintillating fiber tracker, and a photon-detector. All are inside a super-conducting magnet. The silicon detector uses energy deposition to determine the momentum of the particle because in its energy range the energy deposition is an unambiguous function of the momentum of the particle. The scintillating fiber tracker is located outside the beam-vacuum and is surrounded by the photon-detector. It consists of two barrels with layers of scintillating fibers. It detects particles by converting their energy deposition into light. It measures two space points of a charged particle and from the bending of the assigned track (in the magnetic field provided by the super-conducting magnet) a momentum measurement can be derived. The photon-detector is located between the scintillating fiber tracker and the magnet. It consists (from the inside out) of three layers of tungsten showering material followed by scintillating strips. The second part of this work is an analysis performed concerning the transverse momentum broadening of hadrons produced in deep-inelastic scattering on a nuclear target compared to a D target. (orig.)

  13. Evaluation of XRI-UNO CdTe detector for nuclear medical imaging

    Science.gov (United States)

    Jambi, L. K.; Lees, J. E.; Bugby, S. L.; Tipper, S.; Alqahtani, M. S.; Perkins, A. C.

    2015-06-01

    Over the last two decades advances in semiconductor detector technology have reached the point where they are sufficiently sensitive to become an alternative to scintillators for high energy gamma ray detection for application in fields such as medical imaging. This paper assessed the Cadmium-Telluride (CdTe) XRI-UNO semiconductor detector produced by X-RAY Imatek for photon energies of interest in nuclear imaging. The XRI-UNO detector was found to have an intrinsic spatial resolution of <0.5mm and a high incident count rate capability up to at least 1680cps. The system spatial resolution, uniformity and sensitivity characteristics are also reported.

  14. CDMS Detector Fabrication Improvements and Low Energy Nuclear Recoil Measurements in Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jastram, Andrew [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterzations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-t k-value of 0.146.

  15. Measurement of nuclear activity with Ge detectors and its uncertainty

    CERN Document Server

    Cortes, C A P

    1999-01-01

    presented in the fifth chapter and they are applied to establish the optimum conditions for the measurement of the activity of a gamma transmitter isolated radioactive source with a spectrometer with germanium detector. (Author) The objective of this work is to analyse the influence magnitudes which affect the activity measurement of gamma transmitter isolated radioactive sources. They prepared by means of the gravimetric method, as well as, determining the uncertainty of such measurement when this is carried out with a gamma spectrometer system with a germanium detector. This work is developed in five chapters: In the first one, named Basic principles it is made a brief description about the meaning of the word Measurement and its implications and the necessaries concepts are presented which are used in this work. In the second chapter it is exposed the gravimetric method used for the manufacture of the gamma transmitter isolated radioactive sources, it is tackled the problem to determine the main influence ...

  16. Multilayer Scintillation Detector for Nuclear Physics Monitoring of Space Weather

    Science.gov (United States)

    Aleksandrin, Sergey; Mayorov, Andrey; Koldashov, Sergey; Batischev, Alexey; Lapushkin, Sergey; Gurov, Yury

    The physical characteristics of the multilayer scintillation spectrometer for identification and energy measurement of cosmic electrons, positrons and nuclei are considered in this presentation. The nuclei energy measurement range is 3-100 MeV/nucleon. This spectrometer is planning for space weather monitoring and investigation of solar-magnetospheric and geophysics effects on satellite. These characteristics were estimated by means of computer simulation. The ionization loss fluctuations, ion charge exchange during pass through detector and, especially, scintillation quenching effect (Bircs effect) were taken into account in calculations. The main results are: 1.) Ions mass identification is possible for hydrogen and helium isotopes 2.) Ions charge identification without mass identification is possible for nuclei from lithium to oxygen The preliminary estimation indicate, that including to spectrometer of thin semiconductor detector (SCD) as first layer makes possible charge identification for Z>8. This may be done by means of comparison of ion range in spectrometer with its energy loss in SCD.

  17. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    Science.gov (United States)

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  18. International and national security applications of cryogenic detectors - mostly nuclear safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, Michael W [Los Alamos National Laboratory

    2009-01-01

    As with science, so with security - in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma ray, neutron, and alpha particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invi sible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  19. Monitoring nuclear reactors with anti-neutrino detectors: the ANGRA project

    Energy Technology Data Exchange (ETDEWEB)

    Chimenti, Pietro; Leigui, Marcelo Augusto [UFABC - Universidade Federal do ABC. Rua Santa Adelia, 166. Bairro Bangu. Santo Andre - SP (Brazil); Anjos, Joao; Azzi, Gabriel; Rafael, Gama; Ademarlaudo, Barbosa; Lima, Herman; VAZ, Mario; Villar, Arthur [Centro Brasileiro de Pesquisas Fisicas - CBPF, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ - 22290-180 (Brazil); Gonzales, Luis Fernando; Bezerra, Thiago; Kemp, Ernesto [Unicamp, State University of Campinas, Cidade Universitaria ' Zeferino Vaz' , Barao Geraldo - Campinas, Sao Paulo (Brazil); Nunokawa, Hiroshi [Department of Physics, Pontifical Catholic University - PUC, Rua Marques de Sao Vicente, 225, 22451-900 Gavea - Rio de Janeiro - RJ (Brazil); Guedes, Germano; Faria, Paulo Cesar [Universidade Estadual de Feira de Santana - UEFS, Avenida Transnordestina, Novo Horizonte (Brazil); Pepe, Iuri [Universidade Federal da Bahia - UFBA (Brazil)

    2010-07-01

    We describe the status of the ANGRA Project, aimed at developing an anti-neutrino detector for monitoring nuclear reactors. Indeed the detection of anti-neutrinos provides a unique handle for non-invasive measurements of the nuclear fuel. This kind of measurements are of deep interest for developing new safeguards tools which may help in nuclear non-proliferation programs. The ANGRA experiment, placed at about 30 m from the core of the 4 GW Brazilian nuclear power reactor ANGRA II, is based on a water Cherenkov detector with about one ton target mass. A few thousand antineutrino interactions per day are expected. The latest results from simulations and the status of the construction are presented. (authors)

  20. Electromagnetic and nuclear radiation detector using micromechanical sensors

    Science.gov (United States)

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  1. Nuclear structure at high spin using multidetector gamma array and ancillary detectors

    Indian Academy of Sciences (India)

    S Muralithar

    2014-04-01

    A multidetector gamma array (GDA), for studying nuclear structure was built with ancillary devices namely gamma multiplicity filter and charged particle detector array. This facility was designed for in-beam gamma spectroscopy measurements in fusion evaporation reactions at Inter-University Accelerator Centre, New Delhi. Description of the facility and in-beam performance with two experimental studies done are presented. This array was used in a number of nuclear spectroscopic and reaction investigations.

  2. Combined Cerenkov luminescence and nuclear imaging of radioiodine in the thyroid gland and thyroid cancer cells expressing sodium iodide symporter: initial feasibility study.

    Science.gov (United States)

    Jeong, Shin Young; Hwang, Mi-Hye; Kim, Jung Eun; Kang, Sungmin; Park, Jeong Chan; Yoo, Jeongsoo; Ha, Jeoung-Hee; Lee, Sang-Woo; Ahn, Byeong-Cheol; Lee, Jaetae

    2011-01-01

    Radioiodine (RI) such as (131)I or (124)I, can generate luminescent emission and be detected with an optical imaging (OI) device. To evaluate the possibility of a novel Cerenkov luminescence imaging (CLI) for application in thyroid research, we performed feasibility studies of CLI by RI in the thyroid gland and human anaplastic thyroid carcinoma cells expressing sodium iodide symporter gene (ARO-NIS). For in vitro study, FRTL-5 and ARO-NIS were incubated with RI, and the luminometric and CLI intensity was measured with luminometer and OI device. Luminescence intensity was compared with the radioactivity measured with γ-counter. In vivo CLI of the thyroid gland was performed in mice after intravenous injection of RI with and without thyroid blocking. Mice were implanted with ARO-NIS subcutaneously, and CLI was performed with injection of (124)I. Small animal PET or γ-camera imaging was also performed. CLI intensities of thyroid gland and ARO-NIS were quantified, and compared with the radioactivities measured from nuclear images (NI). Luminometric assay and OI confirmed RI uptake in the cells in a dose-dependent manner, and luminescence intensity was well correlated with radioactivity of the cells. CLI clearly demonstrated RI uptake in thyroid gland and xenografted ARO-NIS cells in mice, which was further confirmed by NI. A strong positive correlation was observed between CLI intensity and radioactivity assessed by NI. We successfully demonstrated dual molecular imaging of CLI and NI using RI both in vitro and in vivo. CLI can provide a new OI strategy in preclinical thyroid studies.

  3. Registration of alpha particles in Makrofol-E nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rammah, Y.S. [Physics Department, Faculty of Science, Menoufia University, Shebin El-Koom (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Sciences and Arts, Najran University, P. O. Box. 11001, Najran (Saudi Arabia); Promising Centre for Sensors and Electronic Devices, Faculty of Arts and Sciences, Najran University (Saudi Arabia); Ashraf, O., E-mail: osama.ashraf@edu.asu.edu.eg [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt); Ashry, A.H. [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt)

    2016-06-15

    Highlights: • Makrofol-E detectors have been irradiated with alpha particles and fission fragments. • Fast detection of alpha particles in Makrofol-E detectors. • Bulk etching rate was calculated from fission track diameters. - Abstract: Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. {sup 252}Cf and {sup 241}Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH{sub 3}OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  4. SCINTILLA A European project for the development of scintillation detectors and new technologies for nuclear security

    CERN Document Server

    Alemberti, A; Botta, E; De Vita, R; Fanchini, E; Firpo, G

    2014-01-01

    Europe monitors transits using radiation detectors to prevent illicit trafficking of nuclear materials. The SCINTILLA project aims to develop a toolbox of innovative technologies designed to address different usage cases. This article will review the scope, approach, results of the first benchmark campaign and future plans of the SCINTILLA project.

  5. An alpha particle detector for a portable neutron generator for the Nuclear Materials Identification System (NMIS)

    Science.gov (United States)

    Hausladen, P. A.; Neal, J. S.; Mihalczo, J. T.

    2005-12-01

    A recoil alpha particle detector has been developed for use in a portable neutron generator. The associated particle sealed tube neutron generator (APSTNG) will be used as an interrogation source for the Nuclear Materials Identification System (NMIS). With the coincident emission of 14.1 MeV neutrons and 3.5 MeV alpha particles produced by the D-T reaction, alpha detection determines the time and direction of the neutrons of interest for subsequent use as an active nuclear materials interrogation source. The alpha particle detector uses a ZnO(Ga) scintillator coating applied to a fiber optic face plate. Gallium-doped zinc oxide is a fast (inorganic scintillator with a high melting point (1975 °C). One detector has been installed in an APSTNG and is currently being tested. Initial results include a measured efficiency for 3.5 MeV alphas of 90%.

  6. Solid state nuclear track detectors in hadrontherapy and radiation protection in space

    Energy Technology Data Exchange (ETDEWEB)

    Scampoli, Paola, E-mail: paola.scampoli@na.infn.i [Department of Radiation Oncology, Inselspital Bern, Bern (Switzerland); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, Napoli (Italy)

    2009-10-15

    The recent widespread of carbon-therapy for cancer treatment and the long duration manned exploration planned by NASA require the knowledge of nuclear data both for assessing the correct dose distribution in the target volume and surrounding healthy tissue (radiation therapy), and for a better knowledge of the mixed radiation field to which astronauts will be exposed (radiation protection in space). Nuclear fragmentation taking place in traversed material, even human body itself, is indeed responsible for a beam quality change whose biological effects have to be evaluated. Solid state nuclear track detectors (SSNTD) provide accurate measurements of fluence and fragmentation of heavy ions needed for hadrontherapy and space radiation-protection purposes.

  7. Nuclear reactor pulse tracing using a CdZnTe electro-optic radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kyle A., E-mail: nuclearengg@gmail.com [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan KS 66506 (United States); Geuther, Jeffrey A. [TRIGA Mark II Nuclear Reactor, Mechanical and Nuclear Engineering, Kansas State University, Manhattan KS 66506 (United States); Neihart, James L.; Riedel, Todd A. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan KS 66506 (United States); Rojeski, Ronald A. [Nanometrics, Inc., 1550 Buckeye Drive, Milpitas CA 95035 (United States); Ugorowski, Philip B.; McGregor, Douglas S. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan KS 66506 (United States)

    2012-07-11

    CdZnTe has previously been shown to operate as an electro-optic radiation detector by utilizing the Pockels effect to measure steady-state nuclear reactor power levels. In the present work, the detector response to reactor power excursion experiments was investigated. Peak power levels during an excursion were predicted to be between 965 MW and 1009 MW using the Fuchs-Nordheim and Fuchs-Hansen models and confirmed with experimental data from the Kansas State University TRIGA Mark II nuclear reactor. The experimental arrangement of the Pockels cell detector includes collimated laser light passing through a transparent birefringent crystal, located between crossed polarizers, and focused upon a photodiode. The birefringent crystal, CdZnTe in this case, is placed in a neutron beam emanating from a nuclear reactor beam port. After obtaining the voltage-dependent Pockels characteristic response curve with a photodiode, neutron measurements were conducted from reactor pulses with the Pockels cell set at the 1/4 and 3/4 wave bias voltages. The detector responses to nuclear reactor pulses were recorded in real-time using data logging electronics, each showing a sharp increase in photodiode current for the 1/4 wave bias, and a sharp decrease in photodiode current for the 3/4 wave bias. The polarizers were readjusted to equal angles in which the maximum light transmission occurred at 0 V bias, thereby, inverting the detector response to reactor pulses. A high sample rate oscilloscope was also used to more accurately measure the FWHM of the pulse from the electro-optic detector, 64 ms, and is compared to the experimentally obtained FWHM of 16.0 ms obtained with the {sup 10}B-lined counter.

  8. Calibration of solid state nuclear track detector CR-39 for radon measurements

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Marcia Pires de; Martins, Elaine Wirney [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: mpcampos@ipen.br

    2007-07-01

    Solid state nuclear track detectors (SSNTD) are widely used for radon measurements and CR-39 is one of the most popular SSNTD. In this work it was determined the calibration factor for radon concentration measurements through the passive method with CR-39 detectors. The detectors were put in a proper device (an adapted Lucas cell) and exposed to the standard radon concentration through the Pylon Model RN-150 flow through radon gas source. After exposure, the detectors were etched for 5.5 hours in a KOH solution at 80 deg C in a bath at a constant temperature. The track density was read in an Axiolab-Zeiss optical microscope, with nominal magnification of X10 connected to a video camera and to a personal computer. The calibration factor was obtained through the relation between standard radon concentration, track density and exposure time. (author)

  9. 3-D imaging of particle tracks in solid state nuclear track detectors

    Directory of Open Access Journals (Sweden)

    D. Wertheim

    2010-05-01

    Full Text Available It has been suggested that 3 to 5% of total lung cancer deaths in the UK may be associated with elevated radon concentration. Radon gas levels can be assessed using CR-39 plastic detectors which are often assessed by 2-D image analysis of surface images. 3-D analysis has the potential to provide information relating to the angle at which alpha particles impinge on the detector. In this study we used a "LEXT" OLS3100 confocal laser scanning microscope (Olympus Corporation, Tokyo, Japan to image tracks on five CR-39 detectors. We were able to identify several patterns of single and coalescing tracks from 3-D visualisation. Thus this method may provide a means of detailed 3-D analysis of Solid State Nuclear Track Detectors.

  10. 3-D imaging of particle tracks in solid state nuclear track detectors

    Science.gov (United States)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2010-05-01

    It has been suggested that 3 to 5% of total lung cancer deaths in the UK may be associated with elevated radon concentration. Radon gas levels can be assessed using CR-39 plastic detectors which are often assessed by 2-D image analysis of surface images. 3-D analysis has the potential to provide information relating to the angle at which alpha particles impinge on the detector. In this study we used a "LEXT" OLS3100 confocal laser scanning microscope (Olympus Corporation, Tokyo, Japan) to image tracks on five CR-39 detectors. We were able to identify several patterns of single and coalescing tracks from 3-D visualisation. Thus this method may provide a means of detailed 3-D analysis of Solid State Nuclear Track Detectors.

  11. First measurement of nuclear recoil head-tail sense in a fiducialised WIMP dark matter detector

    CERN Document Server

    Battat, J B R; Ezeribe, A C; Gauvreau, J -L; Harton, J L; Lafler, R; Lee, E R; Loomba, D; Lumnah, A; Miller, E H; Mouton, F; Murphy, A StJ; Paling, S M; Phan, N S; Robinson, M; Sadler, S W; Scarff, A; Schuckman, F G; Snowden-Ifft, D P; Spooner, N J C

    2016-01-01

    Recent computational results suggest that directional dark matter detectors have potential to probe for WIMP dark matter particles below the neutrino floor. The DRIFT-IId detector used in this work is a leading directional WIMP search time projection chamber detector. We report the first measurements of the detection of the directional nuclear recoils in a fully fiducialised low-pressure time projection chamber. In this new operational mode, the distance between each event vertex and the readout plane is determined by the measurement of minority carriers produced by adding a small amount of oxygen to the nominal CS$_{2}$ + CF$_{4}$ target gas mixture. The CS$_2$ + CF$_4$ + O$_2$ mixture has been shown to enable background-free operation at current sensitivities. Sulfur, fluorine, and carbon recoils were generated using neutrons emitted from a $^{252}$Cf source positioned at different locations around the detector. Measurement of the relative energy loss along the recoil tracks allowed the track vector sense, ...

  12. Determination of the detection threshold for Polyethylene Terephthalate (PET) Nuclear Track Detector (NTD)

    Science.gov (United States)

    Bhattacharyya, R.; Dey, S.; Ghosh, Sanjay K.; Maulik, A.; Raha, Sibaji; Syam, D.

    2016-03-01

    In this work we investigated the detection threshold of the polymer material Polyethylene Terephthalate (PET) intended to be used as Nuclear Track Detector (NTD) in the search for rare events (e.g. strangelets) in cosmic rays. 11 MeV 12C and 2 MeV proton beams from the accelerator at the Institute of Physics (IOP), Bhubaneswar were utilized for this study. The results show that the PET detector has a much higher detection threshold (Z / β ∼ 140) compared to many other commercially available and widely used detector materials like CR-39 (Z / β ∼ 6-20) or Makrofol (Z / β ∼ 57). This makes PET a particularly suitable detector material for testing certain phenomenological models which predict the presence of strangelets as low energy, heavily ionizing particles in cosmic radiation at high mountain altitudes.

  13. Multi-Detector Analysis System for Spent Nuclear Fuel Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Edward Lawrence; Aryaeinejad, Rahmat; Cole, Jerald Donald; Drigert, Mark William; Jewell, James Keith; Egger, Ann Elizabeth; Cordes, Gail Adele

    1999-09-01

    The Spent Nuclear Fuel (SNF) Non-Destructive Analysis (NDA) program at INEEL is developing a system to characterize SNF for fissile mass, radiation source term, and fissile isotopic content. The system is based on the integration of the Fission Assay Tomography System (FATS) and the Gamma-Neutron Analysis Technique (GNAT) developed under programs supported by the DOE Office of Non-proliferation and National Security. Both FATS and GNAT were developed as separate systems to provide information on the location of special nuclear material in weapons configuration (FATS role), and to measure isotopic ratios of fissile material to determine if the material was from a weapon (GNAT role). FATS is capable of not only determining the presence and location of fissile material but also the quantity of fissile material present to within 50%. GNAT determines the ratios of the fissile and fissionable material by coincidence methods that allow the two prompt (immediately) produced fission fragments to be identified. Therefore, from the combination of FATS and GNAT, MDAS is able to measure the fissile material, radiation source term, and fissile isotopics content.

  14. Revealing Intermittency in Nuclear Multifragmentation with 4$\\PI$ Detectors

    CERN Document Server

    Baldo, Marcello; Rapisarda, A

    1993-01-01

    The distortion on the intermittency signal, due to detection efficiency and to the presence of pre--equilibrium emitted particles, is studied in a schematic model of nuclear multi- fragmentation. The source of the intermittency signal is modeled with a percolating system. The efficiency is schematized by a simple function of the fragment size, and the presence of pre--equilibrium particles is simulated by an additional non--critical fragment source. No selection on the events is considered, and therefore all events are used to calculate the moments. It is found that, despite the absence of event selection, the intermittency signal is quite resistant to the distortion due to the apparatus efficiency, while the inclusion of pre--equilibrium particles in the moment calculation can substantially reduce the strength of the signal. Pre--equilibrium particles should be therefore carefully separated from the rest of the detected fragments, before the intermittency analysis on experimental charge or mass distributions...

  15. Studying the Sun's Nuclear Furnace with a Neutrino Detector Spacecraft in Close Solar Orbit

    Science.gov (United States)

    Solomey, Nickolas

    2016-05-01

    A neutrino based detector in close solar orbit would have a neutrino flux 10,000x or more larger flux than on Earth and a smaller detector able to handle high rates with exception energy resolution could be used. We have studied the idea of operating such an experiment in close solar orbits that takes it off the ecliptic plane and in a solar orbit where the distance from the Sun will change distance. This neutrino detector on a space craft could do Solar Astrophysics studying the Solar nuclear furnace, basic nuclear physics and elementary particle physics; some of these ideas are new unique science that can only be preformed from a spacecraft. The harsh environment provides many challenges but if such a detector could be made to work it can be the next major step in this science study. How a small segmented detector can operate and preform in this environment to detect solar neutrinos will be elaborated upon using a combination of signal strength, fast signal timing, shielding and segmentation.

  16. Direct determination of bulk etching rate for LR-115-II solid state nuclear track detectors

    Indian Academy of Sciences (India)

    T A Salama; U Seddik; T M Heggazy; A Ahmed Morsy

    2006-09-01

    The thickness of the removed layer of the LR-115-II solid state nuclear track detector during etching is measured directly with a rather precise instrument. Dependence of bulk etching rate on temperature of the etching solution is investigated. It has been found that the bulk etching rate is 3.2 m/h at 60°C in 2.5 N NaOH of water solution. It is also found that the track density in detectors exposed to soil samples increases linearly with the removed layer.

  17. Fast 4$\\pi$ track reconstruction in nuclear emulsion detectors based on GPU technology

    CERN Document Server

    Ariga, A

    2013-01-01

    Fast 4$\\pi$ solid angle particle track recognition has been a challenge in particle physics for a long time, especially in using nuclear emulsion detectors. The recent advances in computing technology opened the way for its realization. A fast 4$\\pi$ solid angle particle track reconstruction based on GPU technology combined with a multithread programming is reported here with a detailed comparison between GPU-based and CPU-based programming. A 60 times faster processing of 3D emulsion detector data, corresponding to processing of 15 cm$^2$ emulsion surface scanned per hour, has been achieved by GPUs with an excellent tracking performance.

  18. 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detectors Workshop

    Science.gov (United States)

    The Nuclear Science Symposium (NSS) offers an outstanding opportunity for scientists and engineers interested or actively working in the fields of nuclear science, radiation instrumentation, software and their applications, to meet and discuss with colleagues from around the world. The program emphasizes the latest developments in technology and instrumentation and their implementation in experiments for space sciences, accelerators, other radiation environments, and homeland security. The Medical Imaging Conference (MIC) is the foremost international scientific meeting on the physics, engineering and mathematical aspects of nuclear medicine based imaging. As the field develops, multi-modality approaches are becoming more and more important. The content of the MIC reflects this, with a growing emphasis on the methodologies of X-ray, optical and MR imaging as they relate to nuclear imaging techniques. In addition, specialized topics will be addressed in the Short Courses and Workshops programs. The Workshop on Room-Temperature Semiconductor Detectors (RTSD) represents the largest forum of scientists and engineers developing new semiconductor radiation detectors and imaging arrays. Room-temperature solid-state radiation detectors for X-ray, gamma-ray, and neutron radiation are finding increasing applications in such diverse fields as medicine, homeland security, astrophysics and environmental remediation. The objective of this workshop is to provide a forum for discussion of the state of the art of material development for semiconductor, scintillator, and organic materials for detection, materials characterization, device fabrication and technology, electronics and applications.

  19. Imaging detector development for nuclear astrophysics using pixelated CdTe

    Science.gov (United States)

    Álvarez, J. M.; Gálvez, J. L.; Hernanz, M.; Isern, J.; Llopis, M.; Lozano, M.; Pellegrini, G.; Chmeissani, M.

    2010-11-01

    The concept of focusing telescopes in the energy range of lines of astrophysical interest (i.e., of energies around 1 MeV) should allow to reach unprecedented sensitivities, essential to perform detailed studies of cosmic explosions and cosmic accelerators. Our research and development activities aim to study a detector suited for the focal plane of a γ-ray telescope mission. A CdTe/CdZnTe detector operating at room temperature, that combines high detection efficiency with good spatial and spectral resolution is being studied in recent years as a focal plane detector, with the interesting option of also operating as a Compton telescope monitor. We present the current status of the design and development of a γ-ray imaging spectrometer in the MeV range, for nuclear astrophysics, consisting of a stack of CdTe pixel detectors with increasing thicknesses. We have developed an initial prototype based on CdTe ohmic detector. The detector has 11×11 pixels, with a pixel pitch of 1 mm and a thickness of 2 mm. Each pixel is stud bonded to a fanout board and routed to an front end ASIC to measure pulse height and rise time information for each incident γ-ray photon. First measurements of a 133Ba and 241Am source are reported here.

  20. Imaging detector development for nuclear astrophysics using pixelated CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, J.M., E-mail: alvarez@ieec.uab.e [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, E-08193 Barcelona (Spain); Galvez, J.L.; Hernanz, M.; Isern, J.; Llopis, M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, E-08193 Barcelona (Spain); Lozano, M.; Pellegrini, G. [Centro Nacional de Microelectronica - IMB-CNM (CSIC), Campus UAB, E-08193 Barcelona (Spain); Chmeissani, M. [Institut de Fisica d' Altes Energies (IFAE), Campus UAB, E-08193 Barcelona (Spain)

    2010-11-01

    The concept of focusing telescopes in the energy range of lines of astrophysical interest (i.e., of energies around 1 MeV) should allow to reach unprecedented sensitivities, essential to perform detailed studies of cosmic explosions and cosmic accelerators. Our research and development activities aim to study a detector suited for the focal plane of a {gamma}-ray telescope mission. A CdTe/CdZnTe detector operating at room temperature, that combines high detection efficiency with good spatial and spectral resolution is being studied in recent years as a focal plane detector, with the interesting option of also operating as a Compton telescope monitor. We present the current status of the design and development of a {gamma}-ray imaging spectrometer in the MeV range, for nuclear astrophysics, consisting of a stack of CdTe pixel detectors with increasing thicknesses. We have developed an initial prototype based on CdTe ohmic detector. The detector has 11x11 pixels, with a pixel pitch of 1 mm and a thickness of 2 mm. Each pixel is stud bonded to a fanout board and routed to an front end ASIC to measure pulse height and rise time information for each incident {gamma}-ray photon. First measurements of a {sup 133}Ba and {sup 241}Am source are reported here.

  1. Registration of alpha particles in Makrofol-E nuclear track detectors

    Science.gov (United States)

    Rammah, Y. S.; Abdalla, Ayman M.; Ashraf, O.; Ashry, A. H.

    2016-06-01

    Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. 252Cf and 241Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH3OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  2. Increasing the energy dynamic range of solid-state nuclear track detectors using multiple surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B.; Rinderknecht, H. G.; Sinenian, N.; Rosenberg, M. J.; Manuel, M.; Seguin, F. H.; Casey, D. T.; Frenje, J. A.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge,Massachusetts 02139 (United States)

    2011-08-15

    Solid-state nuclear track detectors, such as CR-39, are widely used in physics and in many inertial confinement fusion (ICF) experiments. In the ICF experiments, the particles of interest, such as D{sup 3}He-protons, have ranges of order of the detector thickness. In this case, the dynamic range of the detector can be extended by recording data on both the front and back sides of the detector. Higher energy particles which are undetectable on the front surface can then be measured on the back of the detector. Studies of track formation under the conditions on the front and back of the detector reveal significant differences. Distinct front and back energy calibrations of CR-39 are therefore necessary and are presented for protons. Utilizing multiple surfaces with additional calibrations can extend the range of detectable energies on a single piece of CR-39 by up to 7-8 MeV. The track formation process is explored with a Monte Carlo code, which shows that the track formation difference between front and back is due to the non-uniform ion energy deposition in matter.

  3. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    Science.gov (United States)

    Krishna, Ramesh M.

    In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium. One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 O-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector. In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of

  4. Influence of water and water vapour on the characteristics of KI treated HgI 2 detectors

    Science.gov (United States)

    Ponpon, J. P.; Amann, M.; Sieskind, M.

    After being cleaned using a potassium iodide solution in water followed by a water rinse, the surface of mercuric iodide is covered by a chemical complex identified as being KHgI 3·H 2O. This compound can adsorb large quantities of water and its electrical properties are strongly sensitive to water and water vapour. The consequences on the manufacturing and storing conditions (especially the relative humidity), of mercuric iodide-based devices are therefore of great concern. They are illustrated by the study of the electrical and spectrometric properties of HgI 2 nuclear radiation detectors.

  5. Formation of PdHg by reaction of palladium thin film contacts deposited onto mercuric iodide ({alpha}-HgI{sub 2}) radiation detector crystals

    Energy Technology Data Exchange (ETDEWEB)

    Medlin, D.L. [Sandia National Labs., Livermore, CA (United States); Van Scyoc, J.M. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Electrical and Computer Engineering; Gilbert, T.S. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Electrical and Computer Engineering; Schlesinger, T.E. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Electrical and Computer Engineering; Boehme, D. [Sandia National Labs., Livermore, CA (United States); Schieber, M. [Sandia National Labs., Livermore, CA (United States); Natarajan, M. [TN Technologies, Inc., Round Rock, TX (United States); James, R.B. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    The microstructure and phase distribution of palladium thin films sputter deposited onto {alpha}-HgI{sub 2} for use as electrical contacts in radiation detectors are investigated using electron microscopy. Our results show a limited reaction to form palladium mercuride (PdHg). It is shown that the formation of PdHg via several reaction pathways is thermodynamically feasible. (orig.).

  6. Development of alpha spectroscopy method with solid state nuclear track detector using aluminium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dwaikat, N., E-mail: ndwaikat@kfupm.edu.sa [King Fahd University of Petroleum and Minerals, College of Sciences, Department of Physics, Dhahran 31261 (Saudi Arabia)

    2015-10-15

    This work presents the development of alpha spectroscopy method with Solid-state nuclear track detectors using aluminum thin films. The resolution of this method is high, and it is able to discriminate between alpha particles at different incident energy. It can measure the exact number of alpha particles at specific energy without needing a calibration of alpha track diameter versus alpha energy. This method was tested by using Cf-252 alpha standard source at energies 5.11 MeV, 3.86 MeV and 2.7 MeV, which produced by the variation of detector -standard source distance. On front side, two detectors were covered with two Aluminum thin films and the third detector was kept uncovered. The thickness of Aluminum thin films was selected carefully (using SRIM 2013) such that one of the films will block the lower two alpha particles (3.86 MeV and 2.7 MeV) and the alpha particles at higher energy (5.11 MeV) can penetrate the film and reach the detectors surface. The second thin film will block alpha particles at lower energy of 2.7 MeV and allow alpha particles at higher two energies (5.11 MeV and 3.86 MeV) to penetrate and produce tracks. For uncovered detector, alpha particles at three different energies can produce tracks on it. For quality assurance and accuracy, the detectors were mounted on thick enough copper substrates to block exposure from the backside. The tracks on the first detector are due to alpha particles at energy of 5.11 MeV. The difference between the tracks number on the first detector and the tracks number on the second detector is due to alpha particles at energy of 3.8 MeV. Finally, by subtracting the tracks number on the second detector from the tracks number on the third detector (uncovered), we can find the tracks number due to alpha particles at energy 2.7 MeV. After knowing the efficiency calibration factor, we can exactly calculate the activity of standard source. (Author)

  7. Focal plane detector for QDD spectrography in Institute of Nuclear Study and detector for SMART 2nd focal plane in RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Fuchi, Yoshihide [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study

    1996-09-01

    The focal plane detector for QDD spectrography in Institute of Nuclear Study was composed of drift space and a proportional counter tube, and the latter is composed of position detector and two delta E detector for recognizing the particles. In this detector, a uniform parallel electric field can be obtained by placing a guard plate at the same height as that of a drift plate outer place of the detector. On the other hand, the detector for SMART 2nd focal plate in RIKEN is composed of drift space and a single wire proportional counter, and has two cathode read out single wire drift counters set so as to hold the focal plane. (G.K.)

  8. CdTe and CdZnTe detectors in nuclear medicine

    CERN Document Server

    Scheiber, C

    2000-01-01

    Nuclear medicine diagnostic applications are growing in search for more disease specific or more physiologically relevant imaging. The data are obtained non-invasively from large field gamma cameras or from miniaturised probes. As far as single photon emitters are concerned, often labelled with sup 9 sup 9 sup m Tc (140 keV, gamma), nuclear instrumentation deals with poor counting statistics due to the method of spatial localisation and low contrast to noise due to scatter in the body. Since the 1960s attempts have been made to replace the NaI scintillator by semiconductor detectors with better spectrometric characteristics to improve contrast and quantitative measurements. They allow direct conversion of energy and thus more compact sensors. Room-temperature semiconductor detectors such as cadmium tellure and cadmium zinc tellure have favourable physical characteristics for medical applications which have been investigated in the 1980s. During one decade, they have been used in miniaturised probes such as fo...

  9. Probing Nuclear Effects at the T2K Near Detector Using Transverse Kinematic Imbalance

    CERN Document Server

    Dolan, Stephen

    2016-01-01

    In this work we utilise variables characterising kinematic imbalance in the plane transverse to an incoming neutrino, which have recently been shown to act as a direct probe of nuclear effects (such as final state interactions, Fermi motion and multi-nucleon processes) in $\\mathcal{O}$(GeV) neutrino scattering. We present a methodology to measure the charged current differential cross-section with no final state pions and at least one final state proton ($CC0\\pi+Np, N \\geq 1$) in these variables at the near detector of the T2K experiment (ND280), using the upstream Fine Grained Detector (FGD1) as a hydrocarbon target. Overall these measurements will allow us to better understand the impact of nuclear effects on the observables in neutrino scattering, providing valuable constraints on the systematic uncertainties associated with neutrino oscillation and scattering measurements for both T2K and other experiments with similar energy neutrino beams.

  10. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    Science.gov (United States)

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum.

  11. Charged projectile spectrometry using solid-state nuclear track detector of the PM-355 type

    Directory of Open Access Journals (Sweden)

    Malinowska Aneta

    2015-09-01

    Full Text Available To use effectively any radiation detector in high-temperature plasma experiments, it must have a lot of benefits and fulfill a number of requirements. The most important are: a high energy resolution, linearity over a wide range of recorded particle energy, high detection efficiency for these particles, a long lifetime and resistance to harsh conditions existing in plasma experiments and so on. Solid-state nuclear track detectors have been used in our laboratory in plasma experiments for many years, but recently we have made an attempt to use these detectors in spectroscopic measurements performed on some plasma facilities. This paper presents a method that we used to elaborate etched track diameters to evaluate the incident projectile energy magnitude. The method is based on the data obtained from a semiautomatic track scanning system that selects tracks according to two parameters, track diameter and its mean gray level.

  12. Single-sheet identification method of heavy charged particles using solid state nuclear track detectors

    Indian Academy of Sciences (India)

    M F Zaki; A Abdel-Naby; A Ahmed Morsy

    2007-08-01

    The theoretical and experimental investigations of the penetration of charged particles in matter played a very important role in the development of modern physics. Solid state nuclear track detectors have become one of the most important tools for many branches of science and technology. An attempt has been made to examine the suitability of the single-sheet particle identification technique in CR-39 and CN-85 polycarbonate by plotting track cone length vs. residual range for different heavy ions in these detectors. So, the maximum etchable ranges of heavy ions such as 93Nb, 86Kr and 4He in CR-39 and 4He and 132Xe in CN-85 polycarbonate have been determined. The ranges of these ions in these detectors have also been computed theoretically using the Henke–Benton program. A reasonably good agreement has been observed between the experimentally and theoretically computed values.

  13. Designing a Modern Low Cost Muon Detector to Teach Nuclear Physics

    Science.gov (United States)

    Press, Carly; Kotler, Julia

    2016-09-01

    In an effort to make it possible for small institutions to train students in nuclear physics, an attempt is made to design a low cost cosmic ray muon detector (perhaps under 600 dollars) capable of measuring flux vs. solid angle and muon lifetime. In order to expose students to current particle detection technologies, silicon photomultipliers will be coupled with plastic scintillator to provide the signals, and an Arduino, Raspberry Pi, or National Instruments device will interface with the detector. Once designed and built, prototypes of the detector will be used in outreach to K-12 students in the Allentown, PA area. This material is based upon work supported by the National Science Foundation under Grant No. 1507841.

  14. Conceptual Design of Simulated Radiation Detector for Nuclear Forensics Exercise Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwang; Baek, Ye Ji; Lee, Seung Min [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    A site associated with an illicit trafficking or security event may contain trace evidence of criminal or malicious acts involving radioactive material. Such a site is called a radiological crime scene. Management of a radiological crime scene requires a process of ensuring an orderly accurate and effective collection and preservation of evidence. In order to effectively address such a security event, first responders and/or on-scene investigators need to exercise detecting, locating and recovering materials at the scene of the incident. During such the exercise, a sealed source can be used. This source is allowed to be a very small amount for exercises as there is the limit on the amount of radioactive material that causes no harm. So it is typically difficult to be found by some radiation detectors that the exercises have little effect on improving the ability of trainees. Therefore, we developed a conceptual design of a simulation radiation detector coupled with simulation sources which are designed to imitate a significant amount radioactive material for the purpose of a nuclear forensics exercise. With the potential of a terrorist attack using radioactive materials, the first responders should regularly perform the nuclear forensics exercise in order to prepare for a recovery operation. In this regard, some devices such as simulated detector, coupled with a virtual source, can replace a real detector and a surrogate source of material in field exercises. BLE technology could be applied to create similar environments to that of an actual radiological attack. The detector coupled with the simulated sources could be very helpful for first responders in testing and improving their ability in the case of a nuclear security event. In addition, this conceptual design could be extended to develop a simulated dosimeter coupled with a beacon signal emitters. The dosimeter is a personal device used for indicating the cumulated exposure of radiation in real time in the

  15. Uranium analysis by neutron induced fissionography method using solid state nuclear track detectors

    CERN Document Server

    Akyuez, T; Guezel, T; Akyuz, S

    1999-01-01

    In this study total twenty samples (eight reference materials and twelve sediment samples) were analysed for their uranium content which is in the range of 1-17 mu g/g, by neutron induced fissionography (NIF) method using solid state nuclear track detectors (SSNTDs) in comparison with the results of neutron activation analysis (NAA), delayed neutron counting (DNC) technique or fluorometric method. It is found that NIF method using SSNTDs is very sensitive for analysis of uranium.

  16. Isolating neutrino interactions on hydrogen in composite nuclear targets using the T2K Near Detector

    CERN Document Server

    Coplowe, D

    2016-01-01

    An analysis technique for isolating neutrino interactions on hydrogen, from a target containing a mixture of different nuclei, would provide numerous benefits. Namely, hydrogen is free of nuclear effects and enables better reconstruction of the neutrino energy spectra; key for neutrino oscillation experiments. Presented using Monte Carlo simulations of the ND280 near detector is the status of such a measurement on v-H resonance production by the T2K experiment.

  17. A Deuterated Neutron Detector Array For Nuclear (Astro)Physics Studies

    Science.gov (United States)

    Almaraz-Calderon, Sergio; Asher, B. W.; Barber, P.; Hanselman, K.; Perello, J. F.

    2016-09-01

    The properties of neutron-rich nuclei are at the forefront of research in nuclear structure, nuclear reactions and nuclear astrophysics. The advent of intense rare isotope beams (RIBs) has opened a new door for studies of systems with very short half-lives and possible fascinating properties. Neutron spectroscopic techniques become increasingly relevant when these neutron rich nuclei are used in a variety of experiments. At Florida State University, we are developing a neutron detector array that will allow us to perform high-resolution neutron spectroscopic studies with stable and radioactive beams. The neutron detection system consists of 16 deuterated organic liquid scintillation detectors with fast response and pulse-shape discrimination capabilities. In addition to these properties, there is the potential to use the structure in the pulse-height spectra to extract the energy of the neutrons and thus produce directly excitation spectra. This type of detector uses deuterated benzene (C6D6) as the liquid scintillation medium. The asymmetric nature of the scattering between a neutron and a deuterium in the center of mass produces a pulse-height spectrum from the deuterated scintillator which contains useful information on the initial energy of the neutron. Work supported in part by the State of Florida and NSF Grant No. 1401574.

  18. Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use

    Science.gov (United States)

    Morelli, D.; Immè, G.; Aranzulla, M.; Tazzer, A. L. Rosselli; Catalano, R.; Mangano, G.

    2011-12-01

    Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a 241Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected to a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.

  19. Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, D.; Imme, G.; Catalano, R. [Dipartimento di Fisica e Astronomia, Universita degli Studi di Catania, via S. Sofia, 64- 95123 Catania (Italy); Istituto Nazionale di Fisica Nucleare - Sezione di Catania, via S. Sofia, 64- 95123 Catania (Italy); Aranzulla, M. [Istituto Nazionale Geofisica e Vulcanologia - Sezione di Catania, piazza Roma, 2- 95127 Catania (Italy); Tazzer, A. L. Rosselli; Mangano, G. [Dipartimento di Fisica e Astronomia, Universita degli Studi di Catania, via S. Sofia, 64- 95123 Catania (Italy)

    2011-12-13

    Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected to a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.

  20. A study of commercially-available polyethylene terephthalate (PET) and polycarbonate as nuclear track detector materials

    Science.gov (United States)

    Espinosa, G.; Golzarri, J. I.; Vazquez-Lopez, C.; Trejo, R.; Lopez, K.; Rickards, J.

    2014-07-01

    In the study of the sensitivity of materials to be used as nuclear track detectors, it was found that commercial polyethylene terephthalate (PET) from Ciel® water bottles, commercial roof cover polycarbonate, and recycled packaging strips (recycled PET), can be used as nuclear track detectors. These three commercial materials present nuclear tracks when bombarded by 2.27 MeV nitrogen ions produced in a Pelletron particle accelerator, and by fission fragments from a 252Cf source (79.4 and 103.8 MeV), after a chemical etching with a 6.25M KOH solution, or with a 6.25M KOH solution with 20% methanol, both solutions at 60±1°C. As an example, the nitrogen ions deposit approximately 1 keV/nm in the form of ionization and excitation at the surface of PET, as calculated using the SRIM code. The fission fragments deposit up to 9 keV/nm at the surface, in both cases generating sufficient free radicals to initiate the track formation process. However, 5 MeV alpha particles, typical of radon (222Rn) emissions, deposit only 0.12 keV/nm, do not present tracks after the chemical etching process. This valuable information could be very useful for further studies of new materials in nuclear track methodology.

  1. Tests of Micro-Pattern Gaseous Detectors for active target time projection chambers in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Damoy, S.; Perez Loureiro, D. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Chambert, V.; Dorangeville, F. [IPNO, CNRS/IN2P3, Orsay (France); Druillole, F. [CEA, DSM/Irfu/SEDI, Gif-Sur-Yvette (France); Grinyer, G.F. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Lermitage, A.; Maroni, A.; Noël, G. [IPNO, CNRS/IN2P3, Orsay (France); Porte, C.; Roger, T. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Rosier, P. [IPNO, CNRS/IN2P3, Orsay (France); Suen, L. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France)

    2014-01-21

    Active target detection systems, where the gas used as the detection medium is also a target for nuclear reactions, have been used for a wide variety of nuclear physics applications since the eighties. Improvements in Micro-Pattern Gaseous Detectors (MPGDs) and in micro-electronics achieved in the last decade permit the development of a new generation of active targets with higher granularity pad planes that allow spatial and time information to be determined with unprecedented accuracy. A novel active target and time projection chamber (ACTAR TPC), that will be used to study reactions and decays of exotic nuclei at facilities such as SPIRAL2, is presently under development and will be based on MPGD technology. Several MPGDs (Micromegas and Thick GEM) coupled to a 2×2 mm{sup 2} pixelated pad plane have been tested and their performances have been determined with different gases over a wide range of pressures. Of particular interest for nuclear physics experiments are the angular and energy resolutions. The angular resolution has been determined to be better than 1° FWHM for short traces of about 4 cm in length and the energy resolution deduced from the particle range was found to be better than 5% for 5.5 MeV α particles. These performances have been compared to Geant4 simulations. These experimental results validate the use of these detectors for several applications in nuclear physics.

  2. Nuclear Emulsion Film Detectors for Proton Radiography: Design and Test of the First Prototype

    CERN Document Server

    Braccini, S; Kreslo, I; Moser, U; Pistillo, C; Scampoli, P; Studer, S

    2010-01-01

    Proton therapy is nowadays becoming a wide spread clinical practice in cancer therapy and sophisticated treatment planning systems are routinely used to exploit at best the ballistic properties of charged particles. The information on the quality of the beams and the range of the protons is a key issue for the optimization of the treatment. For this purpose, proton radiography can be used in proton therapy to obtain direct information on the range of the protons, on the average density of the tissues for treatment planning optimization and to perform imaging with negligible dose to the patient. We propose an innovative method based on nuclear emulsion film detectors for proton radiography, a technique in which images are obtained by measuring the position and the residual range of protons passing through the patient's body. Nuclear emulsion films interleaved with tissue equivalent absorbers can be fruitfully used to reconstruct proton tracks with very high precision. The first prototype of a nuclear emulsion ...

  3. Probing Nuclear Effects at the T2K Near Detector Using Single-Transverse Kinematic Imbalance

    CERN Document Server

    Dolan, Stephen; Pickering, Luke; Vladisavljevic, Tomislav; Weber, Alfons

    2016-01-01

    In order to make precision measurements of neutrino oscillations using few-GeV neutrino beams a detailed understanding of nuclear effects in neutrino scattering is essential. Recent studies have revealed that single-transverse kinematic imbalance (STKI), defined in the plane transverse to an incoming neutrino beam, can act as a unique probe of these nuclear effects. This work first illustrates that an exclusive measurement of STKI at the off-axis near detector of the T2K experiment (ND280) is expected to distinguish the presence of multi-nucleon correlations producing a two proton final state (2p-2h) from alterations of the predominant underlying cross-section parameter ($M_A$ - the nucleon axial mass). Such a measurement is then demonstrated with fake data, showing substantial nuclear model separation potential.

  4. 3D visualisation and analysis of single and coalescing tracks in Solid state Nuclear Track Detectors

    Science.gov (United States)

    Wertheim, David; Gillmore, Gavin; Brown, Louise; Petford, Nick

    2010-05-01

    Exposure to radon gas (222Rn) and associated ionising decay products can cause lung cancer in humans (1). Solid state Nuclear Track Detectors (SSNTDs) can be used to monitor radon concentrations (2). Radon particles form tracks in the detectors and these tracks can be etched in order to enable 2D surface image analysis. We have previously shown that confocal microscopy can be used for 3D visualisation of etched SSNTDs (3). The aim of the study was to further investigate track angles and patterns in SSNTDs. A 'LEXT' confocal laser scanning microscope (Olympus Corporation, Japan) was used to acquire 3D image datasets of five CR-39 plastic SSNTD's. The resultant 3D visualisations were analysed by eye and inclination angles assessed on selected tracks. From visual assessment, single isolated tracks as well as coalescing tracks were observed on the etched detectors. In addition varying track inclination angles were observed. Several different patterns of track formation were seen such as single isolated and double coalescing tracks. The observed track angles of inclination may help to assess the angle at which alpha particles hit the detector. Darby, S et al. Radon in homes and risk of lung cancer : collaborative analysis of individual data from 13 European case-control studies. British Medical Journal 2005; 330, 223-226. Phillips, P.S., Denman, A.R., Crockett, R.G.M., Gillmore, G., Groves-Kirkby, C.J., Woolridge, A., Comparative Analysis of Weekly vs. Three monthly radon measurements in dwellings. DEFRA Report No., DEFRA/RAS/03.006. (2004). Wertheim D, Gillmore G, Brown L, and Petford N. A new method of imaging particle tracks in Solid State Nuclear Track Detectors. Journal of Microscopy 2010; 237: 1-6.

  5. dl-Alaninium iodide

    Directory of Open Access Journals (Sweden)

    Kevin Lamberts

    2012-06-01

    Full Text Available The crystal structure of dl-alanine hydroiodide (1-carboxyethanaminium iodide, C3H8NO2+·I−, is that of an organic salt consisting of N-protonated cations and iodide anions. The compound features homochiral helices of N—H...O hydrogen-bonded cations in the [010] direction; neighbouring chains are related by crystallographic inversion centers and hence show opposite chirality. The iodide counter-anions act as hydrogen-bond acceptors towards H atoms of the ammonium and carboxy groups, and cross-link the chains along [100]. Thus, an overall two-dimensional network is formed in the ab plane. No short contacts occur between iodide anions.

  6. Effects of etching time on alpha tracks in Solid state Nuclear Track Detectors

    Science.gov (United States)

    Gillmore, Gavin; Wertheim, David; Crust, Simon

    2013-04-01

    Inhalation of radon gas is thought to be the cause of about 1100 lung cancer related deaths each year in the UK (1). Radon concentrations can be monitored using Solid State Nuclear Track Detectors (SSNTDs) as the natural decay of radon results in alpha particles which form tracks in the detectors and these tracks can be etched in order to enable microscopic analysis. We have previously shown that confocal microscopy can be used for 3D visualisation of etched SSNTDs (2, 3). The aim of the study was to examine the effect of etching time on the appearance of alpha tracks in SSNTDs. Six SSNTDs were placed in a chamber with a luminous dial watch for a fixed period. The detectors were etched for between 30 minutes and 4.5 hours using 6M NaOH at a temperature of 90oC. A 'LEXT' OLS4000 confocal laser scanning microscope (Olympus Corporation, Japan) was used to acquire 2D and 3D image datasets of CR-39 plastic SSNTDs. Confocal microscope 3D images were acquired using a x50 or x100 objective lens. Data were saved as images and also spreadsheet files with height measurements. Software was written using MATLAB (The MathWorks Inc., USA) to analyse the height data. Comparing the 30 minute and 4 hour etching time detectors, we observed that there were marked differences in track area; the lower the etching time the smaller the track area. The degree to which etching may prevent visualising adjacent tracks also requires further study as it is possible that etching could result in some tracks being subsumed in other tracks. On the other hand if there is too little etching, track sizes would be reduced and hence could be more difficult to image; thus there is a balance required to obtain suitable measurement accuracy. (1) Gray A, Read S, McGale P and Darby S. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them. BMJ 2009; 338: a3110. (2) Wertheim D, Gillmore G, Brown L, and Petford N. A new method of imaging particle tracks in

  7. The former tests realized to a personal neutron dosemeter based on solid nuclear tracks detector; Primeras pruebas realizadas a un dosimetro personal de neutrones basado en detectores solidos de trazas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, M.E.; Tavera, L.; Balcazar, M. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Due to the increase in the use of neutron radiation a personal neutron dosemeter based on solid nuclear tracks detector (DSTN) was designed and constructed. The personal dosemeter design consists of three arrangements. The first one consists of a plastic nuclear tracks detector (LR115 or CR39) in contact with a LiF pellet. The second one is the same that above but it placed among two cadmium pellets and, the third one is formed by the alone detector without converter neither neutron absorber. The three arrangements are placed inside a plastic porta detector hermetically closed to avoid the bottom produced by environmental radon whichever both detectors (LR115 and CR39) are sensitive. In this work the former tests realized to that dosemeter are presented. (Author)

  8. Active neutron methods for nuclear safeguards applications using Helium-4 gas scintillation detectors

    Science.gov (United States)

    Lewis, Jason M.

    Active neutron methods use a neutron source to interrogate fissionable material. In this work a 4He gas scintillation fast neutron detection system is used to measure neutrons created by the interrogation. Three new applications of this method are developed: spent nuclear fuel assay, fission rate measurement, and special nuclear material detection. Three active neutron methods are included in this thesis. First a non-destructive plutonium assay technique called Multispectral Active Neutron Interrogation Analysis is developed. It is based on interrogating fuel with neutrons at several different energies. The induced fission rates at each interrogation energy are compared with results from a neutron transport model of the irradiation geometry in a system of equations to iteratively solve the inverse problem for isotopic composition. The model is shown to converge on the correct composition for a material with 3 different fissionable components, a representative neutron absorber, and any neutron transparent material such as oxygen in a variety of geometries. Next an experimental fission rate measurement technique is developed using 4He gas scintillation fast neutron detector. Several unique features of this detector allow it to detect and provide energy information on fast neutrons with excellent gamma discrimination efficiency. The detector can measure induced fission rate by energetically differentiating between interrogation neutrons and higher energy fission neutrons. The detector response to a mono-energetic deuterium-deuterium fusion neutron generator and a 252Cf source are compared to examine the difference in detected energy range. Finally we demonstrate a special nuclear material detection technique by detecting an unambiguous fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium neutron generator and a high pressure 4He gas fast neutron scintillation detector. Energy histograms resulting from this

  9. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors

    CERN Document Server

    Niklas, Martin; Akselrod, Mark S; Abollahi, Amir; Jäkel, Oliver; Greilich, Steffen

    2013-01-01

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3:C,Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors. This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In-situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory info...

  10. Image processing analysis of nuclear track parameters for CR-39 detector irradiated by thermal neutron

    Science.gov (United States)

    Al-Jobouri, Hussain A.; Rajab, Mustafa Y.

    2016-03-01

    CR-39 detector which covered with boric acid (H3Bo3) pellet was irradiated by thermal neutrons from (241Am - 9Be) source with activity 12Ci and neutron flux 105 n. cm-2. s-1. The irradiation times -TD for detector were 4h, 8h, 16h and 24h. Chemical etching solution for detector was sodium hydroxide NaOH, 6.25N with 45 min etching time and 60 C˚ temperature. Images of CR-39 detector after chemical etching were taken from digital camera which connected from optical microscope. MATLAB software version 7.0 was used to image processing. The outputs of image processing of MATLAB software were analyzed and found the following relationships: (a) The irradiation time -TD has behavior linear relationships with following nuclear track parameters: i) total track number - NT ii) maximum track number - MRD (relative to track diameter - DT) at response region range 2.5 µm to 4 µm iii) maximum track number - MD (without depending on track diameter - DT). (b) The irradiation time -TD has behavior logarithmic relationship with maximum track number - MA (without depending on track area - AT). The image processing technique principally track diameter - DT can be take into account to classification of α-particle emitters, In addition to the contribution of these technique in preparation of nano- filters and nano-membrane in nanotechnology fields.

  11. Detecting Shielded Special Nuclear Materials Using Multi-Dimensional Neutron Source and Detector Geometries

    Science.gov (United States)

    Santarius, John; Navarro, Marcos; Michalak, Matthew; Fancher, Aaron; Kulcinski, Gerald; Bonomo, Richard

    2016-10-01

    A newly initiated research project will be described that investigates methods for detecting shielded special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. The key tasks for this project are: (1) developing a radiation transport capability for use in optimizing adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source/detector configurations for neutron pulses distributed in space and/or phased in time; (2) creating distributed-geometry, gas-target, IEC fusion neutron sources; (3) applying sparse data and noise reduction algorithms, such as principal component analysis (PCA) and wavelet transform analysis, to enhance detection fidelity; and (4) educating graduate and undergraduate students. Funded by DHS DNDO Project 2015-DN-077-ARI095.

  12. Radon diffusion in polymer vessels using CR-39 solid state nuclear track detector

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Andre Cavalcanti; Menezes, Maria Angela de B.C.; Rocha, Zildete; Pereira, Marcio Tadeu, E-mail: andreccarneiro@gmail.com, E-mail: menezes@cdtn.br, E-mail: zildete@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Santos, Talita de Oliveira; Lara, Evelise Gomes; Braga, Mario Roberto Martins S.S., E-mail: mariomartins@gmail.com, E-mail: evelise.lara@gmail.com, E-mail: talitaolsantos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2015-07-01

    At CDTN/CNEN, the method to determine {sup 226}Ra in several matrices by gamma spectrometry is already established; however, the method should be improved. This paper is about the first step of this improvement. Several polymer vessels were studied verifying the effect of radiolysis on the walls of the vessel. A test about the diffusion of {sup 222}Rn through the walls was carried out using the CR-39 solid state nuclear track detector. The results pointed out that the vessel made up by acrylic material is the best candidate to replace the vessel actually used. (author)

  13. In-laboratory development of an automatic track counting system for solid state nuclear track detectors

    Science.gov (United States)

    Uzun, Sefa Kemal; Demiröz, Işık; Ulus, İzzet

    2017-01-01

    In this study, an automatic track counting system was developed for solid state nuclear track detectors (SSNTD). Firstly the specifications of required hardware components were determined, and accordingly the CCD camera, microscope and stage motor table was supplied and integrated. The system was completed by developing parametric software with VB.Net language. Finally a set of test intended for radon activity concentration measurement was applied. According to the test results, the system was enabled for routine radon measurement. Whether the parameters of system are adjusted for another SSNTD application, it could be used for other fields of SSNTD like neutron dosimetry or heavy charged particle detection.

  14. A 12-bit multichannel ADC for pixel detectors in particle physics and nuclear imaging

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Modern pixel detectors in nuclear and particle physics experiments and also in nuclear imaging,starve for highly integrated application specified integrated circuit(ASIC),whereas in China the study of ASIC still stays far away from practical application.The lack of ASIC strictly limits the research and development of domestic high energy physics field.A 12-bit multichannel ADC designed for high density readout is introduced as a major candidate for solution.A precise model is discussed and the simulation fully agrees with the model,which indicates a key principle of design.Design is performed according to the given rule,and novel layout techniques are carried out.Measurement results in all aspects are also obtained,showing an excellent real performance,which satisfies the practical requirement.

  15. Development of Scintillators in Nuclear Medicine.

    Science.gov (United States)

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce "lutetium aluminum garnet activated by cerium" CRY018 "CRY019" lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality.

  16. Radon measurements by nuclear track detectors in secondary schools in Oke-Ogun region, Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Obed, R.I., E-mail: rachelobed@yahoo.com [Department of Physics, University of Ibadan, Ibadan (Nigeria); Ademola, A.K. [Department of Physical Sciences, Bells University of Technology, Ota (Nigeria); Vascotto, M. [Italian National Institute of Nuclear Physics (INFN), Trieste (Italy); Giannini, G. [The Italian National Institute of Nuclear Physics (INFN), Trieste (Italy); Department of Physics, University of Trieste, Trieste (Italy)

    2011-11-15

    Radon measurements were performed in secondary schools in the Oke-Ogun area, South-west, Nigeria, by solid state nuclear track detectors (SSNTDs). About seventy CR-39 detectors were distributed in 35 high schools of the Oke-Ogun area. The CR-39 detectors were exposed in the schools for 3 months and then etched in NaOH 6 N solution at 90 deg. C for 3 h. The tracks were counted manually at the microscope and the radon concentration was determined at the Radioactivity Laboratory, Department of Physics, University of Trieste, Trieste, Italy. The overall average radon concentration in the surveyed area was 45 {+-} 27 Bq m{sup -3}. The results indicate no radiological health hazard. The research also focused on parameters affecting radon concentrations such as the age of the building in relation to building materials and floor number of the classrooms. The results show that radon concentrations in ground floors are higher than in upper floors. - Highlights: > We measured radon concentration levels in a sample of schools in Oke-Ogun, Nigeria. > We analyzed the main factors that affect indoor radon levels. > Dependence of radon concentrations on floor levels confirmed the influence of soil as main source of indoor radon.

  17. Radon measurements by nuclear track detectors in secondary schools in Oke-Ogun region, Nigeria.

    Science.gov (United States)

    Obed, R I; Ademola, A K; Vascotto, M; Giannini, G

    2011-11-01

    Radon measurements were performed in secondary schools in the Oke-Ogun area, South-west, Nigeria, by solid state nuclear track detectors (SSNTDs). About seventy CR-39 detectors were distributed in 35 high schools of the Oke-Ogun area. The CR-39 detectors were exposed in the schools for 3 months and then etched in NaOH 6 N solution at 90 °C for 3 h. The tracks were counted manually at the microscope and the radon concentration was determined at the Radioactivity Laboratory, Department of Physics, University of Trieste, Trieste, Italy. The overall average radon concentration in the surveyed area was 45 ± 27 Bq m(-3). The results indicate no radiological health hazard. The research also focused on parameters affecting radon concentrations such as the age of the building in relation to building materials and floor number of the classrooms. The results show that radon concentrations in ground floors are higher than in upper floors.

  18. An anti-neutrino detector to monitor nuclear reactor's power and fuel composition

    Energy Technology Data Exchange (ETDEWEB)

    Battaglieri, M., E-mail: battaglieri@ge.infn.i [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); DeVita, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Firpo, G.; Neuhold, P. [Ansaldo Nucleare, Corso Perrone 25, 16161 Genova (Italy); Osipenko, M.; Piombo, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Ricco, G. [Dipartimento di Fisica dell' Universita di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Ripani, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Taiuti, M. [Dipartimento di Fisica dell' Universita di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy)

    2010-05-21

    In this contribution, we present the expected performance of a new detector to measure the absolute energy-integrated flux and the energy spectrum of anti-neutrinos emitted by a nuclear power plant. The number of detected anti-neutrino is a direct measure of the power while from the energy spectrum is possible to infer the evolution in time of the core isotopic composition. The proposed method should be sensitive to a sudden change in the core burn-up as caused, for instance, by a fraudulent subtraction of plutonium. The detector, a 130x100x100cm{sup 3} cube with 1m{sup 3} active volume, made by plastic scintillator wrapped in thin Gd foils, is segmented in 50 independent optical channels read, side by side, by a pair of 3 in. photomultipliers. Anti-neutrino interacts with hydrogen contained in the plastic scintillator via the neutron inverse {beta}- decay ({nu}-barp{yields}e{sup +}n). The high segmentation of the detector allows to reduce the background from other reactions by detecting independent hits for the positron, the two photons emitted in the e{sup +}e{sup -} annihilation and the neutron.

  19. Laue optics for nuclear astrophysics: New detector requirements for focused gamma-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, N. [INAF - IASF Roma, via Fosso del Cavaliere 100, 00133 Roma (Italy)], E-mail: nicolas.barriere@iasf-roma.inaf.it; Ballmoos, P. von [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Abrosimov, N.V. [IKZ, Max Born-Str. 2, D-12489 Berlin (Germany); Bastie, P. [LSP UMR 5588, 140 Av. de la physique, 38402 Saint Martin d' Heres (France); Camus, T. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Courtois, P.; Jentschel, M. [ILL, 6 rue Jules Horowitz, 38042 Grenoble (France); Knoedlseder, J. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Natalucci, L. [INAF - IASF Roma, via Fosso del Cavaliere 100, 00133 Roma (Italy); Roudil, G.; Rousselle, J. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Wunderer, C.B. [SSL, University of California at Berkeley, CA 94708 (United States); Kurlov, V.N. [Institute of Solid State Physics of Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation)

    2009-10-21

    Nuclear astrophysics presents an extraordinary scientific potential for the study of the most powerful sources and the most violent events in the Universe. But in order to take full advantage of this potential, telescopes should be at least an order of magnitude more sensitive than present technologies. Today, Laue lenses have demonstrated their capability of focusing gamma-rays in the 100 keV-1 MeV domain, enabling the possibility of building a new generation of instruments for which sensitive area is decoupled from collecting area. Thus we have now the opportunity of dramatically increase the signal/background ratio and hence improve significantly the sensitivity. With a lens, the best detector is no longer the largest possible within a mission envelope. The point spread function of a Laue lens measures a few centimeters in diameter, but the field of view is limited by the detector size. Requirements for a focal plane instrument are presented in the context of the Gamma-Ray Imager mission (proposed to European Space Agency, ESA in the framework of the first Cosmic Vision AO): a 15-20 cm a side finely pixellated detector capable of Compton events reconstruction seems to be optimal, giving polarization and background rejection capabilities and 30 arcsec of angular resolution within a field of view of 5 arc min.

  20. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  1. Development of an area monitor for neutrons using solid state nuclear track detector; Desenvolvimento de um monitor de area para neutrons utilizando detector solido de tracos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, G.S.

    1994-12-31

    An area monitor for neutrons composed of the solid state nuclear track detector (SSNTD) Makrofol DE, together with a (n,{alpha}) converter, in the center of a 25 cm diameter polyethylene sphere, is developed. The optimal electrochemical etching conditions for the detection of thermal neutrons by the Makrofol DE using the BN converter are studied, leading to the choice of 55 min, at 30{sup 0} C, under a 44,2 kV.cm{sup -1} electric field with oscillation frequency of 2,0 khz. The response of this system to thermal neutrons, in the optimal conditions, is of 2,76(10)x 10{sup -3} tr/n. Changing from the BN converter to a 2,73(3)g compressed boric acid tablet this value lowers to 3,88(17)x 10{sup -4} tr/n. The performance of the whole monitor in the detection of fast neutrons is examined using the BN converter and neutrons from a {sup 241} Am Be source, with a response of 4,4(2)x 10{sup 3} tr.mSv{sup -1}.cm{sup -2} and operational limits between 7(3){mu}Sv and 5,6(2)mSv. The result of the monitoring of the control room of the IPEN Cyclotron accelerator are also presented as a final test for the viability of the practical use of the monitor. (author). 34 refs, 15 figs, 6 tabs, 1 app.

  2. Image processing analysis of nuclear track parameters for CR-39 detector irradiated by thermal neutron

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jobouri, Hussain A., E-mail: hahmed54@gmail.com; Rajab, Mustafa Y., E-mail: mostafaheete@gmail.com [Department of Physics, College of Science, AL-Nahrain University, Baghdad (Iraq)

    2016-03-25

    CR-39 detector which covered with boric acid (H{sub 3}Bo{sub 3}) pellet was irradiated by thermal neutrons from ({sup 241}Am - {sup 9}Be) source with activity 12Ci and neutron flux 10{sup 5} n. cm{sup −2}. s{sup −1}. The irradiation times -T{sub D} for detector were 4h, 8h, 16h and 24h. Chemical etching solution for detector was sodium hydroxide NaOH, 6.25N with 45 min etching time and 60 C° temperature. Images of CR-39 detector after chemical etching were taken from digital camera which connected from optical microscope. MATLAB software version 7.0 was used to image processing. The outputs of image processing of MATLAB software were analyzed and found the following relationships: (a) The irradiation time -T{sub D} has behavior linear relationships with following nuclear track parameters: i) total track number - N{sub T} ii) maximum track number - MRD (relative to track diameter - D{sub T}) at response region range 2.5 µm to 4 µm iii) maximum track number - M{sub D} (without depending on track diameter - D{sub T}). (b) The irradiation time -T{sub D} has behavior logarithmic relationship with maximum track number - M{sub A} (without depending on track area - A{sub T}). The image processing technique principally track diameter - D{sub T} can be take into account to classification of α-particle emitters, In addition to the contribution of these technique in preparation of nano- filters and nano-membrane in nanotechnology fields.

  3. 3D imaging of particle tracks in Solid State Nuclear Track Detectors

    Science.gov (United States)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2009-04-01

    Inhalation of radon gas (222Rn) and associated ionizing decay products is known to cause lung cancer in human. In the U.K., it has been suggested that 3 to 5 % of total lung cancer deaths can be linked to elevated radon concentrations in the home and/or workplace. Radon monitoring in buildings is therefore routinely undertaken in areas of known risk. Indeed, some organisations such as the Radon Council in the UK and the Environmental Protection Agency in the USA, advocate a ‘to test is best' policy. Radon gas occurs naturally, emanating from the decay of 238U in rock and soils. Its concentration can be measured using CR?39 plastic detectors which conventionally are assessed by 2D image analysis of the surface; however there can be some variation in outcomes / readings even in closely spaced detectors. A number of radon measurement methods are currently in use (for examples, activated carbon and electrets) but the most widely used are CR?39 solid state nuclear track?etch detectors (SSNTDs). In this technique, heavily ionizing alpha particles leave tracks in the form of radiation damage (via interaction between alpha particles and the atoms making up the CR?39 polymer). 3D imaging of the tracks has the potential to provide information relating to angle and energy of alpha particles but this could be time consuming. Here we describe a new method for rapid high resolution 3D imaging of SSNTDs. A ‘LEXT' OLS3100 confocal laser scanning microscope was used in confocal mode to successfully obtain 3D image data on four CR?39 plastic detectors. 3D visualisation and image analysis enabled characterisation of track features. This method may provide a means of rapid and detailed 3D analysis of SSNTDs. Keywords: Radon; SSNTDs; confocal laser scanning microscope; 3D imaging; LEXT

  4. Detection of fast neutrons from D-T nuclear reaction using a 4H-SiC radiation detector

    Science.gov (United States)

    Zatko, Bohumir; Sagatova, Andrea; Sedlackova, Katarina; Necas, Vladimir; Dubecky, Frantisek; Solar, Michael; Granja, Carlos

    2016-09-01

    The particle detector based on a high purity epitaxial layer of 4H-SiC exhibits promising properties in detection of various types of ionizing radiation. Due to the wide band gap of 4H-SiC semiconductor material, the detector can reliably operate at room and also elevated temperatures. In this work we focused on detection of fast neutrons generated the by D-T (deuterium-tritium) nuclear reaction. The epitaxial layer with a thickness of 105 μm was used as a detection part. A circular Schottky contact of a Au/Ni double layer was evaporated on both sides of the detector material. The detector structure was characterized by current-voltage and capacitance-voltage measurements, at first. The results show very low current density (SiC detector is caused by the elastic and inelastic scattering on the silicon or carbide component of the detector material. Another possibility that increases the detection efficiency is the use of a conversion layer. In our measurements, we glued a HDPE (high density polyethylene) conversion layer on the detector Schottky contact to transform fast neutrons to protons. Hydrogen atoms contained in the conversion layer have a high probability of interaction with neutrons through elastic scattering. Secondary generated protons flying to the detector can be easily detected. The detection properties of detectors with and without the HDPE conversion layer were compared.

  5. Mercuric iodide dosimeter response to high energy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Loewinger, E.; Nissenbaum, J.; Schieber, M.M.

    1988-01-01

    Mercuric iodide solid state dosimeter response to high energy electron beams of up to 35 MeV is reported. High sensitivity of up to 1.5 V/cGy was observed with a 200 V external bias, as well as several mV/cGy, with no external bias for small volume (approx. 10 mm/sup 3/) detectors. The physical characteristics of the detector response are discussed, showing the feasibility of mercuric iodide as a reliable dosimeter for high energy electron beams.

  6. Low energy background in mercuric iodide X-ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, X.J. [TN Technol., Inc., Round Rock, TX (United States). Dept. of Anal. Instrum.; Natarajan, M. [TN Technol., Inc., Round Rock, TX (United States). Dept. of Anal. Instrum.; Henderson, J. [TN Technol., Inc., Round Rock, TX (United States). Dept. of Anal. Instrum.

    1996-10-01

    The origins of the continuous background (window effect or dead layer) in mercuric iodide X-ray spectrometers are investigated. It is found that photo-electron escape and carrier diffusion are the dominant mechanisms of incomplete charge collection in the energy range of interest (from 3-60 keV). X-ray spectra measurements, computer calculation and photo-response measurements are presented in support of the proposed model. Many observations of detector behavior made in the manufacturing and application of mercuric iodide X-ray detectors can be explained by this model. (orig.).

  7. Front-end Design and Characterization for the ν-Angra Nuclear Reactor Monitoring Detector

    Science.gov (United States)

    Dornelas, T. I.; Araújo, F. T. H.; Cerqueira, A. S.; Costa, J. A.; Nóbrega, R. A.

    2016-07-01

    The Neutrinos Angra (ν-Angra) Experiment aims to construct an antineutrinos detection device capable of monitoring the Angra dos Reis nuclear reactor activity. Nuclear reactors are intense sources of antineutrinos, and the thermal power released in the fission process is directly related to the flow rate of these particles. The antineutrinos energy spectrum also provides valuable information on the nuclear source isotopic composition. The proposed detector will be equipped with photomultipliers tubes (PMT) which will be readout by a custom Amplifier-Shaper-Discriminator circuit designed to condition its output signals to the acquisition modules to be digitized and processed by an FPGA. The readout circuit should be sensitive to single photoelectron signals, process fast signals, with a full-width-half-amplitude of about 5 ns, have a narrow enough output pulse width to detect both particles coming out from the inverse beta decay (bar nue+p → n + e+), and its output amplitude should be linear to the number of photoelectrons generated inside the PMT, used for energy estimation. In this work, some of the main PMT characteristics are measured and a new readout circuit is proposed, described and characterized.

  8. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kriz, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5 day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.

  9. Study of thick, nuclear-compensated silicon detectors; Etude des detecteurs epais au silicium compense nucleairement

    Energy Technology Data Exchange (ETDEWEB)

    Le Coroller, Y. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-09-01

    A study is made here, from the point of view of the realization and the performance, of thick nuclear-compensated silicon detectors. After recalling the need for compensation and reviewing the existing methods, the author describes in detail the controlled realization of thick detectors by nuclear compensation from the theoretical and experimental points of view. The practical precautions which should be observed are given: control of the homogeneity of the starting material, control of the evolution of the compensation, elimination of parasitic processes. The performances of the detectors obtained are then studied: electrical characteristics (current, life-time) on the one hand, detection and spectrometry of penetrating radiations on the other hand. The results show, that the compensated diodes having an effective thickness of two millimeters operate satisfactorily as detectors for applied voltages of about 500 volts. The resolutions observed are then about 2 per cent for mono-energetic electrons and about 4 per cent for the gamma; they can be improved by the use of a pre-amplifier of very low background noise. (author) [French] Les detecteurs epais au silicium compense nucleairement sont etudies ici du double point de vue realisation et performances. Apres un rappel sur la necessite de la compensation et les procedes existants, la realisation controlee des detecteurs epais par compensation nucleaire est decrite en detail sous l'aspect theorique et l'aspect experimental. On met en evidence les precautions a prendre dans la pratique: controle de l'homogeneite du materiau de base, controle de l'evolution de la compensation, elimination des processus parasites. On etudie ensuite les performances de detecteurs obtenus : caracteristiques electriques (courant, duree de vie) d'une part, d'autre part detection et spectrometrie des rayonnements penetrants. Les resultats montrent que les diodes compensees ayant une epaisseur utile de deux

  10. Purification and preparation of bismuth(III) iodide for application as radiation semiconductor detector; Purificacao e preparacao do cristal semicondutor de iodeto de bismuto para aplicacao como detector de radiacao

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Caue de Mello

    2016-11-01

    This study describes the experimental procedure of a BiI{sub 3} purification method powder, aiming a future application of these semiconductor crystals as room temperature radiation detector. The Repeated Vertical Bridgman Technique was applied for the purification, based on the melting and nucleation phenomena. An ampoule filled with a maximum of 25% by volume of BiI{sub 3} powder was mounted into the Bridgman furnace and vertically moved at a speed of 2 millimeters per hour, inside the furnace with programmed thermal gradient and temperature profile, at a temperature maximum of 530 deg C. The reduction of the impurities in the BiI{sub 3}, each purification, was analysed by Instrumental Neutron Activation Analysis (INAA), in order to evaluate the efficiency of the purification technique established in this work, for trace metal impurities. It was demonstrated that the Repeated Bridgman is effective to reduce the concentration of many impurities in BiI{sub 3}, such as Ag, As, Br, Cr, K, Mo, Na and Sb. The crystalline structure of the BiI{sub 3} crystal purified twice and third times was similar to the BiI{sub 3} pattern. However, for BiI{sub 3} powder and purified once an intensity contribution of the BiOI was observed in the diffractograms. It is known that semiconductor detectors fabricated from high purity crystal exhibit significant improvement in their performance compared to those produced from low purity crystals. (author)

  11. High-Performance Low-Cost Portable Radiological and Nuclear Detectors Based on Colloidal Nanocrystals (TOPIC 07-B)

    Science.gov (United States)

    2016-07-01

    Autunite In order to evaluate the potential of lanthanide halide NCs as nuclear radiation detectors, we have investigated [Fig. 10.3(a)] their response...effects of CNCs exposed to nuclear radiation , it is important to evaluate their radiation hardness. We are in the process of conducting gamma...degree Fahrenheit ( o F) [T( o F) + 459.67]/1.8 kelvin (K) Radiation curie (Ci) [activity of radionuclides] 3.7 × 10 10 per second (s –1

  12. Detection of accelerated particles from pulsed plasma discharge using solid state nuclear track detector

    Indian Academy of Sciences (India)

    G M El-Aragi; U Seddik; A Abd El-Haliem

    2007-04-01

    The ion beam of a Mather-type 23.25 J plasma focus device operated with air filling at 10 Torr was registered using CR-39 nuclear track detector. The irradiated samples were etched in NaOH solution at 70°C for 1 h. It is found here that plasma beam contains multi-components of microbeams. The individual track density of microbeams is estimated and the total current density of the plasma stream is measured to be 1.2 mA/cm2. A model for counting the track density of individual microbeams is proposed here. Faraday cup measurements showed the ion pulse with energy ranging from 5.8 keV to 3.3 keV.

  13. Production of a diffuse very high reflectivity material for light collection in nuclear detectors

    CERN Document Server

    Pichler, B J; Mirzoyan, R; Weiss, L; Ziegler, S I

    2000-01-01

    A diffuse very high reflectivity material, based on polytetrafluorethylene (PTFE) for optimization of light-collection efficiency has been developed. PTFE powder was used to produce reflector block material. The powder was pressed with 525 kPa in a form and sintered at 375 deg. C. The reflectivity was above 98% within the spectral range from 350 to 1000 nm. The blocks of this material are machinable with saws, drilling and milling machines. The reflector is used as a housing for scintillating crystals in a nuclear medicine application (small animal positron emission tomograph). It is also used as a light collector in very high-energy gamma-ray astrophysicas experiments, HEGRA and MAGIC. The application of this inexpensive, easy to make diffuse reflector may allow the optimization of light collection in a wide range of low-level light-detector configurations.

  14. Nuclear reactor pulse calibration using a CdZnTe electro-optic radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kyle A., E-mail: knelson1@ksu.edu [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Geuther, Jeffrey A. [TRIGA Mark II Nuclear Reactor, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Neihart, James L.; Riedel, Todd A. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Rojeski, Ronald A. [Nanometrics, Inc., 1550 Buckeye Drive, Milpitas, CA 95035 (United States); Saddler, Jeffrey L. [TRIGA Mark II Nuclear Reactor, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Schmidt, Aaron J.; McGregor, Douglas S. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)

    2012-07-15

    A CdZnTe electro-optic radiation detector was used to calibrate nuclear reactor pulses. The standard configuration of the Pockels cell has collimated light passing through an optically transparent CdZnTe crystal located between crossed polarizers. The transmitted light was focused onto an IR sensitive photodiode. Calibrations of reactor pulses were performed using the CdZnTe Pockels cell by measuring the change in the photodiode current, repeated 10 times for each set of reactor pulses, set between 1.00 and 2.50 dollars in 0.50 increments of reactivity. - Highlights: Black-Right-Pointing-Pointer We demonstrated the first use of an electro-optic device to trace reactor pulses in real-time. Black-Right-Pointing-Pointer We examined the changes in photodiode current for different reactivity insertions. Black-Right-Pointing-Pointer Created a linear best fit line from the data set to predict peak pulse powers.

  15. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    Science.gov (United States)

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.

  16. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); Harraz, Farid A., E-mail: fharraz68@yahoo.com [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); Nanostructured Materials and Nanotechnology Division, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87 Helwan, Cairo 11421 (Egypt); Ali, Atif M. [Department of Physics, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Al-Sayari, S.A. [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); College of Science and Arts-Sharoura, Najran University (Saudi Arabia); Al-Hajry, A. [Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia)

    2016-09-11

    The photoluminescence (PL) and UV–vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin {sup 241}Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R{sup 2}=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16–40.82×10{sup 7} particles/cm{sup 2}. Additionally, a correlation coefficient R{sup 2}=0.9734 was achieved for the UV–vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV–vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  17. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    Science.gov (United States)

    Abdalla, Ayman M.; Harraz, Farid A.; Ali, Atif M.; Al-Sayari, S. A.; Al-Hajry, A.

    2016-09-01

    The photoluminescence (PL) and UV-vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin 241Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R2=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16-40.82×107 particles/cm2. Additionally, a correlation coefficient R2=0.9734 was achieved for the UV-vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV-vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  18. Dosimetry for ion-beam therapy using fluorescent nuclear track detectors and an automated reader

    CERN Document Server

    Greilich, Steffen; Klimpki, Grischa M; Kouwenberg, Jasper J M; Neuholz, Alexander; Pfeiler, Tina; Rahmanian, Shirin; Stadler, Alexander; Ulrich, Leonie

    2016-01-01

    For the assessment of effects of clinical ion-beams, dosimetry has to be complemented by information on particle-energy distribution or related quantities. Fluorescence nuclear track detectors made from C,Mg-doped alumina single crystals allow for the quantification of ion track density and energy loss on a single-track basis. In this study, their feasibility and accuracy to quantify fluence, linear-energy-transfer (LET) distributions, and eventually dose for a spread-out carbon ion Bragg peak was investigated. We found that while for the primary ions track densities agreed within a percent range with the reference data generated by Monte-Carlo radiation transport, the number of low-LET fragments in the beam was largely underestimated by approximately a factor three - the effect was most pronounced for protons where the measured fluence deviates at least an order of magnitude. Nevertheless, due to the dose major contribution of carbon ions, the determination of the individual detector sensitivity could be ide...

  19. Detection of special nuclear material by observation of delayed neutrons with a novel fast neutron composite detector

    Science.gov (United States)

    Mayer, Michael; Nattress, Jason; Barhoumi Meddeb, Amira; Foster, Albert; Trivelpiece, Cory; Rose, Paul; Erickson, Anna; Ounaies, Zoubeida; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material is crucial to countering nuclear terrorism and proliferation, but its detection is challenging. By observing the emission of delayed neutrons, which is a unique signature of nuclear fission, the presence of nuclear material can be inferred. We report on the observation of delayed neutrons from natural uranium by using monoenergetic photons and neutrons to induce fission. An interrogating beam of 4.4 MeV and 15.1 MeV gamma-rays and neutrons was produced using the 11B(d,n-γ)12C reaction and used to probe different targets. Neutron detectors with complementary Cherenkov detectors then discriminate material undergoing fission. A Li-doped glass-polymer composite neutron detector was used, which displays excellent n/ γ discrimination even at low energies, to observe delayed neutrons from uranium fission. Delayed neutrons have relatively low energies (~0.5 MeV) compared to prompt neutrons, which makes them difficult to detect using recoil-based detectors. Neutrons were counted and timed after the beam was turned off to observe the characteristic decaying time profile of delayed neutrons. The expected decay of neutron emission rate is in agreement with the common parametrization into six delayed neutron groups.

  20. High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors

    NARCIS (Netherlands)

    Kentgens, A.P.M.; Bart, J.; Bentum, van P.J.M.; Brinkmann, A.; Eck, van E.R.H.; Gardeniers, J.G.E.; Janssen, J.W.G.; Knijn, P.J.; Vasa, S.; Verkuijlen, M.H.W.

    2008-01-01

    The predominant means to detect nuclear magnetic resonance(NMR) is to monitor the voltage induced in a radiofrequency coil by the precessing magnetization. To address the sensitivity of NMR for mass-limited samples it is worthwhile to miniaturize this detector coil. Although making smaller coils see

  1. Calibration factor determination for solid nuclear track detectors CR-39 type exposed to Rn-222; Determinacao do fator de calibracao para detectores solidos de tracos nucleares tipo CR-39 expostos a Rn-222

    Energy Technology Data Exchange (ETDEWEB)

    Cazula, Camila Dias; Campos, Marcia Pires de; Mazzilli, Barbara Paci, E-mail: cdcazula@ipen.br, E-mail: mpcampos@ipen.br, E-mail: mazzilli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    In the detection method with solid nuclear track detector, when a heavy particle rests on the detector surface, causes a breakdown in their molecular structure forming a trace. One of the typical applications of these detectors is the measurement of the concentration of Rn -222 in air, a noble radioactive gas, part of the U-238 series, emitting alpha particles and important in epidemiological studies to protect individuals from natural radiation. To determine the concentration of Rn -222 in the air in a room is necessary to know the density of lines (traces / cm{sup 2}) on the detector surface, the exposure time and the calibration factor. The determination of the calibration factor for CR-39 detectors was taken from the exposure of these to a known concentration of Rn-222. Therefore, the detectors were placed inside a cell of Lucas adapted and subsequently exposed to a concentration of Rn-222 15 kBq / m{sup 3}, by means of the apparatus RN-150 Pylon Electronics Incorporation, which has a source of Ra-226 and releases known concentrations of Rn-222. Six calibration factor determinations were performed, the average value obtained was 0.0534 ±0.0021 (traces / cm{sup 2} per Bq / m{sup 3} day). The results are consistent with literature values for the same type of detector and showed good reproducibility.

  2. Fully encapsulated directional self-powered gamma ray detector for use in in-core nuclear reactor measurements

    Energy Technology Data Exchange (ETDEWEB)

    LeVert, F.E.; Cox, S.A.

    1979-01-01

    A study of a fully encapsulated directional self-powered gamma ray detector designed for localized in core measurements in a nuclear reactor was conducted. The detector consisted of a multilayer arrangement of a metal-dielectric-metal-dielectric-metal structure. The dielectric material was made of two plates of unequal thicknesses which were placed on opposite sides of the central metal plate. The direction discrimination exhibited by the detector was attributed to the combined effect of electron ranges, Photo-Compton electron generation rates, and the presence of E-fields in the unequal thicknesses of dielectric material. Results showing the response of the detector when it was placed in a gamma ray field with a known anisotropic component are presented.

  3. Electronic and optical properties of lead iodide

    DEFF Research Database (Denmark)

    Ahuja, R.; Arwin, H.; Ferreira da Silva, A.

    2002-01-01

    The electronic properties and the optical absorption of lead iodide (PbI2) have been investigated experimentally by means of optical absorption and spectroscopic ellipsometry, and theoretically by a full-potential linear muffin-tin-orbital method. PbI2 has been recognized as a very promising...... detector material with a large technological applicability. Its band-gap energy as a function of temperature has also been measured by optical absorption. The temperature dependence has been fitted by two different relations, and a discussion of these fittings is given. ©2002 American Institute of Physics....

  4. 21 CFR 184.1265 - Cuprous iodide.

    Science.gov (United States)

    2010-04-01

    ... with potassium iodide under slightly acidic conditions. (b) The ingredient must be of a purity suitable... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and... Substances Affirmed as GRAS § 184.1265 Cuprous iodide. (a) Cuprous iodide (copper (I) iodide, CuI, CAS...

  5. Measurements of beta ray spectra in CANDU nuclear generating stations using a silicon detector coincidence telescope

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S.; Weizman, Y. [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics; Hirning, C.R. [Ontario Hydro, Whitby, ON (Canada). Health Physics Dept.

    1996-12-31

    The measurement of beta ray spectra at various work locations inside nuclear generating stations operated by Ontario Hydro is described. The measurements were carried out using an advanced coincidence telescope spectrometer using silicon detectors only. The spectrometer is capable of measuring electron energies over the range 60 keV- 2500 keV with close to 100% coincidence efficiency. Photon rejection is carried out by requiring a coincidence between either two or three silicon detectors. Monte Carlo calculations were then used to estimate beta correction factors for the LiF:Mg,Ti elements used in the Ontario Hydro thermoluminescence dosemeters. Averaging over all the measured beta correction factors for the `skin` chip (100 mg.cm{sup -2}) results in a value of 2.73 {+-} 0.77 and for the extremity dosemeter (240 mg.cm{sup -2}) an average value of 4.42 {+-} 1.17 is obtained. These values are 57% and 120% greater, respectively, than the current values used by Ontario Hydro. In addition, beta correction factors for nine representative spectra were calculated for 40 mg.cm{sup -2} chips and 20 mg.cm{sup -2} chips and the results demonstrate the benefits of decreased dosemeter thickness. The average value of the beta correction factor, as well as the spread in the beta correction factor, decreases dramatically from 4.8 {+-} 2.1 (240 mg.cm{sup -2}) to 1.29 ``1.2`` +-`` 0.1 (20 mg.cm{sup -2}). (author).

  6. Measurement of the energy spectrum of {sup 252}Cf fission fragments using nuclear track detectors and digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G.; Golzarri, J. I. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Castano, V. M. [UNAM, Centro de Fisica Aplicada y Tecnologia Avanzada, Boulevard Juriquilla 3001, Santiago de Queretaro, 76230 Queretaro (Mexico); Gaso, I. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Mena, M.; Segovia, N. [UNAM, Instituto de Geofisica, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-02-15

    The energy spectrum of {sup 252}Cf fission fragments was measured using nuclear track detectors and digital image analysis system. The detection material was fused silica glass. The detectors were chemically etched in an 8% HF solution. After experimenting with various etching time, it was found that the best resolution of the track diameter distribution was obtained after 30 minutes of etching. Both Gaussian and Lorentzian curves were fit to the track diameter distribution histograms and used to determine the basic parameters of the distribution of the light (N{sub L}) and heavy (N{sub H}) formed peaks and the minimum of the central valley (N{sub V}). Advantages of the method presented here include the fully-automated analysis process, the low cost of the nuclear track detectors and the simplicity of the nuclear track method. The distribution resolution obtained by this method is comparable with the resolution obtained by electronic analysis devices. The descriptive variables calculated were very close to those obtained by other methods based on the use of semiconductor detectors. (Author)

  7. Development of the strontium iodide coded aperture (SICA) instrument

    Science.gov (United States)

    Mitchell, Lee J.; Phlips, Bernard F.; Grove, J. Eric; Cordes, Ryan

    2015-08-01

    The work reports on the development of a Strontium Iodide Coded Aperture (SICA) instrument for use in space-based astrophysics, solar physics, and high-energy atmospheric physics. The Naval Research Laboratory is developing a prototype coded aperture imager that will consist of an 8 x 8 array of SrI2:Eu detectors, each read out by a silicon photomultiplier. The array would be used to demonstrate SrI2:Eu detector performance for space-based missions. Europium-doped strontium iodide (SrI2:Eu) detectors have recently become available, and the material is a strong candidate to replace existing detector technology currently used for space-based gamma-ray astrophysics research. The detectors have a typical energy resolution of 3.2% at 662 keV, a significant improvement over the 6.5% energy resolution of thallium-doped sodium iodide. With a density of 4.59 g/cm and a Zeff of 49, SrI2:Eu has a high efficiency for MeV gamma-ray detection. Coupling this with recent improvements in silicon photomultiplier technology (i.e., no bulky photomultiplier tubes) creates high-density, large-area, low-power detector arrays with good energy resolution. Also, the energy resolution of SrI2:Eu makes it ideal for use as the back plane of a Compton telescope.

  8. MCNPX simulations of the silicon carbide semiconductor detector response to fast neutrons from D-T nuclear reaction

    Science.gov (United States)

    Sedlačková, Katarína; Šagátová, Andrea; Zat'ko, Bohumír; Nečas, Vladimír; Solar, Michael; Granja, Carlos

    2016-09-01

    Silicon Carbide (SiC) has been long recognized as a suitable semiconductor material for use in nuclear radiation detectors of high-energy charged particles, gamma rays, X-rays and neutrons. The nuclear interactions occurring in the semiconductor are complex and can be quantified using a Monte Carlo-based computer code. In this work, the MCNPX (Monte Carlo N-Particle eXtended) code was employed to support detector design and analysis. MCNPX is widely used to simulate interaction of radiation with matter and supports the transport of 34 particle types including heavy ions in broad energy ranges. The code also supports complex 3D geometries and both nuclear data tables and physics models. In our model, monoenergetic neutrons from D-T nuclear reaction were assumed as a source of fast neutrons. Their energy varied between 16 and 18.2 MeV, according to the accelerating voltage of the deuterons participating in D-T reaction. First, the simulations were used to calculate the optimum thickness of the reactive film composed of High Density PolyEthylene (HDPE), which converts neutral particles to charged particles and thusly enhancing detection efficiency. The dependency of the optimal thickness of the HDPE layer on the energy of the incident neutrons has been shown for the inspected energy range. Further, from the energy deposited by secondary charged particles and recoiled ions, the detector response was modeled and the effect of the conversion layer on detector response was demonstrated. The results from the simulations were compared with experimental data obtained for a detector covered by a 600 and 1300 μm thick conversion layer. Some limitations of the simulations using MCNPX code are also discussed.

  9. Development of novel on-chip, customer-design spiral biasing adaptor on for Si drift detectors and detector arrays for X-ray and nuclear physics experiments

    Science.gov (United States)

    Li, Zheng; Chen, Wei

    2014-11-01

    A novel on-chip, customer-design spiral biasing adaptor (SBA) has been developed. A single SBA is used for biasing a Si drift detector (SDD) and SDD array. The use of an SBA reduces the biasing current. This paper shows the calculation of the geometry of an SBA and an SDD to get the best drift field in the SDD and SDD array. Prototype SBAs have been fabricated to verify the concept. Electrical measurements on these SBAs are in agreement with the expectations. The new SDD array with an SBA can be used for X-ray detection and in nuclear physics experiments.

  10. Development of novel on-chip, customer-design spiral biasing adaptor on for Si drift detectors and detector arrays for X-ray and nuclear physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng, E-mail: lizheng@xtu.edu.cn [School of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan, Hunan 411105 (China); Chen, Wei [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-11-21

    A novel on-chip, customer-design spiral biasing adaptor (SBA) has been developed. A single SBA is used for biasing a Si drift detector (SDD) and SDD array. The use of an SBA reduces the biasing current. This paper shows the calculation of the geometry of an SBA and an SDD to get the best drift field in the SDD and SDD array. Prototype SBAs have been fabricated to verify the concept. Electrical measurements on these SBAs are in agreement with the expectations. The new SDD array with an SBA can be used for X-ray detection and in nuclear physics experiments.

  11. Nuclear Recoil Calibrations in the LUX Detector Using Direct and Backscattered D-D Neutrons

    Science.gov (United States)

    Rhyne, Casey; LUX Collaboration

    2016-03-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will discuss the latest calibration of the nuclear recoil (NR) response in liquid xenon (LXe), performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced via the Adelphi Technologies, Inc. DD108 D-D neutron generator. The calibration measured the NR charge yield in LXe (Qy) to 0.7 keVnr recoil energy with an absolute determination of deposited energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keVnr, both of which improve upon all previous measurements. I will then focus in depth on the extension of this calibration using a new technique for generating a beam of sub-300 keV quasi-mono-energetic neutrons via the backscatter of 2.45 MeV neutrons off a deuterium-based reflector. Current simulations work optimizing the technique, its advantages, and its impact on future research will be discussed, including the extension of the NR Qy calibration down to 0.14 keVnr, an independent NR Ly calibration, and an a priori estimate of the expected 8B solar neutrino-nucleus coherent scattering signal in the upcoming LUX-ZEPLIN experiment.

  12. Measurements of Indoor Radon Levels in India using Solid State Nuclear Track Detectors: Need for Standardisation

    Directory of Open Access Journals (Sweden)

    M.C. Subba Ramu

    1992-10-01

    Full Text Available Solid-state nuclear track detectors are being used to obtain the time integrated concentration levels of indoor radon/thoron and their daughters. This technique is preferred for taking such measurements in dwellings. Such measurements are important as the radiation dose to human beings due to indoor radon constitutes more than 50 per cent of the total dose including that received from the natural sources. Normalisation is necessary to obtain a representative value of the effective dose equivalent to the population. Indoor measurements carried out by several laboratories all over the country show that the indoor radon levels vary from 1.5 to about 2000 Bq m/sup -3/, while the normal level is in the range of 10 to 60 Bq m/sup -3/. It is rather difficult to compare the levels since the exposure conditions, the period of measurements and the calibration techniques used are not standardised. The present paper discusses the measurements of indoor radon in India by various groups and the important problems associated with the standardisation of these measurements. The standardisation procedure and the calibration set-up developed at this laboratory are also presented.

  13. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    Energy Technology Data Exchange (ETDEWEB)

    Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, J. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, C. [Texas A & M Univ., College Station, TX (United States)

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early on in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.

  14. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    Science.gov (United States)

    2008-09-01

    cm3, ~ 3 kg, ~ 140 %, or larger). Maintenance-free Stirling -cycle mechanical coolers are being used. These coolers have operating lifetimes...photograph of the complete RASA 1 detector system is shown in Figure 1. The detector is cooled to temperatures below 50 K when the cooler is...cryostat- cooler combination can ultimately serve as a viable detector unit for RASA detector systems . During the pursuit of the microphonic noise

  15. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, D. R., E-mail: daniel.r.napoli@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Maggioni, G., E-mail: maggioni@lnl.infn.it; Carturan, S.; Gelain, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, 35121 Padova (Italy); Eberth, J. [Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln (Germany); Grimaldi, M. G.; Tatí, S. [Department of Physics and Astronomy, University of Catania (Italy); Riccetto, S. [University of Camerino and INFN of Perugia (Italy); Mea, G. Della [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); University of Trento (Italy)

    2016-07-07

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  16. Measurements of charged particle spectra and nuclear modification factor in p+Pb collisions with the ATLAS detector

    CERN Document Server

    Balek, Petr

    2014-01-01

    The ATLAS detector at the LHC obtained the sample of p+Pb data at $\\sqrt{s_{NN}}={}$5.02TeV with integrated luminosity of 25nb${}^{-1}$, which can be compared to the pp data obtained by interpolating pp measurements at $\\sqrt{s}={}$2.76TeV and 7TeV. Due to the excellent capabilities of the ATLAS detector, and its stable operation in heavy ion as well as proton-proton physics runs, the data allow measurements of the nuclear modification factor, ratio of heavy ion charged particle spectra divided by pp reference, in different centrality classes over a wide range of rapidity. The charged particle nuclear modification factor is found to vary significantly as a function of transverse momentum with a stronger dependence in more peripheral collisions.

  17. Formation of cyanogen iodide by lactoperoxidase.

    Science.gov (United States)

    Schlorke, Denise; Flemmig, Jörg; Birkemeyer, Claudia; Arnhold, Jürgen

    2016-01-01

    The haem protein lactoperoxidase (LPO) is an important component of the anti-microbial immune defence in external secretions and is also applied as preservative in food, oral care and cosmetic products. Upon oxidation of SCN(-) and I(-) by the LPO-hydrogen peroxide system, oxidised species are formed with bacteriostatic and/or bactericidal activity. Here we describe the formation of the inter(pseudo)halogen cyanogen iodide (ICN) by LPO. This product is formed when both, thiocyanate and iodide, are present together in the reaction mixture. Using (13)C nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry we could identify this inter(pseudo)halogen after applying iodide in slight excess over thiocyanate. The formation of ICN is based on the reaction of oxidised iodine species with thiocyanate. Further, we could demonstrate that ICN is also formed by the related haem enzyme myeloperoxidase and, in lower amounts, in the enzyme-free system. As I(-) is not competitive for SCN(-) under physiologically relevant conditions, the formation of ICN is not expected in secretions but may be relevant for LPO-containing products.

  18. Neutronics experiments, radiation detectors and nuclear techniques development in the EU in support of the TBM design for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Angelone, M., E-mail: maurizio.angelone@enea.it [ENEA UT-FUS C.R. Frascati, via E. Fermi, 45-00044 Frascati (Italy); Fischer, U. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Flammini, D. [ENEA UT-FUS C.R. Frascati, via E. Fermi, 45-00044 Frascati (Italy); Jodlowski, P. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Klix, A. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kodeli, I. [Jožef Stefan Institute, Ljubljana (Slovenia); Kuc, T. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Leichtle, D. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Lilley, S. [Culham Centre for Fusion Energy, Culham, OX14 3DB (United Kingdom); Majerle, M.; Novák, J. [Nuclear Physics Institute of the ASCR, Řež 130, 250 68 Řež (Czech Republic); Ostachowicz, B. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Packer, L.W. [Culham Centre for Fusion Energy, Culham, OX14 3DB (United Kingdom); Pillon, M. [ENEA UT-FUS C.R. Frascati, via E. Fermi, 45-00044 Frascati (Italy); Pohorecki, W. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Radulović, V. [Jožef Stefan Institute, Ljubljana (Slovenia); Šimečková, E. [Nuclear Physics Institute of the ASCR, Řež 130, 250 68 Řež (Czech Republic); and others

    2015-10-15

    Highlights: • A number of experiments and tests are ongoing to develop detectors and methods for HCLL and HCPM ITER-TBM. • Experiments for measuring gas production relevant to IFMIF are also performed using a cyclotron. • A benchmark experiment with a Cu block is performed to validate copper cross sections. • Experimental techniques to measure tritium in TBM are presented. • Experimental verification of activation cross sections for a Neutron Activation System for TBM is addressed. - Abstract: The development of high quality nuclear data, radiation detectors and instrumentation techniques for fusion technology applications in Europe is supported by Fusion for Energy (F4E) and conducted in a joint and collaborative effort by several European research associations (ENEA, KIT, JSI, NPI, AGH, and CCFE) joined to form the “Consortium on Nuclear Data Studies/Experiments in Support of TBM Activities”. This paper presents the neutronics activities carried out by the Consortium. A selection of available results are presented. Among then a benchmark experiment on a pure copper block to study the Cu cross sections at neutron energies relevant to fusion, the fabrication of prototype neutron detectors able to withstand harsh environment and temperature >200 °C (artificial diamond and self-powered detectors) developed for operating in ITER-TBM as well as measurement of relevant activation and integral gas production cross-sections. The latter measured at neutron energies relevant to IFMIF (>14 MeV) and the development of innovative experimental techniques for tritium measurement in TBM.

  19. a Portable Pixel Detector Operating as AN Active Nuclear Emulsion and its Application for X-Ray and Neutron Tomography

    Science.gov (United States)

    Vykydal, Z.; Jakubek, J.; Holy, T.; Pospisil, S.

    2006-04-01

    This work is devoted to the development of a USB1.1 (Universal Serial Bus) based read out system for the Medipix2 detector to achieve maximum portability of this position sensitive detecting device. All necessary detector support is integrated into one compact system (80 × 50 × 20 mm3) including the detector bias source (up to 100 V). The read out interface can control external I2C REFID="9789812773678_0123FN002"> based devices, so in case of tomography it is easy to synchronize detector shutter with stepper motor control. An additional significant advantage of the USB interface is the support of back side pulse processing. This feature enables to determine the energy additionally to the position of a heavy charged particle hitting the sensor. Due to the small pixel dimensions it is also possible to distinguish the type of single quanta of radiation from the track created in the pixel detector as in case of an active nuclear emulsion.

  20. Synthesis of mercuric iodide and bismuth tri-iodide nanoparticles for heavy metal iodide films nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Fornaro, L.; Pereira, H.Bentos [Compound Semiconductors Group, CURE, Universidad de la Republica, Rocha (Uruguay); Aguiar, I.; Perez Barthaburu, M. [Compound Semiconductors Group, Facultad de Quimica, Univ. de la Republica, Montevideo (Uruguay)

    2011-12-15

    We synthesized mercuric iodide and bismuth tri-iodide nanoparticles by suspension in octadecene, from Hg(NO{sub 3}){sub 2}.H{sub 2}O and I{sub 2}, and from Bi(NO{sub 3}){sub 3}.5H{sub 2}O and I{sub 2}, respectively. The best synthesis conditions were 2 h at 70-80 C, followed by 10 min at 110 C for mercuric iodide nanoparticles, and 4 h at 80-110 C, followed by 10 min at 180-210 C for bismuth tri-iodide ones. Nanoparticles were then washed and centrifuged with ether repeatedly. Compounds identity was confirmed by X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). We found shifts of the X-ray diffraction maxima for nanoparticles of both compounds. We characterized the nanoparticles by transmission (TEM) and scanning (SEM) electron microscopy. We obtained disk-like and squared mercuric iodide nanostructures, 80-140 nm and 100-125 nm in size respectively. We also obtained rounded and rod-like bismuth tri-iodide nanoparticles, 30-500 nm in size. Acetonitrile and isopropanol suspensions of mercuric iodide nanoparticles, and acetonitrile suspension of bismuth tri-iodide nanoparticles exhibited peak maxima shifts in their UV-Vis spectra. We synthesized for the first time mercuric iodide and bismuth tri-iodide nanoparticles by the suspension method, although we have not yet obtained uniform shape and size distributions. They offer interesting perspectives for crystalline film nucleation and for improving current applications of these materials, as well as for opening new ones. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    Science.gov (United States)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  2. Calibration of new batches and a study of applications of nuclear track detectors under the harsh conditions of nuclear fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Malinowska, A., E-mail: a.malinowska@ncbj.gov.pl [National Centre for Nuclear Research, Andrzeja Soltana 7 Str., 05-400 Otwock (Poland); Szydlowski, A.; Jaskola, M.; Korman, A.; Malinowski, K.; Kuk, M. [National Centre for Nuclear Research, Andrzeja Soltana 7 Str., 05-400 Otwock (Poland)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Each new batch of PM-355 material should be carefully calibrated. Black-Right-Pointing-Pointer The detectors heated at a temperature higher than 100 Degree-Sign C demonstrate v nearly equal to 1. Black-Right-Pointing-Pointer The dependence of V{sub B} on the temperature is similar to the dependence of V{sub B} on the dose of electron and gamma radiation. Black-Right-Pointing-Pointer The aging effect of these materials also has a significant influence on the track diameter. - Abstract: This paper describes calibration studies of PM-355 detectors manufactured at different times in order to compare their sensitivity to the investigated ions. These studies were motivated by the application of solid-state nuclear track detectors (SSNTDs) in fusion experiments to measure energetic ions escaping from high-temperature plasmas. The CR-39 detector and its new versions such as PM-355, PM-500, PM-600 have been examined for several years at our institute. The PM-355 plastic appeared to be the best, especially for the detection of light ions. However, to use these detectors optimally, especially in spectroscopic measurements, each new batch of PM-355 material should be carefully calibrated. In high temperature plasma experiments the detectors operate under harsh conditions of high temperature, heat impact, intense X-ray, neutron and fast electron radiation. In order to evaluate the effect of these conditions on the crater formation process, some of the {alpha} particle- and proton-irradiated PM-355 detector samples were heated in an oven and then etched and scanned. Other alpha- and proton-irradiated samples were exposed to {gamma} and electron radiation of doses varying from 100 to 2000 kGy. The irradiated samples were then etched in steps and the bulk etching rate v{sub B} of the PM-355 material was determined. The craters induced by the projectiles in both heated and {gamma} and electron irradiated samples differ considerably from the

  3. Determination of Nuclear Charge Distributions of Fission Fragments from ^{235}U (n_th, f) with Calorimetric Low Temperature Detectors

    Science.gov (United States)

    Grabitz, P.; Andrianov, V.; Bishop, S.; Blanc, A.; Dubey, S.; Echler, A.; Egelhof, P.; Faust, H.; Gönnenwein, F.; Gomez-Guzman, J. M.; Köster, U.; Kraft-Bermuth, S.; Mutterer, M.; Scholz, P.; Stolte, S.

    2016-08-01

    Calorimetric low temperature detectors (CLTD's) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of ^{235}U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with ^{109}Ag and ^{127}I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue-Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82le A le 132 and a systematic measurement of ^{92}Rb fission yields, as well as investigations of fission yields toward the symmetry region.

  4. 21 CFR 172.375 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  5. X-ray diffuse scattering for evaluation of wide bandgap semiconductor nuclear radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Goorsky, M.S. [University of Southern California, Los Angeles, CA (United States). Dept. of Mater. Sci. and Eng.; Yoon, H. [University of Southern California, Los Angeles, CA (United States). Dept. of Mater. Sci. and Eng.; Schieber, M. [Hebrew Univ., Jerusalem (Israel). Graduate Sch. of Appl. Sci.; James, R.B. [Sandia Nat. Labs., Livermore, CA (United States). Dept. 8347; McGregor, D.S. [Sandia Nat. Labs., Livermore, CA (United States). Dept. 8347; Natarajan, M. [TN Technol., Round Rock, TX (United States)

    1996-10-01

    The crystalline perfection of solid state radiation detectors was examined using triple axis x-ray diffraction. Triple axis techniques provide a means to analyze the origin of diffraction peak broadening: the effects of strain (due to deviations in alloy composition or stoichiometry) and lattice tilts (mosaic structure) can be separated. Cd{sub 1-x}Zn{sub x}Te (x{approx}0.1), HgI{sub 2}, and GaAs detector materials were studied. In the cases of Cd{sub 1-x}Zn{sub x}Te and HgI{sub 2} the crystalline properties of detectors with different spectral responses to {gamma}-radiation were determined. Increased mosaicity was universally found to be related to deteriorated detector properties. For Cd{sub 1-x}Zn{sub x}Te, detectors with poor performance possessed greater levels of diffuse scatter due to lattice tilts than did high quality detectors. For GaAs, low angle grain boundaries were attributed to impaired detector performance. Additionally, in large HgI{sub 2} detectors, deviations from stoichiometry were also related to reduced performance. Interestingly, HgI{sub 2} detectors which possessed a sharp spectral response to {gamma}-radiation but also showed polarization were of comparable crystallinity to those detectors which did not exhibit polarization effects. This initial analysis suggests that polarization is related to native point defects or chemical impurities which do not significantly alter the crystallinity of the material. Overall, within a given class of materials, improved detector performance (better spectral response) always correlated with better material quality. (orig.).

  6. Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Montesi, M C; Russo, P

    2002-01-01

    We are investigating the feasibility of an intraoperative imaging probe for lymphoscintigraphy with Tc-99m tracer, for sentinel node radioguided surgery, using the Medipix series of hybrid detectors coupled to a collimator. These detectors are pixelated semiconductor detectors bump-bonded to the Medipix1 photon counting read-out chip (64x64 pixel, 170 mu m pitch) or to the Medipix2 chip (256x256 pixel, 55 mu m pitch), developed by the European Medipix collaboration. The pixel detector we plan to use in the final version of the probe is a semi-insulating GaAs detector or a 1-2 mm thick CdZnTe detector. For the preliminary tests presented here, we used 300-mu m thick silicon detectors, hybridized via bump-bonding to the Medipix1 chip. We used a tungsten parallel-hole collimator (7 mm thick, matrix array of 64x64 100 mu m circular holes with 170 mu m pitch), and a 22, 60 and 122 keV point-like (1 mm diameter) radioactive sources, placed at various distances from the detector. These tests were conducted in order ...

  7. Nuclear physics with simple and multi-element detectors and with stable and radioactive beams

    Indian Academy of Sciences (India)

    Neil Rowley

    2001-07-01

    The phenomenon of fusion barrier distributions is discussed in the context of a problem already investigated in some detail with simple detection systems, but possessing avenues to studies with multi-detector arrays. The complementarity of research with simple and complex detectors, as well as with stable and radioactive beams, will be highlighted.

  8. Barium iodide and strontium iodide crystals and scintillators implementing the same

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Stephen A.; Cherepy, Nerine J.; Hull, Giulia E.; Drobshoff, Alexander D.; Burger, Arnold

    2016-11-29

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV, where the strontium iodide material is characterized by a volume not less than 1 cm.sup.3. In another embodiment, a scintillator optic includes europium-doped strontium iodide providing at least 50,000 photons per MeV, where the europium in the crystal is primarily Eu.sup.2+, and the europium is present in an amount greater than about 1.6%. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, where a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 and 1.0, the scintillator optic is a crystal that provides at least 50,000 scintillation photons per MeV and energy resolution of less than about 5% at 662 keV, and the crystal has a volume of 1 cm.sup.3 or more; the scintillator optic contains more than about 2% europium.

  9. Resonant nuclear scattering of synchrotron radiation: Detector development and specular scattering from a thin layer of {sup 57}Fe

    Energy Technology Data Exchange (ETDEWEB)

    Baron, A.Q.R.

    1995-04-01

    This thesis explores resonant nudear scattering of synchrotron radiation. An introductory chapter describes some useful concepts, such as speedup and coherent enhancement, in the context of some basic physical principles. Methods of producing highly monochromatic synchrotron beams usmg either electronic or nuclear scattering are also discussed. The body of the thesis concentrates on detector development and specular scattering from iynthetic layered materials. A detector employing n-dcrochannel plate electron multipliers is shown to have good ({approximately}50%) effidency for detecting 14.4 key x-rays incident at small ({approximately}0.5 degree) grazing angles onto Au or CsI photocathodes. However, being complicated to use, it was replaced with a large area (>=lan2) avalanche photodiode (APD) detector. The APD`s are simpler to use and have comparable (30--70%) efficiencies at 14.4 key, subnanosecond time resolution, large dynan-dc range (usable at rates up to {approximately}10{sup 8} photons/second) and low (<{approximately}0.01 cts/sec) background rates. Maxwell`s equations are used to derive the specular x-ray reflectivity of layered materials with resonant transitions and complex polarization dependencies. The effects of interfadal roughness are treated with some care, and the distorted wave Born approximation (DWBA) used to describe electronic scattering is generalized to the nuclear case. The implications of the theory are discussed in the context of grazing incidence measurements with emphasis on the kinematic and dynamical aspects of the scattering.

  10. Applications of solid-state nuclear track detectors (SSNTDs) for fast ion and fusion reaction product measurements in TEXTOR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, A.; Malinowski, K.; Malinowska, A. [Association EURTOM-IPPLM Warsaw, The Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Wassenhove, G. Van [EURATOM-Belgium State Association, LPP, ERM/KMS, Trilateral Euregio Cluster, B-1000 Brussels (Belgium); Schweer, B. [Association EURATOM-FZJ, Institutte of Plasma Physicx, Juelich (Germany)

    2011-07-01

    Full text of publication follows: The paper reports on measurements of fusion reaction protons which were performed on TEXTOR facility in January 2009. The basic experimental scheme was similar to that applied in the previous measurements [1, 2]. The main experimental tool equipment was a small ion pinhole camera which was equipped with a PM-355 detector sample and was attached to a water cooled manipulator. The camera was placed below the plasma ring in the direction of ion drifts, at a distance of 4.4 cm from LCFS. However, in the described experiment it was aligned at an angle to the mayor TEXTOR radius (contrary to previous experiments), so that the input pinhole was oriented first at {gamma} = 45 degrees (shots 108799 - 108818) and then {gamma} = 600 (shots 108832 - 108847). The discharges were executed with one neutral beam of the total power 0.6 - 1.0 MW. In the first series (Nos 108799 - 108818) the plasma was additionally heated by ICRH of frequency 38 MHz. The irradiated detector samples were subjected to the same interrupted etching procedure as the samples used in the CR-39/PM-355 detector calibration measurements [1, 2]. After that, track density distributions and track diameter histograms were measured under an optical microscope. By the use of the calibration curves, it was possible to distinguish craters produced by protons from other craters and to convert the obtained histograms into proton energy spectra. The craters induced by lower energy ions appeared to be concentrated in narrower areas, whereas higher energy ions were registered in a more diffused detector fields. The paper shows again that the CR-39/PM-355 detector is an useful diagnostic tool for tokamak experiments, for measurement of charged ions. References: [1] A. Szydlowski, A. Malinowska, M. Jaskola, A. Korman, M.J. Sadowski, G. Van Wassenhove, B. Schweer and the TEXTOR team, A. Galkowski, 'Application of Solid State Nuclear Track Detectors in TEXTOR Experiment for Measurements

  11. Iodide transport and breast cancer.

    Science.gov (United States)

    Poole, Vikki L; McCabe, Christopher J

    2015-10-01

    Breast cancer is the second most common cancer worldwide and the leading cause of cancer death in women, with incidence rates that continue to rise. The heterogeneity of the disease makes breast cancer exceptionally difficult to treat, particularly for those patients with triple-negative disease. To address the therapeutic complexity of these tumours, new strategies for diagnosis and treatment are urgently required. The ability of lactating and malignant breast cells to uptake and transport iodide has led to the hypothesis that radioiodide therapy could be a potentially viable treatment for many breast cancer patients. Understanding how iodide is transported, and the factors regulating the expression and function of the proteins responsible for iodide transport, is critical for translating this hypothesis into reality. This review covers the three known iodide transporters - the sodium iodide symporter, pendrin and the sodium-coupled monocarboxylate transporter - and their role in iodide transport in breast cells, along with efforts to manipulate them to increase the potential for radioiodide therapy as a treatment for breast cancer.

  12. Measurement of nuclear activity with Ge detectors and its uncertainty; Medicion de actividad nuclear con detectores de Ge y su incertidumbre

    Energy Technology Data Exchange (ETDEWEB)

    Cortes P, C.A

    1999-07-01

    The objective of this work is to analyse the influence magnitudes which affect the activity measurement of gamma transmitter isolated radioactive sources. They prepared by means of the gravimetric method, as well as, determining the uncertainty of such measurement when this is carried out with a gamma spectrometer system with a germanium detector. This work is developed in five chapters: In the first one, named Basic principles it is made a brief description about the meaning of the word Measurement and its implications and the necessaries concepts are presented which are used in this work. In the second chapter it is exposed the gravimetric method used for the manufacture of the gamma transmitter isolated radioactive sources, it is tackled the problem to determine the main influence magnitudes which affect in the measurement of their activity and the respective correction factors and their uncertainties are deduced. The third chapter describes the gamma spectrometry system which is used in this work for the measurement of the activity of isolated sources and also its performance and experimental arrangement that it is used. In the fourth chapter are applied the three previous items with the object of determining the uncertainty which would be obtained in the measurement of an isolated radioactive source elaborated with the gravimetric method in the experimental conditions less favourable predicted above the obtained results from the chapter two. The conclusions are presented in the fifth chapter and they are applied to establish the optimum conditions for the measurement of the activity of a gamma transmitter isolated radioactive source with a spectrometer with germanium detector. (Author)

  13. Gas-filled position-sensitive detectors of thermal neutrons at the Konstantinov Petersburg Nuclear Physics Institute of the Russian Academy of Sciences

    Science.gov (United States)

    Andreev, V. A.; Ganzha, G. A.; Ivanov, E. A.; Ilyin, D. S.; Kovalenko, S. N.; Kolkhidashvili, M. R.; Krivshich, A. G.; Nadtochy, A. V.; Runov, V. V.; Soloveĭ, V. A.; Shabanov, G. D.

    2010-05-01

    The manufacturing line for the development and fabrication of position-sensitive detectors of thermal neutrons has been organized at the Petersburg Nuclear Physics Institute of the Russian Academy of Sciences. Three detectors with sensitive regions 300 × 170 (prototype), 200 × 200, and 300 × 300 mm in size have been constructed to date. The detectors represent multiwire proportional chambers with cathode data readout to a delay line. The devices are filled with the 3He/CF4 gas mixture. These detectors are intended for modernizing the detector systems of the Vector and Membrana-2 diffractometers (VVR-M reactor, Konstantinov Petersburg Nuclear Physics Institute of the Russian Academy of Sciences, Gatchina, Russia).

  14. Defects in CdMnTe crystals for nuclear detector applications

    Institute of Scientific and Technical Information of China (English)

    Du Yuanyuan; Jie Wanqi; Xu Yadong; Zheng Xin; Wang Tao; Yu Hui

    2013-01-01

    A laser scanning confocal microscope (LSCM) and a field-emission scanning electron microscope (FESEM) were used to study the defects in CdMnTe crystals,such as twin boundaries,Te inclusions,and dislocations.Twin boundaries were usually decorated with Te inclusions,which could induce dislocations.The optical,electrical properties and detector performance of CdMnTe crystals with twins and free of twins were compared.The results showed that the wafers with a high density of twins usually had lower average IR transmittance and poorer crystalline quality.Besides,the energy spectra indicated that twin boundaries in a CdMnTe detector had a negative effect on detector performance; the values of both the energy resolution and (μτ)e were nearly half of those for a single crystal detector.

  15. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    Science.gov (United States)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  16. Radon diffusion studies in some building materials using solid state nuclear track detectors

    CERN Document Server

    Singh, S; Singh, B; Singh, J

    1999-01-01

    LR-115 plastic track detector has been used to study radon diffusion through some building materials, viz. cement, soil, marble chips, sand and lime as well as air. Diffusion constant and diffusion length is calculated for all these materials.

  17. DOE seeks applicants to develop next-generation nuclear detectors. (Sensors)

    CERN Multimedia

    2002-01-01

    "DOE's Division of High Energy Physics seeks grant applications for development of advanced detectors in the areas of high energy physics experiments, which includes accelerator-based and non-accelerator based experiments" (1/2 page).

  18. National Array of Neutron Detectors (NAND): A versatile tool for nuclear reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Golda, K.S., E-mail: goldaks@gmail.com [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Jhingan, A.; Sugathan, P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Singh, Hardev [Department of Physics, Kurukshetra University, Kurukshetra 136119 (India); Singh, R.P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Behera, B.R. [Department of Physics, Panjab University, Chandigarh 160014 (India); Mandal, S. [Department of Physics and Astrophysics, Delhi University, New Delhi 110007 (India); Kothari, A.; Gupta, Arti; Zacharias, J.; Archunan, M.; Barua, P.; Venkataramanan, S.; Bhowmik, R.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Govil, I.M. [Department of Physics, Panjab University, Chandigarh 160014 (India); Datta, S.K.; Chatterjee, M.B. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2014-11-01

    The first phase of the National Array of Neutron Detectors (NAND) consisting of 26 neutron detectors has been commissioned at the Inter University Accelerator Centre (IUAC), New Delhi. The motivation behind setting up of such a detector system is the need for more accurate and efficient study of reaction mechanisms in the projectile energy range of 5–8 MeV/n using heavy ion beams from a 15 UD Pelletron and an upgraded LINAC booster facility at IUAC. The above detector array can be used for inclusive as well as exclusive measurements of reaction products of which at least one product is a neutron. While inclusive measurements can be made using only the neutron detectors along with the time of flight technique and a pulsed beam, exclusive measurements can be performed by detecting neutrons in coincidence with charged particles and/or fission fragments detected with ancillary detectors. The array can also be used for neutron tagged gamma-ray spectroscopy in (HI, xn) reactions by detecting gamma-rays in coincidence with the neutrons in a compact geometrical configuration. The various features and the performance of the different aspects of the array are described in the present paper. -- Highlights: •We report the design, fabrication and installation of a 26 element modular neutron detection system (NAND). •The array has been designed for the fusion–fission studies at near and above the barrier energies. •The relevant characteristics of the array are studied exhaustively and reported. •The efficiency of the detectors are measured and compared with the monte carlo simulations. •The second phase of the array will be augmented with 80 more neutron detectors which will enable the system to measure the neutron multiplicity distribution.

  19. Study of a new design of p-N semiconductor detector array for nuclear medicine imaging by monte carlo simulation codes.

    Science.gov (United States)

    Hajizadeh-Safar, M; Ghorbani, M; Khoshkharam, S; Ashrafi, Z

    2014-07-01

    Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc(99_m) activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using

  20. Error reduction in gamma-spectrometric measurements of nuclear materials enrichment

    Science.gov (United States)

    Zaplatkina, D.; Semenov, A.; Tarasova, E.; Zakusilov, V.; Kuznetsov, M.

    2016-06-01

    The paper provides the analysis of the uncertainty in determining the uranium samples enrichment using non-destructive methods to ensure the functioning of the nuclear materials accounting and control system. The measurements were performed by a scintillation detector based on a sodium iodide crystal and the semiconductor germanium detector. Samples containing uranium oxide of different masses were used for the measurements. Statistical analysis of the results showed that the maximum enrichment error in a scintillation detector measurement can reach 82%. The bias correction, calculated from the data obtained by the semiconductor detector, reduces the error in the determination of uranium enrichment by 47.2% in average. Thus, the use of bias correction, calculated by the statistical methods, allows the use of scintillation detectors to account and control nuclear materials.

  1. Integrated optical and nuclear simulation of a monolithic LYSO:Ce based PET detector module

    Science.gov (United States)

    Játékos, B.; Patay, G.; Lőrincz, E.; Erdei, G.

    2017-05-01

    In the recent years new digital photon counter devices (also known as silicon photomultipliers, SiPMs) were designed and manufactured to be used specifically in positron emission tomography (PET) scanners. Finely pixelated SiPM arrays have opened new opportunities in PET detector development, such as the utilization of monolithic scintillator crystals. We worked out a simulation tool (SCOPE2) to assist the optimization and characterization of such PET detector modules. In the present paper we report the first application of SCOPE2 on the performance evaluation of a prototype PET detector module. The PET detector is based on monolithic LYSO:Ce scintillator crystal and a fully digital, silicon photon-counter, SPADnet-I. A new interface has been developed for SCOPE2 to access GATE simulation results. A combination of GATE and SCOPE2 was used to simulate excitation of the prototype PET detector with an electronically collimated γ -beam. Measurement results from the collimated γ-beam experiment were compared with the combined simulation. A good agreement was observed in the tendencies of total count spectrum and point of interaction distribution. We used the performance evaluation to understand and explain the measurement results in detail.

  2. GEANT4 simulation of photo-peak efficiency of small high purity germanium detectors for nuclear power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Shakeel Ur; Mirza, Sikander M. [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Mirza, Nasir M., E-mail: nmm@pieas.edu.p [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Siddique, Muhammad Tariq [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2011-01-15

    GEANT4 - based Monte Carlo simulations have been carried out for the determination of photo-peak efficiency of heavily shielded small high purity germanium detector (HPGe) used for monitoring radiation levels in nuclear power plants. The GEANT4 simulated values of HPGe detector efficiency for point as well as for disk sources, for two different values of collimator diameter, have been found in good agreement with the corresponding published results obtained by using the MCNP code. The work has been extended to study the effect of radial displacement of a source relative to a detector on photo-peak efficiency for both point and disk source, and at various values of {gamma}-ray energies. Also the effect of disk source radius on photo-peak efficiency has been studied. Besides the results of different available physics models in GEANT4 have also been compared. The computed values of efficiency for point as well as for disk sources using the Penelope and Livermore physics models have been found correspondingly consistent for various values of {gamma}-ray energies while some differences (e.g., Penelope model yields 6.3% higher values of photo-peak efficiency for E{gamma} = 1.332 MeV, 10 mm collimator diameter) have been observed in the corresponding valued obtained by using the Standard physics model.

  3. AIDA: A 16-channel amplifier ASIC to read out the advanced implantation detector array for experiments in nuclear decay spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Braga, D. [STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom); Coleman-Smith, P. J. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Davinson, T. [Dept. of Physics and Astronomy, Univ. of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Lazarus, I. H. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Page, R. D. [Dept. of Physics, Univ. of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Thomas, S. [STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom)

    2011-07-01

    We have designed a read-out ASIC for nuclear decay spectroscopy as part of the AIDA project - the Advanced Implantation Detector Array. AIDA will be installed in experiments at the Facility for Antiproton and Ion Research in GSI, Darmstadt. The AIDA ASIC will measure the signals when unstable nuclei are implanted into the detector, followed by the much smaller signals when the nuclei subsequently decay. Implant energies can be as high as 20 GeV; decay products need to be measured down to 25 keV within just a few microseconds of the initial implants. The ASIC uses two amplifiers per detector channel, one covering the 20 GeV dynamic range, the other selectable over a 20 MeV or 1 GeV range. The amplifiers are linked together by bypass transistors which are normally switched off. The arrival of a large signal causes saturation of the low-energy amplifier and a fluctuation of the input voltage, which activates the link to the high-energy amplifier. The bypass transistors switch on and the input charge is integrated by the high-energy amplifier. The signal is shaped and stored by a peak-hold, then read out on a multiplexed output. Control logic resets the amplifiers and bypass circuit, allowing the low-energy amplifier to measure the subsequent decay signal. We present simulations and test results, demonstrating the AIDA ASIC operation over a wide range of input signals. (authors)

  4. Cross-correlation of two detectors in a nuclear reactor; Intercorrelation de deux detecteurs dans un reacteur nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Dalfes, A.; Beliard, L.; Cazemajou, J.; Froelicher, B. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Auto and cross-correlation functions of signals given by neutron detectors situated in a subcritical nuclear reactor are determined by a numerical method. Values of the prompt neutrons decay constant obtained by means of the autocorrelation function of each detector and the cross-correlation function of the two detectors are compared to the reference value given by a classical pulsed neutrons measurement. Agreement between results seems to be satisfactory. (authors) [French] Les fonctions d'autocorrelation et d'intercorrelation des signaux issus de deux detecteurs de neutrons places dans un reacteur nucleaire sous critique sont determinees par une methode numerique. On compare les valeurs de la constante de decroissance des neutrons prompts donnees par les fonctions d'autocorrelation de chaque detecteur et la fonction d'intercorrelation des deux detecteurs au resultat de reference fourni par une manipulation dite de 'neutrons pulses'. L'accord entre les resultats parait satisfaisant. (auteurs)

  5. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, J., E-mail: julianna.szabo@energia.mta.hu [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary); Palfalvi, J.K. [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary)

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  6. Design and Construction of a First Prototype Muon Tomography System with GEM Detectors for the Detection of Nuclear Contraband

    CERN Document Server

    AUTHOR|(CDS)2074269; Grasso, L; Locke, J B; Quintero, A; Mitra, D

    2009-01-01

    Current radiation portal monitors at sea ports and international borders that employ standard radiation detection techniques are not very sensitive to nuclear contraband that is well shielded to absorb emanating radiation. Muon Tomography (MT) based on the measurement of multiple scattering of atmospheric cosmic ray muons traversing cargo or vehicles that contain high-Z material is a promising passive interrogation technique for solving this problem. We report on the design and construction of compact Micro-Pattern Gas Detectors for a small prototype MT station. This station will employ 10 tracking stations based on 30cm x 30cm low-mass triple-GEM detectors with 2D readout. Due to the excellent spatial resolution of GEMs it is sufficient to use a gap of only a few cm between tracking stations. Together with the compact size of the GEM detectors this allows the GEM MT station to be an order of magnitude more compact than MT stations using traditional drift tubes. We present details of the production and assemb...

  7. A DSP equipped digitizer for online analysis of nuclear detector signals

    Energy Technology Data Exchange (ETDEWEB)

    Pasquali, G. [INFN and Department of Physics, University of Florence, Via G.Sansone 1, Sesto Fiorentino 50019 (Italy)]. E-mail: pasquali@fi.infn.it; Ciaranfi, R. [INFN - Sezione di Firenze, Via G.Sansone 1, Sesto Fiorentino 50019 (Italy); Bardelli, L. [INFN and Department of Physics, University of Florence, Via G.Sansone 1, Sesto Fiorentino 50019 (Italy); Bini, M. [INFN and Department of Physics, University of Florence, Via G.Sansone 1, Sesto Fiorentino 50019 (Italy); Boiano, A. [INFN - Sezione di Napoli, Via Cintia, Naples 80126 (Italy); Giannelli, F. [INFN and Department of Physics, University of Florence, Via G.Sansone 1, Sesto Fiorentino 50019 (Italy); Ordine, A. [INFN - Sezione di Napoli, Via Cintia, Naples 80126 (Italy); Poggi, G. [INFN and Department of Physics, University of Florence, Via G.Sansone 1, Sesto Fiorentino 50019 (Italy)

    2007-01-01

    In the framework of the NUCL-EX collaboration, a DSP equipped fast digitizer has been implemented and it has now reached the production stage. Each sampling channel is implemented on a separate daughter-board to be plugged on a VME mother-board. Each channel features a 12-bit, 125 MSamples/s ADC and a Digital Signal Processor (DSP) for online analysis of detector signals. A few algorithms have been written and successfully tested on detectors of different types (scintillators, solid-state, gas-filled), implementing pulse shape discrimination, constant fraction timing, semi-Gaussian shaping, gated integration.

  8. Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector

    CERN Document Server

    Bernstein, A; Misner, A; Palmer, T

    2008-01-01

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25 meter standoff from a reactor core. This prototype can detect a prompt reactor shutdown within five hours, and monitor relative thermal power to three percent within seven days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's (IAEA) Reactor Safeguards Regime, or other cooperative monitoring regimes.

  9. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  10. Monolithic circuits for barium fluoride detectors used in nuclear physics experiments. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Varner, R.L.; Blankenship, J.L.; Beene, J.R. [Oak Ridge National Lab., TN (United States); Todd, R.A. [RIS Corp., Oak Ridge, TN (United States)

    1998-02-01

    Custom monolithic electronic circuits have been developed recently for large detector applications in high energy physics where subsystems require tens of thousands of channels of signal processing and data acquisition. In the design and construction of these enormous detectors, it has been found that monolithic circuits offer significant advantages over discrete implementations through increased performance, flexible packaging, lower power and reduced cost per channel. Much of the integrated circuit design for the high energy physics community is directly applicable to intermediate energy heavy-ion and electron physics. This STTR project conducted in collaboration with researchers at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory, sought to develop a new integrated circuit chip set for barium fluoride (BaF{sub 2}) detector arrays based upon existing CMOS monolithic circuit designs created for the high energy physics experiments. The work under the STTR Phase 1 demonstrated through the design, simulation, and testing of several prototype chips the feasibility of using custom CMOS integrated circuits for processing signals from BaF{sub 2} detectors. Function blocks including charge-sensitive amplifiers, comparators, one shots, time-to-amplitude converters, analog memory circuits and buffer amplifiers were implemented during Phase 1 effort. Experimental results from bench testing and laboratory testing with sources were documented.

  11. Frequently Asked Questions on Potassium Iodide (KI)

    Science.gov (United States)

    ... Bioterrorism and Drug Preparedness Frequently Asked Questions on Potassium Iodide (KI) Share Tweet Linkedin Pin it More sharing ... Drug Administration (FDA) issued a final Guidance on Potassium Iodide as a Thyroid Blocking Agent in Radiation Emergencies) ( ...

  12. The COSINUS project: Development of new NaI-based cryogenic detectors for direct dark matter search

    Science.gov (United States)

    Gütlein, A.; Angloher, G.; Gotti, C.; Hauff, D.; Maino, M.; Nagorny, S. S.; Pagnanini, L.; Pessina, G.; Petricca, F.; Pirro, S.; Pröbst, F.; Reindl, F.; Schäffner, K.; Schieck, J.; Seidel, W.

    2017-02-01

    The current results of direct dark matter searches are controversial. The long-standing dark-matter claim from the DAMA/LIBRA collaboration is excluded by null-results of several other experiments. However, a comparison of the results by experiments with different detector materials introduces model dependencies. The R&D project COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) aims to develop cryogenic detectors based on (hygroscopic) sodium iodide (NaI). If successful, such detectors could be used in future experiments to investigate the origin of the annual modulation signal seen by the NaI-based scintillation detectors of the DAMA/LIBRA experiment. COSINUS detectors should be able to simultaneously detect phonons and scintillation light produced by a particle interaction inside the NaI crystal. This technique allows for an active suppression of β/γ backgrounds as well as detailed studies of a large variety of dark-matter models predicting nuclear interactions. For such kind of studies only moderate exposures of ≲ 100 kg-days are needed. In addition to the projected sensitivities of COSINUS detectors, we also show the result of first tests using (only mildly hygroscopic) caesium iodide (CsI) crystals as target material. For this measurement we achieved an energy threshold of ∼4.7 keV for nuclear recoils.

  13. First limits on WIMP nuclear recoil signals in ZEPLIN-II: a two phase xenon detector for dark matter detection

    CERN Document Server

    Alner, G J; Bewick, A; Bungau, C; Camanzi, B; Carson, M J; Cashmore, R J; Chagani, H; Chepel, V; Cline, D; Davidge, D; Davies, J C; Daw, E; Dawson, J; Durkin, T; Edwards, B; Gamble, T; Gao, J; Ghag, C; Howard, A S; Jones, W G; Joshi, M; Korolkova, E V; Kudryavtsev, V A; Lawson, T; Lebedenko, V N; Lewin, J D; Lightfoot, P; Lindote, A; Liubarsky, I; Lopes, M I; Lüscher, R; Majewski, P; Mavrokoridis, K; McMillan, J E; Morgan, B; Muna, D; Murphy, A S J; Neves, F; Nicklin, G G; Ooi, W; Paling, S M; Cunha, J P; Plank, S J S; Preece, R M; Quenby, J J; Robinson, M; Sergiampietri, F; Silva, C; Solovov, V N; Smith, N J T; Smith, P F; Spooner, N J C; Sumner, T J; Thorne, C; Tovey, D R; Tziaferi, E; Walker, R J; Wang, H; White, J; Wolfs, F L H

    2007-01-01

    Results are presented from the first underground data run of ZEPLIN-II, a 31 kg two phase xenon detector developed to observe nuclear recoils from hypothetical weakly interacting massive dark matter particles. Discrimination between nuclear recoils and background electron recoils is afforded by recording both the scintillation and ionisation signals generated within the liquid xenon, with the ratio of these signals being different for the two classes of event. This ratio is calibrated for different incident species using an AmBe neutron source and Co-60 gamma-ray sources. From our first 31 live days of running ZEPLIN-II, the total exposure following the application of fiducial and stability cuts was 225 kgxdays. A background population of radon progeny events was observed in this run, arising from radon emission in the gas purification getters, due to radon daughter ion decays on the surfaces of the walls of the chamber. An acceptance window, defined by the neutron calibration data, of 50% nuclear recoil acce...

  14. 21 CFR 582.5634 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  15. 21 CFR 184.1634 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  16. SPECT detectors: the Anger Camera and beyond

    Science.gov (United States)

    Peterson, Todd E.; Furenlid, Lars R.

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  17. SPECT detectors: the Anger Camera and beyond.

    Science.gov (United States)

    Peterson, Todd E; Furenlid, Lars R

    2011-09-07

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  18. Identification of 90Sr/40K Based on Cherenkov Detector for Recovery from the Fukushima Nuclear Accident

    Science.gov (United States)

    Ito, Hiroshi; Han, Soorim; Kobayashi, Atsushi; Kaneko, Naomi; Kawai, Hideyuki; Tabata, Makoto

    Although five years have passed since the Fukushima nuclear accident of 2011, the local fisheries have yet to recover from its effects. One reason for this situation is the difficulty of measuring the radioactivity owing to 90Sr in seafood. After the accident, the radioactivity due to Cs isotopes in samples was measured with precision, which facilitated the enforcement of the maximum concentration of Cs radioisotopes in food at 100 Bq/kg, as defined by the Ministry of Health, Labour and Welfare in Japan. However, 90Sr is more dangerous than Cs isotopes because it has an effective half-life of 18 years and accumulates in the bone. The radioactivity owing to 90Sr in a sample is difficult to measure because the beta rays from 137Cs or 40K also contribute to the signal. When measured based on the endpoint pulse height as determined by a conventional survey meter, the beta ray signal from 90Y (daughter of 90Sr) cannot be differentiated from the beta rays from other sources. To overcome this difficulty, in this study, we develop a Cherenkov detector based on a silica aerogel with a refractive index of 1.034 that can identify beta rays from 90Y within a background of beta rays from 137Cs and 40K. This instrument involves a detector that is sensitive to beta rays from 90Sr but less sensitive to radiation from other sources. This detector comprises a trigger counter that uses scintillating fibers, an aerogel Cherenkov counter with wavelength-shifting fibers, and a veto counter to suppress cosmic rays. We characterize the detector using a 90Sr source, 137Cs source, and pure potassium chloride reagent of 16.6 Bq/g, where the radioactivity of natural 40K is estimated to be 31.7 Bq/g. The following results are obtained: the absolute detection efficiency for 90Sr, 137Cs, and 40K is [2.24 ± 0.01 (stat) ± 0.44 (sys)] × 10-3 Bq-1 s-1, [1.27 ± 0.08 (stat) ± 0.25 (sys)] × 10-6 Bq-1 s-1, and [5.05 ± 2.40 (stat) ± 0.15 (sys)] × 10-5 Bq-1 s-1, respectively. To aid in the

  19. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-22

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  20. Computer program TRACK_VISION for simulating optical appearance of etched tracks in CR-39 nuclear track detectors

    Science.gov (United States)

    Nikezic, D.; Yu, K. N.

    2008-04-01

    A computer program called TRACK_VISION for determining the optical appearances of tracks in nuclear track materials resulted from light-ion irradiation and subsequent chemical etching was described. A previously published software, TRACK_TEST, was the starting point for the present software TRACK_VISION, which contained TRACK_TEST as its subset. The programming steps were outlined. Descriptions of the program were given, including the built-in V functions for the commonly employed nuclear track material commercially known as CR-39 (polyallyldiglycol carbonate) irradiated by alpha particles. Program summaryProgram title: TRACK_VISION Catalogue identifier: AEAF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4084 No. of bytes in distributed program, including test data, etc.: 71 117 Distribution format: tar.gz Programming language: Fortran 90 Computer: Pentium PC Operating system: Windows 95+ RAM: 256 MB Classification: 17.5, 18 External routines: The entire code must be linked with the MSFLIB library. MSFLib is a collection of C and C++ modules which provides a general framework for processing IBM's AFP datastream. MSFLIB is specific to Visual Fortran (Digital, Compaq or Intel flavors). Nature of problem: Nuclear track detectors are commonly used for radon measurements through studying the tracks generated by the incident alpha particles. Optical microscopes are often used for this purpose but the process is relatively tedious and time consuming. Several automatic and semi-automatic systems have been developed in order to facilitate determination of track densities. In all these automatic systems, the optical appearance of the tracks is important. However, not much has been done so far to obtaining the

  1. Application of Solid State Nuclear Track Detectors in TEXTOR Experiment for Measurements of Fusion-Reaction Protons

    Science.gov (United States)

    Szydlowski, A.; Malinowska, A.; Jaskola, M.; Korman, A.; Sadowski, M. J.; Van Wassenhove, G.; Schweer, B.; Galkowski, A.

    2008-03-01

    The paper reports on measurements of the space distribution of fusion protons of energy equal to about 3-MeV, originating from the D(d, p)T reactions. The measurements were carried out on the TEXTOR facility by means of a small ion pinhole camera, which was equipped with a solid-state nuclear track detector of the PM-355 type. The results obtained in two series of successive discharges are compared. The first series was performed with an additional heating of TEXTOR plasmas with NBI of fast deuterons, whereas in the second series plasma was heated by ICRF and NBI of hydrogen neutrals. Computer simulations of different trajectories of charged particles have been performed with the Gourdon code and the detection efficiency has been calculated for various orientations of the measuring assembly.

  2. Calibrations of CR39 and Makrofol nuclear track detectors and search for exotic particles

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Chiarusi, T; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; De Marzo, C; De Mitri, I; De Vincenzi, M; Dekhissi, H; Derkaoui, J; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kumar, A; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Matteuzzi, D; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R; 10.1016/S0920-5632(03)02249-7

    2003-01-01

    We present the final results of the search for exotic massive particles in the cosmic radiation performed with the MACRO underground experiment. Magnetic monopoles and nuclearites flux upper limits obtained with the CR39 nuclear track subdetector, the scintillation and streamer tube subdetectors are given. Searches at high altitude with the SLIM experiment are in progress.

  3. Determination of the characteristic limits and responses of nuclear track detectors in mixed radon and thoron atmospheres.

    Science.gov (United States)

    Röttger, Annette; Honig, Anja; Schrammel, Dieter; Strauss, Heinrich F

    2016-03-01

    Closed nuclear track detectors are widely used for the determination of Rn-222 exposures. There are also partial open systems available, which are specially designed for the determination of the exposure to Rn-220, which is a relevant exposure in special workplaces or in specific regions of the world. This paper presents data and a detail analysis of how to determine the cross-correlation by calibration in pure Rn-222 and pure Rn-220 atm. By these means calibration coefficients for the analysis of real mixed atmospheres can be obtained. The respective decision threshold, detection limit and limits of the confidence interval were determined according to ISO 11929 (ISO 11929:2010, 2010). The exposure of detectors was performed at the radon reference chamber and the thoron progeny chamber of the Physikalisch-Technische Bundesanstalt (PTB). The analysis of track response was done at Parc RGM, while the analytical routines were developed in the Leibniz University Hanover, Institute Radioökologie und Strahlenschutz IRS at the working Group AK SIGMA (Arbeitskreis Nachweisgrenzen).

  4. An Improved Nuclear Recoil Calibration in the LUX Detector Using a Pulsed D-D Neutron Generator

    Science.gov (United States)

    Huang, Dongqing

    2017-01-01

    The LUX dark matter search experiment is a 370 kg (250 kg active mass) two-_phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The first absolute charge (Qy) and light (Ly) measurement performed in situ in the LUX detector with a D-D calibration technique for nuclear recoil spanning 0.7 to 74 keV and 1.1 to 74 keV respectively have been reported in. The D-D calibration has subsequently been further improved by incorporating pulsing technique, i.e. the D-D neutron production is concentrated within narrow pulses (20 us / 250 Hz) with the timing information recorded. This technique allows the suppression of accidental backgrounds in D-D neutron data and also provides increased sensitivity for the lower energy NR calibrations. I will report the improved NR absolute Qy and Ly measurements using the pulsed D-D calibration technique performed in situ in the LUX detector. Brown University, Large Underground Xenon(LUX) Collaboration.

  5. Measurement of the energy spectra of fission fragments using nuclear track detectors and digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, Guillermo; Golzarri, Jose I. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, Mexico D.F. 01000 (Mexico); Castano, Victor M., E-mail: castano@fata.unam.m [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Boulevard Juriquilla 3001, Santiago de Queretaro, Queretaro 76230 (Mexico)

    2010-08-15

    Energy spectra of fission fragments were determined using a Nuclear Track Methodology (NTM) supported by digital image analysis and numerical data processing using a standard personal computer. The analysis of a californium ({sup 252}Cf) spectrum with this approach shows improvement compared with the values reported previously using the standard procedure, in terms of resolution and accuracy. This new method adds full automation to the technical advantages and cost effectiveness of an NTM.

  6. Gamma spectrometric characterization of short cooling time nuclear spent fuels using hemispheric CdZnTe detectors

    CERN Document Server

    Lebrun, A; Szabó, J L; Arenas-Carrasco, J; Arlt, R; Dubreuil, A; Esmailpur-Kazerouni, K

    2000-01-01

    After years of cooling, nuclear spent fuel gamma emissions are mainly due to caesium isotopes which are emitters at 605, 662 and 796-801 keV. Extensive work has been done on such fuels using various CdTe or CdZnTe probes. When fuels have to be measured after short cooling time (during NPP outage) the spectrum is much more complex due to the important contributions of niobium and zirconium in the 700 keV range. For the first time in a nuclear power plant, four spent fuels of the Kozloduy VVER reactor no 4 were measured during outage, 37 days after shutdown of the reactor. In such conditions, good resolution is of particular interest, so a 20 mm sup 3 hemispheric crystal was used with a resolution better than 7 keV at 662 keV. This paper presents the experimental device and analyzes the results which show that CdZnTe commercially available detectors enabled us to perform a semi-quantitative determination of the burn-up after a short cooling time. In addition, it is discussed how a burn-up evolution code (CESAR)...

  7. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  8. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    Science.gov (United States)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators

  9. Development of sealed radioactive sources immobilized in epoxy resin for verification of detectors used in nuclear medicine; Desenvolvimento de fontes radioativas seladas imobilizadas em resina epoxi para verificacao de detectores utilizados em medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Tiezzi, Rodrigo

    2016-07-01

    The radioactive sealed sources are used in verification ionization chamber detectors, which measure the activity of radioisotopes used in several areas, such as in nuclear medicine. The measurement of the activity of radioisotopes must be made with accuracy, because it is administered to a patient. To ensure the proper functioning of the ionization chamber detectors, standardized tests are set by the International Atomic Energy Agency (IAEA) and the National Nuclear Energy Commission using sealed radioactive sources of Barium-133, Cesium-137 and Cobalt-57. The tests assess the accuracy, precision, reproducibility and linearity of response of the equipment. The focus of this work was the study and the development of these radioactive sources with standard Barium-133 and Cesium-137,using a polymer, in case commercial epoxy resin of diglycidyl ether of bisphenol A (DGEBA) and a curing agent based on modified polyamine diethylenetriamine (DETA), to immobilize the radioactive material. The polymeric matrix has the main function of fix and immobilize the radioactive contents not allowing them to leak within the technical limits required by the standards of radiological protection in the category of characteristics of a sealed source and additionally have the ability to retain the emanation of any gases that may be formed during the manufacture process and the useful life of this artifact. The manufacturing process of a sealed source standard consists of the potting ,into bottle standardized geometry, in fixed volume of a quantity of a polymeric matrix within which is added and dispersed homogeneously to need and exact amount in activity of the radioactive materials standards. Accordingly, a study was conducted for the choice of epoxy resin, analyzing its characteristics and properties. Studies and tests were performed, examining the maximum miscibility of the resin with the water (acidic solution, simulating the conditions of radioactive solution), loss of mechanical and

  10. Study of Neutron From a Dense Plasma Focus Paco Instrument by Means of Nuclear Tracks Detectors

    Directory of Open Access Journals (Sweden)

    M. Milanese

    2016-08-01

    Full Text Available A most interesting feature of dense plasma foci is the acceleration of charge particle at energy in the range of MeV per nucleon. Using deuterium gas, this devices produce fusion D-D reactions, generation fast neutron pulses (~ 2.5 MeV. The device used in the present work is a Mather-type dense plasma focus, called PACO. It is a 2kJ device at 31 kV, with an oxygen-free copper anode, 50 mm long with 40 mm diameter. The coaxial cathode is formed by ten copper rods arranged in a squirrel cage configuration at a radius of 50mm. The insulator in an annular Pyrex® tube located at the base of the anode. The energy store is provided by four 1 µF (40 kV, 40 nH capacitors in parallel. The plasma focus was operated at 1.5 mb deuterium gas pressure. Neutron and accelerated particles are analyzed with material detectors (CR-39 Lantrack® for different conditions. A detailed study is made of track diameters when the plastic is chemically etched with, 6N KOH at 60°C (±1 for 12 h.

  11. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation

    Energy Technology Data Exchange (ETDEWEB)

    Buechel, Ronny R.; Herzog, Bernhard A.; Husmann, Lars; Burger, Irene A.; Pazhenkottil, Aju P.; Treyer, Valerie; Valenta, Ines; Schulthess, Patrick von; Nkoulou, Rene; Wyss, Christophe A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland)

    2010-04-15

    To assess the diagnostic performance of a novel ultrafast cardiac gamma camera with cadmium-zinc-telluride (CZT) solid-state semiconductor detectors for nuclear myocardial perfusion imaging (MPI). The study group comprised 75 consecutive patients (55 men, BMI range 19-45 kg/m{sup 2}) who underwent a 1-day {sup 99m}Tc-tetrofosmin adenosine-stress/rest imaging protocol. Scanning was performed first on a conventional dual-detector SPECT gamma camera (Ventri, GE Healthcare) with a 15-min acquisition time each for stress and rest. All scans were immediately repeated on an ultrafast CZT camera (Discovery 530 NMc, GE Healthcare) with a 3-min scan time for stress and a 2-min scan time for rest. Clinical agreement (normal, ischaemia, scar) between CZT and SPECT was assessed for each patient and for each coronary territory using SPECT MPI as the reference standard. Segmental myocardial tracer uptake values (percent of maximum) using a 20-segment model and left ventricular ejection fraction (EF) values obtained using CZT were compared with those obtained using conventional SPECT by intraclass correlation and by calculating Bland-Altman limits of agreement. There was excellent clinical agreement between CZT and conventional SPECT on a per-patient basis (96.0%) and on a per-vessel territory basis (96.4%) as shown by a highly significant correlation between segmental tracer uptake values (r=0.901, p<0.001). Similarly, EF values for both scanners were highly correlated (r=0.976, p<0.001) with narrow Bland-Altman limits of agreement (-5.5-10.6%). The novel CZT camera allows a more than fivefold reduction in scan time and provides clinical information equivalent to conventional standard SPECT MPI. (orig.)

  12. Comparison of two position sensitive gamma-ray detectors based on continuous YAP and pixellated NaI(TI) for nuclear medical imaging applications

    Science.gov (United States)

    Zhu, Jie; Ma, Hong-Guang; Ma, Wen-Yan; Zeng, Hui; Wang, Zhao-Min; Xu, Zi-Zhong

    2008-11-01

    Dedicated position sensitive gamma-ray detectors based on position sensitive photomultiplier tubes (PSPMTs) coupled to scintillation crystals, have been used for the construction of compact gamma-ray imaging systems, suitable for nuclear medical imaging applications such as small animal imaging and single organ imaging and scintimammography. In this work, the performance of two gamma-ray detectors: a continuous YAP scintillation crystal coupled to a Hamamastu R2486 PSPMT and a pixellated NaI(TI) scintillation array crystal coupled to the same PSPMT, is compared. The results show that the gamma-ray detector based on a pixellated NaI(TI) scintillation array crystal is a promising candidate for nuclear medical imaging applications, since their performance in terms of position linearity, spatial resolution and effective field of view (FOV) is superior than that of the gamma-ray detector based on a continuous YAP scintillation crystal. However, a better photodetector (Hamamatau H8500 Flat Panel PMT, for example) coupled to the continuous crystal is also likely a good selection for nuclear medicine imaging applications. Supported by National Nature Science Foundation of China (10275063)

  13. Comparison of two position sensitive gamma-ray detectors based on continuous YAP and pixellated NaI(TI) for nuclear medical imaging applications

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Dedicated position sensitive gamma-ray detectors based on position sensitive photomultiplier tubes (PSPMTs) coupled to scintillation crystals, have been used for the construction of compact gamma-ray imaging systems, suitable for nuclear medical imaging applications such as small animal imaging and single organ imaging and scintimammography. In this work, the performance of two gamma-ray detectors: a continuous YAP scintillation crystal coupled to a Hamamastu R2486 PSPMT and a pixellated NaI(TI) scintillation array crystal coupled to the same PSPMT, is compared. The results show that the gamma-ray detector based on a pixellated NaI(TI) scintillation array crystal is a promising candidate for nuclear medical imaging applications,since their performance in terms of position linearity, spatial resolution and effective field of view (FOV) is superior than that of the gamma-ray detector based on a continuous YAP scintillation crystal. However, a better photodetector (Hamamatau H8500 Flat Panel PMT, for example) coupled to the continuous crystal is also likely a good selection for nuclear medicine imaging applications.

  14. Special nuclear material detection with a mobile multi-detector system

    Energy Technology Data Exchange (ETDEWEB)

    Cester, D. [Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Stevanato, L. [Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Viesti, G, E-mail: viesti@pd.infn.it [Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Neri, F.; Petrucci, S.; Selmi, S.; Tintori, C. [CAEN S.p.A., Via Vetraia 11, I-55049 Viareggio (Italy); Peerani, P.; Tomanin, A. [European Commission EC-JRC-ITU, I-21027 Ispra (Italy)

    2012-01-21

    The detection of special nuclear material has been studied with a mobile inspection system used both as a high sensitivity passive neutron/gamma spectroscopic tool and as an active inspection device using tagged neutrons. The detection of plutonium samples seems to be possible with passive interrogation, even for small samples, thanks to the yield of gamma ray and neutrons. Moreover the gamma ray spectrum shows clear signatures related to {sup 239}Pu. The passive detection of uranium is much more difficult because of the low neutron yield and of the easiness of shielding the gamma ray yield of highly enriched U samples. However, we show that active interrogation with tagged neutrons is able to provide signatures for the discrimination of uranium against other heavy metals.

  15. Special nuclear material detection with a mobile multi-detector system

    Science.gov (United States)

    Cester, D.; Nebbia, G.; Stevanato, L.; Viesti, G.; Neri, F.; Petrucci, S.; Selmi, S.; Tintori, C.; Peerani, P.; Tomanin, A.

    2012-01-01

    The detection of special nuclear material has been studied with a mobile inspection system used both as a high sensitivity passive neutron/gamma spectroscopic tool and as an active inspection device using tagged neutrons. The detection of plutonium samples seems to be possible with passive interrogation, even for small samples, thanks to the yield of gamma ray and neutrons. Moreover the gamma ray spectrum shows clear signatures related to 239Pu. The passive detection of uranium is much more difficult because of the low neutron yield and of the easiness of shielding the gamma ray yield of highly enriched U samples. However, we show that active interrogation with tagged neutrons is able to provide signatures for the discrimination of uranium against other heavy metals.

  16. Search for rare nuclear decays with HPGe detectors at the STELLA facility of the LNGS

    Energy Technology Data Exchange (ETDEWEB)

    Belli, P.; Di Marco, A. [INFN, Sezione di Roma Tor Vergata, Rome (Italy); Bernabei, R.; D' Angelo, S. [INFN, Sezione di Roma Tor Vergata, Rome, Italy and Dipartimento di Fisica, Università di Roma Tor Vergata, Rome (Italy); Cappella, F.; D' Angelo, A.; Incicchitti, A. [INFN, Sezione di Roma La Sapienza, Rome, Italy and Dipartimento di Fisica, Università di Roma La Sapienza, Rome (Italy); Cerulli, R.; Di Vacri, M. L.; Laubenstein, M.; Nisi, S. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Danevich, F. A.; Kobychev, V. V.; Poda, D. V.; Tretyak, V. I. [Institute for Nuclear Research, Kyiv (Ukraine); Kovtun, G. P.; Kovtun, N. G.; Shcherban, A. P.; Solopikhin, D. A. [Kharkiv Institute of Physics and Technology, Kharkiv (Ukraine); Polischuk, O. G. [INFN, Sezione di Roma La Sapienza, Rome, Italy and Institute for Nuclear Research, Kyiv (Ukraine); and others

    2013-12-30

    Results on the search for rare nuclear decays with the ultra low background facility STELLA at the LNGS using gamma ray spectrometry are presented. In particular, the best T{sub 1/2} limits were obtained for double beta processes in {sup 96}Ru and {sup 104}Ru. Several isotopes, which potentially decay through different 2β channels, including also possible resonant double electron captures, were investigated for the first time ({sup 156}Dy, {sup 158}Dy, {sup 184}Os, {sup 192}Os, {sup 190}Pt, {sup 198}Pt). Search for resonant absorption of solar {sup 7}Li axions in a LiF crystal gave the best limit for the mass of {sup 7}Li axions (< 8.6 keV). Rare alpha decay of {sup 190}Pt to the first excited level of {sup 186}Os(E{sub exc} = 137.2keV) was observed for the first time.

  17. Search for Rare Nuclear Decays with HPGe Detectors at the STELLA Facility of the LNGS

    CERN Document Server

    Belli, P; Cappella, F; Cerulli, R; Danevich, F A; d'Angelo, A; d'Angelo, S; Di Marco, A; Di Vacri, M L; Incicchitti, A; Kovtun, G P; Kovtun, N G; Laubenstein, M; Nisi, S; Poda, D V; Polischuk, O G; Shcherban, A P; Solopikhin, D A; Suhonen, J; Tolmachev, A V; Tretyak, V I; Yavetskiy, R P

    2013-01-01

    Results on the search for rare nuclear decays with the ultra low background facility STELLA at the LNGS using gamma ray spectrometry are presented. In particular, the best T1/2 limits were obtained for double beta processes in 96Ru and 104Ru. Several isotopes, which potentially decay through different double beta decay channels, including also possible resonant double electron captures, were investigated for the first time (156Dy, 158Dy, 184Os, 192Os, 190Pt, 198Pt). Search for resonant absorption of solar 7Li axions in a LiF crystal gave the best limit for the mass of 7Li axions (< 8.6 keV). Rare alpha decay of 190Pt to the first excited level of 186Os (Eexc = 137.2 keV) was observed for the first time.

  18. [Rare, severe hypersensitivity reaction to potassium iodide].

    Science.gov (United States)

    Korsholm, Anne Sofie; Ebbehøj, Eva; Richelsen, Bjørn

    2014-07-07

    The literature reports a large variety of adverse reactions to potassium iodide. A severe hypersensitivity reaction to potassium iodide in a 51-year-old woman with Graves' thyrotoxicosis is described. Following administration the patient developed sialadenitis, conjunctivitis, stomatitis and acneiform iododerma that responded dramatically to withdrawal of the potassium iodide and administration with corticosteroids. Awareness of these adverse reactions may prevent prolonged hospitalization and unnecessary tests and treatments.

  19. Development of sealed radioactive sources immobilized in epoxy resin for verification of detectors used in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tiezzi, Rodrigo; Rostelato, Maria Elisa C.M.; Nagatomi, Helio R.; Zeituni, Calos A.; Benega, Marcos A.G.; Souza, Daiane B. de; Costa, Osvaldo L. da; Souza, Carla D.; Rodrigues, Bruna T.; Souza, Anderson S. de; Peleias Junior, Fernando S.; Santos, Rafael Melo dos; Melo, Emerson Ronaldo de, E-mail: rktiezzi@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Karan Junior, Dib [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil)

    2015-07-01

    The radioactive sealed sources are used in verification ionization chamber detectors, which measure the activity of radioisotopes used in several areas, such as in nuclear medicine. The measurement of the activity of radioisotopes must be made with accuracy, because it is administered to a patient. To ensure the proper functioning of the ionization chamber detectors, standardized tests are set by the International Atomic Energy Agency (IAEA) and the National Nuclear Energy Commission using sealed radioactive sources of Barium-133, Cesium-137 and Cobalt-57. The tests assess the accuracy, precision, reproducibility and linearity of response of the equipment. The focus of this work was the study and the development of these radioactive sources with standard Barium-133, Cesium-137 and Cobalt-57,using a polymer, in case commercial epoxy resin of diglycidyl ether of bisphenol A (DGEBA) and a curing agent based on modified polyamine diethylenetriamine (DETA), to immobilize the radioactive material. The polymeric matrix has the main function of fix and immobilize the radioactive contents not allowing them to leak within the technical limits required by the standards of radiological protection in the category of characteristics of a sealed source and additionally have the ability to retain the emanation of any gases that may be formed during the manufacture process and the useful life of this artifact. The manufacturing process of a sealed source standard consists of the potting ,into bottle standardized geometry, in fixed volume of a quantity of a polymeric matrix within which is added and dispersed homogeneously to need and exact amount in activity of the radioactive materials standards. Accordingly, a study was conducted for the choice of epoxy resin, analyzing its characteristics and properties. Studies and tests were performed, examining the maximum solubility of the resin in water (acidic solution, simulating the conditions of radioactive solution), loss of mechanical

  20. Chloride, bromide and iodide scintillators with europium

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  1. Characterization of a pulsed mode high voltage power supply for nuclear detectors

    Science.gov (United States)

    Ghazali, A. B.; Ahmad, T. S.; Abdullah, N. A.

    2013-06-01

    This paper discusses the characterization of a pulsed mode high voltage power supply (HVPS) using LT1073 chip. The pulsed modulated signal generated from this chip is amplified using a step-up ferrite core transformer of 1:20 turn ratio and then further multiplied and converted into DC high voltage output using a diode-capacitor arrangement. The circuit is powered by a 9V alkaline battery but regulated at 5V supply. It was found that the output for this setup is 520V, 87 μA with 10% load regulation. This output is suitable to operate a pancake-type GM detector, typically model LND 7317 where the plateau is from 475V to 675V. It was also found that when a β-source with intensity of 120 cps is used, the power consumption of the circuit is 5 V, 10.1 mA only. When the battery was left 'on' for 40 hours continuously, the battery's voltage has dropped to 6.9V, meaning that the 5V supply as well as 520V output is still maintained. It is noted that the minimum output voltage of 475V has reached when the regulated supply has reduced to 4.6V and consequently the 9V battery dropped to 6.5V, and this had happened after approximately 3 days of continuous operation. The power efficiency for this circuitry was found to be 89.5%. This result has far better in performance since the commercial portable equipment of this type has normally specified that not less than 8 hours continuous operation only. On the circuit design for this power supply, it was found that the enveloped frequency is 133 Hz with approximately 50% duty cycle. The modulated frequency during 'on' state was found to be 256 KHz in which the majority of power consumption is required.

  2. Uptake of iodide in the marine haptophyte Isochrysis sp. (T.ISO) driven by iodide oxidation.

    Science.gov (United States)

    van Bergeijk, Stef A; Hernández Javier, Laura; Heyland, Andreas; Manchado, Manuel; Pedro Cañavate, José

    2013-08-01

    Uptake of iodide was studied in the marine microalga Isochrysis sp. (isol. Haines, T.ISO) during short-term incubations with radioactive iodide ((125) I(-) ). Typical inhibitors of the sodium/iodide symporter (NIS) did not inhibit iodide uptake, suggesting that iodide is not taken up through this transport protein, as is the case in most vertebrate animals. Oxidation of iodide was found to be an essential step for its uptake by T.ISO and it seemed likely that hypoiodous acid (HOI) was the form of iodine taken up. Uptake of iodide was inhibited by the addition of thiourea and of other reducing agents, like L-ascorbic acid, L-glutathione and L-cysteine and increased after the addition of oxidized forms of the transition metals Fe and Mn. The simultaneous addition of both hydrogen peroxide (H2 O2 ) and a known iodide-oxidizing myeloperoxidase (MPO) significantly increased iodine uptake, but the addition of H2 O2 or MPO separately, had no effect on uptake. This confirms the observation that iodide is oxidized prior to uptake, but it puts into doubt the involvement of H2 O2 excretion and membrane-bound or extracellular haloperoxidase activity of T.ISO. The increase of iodide uptake by T.ISO upon Fe(III) addition suggests the nonenzymatic oxidation of iodide by Fe(III) in a redox reaction and subsequent influx of HOI. This is the first report on the mechanism of iodide uptake in a marine microalga.

  3. Gamma spectroscopy with LaBr{sub 3} and Lyso for its application in nuclear medicine; Espectroscopia gamma con LaBr{sub 3} y LYSO para su aplicacion en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez V, M.; Murrieta, T.; Martinez D, A. [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Mexico D. F. (Mexico); Alva S, H., E-mail: mercedes@fisica.unam.m [UNAM, Facultad de Medicina, Unidad PET/CT-Ciclotron, Edificio de Investigacion P. B., Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2011-07-01

    Image formation in nuclear medicine is based on the detection of radiation emitted from a small quantity of a radiopharmaceutical administered to patients. This requires high detection efficiency, good spatial resolution and the ability to identify the energy of the incident radiation. These and other properties of detector materials for gamma radiation are reviewed. Standard detector calibration and characterization procedures are described, and the results from gamma spectroscopy measurements for sodium iodide (NaI:Tl), conventional scintillator widely used in nuclear medicine applications, and two other novel scintillation crystals, lanthanum bromide (LaBr{sub 3}) and lutetium-yttrium oxy orthosilicate (Lyso) are presented. Both materials showed a linear energy response from 80 to 1332 KeV, and within this energy interval, LaBr{sub 3} had a superior energy resolution compared to Lyso and NaI:Tl. These and other new materials are expected to replace those used in current detectors for nuclear medicine scanners. (Author)

  4. Fabrication and characterization of cubic SrI{sub 2}(Eu) scintillators for use in array detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shimazoe, K., E-mail: shimazoe@bioeng.t.u-tokyo.ac.jp [The University of Tokyo, Tokyo (Japan); Koyama, A.; Takahashi, H. [The University of Tokyo, Tokyo (Japan); Sakuragi, S. [Union Materials Inc., Tone-machi, Ibaraki (Japan); Yamasaki, Y. [Leading Edge Algorithm Co. Ltd., Hikaridai, Seikacho, Kyoto (Japan)

    2016-02-21

    Strontium iodide (SrI{sub 2}(Eu)) is a promising spectroscopic detector for use in both nuclear security and medical imaging owing to its excellent energy resolution and low internal background radiation. A cubic form is preferable when coupling with a silicon-based photosensor in order to build an array detector for use in applications such as Compton cameras. Here, cubic SrI{sub 2}(Eu) crystals with 10 mm sides were fabricated and evaluated. The cubic SrI{sub 2}(Eu) samples coupled to an avalanche photodiode exhibited an energy resolution of approximately 3.6% at 662 keV when using a shaping time of 3 µs. An increase in light output and an improvement of energy resolution were also observed at lower temperatures. The excellent energy resolution of these devices indicates that these crystals are promising potential detectors for use in Compton cameras and other imaging detectors.

  5. Measurement of the structure of the inner tracking detector of the CMS experiment using nuclear interactions with data collected in 2015

    CERN Document Server

    CMS Collaboration

    2016-01-01

    The material in the tracker system has been studied using nuclear interactions caused by particles traversing the detector material. The data was recorded in proton-proton collisions at 13 TeV by the CMS experiment at the LHC. The nuclear interactions are reconstructed as secondary vertices. We observe the structure of the inner part of the tracker, in particular, the inactive elements such as the beam pipe, the pixel shield, the pixel support, and the pixel support rails, and measure their positions. These measurements are particularly important for the pixel phase 1 upgrade.

  6. Iodide handling by the thyroid epithelial cell.

    Science.gov (United States)

    Nilsson, M

    2001-01-01

    Iodination of thyroglobulin, the key event in the synthesis of thyroid hormone, is an extracellular process that takes place inside the thyroid follicles at the apical membrane surface that faces the follicular lumen. The supply of iodide involves two steps of TSH-regulated transport, basolateral uptake and apical efflux, that imprint the polarized phenotype of the thyroid cell. Iodide uptake is generated by the sodium/iodide symporter present in the basolateral plasma membrane. A candidate for the apical iodide-permeating mechanism is pendrin, a chloride/iodide transporting protein recently identified in the apical membrane. In physiological conditions, transepithelial iodide transport occurs without intracellular iodination, despite the presence of large amounts of thyroglobulin and thyroperoxidase inside the cells. The reason is that hydrogen peroxide, serving as electron acceptor in iodide-protein binding and normally produced at the apical cell surface, is rapidly degraded by cytosolic glutathione peroxidase once it enters the cells. Iodinated thyroglobulin in the lumen stores not only thyroid hormone but iodine incorporated in iodotyrosine residues as well. After endocytic uptake and degradation of thyroglobulin, intracellular deiodination provides a mechanism for recycling of iodide to participate in the synthesis of new thyroid hormone at the apical cell surface.

  7. Quantitative read-out of Al2O3:C,Mg-based fluorescent nuclear track detectors using a commercial confocal microscope

    CERN Document Server

    Greilich, Steffen; Niklas, Martin; Lauer, Florian; Bestvater, Felix; Jäkel, Oliver

    2014-01-01

    Fluorescent nuclear track detectors (FNTD) show great potential for applications in ion-beam therapy research, such as dosimetry, advanced beam characterization, in-vivo use or as radiobiological assay. A essential feature of FNTDs is their ability to assess the energy loss of single ions yielding for example LET estimations. This article describes the basic characterisations of FNTDs and our read-out system (a Zeiss LSM710 confocal laser scanning microscope) to enable quantative measurements of energy loss.

  8. Characterization of strontium iodide scintillators with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lee J.; Phlips, Bernard

    2016-06-01

    This work characterizes a commercially available europium-doped strontium iodide detector recently developed by Radiation Monitoring Devices (RMD). The detector has been chosen for a space-based mission scheduled to launch in early 2017. The primary goal of this work was to characterize the detector's response over the expected operational range of −10 °C to 30 °C as well as the expected operational voltage range of +26.5–+28.5 V and identify background interferences that may develop due to neutron activation produced by cosmic-ray interactions. The 8 mm×8 mm×20 mm detectors use KETEK silicon photomultipliers (SiPM), with an active area of 6 mmx6 mm (KETEK PM6660). Our results show substantial integral nonlinearity due to the SiPM ranging from 0% to 25% at room temperature over the energy range of 80–2614 keV. The nonlinearity, a function of temperature and overvoltage, leads to an underestimate of the full width at half max (FWHM), which is 2.6% uncorrected at 662 keV and 3.8% corrected at 662 keV. The temperature dependence of the detector results in a noise threshold that increases substantially above 30 °C due to the SiPM dark rate. In an effort to simulate the harsh environment of space, neutron activation of the detector was also explored. Gamma-ray lines at 127 keV and 164 keV were observed in the detector along with Kα x-rays associated with europium. Beta decay from europium- and iodine-activation products were also observed within the detector.

  9. Predissociation dynamics of lithium iodide

    CERN Document Server

    Schmidt, H; Stienkemeier, F; Bogomolov, A S; Baklanov, A V; Reich, D M; Skomorowski, W; Koch, C P; Mudrich, M

    2015-01-01

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li+ and LiI+ ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V=650(20) reciprocal cm. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  10. Predissociation dynamics of lithium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H.; Vangerow, J. von; Stienkemeier, F.; Mudrich, M., E-mail: mudrich@physik.uni-freiburg.de [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany); Bogomolov, A. S. [Institute of Chemical Kinetics and Combustion, Novosibirsk 630090 (Russian Federation); Baklanov, A. V. [Institute of Chemical Kinetics and Combustion, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Reich, D. M.; Skomorowski, W.; Koch, C. P. [Theoretische Physik, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany)

    2015-01-28

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li{sup +} and LiI{sup +} ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V{sub XA} = 650(20) cm{sup −1}. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  11. FY-2016 Methyl Iodide Higher NOx Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2016 under the Department of Energy (DOE) Fuel Cycle Technology (FCT) Program Offgas Sigma Team to further research and advance the technical maturity of solid sorbents for capturing iodine-129 in off-gas streams during used nuclear fuel reprocessing. Adsorption testing with higher levels of NO (approximately 3,300 ppm) and NO2 (up to about 10,000 ppm) indicate that high efficiency iodine capture by silver aerogel remains possible. Maximum iodine decontamination factors (DFs, or the ratio of iodine flowrate in the sorbent bed inlet gas compared to the iodine flowrate in the outlet gas) exceeded 3,000 until bed breakthrough rapidly decreased the DF levels to as low as about 2, when the adsorption capability was near depletion. After breakthrough, nearly all of the uncaptured iodine that remains in the bed outlet gas stream is no longer in the form of the original methyl iodide. The methyl iodide molecules are cleaved in the sorbent bed, even after iodine adsorption is no longer efficient, so that uncaptured iodine is in the form of iodine species soluble in caustic scrubber solutions, and detected and reported here as diatomic I2. The mass transfer zone depths were estimated at 8 inches, somewhat deeper than the 2-5 inch range estimated for both silver aerogels and silver zeolites in prior deep-bed tests, which had lower NOx levels. The maximum iodine adsorption capacity and silver utilization for these higher NOx tests, at about 5-15% of the original sorbent mass, and about 12-35% of the total silver, respectively, were lower than for trends from prior silver aerogel and silver zeolite tests with lower NOx levels. Additional deep-bed testing and analyses are recommended to expand the database for organic iodide adsorption and increase the technical maturity if iodine adsorption processes.

  12. High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors

    Science.gov (United States)

    Kentgens, A. P. M.; Bart, J.; van Bentum, P. J. M.; Brinkmann, A.; van Eck, E. R. H.; Gardeniers, J. G. E.; Janssen, J. W. G.; Knijn, P.; Vasa, S.; Verkuijlen, M. H. W.

    2008-02-01

    The predominant means to detect nuclear magnetic resonance (NMR) is to monitor the voltage induced in a radiofrequency coil by the precessing magnetization. To address the sensitivity of NMR for mass-limited samples it is worthwhile to miniaturize this detector coil. Although making smaller coils seems a trivial step, the challenges in the design of microcoil probeheads are to get the highest possible sensitivity while maintaining high resolution and keeping the versatility to apply all known NMR experiments. This means that the coils have to be optimized for a given sample geometry, circuit losses should be avoided, susceptibility broadening due to probe materials has to be minimized, and finally the B1-fields generated by the rf coils should be homogeneous over the sample volume. This contribution compares three designs that have been miniaturized for NMR detection: solenoid coils, flat helical coils, and the novel stripline and microslot designs. So far most emphasis in microcoil research was in liquid-state NMR. This contribution gives an overview of the state of the art of microcoil solid-state NMR by reviewing literature data and showing the latest results in the development of static and micro magic angle spinning (microMAS) solenoid-based probeheads. Besides their mass sensitivity, microcoils can also generate tremendously high rf fields which are very useful in various solid-state NMR experiments. The benefits of the stripline geometry for studying thin films are shown. This geometry also proves to be a superior solution for microfluidic NMR implementations in terms of sensitivity and resolution.

  13. Proceedings of the symposium on RHIC detector R&D

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi, Y.; Stevens, A.J. [eds.

    1991-12-31

    This report contains papers on the following topics: Development of Analog Memories for RHIC Detector Front-end Electronic Systems; Monolithic Circuit Development for RHIC at Oak Ridge National Laboratory; Highly Integrated Electronics for the STAR TPC; Monolithic Readout Circuits for RHIC; New Methods for Trigger Electronics Development; Neurocomputing methods for Pattern Recognition in Nuclear Physics; The Development of a Silicon Multiplicity Detector System; The Vertex Detector for the Lepton/Photon Collaboration; Simulations of Silicon Vertex Tracker for STAR Experiment at RHIC; Calorimeter/Absorber Optimization for a RHIC Dimuon Experiment (RD-10 Project); Applications of the LAHET simulation Code to Relativistic Heavy Ion Detectors; Highly Segmented, High Resolution Time-of-Flight System; Research and Development on a Sub 100 Picosecond Time-of-Flight System Based on Silicon Avalance Diodes; Behavior of TPC`s in a High Particle Flux Environment; Generic R&D on Undoped Cesium Iodide and Lead Fluoride; and A Transition Radiation Detector for RHIC Featuring Accurate Tracking and dE/dx Particle Identification. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  14. Proceedings of the symposium on RHIC detector R&D

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi, Y.; Stevens, A.J. [eds.

    1991-12-31

    This report contains papers on the following topics: Development of Analog Memories for RHIC Detector Front-end Electronic Systems; Monolithic Circuit Development for RHIC at Oak Ridge National Laboratory; Highly Integrated Electronics for the STAR TPC; Monolithic Readout Circuits for RHIC; New Methods for Trigger Electronics Development; Neurocomputing methods for Pattern Recognition in Nuclear Physics; The Development of a Silicon Multiplicity Detector System; The Vertex Detector for the Lepton/Photon Collaboration; Simulations of Silicon Vertex Tracker for STAR Experiment at RHIC; Calorimeter/Absorber Optimization for a RHIC Dimuon Experiment (RD-10 Project); Applications of the LAHET simulation Code to Relativistic Heavy Ion Detectors; Highly Segmented, High Resolution Time-of-Flight System; Research and Development on a Sub 100 Picosecond Time-of-Flight System Based on Silicon Avalance Diodes; Behavior of TPC`s in a High Particle Flux Environment; Generic R&D on Undoped Cesium Iodide and Lead Fluoride; and A Transition Radiation Detector for RHIC Featuring Accurate Tracking and dE/dx Particle Identification. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  15. Experimental effects of dynamics and thermodynamics in nuclear reactions on the symmetry energy as seen by the CHIMERA 4 π detector

    Energy Technology Data Exchange (ETDEWEB)

    De Filippo, E.; Pagano, A. [INFN, Catania (Italy)

    2014-02-15

    Heavy-ion collisions have been widely used in the last decade to constrain the parameterizations of the symmetry energy term of the nuclear equation of state (EOS) for asymmetric nuclear matter as a function of baryonic density. In the Fermi energy domain one is faced with variations of the density within a narrow range of values around the saturation density ρ{sub 0}=0.16 fm{sup -3} down towards sub-saturation densities. The experimental observables which are sensitive to the symmetry energy are constructed starting from the detected light particles, clusters and heavy fragments that, in heavy-ion collisions, are generally produced by different emission mechanisms at different stages and time scales of the reaction. In this review the effects of dynamics and thermodynamics on the symmetry energy in nuclear reactions are discussed and characterized using an overview of the data taken so far with the CHIMERA multi detector array. (orig.)

  16. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    Energy Technology Data Exchange (ETDEWEB)

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team

  17. In-beam measurements of sub-nanosecond nuclear lifetimes with a mixed array of HPGe and LaBr{sub 3}:Ce detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marginean, N.; Bucurescu, D.; Cata-Danil, G.; Cata-Danil, I.; Deleanu, D.; Filipescu, D.; Ghita, D.; Glodariu, T.; Ivascu, M.; Mihai, C.; Marginean, R.; Negret, A.; Pascu, S.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N.V. [Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest (Romania); Balabanski, D.L.; Atanasova, L.; Detistov, P. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (INRNE), Sofia (Bulgaria); Lalkovski, S.; Deyanova, G.; Gladnishki, K.A.; Kisyov, S.; Radulov, D. [St. Kliment Ohridski University, Sofia (Bulgaria); Daugas, J.M. [CEA, DAM, DIF, Arpajon (France); Georgiev, G.; Lozeva, R. [CSNSM, Orsay (France)

    2010-12-15

    A fast-timing method to determine lifetimes of nuclear states in the sub-nanosecond domain is presented. It is based on in-beam measurements of triple-gamma coincidences in heavy-ion fusion-evaporation reactions, performed with an array of HPGe and LaBr{sub 3}:Ce detectors. The high-energy resolution HPGe detectors are used to define de-exciting cascades, while the fast LaBr{sub 3}:Ce detectors are used to determine the decay time spectra of selected levels fed by these cascades. A special method to treat the time information of an array of fast detectors is employed in order to fully use the efficiency of the array. Two measurements are presented to illustrate the method: a re-determination of the known half-life T{sub 1/2}=0.7 ns of the E{sub x}=205 keV, J{sup {pi}}=7/2{sup +} level in {sup 107}Cd (test experiment), and the determination of a half-life T{sub 1/2}=47 ps for the E{sub x}=367 keV, J{sup {pi}}=3/2{sup +} state of {sup 199}Tl. (orig.)

  18. A perchlorate sensitive iodide transporter in frogs.

    Science.gov (United States)

    Carr, Deborah L; Carr, James A; Willis, Ray E; Pressley, Thomas A

    2008-03-01

    Nucleotide sequence comparisons have identified a gene product in the genome database of African clawed frogs (Xenopus laevis) as a probable member of the solute carrier family of membrane transporters. To confirm its identity as a putative iodide transporter, we examined the function of this sequence after heterologous expression in mammalian cells. A green monkey kidney cell line transfected with the Xenopus nucleotide sequence had significantly greater (125)I uptake than sham-transfected control cells. The uptake in carrier-transfected cells was significantly inhibited in the presence of perchlorate, a competitive inhibitor of mammalian Na(+)/iodide symporter. Tissue distributions of the sequence were also consistent with a role in iodide uptake. The mRNA encoding the carrier was found to be expressed in the thyroid gland, stomach, and kidney of tadpoles from X. laevis, as well as the bullfrog Rana catesbeiana. The ovaries of adult X. laevis also were found to express the carrier. Phylogenetic analysis suggested that the putative X. laevis iodide transporter is orthologous to vertebrate Na(+)-dependent iodide symporters. We conclude that the amphibian sequence encodes a protein that is indeed a functional Na(+)/iodide symporter in X. laevis, as well as R. catesbeiana.

  19. Charge, energy and LET spectra of high LET primary and secondary particles in CR-39 plastic nuclear track detectors of the P0006 experiment

    Science.gov (United States)

    Csige, I.; Frigo, L. A.; Benton, E. V.; Oda, K.

    1995-01-01

    We have measured the charge, energy and linear energy transfer (LET) spectra of about 800 high LET (LET(sub infinity) H2O greater than 50 keV/micron) particles in CR-39 plastic nuclear track detectors in the P0006 experiment of LDEF. Primary particles with residual range at the reference surface greater than about 2 microns and secondary particles produced in the detector material with total range greater than about 4 microns were measured. We have used a multi-etch technique and an internal calibration to identify and measure the energy of the particles at the reference surface. The LET spectrum was obtained from the charge and energy distribution of the particles.

  20. Strontium iodide gamma ray spectrometers for planetary science (Conference Presentation)

    Science.gov (United States)

    Prettyman, Thomas H.; Rowe, Emmanuel; Butler, Jarrhett; Groza, Michael; Burger, Arnold; Yamashita, Naoyuki; Lambert, James L.; Stassun, Keivan G.; Beck, Patrick R.; Cherepy, Nerine J.; Payne, Stephen A.; Castillo-Rogez, Julie C.; Feldman, Sabrina M.; Raymond, Carol A.

    2016-09-01

    Gamma rays produced passively by cosmic ray interactions and by the decay of radioelements convey information about the elemental makeup of planetary surfaces and atmospheres. Orbital missions mapped the composition of the Moon, Mars, Mercury, Vesta, and now Ceres. Active neutron interrogation will enable and/or enhance in situ measurements (rovers, landers, and sondes). Elemental measurements support planetary science objectives as well as resource utilization and planetary defense initiatives. Strontium iodide, an ultra-bright scintillator with low nonproportionality, offers significantly better energy resolution than most previously flown scintillators, enabling improved accuracy for identification and quantification of key elements. Lanthanum bromide achieves similar resolution; however, radiolanthanum emissions obscure planetary gamma rays from radioelements K, Th, and U. The response of silicon-based optical sensors optimally overlaps the emission spectrum of strontium iodide, enabling the development of compact, low-power sensors required for space applications, including burgeoning microsatellite programs. While crystals of the size needed for planetary measurements (>100 cm3) are on the way, pulse-shape corrections to account for variations in absorption/re-emission of light are needed to achieve maximum resolution. Additional challenges for implementation of large-volume detectors include optimization of light collection using silicon-based sensors and assessment of radiation damage effects and energetic-particle induced backgrounds. Using laboratory experiments, archived planetary data, and modeling, we evaluate the performance of strontium iodide for future missions to small bodies (asteroids and comets) and surfaces of the Moon and Venus. We report progress on instrument design and preliminary assessment of radiation damage effects in comparison to technology with flight heritage.

  1. Development of image capture system of fission tracks in plastic detectors; Desenvolvimento de sistema de captura de imagens de tracos nucleares em detectores plasticos

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Elder M. de; Melo, Vicente P. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil). Dept. de Protecao Radiologica Ambiental

    2001-07-01

    Plastic detectors are appropriate for detection and registration of alpha particles and fission products. The interaction of these particles with the detector damage its molecular structure, leading to a latent track (visible only under an electronic microscope) with diameter in the nanometer magnitude order. There are two etching methods: the conventional and the electrochemistry one. In the conventional etching the usual conditions is to attack with NaOH 6M, producing a track of average diameter of 3 {mu} m. In the electrochemistry etching the diameter is {approx} 150 {mu}m. The aim of this work is to show the functionality of the scanner for the acquisition of these images in conditions of electrochemistry etching. We employed the following attack solution: KOH/C{sub 2}H{sub 5}OH 15% p/v, pre-etching of 30 minutes, etching with tension of 1000 V, frequency of 100 Hz, during an hour and another stage of an hour, with frequency of 8 kHz. The images were acquired with optical resolution of 400 dpi and amplification of 300%, what allows printing in paper or counting and observation of the tracks in the screen. Results have shown that the replacement of the conventional system by a scanner computer device can be performed without loss of reliability of confidence in the tracks measurement and observation. (author)

  2. Xenon Gamma Detector Project Support

    Energy Technology Data Exchange (ETDEWEB)

    Vanier,P.E.; Forman, L.

    2008-04-01

    This project provided funding of $48,500 for part of one year to support the development of compressed xenon spectrometers at BNL. This report describes upgrades that were made to the existing detector system electronics during that period, as well as subsequent testing with check sources and Special Nuclear Materials. Previous testing of the equipment extended only up to the energy of 1.3 MeV, and did not include a spectrum of Pu-239. The new electronics allowed one-button activation of the high voltage ramp that was previously controlled by manual adjustments. Mechanical relays of the charging circuit were replaced by a tera-ohm resistor chain and an optical switch. The preamplifier and shaping amplifier were replaced by more modern custom designs. We found that the xenon purity had not been degraded since the chamber was filled 10 years earlier. The resulting spectra showed significantly better resolution than sodium iodide spectra, and could be analyzed quite effectively by methods using peak area templates.

  3. Investigation of response of CR-39, PM-355 and PM-500 types of nuclear track detectors to energetic carbon ions

    CERN Document Server

    Szydlowski, A; Jaskola, M; Sadowski, M; Korman, A; Kedzierski, J T; Kretschmer, W

    1999-01-01

    Samples of CR-39, PM-355, and PM-500 plastic detectors were irradiated with carbon ions of energy ranging from 0.9 MeV to 14.7 MeV. After the irradiation the detector samples were etched for a period from 2 hrs to 10 hrs. Dependence of track diameters on the ion energy values for different etching times, and dependence of V sub T /V sub B as a function of incident carbon-ion energy, are presented.

  4. 碘化钾对实验性铅性肾病的保护作用及其对核因子-κB及纤维连接蛋白表达的影响%Effect of potassium iodide on prevention of experimental lead nephropathy and expression of nuclear factor-κB and fibronectin

    Institute of Scientific and Technical Information of China (English)

    乔玉峰; 庞东梓; 鹿金凤; 胡白瑛; 刘栋; 周桂凤; 杨波; 李荣山; 蒋云生

    2009-01-01

    Objective To investigate the effect of potassium iodide on the expression of nuclear factor-κB and fibronectin. Methods The experiment was performed with 72 SD rats weighing about 180~220 g. The animals were randomly assigned into nine groups. Group A, B, C (n=8) served as control and were fed with distilled water for 1 month, 2 month, 3 month respectively. Group D,E,F(n=8) served as lead exposed and were fed with water with 0.5% lead acetate for 1 month, 2 month, 3 month respectively. Group G, H, I (n=8) served as potassium iodide and lead exposed and were treated with 0.5% lead acetate simultaneously taking potassium iodide 3 mg/100 g weight by intragastric administration for 1 month, 2 month, 3 month respectively. Animals of different groups were sacrificed at the end of the treatment, infrastructure of kidney was observed by electron microscopy; Expression of NF-kB and FN protein and mRNA in kidney were measured respectively by immunohistochemistry and RT-PCR. Results Electron microscopic examination revealed potassium iodide could restrain the denaturalization in epithelial cells and mitochondrial cristae. The expressions of NF-κB protein(0.2315±0.0624,0.3213±0.0740,0.4729±0.0839) and mRNA(0.4370±0.0841,0.5465±0.0503,0.6443± 0.0538) in all the lead exposed groups continuously increased compared with correspondent control groups; Group I was decreased obviously compared with group F. The expressions of FN protein (0.4243 ± 0.0595,0.4917±0.0891) and mRNA (0.8650±0.0880,0.8714±0.0980) in group E and F increased compared with group B and C, but the expressions of FN protein in group I significantly decreased compared with group F; The expressions of FN mRNA in Group H and I significantly decreased compared with group E and F. Conclusion The potassium iodide can ameliorate renal infrastructure and degrade expression of nuclear factor-κB and fibronectin induced by lead.%目的 观察碘化钾对染铅大鼠肾脏组织的核因子-κB(NF-κB)及纤维

  5. Technical Basis for the Use of Alarming Personal Criticality Detectors to Augment Permanent Nuclear Incident Monitor (NIM) Systems in Areas Not Normally Occupied

    CERN Document Server

    Yates, K R

    2003-01-01

    The technical basis for the use of alarming personal criticality detectors (APCDs) to augment permanent Nuclear Incident Monitor (NIM) Systems in areas not normally occupied is evaluated. All applicable DOE O 420.1A and ANSI/ANS-8.3-1997 criticality alarm system requirements and recommendations are evaluated for applicability to APCDs. Based on this evaluation, design criteria and administrative requirements are presented for APCDs. Siemens EPD/Mk-2 and EPD-N devices are shown to meet the design criteria. A definition of not normally occupied is also presented.

  6. Results from the characterisation of Advanced GAmma Tracking Array prototype detectors and their consequences for the next-generation nuclear physics spectrometer

    Science.gov (United States)

    Dimmock, M. R.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Nelson, L.; Nolan, P.; Rigby, S.; Unsworth, C.; Lazarus, I.; Simpson, J.; Medina, P.; Parisel, C.; Santos, C.

    2007-09-01

    The Advanced GAmma Tracking Array (AGATA) is a European project that is aiming to construct a complete 4π High Purity Germanium (HPGe) gamma-ray spectrometer for nuclear structure studies at future Radioactive Ion Beam (RIB) Facilities. The proposed array will utilise digital electronics, Pulse Shape Analysis (PSA) and Gamma-Ray Tracking (GRT) algorithms, to overcome the limited efficiencies encountered by current Escape Suppressed Spectrometers (ESS), whilst maintaining the high Peak-to-Total ratio. Two AGATA symmetrical segmented Canberra Eurisys (CE) prototype HPGe detectors have been tested at the University of Liverpool. A highly collimated Cs-137 (662keV) beam was raster scanned across each detector and data were collected in both singles and coincidence modes. The charge sensitive preamplifier output pulse shapes from all 37 channels (one for each of the 36 segments and one for the centre contact) were digitised and stored for offline analysis. The shapes of the real charge and image charge pulses have been studied to give detailed information on the position dependent response of each detector. 1mm position sensitivity has been achieved with the parameterisation of average pulse shapes, calculated from data collected with each of the detectors. The coincidence data has also been utilised to validate the electric field simulation code Multi Geometry Simulation (MGS). The precisely determined 3D interaction positions allow the comparison of experimental pulse shapes from single site interactions with those generated by the simulation. It is intended that the validated software will be used to calculate a basis data set of pulse shapes for the array, from which any interaction site can be determined through a χ2 minimisation of the digitized pulse with linear combinations of basis pulseshapes. The results from this partial validation, along with those from the investigation into the position sensitivity of each detector are presented.

  7. Study on Growth and Optical, Scintillation Properties of Thallium Doped Cesium Iodide –Scintillator Crystal

    Directory of Open Access Journals (Sweden)

    B. Ravi

    2014-06-01

    Full Text Available Single crystal of Thallium doped cesium Iodide –Scintillator crystal was grown using vertical Bridgeman technique. The grown crystal was included for cutting and polishing for the characterization purpose and this crystal was studied by optical transmission properties, photo luminescence and thermally luminescence characteristics. Gamma-ray detectors were fabricated using the grown crystal that showed good linearity and nearly 7.5% resolution at 662 keV.

  8. Ultraviolet radiation-induced modifications of the optical and registration properties of a CR-39 nuclear track detector

    Energy Technology Data Exchange (ETDEWEB)

    Saad, A.F., E-mail: abdallahsaad56@hotmail.com [Physics Department, Faculty of Science, University of Benghazi, Benghazi (Libya); Physics Department, Faculty of Science, Zagazig University, Zagazig (Egypt); Al-Faitory, N.M. [Physics Department, Faculty of Science, University of Benghazi, Benghazi (Libya); Hussein, M. [Physics Department, Faculty of Science, Zagazig University, Zagazig (Egypt); Mohamed, R.A. [Physics Department, Faculty of Science, University of Benghazi, Benghazi (Libya)

    2015-09-15

    The UV–VIS (ultraviolet–visible) spectra and etching characteristics of poly allyl diglycol carbonate (PADC, a form of the CR-39 polymer) detector films after exposure to UV radiation for various times have been studied. Etching experiments were carried out on the UV-exposed CR-39 detectors after alpha particle and fission-fragment irradiation using a {sup 252}Cf source. The bulk and track etch rates were measured using the alpha and fission-fragment track diameters, and the sensitivity and the detection efficiency were also determined. The optical band gap for both indirect and direct transitions was calculated based on the absorption edge of the UV spectra of the pristine and variously UV-exposed detectors. The optical band gap evidently indicates a gradual change in the optical properties of the CR-39 detector that is induced by the UV radiation. This study shows that the UV-exposed CR-39 detectors were demonstrated to be highly sensitive to alpha particles, but proved to be somewhat less sensitive to the fission fragments.

  9. A Monte Carlo study of a high resolution $\\gamma$-detector for small organ imaging in Nuclear Medicine

    CERN Document Server

    Ortigão, C

    2004-01-01

    A reliable Monte Carlo simulation study is of significance importance to evaluate the performance of a gamma-ray detector and the search for compromises between spatial resolution, sensitivity and energy resolution. The development of a simulation package for a new compact gamma camera based on GEANT3 is described in this report. This simulation takes into account the interaction of gamma-rays in the crystal, the production and transport of scintillation photons and allows an accurate radiation transport description of photon attenuation in high-Z collimators, for SPECT applications. In order to achieve the best setup configuration different detector arrangements were explored, namely different scintillation crystals, coatings, reflector properties and polishing types. The conventional detector system, based on PMT light readout, was compared with an HPD system. Different collimators were studied for high resolution applications with compact gamma-cameras.

  10. Radiation portal monitor with {sup 10}B+ZnS(Ag) neutron detector performance for the detection of special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Gallego, E.; Lorente, A.; Ibanez F, S. [Universidad Politecnica de Madrid, Departamento de Ingenieria Energetica, ETSI Industriales, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Gonzalez, J. A. [Universidad Politecnica de Madrid, Laboratorio de Ingenieria Nuclear, ETSI Caminos, Canales y Puertos, C. Prof. Aranguren 3, 28040 Madrid (Spain); Mendez, R., E-mail: ingkarenguzman@gmail.com [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Laboratorio de Patrones Neutronicos, Av. Complutense 40, 28040 Madrid (Spain)

    2016-10-15

    In homeland security, neutron detection is used to prevent the smuggling of special nuclear materials. Thermal neutrons are normally detected with {sup 3}He proportional counters, in the radiation portal monitors, Rpms, however due to the {sup 3}He shortage new procedures are being studied. In this work Monte Carlo methods, using the MCNP6 code, have been used to study the neutron detection features of a {sup 10}B+ZnS(Ag) under real conditions inside of a Rpm. The performance for neutron detection was carried out for {sup 252}Cf, {sup 238}U and {sup 239}Pu under different conditions. In order to mimic an actual situation occurring at border areas, a sample of SNM sited inside a vehicle was simulated and the Rpm with {sup 10}B+ZnS(Ag) response was calculated. At 200 cm the {sup 10}B+ZnS(Ag) on Rpm response is close to 2.5 cps-ng {sup 252}Cf, when the {sup 252}Cf neutron source is shielded with 0.5 cm-thick lead and 2.5 cm-thick polyethylene fulfilling the ANSI recommendations. Three different geometries of neutron detectors of {sup 10}B+ZnS(Ag) in a neutron detection system in Rpm were modeled. Therefore, the {sup 10}B+ZnS(Ag) detectors are an innovative and viable replacement for the {sup 3}He detectors in the Rpm. (Author)

  11. Fast scintillation timing detector using proportional-mode avalanche photodiode for nuclear resonant scattering experiments in high-energy synchrotron X-ray region

    Science.gov (United States)

    Inoue, Keisuke; Kishimoto, Shunji

    2016-01-01

    To obtain both a high count rate of >107 s-1 and a detection efficiency sufficient for high-energy X-rays of >30 keV, we propose a scintillation timing detector using a proportional-mode silicon avalanche photodiode (Si-APD) for synchrotron radiation nuclear resonant scattering. We here present results obtained with a prototype detector using a lead-loaded plastic scintillator (EJ-256) mounted on a proportional-mode Si-APD (active area size: 3 mm in diameter). The detector was operated at ‒35 °C for a better signal-to-noise ratio. Using synchrotron X-rays of 67.41 keV, which is the same energy as the first excited level of 61Ni, we successfully measured pulse-height and time spectra of the scintillation light. A good time resolution of 0.50±0.06 ns (full width at half-maximum) was obtained for 67.41 keV X-rays with a scintillator 3 mm in diameter and 2 mm thick.

  12. Contribution of plated-out 218Po and 214Po to measurements of airborne 222Rn and daughters with plastic (CR-39) nuclear track detectors

    Science.gov (United States)

    Kahn, Bernd; Wang, Zuoyuan; Sensistaffar, Edwin

    1984-01-01

    The fraction of alpha-particle tracks due to radioactivity plated out on its surface was measured for CR-39 nuclear track detector foils used to determine working level values in air. Bare foils were exposed to known concentrations of airborne 222Rn and its short-lived daughters in a calibration chamber. The amounts of 218Po and 214Po on the foil surface were measured with a calibrated diffused junction detector-spectrometer system immediately after the foils were removed from the chamber. Deposition was mostly by 218Po, with some 214Pb but essentially no 214Bi. The track density due to the plated-out radionuclides and the 222Rn, 218Po, and 214Po in chamber air was calculated and compared to the value measured by electrochemical etching. The calculated values generally were slightly above the measured values. On the basis of these calculations, the deposited radioactivity contributed slightly less than one-half of the total tracks in one test and slightly more than two-thirds in another. This effect complicates calibration of the detector relative to airborne radon daughters.

  13. Improving on Nuclear Measurement Detector for Marine Reactor%船用堆核测量探测器改进研究

    Institute of Scientific and Technical Information of China (English)

    于勇; 于雷; 陈登科; 赵新文; 蔡琦

    2014-01-01

    The whole range neutron Nuclear Measurement Detector( NMD)for marine reactor was re-searched by assembled the high efficacy boron coating counters and gamma-compensated ionization cham-bers. By practical verifying on neutron flux reactor,the detector had finer performance than current detec-tor on sensitivity etc. The study could supply technique reference for development of whole range neutron NMD for marine reactor.%通过分析和改进硼计数管的探测效率,并与电离室合理组合,形成具有船用反应堆全量程中子通量测量能力的中子探测器;通过中子通量堆上试验表明:该探测器的灵敏度等各项指标超出现有产品性能;本研究为进一步研发船用堆全量程中子探测器提供了技术参考。

  14. Solid-state detector system for measuring concentrations of tritiated water vapour and other radioactive gases

    Science.gov (United States)

    Nunes, J. C.; Surette, R. A.; Wood, M. J.

    1999-08-01

    A detector system was built using a silicon photodiode plus preamplifier and a cesium iodide scintillator plus preamplifier that were commercially available. The potential of the system for measuring concentrations of tritiated water vapour in the presence of other radioactive sources was investigated. For purposes of radiation protection, the sensitivity of the detector system was considered too low for measuring tritiated water vapour concentrations in workplaces such as nuclear power plants. Nevertheless, the spectrometry capability of the system was used successfully to differentiate amongst some radioactive gases in laboratory tests. Although this relatively small system can measure radioactive noble gases as well as tritiated water vapour concentrations, its response to photons remains an issue.

  15. Fast and high-energy neutron detection with nuclear track detectors: Results of the European joint experiments 1992/93

    Energy Technology Data Exchange (ETDEWEB)

    Schraube, H. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany); Alberts, W.G. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Weeks, A.R. [comps.] [Nuclear Electric plc, Berkeley (United Kingdom). Berkeley Technology Centre

    1997-12-31

    Under the auspices of EURADOS, the European radiation dosimetry group, seventeen recognised laboratories engaged in the field of individual neutron dosimetry with passive track detectors participated in an international comparative experiment. A number of twenty-seven detector systems, predominantly etched track detectors with the material PADC (poly allyl diglycol carbonate), were employed by the participating laboratories. Quasi-monoenergetic neutrons were provided for irradiations free-in-air and on front of a PMMA phantom by the GSF (Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg, Germany) and by the PTB (Physikalisch-Technische Bundesanstalt, Braunschweig, Germany). High energy irradiations were conducted by the PSI (Paul-Scherrer Institut, Villigen, Switzerland). The results of the on-phantom irradiations were used to derive energy and angular responses of the track detectors, those of the free-in-air irradiations to obtain data for the linearity characteristics of the response with dose. The report contains a short description and the original data of the participating laboratories, displays the irradiation and reference conditions, and provides an over-all evaluation. Emphasis is placed on the quantitative evaluation of the background characteristics and of the non-linearity observed with most of the systems employed which limits their useful dose-range of application. (orig.)

  16. Inclusion complexation of tetrabutylammonium iodide by cyclodextrins

    Indian Academy of Sciences (India)

    BISWAJIT DATTA; ADITI ROY; MAHENDRA NATH ROY

    2017-05-01

    Host-guest inclusion complex of an ionic solid (tetrabutyl ammonium iodide) with α- and β- cyclodextrin has been explored by various physicochemical and spectroscopic methods. Surface tension and conductivity studies indicated 1:1 stoichiometry of the inclusion complexes and ¹H NMR and FT-IR studies substantiated the inclusion phenomenon. Density, viscosity and refractive index studies characterized the interactions of cyclodextrin with tetrabutyl ammonium iodide, which also indicated greater extent of encapsulation in β-cyclodextrin than in α-cyclodextrin. Hydrophobic effect, structural effect, electrostatic force and H-bonding interactions were mainly exploited to explicate the formation of inclusion complex.

  17. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.

    2017-08-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.

  18. Performance Study of an aSi Flat Panel Detector for Fast Neutron Imaging of Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, M.; Mauerhofer, E. [Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Engels, R.; Kemmerling, G. [Central Institute for Engineering, Electronics and Analytics - Electronic Systems, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Frank, M. [MATHCCES - Department of Mathematics, RWTH Aachen University, 52062 Aachen (Germany); Havenith, A.; Kettler, J.; Klapdor-Kleingrothaus, T. [Institute of Nuclear Engineering and Technology Transfer, RWTH Aachen University, 52062 Aachen (Germany); Schitthelm, O. [Corporate Technology, Siemens AG, 91058 Erlangen (Germany)

    2015-07-01

    Radioactive waste must be characterized to check its conformance for intermediate storage and final disposal according to national regulations. For the determination of radio-toxic and chemo-toxic contents of radioactive waste packages non-destructive analytical techniques are preferentially used. Fast neutron imaging is a promising technique to assay large and dense items providing, in complementarity to photon imaging, additional information on the presence of structures in radioactive waste packages. Therefore the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA) using 14 MeV neutrons is studied in a cooperation framework of Forschungszentrum Juelich GmbH, RWTH Aachen University and Siemens AG. However due to the low neutron emission of neutron generators in comparison to research reactors the challenging task resides in the development of an imaging detector with a high efficiency, a low sensitivity to gamma radiation and a resolution sufficient for the purpose. The setup is composed of a commercial D-T neutron generator (Genie16GT, Sodern) with a surrounding shielding made of polyethylene, which acts as a collimator and an amorphous silicon flat panel detector (aSi, 40 x 40 cm{sup 2}, XRD-1642, Perkin Elmer). Neutron detection is achieved using a general propose plastic scintillator (EJ-260, Eljen Technology) linked to the detector. The thermal noise of the photodiodes is reduced by employing an entrance window made of aluminium. Optimal gain and integration time for data acquisition are set by measuring the response of the detector to the radiation of a 500 MBq {sup 241}Am-source. Detector performance was studied by recording neutron radiography images of materials with various, but well known, chemical compositions, densities and dimensions (Al, C, Fe, Pb, W, concrete, polyethylene, 5 x 8 x 10 cm{sup 3}). To simulate gamma-ray emitting waste radiographs in presence of a gamma-ray sources ({sup 60}Co, {sup 137}Cs, {sup 241

  19. Effect of environmental conditions on radon concentration-track density calibration factor of solid-state nuclear track detectors

    Science.gov (United States)

    El-Sersy, A.; Mansy, M.; Hussein, A.

    2004-04-01

    In this work, the effect of environmental conditions viz., temperature (T) and relative humidity (RH) on the track density--radon concentrations calibration factor (K) has been studied for CR-39 and LR-115 track detectors. The factor K was determined using a reference radon chamber in the National Institute for Standards (NIS) in Egypt. Track detectors were etched at the recommended optimum etching conditions. It is found that, the calibration factor K varies with both T and RH, so they should be considered for the sake of uncertainty reduction. Good agreement is found between the calculated and measured values of K and the compatibility between them is in the range of experimental uncertainty.

  20. Radon measurements by nuclear track detectors in dwellings in Oke-Ogun area, South-Western, Nigeria.

    Science.gov (United States)

    Obed, R I; Ademola, A K; Ogundare, F O

    2012-03-01

    An indoor radon survey of a total of 77 dwellings randomly selected in 10 districts in Oke-Ogun area of Oyo state, South-western Nigeria was carried out using CR-39 detectors. The CR-39 detectors were placed in the bedrooms and living rooms and exposed for 6 months and then etched in NaOH 6.25 N solution at 90 °C for 3 h. Mean concentrations amount to 255 ± 47 and 259 ± 67 Bq m(-3) in the living rooms and bedrooms, respectively. The lowest radon concentration (77 ± 29 Bq m(-3)) was found in Igbeti, whereas the highest was found in Okeho (627 ± 125 Bq m(-3)). The annual exposure of dwellers was estimated to fall radon level in this part of the country may be attributed to its geographic location. The data presented here will serve as a baseline survey for radon concentration in dwellings in the area.

  1. Origin of a signal detected with the LSD detector after the accident at the chernobyl nuclear power plant

    Science.gov (United States)

    Agafonova, N. Yu.; Malgin, A. S.; Fulgione, W.

    2013-08-01

    A rare signal was detected at 23:53 Moscow time on April 27, 1986 with the LSD low-background scintillation detector located under Mont Blanc at a distance of 1820 km from Chernobyl. To reveal the origin of this signal, we discuss the results obtained with other instruments operating within a similar program, as well as analyze the characteristics of the pulses of the signal and facts referring to the explosion of the Chernobyl reactor. A hypothesis based on detection with the LSD of gamma-quanta from β decays of 135I nuclei ejected into atmosphere by the reactor explosion and carried in the underground detector camera with air of positive ventilation is considered. The explosion origin of the LSD signal indicates a new technogenic source of the background in the search for neutrino bursts from cores of collapsing stars.

  2. Origin of a signal detected with the LSD detector after the accident at the chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Agafonova, N. Yu., E-mail: natagafonova@gmail.com; Malgin, A. S., E-mail: malgin@lngs.infn.it [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Fulgione, W. [Istituto Nazionale di Fisica Nucleare, and Osservatorio Astrofisico di Torino, Istituto di Fisica dello Spazio Interplanetario (Italy)

    2013-08-15

    A rare signal was detected at 23:53 Moscow time on April 27, 1986 with the LSD low-background scintillation detector located under Mont Blanc at a distance of 1820 km from Chernobyl. To reveal the origin of this signal, we discuss the results obtained with other instruments operating within a similar program, as well as analyze the characteristics of the pulses of the signal and facts referring to the explosion of the Chernobyl reactor. A hypothesis based on detection with the LSD of gamma-quanta from {beta} decays of {sup 135}I nuclei ejected into atmosphere by the reactor explosion and carried in the underground detector camera with air of positive ventilation is considered. The explosion origin of the LSD signal indicates a new technogenic source of the background in the search for neutrino bursts from cores of collapsing stars.

  3. A comparison of CsI:Tl and GOS in a scintillator-CCD detector for nuclear medicine imaging

    Science.gov (United States)

    Bugby, S. L.; Jambi, L. K.; Lees, J. E.

    2016-09-01

    A number of portable gamma cameras for medical imaging use scintillator-CCD based detectors. This paper compares the performance of a scintillator-CCD based portable gamma camera with either a columnar CsI:Tl or a pixelated GOS scintillator installed. The CsI:Tl scintillator has a sensitivity of 40% at 140.5 keV compared to 54% with the GOS scintillator. The intrinsic spatial resolution of the pixelated GOS detector was 1.09 mm, over 4 times poorer than for CsI:Tl. Count rate capability was also found to be significantly lower when the GOS scintillator was used. The uniformity was comparable for both scintillators.

  4. Simplest Formula of Copper Iodide: A Stoichiometry Experiment.

    Science.gov (United States)

    MacDonald, D. J.

    1983-01-01

    Describes an experiment presented to students as a problem in determining the stoichiometry of "copper iodide" to decide whether it is cuprous iodide or cupric iodide. The experiment illustrates stoichiometry principles, providing experiences with laboratory techniques and numerical computation. Detailed outline (written for student use) is…

  5. Potassium iodide capsule treatment of feline sporotrichosis.

    Science.gov (United States)

    Reis, Erica G; Gremião, Isabella D F; Kitada, Amanda A B; Rocha, Raphael F D B; Castro, Verônica S P; Barros, Mônica B L; Menezes, Rodrigo C; Pereira, Sandro A; Schubach, Tânia M P

    2012-06-01

    Sporotrichosis is a mycosis caused by Sporothrix schenckii. The most affected animal is the cat; it has played an important role in the zoonotic transmission of this disease, especially in Rio de Janeiro, Brazil, since 1998. In order to evaluate the treatment of feline sporotrichosis with potassium iodide, an observational cohort was conducted in 48 cats with sporotrichosis at Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz. All cats received potassium iodide capsules, 2.5 mg/kg to 20 mg/kg q24h. The cure rate was 47.9%, treatment failure was 37.5%, treatment abandonment was 10.4% and death was 4.2%. Clinical adverse effects were observed in 52.1% of the cases. Thirteen cats had a mild increase in hepatic transaminase levels during the treatment, six of them presented clinical signs suggestive of hepatotoxicity. Compared to previous studies with itraconazole and iodide in saturated solution, potassium iodide capsules are an alternative for feline sporotrichosis treatment.

  6. Methyl Iodide Fumigation of Bacillus anthracis Spores.

    Science.gov (United States)

    Sutton, Mark; Kane, Staci R; Wollard, Jessica R

    2015-09-01

    Fumigation techniques such as chlorine dioxide, vaporous hydrogen peroxide, and paraformaldehyde previously used to decontaminate items, rooms, and buildings following contamination with Bacillus anthracis spores are often incompatible with materials (e.g., porous surfaces, organics, and metals), causing damage or residue. Alternative fumigation with methyl bromide is subject to U.S. and international restrictions due to its ozone-depleting properties. Methyl iodide, however, does not pose a risk to the ozone layer and has previously been demonstrated as a fumigant for fungi, insects, and nematodes. Until now, methyl iodide has not been evaluated against Bacillus anthracis. Sterne strain Bacillus anthracis spores were subjected to methyl iodide fumigation at room temperature and at 550C. Efficacy was measured on a log-scale with a 6-log reduction in CFUs being considered successful compared to the U.S. Environmental Protection Agency biocide standard. Such efficacies were obtained after just one hour at 55 °C and after 12 hours at room temperature. No detrimental effects were observed on glassware, PTFE O-rings, or stainless steel. This is the first reported efficacy of methyl iodide in the reduction of Bacillus anthracis spore contamination at ambient and elevated temperatures.

  7. Electrosorption of tetraalkylammonium ions on silver iodide

    NARCIS (Netherlands)

    Keizer, de A.

    1981-01-01

    The object of the present investigations was to study the ef fect of the adsorption of charged organic ions on electrically charged, solid-liquid interfaces. To that end, symmetrical quater nary ammonium ions were adsorbed on a silver iodide-electrolyte interface at various

  8. Detection of apoptotic cells using propidium iodide staining.

    Science.gov (United States)

    Newbold, Andrea; Martin, Ben P; Cullinane, Carleen; Bots, Michael

    2014-11-03

    Flow cytometry assays are often used to detect apoptotic cells in in vitro cultures. Depending on the experimental model, these assays can also be useful in evaluating apoptosis in vivo. In this protocol, we describe a propidium iodide (PI) flow cytometry assay to evaluate B-cell lymphomas that have undergone apoptosis in vivo. B-cell lymphoma cells are injected into recipient mice and, on tumor formation, the mice are treated with the apoptosis inducer vorinostat (a histone deacetylase inhibitor). Tumor samples collected from the lymph nodes and/or the spleen are used to prepare a single-cell suspension that is exposed to a hypotonic solution containing the fluorochrome PI. The DNA content of the cells, now labeled with PI, is analyzed by flow cytometry. Nuclear DNA content is lost during apoptosis, resulting in a hypodiploid (or sub-G1) DNA profile during flow cytometry. In contrast, healthy cells display a sharp diploid DNA profile.

  9. Study on Signal Processing Circuit Based on Scintillation Detector

    Institute of Scientific and Technical Information of China (English)

    YAO; Yong-gang; DENG; Chang-ming; LI; Jian-wei; XIAO; Cai-jin; ZHANG; Gui-ying; WANG; Ping-sheng; WANG; Xing-hua; JIN; Xiang-chun; HUA; Long; YUAN; Guo-jun; NI; Bang-fa

    2013-01-01

    Compared with silicon semiconductor detector,higher energy resolution and together with the high detection efficiency,big sensitive volume,good adaptability to environment and high sensitivityespecially in nature background environment are the characteristics of scintillation detector.The most widely applied scintillator includes inorganic crystals,of which sodium iodide is the favorite and

  10. Gamma-Ray Background Variability in Mobile Detectors

    Science.gov (United States)

    Aucott, Timothy John

    Gamma-ray background radiation significantly reduces detection sensitivity when searching for radioactive sources in the field, such as in wide-area searches for homeland security applications. Mobile detector systems in particular must contend with a variable background that is not necessarily known or even measurable a priori. This work will present measurements of the spatial and temporal variability of the background, with the goal of merging gamma-ray detection, spectroscopy, and imaging with contextual information--a "nuclear street view" of the ubiquitous background radiation. The gamma-ray background originates from a variety of sources, both natural and anthropogenic. The dominant sources in the field are the primordial isotopes potassium-40, uranium-238, and thorium-232, as well as their decay daughters. In addition to the natural background, many artificially-created isotopes are used for industrial or medical purposes, and contamination from fission products can be found in many environments. Regardless of origin, these backgrounds will reduce detection sensitivity by adding both statistical as well as systematic uncertainty. In particular, large detector arrays will be limited by the systematic uncertainty in the background and will suffer from a high rate of false alarms. The goal of this work is to provide a comprehensive characterization of the gamma-ray background and its variability in order to improve detection sensitivity and evaluate the performance of mobile detectors in the field. Large quantities of data are measured in order to study their performance at very low false alarm rates. Two different approaches, spectroscopy and imaging, are compared in a controlled study in the presence of this measured background. Furthermore, there is additional information that can be gained by correlating the gamma-ray data with contextual data streams (such as cameras and global positioning systems) in order to reduce the variability in the background

  11. Description of methods for making activation detectors for use in nuclear reactors; Description des procedes de fabrication des detecteurs d'activation utilises dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Barbalat, R.; Le Coguie, R.; Leger, P.; Salon, L.; Thierry, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    A brief description of methods currently used for making activation detectors, thin films and various deposits used in nuclear reactors. The thicknesses required vary from about a few tenths of a micron to a few tenths of a millimeter. Different techniques are used for fixing the large variety of elements: rolling, moulding, painting, electrolysis, vacuum deposition, thin films, wires, enamels, protective linings, etc. (authors) [French] Expose succinct des procedes actuellement mis en oeuvre pour la realisation des detecteurs d'activation, feuilles minces et depots divers utilises dans les reacteurs nucleaires. La gamme des epaisseurs necessaires s'etendant approximativement des dixiemes de micrometre aux dixiemes de millimetre. La diversite des elements a fixer justifiant les techniques differentes selon les cas: laminage, moulage, peinture, electrolyse, depot sous vide, couches minces, fils, emaux, revetements protecteurs, etc. (auteurs)

  12. Characterization of the Oum Er Rbia (Morocco) high basin karstic water sources by using solid state nuclear track detectors and radon as a natural tracer.

    Science.gov (United States)

    Khalil, N; Misdaq, M A; Berrazzouk, S; Mania, J

    2002-06-01

    Uranium and thorium contents as well as radon alpha-activities per unit volume were evaluated inside different water samples by using a method based on calculating the CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs) detection efficiencies for the emitted alpha-particles and measuring the resulting track density rates. The validity of the SSNTD technique utilized was checked by analysing uranyl nitrate (UO2(NO3)26H2O) standard solutions. A relationship between water radon concentration and water transmission of different water sources belonging to two regions of the Middle Atlas (Morocco) water reservoir was found. The influence of the water flow rate as well as the permeability and fracture system of the host rocks of the sources studied was investigated.

  13. Characterization of the Oum Er Rbia (Morocco) high basin karstic water sources by using solid state nuclear track detectors and radon as a natural tracer

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, N.; Misdaq, M.A. E-mail: misdaq@ucam.ac.ma; Berrazzouk, S.; Mania, J

    2002-06-01

    Uranium and thorium contents as well as radon {alpha}-activities per unit volume were evaluated inside different water samples by using a method based on calculating the CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs) detection efficiencies for the emitted {alpha}-particles and measuring the resulting track density rates. The validity of the SSNTD technique utilized was checked by analysing uranyl nitrate (UO{sub 2}(NO{sub 3}){sub 2}6H{sub 2}O) standard solutions. A relationship between water radon concentration and water transmission of different water sources belonging to two regions of the Middle Atlas (Morocco) water reservoir was found. The influence of the water flow rate as well as the permeability and fracture system of the host rocks of the sources studied was investigated.

  14. Validation and application of the methodology for analysis of radon concentration in the air through the technique of solid state nuclear track detectors (SSNTD)

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Caroline de [Pontificia Universidade Catolica de Minas Gerais (PUC-Pocos), Pocos de Caldas, MG (Brazil); Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas; Silva, Nivaldo Carlos da, E-mail: ncsilva@cnen.gov.b [Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas

    2011-07-01

    Radon is a radioactive noble gas that occurs naturally in soil and could enter into residential. The decay products of radon are radioactive metals which, when inhaled, can be retained in the respiratory system, leading to an internal dose of radiation. The monitoring of radon levels in residences and workplaces is extremely important, since high concentrations of this gas can cause serious public health problems. This study analyzed the concentration of radon in the air in 94 work environments at the Laboratory of Pocos de Caldas - LAPOC/CNEN, including laboratories, administrative rooms, workshop, warehouse and guardhouse. The method employed in the monitoring was the technique of solid state nuclear track detectors, known as SSNTD. For calibration and validation of this method, controlled experiments were conducted in laboratory with specific instrumentation. The monitoring results indicated that most environments present radon concentrations above 100 Bq m{sup -3}, which is the reference level recommended by the World Health Organization. (author)

  15. Mapping of the thermal neutron distribution in the lead block assembly of the PS-211 experiment at CERN, using thermoluminescence and nuclear track detectors.

    Science.gov (United States)

    Savvidis, E; Eleftheriadis, C A; Kitis, G

    2002-01-01

    The main purpose of the TARC (Transmutation by Adiabatic Resonance Crossing) experiment (PS-211), was to demonstrate the possibility to destroy efficiently Long-Lived Fission Fragments (LLFF) in Accelerator Driven Systems (ADS). The experimental set-up which consisted of a lead block with dimensions 3.3 x 3.3 x 3 m3, was installed in a CERN Proton Synchrotron (PS) beam line. The proton beam at 2.5 GeV/c and 3.5 GeV/c, was incident in the centre of the lead block assembly producing neutrons via spallation reactions. In this study, neutron flux measurements are presented in the lead block assembly using thermoluminescence and nuclear track detectors. The results are in good agreement with Monte Carlo calculations as well as with the results of the other methods used in the framework of the TARC experiment.

  16. Measurements of beta ray spectra inside nuclear generating stations using a silicon detector coincidence telescope: skin dose beta correction factors for TL elements

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Y.S.; Weizmann, Y. [Ben Gurion University of the Negev (Israel); Hirning, C.R. [Ontario Hydro, Whitby (Canada). Health Physics

    1996-10-01

    The measurement of beta ray spectra at various work locations inside nuclear generating stations operated by Ontario Hydro is described. The measurements were carried out using an advanced coincidence telescope spectrometer using silicon detectors only. The spectrometer is capable of measuring electron energies over the range 70-2500 keV with close to 100% efficiency. Over 40 beta ray spectra were measured at various work locations in three nuclear generating stations. Photon rejection is carried out by requiring a coincidence between either two or three detectors. Monte Carlo calculations were then used to estimate beta correction factors for the LiF:Mg,Ti elements used in the Ontario Hydro thermoluminescence dosemeters. Averaging over all the measured beta correction factors for the `skin chip (100 mg. cm{sup -2}) results in a value of 2.73 {+-} 0.77 and for the extremity dosemeter (240 mg.cm{sup -2}) an average value of 4.42 {+-} 1.17 is obtained. These values are 57% and 120% greater, respectively, than the current values used by Ontario Hydro. In addition, beta correction factors for nine representative spectra were calculated for 40 mg.cm{sup -2} and 20 mg.cm{sup -2} chips, and the results demonstrate the benefits of decreased dosemeter thickness. The average value of the beta correction factor, as well as the spread in the beta correction factor, decreases dramatically from 4.80 {+-} 2.1 (240 mg.cm{sup -2}) to 1.29 {+-} 0.1 (20mg.cm{sup -2}). (Author).

  17. A performance test of a new high-surface-quality and high-sensitivity CR-39 plastic nuclear track detector - TechnoTrak

    Science.gov (United States)

    Kodaira, S.; Morishige, K.; Kawashima, H.; Kitamura, H.; Kurano, M.; Hasebe, N.; Koguchi, Y.; Shinozaki, W.; Ogura, K.

    2016-09-01

    We have studied the performance of a newly-commercialized CR-39 plastic nuclear track detector (PNTD), "TechnoTrak", in energetic heavy ion measurements. The advantages of TechnoTrak are derived from its use of a purified CR-39 monomer to improve surface quality combined with an antioxidant to improve sensitivity to low-linear-energy-transfer (LET) particles. We irradiated these detectors with various heavy ions (from protons to krypton) with various energies (30-500 MeV/u) at the heavy ion accelerator facilities in the National Institute of Radiological Sciences (NIRS). The surface roughness after chemical etching was improved to be 59% of that of the conventional high-sensitivity CR-39 detector (HARZLAS/TD-1). The detectable dynamic range of LET was found to be 3.5-600 keV/μm. The LET and charge resolutions for three ions tested ranged from 5.1% to 1.5% and 0.14 to 0.22 c.u. (charge unit), respectively, in the LET range of 17-230 keV/μm, which represents an improvement over conventional products (HARZLAS/TD-1 and BARYOTRAK). A correction factor for the angular dependence was determined for correcting the LET spectrum in an isotropic radiation field. We have demonstrated the potential of TechnoTrak, with its two key features of high surface quality and high sensitivity to low-LET particles, to improve automatic analysis protocols in radiation dosimetry and various other radiological applications.

  18. Atomic force microscopy of lead iodide crystal surfaces

    Science.gov (United States)

    George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Biao, Y.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-03-01

    Atomic force microscopy (AFM) was used to characterize the surface of lead iodide crystals. The high vapor pressure of lead iodide prohibits the use of traditional high resolution surface study techniques that require high vacuum conditions. AFM was used to image numerous insulating surface in various ambients, with very little sample preparation techniques needed. Freshly cleaved and modified surfaces, including, chemical and vacuum etched, and air aged surfaces, were examined. Both intrinsic and induced defects were imaged with high resolution. The results were compared to a similar AFM study of mercuric iodide surfaces and it was found that, at ambient conditions, lead iodide is significantly more stable than mercuric iodide.

  19. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  20. Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector

    CERN Document Server

    Chavarria, A E; Pena, J; Privitera, P; Robinson, A E; Scholz, B; Sengul, C; Zhou, J; Estrada, J; Izraelevitch, F; Tiffenberg, J; Neto, J R T de Mello; Machado, D Torres

    2016-01-01

    We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils were produced by low-energy neutrons ($<$24 keV) from a $^{124}$Sb-$^{9}$Be photoneutron source, and their ionization signal was measured down to 60 eV electron-equivalent. This energy range, previously unexplored, is relevant for the detection of low-mass dark matter particles. The measured efficiency was found to deviate from the extrapolation to low energies of Lindhard model. This measurement also demonstrates the sensitivity to nuclear recoils of CCDs employed by DAMIC, a dark matter direct detection experiment located in the SNOLAB underground laboratory.

  1. Comparison of different detector performance for the assessment of neutron personal equivalent dose in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ginjaume, M.; Ortega, X.; Duch, M.A.; Tares, M. [Catalunya Univ. Politecnica, Instituto de Tecnicas Energeticas (Spain); Fernandez, F. [Barcelona Univ. Autonoma, Grupo de Fisica de las Radiaciones (Spain)

    2006-07-01

    The aim of the study was to investigate and to compare the performance of the most widely used neutron survey instruments in Spain with two available TLD systems and some of the new electronic neutron personal dosemeters at some selected sites of three nuclear power plants. In this paper preliminary main results of the first two measuring surveys, in the Asco 1 and Asco 2 power plants, are presented. (N.C.)

  2. Discrete scintillator coupled mercuric iodide photodetector arrays for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tornai, M.P.; Levin, C.S.; Hoffman, E.J. [UCLA School of Medicine, Los Angeles, CA (United States)

    1996-12-31

    Multi-element (4x4) imaging arrays with high resolution collimators, size matched to discrete CsI(Tl) scintillator arrays and mercuric iodide photodetector arrays (HgI{sub 2} PDA) are under development as prototypes for larger 16 x 16 element arrays. The compact nature of the arrays allows detector positioning in proximity to the breast to eliminate activity not in the line-of-sight of the collimator, thus reducing image background. Short collimators, size matched to {le}1.5 x 1.5 mm{sup 2} scintillators show a factor of 2 and 3.4 improvement in spatial resolution and efficiency, respectively, compared to high resolution collimated gamma cameras for the anticipated compressed breast geometries. Monte Carlo simulations, confirmed by measurements, demonstrated that scintillator length played a greater role in efficiency and photofraction for 140 keV gammas than cross sectional area, which affects intrinsic spatial resolution. Simulations also demonstrated that an increase in the ratio of scintillator area to length corresponds to an improvement in light collection. Electronic noise was below 40 e{sup -} RMS indicating that detector resolution was not noise limited. The high quantum efficiency and spectral match of prototype unity gain HgI{sub 2} PDAs coupled to 1 x 1 x 2.5 mm{sup 3} and 2 x 2 x 4 mm{sup 3} CsI(Tl) scintillators demonstrated energy resolutions of 9.4% and 8.8% FWHM at 140 keV, respectively, without the spectral tailing observed in standard high-Z, compound semi-conductor detectors. Line spread function measurements matched the scintillator size and pitch, and small, complex phantoms were easily imaged.

  3. Influence of alpha irradiation on pre and post solar exposed PM-355 polymeric nuclear track detector sheets

    Science.gov (United States)

    Alsalhi, M. S.; Baig, M. R.; Alfaramawi, K.; Alrasheedi, Mariam G.

    2017-01-01

    The effect of alpha irradiation before and after solar exposed PM-355 polymeric SSNTDs films was investigated. The absorption spectra for both non-irradiated and irradiated samples at different solar exposure time in different months showed a shift in the absorption edge towards lower wavelengths as the solar exposure time increases. This is probably ascribed to the presence of conjugate bonds. The fluorescence spectra indicated three distinguished peaks at approximately 330, 415 and 465 nm respectively. The first peak is attributed to the band gap while the other two peaks due to a probable formation of solid defects. The structure analysis using X-ray diffraction (XRD) proved the partial crystalline nature of the polymer with dominant amorphous phase. There was a slight increase in the XRD peak intensity for the sample irradiated by alpha particles indicating that the polymeric detector structure becomes more crystalline with a change in the crystallite size.

  4. A perchlorate sensitive iodide transporter in frogs

    OpenAIRE

    Carr, Deborah L.; James A. Carr; Ray E. Willis; Pressley, Thomas A.

    2008-01-01

    Nucleotide sequence comparisons have identified a gene product in the genome database of African clawed frogs (Xenopus laevis) as a probable member of the solute carrier family of membrane transporters. To confirm its identity as a putative iodide transporter, we examined the function of this sequence after heterologous expression in mammalian cells. A green monkey kidney cell line transfected with the Xenopus nucleotide sequence had significantly greater 125I uptake than sham-transfected con...

  5. Formulation and optimization of potassium iodide tablets

    OpenAIRE

    Al-Achi, Antoine; Patel, Binit

    2014-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w):...

  6. [About the history chemistry and potassium iodide].

    Science.gov (United States)

    Fournier, Josette

    2008-07-01

    Louis Melsen was born at Louvain, he spent four years in Paris, working in Dumas's laboratory. Four letters from Melsens to Chevreul, since 1951 to 1880, are commented on. Two letters relate to Van Helmont and common interest of the two scientists in history of sciences. The others recall Melsens's proposal that potassium iodide can cure and prevent lead and mercury poisoning, and Chevreul's researches about colours seeing.

  7. Formulation and optimization of potassium iodide tablets.

    Science.gov (United States)

    Al-Achi, Antoine; Patel, Binit

    2015-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light.

  8. A study of indoor radon levels in rural dwellings of Ezine (Canakkale, Turkey) using solid-state nuclear track detectors.

    Science.gov (United States)

    Orgün, Y; Altinsoy, N; Sahin, S Y; Ataksor, B; Celebi, N

    2008-01-01

    Indoor radon activity level and radon effective dose (ED) rate have been carried out in the rural dwellings of Ezine (Canakkale) during the summer season using Radosys-2000, a complete set suitable to radon concentration measurements with CR-39 plastic alpha track detectors. The range of radon concentration varied between 9 and 300 Bq m(-3), with an average of 67.9 (39.9 SD) Bq m(-3). Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, it has been found that the 222Rn ED rate in the dwellings studied ranges from 0.4 to 5.2 mSv y(-1), with an average value of 1.7 (1.0) mSv y(-1). There is a possibility that low radon concentrations exist indoors during the summer season in the study area because of relatively high ventilation rates in the dwellings. A winter survey will be needed for future estimation of the annual ED.

  9. An Overview on Studying 222Rn Exhalation Rates using Passive Technique Solid-State Nuclear Track Detectors

    Directory of Open Access Journals (Sweden)

    Mohamed Abd-Elzaher

    2012-01-01

    Full Text Available Problem statement: Uranium is a radiotoxic element found in trace quantities in alomost all natural accurring materials like soil, rock. Radon an inert radioactive gas whose predecessor in uranium, is emitted from soil beneath the house and from building materials. Accurate knowledge of exhalation rate plays an important role in characterization of the radon source strength in some building materials and soil. It is a useful quantity to compare the relative importance of different sample of building materials and soil. Approach: This study provides an overview of measurements of radon exhalation rates for selected samples in Egypt were carried out using passive measuring techniques were measured by Can Technique using LR-115 type II plastic track detectors. Results: The radon concentration varies from 2.44-29 k Bq m-3 and the corresponding values of surface exhalation rates from 4.16-26.24 Bq m-2. h the radium content 226Ra results in all samples under test in increasing order of magnitude. From the results it can be noticed that The lowest value of 226Ra is 7 Bq kg-1 in Sand sample, while the highest value is 85 Bq kg-1 Ordinary Cement. Conclusion: All the values of radium content in all samples under test were found to be quite lower than the permissible value of 370 Bq kg-1 recommended by Organization for Economic Cooperation and Development."

  10. Uptake of iodide by a mixture of metallic copper and cupric compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, G.; Alnot, M.; Ehrhardt, J.J.; Bessiere, J. [Univ. Henri Poincare Nancy 1, Villers les Nancy (France). Lab. de Chimie Physique pour l`Environnement

    1999-05-15

    Environmental contaminants harmful to the health of present and future generations involve nuclear fission products as iodine radioisotopes. {sup 129}I is potentially one of the more mobile products because of its long half-life and its tendency to go into solution as an anion that is not retarded with silicate minerals. Ability of copper/cupric compound mixtures to remove iodide from solution was investigated to predict sorption of radioactive iodine in the environment and to assess their use in a nuclear reprocessing method. Thermodynamic calculations were performed to study the stability of such mixtures in solution and to obtain equilibrium constants of Cu(0)/Cu(II)/I{sup {minus}} and Cu(0)/Cu(II)/Cl{sup {minus}} systems. Both calculations and experimental results showed that a Cu(0)/Cu{sub 3}(OH){sub 2}(CO{sub 3}){sub 2} (azurite) mixture selectively uptakes iodide ions (initial concentrations: 10{sup {minus}2} and 10{sup {minus}1} M) in the presence of 10{sup {minus}1} M chloride ions. Reaction of iodide with copper powder and azurite crystal or copper plate and azurite powder have also been investigated, leading to precipitation of CuI onto massive copper phase. The different solids were separately analyzed by XPS and MEB-EDX, giving some insight in the uptake mechanism. It is proposed that soluble copper released by the cupric compound is reduced at the surface of metallic copper, leading to a preferential precipitation of CuI on copper surface.

  11. Cu-catalyzed trifluoromethylation of aryl iodides with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide

    Directory of Open Access Journals (Sweden)

    Yuzo Nakamura

    2013-11-01

    Full Text Available The trifluoromethylation of aryl iodides catalyzed by copper(I salt with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide and Zn dust was accomplished. The catalytic reactions proceeded under mild reaction conditions, providing the corresponding aromatic trifluoromethylated products in moderate to high yields. The advantage of this method is that additives such as metal fluoride (MF, which are indispensable to activate silyl groups for transmetallation in the corresponding reactions catalyzed by copper salt by using the Ruppert–Prakash reagents (CF3SiR3, are not required.

  12. Indoor radon measurements in the dwellings of Kangra District of Himachal Pradesh, India, using LR-115 nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dhiman, M. [Punjab Technical University (India); Mehra, R. [Department of Physics, Dr. B.R. Ambedkar National Institute of Technology (India); Tyagi, A.K. [Department of Applied Sciences, Shaheed Bhagat Singh College of Engineering and Technology (India)

    2014-07-01

    Study of indoor radon was carried out in the domestic environment of 15 villages of Kangra district of Himachal Pradesh, India. Time integrated track etch technique has been used for the measurement of indoor radon levels. Bare cellulose nitrate LR-115 type II films have been used as detectors in the survey of indoor radon for four seasons of three months each covering a period of one year from March 2012 to March 2013. The houses were chosen randomly in such a way that the dwellings constructed with different types of building materials such as soil, bricks, cement, marble, concrete, wood in different localities of the village are covered. It has been found that indoor radon concentration depends upon the type of house, ventilation condition etc. The calibration constant of 1 track cm{sup -2} day{sup -1} which is equal to 50 Bqm{sup -3} has been used to express radon concentration in Bqm{sup -3}. The conversion factors have been used to calculate the exposure (an exposure of an individual to radon progeny of 1 WLM is equivalent to 3.54 mJ h m{sup -3}), the annual effective dose (1 WLM=3.88 mSv) and the lifetime fatality risk (3 x 10{sup -4} WLM). Indoor radon concentrations were found to vary from 132.25 Bqm{sup -3} to 449.75 Bqm{sup -3} with an average value of 261.40 Bqm{sup -3}. Annual effective dose in these dwellings were found to vary form 2.78 mSv to 7.68 mSv with an average value of 4.5 mSv. The average radon concentration in dwellings in most of the villages falls in the action level (200-600 Bqm{sup -3}) recommended by International Commission on Radiological Protection. Document available in abstract form only. (authors)

  13. Vapor Growth of Mercuric Iodide Tetragonal Prismatic Crystals

    Science.gov (United States)

    2013-03-01

    These steps were followed by immersion in 1% potassium iodide (KI) solution. The apparatus were then cleaned and rinsed thoroughly with deionized (DI...Pergamon Press, 1973. [34] N. Lyakh, “Composition and kinetic characteristics of vapour phase during mercuric iodide growing,” Crystal Res. Technol...DTRA-TR-13-6 Vapor Growth of Mercuric Iodide Tetragonal Prismatic Crystals Approved for public release, distribution is unlimited. March 2013

  14. A new experimental procedure for determination of photoelectric efficiency of a NaI(Tl) detector used for nuclear medicine liquid waste monitoring with traceability to a reference standard radionuclide calibrator.

    Science.gov (United States)

    Ceccatelli, A; Campanella, F; Ciofetta, G; Marracino, F M; Cannatà, V

    2010-02-01

    To determine photopeak efficiency for (99m)Tc of the NaI(Tl) detector used for liquid waste monitoring at the Nuclear Medicine Unit of IRCCS Paediatric Hospital Bambino Gesù in Rome, a specific experimental procedure, with traceability to primary standards, was developed. Working with the Italian National Institute for Occupational Prevention and Safety, two different calibration source geometries were employed and the detector response dependence on geometry was investigated. The large percentage difference (almost 40%) between the two efficiency values obtained showed that geometrical effects cannot be neglected.

  15. Effect of nitrogen and oxygen on radiolysis of iodide solution

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, H.; Endo, M. [Hitachi Ltd., Power and Industrial System R+D Divisions, Ibaraki (Japan)

    1996-12-01

    The effect of nitrogen and oxygen on radiolysis of iodide solution was examined. Direct decomposition of nitrogen by {gamma}-radiation produced nitric acid to decrease a water pH. This resulted in the iodine formation in the radiolysis of iodide solution. Hydrogen peroxide was produced by the radiolysis of water containing oxygen. This worked a reducing agent to suppress the formation of iodine in the radiolysis of iodide solution. In the analytical model, fourteen iodine species were considered and reaction scheme consisted in 124 reactions. The analytical model could estimate the oxidation state of iodide ions. (author) 4 figs., 4 refs.

  16. Chloride, bromide and iodide scintillators with europium doping

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2014-08-26

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  17. The addition of iodine to tetramethylammonium iodide

    Science.gov (United States)

    Foote, H.W.; Fleischer, M.

    1953-01-01

    The system tetramethylammonium iodide-iodine-toluene has been studied by the solubility method at 6 and at 25??. The compounds (CH3)4NI3, (CH3)4NI5 and (CH3)4NI11 were found to be stable phases at both temperatures. In addition, the compound (CH3)4NI10 was found at 6?? and the compound (CH3)4NI9 at 25??. The dissociation pressures of the compounds at these temperatures were calculated from the solubility data.

  18. Europium-doped barium bromide iodide

    Energy Technology Data Exchange (ETDEWEB)

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  19. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn

    2006-01-01

    -iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy...

  20. Soil gas radon–thoron monitoring in Dharamsala area of north-west Himalayas, India using solid state nuclear track detectors

    Indian Academy of Sciences (India)

    Gulshan Kumar; Arvind Kumar; Vivek Walia; Jitender Kumar; Vikash Gupta; Tsanyao Frank Yang; Surinder Singh; Bikramjit Singh Bajwa

    2013-10-01

    The study described here is based on the measurements of soil gas radon–thoron concentrations performed at Dharamsala region of north-west (NW) Himalayas, India. The study area is tectonically and environmentally significant and shows the features of ductile shear zone due to the presence of distinct thrust planes. Solid state nuclear track detectors (LR-115 films) have been used for the soil gas radon–thoron monitoring. Twenty five radon–thoron discriminators with LR-115 films were installed in the borehole of about 50 cm in the study areas. The recorded radon concentration varies from 1593 to 13570 Bq/m3 with an average value of 5292 Bq/m3. The recorded thoron concentration varies from 223 to 2920 Bq/m3 with an average value of 901 Bq/m3. The anomalous value of radon–thoron has been observed near to the faults like main boundary thrust (MBT and MBT2) as well as neotectonic lineaments in the region.

  1. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Fiechter, Michael; Kaufmann, Philipp A. [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland); Ghadri, Jelena R.; Kuest, Silke M.; Pazhenkottil, Aju P.; Wolfrum, Mathias; Nkoulou, Rene N.; Goetti, Robert; Gaemperli, Oliver [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland)

    2011-11-15

    We evaluated the diagnostic accuracy of attenuation corrected nuclear myocardial perfusion imaging (MPI) with a novel hybrid single photon emission computed tomography (SPECT)/CT device consisting of an ultrafast dedicated cardiac gamma camera with cadmium-zinc-telluride (CZT) solid-state semiconductor detectors integrated onto a multislice CT scanner to detect coronary artery disease (CAD). Invasive coronary angiography served as the standard of reference. The study population included 66 patients (79% men; mean age 63 {+-} 11 years) who underwent 1-day {sup 99m}Tc-tetrofosmin pharmacological stress/rest examination and angiography within 3 months. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) as well as accuracy of the CT X-ray based attenuation corrected CZT MPI for detection of CAD ({>=}50% luminal narrowing) was calculated on a per-patient basis. The prevalence of angiographic CAD in the study population was 82%. Sensitivity, specificity, PPV, NPV and accuracy were 87, 67, 92, 53 and 83%, respectively. In this first report on CZT SPECT/CT MPI comparison versus angiography we confirm a high accuracy for detection of angiographically documented CAD. (orig.)

  2. Sensitivity of the CUORE detector to $14.4$ keV solar axions emitted by the M1 nuclear transition of$~^{57}$Fe

    CERN Document Server

    Li, Dawei; Avignone, Frank T; Wang, Yuanxu

    2015-01-01

    In this paper we present a calculation of the sensitivity of the CUORE detector to the monoenergetic $14.4$ keV solar axions emitted by the M1 nuclear transition of$~^{57}$Fe in the Sun and detected by inverse coherent Bragg-Primakoff conversion in single-crystal $TeO_2$ bolometers. The expected counting rate is calculated using density functional theory for the electron charge density of $TeO_2$ and realistic background and energy resolution of CUORE. Monte Carlo simulations for $5$ y $\\times$ $741$ kg=$3705-$kg$\\cdot$y of exposure are analyzed using time correlation of individual events with the theoretical time-dependent counting rate. We find an expected model-independent limit on the product of the axion-photon coupling and the axion-nucleon coupling $g_{a\\gamma\\gamma}\\{|-1.19g^0_{aN}+g^3_{aN}|\\}<1.105\\times 10^{-16}$ /GeV for axion masses less than 500 eV with $95\\%$ confidence level.

  3. Changes in the thermal properties of PADC film-based nuclear track detectors produced by high doses of γ-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Saad, A.F., E-mail: abdallahsaad56@hotmail.com [Physics Department, Faculty of Science, Zagazig University, 44519 Zagazig (Egypt); Physics Department, Faculty of Science, University of Benghazi, 9480 Benghazi (Libya); Saad, Noura; Abdalla, Y.K. [Physics Department, Faculty of Science, University of Benghazi, 9480 Benghazi (Libya)

    2014-04-01

    Highlights: • Thermal properties of PADC polymer-based NTDs have been investigated. • PADC films based NTDs were exposed to high doses of γ-rays. • The activation energy for thermal decomposition of PADC films was determined. • PADC films may be of use for industrial applications due to its response of γ-rays. • PADC film is a good technique for dose reading. - Abstract: Irradiation effects on the thermal properties of poly allyl diglycol carbonate (PADC) polymer-based nuclear track detectors (in the form of CR-39) have been investigated. PADC films were exposed to γ-rays at high doses ranging from 5.0 × 10{sup 5} to 1.0 × 10{sup 6} Gy. The induced modifications were analyzed by means of thermogravimetric analysis, which indicated that the PADC film decomposed in three main stages. The activation energy for thermal decomposition was determined using a type of Arrhenius equation based on the TGA experimental results. This study presents quantitative results showing that the exposed PADC films do not undergo continual further degradation from high-energy γ-photons with increase in dose. The experimental results also provide insight into the specific property changes induced by γ-rays, which may be of use for industrial applications.

  4. Determination of absorbed dose to water in a clinical carbon ion beam by means of fluorescent nuclear track detectors, ionization chambers, and water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Osinga-Blaettermann, Julia-Maria

    2016-12-20

    Until now, dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as of high-energy photons. This is mainly caused by the threefold higher uncertainty of the k{sub Q,Q{sub 0}}-factor of ionization chambers, which is derived by calculations due to a lack of experimental data. The current thesis comprises two major aims with respect to the dosimetry of carbon ion beams: first, the investigation of the potential of fluorescent nuclear track detectors for fluence-based dosimetry and second, the experimental determination of the k{sub Q,Q{sub 0}}-factor. The direct comparison of fluence- and ionization-based measurements has shown a significant discrepancy of 4.5 %, which re-opened the discussion on the accuracy of calculated k{sub Q,Q{sub 0}}-factors. Therefore, absorbed dose to water measurements by means of water calorimetry have been performed allowing for the direct calibration of ionization chambers and thus for the experimental determination of k{sub Q,Q{sub 0}}. For the first time it could be shown that the experimental determination of k{sub Q,Q{sub 0}} for carbon ion beams is achievable with a standard measurement uncertainty of 0.8 %. This corresponds to a threefold reduction of the uncertainty compared to calculated values and therefore enables to significantly decrease the overall uncertainty related to ionization-based dosimetry of clinical carbon ion beams.

  5. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.

    Science.gov (United States)

    Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong

    2016-02-01

    The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere.

  6. Equations of state for crystalline zirconium iodide: The role of dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Matthew L., E-mail: mrossi@lanl.gov [Materials Science and Technology, MST-6, Los Alamos National Lab, Los Alamos, NM (United States); Taylor, Christopher D. [Materials Science and Technology, MST-6, Los Alamos National Lab, Los Alamos, NM (United States)

    2013-02-15

    We present the first-principle equations of state of several zirconium iodides, ZrI{sub 2}, ZrI{sub 3}, and ZrI{sub 4}, computed using density functional theory methods that apply various methods for introducing the dispersion correction. Iodides formed due to reaction of molecular or atomic iodine with zirconium and zircaloys are of particular interest due to their application to the cladding material used in the fabrication of nuclear fuel rods. Stress corrosion cracking (SCC), associated with fission product chemistry with the clad material, is a major concern in the life cycle of nuclear fuels, as many of the observed rod failures have occurred due to pellet–cladding chemical interactions (PCCI) [A. Atrens, G. Dannhäuser, G. Bäro, Stress-corrosion-cracking of zircaloy-4 cladding tubes, Journal of Nuclear Materials 126 (1984) 91–102; P. Rudling, R. Adamson, B. Cox, F. Garzarolli, A. Strasser, High burn-up fuel issues, Nuclear Engineering and Technology 40 (2008) 1–8]. A proper understanding of the physical properties of the corrosion products is, therefore, required for the development of a comprehensive SCC model. In this particular work, we emphasize that, while existing modeling techniques include methods to compute crystal structures and associated properties, it is important to capture intermolecular forces not traditionally included, such as van der Waals (dispersion) correction. Furthermore, crystal structures with stoichiometries favoring a high I:Zr ratio are found to be particularly sensitive, such that traditional density functional theory approaches that do not incorporate dispersion incorrectly predict significantly larger volumes of the lattice. This latter point is related to the diffuse nature of the iodide electron cloud.

  7. Catalytic currents in dithiophosphate-iodide systems

    Energy Technology Data Exchange (ETDEWEB)

    Gabdullin, M.G.; Garifzyanov, A.R.; Toropova, V.F.

    1986-01-01

    Catalytic currents of oxidizing agents are used to determinerate constants of simultaneous chemical reactions. In the present paper, the authors investigated electrochemical oxidation of iodide ions in the presence of a series of dithiophosphates (RO)/sub 2/PSS/sup -/ at a glassy carbon electrode n that (R=CH/sub 3/, C/sub 2/H/sub 5/, n-C/sub 3/H/sub 7/, n-C/sub 4/H/sub 9/, iso-C/sub 4/H/sub 9/, and sec-C/sub 4/H/sub 9/). It is know n that dithiophosphates (DTP) are strong reducing agents and are oxidized by iodine. At the same time, as shown previously, electrochemical oxidation of DTP occurs at more positive potentials in comparision with the oxidation potential of iodide ions. This suggested that it is possible for a catalytic effect to be manifested in DTP-I/sup -/ systems. Current-voltage curves are shown for solutions of I/sup -/ in the absence and in the presence of DTP. All data indicate a catalytic nature of the electrode process. The obtained data show that the rates of reactions of DTP with iodine decrease with increasing volume and branching of the substituents at the phosphorus atom.

  8. Photoluminescence Enhancement in Formamidinium Lead Iodide Thin Films

    NARCIS (Netherlands)

    Fang, Hong-Hua; Wang, Feng; Adjokatse, Sampson; Zhao, Ni; Loi, Maria Antonietta

    2016-01-01

    Formamidinium lead iodide (FAPbI(3)) has a broader absorption spectrum and better thermal stability than the most famous methylammonium lead iodide, thus exhibiting great potential for photovoltaic applications. In this report, the light-induced photoluminescence (PL) evolution in FAPbI(3) thin

  9. Kinetic Isotope Effects in the Reduction of Methyl Iodide

    DEFF Research Database (Denmark)

    Holm, Torkil

    1999-01-01

    a-Deuterium kinetic isotope effects (KIE's) have been determined for the reaction of methyl iodide with a series of reducing agents. Reagents which transfer hydride ion in an SN2 reaction show small inverse or small normal KIE's. Reagents which transfer an electron to methyl iodide to produce...

  10. Photoluminescence Enhancement in Formamidinium Lead Iodide Thin Films

    NARCIS (Netherlands)

    Fang, Hong-Hua; Wang, Feng; Adjokatse, Sampson; Zhao, Ni; Loi, Maria Antonietta

    2016-01-01

    Formamidinium lead iodide (FAPbI(3)) has a broader absorption spectrum and better thermal stability than the most famous methylammonium lead iodide, thus exhibiting great potential for photovoltaic applications. In this report, the light-induced photoluminescence (PL) evolution in FAPbI(3) thin film

  11. A Study on the Beta Voltaic Micro -nuclear Battery Based on the Planar Technology Silicon Detector%基于平面工艺硅探测器的β伏打微核能电池

    Institute of Scientific and Technical Information of China (English)

    张凯; 何高魁; 黄小健; 刘洋; 孟欣; 郝晓勇

    2011-01-01

    It describes briefly the beta voltaic micro - nuclear battery based on the planar technology silicon detector and radioisotope. Different sensitive area of silicon detectors are used to cooperate with Ni source to buildup of beta voltaic micro - nuclear batteries. The experimental data show that the larger sensitive area the silicon detector has, the higher open circuit voltage it produces, and the open circuit voltage of single cell has reached an excellent result from 0. 15 V to 0. 30V. It is possible to get high output power by series or parallel connecting the beta voltaic micro - nuclear batteries.%简要叙述了利用平面工艺硅探测器和放射性同位素构成的β伏打微核能电池的原理,比较了不同灵敏面积硅探测器对β伏打微核能电池开路电压的影响.实验证明,单个β伏打微核能电池的开路电压可达到0.15V~0.3V,采用串、并联方式可以获得较大的输出功率.

  12. Growth of single crystals of mercuric iodide (HgI/sub 2/) in spacelab III

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Berg, L.; Schnepple, W.F.

    1981-01-01

    Continued development of a system designed to grow crystals by physical vapor transport in the environment of Spacelab III will be described, with special emphasis on simulation of expected space conditions, adjustment of crystal growth parameters, and on board observation and control of the experiment by crew members and ground personnel. A critical factor in the use of mercuric iodide for semiconductor detectors of x-rays and gamma-rays is the crystalline quality of the material. The twofold purpose of the Spacelab III experiment is therefore to grow single crystals with superior electronic properties as an indirect result of the greatly reduced gravity field during the growth, and to obtain data which will lead to improved understanding of the vapor transport mechanism. The experiments planned to evaluate the space crystals, including gamma-ray diffractometry and measurements of stoichiometry, lattice dimensions, mechanical strength, luminescense, and detector performance are discussed.

  13. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J.; Glaenneskog, H.; Ekberg, C. (Chalmers Univ. of Technology (Sweden)); Kaerkelae, T.; Auvinen, A. (VTT Technical Research Centre of Finland (Finland))

    2010-05-15

    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. The behaviour of iodine during a severe accident has been studied in several experimental programs, ranging from the large-scale PHEBUS FP tests and intermediate-scale ThAI tests to numerous separate effect studies. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment was started. During 2009, oxidation of iodine, especially organic iodine, was studied within the NROI project. The chemistry of organic iodine in the gas phase is still one of the greatest remaining uncertainties concerning iodine behaviour during a severe accident. During the first year of the NROI project the oxidation of elemental iodine, I2, with ozone and UV-light was investigated. In this study organic iodide, in this case methyl iodide, was investigated in similar conditions as in the NROI-1 project. The experimental facility applied in this study is based on the sampling system built at VTT for the ISTP project CHIP conducted by IRSN. The experimental facility and the measuring technology are sophisticated and unique in the area of nuclear research as well as in the field of aerosol science. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UVC intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. Instant and extensive particle formation occurred when methyl iodide was transported through a UVC radiation field and/or when ozone was present. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-150 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine

  14. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  15. A radiotracer method to study efflux transport of iodide liberated from thyroid hormones via deiodination metabolism in the brain.

    Science.gov (United States)

    Okamura, Toshimitsu; Igarashi, Jun; Kikuchi, Tatsuya; Fukushi, Kiyoshi; Arano, Yasushi; Irie, Toshiaki

    2009-06-05

    Thyroid hormones (TH) play an important role in the development and functional maintenance of the central nervous system. The purpose of this study was to develop a radiotracer method for studying the in vivo efflux transport of iodide liberated by the TH metabolism in the brain. The rationale of our method is as follows: a radioiodinated compound can enter the brain and rapidly release iodide in situ; the iodide efflux rate can be estimated from the clearance of brain radioactivity after disappearance of the iodinated compound. 6-[(125)I]Iodo-9-pentylpurine ([(125)I]9Pe6IP) was designed to enter the brain and release (125)I(-) by the reaction with glutathione and synthesized from the corresponding bromo derivative in a Br/(125)I exchange reaction. The brain kinetics of radioactivity and radioactive metabolites were investigated after intravenous injection of [(125)I]9Pe6IP into mice. The iodide efflux rate was estimated in mice pretreated with perchlorate, an inhibitor of iodide transport from the brain. High brain uptake (5.3% injected dose/g) was observed at 1 min, and almost complete conversion of [(125)I]9Pe6IP to (125)I(-) occurred 10 min after injection. The (125)I(-) uptake from the blood was negligible. (125)I(-) was eliminated from the brain along a single-exponential curve with a half-life of 6.0 min. Furthermore, dose-dependent inhibition of (125)I(-) efflux was observed in mice pretreated with perchlorate. We conclude that 9Pe6IP labeled with (124)I (positron emitter) or (123)I (single-photon emitter) may be useful for studying the in vivo efflux transport of iodide in the brain using nuclear medicine imaging devices.

  16. Observations of short-range, high-LET recoil tracks in CR-39 plastic nuclear track detector by visible light microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Benton, E.R., E-mail: eric.benton@okstate.ed [Dept. of Physics, Oklahoma State University, 1110 S. Innovation Way, 100, Stillwater, OK 74078 (United States); Johnson, C.E. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); DeWitt, J. [Dept. of Physics, Oklahoma State University, 1110 S. Innovation Way, 100, Stillwater, OK 74078 (United States); Yasuda, N. [National Institute of Radiological Sciences, Chiba (Japan); Benton, E.V. [Dept. of Physics, University of San Francisco, San Francisco, CA 94117 (United States); Moyers, M.H. [Proton Therapy, Inc., Colton, CA 92324 (United States); Frank, A.L. [Dept. of Physics, University of San Francisco, San Francisco, CA 94117 (United States)

    2011-05-15

    Using standard visible light microscopy, we are able to observe particle tracks produced by <10 {mu}m range target fragment recoils in CR-39 plastic nuclear track detector (PNTD) following short chemical etching (bulk etch B {<=}1 {mu}m). In accelerator irradiations, targets of varying composition, including a number of elemental targets of high Z, were exposed in contact with layers of CR-39 PNTD to beams of 60 MeV, 230 MeV, and 1 GeV protons at doses of 10-50 Gy. Chemical etching of CR-39 under standard conditions (50 {sup o}C, 6.25 N NaOH) for 2-4 h (removed layer B = 0.5-1.0 {mu}m) yielded secondary track densities of 10{sup 5}-10{sup 6} cm{sup -2} observable under a standard optical microscope with 500x-800x magnification. Ordinarily such a short duration etch would not be expected to enlarge the tracks sufficiently for them to be resolved by visible light optics. However, due to the short-range of the particles, a longer chemical processing would have over-etched the tracks until they were no longer recognizable. The tracks we observe in CR-39 PNTD irradiated in these experiments are the result of residual heavy recoil fragments returning to equilibrium via evaporation processes following proton-induced knock out of light particles via preequilibrium processes. Because the heavy recoil particles are very near the end of their ranges (i.e. in the Bragg peak), their LET is extremely high and changes rapidly. Consequently, the tracks they produce in CR-39 PNTD often take the form of long tubes rather than the conical etch pits produced by higher energy particles.

  17. The Silicon Cube detector

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I.; Adimi, N. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Blank, B. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France)], E-mail: blank@cenbg.in2p3.fr; Canchel, G.; Giovinazzo, J. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Borge, M.J.G.; Dominguez-Reyes, R.; Tengblad, O. [Insto. Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Thomas, J.-C. [GANIL, CEA/DSM - CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)

    2009-08-21

    A new experimental device, the Silicon Cube detector, consisting of six double-sided silicon strip detectors placed in a compact geometry was developed at CENBG. Having a very good angular coverage and high granularity, it allows simultaneous measurements of energy and angular distributions of charged particles emitted from unbound nuclear states. In addition, large-volume Germanium detectors can be placed close to the collection point of the radioactive species to be studied. The setup is ideally suited for isotope separation on-line (ISOL)-type experiments to study multi-particle emitters and was tested during an experiment at the low-energy beam line of SPIRAL at GANIL.

  18. Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite

    KAUST Repository

    Hermes, Ilka M.

    2016-02-12

    Methylammonium lead iodide (MAPbI3) perovskite materials show an outstanding performance in photovoltaic devices. However, certain material properties, especially the possible ferroic behavior, remain unclear. We observed distinct nanoscale periodic domains in the piezoresponse of MAPbI3(Cl) grains. The structure and the orientation of these striped domains indicate ferroelasticity as their origin. By correlating vertical and lateral piezoresponse force microscopy experiments performed at different sample orientations with x-ray diffraction, the preferred domain orientation was suggested to be the a1-a2-phase. The observation of these ferroelastic fingerprints appears to strongly depend on the film texture and thus the preparation route. The formation of the ferroelastic twin domains could be induced by internal strain during the cubic-tetragonal phase transition.

  19. Silver iodide sodalite for 129I immobilisation

    Science.gov (United States)

    Vance, E. R.; Gregg, D. J.; Grant, C.; Stopic, A.; Maddrell, E. R.

    2016-11-01

    Silver iodide sodalite was initially synthesised as a fine-grained major phase in a nominally stoichiometric composition following hot isostatic pressing at 850 °C with 100 MPa and its composition, Ag4Al3Si3O12I, was approximately verified by scanning electron microscopy. An alternative preparative method yielded a more dense and stoichiometric AgI sodalite on sintering and HIPing. As found for AgI, the I is released from AgI sodalite much more readily in reducing water than in ordinary water. Thus in normal PCT-B tests, the I release was <0.3 g/L in water, but it was ∼70 g/L under highly reducing conditions. This is an important point with regard to can material if HIPing is used for consolidation.

  20. Functionalized metal organic frameworks for effective capture of radioactive organic iodides

    KAUST Repository

    Li, Baiyan

    2017-06-27

    Highly efficient capture of radioactive organic iodides (ROIs) from off-gas mixtures remains a substantial challenge for nuclear waste treatment. Current materials utilized for ROI sequestration suffer from low capacity, high cost (e.g. use of noble metals), and poor recyclability. Recently, we have developed a new strategy to tackle this challenge by functionalizing MOF materials with tertiary amines to create molecular traps for the effective capture and removal of ROIs (e.g. radioactive methyl iodide) from nuclear wastes. To further enhance the uptake capacity and performance of CH3I capture by ROI molecular traps, herein, we carry out a systematic study to investigate the effect of different amine molecules on ROI capture. The results demonstrate a record-high CH3I saturation uptake capacity of 80% for MIL-101-Cr-DMEDA at 150 °C, which is 5.3 times that of Ag0@MOR (15 wt%), a leading adsorbent material for capturing ROIs during nuclear fuel reprocessing. Furthermore, the CH3I decontamination factors (DFs) for MIL-101-Cr-DMEDA are as high as 5000 under simulated reprocessing conditions, largely exceeding that of facility regulatory requirements (DF = 3000). In addition, MIL-101-Cr-DMEDA can be recycled without loss of capacity, illustrating yet another advantage compared to known industrial adsorbents, which are typically of a

  1. Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity

    Directory of Open Access Journals (Sweden)

    Liang Ji-An

    2010-11-01

    Full Text Available Abstract Background Sodium/iodide symporter (NIS mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino acid residues in the extracellular region of NIS were therefore characterized in this study. Methods Fourteen charged residues (Arg-9, Glu-79, Arg-82, Lys-86, Asp-163, His-226, Arg-228, Asp-233, Asp-237, Arg-239, Arg-241, Asp-311, Asp-322, and Asp-331 were replaced by alanine. Iodide uptake abilities of mutants were evaluated by steady-state and kinetic analysis. The three-dimensional comparative protein structure of NIS was further modeled using sodium/glucose transporter as the reference protein. Results All the NIS mutants were expressed normally in the cells and targeted correctly to the plasma membrane. However, these mutants, except R9A, displayed severe defects on the iodide uptake. Further kinetic analysis revealed that mutations at conserved positively charged amino acid residues in the extracellular region of NIS led to decrease NIS-mediated iodide uptake activity by reducing the maximal rate of iodide transport, while mutations at conserved negatively charged residues led to decrease iodide transport by increasing dissociation between NIS mutants and iodide. Conclusions This is the first report characterizing thoroughly the functional significance of conserved charged amino acid residues in the extracellular region of NIS. Our data suggested that conserved charged amino acid residues, except Arg-9, in the extracellular region of NIS were critical for iodide transport.

  2. Nucleophilic addition to the ethynyl group in ethynylestradiol catalyzed by crown ether-copper (1) iodide.

    Science.gov (United States)

    Chen, S H; Luo, G R; Chang, X Z; Zhao, H M

    1991-10-01

    A new and convenient synthetic route to acetylation of estrogens is described. Benzo-15-crown-5 and cuprous iodide-mixed catalyst catalyzed the nucleophilic addition of 2,4-dibromoethynylestradiol, resulting in the formation of a new compound, 2,4-dibromo-17 alpha-acetylestradiol, of which the structure was characterized by infrared, UV, 1H nuclear magnetic resonance, mass spectra, and elemental analysis. It was found that the yield of this approach is much higher than that obtained in the hydration of usual acetylenic compounds.

  3. GEM Detector Electric Field Simulation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    GEM (Gas Electron Multiplier) detectors have been widely employed in the experimental field of high energy physics and nuclear physics. As a successor to drift chambers, GEMs are much easier to fabricate and have a much higher spatial resolution

  4. Efficiency of the collection of aerosol detectors used in EDF nuclear power stations; Efficacite de collecte des balises aerosol utilisees en CNPE EDF

    Energy Technology Data Exchange (ETDEWEB)

    Fauvel, S.; Gensdarmes, F. [Institut de Radioprotection et de Surete Nucleaire, DSUISERAC, Laboratoire de Physique et de Metrologie des Aerosols, BP 68, 91192 Gif sur Yvette Cedex (France); Valendru, N. [EDF-DPN I UNIE-GPRE, site de CAP Ampere, 93282 Saint Denis Cedex (France)

    2009-07-01

    The authors report an investigation performed to asses the efficiency of different radioactive aerosol detectors by comparing the mass concentration sampled by the tested detectors with the reference mass concentration. The authors describe the measurement installation and protocol, and discuss the results obtained for different grain sizes and different renewal rates

  5. Spectrophotometric determination of traces of iodide by liquid-liquid extraction of Brilliant Green-iodide ion pair

    Energy Technology Data Exchange (ETDEWEB)

    Niazi, S.B.; Mozammil, Mohammad (Bahauddin Zakariya University, Multan (Pakistan). Department of Chemistry)

    1991-11-05

    Iodide in natural waters at the 10{sup -6} M level is determined spectrophotometrically as the Brilliant Green-iodide ion pair. Iodide is the first oxidized to iodide with hydrogen peroxide-sulphuric acid to separate it from other chemical species and extracted into carbon tetrachloride. It is then extracted back into aqueous medium by its reduction with sodium thiosulphate and stabilized as the ion pair with Brilliant Green. At pH 7 the ion pair is extracted into chloroform and the absorbance is measured at 625 nm against chloroform. A linear calibration graph is obtained over the range 5x10{sup -7}-3.5x10{sup -6} M iodide with a relative standard deviation of 0.38 % at the 2x10{sup -6} M iodide level. The apparent molar absorptivity for iodide is 3.0x10{sup 5} l mol{sup -1} cm{sup -1}. (author). 11 refs.; 4 figs.; 2 tabs.

  6. Expression of the human sodium/iodide symporter (hNIS) in xenotransplanted human thyroid carcinoma

    NARCIS (Netherlands)

    Smit, J.W.A.; Schröder - van der Elst, J.P.; Karperien, M.; Que, I.; Romijn, J.A.; Heide, van der D.

    2001-01-01

    The uptake of iodide in thyroid epithelial cells is mediated by the sodium/iodide symporter (NIS). The uptake of iodide is of vital importance for thyroid physiology and is a prerequisite for radioiodine therapy in thyroid cancer. Loss of iodide uptake due to diminished expression of the human NIS (

  7. Fluoride, bromide and iodide in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, F.P.

    fairly constant ratio to chlorinity. Concentrations of iodide were small (0.01-0.024 mg/l) with higher concentration occurring at the surface and bottom layers. Results suggested the semi-conservative, conservative and non-conservative characters...

  8. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T.; Piippo, J.; Sirkiae, P. [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  9. Trap states in lead iodide perovskites.

    Science.gov (United States)

    Wu, Xiaoxi; Trinh, M Tuan; Niesner, Daniel; Zhu, Haiming; Norman, Zachariah; Owen, Jonathan S; Yaffe, Omer; Kudisch, Bryan J; Zhu, X-Y

    2015-02-11

    Recent discoveries of highly efficient solar cells based on lead iodide perovskites have led to a surge in research activity on understanding photo carrier generation in these materials, but little is known about trap states that may be detrimental to solar cell performance. Here we provide direct evidence for hole traps on the surfaces of three-dimensional (3D) CH3NH3PbI3 perovskite thin films and excitonic traps below the optical gaps in these materials. The excitonic traps possess weak optical transition strengths, can be populated from the relaxation of above gap excitations, and become more significant as dimensionality decreases from 3D CH3NH3PbI3 to two-dimensional (2D) (C4H9NH3I)2(CH3NH3I)(n-1)(PbI2)(n) (n = 1, 2, 3) perovskites and, within the 2D family, as n decreases from 3 to 1. We also show that the density of excitonic traps in CH3NH3PbI3 perovskite thin films grown in the presence of chloride is at least one-order of magnitude lower than that grown in the absence of chloride, thus explaining a widely known mystery on the much better solar cell performance of the former. The trap states are likely caused by electron-phonon coupling and are enhanced at surfaces/interfaces where the perovskite crystal structure is most susceptible to deformation.

  10. High-Performance Doped Strontium Iodide Crystal Growth Using a Modified Bridgman Method

    Science.gov (United States)

    Rowe, Emmanuel

    The importance of gamma-ray spectroscopy---the science of determining the distribution of energy in a gamma field---can rarely be overstated. High performance scintillators for gamma-ray spectroscopy in Nuclear Nonproliferation applications and homeland security require excellent energy resolution to distinguish neighboring element and isotope lines while minimizing the time and exposure to do so. Semiconductor detectors operate by converting incident photons directly into electrical pulses, but often have problems of high costs due to constituent segregation and surface states as is the case for Cadmium Zinc Telluride. The ideal scintillator material for gamma spectrometer will therefore requires high light yield, excellent proportionality between light yield and gamma photon energy, and material uniformity. A scintillator should possess the following properties; it should convert the kinetic energy of the generated charged particles (typically K-shell electrons) into detectable visible light. This conversion should be linear-the light yield should be proportional to deposited energy over as wide a range as possible. For good light collection, the medium should be transparent to the wavelength of its own emission. The decay time of the induced luminescence should be short so that fast signal pulses can be generated. The medium should be of good optical quality and subject to manufacture in sizes large enough to be of interest as a practical detector. Its index of refraction should be near that of glass (~1.5) to permit efficient coupling of scintillation light to a photomultiplier tube or other photo-sensor. In the past decade, inorganic scintillator research has focused less on improving the characteristics of known scintillators, but rather on the search for new hosts capable of fast response and high energy resolution. Extensive searches have been made for hosts doped with lanthanide activators utilizing the allowed 5d-4f transition. These 5d-4f transitions are

  11. Iodide transport in rat small intestine: dependence on calcium.

    Science.gov (United States)

    Ilundain, A; Larralde, J; Toval, M

    1987-01-01

    1. The involvement of calcium in the regulation of iodide secretion was investigated in stripped sheets of rat small intestine. 2. In the absence of exogenous modifiers a net iodide absorption was observed in the rat proximal intestine, whereas the mid-intestine secreted iodide. 3. Removal of Ca2+ from the bathing solutions abolished net I- secretion in the mid-intestine. The calcium channel blocker verapamil produced similar effects on net I- secretion. 4. Theophylline increased net I- secretion both in the absence and in the presence of verapamil, but the effects of theophylline were less in the presence of verapamil or in Ca2+-free media. 5. Trifluoperazine inhibited basal iodide secretion and attenuated theophylline-induced I- secretion. 6. All the modifiers which prevented net I- secretion reduced iodide fluxes across the mucosal border and increased serosal iodide exit. The opposite was observed with theophylline. 7. It is suggested that I- secretion might result from changes in both mucosal and serosal I- permeabilities, and that both processes appear to be regulated by calmodulin. PMID:3446797

  12. Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a Muon Tomography station based on GEM detectors

    CERN Document Server

    Gnanvo, Kondo; Hohlmann, Marcus; Locke, Judson B; Quintero, Amilkar S; Mitra, Debasis

    2010-01-01

    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30cm \\times 30cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes (~0.03 liters) using GEM-based Muon Tomography.

  13. Electrochemical reaction rates in a dye-sensitised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, L.; West, K.; Winther-Jensen, B.

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide....../tri-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI)-all deposited onto fluorine-doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrodes in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  14. Study of Viability and Challenges of using SiPMs as an Alternative to PMT’s in Scintillation Detectors for Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Iliev, Metodi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-22

    The goals of this project are to identify fundamental and practical problems and features with SiPMs as they relate to IAEA detector needs, Identify published results and implementations of scintillation detectors tat use SiPMs that are of interest to IAEA, asses how effectively the fundamental problems were addresses, and perform simulations and experiments as needed to reproduce crucial results and make recommendations.

  15. Iodide kinetics and experimental I-131 therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line

    NARCIS (Netherlands)

    Smit, J.W.A.; Elst, van der J.P.; Karperien, M.; Que, I.; Stokkel, M.; Heide, van der D.; Romijn, J.A.

    2002-01-01

    Uptake of iodide is a prerequisite for radioiodide therapy in thyroid cancer. However, loss of iodide uptake is frequently observed in metastasized thyroid cancer, which may be explained by diminished expression of the human sodium-iodide symporter (hNIS). We studied whether transfection of hNIS int

  16. Molecular imaging using sodium iodide symporter (NIS)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Je Yoel [School of Dentistry, Kyungpook National Univ., Daegu (Korea, Republic of)

    2004-04-01

    Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer of prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases.

  17. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  18. Characterisation of a pre-cell hit detector to be used in single cell irradiation experiments at the Lund Nuclear Microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Charlotta [Division of Nuclear Physics, Department of Physics, Lund University, Box 118, SE-22100 Lund (Sweden)], E-mail: charlotta.nilsson@nuclear.lu.se; Pallon, Jan [Division of Nuclear Physics, Department of Physics, Lund University, Box 118, SE-22100 Lund (Sweden); Thungstroem, Goeran [Electronics Design Division, Department of Information Technology and Media, Mid Sweden University, Holmgatan 10, SE-85170 Sundsvall (Sweden); Marrero, Natalia Arteaga; Elfman, Mikael; Kristiansson, Per; Nilsson, Christer; Wegden, Marie [Division of Nuclear Physics, Department of Physics, Lund University, Box 118, SE-22100 Lund (Sweden)

    2008-11-15

    This paper describes the characterisation of an ultra-thin silicon semiconductor {delta}E detector to be used as a pre-cell ion hit detector in single ion experiments on individual, living cells. The characteristics of interest for this specific application are the hit detection efficiency, which has to be close to 100% to enable bombardment with either a single ion or a counted number of ions, the beam spreading, which should be as small as possible to maintain the targeting accuracy, and the vacuum tightness, since the detector is intended, if possible, to be used simultaneously as vacuum window. The hit detection efficiency was shown to be above 99% when detecting alpha particles or 2 MeV protons, the increase in beam size was about 1 {mu}m and the vacuum tightness was comparable to that of the Si{sub 3}N{sub 4} wafer which is normally used as vacuum window, thus the {delta}E detector fulfils the main criteria to function properly as a single ion hit detector.

  19. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  20. Cesium-iodide-based nanocrystal for the detection of ionizing radiation

    Science.gov (United States)

    Farzaneh, Azadeh; Abdi, Mohammad Reza; Saraee, Khadijeh Rezaee Ebrahim; Mostajaboddavati, Mojtaba; Quaranta, A.

    2016-05-01

    We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and optical properties were followed by optical absorption and UV-vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra and decay curve to alpha particles of sample were monitored.

  1. A review of recent measurements of optical and thermal properties of. alpha. -mercuric iodide

    Energy Technology Data Exchange (ETDEWEB)

    Burger, A.; Morgan, S.H.; Silberman, E. (Fisk Univ., Nashville, TN (United States). Dept. of Physics); Nason, D.; Cheng, A.Y. (EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations)

    1991-01-01

    The knowledge of the physical properties of a crystal and their relation to the nature and content of defects are essential for both applications and fundamental reasons. Alpha-mercuric iodide ({alpha}-HgI{sub 2}) is a material which was found important applications as room temperature X-ray and gamma ray detectors. Some recent thermal and optical measurements of this material, using the samples of improved crystallinity which are now available, are reviewed below. Heretofore, these properties have received less attention than the mechanical and electrical properties, particularly at elevated temperatures. In the technology of {alpha}-HgI{sub 2} where there is a continuing motivation to obtain larger single crystals without compromising the material quality, a better knowledge of the thermal and optical properties may lead to improvements in the processes of material purification, crystal growth and device fabrication.

  2. Whole study of nuclear matter collective motion in central collisions of heavy ions of the FOPI detector; Etude complete du mouvement collectif de la matiere nucleaire dans les collisions centrales d'ions lourds avec le detecteur FOPI

    Energy Technology Data Exchange (ETDEWEB)

    Bendarag, A

    1999-07-09

    In this work we study the collective phenomena in the central collisions of heavy ions for the Au + Au, Xe + CsI and Ni + Ni systems at incident energies from 150 to 400 MeV/nucleon with the data of the FOPI detector. In order to describe completely the flow of the nuclear matter, we fit the double differential momentum distributions with two-dimensional Gaussian. We study the characteristic parameters of the collective flow (flow range, aspect ratios, flow parameter) versus the charge and the mass of the fragments as well as the incident energy and the centrality of the collisions. The transverse energy is used for selecting the central collisions. The method of the Gaussian fits requires also to reconstruct the reaction plane of the event. Then we correct the parameters for the finite number of particles effects and account for the influence of the acceptance of the detector. We confirm the importance of the thermal motion for the light charge or mass fragments and, conversely, the predominance of the collective motion for the heavy fragments. A common flow angle for all the types of particles is highlighted for the first time, demonstrating the power of the method of the Gaussian fits; The evolution of the other parameters confirms the observations done with other methods of flow analysis. These results should contribute to put constraints on the collision models and to enlarge our knowledge of the properties of the nuclear matter. (author)

  3. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification.

    Science.gov (United States)

    Baccou, C; Yahia, V; Depierreux, S; Neuville, C; Goyon, C; Consoli, F; De Angelis, R; Ducret, J E; Boutoux, G; Rafelski, J; Labaune, C

    2015-08-01

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.

  4. HgI{sub 2} detector fabrication; Construccion de detectores de HgI{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.; Perez, J. M.

    1996-07-01

    The aim of the present work is to describe the steps followed to fabricate an ionizing radiation detector based on synthetic mercuric iodide monocrystal layers. Firstly, the crystalline orientation method has been describe, which is needed before the layer cutting perpendicularly to the (001) crystallographic. It is also defined the proceeding to crystal face finishing by a mechanical polishing and subsequent chemical etching. then, the metal electrode deposition and the view connection has been explained. Finally, the technique followed to encapsulate the detector with a polymeric thin film deposition has been described. (Author) 10 refs.

  5. Development of Silicon Multi-strip Detector

    Institute of Scientific and Technical Information of China (English)

    TanJilian; JinGenming; WangHongwei; YuanXiaohua; DuanLiming; LiSonglin; LuZiwei; XuHushan; NingBaojun; TianDayu; WangWei; ZhangLu

    2003-01-01

    Position sensitive detector is very important for nuclear physics experiment. There several techniques can be used to fabricate position sensitive detector, for example, Si-surface barrier method, diffusion method, ion implantation and planar process etc. Among all the techniques mentioned above planar process is the best one. We have developed batch of position sensitive detector -- silicon multi-strip detector by using planar process.

  6. Gaseous Detectors: Charged Particle Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Hilke, H J

    2011-01-01

    Gaseous Detectors in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.2 Gaseous Detectors' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.2 Gaseous Detectors 3.1.2.1 Introduction 3.1.2.2 Basic Processes 3.1.2.2.1 Gas ionization by charged particles 3.1.2.2.1.1 Primary clusters 3.1.2.2.1.2 Cluster size distribution 3.1.2.2.1.3 Total number of ion pairs 3.1.2.2.1.4 Dependence of energy deposit on particle velocity 3.1.2.2.2 Transport of...

  7. Macrosegregation during Plane Front Solidification of Cesium Iodide wt Percent Thallium Iodide Alloy

    Science.gov (United States)

    Sidawi, Ibrahim M. S.

    Macrosegregation produced during directional solidification of CsI-1 wt% TlI by vertical Bridgman technique has been examined in crucibles of varying diameter, from 0.5 to 2.0 cm. Phase diagram and temperature dependence of the thermal conductivity have been determined. The experimentally observed liquid-solid interface shape and the fluid flow behavior have been compared with that computed from the commercially available code FIDAP. Thallium iodide content of the alloy was observed to increase along the length of the directionally solidified specimens, resulting in continuously decreasing light output. The experimentally observed solutal distribution agrees with predictions from the boundary layer model of Favier. The observed macrosegregation behavior suggests that there is a significant convection in the melt even in the smallest crucible diameter of 0.5 cm.

  8. 核电厂反应堆堆芯中子与温度探测器组件研制%Design of In-Core Neutron and Temperature Detector Assembly for Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    黄国良

    2014-01-01

    针对ACP1000堆型,研制了用于反应堆堆芯核测系统的堆芯中子和温度测量探测器组件。文介绍了探测器组件的设计、性能指标和试验结果。设计的堆芯中子和温度探测器组件集成了中子自给能探测器和测温元件并固定安装在堆内。试验结果表明测量敏感元件的性能满足设计要求,外壳和密封组件能保证反应堆一回路压力边界的要求。堆芯测量探测器组件一体化的设计可提高安全性和可靠性,实现实时测量,可用于反应堆保护。%For the ACP1000 reactor type , the detector assembly of measuring in -core neutron and temperature for reactor in-core nuclear detection system is designed .This article introduces the design , capability and ex-perimental results of this detector assembly .Detector assembly for measuring in -core neutron and temperature integrates self -powered neutron detectors and temperature measuring components and install them inside the reactor .Results indicate that the capability of sensitive components meets the design requirements , and shell and sealing assembly can meet the requirements of reactor loop pressure boundary .Integration of in -core measuring systems can improve the security and reliability , can achieve real -time measurements and can be used for reactor protection .

  9. Standard free energy of formation of iron iodide

    Science.gov (United States)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.

    1983-01-01

    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  10. Evaluation of potassium iodide (KI) and ammonium perchlorate (NH4ClO4) to ameliorate 131I- exposure in the rat.

    Science.gov (United States)

    Harris, C A; Fisher, J W; Rollor, E A; Ferguson, D C; Blount, B C; Valentin-Blasini, L; Taylor, M A; Dallas, C E

    2009-01-01

    Nuclear reactor accidents and the threat of nuclear terrorism have heightened the concern for adverse health risks associated with radiation poisoning. Potassium iodide (KI) is the only pharmaceutical intervention that is currently approved by the Food and Drug Administration for treating (131)I(-) exposure, a common radioactive fission product. Though effective, KI administration needs to occur prior to or as soon as possible (within a few hours) after radioactive exposure to maximize the radioprotective benefits of KI. During the Chernobyl nuclear reactor accident, KI was not administered soon enough after radiation poisoning occurred to thousands of people. The delay in administration of KI resulted in an increased incidence of childhood thyroid cancer. Perchlorate (ClO(4)(-)) was suggested as another pharmaceutical radioprotectant for 131I- poisoning because of its ability to block thyroidal uptake of iodide and discharge free iodide from the thyroid gland. The objective of this study was to compare the ability of KI and ammonium perchlorate to reduce thyroid gland exposure to radioactive iodide (131I-). Rats were dosed with 131I- tracer and 0.5 and 3 h later dosed orally with 30 mg/kg of either ammonium perchlorate or KI. Compared to controls, both anion treatments reduced thyroid gland exposure to 131I- equally, with a reduction ranging from 65 to 77%. Ammonium perchlorate was more effective than stable iodide for whole-body radioprotectant effectiveness. KI-treated animals excreted only 30% of the (131)I(-) in urine after 15 h, compared to 47% in ammonium perchlorate-treated rats. Taken together, data suggest that KI and ammonium perchlorate are both able to reduce thyroid gland exposure to 131I- up to 3 h after exposure to 131I-. Ammonium perchlorate may offer an advantage over KI because of its ability to clear 131I- from the body.

  11. Report on Advanced Detector Development

    Energy Technology Data Exchange (ETDEWEB)

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  12. DBU-Promoted Trifluoromethylation of Aryl Iodides with Difluoromethyltriphenylphosphonium Bromide

    Institute of Scientific and Technical Information of China (English)

    Yun Wei; Liuying Yu; Jinhong Lin; Xing Zheng; Jichang Xiao

    2016-01-01

    DBU-promoted trifluoromethylation of aryl iodides with difluoromethyltriphenylphosphonium bromide (DFPB) in the presence of copper source is described.In this transformation,DBU not only acts as base to deprotonate the difluoromethyl group in DFPB to generate difluoromethylene phosphonium ylide Ph3P+CF2,but also converts the difluorocarbene generated from ylide Ph3P+CF2 into trifluoromethyl anion,finally resulting in the trifluoromethylation of aryl iodides.The reactions proceeded smoothly to afford expected products in moderate to good yields.

  13. Enhanced Olefin Cross Metathesis Reactions: The Copper Iodide Effect

    Science.gov (United States)

    Voigtritter, Karl; Ghorai, Subir

    2011-01-01

    Copper iodide has been shown to be an effective co-catalyst for the olefin cross metathesis reaction. In particular, it has both a catalyst stabilizing effect due to iodide ion, as well as copper(I)-based phosphine-scavenging properties that apply to use of the Grubbs-2 catalyst. A variety of Michael acceptors and olefinic partners can be cross-coupled under mild conditions in refluxing diethyl ether that avoid chlorinated solvents. This effect has also been applied to chemistry in water at room temperature using the new surfactant TPGS-750-M. PMID:21528868

  14. Measurement of nuclear modification factor $R_\\mathrm{AA}$ in Pb+Pb collisions at $\\sqrt{s_{NN}}=5.02$TeV with the ATLAS detector at the LHC

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    Measurements of charged hadron spectra and the nuclear modification factor in Pb+Pb collisions at $\\sqrt{s_{NN}}=5.02$TeV with the ATLAS detector at the LHC are presented. The measurements are performed using data with an integrated luminosity of 0.49nb${}^{-1}$ in Pb+Pb collisions and 25pb${}^{-1}$ in pp collisions, obtained in the 2015 LHC physics run. Charged hadron Pb+Pb spectra measured in several centrality intervals are divided by pp spectrum to form the nuclear modification factor, $R_\\mathrm{AA}$, which provides insight into the effects of jet quenching in nuclear collisions. The behavior of $R_\\mathrm{AA}$ is studied as a function of transverse momentum up to 300GeV in different centralities. The values of $R_\\mathrm{AA}$ measured at $\\sqrt{s_{NN}}=5.02$TeV are found to be consistent with the previous measurements at $\\sqrt{s_{NN}}=2.76$TeV published by the ATLAS experiment.

  15. Towards a biochemical and structural characterisation of the sodium-iodide sym-porter (Nis)

    Energy Technology Data Exchange (ETDEWEB)

    Darrouzet, E.; Marcellin, D.; Huc, S.; Quemeneur, E. [CEA Centre de Marcoule (SBTN), 30 - Bagnols-sur-Ceze (France); Pourcher, T. [Nice Univ., TIRO CEA, Sophia Antipolis, 06 - Nice (France)

    2006-07-01

    organization for NIS including 13 trans-membrane helices, several sites of N-glycosylation, and a cytosolic C-terminus bearing most of the potential regulation sites (phosphorylation, PDZ...). However its structural characterisation are still in its infancy, and the factors involved in its post-translational regulation are still unknown. Among these accessory proteins, some play a crucial role as to its ability to transfer iodide, for example by targeting the NIS to the plasma membrane. In order to increase our knowledge on iodide transfer mechanism in humans, we have focused our researches on the biochemical, biophysical and molecular characterisation of NIS and related proteins. The strategies developed to produce and purify this challenging membrane protein will be described, as well as the development of various immunological tools. The perspective in term of medical application and nuclear toxicology will also be discussed. (author)

  16. Uptake of Iodide From Water in Atlantic Halibut Larvae (Hippoglossus Hippoglossus L.)

    DEFF Research Database (Denmark)

    Moren, Mari; Sloth, Jens Jørgen; Hamre, Kristin

    2008-01-01

    is whether Atlantic halibut larvae are capable of absorbing iodide from the water and if so, can the seawater sustain the iodine requirement during larval development and metamorphosis. Levels of iodide and iodate in seawater samples from four different rearing facilities were analysed. All samples contained...... relative low levels of iodide (0-22 nM) and except for samples from one site; the levels of iodide and iodate were in agreement with previously published data. The uptake of iodide from seawater was measured by incubating Atlantic halibut larvae in water with a constant level of radioactive iodide (I-125......(-)) and increasing levels of cold iodide (I-127(-)). To evaluate whether the uptake of iodide would change during metamorphosis, three different developmental stages (pre metamorphic, metamorphic and post metamorphic) were examined. The uptake was similar for all three stages, increasing with increasing...

  17. A facile synthesis of radioiodinated (Z)-vinyl iodides via vinylboronates

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, George W. E-mail: Kabalka@utk.edu; Akula, Murthy R.; Zhang, Jinhua

    2003-05-01

    A direct radioiodination of (Z)-vinylboronic acid esters to the corresponding vinyl iodides using Na{sup 123}I and chloramine-T is described. The boronates were prepared from vinyl iodides via palladium coupling reactions.

  18. Pixel Detectors

    OpenAIRE

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh...

  19. Neural networks for nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1995-12-31

    In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.

  20. Detection of nuclear radiations; Deteccion de Radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro Sanz, A.

    1967-07-01

    A summary of the lectures about the ordinary detectors of nuclear radiations explained by the author in the courses of Nuclear Engineering held at the J.E.N. up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied Electronics to Nuclear Engineering so it has been intended to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author)

  1. TRIPLICATE SODIUM IODIDE GAMMA RAY MONITORS FOR THE SMALL COLUMN ION EXCHANGE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Couture, A.

    2011-09-20

    This technical report contains recommendations from the Analytical Development (AD) organization of the Savannah River National Laboratory (SRNL) for a system of triplicate Sodium Iodide (NaI) detectors to be used to monitor Cesium-137 ({sup 137}Cs) content of the Decontaminated Salt Solution (DSS) output of the Small Column Ion Exchange (SCIX) process. These detectors need to be gain stabilized with respect to temperature shifts since they will be installed on top of Tank 41 at the Savannah River Site (SRS). This will be accomplished using NaI crystals doped with the alpha-emitting isotope, Americium-241({sup 241}Am). Two energy regions of the detector output will be monitored using single-channel analyzers (SCAs), the {sup 137}Cs full-energy {gamma}-ray peak and the {sup 241}Am alpha peak. The count rate in the gamma peak region will be proportional to the {sup 137}Cs content in the DSS output. The constant rate of alpha decay in the NaI crystal will be monitored and used as feedback to adjust the high voltage supply to the detector in response to temperature variation. An analysis of theoretical {sup 137}Cs breakthrough curves was used to estimate the gamma activity expected in the DSS output during a single iteration of the process. Count rates arising from the DSS and background sources were predicted using Microshield modeling software. The current plan for shielding the detectors within an enclosure with four-inch thick steel walls should allow the detectors to operate with the sensitivity required to perform these measurements. Calibration, testing, and maintenance requirements for the detector system are outlined as well. The purpose of SCIX is to remove and concentrate high-level radioisotopes from SRS salt waste resulting in two waste streams. The concentrated high-level waste containing {sup 137}Cs will be sent to the Defense Waste Processing Facility (DWPF) for vitrification and the low-level DSS will be sent to the Saltstone Production Facility (SPF

  2. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  3. The electrosorption of tetraalkylammonium ions on silver iodide

    NARCIS (Netherlands)

    Keizer, de A.

    1981-01-01

    The object of the present investigations was to study the ef fect of the adsorption of charged organic ions on electrically charged, solid-liquid interfaces. To that end, symmetrical quater nary ammonium ions were adsorbed on a silver iodide-electrolyte interface at various surface charges. The elec

  4. 21 CFR 520.763b - Dithiazanine iodide powder.

    Science.gov (United States)

    2010-04-01

    ....763b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... is administered to dogs by mixing the proper dosage in the dog's food, using the following dosage... contraindicated in animals sensitive to dithiazanine iodide and should be used cautiously, if at all, in dogs...

  5. Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids

    NARCIS (Netherlands)

    Kamminga, Machteld E.; Fang, Honghua; Filip, Marina R.; Giustino, Feliciano; Baas, Jacobus; Blake, Graeme R.; Loi, Maria Antonietta; Palstra, Thomas T. M.

    2016-01-01

    We use a layered solution crystal growth technique to synthesize high-quality single crystals of phenylalkylammonium lead iodide organic/inorganic hybrid compounds. Single-crystal X-ray diffraction reveals low-dimensional structures consisting of inorganic sheets separated by bilayers of the organic

  6. Processing multidimensional nuclear physics data

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Modern Ge detector arrays for gamma-ray spectroscopy are producing data sets unprecedented in size and event multiplicity. Gammasphere, the DOE sponsored array, has the following characteristics: (1) High granularity (110 detectors); (2) High efficiency (10%); and (3) Precision energy measurements (Delta EE = 0.2%). Characteristics of detector line shape, the data set, and the standard practice in the nuclear physics community to the nuclear gamma-ray cascades from the 4096 times 4096 times 4096 data cube will be discussed.

  7. Potassium iodate and its comparison to potassium iodide as a blocker of 131I uptake by the thyroid in rats.

    Science.gov (United States)

    Pahuja, D N; Rajan, M G; Borkar, A V; Samuel, A M

    1993-11-01

    Potassium iodide is the preferred thyroid blocker for personnel handling radioiodine and is recommended as a prophylaxis for the population in the near-field of a nuclear reactor which would be likely to be exposed to radioiodine in an accidental breach of containment. However, in hot and humid climates, this hygroscopic chemical has a poor shelf life due to hydrolytic loss of iodine vapors. On the other hand, another iodine-rich salt, potassium iodate (KIO3), is quite stable and has a much longer shelf life. The present study compares potassium iodide and KIO3 as thyroid blockers and examines the appropriate time at which they should be administered in case of radioiodine exposure. Either of the two were given in recommended dosage (100 mg stable iodine per 70 kg body weight) at -2, 0, +2, +4, +6, and +8 h after administration of tracer quantities of radioiodine (131I) to age-, weight-, and sex-matched rats. 131I uptake in thyroid was measured 24 h after its administration in the experimental animals and compared with placebo administered controls. Results suggest that KIO3 is as effective a thyroid blocking agent as potassium iodide. In comparison to controls, 24-h thyroid uptake of 131I can be substantially reduced if potassium iodide or KIO3 is given to the animals within 2-4 h after exposure to 131I. Another noteworthy observation is that KIO3 is effective even at 8 h when administered at twice the usual dosage in comparison to the single dose, which does not show appreciable thyroid blocking properties after 8 h.

  8. Metal Detectors.

    Science.gov (United States)

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  9. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  10. Concentrations of 222Rn, 220Rn and their decay products measured in outdoor air in various rural zones (Morocco) by using solid-state nuclear track detectors and resulting radiation dose to the rural populations.

    Science.gov (United States)

    Misdaq, M A; Amrane, M; Ouguidi, J

    2010-03-01

    Alpha and beta activities per unit volume of air due to radon ((222)Rn), thoron ((220)Rn) and their progenies were measured in the outdoor air at different locations in Morocco by using both CR-39 and LR-115 type II solid-state nuclear track detectors (SSNTDs). In addition, the radon concentration was continuously measured in one location by using the methods with SSNTDs and AlphaGuard counter. The influence of the geological and meteorological conditions as well as phosphate and building material dust on the radon concentration in the outdoor air of the areas studied was investigated. The committed equivalent doses due to (218)Po and (214)Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of outdoor air. The annual effective dose due to radon short-lived progeny from the inhalation of outdoor air by the members of the rural population was estimated.

  11. Measurements of gamma (γ)-emitting radionuclides with a high-purity germanium detector: the methods and reliability of our environmental assessments on the Fukushima 1 Nuclear Power Plant accident.

    Science.gov (United States)

    Mimura, Tetsuro; Mimura, Mari; Komiyama, Chiyo; Miyamoto, Masaaki; Kitamura, Akira

    2014-01-01

    The severe accident of Fukushima 1 Nuclear Power Plant due to the Tohoku Region Pacific Coast Earthquake in 11 March 2011 caused wide contamination and pollution by radionuclides in Fukushima and surrounding prefectures. In the current JPR symposium, a group of plant scientists attempted to examine the impact of the radioactive contamination on wild and cultivated plants. Measurements of gamma (γ) radiation from radionuclides in "Fukushima samples", which we called and collected from natural and agricultural areas in Fukushima prefecture were mostly done with a high-purity Ge detector in the Graduate School of Maritime Sciences, Kobe University. In this technical note, we describe the methods of sample preparation and measurements of radioactivity of the samples and discuss the reliability of our data in regards to the International Atomic Energy Agency (IAEA) Interlaboratory comparisons and proficiency test (IAEA proficiency test).

  12. Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at $\\sqrt{s_{\\mathrm{NN}}}=2.76$ TeV with the ATLAS Detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moraes, Arthur; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2015-01-01

    Measurements of inclusive jet production are performed in $pp$ and Pb+Pb collisions at $\\sqrt{s_{\\mathrm{NN}}}=2.76$ TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 $\\mathrm{pb}^{-1}$ and 0.14 $\\mathrm{nb}^{-1}$ , respectively. The jets are identified with the anti-$k_t$ algorithm with $R=0.4$, and the spectra are measured over the kinematic range of jet transverse momentum $32 < p_{\\mathrm{T}} < 500$ GeV, and absolute rapidity $|y| < 2.1$ and as a function of collision centrality. The nuclear modification factor, $R_{\\mathrm{AA}}$, is evaluated and jets are found to be suppressed by approximately a factor of two in central collisions compared to $pp$ collisions. The $R_{\\mathrm{AA}}$ shows a slight increase with $p_{\\mathrm{T}}$ and no significant variation with rapidity.

  13. Measurement of 238U and 232Th in Petrol, Gas-oil and Lubricant Samples by Using Nuclear Track Detectors and Resulting Radiation Doses to the Skin of Mechanic Workers.

    Science.gov (United States)

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-10-01

    Workers in repair shops of vehicles (cars, buses, truck, etc.) clean carburetors, check fuel distribution, and perform oil changes and greasing. To explore the exposure pathway of (238)U and (232)Th and its decay products to the skin of mechanic workers, these radionuclides were measured inside petrol, gas-oil, and lubricant material samples by means of CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs), and corresponding annual committed equivalent doses to skin were determined. The maximum total equivalent effective dose to skin due to the (238)U and (232)Th series from the application of different petrol, gas-oil, and lubricant samples by mechanic workers was found equal to 1.2 mSv y(-1) cm(-2).

  14. 核电站闭气式正比计数器C2门调试%Debug Method of Sealed Gas Detector C2 Gate at Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    李翔; 余哲; 李买林; 郑欢; 王建新; 任熠; 张佳; 刘晋瑾; 刘芸

    2014-01-01

    介绍了以闭气式正比计数器为探测器的核电站C2门的调试方法,分析了设备性能优化的可行性与必要性。为保证最优的探测器效率,需确定探测器最佳的高压值;计算了设备的最小可探测限,并设定低本底报警阈值;制定了探测器的防护措施。%A description is presented of the debug method of C 2 gate at nuclear power plants using sealed gas proportional counter as detector ,including the analysis of the feasibility and necessity of performance optimiza-tion .To ensure the optimized detection efficiency ,the high voltage value is to be determined .The lowest de-tectable limit of the equipment is calculated and the low background alarm threshold is set .Protective method for detector are provided .

  15. Application of solid-state nuclear track detectors of the CR-39/PM-355 type for measurements of energetic protons emitted from plasma produced by an ultra-intense laser

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, A. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Badziak, J. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Fuchs, J. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay 91128 (France); Kubkowska, M., E-mail: mkubkowska@ifpilm.waw.p [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Parys, P.; Rosinski, M.; Suchanska, R.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Antici, P.; Mancic, A. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay 91128 (France)

    2009-10-15

    The paper reports on applications of solid-state nuclear track detectors (SSNTDs) of the CR-39/PM-355, manufactured by Pershore Moulding Ltd., for measurements of fast protons emitted from laser-produced plasma. The experiment was performed at LULI, Ecole Politechnique, on the 100 Tera-Watt laser facility. A 1.05 mum laser pulse of 350 fs duration and intensity up to 2 x 10{sup 19} W/cm{sup 2} irradiated a thin (1-3 mum) polystyrene (PS) or Au/PS target (PS foil covered with a 0.1-0.2 mum Au layer) along the target normal. The measurements revealed that very intense MeV proton beams can be produced under specially chosen laser-target irradiation conditions. The proton beam characteristics were measured using the TOF method (ion collectors), SSNTDs, and radiochromic films (RCFs). The SSNTDs appeared to be especially useful for the experimental analysis of more energetic protons (E{sub p} > 3 MeV). Using in the same laser shots many detector samples covered with Al foils of different thicknesses (from 15 mum up to 400 mum) it was possible to estimate energy spectra of protons emitted under various irradiation conditions. The most energetic protons (of energy up to 10 MeV) and the most intense proton beams were generated from a double-layer Au/PS target.

  16. ENSTAR detector for -mesic studies

    Indian Academy of Sciences (India)

    A Chatterjee; B J Roy; V Jha; P Shukla; H Machnder; GEM Collaboration

    2006-05-01

    We have initiated a search for a new type of nuclear matter, the -mesic nucleus, using beams from the multi-GeV hadron facility, COSY at Juelich, Germany. A large acceptance scintillator detector, ENSTAR has been designed and built at BARC, Mumbai and fully assembled and tested at COSY. A test run for calibration and evaluation has been completed. In this contribution we present the design and technical details of the ENSTAR detector and how it will be used to detect protons and pions (the decay products of -mesic bound state). The detector is made of plastic scintillators arranged in three concentric cylindrical layers. The readout of the detectors is by means of optical fibres. The layers are used to generate - spectra for particle identification and total energy information of stopped particles. The granularity of the detector allows for position ( and ) determination making the event reconstruction kinematically complete.

  17. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A. [Texas A & M Univ., Commerce, TX (United States)

    2016-01-12

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required to extract the information from the experiments that is needed to determine the stellar reaction rates. The tools developed through this part of the work will be made freely available for general use.

  18. Background Radiation Survey of the Radiological/Nuclear Countermeasures Test and Evaluation Center

    Energy Technology Data Exchange (ETDEWEB)

    Colin Okada

    2010-09-16

    In preparation for operations at the Radiological/Nuclear Countermeasures Test and Evaluation Complex (Rad/NucCTEC), the Department of Homeland Security Domestic Nuclear Detection Office (DHS/DNDO) requested that personnel from the Remote Sensing Laboratory (RSL) conduct a survey of the present radiological conditions at the facility. The measurements consist of the exposure rate from a high-pressure ion chamber (HPIC), high-resolution spectra from a high-purity germanium (HPGe) system in an in situ configuration, and low-resolution spectra from a sodium iodide (NaI) detector in a radiation detection backpack. Measurements with these systems were collected at discrete locations within the facility. Measurements were also collected by carrying the VECTOR backpack throughout the complex to generate a map of the entire area. The area was also to be surveyed with the Kiwi (an array of eight-2-inch x 4-inch x 16-inch NaI detectors) from the Aerial Measuring Systems; however, conflicts with test preparation activities at the site prevented this from being accomplished.

  19. Nuclear probes and intraoperative gamma cameras.

    Science.gov (United States)

    Heller, Sherman; Zanzonico, Pat

    2011-05-01

    Gamma probes are now an important, well-established technology in the management of cancer, particularly in the detection of sentinel lymph nodes. Intraoperative sentinel lymph node as well as tumor detection may be improved under some circumstances by the use of beta (negatron or positron), rather than gamma detection, because the very short range (∼ 1 mm or less) of such particulate radiations eliminates the contribution of confounding counts from activity other than in the immediate vicinity of the detector. This has led to the development of intraoperative beta probes. Gamma camera imaging also benefits from short source-to-detector distances and minimal overlying tissue, and intraoperative small field-of-view gamma cameras have therefore been developed as well. Radiation detectors for intraoperative probes can generally be characterized as either scintillation or ionization detectors. Scintillators used in scintillation-detector probes include thallium-doped sodium iodide, thallium- and sodium-doped cesium iodide, and cerium-doped lutecium orthooxysilicate. Alternatives to inorganic scintillators are plastic scintillators, solutions of organic scintillation compounds dissolved in an organic solvent that is subsequently polymerized to form a solid. Their combined high counting efficiency for beta particles and low counting efficiency for 511-keV annihilation γ-rays make plastic scintillators well-suited as intraoperative beta probes in general and positron probes in particular Semiconductors used in ionization-detector probes include cadmium telluride, cadmium zinc telluride, and mercuric iodide. Clinical studies directly comparing scintillation and semiconductor intraoperative probes have not provided a clear choice between scintillation and ionization detector-based probes. The earliest small field-of-view intraoperative gamma camera systems were hand-held devices having fields of view of only 1.5-2.5 cm in diameter that used conventional thallium

  20. A New Numerical Approach to Evaluate Variation of Electric Field Strength at the End of Particle Trajectory in Nuclear Track Detectors

    Institute of Scientific and Technical Information of China (English)

    SUN Xiu-Dong; Ali Mostofizadeh; HOU Chun-Feng; M.Reza Kardan

    2008-01-01

    A geometrical model for an electrochemical etching(ECE)track in a dielectric detector is defined and a primary programme is written to generate the track.The generated track is transformed to an M×N matrix of primary voltages.Using a numerical method,the matrix of final voltages is computed,and using another numerical approach.the electric field strengths in the elements of detector volume are computed.The final field strength at the end of particle trajectory is obtained.The results of our numerical computation show that there are exact correlations between the field strength at the end of particle trajectory and the parameters of track under ECE.It is found that although two traditional models of Mason and Smythe in dielectrics can be partly applied for short we find that there is an expressive relationship between the field strength and the incidence angle of impacted particle.while the mentioned traditional models are not able to explain this effect.

  1. High performance visual display for HENP detectors

    CERN Document Server

    McGuigan, M; Spiletic, J; Fine, V; Nevski, P

    2001-01-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactiv...

  2. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    Science.gov (United States)

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurtén, Theo; Thornton, Joel A.

    2016-04-01

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion-molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion-molecule reaction time, which is strongly influenced by mixing and ion losses in the ion-molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidates the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.

  3. Measurement of the nuclear modification factor for high-$p_\\mathrm{T}$ charged hadrons in p+Pb collisions with the ATLAS detector

    CERN Document Server

    Balek, Petr; The ATLAS collaboration

    2016-01-01

    The charged hadron spectra in p+Pb and pp collisions at $\\sqrt{s}=5.02$TeV are measured with the ATLAS experiment at the LHC. The measurements are performed with p+Pb data recorded in 2013 with an integrated luminosity of 25nb${}^{-1}$ and pp data recorded in 2015 with an integrated luminosity of 28pb${}^{-1}$. The p+Pb results are directly compared to pp spectra, as a ratio scaled by the number of binary nucleon-nucleon collisions, the nuclear modification factor $R_\\mathrm{pPb}$. The study of $R_\\mathrm{pPb}$ allows a detailed comparison of the collision systems in different centrality intervals and up to high transverse momentum. It is shown that the nuclear modification factor does not have any significant deviation from unity in the high transverse momentum region.

  4. Comparison measurements of DQE for two flat panel detectors: fluoroscopic detector vs. cone beam CT detector

    Science.gov (United States)

    Betancourt Benítez, Ricardo; Ning, Ruola; Conover, David

    2006-03-01

    The physical performance of two flat panel detectors (FPD) has been evaluated using a standard x-ray beam quality set by IEC, namely RQA5. The FPDs evaluated in this study are based on an amorphous silicon photodiode array that is coupled to a thallium-doped Cesium Iodide scintillator and to a thin film transistor (TFT) array. One detector is the PaxScan 2520 that is designed for fluoro imaging, and has a small dynamic range and a large image lag. The other detector is the PaxScan 4030CB that is designed for cone beam CT, and has a large dynamic range (>16-bit), a reduced image lag and many imaging modes. Varian Medical Systems manufactured both detectors. The linearity of the FPDs was investigated by using an ionization chamber and aluminum filtration in order to obtain the beam quality. Since the FPDs are used in fluoroscopic mode, image lag of the FPD was measured in order to investigate its effect on this study, especially its effect on DQE. The spatial resolution of the FPDs was determined by obtaining the pre-sampling modulation transfer function for each detector. A sharp edge was used in accordance to IEC 62220-1. Next, the Normalized Noise Power Spectrum (NNPS) was calculated for various exposures levels at RQA5 radiation quality. Finally, the DQE of each FPD was obtained with a modified version of the international standard set by IEC 62220-1. The results show that the physical performance in DQE and MTF of the PaxScan 4030CB is superior to that of PaxScan2520.

  5. [Evaluation of potassium iodide in Polish dietary salt].

    Science.gov (United States)

    Andrzejewska, E; Rokicka, B; Gajda, J; Jarecka, J; Oraczewska, A; Karłowski, K

    1996-01-01

    The consequences of iodine deficiency occurring still in Poland include serious health disorders in the population, such as psycho- somatic retardation, hypothyroidism, endemic goitre, even cretinism. Administration of iodized edible salt with daily diet is an effective method for prevention of iodine deficiency. The condition of success is the proper level of potassium iodide in this salt and adequate distribution of iodized salt in various regions of the country. Successful iodine prophylaxis should be based on iodination of edible salt in amounts of 30 +/- 10 mg of KJ/kg. The permission given in the period from February to May 1994 by the General Sanitary Inspector for the production and marketing of edible salt iodized in proportions of 30 +/- 10 mg KJ/kg opened the possibility of starting its production in salt mines. The purpose of the presently reported work was to assess, in cooperation with the Province Sanitary Epidemiological Stations, the adequacy of iodination of the Polish edible salt produced in the years 1994-1995. The study was carried out according to the Polish Standard "Salt (Sodium Chloride) /PN-80/C-84081.35. Potassium iodide determination by photo colorimetric method." In 1995 the number of edible salt samples analyzed was 2484, and this number included 2129 samples of iodized salt. Potassium iodide content agreeing with the above permission was found in 122 samples, that is in 57.4% of iodized salt samples. In 603 samples (28.3%) of iodized salt this content was below that given in the permissions. In 1994 this study was carried out taking 2172 samples of edible salt, including 1586 samples of iodized salt. The content of potassium iodide agreeing with the permissions (30 +/- 10 mg/kg) was found in 342 samples (28, 1%), but 272 (22.4%) samples of iodized salt produced by salt mines contained lower amounts of potassium iodide than the amount indicated in the permissions, but still within the limits set down in the Polish Standard (20 +/- 5 mg

  6. Defective organification of iodide causing congenital goitrous hypothyroidism.

    Science.gov (United States)

    Ishikawa, N; Eguchi, K; Ohmori, T; Momotani, N; Nagayama, Y; Hosoya, T; Oguchi, H; Mimura, T; Kimura, S; Nagataki, S; Ito, K

    1996-01-01

    A 26-yr-old Japanese woman with congenital goitrous hypo-thyroidism and sensorineural deafness underwent a thyroidectomy. Examination of the thyroid gland revealed characteristic features of multinodular goiter. The T3 and T4 content in thyroglobulin (Tg) were 0.03 and 0.02 mol/mol Tg, respectively. Iodide incorporation into Tg, using slices of the thyroid tissue, revealed that iodide organification of thyroid tissue from our patient was markedly lower than that of normal controls. Then, guaiacol and iodide oxidation activities of thyroid peroxidase (TPO) in our patient's thyroid tissue were lower than those of normal controls (guaiacol assay: 1.92 vs. 30.0 +/- 5.7 mGU/mg protein; iodide assay: 1.1 vs. 6.6 +/- 2.8 mIU/mg protein). Lineweaver-Burk plot analysis of the oxidation rates of guaiacol and iodide indicated that this patient's TPO had a defect in the binding of guaiacol and iodide, but the coupling activity of the patient's TPO was not decreased compared with those of two normal thyroids. In this case and in control subjects, Nothern gel analysis of TPO messenger RNA from unstimulated and TSH-stimulated thyroid cells revealed a 3.2 kilobase species in the former and four distinct messenger RNA species of 4.0, 3.2, 2.1, and 1.7 kilobases in the latter. Western blot analysis of TPOs obtained from this patient and from control subjects identified the same 107 kDa protein, using antimicrosomal antibody-positive serum. We analyzed the coding sequence in the patient's TPO gene by using polymerase chain reaction technique. A single point mutation of G-->C at 1265 base pair was detected only in the TPO gene, but this point mutation does not alter the amino acid residue. It is possible that posttranslational modification such as abnormal glycosylation may occur in the TPO molecules. Furthermore, it is possible that there are differences in the tertiary structures of the TPO molecules between our patient and normal subjects. The above abnormalities of TPO molecules

  7. Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tribble, Robert E. [Texas A & M Univ., College Station, TX (United States); Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, Jeff C. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, Carlos A. [Texas A & M Univ., Commerce, TX (United States)

    2015-12-29

    The work performed under this grant has led to the development of a detection system that will be used to measure reaction rates for proton or neutron capture reactions at stellar energies on radioactive ions far from stability. The reaction rates are needed to better understand the physics of nucleosynthesis in explosive stellar processes such as supernovae and x-ray burst events. The radioactive ions will be produced at the Radioactive Ion Beam Facility (RIBF) at RIKEN near Tokyo, Japan. During the course of this work, the group involved in this project has expanded by several institutions in Europe and Japan and now involves collaborators from the U.S., Japan, Hungary, Romania, Germany, Spain, Italy, China, and South Korea. As part of the project, a novel design based on large-area silicon detectors has been built and tested and the performance characterized in a series of tests using particle beams with a variety of atomic numbers at the Cyclotron Institute of Texas A&M University and the Heavy Ion Medical Accelerator in Chiba facility (HIMAC) in Chiba, Japan. The work has involved mechanical construction of a special purpose vacuum chamber, with a precision mounting system for the silicon detectors, development of a new ASICs readout system that has applications with a wide variety of silicon detector systems, and the development of a data acquisition system that is integrated into the computer system being used at RIBF. The parts noted above that are needed to carry out the research program are completed and ready for installation. Several approved experiments that will use this system will be carried out in the near future. The experimental work has been delayed due to a large increase in the cost and availability of electrical power for RIBF that occurred following the massive earthquake and tsunami that hit Japan in the spring of 2011. Another component of the research carried out with this grant involved developing the theoretical tools that are required

  8. Imaging gaseous detectors and their applications

    CERN Document Server

    Nappi, Eugenio

    2013-01-01

    Covers the detector and imaging technology and their numerous applications in nuclear and high energy physics, astrophysics, medicine and radiation measurements Foreword from G. Charpak, awarded the Nobel Prize in Physics for this invention.

  9. MINERvA Detector: Description and Performance

    CERN Document Server

    Osmanov, Bari

    2011-01-01

    The MINERvA experiment is aimed at precisely measuring the cross-sections for various neutrino interaction channels. It is located at Fermilab in the underground cavern in front of MINOS near detector. MINERvA is a fine-grained scintillator with electromagnetic and hadronic calorimetry regions. There are various nuclear targets located inside and in front of the detector for studying nuclear medium effects in neutrino-induced interactions. The installation was completed in March 2010 and since then the detector has been collecting data. In this paper, the method for determining the neutrino flux is described in detail with the associated uncertainties as well as the techniques for their reduction. The general structure of the detector is given with the emphasis on the nuclear targets region. Preliminary results related to nuclear effects studies are presented followed by their discussion and future plans.

  10. Place of HgI/sub 2/ energy-dispersive x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowski, A.J.; Huth, G.C.; Iwanczyk, J.S.; Kusmiss, J.H.; Barton, J.S.; Szymczyk, J.M.; Schnepple, W.F.; Lynn, R.

    1982-01-01

    After a review of solid-state conduction counters, in general, and of the history of mercuric iodide, in particular, the theory of operation of solid-state energy-dispersive HgI/sub 2/ detectors is dicusssed. The main factors which limit energy resolution in solid-state compound detectors are considered, including statistical fluctuations in charge generation, the window effect, trapping, inhomogeneities in the detector material, and electronic noise. Potential applications of room-temperature HgI/sub 2/ x-ray detectors are listed, and general considerations are discussed for x-ray fluorescence analysis with HgI/sub 2/. Directions of current investigations are given. (LEW)

  11. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  12. 基于支持向量机的核探测器电路故障诊断方法研究%Research of Nuclear Detector Circuit Fault Diagnosis Based on Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    易凌帆; 颜拥军; 周剑良; 王庆震

    2015-01-01

    核数据的获取和处理包括探测器将核粒子能量通过模拟放大器转换成与之对应的脉冲幅度;再由模拟‐数字转换器(ADC)或时间‐数字变换器(TDC)将探测器给出的脉冲幅度(或时间间隔)变换成离散的核信息数据。本文根据其离散数据提取特征值并进行模式识别,尝试基于支持向量机的模拟电路故障定位,并通过软件仿真对此方法进行检验。通过具体成形放大模拟电路仿真实验,验证了支持向量机对模拟电路故障定位的有效性。%The nuclear data acquisition and processing can convert nuclear particle ener‐gy into corresponding pulse amplitude by analog amplifier ,and then the digital informa‐tion of pulse amplitude is acquired by the analog‐to‐digital converter (ADC ) or time‐digital converter (TDC) .In this paper ,the eigenvalue was extracted by the method of pattern recognition from the discrete data ,and the analog circuit fault diagnosis and location was studied based on support vector machine .By the experiment of practical forming amplification analog circuit , the validity of the nuclear detector circuit fault diagnosis based on support vector machine was verified .

  13. A thalium-doped sodium iodide well counter for radioactive tracer applications with naturally-abundant 40K

    Science.gov (United States)

    Parker, Andrew J.; Boxall, Colin; Joyce, Malcolm J.; Schotanus, Paul

    2013-09-01

    The use of a thallium-doped sodium-iodide well-type scintillation detector for the assay of the low-activity radioisotope 40K, in open-source potassium chloride aqueous solutions, is described. The hazards, safety concerns and radiowaste generation associated with using open-source radioactive isotopes can present significant difficulties, the use of hot cells and escalated costs in radioanalytical laboratory research. A solution to this is the use of low-hazard alternatives that mimic the migration and dispersion characteristics of notable fission products (in this case 137Cs). The use of NaI(Tl) as a detection medium for naturally-abundant levels of 40K in a range of media is widespread, but the use of 40K as a radioactive tracer has not been reported. The use of such low-activity sources is often complicated by the ability to detect them efficiently. In this paper a scintillator detector designed to detect the naturally-abundant 40K present in potassium chloride in tracer applications is described. Examples of the use of potassium chloride as a tracer are given in the context of ion exchange and electrochemical migration studies, and comparisons in performance are drawn from literature with hyper pure germanium semiconductor detectors, which are more commonly utilised detectors in high-resolution counting applications.

  14. Potassium iodide (KI) to block the thyroid from exposure to I-131: current questions and answers to be discussed.

    Science.gov (United States)

    Reiners, Christoph; Schneider, Rita

    2013-05-01

    Thyroid cancer in children and adolescents has to be considered as the most severe health consequence of a nuclear reactor emergency with release of radioiodine into the atmosphere. High doses of potassium iodide are effective to block radioiodine thyroid uptake and to prevent development of thyroid cancer years later. However, there are controversies concerning thyroid cancer risk induced by radioiodine exposure in adults. Further, the interaction of nutritional supply of potassium iodide and radioiodine uptake as well as the interaction of radioiodine with certain drugs has not been addressed properly in existing guidelines and recommendations. How to proceed in case of repeated release of radioiodine is an open, very important question which came up again recently during the Fukushima accident. Lastly, the side effects of iodine thyroid blocking and alternatives of this procedure have not been addressed systematically up to now in guidelines and recommendations. These questions can be answered as follows: in adults, the risk to develop thyroid cancer is negligible. In countries, where nutritional iodine deficiency is still an issue, the risk to develop thyroid cancer after a nuclear reactor emergency has to be considered higher because the thyroid takes up more radioiodine as in the replete condition. Similarly, in patients suffering from thyrotoxicosis, hypothyroidism or endemic goitre not being adequately treated radioiodine uptake is higher than in healthy people. In case of repeated or continued radioiodine release, more than one dose of potassium iodide may be necessary and be taken up to 1 week. Repeated iodine thyroid blocking obviously is not harmful. Side effects of iodine thyroid blocking should not be overestimated; there is little evidence for adverse effects in adults. Newborns and babies, however, may be more sensitive to side effects. In the rare case of iodine hypersensitivity, potassium perchlorate may be applied as an alternative to iodine for

  15. Synthesis and Structure of Bis(4-nitrobenzaldehyde thiosemicarbazone) Cadmium Iodide

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The title complex, bis(4-nitrobenzaldehyde thiosemicarbazone) cadmium iodide (C16H16CdI2N8O4S2) crystallizes in the triclinic system, space group P1 with a=9.632(2), b=11.227(2), c=14.031(3), α= 67.50(3), β= 86.99(3), γ= 66.64(3)°, V=1278.13, Z = 2, Dc = 2.117gcm-3, F(000) = 772, μ =3.472mm-1 MoKα radiation (λ=0.71073), R = 0.0443, wR= 0.1425 for 4529 observed reflections [I>2σ(I)] of 4731 independent reflections. The result shows that the structure contains CdL2I2 (where L = 4-nitrobenzaldehyde thiosemicarbazone) distorted tetrahedral units in which the two ligands are S-bonded as monodentate to cadmium ion; the two iodide ions are also coordinated to Cd(II).

  16. Purification and deposition of silicon by an iodide disproportionation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tihu (Littleton, CO); Ciszek, Theodore F. (Evergreen, CO)

    2002-01-01

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  17. Caloric Effects in Methylammonium Lead Iodide from Molecular Dynamics Simulations

    OpenAIRE

    Liu, Shi; Cohen, Ronald E.

    2016-01-01

    Organic-inorganic hybrid perovskite architecture could serve as a robust platform for materials design to realize functionalities beyond photovoltaic applications. We explore caloric effects in organometal halide perovskites, taking methylammonium lead iodide (MAPbI$_3$) as an example, using all-atom molecular dynamics simulations with a first-principles based interatomic potential. The adiabatic thermal change is estimated directly by introducing different driving fields in the simulations. ...

  18. Structural insight into iodide uptake by AFm phases.

    Science.gov (United States)

    Aimoz, Laure; Wieland, Erich; Taviot-Guého, Christine; Dähn, Rainer; Vespa, Marika; Churakov, Sergey V

    2012-04-03

    The ability of cement phases carrying positively charged surfaces to retard the mobility of (129)I, present as iodide (I(-)) in groundwater, was investigated in the context of safe disposal of radioactive waste. (125)I sorption experiments on ettringite, hydrotalcite, chloride-, carbonate- and sulfate-containing AFm phases indicated that calcium-monosulfate (AFm-SO(4)) is the only phase that takes up trace levels of iodide. The structures of AFm phases prepared by coprecipitating iodide with other anions were investigated in order to understand this preferential uptake mechanism. X-ray diffraction (XRD) investigations showed a segregation of monoiodide (AFm-I(2)) and Friedel's salt (AFm-Cl(2)) for I-Cl mixtures, whereas interstratifications of AFm-I(2) and hemicarboaluminate (AFm-OH-(CO(3))(0.5)) were observed for the I-CO(3) systems. In contrast, XRD measurements indicated the formation of a solid solution between AFm-I(2) and AFm-SO(4) for the I-SO(4) mixtures. Extended X-ray absorption fine structure spectroscopy showed a modification of the coordination environment of iodine in I-CO(3) and in I-SO(4) samples compared to pure AFm-I(2). This is assumed to be due to the introduction of stacking faults in I-CO(3) samples on one hand and due to the presence of sulfate and associated space-filling water molecules as close neighbors in I-SO(4) samples on the other hand. The formation of a solid solution between AFm-I(2) and AFm-SO(4), with a short-range mixing of iodide and sulfate, implies that AFm-SO(4) bears the potential to retard (129)I.

  19. Gold nanoelectrode ensembles for direct trace electroanalysis of iodide.

    Science.gov (United States)

    Pereira, Francisco C; Moretto, Ligia M; De Leo, Manuela; Zanoni, Maria V Boldrin; Ugo, Paolo

    2006-08-01

    A procedure for the standardization of ensembles of gold nanodisk electrodes (NEE) of 30 nm diameter is presented, which is based on the analytical comparison between experimental cyclic voltammograms (CV) obtained at the NEEs in diluted solutions of redox probes and CV patterns obtained by digital simulation. Possible origins of defects sometimes found in NEEs are discussed. Selected NEEs are then employed for the study of the electrochemical oxidation of iodide in acidic solutions. CV patterns display typical quasi-reversible behavior which involves associated chemical reactions between adsorbed and solution species. The main CV characteristics at the NEE compare with those observed at millimeter sized gold disk electrodes (Au-macro), apart a slight shift in E1/2 values and slightly higher peak to peak separation at the NEE. The detection limit (DL) at NEEs is 0.3 microM, which is more than one order of magnitude lower than DL at the Au-macro (4 microM). The mechanism of the electrochemical oxidation of iodide at NEEs is discussed. Finally, NEEs are applied to the direct determination of iodide at micromolar concentration levels in real samples, namely in some ophthalmic drugs and iodized table salt.

  20. Enhanced iodide sequestration by 3-biphenyl-5,6-dihydroimidazo 2,1-b thiazole in sodium/iodide sym-porter (NIS)-expressing cells

    Energy Technology Data Exchange (ETDEWEB)

    Lecat-Guillet, N.; Ambroise, Y. [CEA, DSV, Dept Bioorgan Chem andt IsotopLabelling, Inst Biol and Technol, iBiTecS, F-91191 Gif Sur Yvette (France)

    2008-07-01

    The ability of the sodium/iodide sym-porter (NIS) to take up iodide has long provided the basis for cyto-reductive gene therapy and cancer treatment with radio-iodide. One of the major limitations of this approach is that radio-iodide retention in NIS-expressing cells is not sufficient for their destruction. We identified and characterized a small organic molecule capable of increasing iodide retention in HEK293 cells permanently transfected with human NIS cDNA (hNIS-HEK293) and in the rat thyroid-derived cell line FRTL-5. In the presence of 3-biphenyl-4'-yl-5,6-dihydroimidazo[2,1-b)thiazole (ISA1), the transmembrane iodide concentration gradient was increased up to 4.5-fold. Our experiments indicate that the imidazo-thiazole derivative acts either by inhibiting anion efflux mechanisms, or by promoting the relocation of iodide into subcellular compartments. This new compound is not only an attractive chemical tool to investigate the mechanisms of iodide flux at the cellular level, but also opens promising perspectives in the treatment of cancer after NIS gene transfer. (authors)

  1. Aerogel for FARICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R.; Gulevich, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova 2, Novosibirsk 630090 (Russian Federation); Kuyanov, I.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Lopatin, S.A. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Ovtin, I.V.; Podgornov, N.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Porosev, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Predein, A.Yu.; Protsenko, R.S. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation)

    2014-12-01

    We present our current experience in preparation of focusing aerogels for the Focusing Aerogel RICH detector. Multilayer focusing aerogel tiles have been produced in Novosibirsk by a collaboration of the Budker Institute of Nuclear Physics and Boreskov Institute of Catalysis since 2004. We have obtained 2–3–4-layer blocks with the thickness of 30–45 mm. In 2012, the first samples of focusing blocks with continuous density (refractive index) gradient along thickness were produced. This technology can significantly reduce the contribution from the geometric factor of the radiator thickness to the resolution of the measured Cherenkov angle in the FARICH detector. The special installation was used for automatic control of reagents ratio during the synthesis process. The first samples were tested using the digital radiography method and on the electron beam with the FARICH prototype.

  2. Removal and sequestration of iodide using silver-impregnated activated carbon.

    Science.gov (United States)

    Hoskins, Jay S; Karanfil, Tanju; Serkiz, Steven M

    2002-02-15

    Two silver-impregnated activated carbons (SIACs) (0.05 and 1.05 wt % silver) and their virgin (i.e., unimpregnated) granular activated carbon (GAC) precursors were investigated for their ability to remove and sequester iodide from aqueous solutions in a series of batch sorption and leaching experiments. Silver content, total iodide concentration, and pH were the factors controlling the removal mechanisms of iodide. Iodide uptake increased with decreasing pH for both SIACs and their virgin GACs. The 0.05% SIAC behaved similarly to its virgin GAC in all experimental conditions because of its low silver content. At pH values of 7 and 8 there was a marked increased in iodide removal for the 1.05% SIAC over that of its virgin GAC, while their performances were similar at a pH of 5. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analyses prior to reaction with iodide showed the presence of metallic silver agglomerates on the 1.05% SIAC surface. After the reaction, elemental mapping with EDX showed the formation of silver iodide agglomerates. Oxidation of metallic silver was observed in the presence of oxygen, and the carbon surface appears to catalyze this reaction. When the molar ratio of silver to iodide was greater than 1 (i.e., M(Ag,SIAC) > M(I,TOTAL)), precipitation of silver iodide was the dominant removal mechanism. However, unreacted silver leached into solution with decreasing pH while iodide leaching did not occur. When M(Ag,SIAC) silver iodide precipitation occurred until all available silver had reacted, and additional iodide was removed from solution by pH-dependent adsorption to the GAC. Under this condition, silver leaching did not occur while iodide leaching increased with increasing pH.

  3. Conceptual design of the BRIKEN detector: A hybrid neutron-gamma detection system for nuclear physics at the RIB facility of RIKEN

    CERN Document Server

    Tarifeño-Saldivia, A; Domingo-Pardo, C; Calviño, F; Cortes, G; Phong, V H; Riego, A

    2016-01-01

    BRIKEN is a complex detection system to be installed at the RIB-facility of the RIKEN Nishina Center. It is aimed at the detection of heavy-ion implants, $\\beta$-particles, $\\gamma$-rays and $\\beta$-delayed neutrons. The whole detection setup involves the Advanced Implantation Detection Array (AIDA), two HPGe Clover detectors and a large set of 166 counters of 3He embedded in a high-density polyethylene matrix. This article reports on a novel methodology developed for the conceptual design and optimisation of the 3He-tubes array, aiming at the best possible performance in terms of neutron detection. The algorithm is based on a geometric representation of two selected parameters of merit, namely, average neutron detection efficiency and efficiency flatness, as a function of a reduced number of geometric variables. The response of the detection system itself, for each configuration, is obtained from a systematic MC-simulation implemented realistically in Geant4. This approach has been found to be particularly u...

  4. Field-deployable gamma-radiation detectors for DHS use

    Science.gov (United States)

    Mukhopadhyay, Sanjoy

    2007-09-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS' requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER TM, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack TM that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field1. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and

  5. Field Deployable Gamma Radiation Detectors for DHS Use

    Energy Technology Data Exchange (ETDEWEB)

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  6. Electrochemistry of silver iodide the capacity of the double layer at the silver iodide-water interface

    NARCIS (Netherlands)

    Lyklema, J.; Overbeek, J.Th.G.

    1961-01-01

    A method is described for obtaining differential double layer capacities on silver iodide. Especially the influence of the nature and concentration of indifferent electrolytes was investigated, viz., the nitrates of Li·, K·, Rb·, NH4·, H·, Tl·, Mg··, Ba··, Co··, Cd··, Pb··, La···, Th····, the fluori

  7. Measurement of the nuclear modification factor for high-$p_\\mathrm{T}$ charged hadrons in pPb collisions with the ATLAS detector

    CERN Document Server

    Balek, Petr; The ATLAS collaboration

    2016-01-01

    The charged hadron spectra in p+Pb and pp collisions at $\\sqrt{s}=5.02$TeV are measured with the ATLAS experiment at the LHC. The measurements are performed with p+Pb data recorded in 2013 with an integrated luminosity of 25nb${}^{-1}$ and pp data recorded in 2015 with an integrated luminosity of 25pb${}^{-1}$. The p+Pb results are directly compared to pp spectra, as a ratio scaled by the number of binary nucleon-nucleon collisions, the nuclear modification factor $R\\mathrm{pPb}$. It allows for a detailed comparison of the collision systems in different centrality intervals and up to high transverse momentum.

  8. Measurements on a prototype segmented Clover detector

    CERN Document Server

    Shepherd, S L; Cullen, D M; Appelbe, D E; Simpson, J; Gerl, J; Kaspar, M; Kleinböhl, A; Peter, I; Rejmund, M; Schaffner, H; Schlegel, C; France, G D

    1999-01-01

    The performance of a segmented Clover germanium detector has been measured. The segmented Clover detector is a composite germanium detector, consisting of four individual germanium crystals in the configuration of a four-leaf Clover, housed in a single cryostat. Each crystal is electrically segmented on its outer surface into four quadrants, with separate energy read-outs from nine crystal zones. Signals are also taken from the inner contact of each crystal. This effectively produces a detector with 16 active elements. One of the purposes of this segmentation is to improve the overall spectral resolution when detecting gamma radiation emitted following a nuclear reaction, by minimising Doppler broadening caused by the opening angle subtended by each detector element. Results of the tests with sources and in beam will be presented. The improved granularity of the detector also leads to an improved isolated hit probability compared with an unsegmented Clover detector. (author)

  9. Time-resolved photoelectron imaging of the iodide-thymine and iodide-uracil binary cluster systems.

    Science.gov (United States)

    King, Sarah B; Yandell, Margaret A; Neumark, Daniel M

    2013-01-01

    The energetics and dynamics of thymine and uracil transient negative ions were examined using femtosecond time-resolved photoelectron imaging. The vertical detachment energies (VDEs) of these systems were found to be 4.05 eV and 4.11 eV for iodide-thymine (I(-) x T) and iodide-uracil (I(-) x U) clusters, respectively. An ultraviolet pump pulse was used to promote intracluster charge transfer from iodide to the nucleobase. Subsequent electron detachment using an infrared probe pulse monitored the dynamics of the resulting transient negative ion. Photoelectron spectra reveal two primary features: a near-zero electron kinetic energy signal attributed to autodetachment and a transient feature representing photodetachment from the excited anion state. The transient state exhibits biexponential decay in both thymine and uracil complexes with short and long decay time constants ranging from 150-600 fs and 1-50 ps, respectively, depending on the excitation energy. However, both time constants are systematically shorter for I(-) x T. Vibrational autodetachment and iodine loss are identified as the primary decay mechanisms of the transient negative ions of thymine and uracil.

  10. Calorimeter detectors

    CERN Document Server

    de Barbaro, P; The ATLAS collaboration

    2013-01-01

    Although the instantaneous and integrated luminosity in HL-LHC will be far higher than the LHC detectors were originally designed for, the Barrel calorimeters of the four experiments are expected to continue to perform well  throughout the Phase II program. The conditions for the End-Cap calorimeters are far more challenging and whilst some detectors will require relatively modest changes, others require far more substantial upgrades. We present the results of longevity and performance studies for the calorimeter systems of the four main LHC experiments and outline the upgrade options under consideration. We include a discussion of the R&D required to make the final technology choices for the upgraded detectors.

  11. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  12. FEASIBILITY STUDY FOR POTASSIUM IODIDE (KI) DISTRIBUTION IN NEW YORK CITY.

    Energy Technology Data Exchange (ETDEWEB)

    MOSS, STEVEN

    2005-04-29

    The New York City Department of Health and Mental Hygiene (DOHMH), Bureau of Environmental Science and Engineering, Office of Radiological Health (ORH) [as the primary local technical consultant in the event of a radiological or nuclear incident within the boundaries of New York City] requested the assistance of Brookhaven National Laboratory (BNL) with the development of a Feasibility Study for Potassium Iodide (KI) distribution in the unlikely event of a significant release of radioactive iodine in or near New York City. Brookhaven National Laboratory had previously provided support for New York City with the development of the radiological/nuclear portions of its All Hazards Emergency Response Plans. The work is funded by Medical and Health Research Association (MHRA) of New York City, Inc., under a work grant by the Federal Centers for Disease Control (CDC) for Public Health Preparedness and Response for Bioterrorism. This report is part of the result of that effort. The conclusions of this report are that: (1) There is no credible radiological scenario that would prompt the need for large segments of the general population of New York City to take KI as a result of a projected plume exposure to radioiodine reaching even the lowest threshold of 5 rem to the thyroid; and (2) KI should be stockpiled in amounts and locations sufficient for use by first responders/emergency responders in response to any localized release of radioiodine.

  13. Highly spin-polarized deuterium atoms from the UV dissociation of Deuterium Iodide

    CERN Document Server

    Sofikitis, D; Koumarianou, G; Jiang, H; Bougas, L; Samartzis, P C; Andreev, A; Rakitzis, T P

    2016-01-01

    Hyperpolarisation of deuterium (D) and tritium (T) nuclear spins increases the D-T fusion reaction rate by ~50%, thus lowering the breakeven limit for the achievement of self-sustained fusion, and controls the emission direction of the reaction products for improved reactor efficiency. However, the important D-D polarization-dependent fusion reaction has not yet been measured, due to the low density of conventional polarized deuterium beams of ~10$^{12}$ cm$^{-3}$, limited by collisions on the ms-timescale of production. Here we demonstrate that hyperpolarised D atoms are produced by the 270 nm photodissociation of deuterium iodide (DI), yielding ~60% nuclear D polarization after ~1.6 ns, ~10$^6$ times faster than conventional methods, allowing collision-limited densities of ~10$^{18}$ cm$^{-3}$. Such ultrahigh densities of polarized D atoms open the way for the study of high-signal polarized D-D reactions. We discuss the possibility of the production of high-density pulsed polarized beams, and of polarized D...

  14. Charge induction in semiconductor detectors with pixellated structure

    NARCIS (Netherlands)

    Samedov, Victor V.

    2007-01-01

    Considerable interest is now being attracted to the next generation of compound semiconductor detectors with pixellated structure in application to x-ray and gamma-astronomy, nuclear spectroscopy and nuclear medicine. The spatial resolution of this type of detectors is mainly determined by the proce

  15. Iron- Catalyzed 1,2-Addition of Perfluoroalkyl Iodides to Alkynes and Alkenes

    OpenAIRE

    Xu, Tao; Cheung, Chi Wai; Hu, Xile

    2014-01-01

    Iron catalysis has been developed for the intermolecular 1,2-addition of perfluoroalkyl iodides to alkynes and alkenes. The catalysis has a wide substrate scope and high functional-group tolerance. A variety of perfluoroalkyl iodides including CF3I can be employed. The resulting perfluoroalkylated alkyl and alkenyl iodides can be further functionalized by cross-coupling reactions. This methodology provides a straightforward and streamlined access to perfluoroalkylated organic molecules.

  16. XMASS detector

    CERN Document Server

    Abe, K; Hiraide, K; Hirano, S; Kishimoto, Y; Kobayashi, K; Moriyama, S; Nakagawa, K; Nakahata, M; Nishiie, H; Ogawa, H; Oka, N; Sekiya, H; Shinozaki, A; Suzuki, Y; Takeda, A; Takachio, O; Ueshima, K; Umemoto, D; Yamashita, M; Yang, B S; Tasaka, S; Liu, J; Martens, K; Hosokawa, K; Miuchi, K; Murata, A; Onishi, Y; Otsuka, Y; Takeuchi, Y; Kim, Y H; Lee, K B; Lee, M K; Lee, J S; Fukuda, Y; Itow, Y; Nishitani, Y; Masuda, K; Takiya, H; Uchida, H; Kim, N Y; Kim, Y D; Kusaba, F; Motoki, D; Nishijima, K; Fujii, K; Murayama, I; Nakamura, S

    2013-01-01

    The XMASS project aims to detect dark matter, pp and $^{7}$Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  17. XMASS detector

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hieda, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Hiraide, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hirano, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kishimoto, Y.; Kobayashi, K.; Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nakagawa, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Ogawa, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); and others

    2013-07-11

    The XMASS project aims to detect dark matter, pp and {sup 7}Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  18. Expression of sodium-iodide symporter in thyroid gland tumors: immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Bondarenko O.O.

    2009-01-01

    Full Text Available One of the key moments of radioiodine therapy, and also radioisotope diagnostics of cancers of a thyroid gland is ability of their cells to accumulate iodide. This ability is provided with activity of the specific transporter – sodium-iodide symporter. Our research has shown disorders of sodium-iodide symporter immunoexpression in all tumors of thyroid gland: from overexpression and absence of plasma membrane expression in differentiated carcinomas, up to weak or actually absent in low differentiated cancers and Hurtle-cells tumors. Thus, there is a prospect of application of the sodium-iodide symporter, as the prognostic marker of thyroid cancers.

  19. Measurement of nuclear modification factor $R_{\\rm{AA}}$ in Pb+Pb collisions at $\\sqrt{s_{_{\\rm{NN}}}}=5.02TeV$ with the ATLAS detector at the LHC

    CERN Document Server

    Milov, Alexander; The ATLAS collaboration

    2017-01-01

    This poster presents inclusive charged hadron spectra measured in Pb+Pb collisions at $\\sqrt{s_{_{\\rm{NN}}}}=5.02$TeV with the ATLAS detector at the LHC. The measurements are performed with data recorded in 2015 with the integrated luminosity of 0.49nb$^{−1}$. Spectra measured in centrality intervals is compared to the pp data with integrated luminosity of 25pb$^{−1}$ obtained the same year to form the nuclear modification factor, RAA. Its behavior is studied as a function of the systems size and as a function of the hadron transverse momentum, pT, up to 300GeV. The $R_{\\rm{AA}}$ measured at $\\sqrt{s_{_{\\rm{NN}}}}=5.02$TeV in general is found to be consistent with the previous measurement published by the ATLAS experiment. Above 60GeV, $R_{\\rm{AA}}$ is consistent with a plateau at a centrality-dependent value, within the uncertainties.

  20. Amorphous silicon pixel layers with cesium iodide converters for medical radiography

    Energy Technology Data Exchange (ETDEWEB)

    Jing, T.; Cho, G. [Lawrence Berkeley Lab., CA (United States); Goodman, C.A. [Air Techniques, Inc., Hicksville, NY (United States)] [and others

    1993-11-01

    We describe the properties of evaporated layers of Cesium Iodide (Thallium activated) deposited on substrates that enable easy coupling to amorphous silicon pixel arrays. The CsI(Tl) layers range in thickness from 65 to 220{mu}m. We used the two-boat evaporator system to deposit CsI(Tl) layers. This system ensures the formation of the scintillator film with homogenous thallium concentration which is essential for optimizing the scintillation light emission efficiency. The Tl concentration was kept to 0.1--0.2 mole percent for the highest light output. Temperature annealing can affect the microstructure as well as light output of the CsI(Tl) film. 200--300C temperature annealing can increase the light output by a factor of two. The amorphous silicon pixel arrays are p-i-n diodes approximately l{mu}m thick with transparent electrodes to enable them to detect the scintillation light produced by X-rays incident on the CsI(Tl). Digital radiography requires a good spatial resolution. This is accomplished by making the detector pixel size less then 50{mu}m. The light emission from the CsI(Tl) is collimated by techniques involving the deposition process on pattered substrates. We have measured MTF of greater than 12 line pairs per mm at the 10% level.

  1. Fabrication and characterization of rectangular strontium iodide scintillator coupled to TSV-MPPC array

    Science.gov (United States)

    Shimazoe, K.; Koyama, A.; Takahashi, H.; Sakuragi, S.; Yamasaki, Y.

    2017-02-01

    Europium-doped strontium iodide (SrI2(Eu)) is a promising material for the scintillation crystals in a Compton imaging system, which requires an excellent energy resolution, as an alternative to NaI(Tl) crystals. Rectangular SrI2(Eu) crystals with dimensions of 10 × 10 × 10mm3 are fabricated, aiming for coupling with semiconductor-based photodetectors, especially silicon photomultipliers (SiPMs) in array detectors. The fabricated crystals are evaluated by coupling with a through silicon via (TSV)-type multipixel photon counter (MPPC) with dimensions of 12.6 × 12.6mm2 . The saturation response of the SiPMs is corrected by using several photopeaks of isotopes with a fitting function. The measured energy resolution is approximately 4.4% at 662 keV compared with an energy resolution of 3.4% with a PMT, and the crystals exhibit the best energy resolution with a shaping time of 6 μs . All of the five prepared samples exhibit very stable performance and are promising for our future Compton imaging system for environmental radiation monitoring.

  2. Cesium Iodide Crystal Calorimeter of the Proton Computed Tomography (pCT) Imager

    Science.gov (United States)

    Missaghian, Jessica; Sadrozinski, Hartmut; Colby, Brian; Rykalin, Victor; Hurley, Ford

    2009-11-01

    Researchers at SCIPP, LLMU and NIU have collaborated to make a functioning proton imager. Proton Computed Tomography (pCT) is designated to be applied in proton therapy of human cancer systems. It will image head-sized phantom objects and provide excellent space and energy resolution using a silicon microstrip tracker and crystal calorimetry. The residual energy could be measured with precision of a few percent using a Cesium Iodide crystal calorimeter. A single element of the CsI(TI) calorimeter was tested in order to understand the behavior of the future calorimeter system. We present test results on a CsI(TI) calorimeter element with proton beams of 35, 100 and 200MeV. The detector element was designed to comply with the demands of high energy resolution of a few percent and a dynamic range of two orders of magnitude (1-300MeV) under a counting rate of 10 kHz per channel. We also report on cosmic measurement results of each crystal of the future calorimeter matrix. A detailed description of the calorimeter data acquisition system will be given.

  3. Radioactive Iodine and Protection in the Nuclear Emergency

    Directory of Open Access Journals (Sweden)

    Sermin Cam

    2008-10-01

    Full Text Available Iodine (I is a nonmetallic solid element. There are radioactive and non-radioactive isotopes of iodine. The most important radioactive isotopes of its are I-129 and I-131. Radioactive Iodine (I-131 is a by-product of nuclear fission which occurs only within a nuclear reactor or during detonation of a nuclear bomb. If I-131 is present in high levels in the environment from radioactive fallout, it is absorbed by the body and may cause damage to the thyroid. Potassium Iodide (KI is used by health officials worldwide to prevent thyroid cancer in people who are exposed to radioactive iodides caused by nuclear reactor accidents and nuclear bombs. [TAF Prev Med Bull 2008; 7(5.000: 449-454

  4. Electrolytic coloration of hydroxyl-doped potassium iodide polycrystals

    Science.gov (United States)

    Wang, Na; Gu, Hongen; Han, Li; Guo, Meili; Qin, Fang

    2007-03-01

    Hydroxyl-doped potassium iodide polycrystals were successfully colored electrolytically by using a pointed cathode and a flat anode at various temperatures and electric field strengths, which mainly benefits appropriate coloration temperatures and electric field strengths. Characteristic OH-, O2--Va+ , U, V2, V3, Cu+, Cu-related, I2- , I2, K, F, R1 and R2 spectral bands were observed in Kubelka-Munk functions of the colored polycrystals, and the OH- and O2--Va+ spectral bands at room temperature were determined from Mollwo-Ivey plots. Color center formation in the electrolytic coloration was explained.

  5. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sun, Keye; Gupta, Mool C., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Saidi, Wissam A. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Scudiero, Louis, E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  6. Electronic properties and Compton profiles of silver iodide

    Indian Academy of Sciences (India)

    Alpa Dashora; Ambica Marwal; K R Soni; B L Ahuja

    2010-06-01

    We have carried out an extensive study of electronic properties of silver iodide in - and -phases. The theoretical Compton profiles, energy bands, density of states and anisotropies in momentum densities are computed using density functional theories. We have also employed full-potential linearized augmented plane-wave method to derive the energy bands and the density of states. To compare our theoretical data, isotropic Compton profile measurement on -AgI using 137Cs Compton spectrometer at an intermediate resolution of 0.38 a.u. has been undertaken. The theoretical anisotropies are also interpreted on the basis of energy bands.

  7. Polarized spectral complexes of optical functions of monovalent mercury iodide

    Science.gov (United States)

    Sobolev, V. V.; Sobolev, V. Val.; Anisimov, D. V.

    2015-12-01

    Spectral complexes of optical functions of monovalent mercury iodide Hg2I2 were determined for E ⊥ c and E || c polarizations in the range from 2 to 5.5 eV at 4.2 K. The permittivity and characteristic electron energy loss spectra were expanded in simple components with the determination of their main parameters, including the energy of the maximum and the oscillator strength. The calculations were performed based on known reflectance spectra. Computer programs based on Kramers-Kronig relations and the improved parameter-free method of Argand diagrams were used.

  8. Semiconductor Detectors; Detectores de Semiconductores

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, E.

    2007-07-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  9. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  10. Nuclear electronic instrumentation; Instrumentacion electronica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F. J., E-mail: francisco.ramirez@inin.gob.m [ININ, Departamento de Sistemas Electronicos, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    The activities carried out in the Instituto Nacional de Investigaciones Nucleares (ININ) in the field of the nuclear electronic instrumentation included those activities corresponding to the design and production of nuclear instruments in a first stage, as well as the internal activities of design, repair and maintenance that have supported to other projects of the institution during many years. It is mentioned of the presence and constant collaboration of the ININ with the IAEA in different projects and programs. Also, it is mentioned on the establishment of the Radiation Detectors Laboratory, which for their characteristics and repair capacities of radiation detectors of cooled semiconductor, it is only in their specialty. It is emphasized the investigation and the development in the field of new radiation detectors and applications, as well as the important contribution in this field, in institutions like: Mexican Petroleum, National Commission of Nuclear Safety and Safeguards and Federal Commission of Electricity. Finally a position of the future of these activities is made, considering the speed of the advances of the electronic and nuclear technology. (Author)

  11. Redesigned β γ radioxenon detector

    Science.gov (United States)

    Cooper, Matthew W.; McIntyre, Justin I.; Bowyer, Ted W.; Carman, April J.; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; Lidey, Lance; Litke, Kevin E.; Morris, Scott J.; Ripplinger, Michael D.; Suarez, Reynold; Thompson, Robert

    2007-08-01

    The Automated Radio-xenon Sampler/Analyzer (ARSA), designed by Pacific Northwest National Laboratory (PNNL) collects and detects several radioxenon isotopes, and is used to monitor underground nuclear explosions. The ARSA is very sensitive to 133Xe, 131mXe, 133mXe, and 135Xe (SCM) [M. Auera et al., Wernspergera, Appl. Radiat. 6 (2004) 60] through use of its compact high efficiency β-γ coincidence detector. For this reason, it is an excellent treaty monitoring system and it can be used as an environmental sampling device as well. Field testing of the ARSA has shown it to be both robust and reliable, but the nuclear detector requires a detailed photomultiplier tube (PMT) gain matching regime difficult to implement in a field environment. Complexity is a problem from a maintenance and quality assurance/quality control (QA/QC) standpoint, and efforts to reduce these issues have led to development of a simplified β-γ coincident detector. The new design reduces the number of PMT's and the complexity of the calibration needed in comparison to the old design. New scintillation materials (NaI(Tl), CsI(Na), and CsI(Tl)) were investigated and a comparison of three different gamma sensitive well detectors has been completed. A new plastic-scintillator gas cell was constructed and a new method of forming the scintillator gas cell was developed. The simplified detector system compares favorably with the original ARSA design in spectral resolution and efficiency and is significantly easier to set up and calibrate. The new materials and configuration allow the resulting β-γ coincidence detector to maintain the overall performance of the ARSA type β-γ detector while simplifying the design.

  12. Status of development of gamma-ray detector response function code or GAMDRF.

    Science.gov (United States)

    Li, Fusheng; Han, Xiaogang

    2012-07-01

    The need for an accurate representation of the detector response functions (DRFs) for sodium iodide (NaI), bismuth germinate (BGO), etc., arises in the oilwell logging business, especially important for spectral logging tools such as a geochemical logging tool. While Monte Carlo models predict the photon spectra incidents on these detectors, the DRFs are used to generate the pulse-height spectra. A Monte Carlo-based γ-ray detector response function code (GAMDRF) was developed to meet the requirements based on complete photon physics.

  13. Persistent Energetic Electrons in Methylammonium Lead Iodide Perovskite Thin Films.

    Science.gov (United States)

    Niesner, Daniel; Zhu, Haiming; Miyata, Kiyoshi; Joshi, Prakriti P; Evans, Tyler J S; Kudisch, Bryan J; Trinh, M Tuan; Marks, Manuel; Zhu, X-Y

    2016-12-07

    In conventional semiconductor solar cells, carriers are extracted at the band edges and the excess electronic energy (E*) is lost as heat. If E* is harvested, power conversion efficiency can be as high as twice the Shockley-Queisser limit. To date, materials suitable for hot carrier solar cells have not been found due to efficient electron/optical-phonon scattering in most semiconductors, but our recent experiments revealed long-lived hot carriers in single-crystal hybrid lead bromide perovskites. Here we turn to polycrystalline methylammonium lead iodide perovskite, which has emerged as the material for highly efficient solar cells. We observe energetic electrons with excess energy ⟨E*⟩ ≈ 0.25 eV above the conduction band minimum and with lifetime as long as ∼100 ps, which is 2-3 orders of magnitude longer than those in conventional semiconductors. The energetic carriers also give rise to hot fluorescence emission with pseudo-electronic temperatures as high as 1900 K. These findings point to a suppression of hot carrier scattering with optical phonons in methylammonium lead iodide perovskite. We address mechanistic origins of this suppression and, in particular, the correlation of this suppression with dynamic disorder. We discuss potential harvesting of energetic carriers for solar energy conversion.

  14. Octahedral Rotation Preferences in Perovskite Iodides and Bromides.

    Science.gov (United States)

    Young, Joshua; Rondinelli, James M

    2016-03-03

    Phase transitions in ABX3 perovskites are often accompanied by rigid rotations of the corner-connected BX6 octahedral network. Although the mechanisms for the preferred rotation patterns of perovskite oxides are fairly well recognized, the same cannot be said of halide variants (i.e., X = Cl, Br, or I), several of which undergo an unusual displacive transition to a tetragonal phase exhibiting in-phase rotations about one axis (a(0)a(0)c(+) in Glazer notation). To discern the chemical factors stabilizing this unique phase, we investigated a series of 12 perovskite bromides and iodides using density functional theory calculations and compared them with similar oxides. We find that in-phase tilting provides a better arrangement of the larger bromide and iodide anions, which minimizes the electrostatic interactions, improves the bond valence of the A-site cations, and enhances the covalency between the A-site metal and Br(-) or I(-) ions. The opposite effect is present in the oxides, with out-of-phase tilting maximizing these factors.

  15. Ionic transport in hybrid lead iodide perovskite solar cells

    Science.gov (United States)

    Eames, Christopher; Frost, Jarvist M.; Barnes, Piers R. F.; O'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful

    2015-01-01

    Solar cells based on organic–inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current–voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3NH3PbI3) are derived from first principles, and are compared with kinetic data extracted from the current–voltage response of a perovskite-based solar cell. We identify the microscopic transport mechanisms, and find facile vacancy-assisted migration of iodide ions with an activation energy of 0.6 eV, in good agreement with the kinetic measurements. The results of this combined computational and experimental study suggest that hybrid halide perovskites are mixed ionic–electronic conductors, a finding that has major implications for solar cell device architectures. PMID:26105623

  16. Numerical modelling of methyl iodide in the eastern tropical Atlantic

    Directory of Open Access Journals (Sweden)

    I. Stemmler

    2013-06-01

    Full Text Available Methyl iodide (CH3I is a volatile organic halogen compound that contributes significantly to the transport of iodine from the ocean to the atmosphere, where it plays an important role in tropospheric chemistry. CH3I is naturally produced and occurs in the global ocean. The processes involved in the formation of CH3I, however, are not fully understood. In fact, there is an ongoing debate whether production by phytoplankton or photochemical degradation of organic matter is the main source term. Here, both the biological and photochemical production mechanisms are considered in a biogeochemical module that is coupled to a one-dimensional water column model for the eastern tropical Atlantic. The model is able to reproduce observed subsurface maxima of CH3I concentrations. But, the dominating source process cannot be clearly identified as subsurface maxima can occur due to both direct biological and photochemical production. However, good agreement between the observed and simulated difference between surface and subsurface methyl iodide concentrations is achieved only when direct biological production is taken into account. Production rates for the biological CH3I source that were derived from published laboratory studies are shown to be inappropriate for explaining CH3I concentrations in the eastern tropical Atlantic.

  17. Nuclear-induced XeBr/asterisk/ photolytic laser model

    Science.gov (United States)

    Wilson, J. W.

    1980-01-01

    Parameters for a photolytically pumped alkyl iodide lasant gas by the nuclear-induced XeBr excimer fluorescence are calculated according to a detailed kinetic model. High gain on the atomic iodine 2P1/2 state is estimated and 100-mJ pulses with an average power output on the order of 1 kW appear possible.

  18. CuI-catalyzed Synthesis of Aryl Thiocyanates from Aryl Iodides

    Institute of Scientific and Technical Information of China (English)

    Ye Feng WANG; Yuan ZHOU; Jia Rui WANG; Lei LIU; Qing Xiang GUO

    2006-01-01

    An operationally simple and inexpensive catalyst system was developed for the cross coupling of potassium thiocyanate with aryl iodides by using CuI as catalyst, 1, 10-phenanthroline as ligand, and tetraethylammonium iodide as activator. The procedure is applicable for the synthesis of diverse aryl thiocyanates without any exotic, poisonous reagents.

  19. Effects of radiation and temperature on iodide sorption by surfactant-modified bentonite.

    Science.gov (United States)

    Choung, Sungwook; Kim, Minkyung; Yang, Jung-Seok; Kim, Min-Gyu; Um, Wooyong

    2014-08-19

    Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were also evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of the SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation ((60)Co) resulted in significantly (∼2-10 times) lower iodide Kd values for the SMB. The results of FTIR, NMR, and XANES spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.

  20. Thyroid hormones and iodide in the near-term pregnant rat.

    NARCIS (Netherlands)

    Versloot, P.M.

    1998-01-01

    Thyroid hormones, thyroxine (T4) and 3,5,3'-triiodothyronine (T3), are produced by the thyroid gland. To synthesize thyroid hormones the thyroid needs iodide. The uptake of iodide as well as the production and secretion of T4 and T3 by the thyroid gland is regulated by thyrotropin (TSH), which is pr

  1. Thyroid hormones and iodide in the near-term pregnant rat

    NARCIS (Netherlands)

    Versloot, P.

    1998-01-01

    Thyroid hormones, thyroxine (T4) and 3,5,3'-triiodothyronine (T3), are produced by the thyroid gland. To synthesize thyroid hormones the thyroid needs iodide. The uptake of iodide as well as the production and secretion of T4 and T3 by the thyroid gland is regulated by thyrotropin (TSH),

  2. Structural templating in a nonplanar phthalocyanine using single crystal copper iodide

    OpenAIRE

    Rochford, L. A. (Luke A.); Ramadan, Alexandra J.; Keeble, Dean S.; Ryan, Mary P.; Heutz, Sandrine; Jones, T S

    2015-01-01

    Solution-grown copper iodide crystals are used as substrates for the templated growth of the nonplanar vanadyl phthalocyanine using organic molecular beam deposition. Structural characterization reveals a single molecular orientation produced by the (111) Miller plane of the copper iodide crystals. These fundamental measurements show the importance of morphology and structure in templating interactions for organic electronics applications.

  3. Tungstosilicic Acid: An Efficient and Ecofriendly Catalyst for the Conversion of Alcohols to Alkyl Iodides

    Directory of Open Access Journals (Sweden)

    Masoud Mokhtary

    2011-01-01

    Full Text Available Treatment of a range of benzylic, allylic, and secondary aliphatic alcohols with potassium iodides in the presence of H4SiW12O40 affords the corresponding alkyl iodides in good to excellent yield with straightforward purification at room temperature in CH3CN.

  4. Oxygen-hydrogen fuel cell with an iodine-iodide cathode - A concept

    Science.gov (United States)

    Javet, P.

    1970-01-01

    Fuel cell uses a porous cathode through which is fed a solution of iodine in aqueous iodide solution, the anode is a hydrogen electrode. No activation polarization appears on the cathode because of the high exchange-current density of the iodine-iodide electrode.

  5. Nuclear material detection techniques

    Science.gov (United States)

    Christian, James F.; Sia, Radia; Dokhale, Purushottam; Shestakova, Irina; Nagarkar, Vivek; Shah, Kanai; Johnson, Erik B.; Stapels, Christopher J.; Ryan, James M.; Macri, John; Bravar, Ulisse; Leung, Ka-Ngo; Squillante, Michael R.

    2008-04-01

    Illicit nuclear materials represent a threat for the safety of the American citizens, and the detection and interdiction of a nuclear weapon is a national problem that has not been yet solved. Alleviating this threat represents an enormous challenge to current detection methods that have to be substantially improved to identify and discriminate threatening from benign incidents. Rugged, low-power and less-expensive radiation detectors and imagers are needed for large-scale wireless deployment. Detecting the gamma rays emitted by nuclear and fissionable materials, particularly special nuclear materials (SNM), is the most convenient way to identify and locate them. While there are detectors that have the necessary sensitivity, none are suitable to meet the present need, primarily because of the high occurrence of false alarms. The exploitation of neutron signatures represents a promising solution to detecting illicit nuclear materials. This work presents the development of several detector configurations such as a mobile active interrogation system based on a compact RF-Plasma neutron generator developed at LBNL and a fast neutron telescope that uses plastic scintillating-fibers developed at the University of New Hampshire. A human-portable improved Solid-State Neutron Detector (SSND) intended to replace pressurized 3He-tubes will be also presented. The SSND uses an ultra-compact CMOS-SSPM (Solid-State Photomultiplier) detector, developed at Radiation Monitoring devices Inc., coupled to a neutron sensitive scintillator. The detector is very fast and can provide time and spectroscopy information over a wide energy range including fast neutrons.

  6. Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide.

    Science.gov (United States)

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Shrestha, Niraj; Ghimire, Kiran; Grice, Corey R; Wang, Changlei; Xiao, Yuqing; Cimaroli, Alexander J; Ellingson, Randy J; Podraza, Nikolas J; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa

    2016-09-28

    Mixed tin (Sn)-lead (Pb) perovskites with high Sn content exhibit low bandgaps suitable for fabricating the bottom cell of perovskite-based tandem solar cells. In this work, we report on the fabrication of efficient mixed Sn-Pb perovskite solar cells using precursors combining formamidinium tin iodide (FASnI3) and methylammonium lead iodide (MAPbI3). The best-performing cell fabricated using a (FASnI3)0.6(MAPbI3)0.4 absorber with an absorption edge of ∼1.2 eV achieved a power conversion efficiency (PCE) of 15.08 (15.00)% with an open-circuit voltage of 0.795 (0.799) V, a short-circuit current density of 26.86(26.82) mA/cm(2), and a fill factor of 70.6(70.0)% when measured under forward (reverse) voltage scan. The average PCE of 50 cells we have fabricated is 14.39 ± 0.33%, indicating good reproducibility.

  7. Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Shrestha, Niraj; Ghimire, Kiran; Grice, Corey R.; Wang, Changlei; Xiao, Yuqing; Cimaroli, Alexander J.; Ellingson, Randy J.; Podraza, Nikolas J.; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa

    2016-09-28

    Mixed tin (Sn)-lead (Pb) perovskites with high Sn content exhibit low bandgaps suitable for fabricating the bottom cell of perovskite-based tandem solar cells. In this work, we report on the fabrication of efficient mixed Sn-Pb perovskite solar cells using precursors combining formamidinium tin iodide (FASnI3) and methylammonium lead iodide (MAPbI3). The best-performing cell fabricated using a (FASnI3)0.6(MAPbI3)0.4 absorber with an absorption edge of ~1.2 eV achieved a power conversion efficiency (PCE) of 15.08 (15.00)% with an open-circuit voltage of 0.795 (0.799) V, a short-circuit current density of 26.86(26.82) mA/cm2, and a fill factor of 70.6(70.0)% when measured under forward (reverse) voltage scan. The average PCE of 50 cells we have fabricated is 14.39 +/- 0.33%, indicating good reproducibility.

  8. Synthesis, growth, structural, thermal, optical properties of new metal-organic crystals: Methyltriphenylphosphonium iodide thiourea and methyltriphenylphosphonium iodide chloroform hemisolvate

    Science.gov (United States)

    Shivachev, Boris L.; Kossev, Krassimir; Dimowa, Louiza T.; Yankov, Georgi; Petrov, Todor; Nikolova, Rositsa P.; Petrova, Nadia

    2013-08-01

    Crystals of methyltriphenylphosphonium iodide thiourea (1) and methyltriphenylphosphonium iodide chloroform hemisolvate (2) were obtained for the first time. Fourier transform infrared (FTIR) spectral studies have been performed to identify the functional groups. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study their thermal properties. The optical transmittance window and the lower cutoff wavelength have been identified by UV-vis studies. Crystals of the title compounds suitable for single crystal X-ray analyses were successfully grown by slow evaporation and diffraction data were collected to elucidate the molecular structure and interactions. The proton donors (phosphonium) and proton acceptor (iodine) in the structure of 1 provide infrastructure to introduce charge asymmetry while in 2 chloroform molecule is not involved in the charge transfer. An optical quality crystal of 1 (5×4×2 mm3) was obtained by macroseeding. The crystal has developed facets with major ones (001) and (00¯1). A crystal of 1 was tested with 1060 nm laser radiation and showed second harmonic generation (SHG).

  9. The Determination of Iodide Based on a Flow-injection Coupling Irreversible Biamperometry

    Institute of Scientific and Technical Information of China (English)

    Li Jun LI; Hao CHENG; Wen Yi HUANG; Hong Xing KONG; Jian Ling WU; Jian Ping LU; Wei GAO; Jun Feng SONG

    2005-01-01

    A novel flow-injection irreversible biamperometric method is described for the direct determination of iodide. The method is based on electrochemical oxidation of iodide at the gold electrode and the reduction of permanganate at the platinum electrode to form an irreversible biamperometric detection system. Under the applied potential difference of 0 V, in the 0.05mol/L sulfuric acid, iodide can be determined over the range 4.00×10-7-l.00×l0-5 mol/L with a sampling frequency of 120 samples per hour. The detection limit for Ⅰ- is 3.0× 10-7 mol/L and the RSD for 40 replicate determinations of 4.0×10-5 mol/L potassium iodide is 1.68%. The new method was applied to the analysis of iodide in table salt with satisfactory results.

  10. Determination of Trace Iodide in Sodium Bisulfite Aqueous Solution by Ion Chromatography with UV Detection

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.S.; Kim, D.Y.; Choi, K.S.; Park, S.D.; Han, S.H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    2000-06-01

    The iodide was recovered from a simulated spent fuel to the sodium bisulfite aqueous solution. It was discussed that the trace iodide (below 1 ppm) was determined without the matrix effect of 0.1 M sodium bisulfite and 1 mM HNO{sub 3} in aqueous solution by ion chromatography with UV detection. AS4A-SC(DIONEX) column and UV-absorption spectrophotometer were used. The UV-absorption spectra of sodium bisulfite nitric acid and iodide were obtained, and then 230 nm was selected as an absorption wavelength for iodide determination. 0.1 M NaCl eluent was optimum condition. In this condition the calibration curve of iodide was obtained on the range of about 0-1,000 ppb. The linear coefficient was 0.99993 and the detection limit was 5 ppb. The relative standard deviation was 1.26%. (author). 17 refs., 3 tabs., 4 figs.

  11. Development, prototyping and characterization of double sided silicon strip detectors

    Science.gov (United States)

    Topkar, Anita; Singh, Arvind; Aggarwal, Bharti; Kumar, Amit; Kumar, Arvind; Murali Krishna, L. V.; Das, D.

    2016-10-01

    Double sided DC-coupled silicon strip detectors with geometry of 65 mm×65 mm have been developed in India for nuclear physics experiments. The detectors have 64 P+ strips on the front side and 64 N+ strips on the backside with a pitch of 0.9 mm. These detectors were fabricated using a twelve mask layer process involving double sided wafer processing technology. Semiconductor process and device simulations were carried out in order to theoretically estimate the impact of important design and process parameters on the breakdown voltage of detectors. The performance of the first lot of prototype detectors has been studied using static characterization tests and using an alpha source. The characterization results demonstrate that the detectors have low leakage currents and good uniformity over the detector area of about 40 cm2. Overview of the detector design, fabrication process, simulation results and initial characterization results of the detectors are presented in this paper.

  12. Semiconductor detectors with proximity signal readout

    Energy Technology Data Exchange (ETDEWEB)

    Asztalos, Stephen J. [XIA, LLC, Hayward, CA (United States)

    2014-01-30

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need.

  13. Calibration of a 7.6 cm x 7.6 cm (3 inch x 3 inch) Sodium Iodide Gamma Ray Spectrometer for Air Kerma Rate

    Energy Technology Data Exchange (ETDEWEB)

    Grasty, R.L.; Walters, B.R.B.; Hovgaard, J.; LaMarre, J.R

    2001-07-01

    An experimental procedure is described for converting a gamma ray spectral measurement from a 7.6 cm x 7.6 cm (3 inch x 3 inch) sodium iodide (NaI) detector to air kerma rate. The calibration procedure involves measuring the energy deposited in the detector using 10 radioactive sources of known activity covering an energy range from 60 keV to 1836 keV. For each of the 10 sources, gamma ray spectra were measured with the source at different angles to the detector axis. The total energy deposited in the detector for the ten sources was confirmed by Monte Carlo calculations. The spectra measured at different angles were combined to produce a spectrum that would represent a homogeneous semi-infinite source of radiation. The resultant spectrum was then subdivided into 10 energy regions. Based on the known air kerma rates due to the sources, a calibration coefficient was calculated for each of the 10 energy regions. These calibration coefficients could then be used to convert the energy deposited in the 10 regions of an unknown spectrum to air kerma rate. The calibration procedure was confirmed by comparing the results from the detector with those from calibrated collimated beams of {sup 137}Cs and {sup 60}Co. A comparison of measurements using a calibrated pressurised ionisation chamber with those from a similar NaI spectrometer in Finland provided additional confirmation of the calibration procedure. (author)

  14. A neutron detector for (p,np) coincidence studies

    CERN Document Server

    Carman, D S; Chant, N S; Eads, A; Gu, T; Huber, G M; Huffman, J; Klyachko, A; Markham, B C; Roos, P G; Schwandt, P; Solberg, K

    1999-01-01

    A neutron detector with moderate energy resolution (approx 3 MeV) has been built for neutrons in the energy range 75-175 MeV. The detector was designed for coincidence scattering experiments. The design eliminates the need for long neutron flight paths necessary for comparable energy resolution time-of-flight measurements with a comparable efficiency-solid angle product (0.02 msr). The detector consists of thin plastic scintillators in which the neutron undergoes n-p elastic scattering. The second-scattered protons are tracked by drift chambers and detected in a sodium iodide array. The design motivations and features are presented along with results from detailed in-beam experimental tests.

  15. Horizontal Ampoule Growth and Characterization of Mercuric Iodide at Controlled Gas Pressures for X-Ray and Gamma Ray Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas S. [Kansas State Univ., Manhattan, KS (United States). Semiconductor Materials and Radiological Technologies Lab., Dept. of Nuclear and Mechanical Engineering; Ariesanti, Elsa [Kansas State Univ., Manhattan, KS (United States). Semiconductor Materials and Radiological Technologies Lab., Dept. of Nuclear and Mechanical Engineering; Corcoran, Bridget [Kansas State Univ., Manhattan, KS (United States). Semiconductor Materials and Radiological Technologies Lab., Dept. of Nuclear and Mechanical Engineering

    2004-04-30

    The project developed a new method for producing high quality mercuric iodide crystals of x-ray and gamma spectrometers. Included are characterization of mercuric iodide crystal properties as a function of growth environment and fabrication and demonstration of room-temperature-operated high-resolution mercuric iodide spectrometers.

  16. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Science.gov (