WorldWideScience

Sample records for involving vacuolar sugar

  1. Appropriate vacuolar acidification in Saccharomyces cerevisiae is associated with efficient high sugar fermentation.

    Nguyen, Trung D; Walker, Michelle E; Gardner, Jennifer M; Jiranek, Vladimir

    2018-04-01

    Vacuolar acidification serves as a homeostatic mechanism to regulate intracellular pH, ion and chemical balance, as well as trafficking and recycling of proteins and nutrients, critical for normal cellular function. This study reports on the importance of vacuole acidification during wine-like fermentation. Ninety-three mutants (homozygous deletions in lab yeast strain, BY4743), which result in protracted fermentation when grown in a chemically defined grape juice with 200 g L -1 sugar (pH 3.5), were examined to determine whether fermentation protraction was in part due to a dysfunction in vacuolar acidification (VA) during the early stages of fermentation, and whether VA was responsive to the initial sugar concentration in the medium. Cells after 24 h growth were dual-labelled with propidium iodide and vacuolar specific probe 6-carboxyfluorescein diacetate (6-CFDA) and examined with a FACS analyser for viability and impaired VA, respectively. Twenty mutants showed a greater than two-fold increase in fluorescence intensity; the experimental indicator for vacuolar dysfunction; 10 of which have not been previously annotated to this process. With the exception of Δhog1, Δpbs2 and Δvph1 mutants, where dysfunction was directly related to osmolality; the remainder exhibited increased CF-fluorescence, independent of sugar concentration at 20 g L -1 or 200 g L -1 . These findings offer insight to the importance of VA to cell growth in high sugar media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cloning, localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus (pineapple).

    Antony, Edna; Taybi, Tahar; Courbot, Mikaël; Mugford, Sam T; Smith, J Andrew C; Borland, Anne M

    2008-01-01

    In photosynthetic tissues of the CAM plant pineapple (Ananas comosus), storage of soluble sugars in the central vacuole during the daytime and their remobilization at night is required to provide carbon skeletons for nocturnal CO(2) fixation. However, soluble sugars produced photosynthetically must also be exported to support growth processes in heterotrophic tissues. To begin to address how vacuolar sugar storage and assimilate partitioning are regulated in A. comosus, degenerate PCR and cDNA library screening were used to clone three candidate sugar transporters from the leaves of this species. Subcellular localization of the three transporters was investigated via expression of YFP-fusion proteins in tobacco epidermal cells and their co-localization with subcellular markers by confocal microscopy. Using this strategy, a putative hexose transporter (AcMST1) and a putative inositol transporter (AcINT1) were identified that both localized to the tonoplast, whereas a putative sucrose transporter (AcSUT1) was found to localize to prevacuolar compartments. A cDNA (AcMST2) with high similarity to a recently characterized tonoplast hexose transporter in Arabidopsis was also identified from an A. comosus fruit EST database. Analyses of transcript abundance indicated that AcMST1 was more highly expressed in fruits compared to leaves of A. comosus, whilst transcripts of AcINT1, AcSUT1, and AcMST2 were more abundant in leaves. Transcript abundance of AcINT1, the putative inositol transporter, showed day-night changes comparable to those of other CAM-related transcripts described in Mesembryanthemum crystallinum. The results are discussed in terms of the role of vacuolar sugar transporters in regulating carbon flow during the diel cycle in CAM plants.

  3. Vacuolar iron transporter BnMEB2 is involved in enhancing iron tolerance of Brassica napus

    Wei Zhu

    2016-09-01

    Full Text Available Iron toxicity is a major nutrient disorder that severely affects crop development and yield. Vacuolar detoxification of metal stress is an important strategy for plants to survive and adapt to this adverse environment. Vacuolar iron transporter (VIT members are involved in this process and play essential roles in iron storage and transport. In this study, a rapeseed VIT gene BnMEB2 (BnaC07g30170D was identified. BnMEB2 is a homolog to Arabidopsis MEB2 (At5g24290 and acts as a detoxifier in vacuolar sequestration of divalent metal. Transient expression analysis revealed that BnMEB2 was localized to the vacuolar membrane. Q-PCR detection showed a high expression of BnMEB2 in mature (60-day-old leaves and could be obviously induced by exogenous iron stress in both roots and leaves. Over-expressed BnMEB2 in both Arabidopsis wild type and meb2 mutant seedlings resulted in greatly improved iron tolerability with no significant changes in the expression level of other vacuolar iron transporter genes. The mutant meb2 grew slowly and its root hair elongation was inhibited under high iron concentration condition while BnMEB2 over-expressed transgenic plants of the mutant restored the phenotypes with apparently higher iron storage in roots and dramatically increased iron content in the whole plant. Taken together, these results suggested that BnMEB2 was a VIT gene in rapeseed which was necessary for safe storage and vacuole detoxification function of excess iron to enhance the tolerance of iron toxicity. This research sheds light on a potentially new strategy for attenuating hazardous metal stress from environment and improving iron biofortification in Brassicaceae crops.

  4. Vacuolar invertase gene silencing in potato (Solanum tuberosum L. improves processing quality by decreasing the frequency of sugar-end defects.

    Xiaobiao Zhu

    Full Text Available Sugar-end defect is a tuber quality disorder and persistent problem for the French fry processing industry that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one end of the tuber. Reducing sugars produced by invertase form dark-colored Maillard reaction products during frying. Acrylamide is another Maillard reaction product formed from reducing sugars and acrylamide consumption has raised health concerns worldwide. Vacuolar invertase gene (VInv expression was suppressed in cultivars Russet Burbank and Ranger Russet using RNA interference to determine if this approach could control sugar-end defect formation. Acid invertase activity and reducing sugar content decreased at both ends of tubers. Sugar-end defects and acrylamide in fried potato strips were strongly reduced in multiple transgenic potato lines. Thus vacuolar invertase silencing can minimize a long-standing French fry quality problem while providing consumers with attractive products that reduce health concerns related to dietary acrylamide.

  5. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Paola Fabrizio

    2010-07-01

    Full Text Available The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  6. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation.

    Fabrizio, Paola; Hoon, Shawn; Shamalnasab, Mehrnaz; Galbani, Abdulaye; Wei, Min; Giaever, Guri; Nislow, Corey; Longo, Valter D

    2010-07-15

    The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

  7. The grapevine VvCAX3 is a cation/H+ exchanger involved in vacuolar Ca2+ homeostasis.

    Martins, Viviana; Carneiro, Filipa; Conde, Carlos; Sottomayor, Mariana; Gerós, Hernâni

    2017-12-01

    The grapevine VvCAX3 mediates calcium transport in the vacuole and is mostly expressed in green grape berries and upregulated by Ca 2+ , Na + and methyl jasmonate. Calcium is an essential plant nutrient with important regulatory and structural roles in the berries of grapevine (Vitis vinifera L.). On the other hand, the proton-cation exchanger CAX proteins have been shown to impact Ca 2+ homeostasis with important consequences for fruit integrity and resistance to biotic/abiotic stress. Here, the CAX gene found in transcriptomic databases as having one of the highest expressions in grapevine tissues, VvCAX3, was cloned and functionally characterized. Heterologous expression in yeast showed that a truncated version of VvCAX3 lacking its NNR autoinhibitory domain (sCAX3) restored the ability of the yeast strain to grow in 100-200 mM Ca 2+ , demonstrating a role in Ca 2+ transport. The truncated VvCAX3 was further shown to be involved in the transport of Na + , Li + , Mn 2+ and Cu 2+ in yeast cells. Subcellular localization studies using fluorescently tagged proteins confirmed VvCAX3 as a tonoplast transporter. VvCAX3 is expressed in grapevine stems, leaves, roots, and berries, especially at pea size, decreasing gradually throughout development, in parallel with the pattern of calcium accumulation in the fruit. The transcript abundance of VvCAX3 was shown to be regulated by methyl jasmonate (MeJA), Ca 2+ , and Na + in grape cell suspensions, and the VvCAX3 promotor contains several predicted cis-acting elements related to developmental and stress response processes. As a whole, the results obtained add new insights on the mechanisms involved in calcium homeostasis and intracellular compartmentation in grapevine, and indicate that VvCAX3 may be an interesting target towards the development of strategies for enhancement of grape berry properties.

  8. The vacuolar V1/V0-ATPase is involved in the release of the HOPS subunit Vps41 from vacuoles, vacuole fragmentation and fusion

    Takeda, Kozue; Cabrera, Margarita; Rohde, Jan

    2008-01-01

    At yeast vacuoles, phosphorylation of the HOPS subunit Vps41 depends on the Yck3 kinase. In a screen for mutants that mimic the yck3Delta phenotype, in which Vps41 accumulates in vacuolar dots, we observed that mutants in the V0-part of the V0/V1-ATPase, in particular in vma16Delta, also accumulate...

  9. Photolabeling of tonoplast from sugar beet cell suspensions by [3H]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar Na+/H+ antiport

    Barkla, B.J.; Charuk, J.H.M.; Blumwald, E.; Cragoe, E.J. Jr.

    1990-01-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na + /H + antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na + /H + exchange in a competitive manner with a K i of 2.5 and 5.9 micromolar for ΔpH-dependent 22 Na + influx in tonoplast vesicles and Na + -dependent H + efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [ 3 H]MIA to tonoplast membranes revealed a high affinity binding component with a K d of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na + /H + antiport. Photolabeling of the tonoplast with [ 3 H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog

  10. Photolabeling of tonoplast from sugar beet cell suspensions by [h]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar na/h antiport.

    Barkla, B J; Charuk, J H; Cragoe, E J; Blumwald, E

    1990-07-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na(+)/H(+) antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na(+)/H(+) exchange in a competitive manner with a K(i) of 2.5 and 5.9 micromolar for DeltapH-dependent (22)Na(+) influx in tonoplast vesicles and Na(+)-dependent H(+) efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [(3)H]MIA to tonoplast membranes revealed a high affinity binding component with a K(d) of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na(+)/H(+) antiport. Photolabeling of the tonoplast with [(3)H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog.

  11. Photolabeling of Tonoplast from Sugar Beet Cell Suspensions by [3H]5-(N-Methyl-N-Isobutyl)-Amiloride, an Inhibitor of the Vacuolar Na+/H+ Antiport 1

    Barkla, Bronwyn J.; Charuk, Jeffrey H. M.; Cragoe, Edward J.; Blumwald, Eduardo

    1990-01-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na+/H+ antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na+/H+ exchange in a competitive manner with a Ki of 2.5 and 5.9 micromolar for ΔpH-dependent 22Na+ influx in tonoplast vesicles and Na+-dependent H+ efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [3H]MIA to tonoplast membranes revealed a high affinity binding component with a Kd of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na+/H+ antiport. Photolabeling of the tonoplast with [3H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog. Images Figure 7 PMID:16667602

  12. The plant vacuolar Na+/H+ antiport.

    Barkla, B J; Apse, M P; Manolson, M F; Blumwald, E

    1994-01-01

    Salt stress imposes severe limitations on plant growth, however, the extent of growth reduction depends upon the soil salinity level and the plant species. One of the mechanisms employed by salt tolerant plants is the effective vacuolar compartmentalization of sodium. The sequestration of sodium into the vacuole occurs by the operation of a Na+/H+ antiport located at the tonoplast. Evidence for a plant vacuolar Na+/H+ antiport has been demonstrated in tissues, intact vacuoles and isolated tonoplast vesicles. In sugar beet cell suspensions, the activity of the vacuolar Na+/H+ antiport increased with increasing NaCl concentrations in the growth medium. This increased activity was correlated with the increased synthesis of a 170 kDa tonoplast polypeptide. In vivo labelling of tonoplast proteins showed the enhanced synthesis of the 170 kDa polypeptide not only upon exposure of the cells to salt, but also when the cells were grown in the presence of amiloride. Exposure of the cells to amiloride also resulted in increased vacuolar Na+/H+ antiport activity. Polyclonal antibodies raised against the 170 kDa polypeptide almost completely inhibited the antiport activity, suggesting the association of this protein with the plant vacuolar Na+/H+ antiport. Antibodies against the Na+/H+ antiport-associated polypeptide were used to screen a Beta lambda ZAP expression library. A partial clone of 1.65 kb was sequenced and found to encode a polypeptide with a putative transmembrane domain and a large hydrophilic C terminus. This clone showed no homology to any previously cloned gene at either the nucleic acid or the amino acid level.

  13. Transcription Factor AREB2 Is Involved in Soluble Sugar Accumulation by Activating Sugar Transporter and Amylase Genes.

    Ma, Qi-Jun; Sun, Mei-Hong; Lu, Jing; Liu, Ya-Jing; Hu, Da-Gang; Hao, Yu-Jin

    2017-08-01

    Sugars play important roles in plant growth and development, crop yield and quality, as well as responses to abiotic stresses. Abscisic acid (ABA) is a multifunctional hormone. However, the exact mechanism by which ABA regulates sugar accumulation is largely unknown in plants. Here, we tested the expression profile of several sugar transporter and amylase genes in response to ABA treatment. MdSUT2 and MdAREB2 were isolated and genetically transformed into apple ( Malus domestica ) to investigate their roles in ABA-induced sugar accumulation. The MdAREB2 transcription factor was found to bind to the promoters of the sugar transporter and amylase genes and activate their expression. Both MdAREB2 and MdSUT2 transgenic plants produced more soluble sugars than controls. Furthermore, MdAREB2 promoted the accumulation of sucrose and soluble sugars in an MdSUT2 -dependent manner. Our results demonstrate that the ABA-responsive transcription factor MdAREB2 directly activates the expression of amylase and sugar transporter genes to promote soluble sugar accumulation, suggesting a mechanism by which ABA regulates sugar accumulation in plants. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Vacuolar-proton-ATPase is involved in the response of cancer cells to ionizing radiation and is a new target for radiosensitization

    Hollister, T.C.; Paglin, S.; McMahill, M.S.; Gilles, F.; Yahalom, J.

    2001-01-01

    Purpose: We have recently described a novel response of human cancer cells to radiation consisting of accumulation of acidic vesicular organelles (AVO) (Cancer Research, 61:439-444, 2001). Acidification of AVO was inhibited by bafilomycin A1 - a specific inhibitor of vacuolar-proton-ATPase. To examine the role of AVO function in the cellular response to radiation, we determined the effect of specific inhibitors of v-H+-ATPase (bafilomycin and concanamycin) on the clonogenic survival of various cancer cell lines. In addition, Northern analysis of mRNA encoding v-H+-ATPase was performed to elucidate possible mechanisms of post-radiation v-H+-ATPase regulation. Materials and Methods: Total RNA was isolated from human cancer cell lines including MCF-7 (breast), LoVo (colon), and LNCaP (prostate) cells 48 hours post-irradiation, and Northern analyses were performed. RNA was separated on a denaturing formaldehyde gel and blotted to a nylon membrane. Probes made from cDNAs to v-H+-ATPase were radioactively labeled, hybridized to the membranes, and exposed to X-ray film for determination of mRNA expression levels. Clonogenic survival assays were performed with MCF-7 and LoVo cell lines. Cells were plated at 30 cells/cm 2 , and irradiated 24 hours post-plating. Bafilomycin or concanamycin were added to culture media in various concentrations at the time of irradiation. The media was changed after a 24-hour incubation, and colonies were stained with crystal violet for counting 7 days post-irradiation. Results: Radiation-induced accumulation of acidic vesicular organelles in MCF-7, LoVo and LNCaP cells was associated with a two-fold increase in the steady-state level of mRNA for subunit c of v-H+-ATPase. Bafilomycin and concanamycin increased clonogenic cell death after irradiation in a dose-dependent manner. At low concentrations (bafilomycin 2nM, concanamycin 2pM) these agents acted as radiosensitizers, without significant toxicity to unirradiated cells. At 2nM, bafilomycin

  15. Miopatia vacuolar do lupus eritematoso

    José Antonio Levy

    1962-06-01

    Full Text Available Após considerações rápidas sôbre as miosites, particularmente sôbre a miopatia vacuolar do lúpus eritematoso, é relatado o caso de uma paciente no qual êsse diagnóstico pôde ser confirmado pelo exame histopatológico.

  16. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  17. Vacuolar processing enzyme in plant programmed cell death

    Noriyuki eHatsugai

    2015-04-01

    Full Text Available Vacuolar processing enzyme (VPE is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an orthologue of animal asparaginyl endopeptidase (AEP/VPE/legumain. VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1.

  18. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement

    Vellers, Heather L.; Letsinger, Ayland C.; Walker, Nicholas R.; Granados, Jorge Z.; Lightfoot, J. Timothy

    2017-01-01

    Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s) may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels. Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD) or high fat/high sugar (HFHS) diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males) and 17β-estradiol (females) to determine if sex hormone augmentation altered diet-induced changes in activity. Results: 117 mice (56♂, 61♀) were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p running-wheel distance in male (p = 0.05, 70 ± 28%) and female mice (p = 0.02, 57 ± 26%). In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat. Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones. PMID:28890701

  19. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement

    Heather L. Vellers

    2017-08-01

    Full Text Available Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels.Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD or high fat/high sugar (HFHS diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males and 17β-estradiol (females to determine if sex hormone augmentation altered diet-induced changes in activity.Results: 117 mice (56♂, 61♀ were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p < 0.0001; female: p < 0.0001 and had significantly higher body fat (male: p < 0.0001; female: p < 0.0001. The HFHS diet did not reduce sex hormone levels, but did significantly reduce acute running-wheel distance in male (p = 0.05, 70 ± 28% and female mice (p = 0.02, 57 ± 26%. In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat.Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones.

  20. Vacuolar Chloride Fluxes Impact Ion Content and Distribution during Early Salinity Stress1

    Baetz, Ulrike; Tohge, Takayuki; Martinoia, Enrico; De Angeli, Alexis

    2016-01-01

    The ability to control the cytoplasmic environment is a prerequisite for plants to cope with changing environmental conditions. During salt stress, for instance, Na+ and Cl− are sequestered into the vacuole to help maintain cytosolic ion homeostasis and avoid cellular damage. It has been observed that vacuolar ion uptake is tied to fluxes across the plasma membrane. The coordination of both transport processes and relative contribution to plant adaptation, however, is still poorly understood. To investigate the link between vacuolar anion uptake and whole-plant ion distribution during salinity, we used mutants of the only vacuolar Cl− channel described to date: the Arabidopsis (Arabidopsis thaliana) ALMT9. After 24-h NaCl treatment, almt9 knock-out mutants had reduced shoot accumulation of both Cl− and Na+. In contrast, almt9 plants complemented with a mutant variant of ALMT9 that exhibits enhanced channel activity showed higher Cl− and Na+ accumulation. The altered shoot ion contents were not based on differences in transpiration, pointing to a vacuolar function in regulating xylem loading during salinity. In line with this finding, GUS staining demonstrated that ALMT9 is highly expressed in the vasculature of shoots and roots. RNA-seq analysis of almt9 mutants under salinity revealed specific expression profiles of transporters involved in long-distance ion translocation. Taken together, our study uncovers that the capacity of vacuolar Cl− loading in vascular cells plays a crucial role in controlling whole-plant ion movement rapidly after onset of salinity. PMID:27503602

  1. Evidence for the involvement of Ala 166 in coupling Na(+) to sugar transport through the human Na(+)/glucose cotransporter

    Meinild, A K; Loo, D D; Hirayama, B A

    2001-01-01

    . The affinity for Na(+) was unchanged compared to that of hSGLT1, whereas the sugar affinity was reduced and sugar specificity was altered. There was a reduction in the turnover rate of the transporter, and in contrast to that of hSGLT1, the turnover rate depended on the sugar molecule. Exposure of A166C......We mutated residue 166, located in the putative Na(+) transport pathway between transmembrane segments 4 and 5 of human Na(+)/glucose cotransporter (hSGLT1), from alanine to cysteine (A166C). A166C was expressed in Xenopus laevis oocytes, and electrophysiological methods were used to assay function...... to MTSEA and MTSET, but not MTSES, abolished sugar transport. Accessibility of A166C to alkylating reagents was independent of protein conformation, indicating that the residue is always accessible from the extracellular surface. Sugar and phlorizin did not protect the residue from being alkylated...

  2. Rapid Nuclear Exclusion of Hcm1 in Aging Saccharomyces cerevisiae Leads to Vacuolar Alkalization and Replicative Senescence

    Ata Ghavidel

    2018-05-01

    Full Text Available The yeast, Saccharomyces cerevisiae, like other higher eukaryotes, undergo a finite number of cell divisions before exiting the cell cycle due to the effects of aging. Here, we show that yeast aging begins with the nuclear exclusion of Hcm1 in young cells, resulting in loss of acidic vacuoles. Autophagy is required for healthy aging in yeast, with proteins targeted for turnover by autophagy directed to the vacuole. Consistent with this, vacuolar acidity is necessary for vacuolar function and yeast longevity. Using yeast genetics and immunofluorescence microscopy, we confirm that vacuolar acidity plays a critical role in cell health and lifespan, and is potentially maintained by a series of Forkhead Box (Fox transcription factors. An interconnected transcriptional network involving the Fox proteins (Fkh1, Fkh2 and Hcm1 are required for transcription of v-ATPase subunits and vacuolar acidity. As cells age, Hcm1 is rapidly excluded from the nucleus in young cells, blocking the expression of Hcm1 targets (Fkh1 and Fkh2, leading to loss of v-ATPase gene expression, reduced vacuolar acidification, increased α-syn-GFP vacuolar accumulation, and finally, diminished replicative lifespan (RLS. Loss of vacuolar acidity occurs about the same time as Hcm1 nuclear exclusion and is conserved; we have recently demonstrated that lysosomal alkalization similarly contributes to aging in C. elegans following a transition from progeny producing to post-reproductive life. Our data points to a molecular mechanism regulating vacuolar acidity that signals the end of RLS when acidification is lost.

  3. Identification of candidate genes involved in the sugar metabolism and accumulation during pear fruit post-harvest ripening of 'Red Clapp's Favorite' (Pyrus communis L.) by transcriptome analysis.

    Wang, Long; Chen, Yun; Wang, Suke; Xue, Huabai; Su, Yanli; Yang, Jian; Li, Xiugen

    2018-01-01

    Pear ( Pyrus spp.) is a popular fruit that is commercially cultivated in most temperate regions. In fruits, sugar metabolism and accumulation are important factors for fruit organoleptic quality. Post-harvest ripening is a special feature of 'Red Clapp's Favorite'. In this study, transcriptome sequencing based on the Illumina platform generated 23.8 - 35.8 million unigenes of nine cDNA libraries constructed using RNAs from the 'Red Clapp's Favorite' pear variety with different treatments, in which 2629 new genes were discovered, and 2121 of them were annotated. A total of 2146 DEGs, 3650 DEGs, 1830 DEGs from each comparison were assembled. Moreover, the gene expression patterns of 8 unigenes related to sugar metabolism revealed by qPCR. The main constituents of soluble sugars were fructose and glucose after pear fruit post-harvest ripening, and five unigenes involved in sugar metabolism were discovered. Our study not only provides a large-scale assessment of transcriptome resources of 'Red Clapp's Favorite' but also lays the foundation for further research into genes correlated with sugar metabolism.

  4. Characterization of hexose transporters in Yarrowia lipolytica reveals new groups of Sugar Porters involved in yeast growth.

    Lazar, Zbigniew; Neuvéglise, Cécile; Rossignol, Tristan; Devillers, Hugo; Morin, Nicolas; Robak, Małgorzata; Nicaud, Jean-Marc; Crutz-Le Coq, Anne-Marie

    2017-03-01

    Sugar assimilation has been intensively studied in the model yeast S. cerevisiae, and for two decades, it has been clear that the homologous HXT genes, which encode a set of hexose transporters, play a central role in this process. However, in the yeast Yarrowia lipolytica, which is well-known for its biotechnological applications, sugar assimilation is only poorly understood, even though this yeast exhibits peculiar intra-strain differences in fructose uptake: some strains (e.g., W29) are known to be slow-growing in fructose while others (e.g., H222) grow rapidly under the same conditions. Here, we retrieved 24 proteins of the Sugar Porter family from these two strains, and determined that at least six of these proteins can function as hexose transporters in the heterologous host Saccharomyces cerevisiae EBY.VW4000. Transcriptional studies and deletion analysis in Y. lipolytica indicated that two genes, YHT1 and YHT4, are probably the main players in both strains, with a similar role in the uptake of glucose, fructose, and mannose at various concentrations. The other four genes appear to constitute a set of 'reservoir' hexose transporters with an as-yet unclear physiological role. Furthermore, through examining Sugar Porters of the entire Yarrowia clade, we show that they constitute a dynamic family, within which hexose transport genes have been duplicated and lost several times. Our phylogenetic analyses support the existence of at least three distinct evolutionary groups of transporters which allow yeasts to grow on hexoses. In addition to the well-known and widespread Hxt-type transporters (which are not essential in Y. lipolytica), we highlight a second group of transporters, represented by Yht1, which are phylogenetically related to sensors that play a regulatory role in S. cerevisiae, and a third group, represented by Yht4, previously thought to contain only high-affinity glucose transporters related to Hgt1of Kluyveromyces lactis. Copyright © 2017

  5. Recent studies of the effects of sugars on brain systems involved in energy balance and reward: Relevance to low calorie sweeteners.

    Murray, Susan; Tulloch, Alastair; Criscitelli, Kristen; Avena, Nicole M

    2016-10-01

    The alarmingly high rates of overweight and obesity pose a serious global health threat. Numerous factors can result in weight gain, one of which is excess consumption of caloric sweeteners. In an effort to aid weight loss efforts, many people have switched from caloric sweeteners to low calorie sweeteners, which provide sweet taste without the accompanying calories. In this review, we present an overview of the animal literature produced in the last 5years highlighting the effects of sugar consumption on neural pathways involved in energy balance regulation and reward processing. We also examine the latest evidence that is beginning to elucidate the effects of low calorie sweeteners on these neural pathways, as well as how homeostatic and hedonic systems interact in response to, or to influence, sugar consumption. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon).

    Slugina, M A; Shchennikova, A V; Kochieva, E Z

    2017-10-01

    Understanding the genetic mechanisms underlying carbohydrate metabolism can promote the development of biotechnological advances in fruit plants. The flesh tomato fruit represents an ideal system for examining the role of sucrose cleavage enzymes in fruit development, and wild tomato species differing in storage sugars serve as an excellent research material for this purpose. Plant vacuolar invertase is a key enzyme of sucrose metabolism in the sink organs. In the present study, we identified complete gene sequences encoding the TAI vacuolar invertase in 11 wild and one cultivated tomato accessions of the Solanum section Lycopersicon. The average level of interspecific polymorphism in TAI genes was 8.58%; however, in the green-fruited tomatoes, the TAI genes contained 100 times more SNPs than those in the red-fruited accessions. The TAI proteins demonstrated 8% variability, whereas the red-fruited species had none. A TAI-based phylogenetic tree revealed two main clusters containing self-compatible and self-incompatible species, which concurs with the previous crossability-based division and demonstrates that the TAI genes reflect the evolutionary relationships between the red- and green-fruited tomatoes. Furthermore, we detected differential expression patterns of the TAI genes in the fruits of wild and cultivated tomatoes, which corresponded to sugar composition. The polymorphism analysis of the TAI acid invertases of Solanum section Lycopersicon species will contribute to the understanding of the genetic potential of TAI genes to impact tomato breeding through genetic engineering of the carbohydrate composition in the fruit.

  7. The Amborella vacuolar processing enzyme family

    Valérie ePoncet

    2015-08-01

    Full Text Available Most vacuolar proteins are synthesized on rough endoplasmic reticulum as proprotein precursors and then transported to the vacuoles, where they are converted into their respective mature forms by vacuolar processing enzymes (VPEs. In the case of the seed storage proteins, this process is of major importance, as it conditions the establishment of vigorous seedlings. Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type of seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013. In the present study, proteomic and genomic approaches were used to characterize the VPE family in this species. Three genes were found to encode VPEs in the Amborella’s genome. Phylogenetic analyses showed that the Amborella sequences grouped within two major clades of angiosperm VPEs, indicating that the duplication that generated the ancestors of these clades occurred before the most recent common ancestor of living angiosperms. A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella. An analysis of natural genetic variation for each of the three Amborella VPE genes revealed the absence of selective forces acting on intronic and exonic single-nucleotide polymorphisms among several natural Amborella populations of in New Caledonia.

  8. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier.

    Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A; Traub, Michaela; Martinoia, Enrico; Neuhaus, H Ekkehard

    2003-09-16

    Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in the past to identify the vacuolar malate transporter; here, we describe the identification of the vacuolar malate transporter [A. thaliana tonoplast dicarboxylate transporter (AttDT)]. This transporter exhibits highest sequence similarity to the human sodium/dicarboxylate cotransporter. Independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] Arabidopsis mutants exhibit substantially reduced levels of leaf malate, but respire exogenously applied [14C]malate faster than the WT. An AttDT-GFP fusion protein was localized to vacuole. Vacuoles isolated from Arabidopsis WT leaves exhibited carbonylcyanide m-chlorophenylhydrazone and citrate inhibitable malate transport, which was not stimulated by sodium. Vacuoles isolated from mutant plants import [14C]-malate at strongly reduced rates, confirming that this protein is the vacuolar malate transporter.

  9. A case story, involving the use of maltitol, a sugar alcohol, as a cutting agent in amphetamine and cocaine powders

    Reitzel, Lotte Ask; Holm, Niels Bjerre; Linnet, Kristian

    2016-01-01

    . The work described covers the part of the case involving the department of forensic chemistry, and not the whole police investigation, but everything was done within the frames given by the police. To the best of our knowledge, this is the first report of a disaccharide polyol being used as a cutting agent...

  10. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly*

    Stransky, Laura A.; Forgac, Michael

    2015-01-01

    The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump composed of a peripheral ATPase domain (V1) and a membrane-integral proton-translocating domain (V0) and is involved in many normal and disease processes. An important mechanism of regulating V-ATPase activity is reversible assembly of the V1 and V0 domains. Increased assembly in mammalian cells occurs under various conditions and has been shown to involve PI3K. The V-ATPase is necessary for amino acid-induced activation of mechanistic target of rapamycin complex 1 (mTORC1), which is important in controlling cell growth in response to nutrient availability and growth signals. The V-ATPase undergoes amino acid-dependent interactions with the Ragulator complex, which is involved in recruitment of mTORC1 to the lysosomal membrane during amino acid sensing. We hypothesized that changes in the V-ATPase/Ragulator interaction might involve amino acid-dependent changes in V-ATPase assembly. To test this, we measured V-ATPase assembly by cell fractionation in HEK293T cells treated with and without amino acids. V-ATPase assembly increases upon amino acid starvation, and this effect is reversed upon readdition of amino acids. Lysosomes from amino acid-starved cells possess greater V-ATPase-dependent proton transport, indicating that assembled pumps are catalytically active. Amino acid-dependent changes in both V-ATPase assembly and activity are independent of PI3K and mTORC1 activity, indicating the involvement of signaling pathways distinct from those implicated previously in controlling assembly. By contrast, lysosomal neutralization blocks the amino acid-dependent change in assembly and reactivation of mTORC1 after amino acid starvation. These results identify an important new stimulus for controlling V-ATPase assembly. PMID:26378229

  11. Characterization of Gene Candidates for Vacuolar Sodium Transport from Hordeum Vulgare

    Scheu, Arne Hagen August

    2017-05-01

    Soil salinity is a major abiotic stress for land plants, and multiple mechanisms of salt tolerance have evolved. Tissue tolerance is one of these mechanisms, which involves the sequestration of sodium into the vacuole to retain low cytosolic sodium concentrations. This enables the plant to maintain cellular functions, and ultimately maintain growth and yield. However, the molecular components involved in tissue tolerance remain elusive. Several candidate genes for vacuolar sodium sequestration have recently been identified by proteome analysis of vacuolar membranes purified from the salt-tolerant cereal Hordeum vulgare (barley). In this study, I aimed to characterize these candidates in more detail. I successfully cloned coding sequences for the majority of candidate genes with primers designed based on the barley reference genome sequence. During the course of this study a newer genome sequence with improved annotations was published, to which I also compared my observations. To study the candidate genes, I used the heterologous expression system Saccharomyces cerevisiae (yeast). I used several salt sensitive yeast strains (deficient in intrinsic sodium transporters) to test whether the candidate genes would affect their salt tolerance by mediating the sequestration of sodium into the yeast vacuole. I observed a reduction in growth upon expression for several of the gene candidate under salt-stress conditions. However, confocal microscopy suggests that most gene products are subject to degradation, and did not localize to the vacuolar membrane (tonoplast). Therefore, growth effects cannot be linked to protein function without further evidence. Various potential causes are discussed, including inaccuracies in the genome resource used as reference for primer design and issues inherent to the model system. Finally, I make suggestions on how to proceed to further characterize the candidate genes and hopefully identify novel sodium transporters from barley.

  12. Managing your blood sugar

    Hyperglycemia - control; Hypoglycemia - control; Diabetes - blood sugar control; Blood glucose - managing ... sugar ( hypoglycemia ) Recognize and treat high blood sugar ( hyperglycemia ) Plan healthy meals Monitor your blood sugar (glucose) ...

  13. Autoactivation of proteinase A initiates activation of yeast vacuolar zymogens

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.

    1992-01-01

    The Saccharomyces cerevisiae PEP4 gene encodes proteinase A, an aspartyl protease. pep4 mutants are defective in the activation of many vacuolar hydrolases, including proteinase B. We have expressed a pep4 mutation which directs the accumulation of pro-proteinase A with a defective active site. Co...

  14. RNAi-based silencing of genes encoding the vacuolar- ATPase ...

    RNAi-based silencing of genes encoding the vacuolar- ATPase subunits a and c in pink bollworm (Pectinophora gossypiella). Ahmed M. A. Mohammed. Abstract. RNA interference is a post- transcriptional gene regulation mechanism that is predominantly found in eukaryotic organisms. RNAi demonstrated a successful ...

  15. Multiple pathways for vacuolar sorting of yeast proteinase A

    Westphal, V; Marcusson, E G; Winther, Jakob R.

    1996-01-01

    The sorting of the yeast proteases proteinase A and carboxypeptidase Y to the vacuole is a saturable, receptor-mediated process. Information sufficient for vacuolar sorting of the normally secreted protein invertase has in fusion constructs previously been found to reside in the propeptide...

  16. Macropinosomes are Key Players in Early Shigella Invasion and Vacuolar Escape in Epithelial Cells.

    Allon Weiner

    2016-05-01

    Full Text Available Intracellular pathogens include all viruses, many bacteria and parasites capable of invading and surviving within host cells. Key to survival is the subversion of host cell pathways by the pathogen for the purpose of propagation and evading the immune system. The intracellular bacterium Shigella flexneri, the causative agent of bacillary dysentery, invades host cells in a vacuole that is subsequently ruptured to allow growth of the pathogen within the host cytoplasm. S. flexneri invasion has been classically described as a macropinocytosis-like process, however the underlying details and the role of macropinosomes in the intracellular bacterial lifestyle have remained elusive. We applied dynamic imaging and advanced large volume correlative light electron microscopy (CLEM to study the highly transient events of S. flexneri's early invasion into host epithelial cells and elucidate some of its fundamental features. First, we demonstrate a clear distinction between two compartments formed during the first step of invasion: the bacterial containing vacuole and surrounding macropinosomes, often considered identical. Next, we report a functional link between macropinosomes and the process of vacuolar rupture, demonstrating that rupture timing is dependent on the availability of macropinosomes as well as the activity of the small GTPase Rab11 recruited directly to macropinosomes. We go on to reveal that the bacterial containing vacuole and macropinosomes come into direct contact at the onset of vacuolar rupture. Finally, we demonstrate that S. flexneri does not subvert pre-existing host endocytic vesicles during the invasion steps leading to vacuolar rupture, and propose that macropinosomes are the major compartment involved in these events. These results provide the basis for a new model of the early steps of S. flexneri epithelial cell invasion, establishing a different view of the enigmatic process of cytoplasmic access by invasive bacterial

  17. Sweeteners - sugars

    ... of added sugar in soda. However, popular "vitamin-type" waters, sports drinks, coffee drinks, and energy drinks also contain ... include: Drink water instead of regular soda, "vitamin-type" water, sports drinks, coffee drinks, and energy drinks. Eat less ...

  18. Blood sugar test

    ... sugar; Blood sugar level; Fasting blood sugar; Glucose test; Diabetic screening - blood sugar test; Diabetes - blood sugar test ... The test may be done in the following ways: After you have not eaten anything for at least 8 ...

  19. A Dual Microscopy-Based Assay To Assess Listeria monocytogenes Cellular Entry and Vacuolar Escape.

    Quereda, Juan J; Pizarro-Cerdá, Javier; Balestrino, Damien; Bobard, Alexandre; Danckaert, Anne; Aulner, Nathalie; Shorte, Spencer; Enninga, Jost; Cossart, Pascale

    2016-01-01

    Listeria monocytogenes is a Gram-positive bacterium and a facultative intracellular pathogen that invades mammalian cells, disrupts its internalization vacuole, and proliferates in the host cell cytoplasm. Here, we describe a novel image-based microscopy assay that allows discrimination between cellular entry and vacuolar escape, enabling high-content screening to identify factors specifically involved in these two steps. We first generated L. monocytogenes and Listeria innocua strains expressing a β-lactamase covalently attached to the bacterial cell wall. These strains were then incubated with HeLa cells containing the Förster resonance energy transfer (FRET) probe CCF4 in their cytoplasm. The CCF4 probe was cleaved by the bacterial surface β-lactamase only in cells inoculated with L. monocytogenes but not those inoculated with L. innocua, thereby demonstrating bacterial access to the host cytoplasm. Subsequently, we performed differential immunofluorescence staining to distinguish extracellular versus total bacterial populations in samples that were also analyzed by the FRET-based assay. With this two-step analysis, bacterial entry can be distinguished from vacuolar rupture in a single experiment. Our novel approach represents a powerful tool for identifying factors that determine the intracellular niche of L. monocytogenes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis.

    Morel, Mélanie; Crouzet, Jérôme; Gravot, Antoine; Auroy, Pascaline; Leonhardt, Nathalie; Vavasseur, Alain; Richaud, Pierre

    2009-02-01

    The Arabidopsis (Arabidopsis thaliana) Heavy Metal Associated3 (AtHMA3) protein belongs to the P1B-2 subgroup of the P-type ATPase family, which is involved in heavy metal transport. In a previous study, we have shown, using heterologous expression in the yeast Saccharomyces cerevisiae, that in the presence of toxic metals, AtHMA3 was able to phenotypically complement the cadmium/lead (Cd/Pb)-hypersensitive strain ycf1 but not the zinc (Zn)-hypersensitive strain zrc1. In this study, we demonstrate that AtHMA3 in planta is located in the vacuolar membrane, with a high expression level in guard cells, hydathodes, vascular tissues, and the root apex. Confocal imaging in the presence of the Zn/Cd fluorescent probe BTC-5N revealed that AtHMA3 participates in the vacuolar storage of Cd. A T-DNA insertional mutant was found more sensitive to Zn and Cd. Conversely, ectopic overexpression of AtHMA3 improved plant tolerance to Cd, cobalt, Pb, and Zn; Cd accumulation increased by about 2- to 3-fold in plants overexpressing AtHMA3 compared with wild-type plants. Thus, AtHMA3 likely plays a role in the detoxification of biological (Zn) and nonbiological (Cd, cobalt, and Pb) heavy metals by participating in their vacuolar sequestration, an original function for a P1B-2 ATPase in a multicellular eukaryote.

  1. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera.

    De Angeli, Alexis; Baetz, Ulrike; Francisco, Rita; Zhang, Jingbo; Chaves, Maria Manuela; Regalado, Ana

    2013-08-01

    Vitis vinifera L. represents an economically important fruit species. Grape and wine flavour is made from a complex set of compounds. The acidity of berries is a major parameter in determining grape berry quality for wine making and fruit consumption. Despite the importance of malic and tartaric acid (TA) storage and transport for grape berry acidity, no vacuolar transporter for malate or tartrate has been identified so far. Some members of the aluminium-activated malate transporter (ALMT) anion channel family from Arabidopsis thaliana have been shown to be involved in mediating malate fluxes across the tonoplast. Therefore, we hypothesised that a homologue of these channels could have a similar role in V. vinifera grape berries. We identified homologues of the Arabidopsis vacuolar anion channel AtALMT9 through a TBLASTX search on the V. vinifera genome database. We cloned the closest homologue of AtALMT9 from grape berry cDNA and designated it VvALMT9. The expression profile revealed that VvALMT9 is constitutively expressed in berry mesocarp tissue and that its transcription level increases during fruit maturation. Moreover, we found that VvALMT9 is targeted to the vacuolar membrane. Using patch-clamp analysis, we could show that, besides malate, VvALMT9 mediates tartrate currents which are higher than in its Arabidopsis homologue. In summary, in the present study we provide evidence that VvALMT9 is a vacuolar malate channel expressed in grape berries. Interestingly, in V. vinifera, a tartrate-producing plant, the permeability of the channel is apparently adjusted to TA.

  2. Vacuolar structures can be identified by AFM elasticity mapping

    Riethmueller, Christoph; Schaeffer, Tilman E.; Kienberger, Ferry; Stracke, Werner; Oberleithner, Hans

    2007-01-01

    Fluid-filled organelles like vesicles, endosomes and pinosomes are inevitable parts of cellular signalling and transport. Endothelial cells, building a barrier between blood and tissue, can form vacuolar organelles. These structures are implicated in upregulated fluid transport across the endothelium under inflammatory conditions. Vacuolar organelles have been described by transmission electron microscopy so far. Here, we present a method that images and mechanically characterizes intracellular structures in whole cells by atomic force microscopy (AFM). After crosslinking the cellular proteins with the fixative glutaraldehyde, plasma membrane depressions become observable, which are scattered around the cell nucleus. Nanomechanical analysis identifies them as spots of reduced stiffness. Scanning electron microscopy confirms their pit-like appearance. In addition, fluorescence microscopy detects an analogous pattern of protein-poor spots, thereby confirming mechanical rigidity to arise from crosslinked proteins. This AFM application opens up a mechanical dimension for the investigation of intracellular organelles

  3. Vacuolar myelinopathy in waterfowl from a North Carolina impoundment

    Augspurger, T.; Fischer, John R.; Thomas, Nancy; Sileo, L.; Brannian, Roger E.; Miller, Kimberli J.; Rocke, Tonie E.

    2003-01-01

    Vacuolar myelinopathy was confirmed by light and electron microscopic examination of mallards (Anas platyrhynchos), ring-necked ducks (Aythya collaris), and buffleheads (Bucephala albeola) collected during an epizootic at Lake Surf in central North Carolina (USA) between November 1998 and February 1999. Clinical signs of affected birds were consistent with central nervous system impairment of motor function (incoordination, abnormal movement and posture, weakness, paralysis). This is the first report of this disease in wild waterfowl (Anseriformes).Aug

  4. Cytokine expression of macrophages in HIV-1-associated vacuolar myelopathy.

    Tyor, W R; Glass, J D; Baumrind, N; McArthur, J C; Griffin, J W; Becker, P S; Griffin, D E

    1993-05-01

    Macrophages are frequently present within the periaxonal and intramyelinic vacuoles that are located primarily in the posterior and lateral funiculi of the thoracic spinal cord in HIV-associated vacuolar myelopathy. But the role of these macrophages in the formation of the vacuoles is unclear. One hypothesis is that cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF)-alpha, are produced locally by macrophages and have toxic effects on myelin or oligodendrocytes. The resulting myelin damage eventually culminates in the removal of myelin by macrophages and vacuole formation. We studied thoracic spinal cord specimens taken at autopsy from HIV-positive (+) and HIV-negative individuals. The predominant mononuclear cells present in HIV+ spinal cords are macrophages. They are located primarily in the posterior and lateral funiculi regardless of the presence or absence of vacuolar myelopathy. Macrophages and microglia are more frequent in HIV+ than HIV-negative individuals and these cells frequently stain for class I and class II antigens, IL-1, and TNF-alpha. Activated macrophages positive for IL-1 and TNF-alpha are great increased in the posterior and lateral funiculi of HIV+ individuals with and without vacuolar myelopathy, suggesting they are present prior to the development of vacuoles. Cytokines, such as TNF-alpha, may be toxic for myelin or oligodendrocytes, leading to myelin damage and removal by macrophages and vacuole formation.

  5. Apoptosis Gene Hunting Using Retroviral Expression Cloning: Identification of Vacuolar ATPase Subunit E

    Claire L. Anderson

    2003-01-01

    Full Text Available Over the past 10-15 years there has been an explosion of interest in apoptosis. The delayed realisation that cell death is an essential part of life for any multicellular organism has meant that, despite the recent and rapid developments of the last decade, the precise biochemical pathways involved in apoptosis remain incomplete and potentially novel genes may, as yet, remain undiscovered. The hunt is therefore on to bridge the remaining gaps in our knowledge. Our contribution to this research effort utilises a functional cloning approach to isolate important regulatory genes involved in apoptosis. This mini-review focuses on the use and advantages of a retroviral expression cloning strategy and describes the isolation and identification of one such potential apoptosis regulatory gene, namely that encoding vacuolar ATPase subunit E.

  6. Young People\\'s Relationships with Sugar Daddies and Sugar ...

    s relationships with sugar daddies and mummies. It considers definitional, measurement and analytical issues involved in assessing these relationships, their magnitude, patterns, determinants and consequences. The review compares and ...

  7. Vacuolar respiration of nitrate coupled to energy conservation in filamentous Beggiatoaceae.

    Beutler, Martin; Milucka, Jana; Hinck, Susanne; Schreiber, Frank; Brock, Jörg; Mussmann, Marc; Schulz-Vogt, Heide N; de Beer, Dirk

    2012-11-01

    We show that the nitrate storing vacuole of the sulfide-oxidizing bacterium Candidatus Allobeggiatoa halophila has an electron transport chain (ETC), which generates a proton motive force (PMF) used for cellular energy conservation. Immunostaining by antibodies showed that cytochrome c oxidase, an ETC protein and a vacuolar ATPase are present in the vacuolar membrane and cytochrome c in the vacuolar lumen. The effect of different inhibitors on the vacuolar pH was studied by pH imaging. Inhibition of vacuolar ATPases and pyrophosphatases resulted in a pH decrease in the vacuole, showing that the proton gradient over the vacuolar membrane is used for ATP and pyrophosphate generation. Blockage of the ETC decreased the vacuolar PMF, indicating that the proton gradient is build up by an ETC. Furthermore, addition of nitrate resulted in an increase of the vacuolar PMF. Inhibition of nitrate reduction, led to a decreased PMF. Nitric oxide was detected in vacuoles of cells exposed to nitrate showing that nitrite, the product of nitrate reduction, is reduced inside the vacuole. These findings show consistently that nitrate respiration contributes to the high proton concentration within the vacuole and the PMF over the vacuolar membrane is actively used for energy conservation. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Molecular characterization, light-dependent expression, and cellular localization of a host vacuolar-type H+-ATPase (VHA) subunit A in the giant clam, Tridacna squamosa, indicate the involvement of the host VHA in the uptake of inorganic carbon and its supply to the symbiotic zooxanthellae.

    Ip, Yuen K; Hiong, Kum C; Lim, Leon J Y; Choo, Celine Y L; Boo, Mel V; Wong, Wai P; Neo, Mei L; Chew, Shit F

    2018-06-15

    The giant clam, Tridacna squamosa, represents a clam-zooxanthellae association. In light, the host clam and the symbiotic zooxanthellae conduct light-enhanced calcification and photosynthesis, respectively. We had cloned the cDNA coding sequence of a Vacuolar-type Proton ATPase (VHA) subunit A, ATP6V1A, from T. squamosa, whereby the VHA is an electrogenic transporter that actively 'pumps' H + out of the cell. The ATP6V1A of T. squamosa comprised 1866 bp, encoding a protein of 622 amino acids and 69.9 kDa, and had a host-origin. Its gene expression was strong in the ctenidium and the colorful outer mantle, but weak in the whitish inner mantle, corroborating a previous proposition that VHA might have a trivial role in light-enhanced calcification. Light exposure led to significant increases in the gene and protein expression levels of ATP6V1A/ATP6V1A in the ctenidium and the outer mantle. In the ctenidium, the ATP6V1A was localized in the apical epithelia of the filaments and tertiary water channels, indicating that the VHA could participate in the increased excretion of H + produced during light-enhanced calcification. Additionally, the excreted H + would augment HCO 3 - dehydration in the external medium and facilitate the uptake of CO 2 by the ctenidium during insolation. In the outer mantle, the ATP6V1A was detected in intracellular vesicles in a type of cells, presumably iridocytes, surrounding the zooxanthellal tubules, and in the apical epithelium of zooxanthellal tubules. Hence, the host VHA could participate in the transfer of inorganic carbon from the hemolymph to the luminal fluid of the tubules by increasing the supply of H + for the dehydration of HCO 3 - to CO 2 during insolation to benefit the photosynthesizing zooxanthellae. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.

    Shima, Jun; Ando, Akira; Takagi, Hiroshi

    2008-03-01

    Yeasts used in bread making are exposed to air-drying stress during dried yeast production processes. To clarify the genes required for air-drying tolerance, we performed genome-wide screening using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 278 gene deletions responsible for air-drying sensitivity. These genes were classified based on their cellular function and on the localization of their gene products. The results showed that the genes required for air-drying tolerance were frequently involved in mitochondrial functions and in connection with vacuolar H(+)-ATPase, which plays a role in vacuolar acidification. To determine the role of vacuolar acidification in air-drying stress tolerance, we monitored intracellular pH. The results showed that intracellular acidification was induced during air-drying and that this acidification was amplified in a deletion mutant of the VMA2 gene encoding a component of vacuolar H(+)-ATPase, suggesting that vacuolar H(+)-ATPase helps maintain intracellular pH homeostasis, which is affected by air-drying stress. To determine the effects of air-drying stress on mitochondria, we analysed the mitochondrial membrane potential under air-drying stress conditions using MitoTracker. The results showed that mitochondria were extremely sensitive to air-drying stress, suggesting that a mitochondrial function is required for tolerance to air-drying stress. We also analysed the correlation between oxidative-stress sensitivity and air-drying-stress sensitivity. The results suggested that oxidative stress is a critical determinant of sensitivity to air-drying stress, although ROS-scavenging systems are not necessary for air-drying stress tolerance. (c) 2008 John Wiley & Sons, Ltd.

  10. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation.

    Momonoi, Kazumi; Yoshida, Kumi; Mano, Shoji; Takahashi, Hideyuki; Nakamori, Chihiro; Shoji, Kazuaki; Nitta, Akira; Nishimura, Mikio

    2009-08-01

    Blue color in flowers is due mainly to anthocyanins, and a considerable part of blue coloration can be attributed to metal-complexed anthocyanins. However, the mechanism of metal ion transport into vacuoles and subsequent flower color development has yet to be fully explored. Previously, we studied the mechanism of blue color development specifically at the bottom of the inner perianth in purple tulip petals of Tulipa gesneriana cv. Murasakizuisho. We found that differences in iron content were associated with the development of blue- and purple-colored cells. Here, we identify a vacuolar iron transporter in T. gesneriana (TgVit1), and characterize the localization and function of this transporter protein in tulip petals. The amino acid sequence of TgVit1 is 85% similar that of the Arabidopsis thaliana vacuolar iron transporter AtVIT1, and also showed similarity to the AtVIT1 homolog in yeast, Ca(2+)-sensitive cross-complementer 1 (CCC1). The gene TgVit1 was expressed exclusively in blue-colored epidermal cells, and protein levels increased with increasing mRNA expression and blue coloration. Transient expression experiments revealed that TgVit1 localizes to the vacuolar membrane, and is responsible for the development of the blue color in purple cells. Expression of TgVit1 in yeast rescued the growth defect of ccc1 mutant cells in the presence of high concentrations of FeSO(4). Our results indicate that TgVit1 plays an essential role in blue coloration as a vacuolar iron transporter in tulip petals. These results suggest a new role for involvement of a vacuolar iron transporter in blue flower color development.

  11. Regulation of Vacuolar pH in Citrus limon

    Lincoln Taiz

    2005-06-22

    The primary objective of this grant was to characterize the vacuolar V-ATPase of lemon fruits. Lemon fruit vacuoles have an internal pH of about 2.5. Since a typical plant vacuole has a luminal pH of around 5.5, the lemon fruit V-APTase must have special properties which allow it to acidify the lumen to such a low pH: (1) it might have a different structure; (2) it might have a different H{sup +}/ATP stoichiometry; and (3) it might be regulated differently. During the course of the investigations (which began in 1996) they characterized these aspects of the V-ATPases of both lemon fruits and lime fruits. They examined lime fruits because of the availability of both acidic limes with a low vacuolar pH and sweet limes, which have a much higher vacuolar pH. The existence of two types of lime fruits allowed a comparison of the V-ATPases of the two varieties. In this report they are including two publications from 1996 and 1997 as background for the later publications. A review article with Heven Sze on V-ATPase nomenclature was also generated during the funding period. In addition to the studies on citrus fruit vacuoles, they also initiated studies in two new areas: polar auxin transport and the regulation of stomatal opening by UV-B irradiation. These studies were intended to serve as a basis of future separate grants, but the proposals they submitted on these topics were not funded.

  12. The UK sugar tax - a healthy start?

    Jones, C M

    2016-07-22

    The unexpected announcement by the UK Chancellor of the Exchequer of a levy on sugar sweetened beverages (SSBs) on the 16 March 2016, should be welcomed by all health professionals. This population based, structural intervention sends a strong message that there is no place for carbonated drinks, neither sugared nor sugar-free, in a healthy diet and the proposed levy has the potential to contribute to both general and dental health. The sugar content of drinks exempt from the proposed sugar levy will still cause tooth decay. Improving the proposed tax could involve a change to a scaled volumetric tax of added sugar with a lower exemption threshold. External influences such as the Common Agricultural Policy and the Transatlantic Trade and Investment Partnership may negate the benefits of the sugar levy unless it is improved. However, the proposed UK sugar tax should be considered as a start in improving the nation's diet.

  13. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing.

    Izawa, Shingo; Ikeda, Kayo; Miki, Takeo; Wakai, Yoshinori; Inoue, Yoshiharu

    2010-09-01

    Although ethanol and osmotic stress affect the vacuolar morphology of Saccharomyces cerevisiae, little information is available about changes in vacuolar morphology during the processes of wine making and Japanese sake (rice wine) brewing. Here, we elucidated changes in the morphology of yeast vacuoles using Zrc1p-GFP, a vacuolar membrane protein, so as to better understand yeast physiology during the brewing process. Wine yeast cells (OC-2 and EC1118) contained highly fragmented vacuoles in the sake mash (moromi) as well as in the grape must. Although sake yeast cells (Kyokai no. 9 and no. 10) also contained highly fragmented vacuoles during the wine-making process, they showed quite a distinct vacuolar morphology during sake brewing. Since the environment surrounding sake yeast cells in the sake mash did not differ much from that surrounding wine yeast cells, the difference in vacuolar morphology during sake brewing between wine yeast and sake yeast was likely caused by innate characters.

  14. Nanoscale domain formation of phosphatidylinositol 4-phosphate in the plasma and vacuolar membranes of living yeast cells.

    Tomioku, Kan-Na; Shigekuni, Mikiko; Hayashi, Hiroki; Yoshida, Akane; Futagami, Taiki; Tamaki, Hisanori; Tanabe, Kenji; Fujita, Akikazu

    2018-05-01

    In budding yeast Saccharomyces cerevisiae, PtdIns(4)P serves as an essential signalling molecule in the Golgi complex, endosomal system, and plasma membrane, where it is involved in the control of multiple cellular functions via direct interactions with PtdIns(4)P-binding proteins. To analyse the distribution of PtdIns(4)P in yeast cells at a nanoscale level, we employed an electron microscopy technique that specifically labels PtdIns(4)P on the freeze-fracture replica of the yeast membrane. This method minimizes the possibility of artificial perturbation, because molecules in the membrane are physically immobilised in situ. We observed that PtdIns(4)P is localised on the cytoplasmic leaflet, but not the exoplasmic leaflet, of the plasma membrane, Golgi body, vacuole, and vesicular structure membranes. PtdIns(4)P labelling was not observed in the membrane of the endoplasmic reticulum, and in the outer and inner membranes of the nuclear envelope or mitochondria. PtdIns(4)P forms clusters of plasma membrane and vacuolar membrane according to point pattern analysis of immunogold labelling. There are three kinds of compartments in the cytoplasmic leaflet of the plasma membrane. In the present study, we showed that PtdIns(4)P is specifically localised in the flat undifferentiated plasma membrane compartment. In the vacuolar membrane, PtdIns(4)P was concentrated in intramembrane particle (IMP)-deficient raft-like domains, which are tightly bound to lipid droplets, but not surrounding IMP-rich non-raft domains in geometrical IMP-distributed patterns in the stationary phase. This is the first report showing microdomain formations of PtdIns(4)P in the plasma membrane and vacuolar membrane of budding yeast cells at a nanoscale level, which will illuminate the functionality of PtdIns(4)P in each membrane. Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. Home blood sugar testing

    Diabetes - home glucose testing; Diabetes - home blood sugar testing ... Usual times to test your blood sugar are before meals and at bedtime. Your provider may ask you to check your blood sugar 2 hours after a meal or ...

  16. Vacuolar processing enzyme: an executor of plant cell death.

    Hara-Nishimura, Ikuko; Hatsugai, Noriyuki; Nakaune, Satoru; Kuroyanagi, Miwa; Nishimura, Mikio

    2005-08-01

    Apoptotic cell death in animals is regulated by cysteine proteinases called caspases. Recently, vacuolar processing enzyme (VPE) was identified as a plant caspase. VPE deficiency prevents cell death during hypersensitive response and cell death of limited cell layers at the early stage of embryogenesis. Because plants do not have macrophages, dying cells must degrade their materials by themselves. VPE plays an essential role in the regulation of the lytic system of plants during the processes of defense and development. VPE is localized in the vacuoles, unlike animal caspases, which are localized in the cytosol. Thus, plants might have evolved a regulated cellular suicide strategy that, unlike animal apoptosis, is mediated by VPE and the vacuoles.

  17. A pivotal role of vacuolar H(+)-ATPase in regulation of lipid production in Phaeodactylum tricornutum.

    Zhang, Huiying; Zeng, Rensen; Chen, Daoyi; Liu, Jian

    2016-08-08

    Microalgal lipids have been considered as a promising source for biodiesel production. Alkaline pH can induce neutral lipid accumulation in microalgae cells. However, whether and how proton pumps, especially vacuolar H(+)-ATPase (V-ATPase), function in these processes is not well known. In this study, we treated Phaeodactylum tricornutum with V-ATPase specific inhibitor bafilomycin A1 (BFA1) to determine its role in lipid production. Firstly, V-ATPase activity was increased in the latter phase of microalgae growth. BFA1 treatment decreased the cell density and lipid contents. Further analysis showed that BFA1 treatment reduced the number and size of oil bodies. GC-MS analysis showed that lipid components were not affected by BFA1 treatment. Intracellular pH was decreased and nitrogen depletion was delayed after BFA1 treatment. RNA-Seq analysis showed that expression of genes involved in calcium signaling, sulfur metabolism, cell cycle, glycolysis, pentose phosphate pathway, porphyrin, chlorophyll metabolism and lipid catabolic metabolism were upregulated, while expression of genes involved in ion transmembrane transport, ubiquitin mediated proteolysis, SNARE interactions in vesicular transport, fatty acid biosynthesis were downregulated under BFA1 treatment. Our findings provided insights into the molecular mechanisms underlying lipid accumulation and the key genes involved in lipid metabolism in Phaeodactylum tricornutum in response to BFA1.

  18. Identification of small molecules that disrupt vacuolar function in the pathogen Candida albicans.

    Helene Tournu

    Full Text Available The fungal vacuole is a large acidified organelle that performs a variety of cellular functions. At least a sub-set of these functions are crucial for pathogenic species of fungi, such as Candida albicans, to survive within and invade mammalian tissue as mutants with severe defects in vacuolar biogenesis are avirulent. We therefore sought to identify chemical probes that disrupt the normal function and/or integrity of the fungal vacuole to provide tools for the functional analysis of this organelle as well as potential experimental therapeutics. A convenient indicator of vacuolar integrity based upon the intracellular accumulation of an endogenously produced pigment was adapted to identify Vacuole Disrupting chemical Agents (VDAs. Several chemical libraries were screened and a set of 29 compounds demonstrated to reproducibly cause loss of pigmentation, including 9 azole antifungals, a statin and 3 NSAIDs. Quantitative analysis of vacuolar morphology revealed that (excluding the azoles a sub-set of 14 VDAs significantly alter vacuolar number, size and/or shape. Many C. albicans mutants with impaired vacuolar function are deficient in the formation of hyphal elements, a process essential for its pathogenicity. Accordingly, all 14 VDAs negatively impact C. albicans hyphal morphogenesis. Fungal selectivity was observed for approximately half of the VDA compounds identified, since they did not alter the morphology of the equivalent mammalian organelle, the lysosome. Collectively, these compounds comprise of a new collection of chemical probes that directly or indirectly perturb normal vacuolar function in C. albicans.

  19. Sugar beet breeding

    Sugar beet is a recent crop developed solely for extraction of the sweetener sucrose. Breeding and improvement of Beta vulgaris for sugar has a rich historical record. Sugar beet originated from fodder beet in the 1800s, and selection has increased sugar content from 4 to 6% then to over 18% today. ...

  20. Failure to transmit avian vacuolar myelinopathy to mallard ducks

    Larsen, R.S.; Nutter, F.B.; Augspurger, T.; Rocke, T.E.; Thomas, N.J.; Stoskopf, M.K.

    2003-01-01

    Avian vacuolar myelinopathy (AVM) is a neurologic disease that has been diagnosed in free-ranging birds in the southeastern United States. Bald eagles (Haliaeetus leuocephalus), American coots (Fulica americana), and mallards (Anas platyrhynchos) have been affected. Previous investigations have not determined the etiology of this disease. In November and December 2002, we attempted to induce AVM in game-farmed mallards through four, 7-day exposure trials. Mallards were housed in six groups of eight, with two of these groups serving as controls. One group was housed with AVM-affected coots; one group was tube fed daily with water from the lake where affected coots were captured; one group was tube fed daily with aquatic vegetation (Hydrilla verticillata) from the same lake; and another group was tube fed daily with sediment from the lake. No ducks exhibited clinical neurologic abnormalities consistent with AVM and no evidence of AVM was present at histopathologic examination of brain tissue. Although limitations in sample size, quantity of individual doses, frequency of dose administration, duration of exposure, and timing of these trials restrict the interpretation of the findings, AVM was not readily transmitted by direct contact, water, hydrilla, or sediment in this investigation.

  1. Regulation of vacuolar H+-ATPase in microglia by RANKL

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian; Ochotny, Noelle; Manolson, Morris F.; Holliday, L. Shannon

    2009-01-01

    Vacuolar H + -ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor κB-ligand (RANKL). We found that Receptor Activator of Nuclear Factor κB (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  2. Characterization of the vacuolar H sup + -ATPase of higher plants

    Manolson, M F

    1988-01-01

    The tonoplast H{sup +}-ATPase of Beta vulgaris L. was partially purified by Triton X-100 solubilization and Sepharose 4B chromatography resulting in the enrichment of two polypeptides. Kinetic analysis of ({alpha}-{sup 32}P) BzATP labeling identified the 57 kDa polypeptide as a nucleotide-binding subunit with a possible regulatory function. In addition, ({sup 14}C) DCCD-labeling identified a 16 kDa polypeptide as a putative transmembrane proton channel. It is concluded that the tonoplast H{sup +}-ATPase is a multimer composed of at least three polypeptides. Anti-57 and anti-67 kDa sera reacted with polypeptides of the corresponding size in bovine chromaffin granules, bovine clathrin-coated vesicles, and yeast vacuolar membranes, suggesting common structural features and common ancestry for endomembrane H{sup +}-ATPase of different organelles and different phyla. Anti-57 serum was used to isolate a cDNA encoding the corresponding subunit from Arabidopsis. Protein sequence analysis revealed homologies between endomembrane, F{sub 0}F{sub 1} and archaebacterial ATPases, suggesting that these different classes of ATPases have evolved from a common ancestor.

  3. TBK1 protects vacuolar integrity during intracellular bacterial infection.

    Andrea L Radtke

    2007-03-01

    Full Text Available TANK-binding kinase-1 (TBK1 is an integral component of Type I interferon induction by microbial infection. The importance of TBK1 and Type I interferon in antiviral immunity is well established, but the function of TBK1 in bacterial infection is unclear. Upon infection of murine embryonic fibroblasts with Salmonella enterica serovar Typhimurium (Salmonella, more extensive bacterial proliferation was observed in tbk1(-/- than tbk1(+/+ cells. TBK1 kinase activity was required for restriction of bacterial infection, but interferon regulatory factor-3 or Type I interferon did not contribute to this TBK1-dependent function. In tbk1(-/-cells, Salmonella, enteropathogenic Escherichia coli, and Streptococcus pyogenes escaped from vacuoles into the cytosol where increased replication occurred, which suggests that TBK1 regulates the integrity of pathogen-containing vacuoles. Knockdown of tbk1 in macrophages and epithelial cells also resulted in increased bacterial localization in the cytosol, indicating that the role of TBK1 in maintaining vacuolar integrity is relevant in different cell types. Taken together, these data demonstrate a requirement for TBK1 in control of bacterial infection distinct from its established role in antiviral immunity.

  4. TBK1 Protects Vacuolar Integrity during Intracellular Bacterial Infection

    Radtke, Andrea L; Delbridge, Laura M; Balachandran, Siddharth; Barber, Glen N; O'Riordan, Mary X. D

    2007-01-01

    TANK-binding kinase-1 (TBK1) is an integral component of Type I interferon induction by microbial infection. The importance of TBK1 and Type I interferon in antiviral immunity is well established, but the function of TBK1 in bacterial infection is unclear. Upon infection of murine embryonic fibroblasts with Salmonella enterica serovar Typhimurium (Salmonella), more extensive bacterial proliferation was observed in tbk1−/− than tbk1+/+ cells. TBK1 kinase activity was required for restriction of bacterial infection, but interferon regulatory factor-3 or Type I interferon did not contribute to this TBK1-dependent function. In tbk1−/−cells, Salmonella, enteropathogenic Escherichia coli, and Streptococcus pyogenes escaped from vacuoles into the cytosol where increased replication occurred, which suggests that TBK1 regulates the integrity of pathogen-containing vacuoles. Knockdown of tbk1 in macrophages and epithelial cells also resulted in increased bacterial localization in the cytosol, indicating that the role of TBK1 in maintaining vacuolar integrity is relevant in different cell types. Taken together, these data demonstrate a requirement for TBK1 in control of bacterial infection distinct from its established role in antiviral immunity. PMID:17335348

  5. Vacuolar and cytoskeletal dynamics during elicitor-induced programmed cell death in tobacco BY-2 cells.

    Higaki, Takumi; Kadota, Yasuhiro; Goh, Tatsuaki; Hayashi, Teruyuki; Kutsuna, Natsumaro; Sano, Toshio; Hasezawa, Seiichiro; Kuchitsu, Kazuyuki

    2008-09-01

    Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.

  6. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy.

    Spugnini, Enrico P; Citro, Gennaro; Fais, Stefano

    2010-05-08

    The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  7. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy

    Fais Stefano

    2010-05-01

    Full Text Available Abstract The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  8. The Truth about Sugar.

    Yeung, C Albert; Goodfellow, Ashley; Flanagan, Louise

    2015-01-01

    Sugars are used by the industry to enhance the attractiveness of foods and drinks. These added sugars, or 'free sugars', are not easily identified in food or drink labels. Certain manufactured foods and drinks with 'safe' names, such as dried fruit and fruit juice, still contain free sugars and can be confusing. Guidance states that daily consumption of free sugars should be less than 10% of total energy intake (no more than 5% in the UK). However, it is found that both tooth decay and obesity are associated with consumption of free sugars in large quantities and at inappropriate times.

  9. Identification of a 170-kDa protein associated with the vacuolar Na+/H+ antiport of Beta vulgaris.

    Barkla, B J; Blumwald, E

    1991-12-15

    The effect of the addition of amiloride to the growth medium was tested on the Na+/H+ antiport activity of tonoplast vesicles isolated from sugar beet (beta vulgaris L.) cell suspensions. Cells grown in the presence of NaCl and amiloride displayed an increased antiport activity. Analysis of the kinetic data showed that while the affinity of the antiport for Na+ ions did not change, the maximal velocity of the Na+/H+ exchange increased markedly. These results suggest the addition of more antiport molecules to the tonoplast and/or an increase in the turnover rate of the Na+/H+ exchange. The increase in activity of the antiport by the presence of amiloride was correlated with the enhanced synthesis of a tonoplast 170-kDa polypeptide. The increased synthesis of this polypeptide was detected not only upon exposure of the cells to amiloride but also when the cells were exposed to high NaCl concentrations. Polyclonal antibodies against the 170-kDa polypeptide almost completely inhibited the antiport activity. These results suggest the association of the 170-kDa polypeptide with the vacuolar Na+/H+ antiport.

  10. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products.

    Zhu, Xiaobiao; Gong, Huiling; He, Qunyan; Zeng, Zixian; Busse, James S; Jin, Weiwei; Bethke, Paul C; Jiang, Jiming

    2016-02-01

    Acrylamide is produced in a wide variety of carbohydrate-rich foods during high-temperature cooking. Dietary acrylamide is a suspected human carcinogen, and health concerns related to dietary acrylamide have been raised worldwide. French fries and potato chips contribute a significant proportion to the average daily intake of acrylamide, especially in developed countries. One way to mitigate health concerns related to acrylamide is to develop potato cultivars that have reduced contents of the acrylamide precursors asparagine, glucose and fructose in tubers. We generated a large number of silencing lines of potato cultivar Russet Burbank by targeting the vacuolar invertase gene VInv and the asparagine synthetase genes StAS1 and StAS2 with a single RNA interference construct. The transcription levels of these three genes were correlated with reducing sugar (glucose and fructose) and asparagine content in tubers. Fried potato products from the best VInv/StAS1/StAS2-triple silencing lines contained only one-fifteenth of the acrylamide content of the controls. Interestingly, the extent of acrylamide reduction of the best triple silencing lines was similar to that of the best VInv-single silencing lines developed previously from the same potato cultivar Russet Burbank. These results show that an acrylamide mitigation strategy focused on developing potato cultivars with low reducing sugars is likely to be an effective and sufficient approach for minimizing the acrylamide-forming potential of French fry processing potatoes. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Sugar signalling during germination and early seedling establishment in Arabidopsis

    Dekkers, S.J.W.

    2006-01-01

    Sugars have pronounced effects on many plant processes like gene expression, germination and early seedling development. Several screens for sugar insensitive mutants were performed to identify genes involved in sugar response pathways using the model plant Arabidopsis. These include sun, gin and

  12. Low blood sugar - newborns

    ... this page: //medlineplus.gov/ency/article/007306.htm Low blood sugar - newborns To use the sharing features on this page, please enable JavaScript. A low blood sugar level in newborn babies is also ...

  13. Using biomass of starch-rich transgenic Arabidopsis vacuolar as feedstock for fermentative hydrogen production

    Lo, Yung-Chung; Cheng, Chieh-Lun; Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Huang, Li-Fen; Chang, Jo-Shu [Yuan Ze Univ., Tao-yuan, Taiwan (China). Graduate School of Biotechnology and Bioengineering

    2010-07-01

    Cellulose is the major constitute of plant biomass and highly available in agricultural wastes and industrial effluents, thereby being a cost-effective feedstock for bioenergy production. However, most hydrogen producing bacteria (HPB) could not directly convert cellulosic materials (such as rice husk and rice straw) into hydrogen whereas most HPB could utilize sugar and starch for hydrogen production. In this work, we used an indigenous bacterial isolate Clostridium butyricum CGS2 as HPB, which could directly convert soluble starch into H2 with a maximum H2 production rate and a H2 yield of 205.07 ml H2/h/l and 6.46 mmol H2/g starch, respectively. However, C. butyricum CGS2 could not ferment pure cellulosic materials such as carboxymethyl cellulose and xylan. Moreover, we found that C. butyricum CGS2 could utilize rich husk to produce H2 at a rate of 13.19 ml H2/h/l due to the starch content in rice husk (H2 yield = 1.49 mmol H2/g rice husk). In contrast, since lacking starch content, rice straw cannot be converted to H2 by C. butyricum CGS2. The foregoing results suggest that increasing the starch content in the natural agricultural wastes may make them better feedstock for fermentative H2 production. Hence, a genetically modified plant (Arabidopsis vacuolar) was constructed to enhance its starch concentration. The starch concentration of mutant plant S1 increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using mutant plant S1 as carbon source, C. butyricum CGS2 was able to give a high cumulative H2 production and H2 production rate of 285.4 ml H2/l and 43.6 ml/h/l, respectively. The cumulative H2 production and H2 production rate both increased when the concentration of the transgenic plant was increased. Therefore, this study successful demonstrated the feasibility of expressing starch on genetically-modified plants to create a more effective feedstock for dark H2 fermentation. (orig.)

  14. TRANSPARENT TESTA 13 is a tonoplast P3A -ATPase required for vacuolar deposition of proanthocyanidins in Arabidopsis thaliana seeds

    Appelhagen, I.; Nordholt, N.; Seidel, T.; Spelt, K.; Koes, R.; Quattrochio, F.; Sagasser, M.; Weisshaar, B.

    2015-01-01

    Intracellular pH homeostasis is essential for all living cells. In plants, pH is usually maintained by three structurally distinct and differentially localized types of proton pump: P-type H(+) -ATPases in the plasma membrane, and multimeric vacuolar-type H(+) -ATPases (V-ATPases) and vacuolar H(+)

  15. Flavonoid supplementation affects the expression of genes involved in cell wall formation and lignification metabolism and increases sugar content and saccharification in the fast-growing eucalyptus hybrid E. urophylla x E. grandis.

    Lepikson-Neto, Jorge; Nascimento, Leandro C; Salazar, Marcela M; Camargo, Eduardo L O; Cairo, João P F; Teixeira, Paulo J; Marques, Wesley L; Squina, Fabio M; Mieczkowski, Piotr; Deckmann, Ana C; Pereira, Gonçalo A G

    2014-11-19

    Eucalyptus species are the most widely planted hardwood species in the world and are renowned for their rapid growth and adaptability. In Brazil, one of the most widely grown Eucalyptus cultivars is the fast-growing Eucalyptus urophylla x Eucalyptus grandis hybrid. In a previous study, we described a chemical characterization of these hybrids when subjected to flavonoid supplementation on 2 distinct timetables, and our results revealed marked differences between the wood composition of the treated and untreated trees. In this work, we report the transcriptional responses occurring in these trees that may be related to the observed chemical differences. Gene expression was analysed through mRNA-sequencing, and notably, compared to control trees, the treated trees display differential down-regulation of cell wall formation pathways such as phenylpropanoid metabolism as well as differential expression of genes involved in sucrose, starch and minor CHO metabolism and genes that play a role in several stress and environmental responses. We also performed enzymatic hydrolysis of wood samples from the different treatments, and the results indicated higher sugar contents and glucose yields in the flavonoid-treated plants. Our results further illustrate the potential use of flavonoids as a nutritional complement for modifying Eucalyptus wood, since, supplementation with flavonoids alters its chemical composition, gene expression and increases saccharification probably as part of a stress response.

  16. The Arabidopsis vacuolar malate channel is a member of the ALMT family.

    Kovermann, Peter; Meyer, Stefan; Hörtensteiner, Stefan; Picco, Cristiana; Scholz-Starke, Joachim; Ravera, Silvia; Lee, Youngsook; Martinoia, Enrico

    2007-12-01

    In plants, malate is a central metabolite and fulfills a large number of functions. Vacuolar malate may reach very high concentrations and fluctuate rapidly, whereas cytosolic malate is kept at a constant level allowing optimal metabolism. Recently, a vacuolar malate transporter (Arabidopsis thaliana tonoplast dicarboxylate transporter, AttDT) was identified that did not correspond to the well-characterized vacuolar malate channel. We therefore hypothesized that a member of the aluminum-activated malate transporter (ALMT) gene family could code for a vacuolar malate channel. Using GFP fusion constructs, we could show that AtALMT9 (A. thaliana ALMT9) is targeted to the vacuole. Promoter-GUS fusion constructs demonstrated that this gene is expressed in all organs, but is cell-type specific as GUS activity in leaves was detected nearly exclusively in mesophyll cells. Patch-clamp analysis of an Atalmt9 T-DNA insertion mutant exhibited strongly reduced vacuolar malate channel activity. In order to functionally characterize AtALMT9 as a malate channel, we heterologously expressed this gene in tobacco and in oocytes. Overexpression of AtALMT9-GFP in Nicotiana benthamiana leaves strongly enhanced the malate current densities across the mesophyll tonoplasts. Functional expression of AtALMT9 in Xenopus oocytes induced anion currents, which were clearly distinguishable from endogenous oocyte currents. Our results demonstrate that AtALMT9 is a vacuolar malate channel. Deletion mutants for AtALMT9 exhibit only slightly reduced malate content in mesophyll protoplasts and no visible phenotype, indicating that AttDT and the residual malate channel activity are sufficient to sustain the transport activity necessary to regulate the cytosolic malate homeostasis.

  17. Covalent structures of potato tuber lipases (patatins) and implications for vacuolar import

    Welinder, Karen Gjesing; Jørgensen, Malene

    that the path is via the Golgi apparatus. However, the vacuolar targeting signal has never been identified for this storage and defence protein, which amounts to 25-40% of tuber protein. We propose that a six-residue ct-propeptide, -ANKASY-COO- composes this signal. The crystallographic structure...... the Danish Research Council for Technology and Production, and grant 2052-03-0022 from the Danish Research Agency.   Reference Welinder KG, Jørgensen M (2009) Covalent structures of potato tuber lipases (patatins) and implications for vacuolar import. J. Biol. Chem., Feb 2009; doi:10.1074/jbc.M809674200....

  18. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana

    Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia

    2015-01-01

    Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700

  19. Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase for anti-fungal therapy

    Summer R. Hayek

    2014-01-01

    Full Text Available Vacuolar proton-translocating ATPase (V-ATPase is a membrane-bound, multi-subunit enzyme that uses the energy of ATP hydrolysis to pump protons across membranes. V-ATPase activity is critical for pH homeostasis and organelle acidification as well as for generation of the membrane potential that drives secondary transporters and cellular metabolism. V-ATPase is highly conserved across species and is best characterized in the model fungus Saccharomyces cerevisiae (S. cerevisiae. However, recent studies in mammals have identified significant alterations from fungi, particularly in the isoform composition of the 14 subunits and in the regulation of complex disassembly. These differences could be exploited for selectivity between fungi and humans and highlight the potential for V-ATPase as an anti-fungal drug target. Candida albicans (C. albicans is a major human fungal pathogen and causes fatality in 35% of systemic infections, even with anti-fungal treatment. The pathogenicity of C. albicans correlates with environmental, vacuolar, and cytoplasmic pH regulation, and V-ATPase appears to play a fundamental role in each of these processes. Genetic loss of V-ATPase in pathogenic fungi leads to defective virulence, and a comprehensive picture of the mechanisms involved is emerging. Recent studies have explored the practical utility of V-ATPase as an anti-fungal drug target in C. albicans, including pharmacological inhibition, azole therapy, and targeting of downstream pathways. This overview will discuss these studies as well as hypothetical ways to target V-ATPase and novel high-throughput methods for use in future drug discovery screens.

  20. RNAi-directed downregulation of vacuolar H(+ -ATPase subunit a results in enhanced stomatal aperture and density in rice.

    Huiying Zhang

    Full Text Available Stomatal movement plays a key role in plant development and response to drought and salt stress by regulating gas exchange and water loss. A number of genes have been demonstrated to be involved in the regulation of this process. Using inverse genetics approach, we characterized the function of a rice (Oryza sativa L. vacuolar H(+-ATPase subunit A (OsVHA-A gene in stomatal conductance regulation and physiological response to salt and osmotic stress. OsVHA-A was constitutively expressed in different rice tissues, and the fusion protein of GFP-OsVHA-A was exclusively targeted to tonoplast when transiently expressed in the onion epidermal cells. Heterologous expression of OsVHA-A was able to rescue the yeast mutant vma1Δ (lacking subunit A activity phenotype, suggesting that it partially restores the activity of V-ATPase. Meanwhile, RNAi-directed knockdown of OsVHA-A led to a reduction of vacuolar H(+-ATPase activity and an enhancement of plasma membrane H(+-ATPase activity, thereby increasing the concentrations of extracellular H(+ and intracellular K(+ and Na(+ under stress conditions. Knockdown of OsVHA-A also resulted in the upregulation of PAM3 (plasma membrane H(+-ATPase 3 and downregulation of CAM1 (calmodulin 1, CAM3 (calmodulin 3 and YDA1 (YODA, a MAPKK gene. Altered level of the ion concentration and the gene expression by knockdown of OsVHA-A probably resulted in expanded aperture of stomatal pores and increased stomatal density. In addition, OsVHA-A RNAi plants displayed significant growth inhibition under salt and osmotic stress conditions. Taken together, our results suggest that OsVHA-A takes part in regulating stomatal density and opening via interfering with pH value and ionic equilibrium in guard cells and thereby affects the growth of rice plants.

  1. Sugar - a harmless indulgence?

    Rasmussen, Lone Banke; Andersen, Niels Lyhne; Ovesen, L.

    1998-01-01

    The consumption of sugar is relatively high in Denmark - and other industrial countries - and many persons have a consumption which exceeds the recommended level of maximally 10% of energy intake. A high sugar consumption may reduce the nutrient density of the diet and increase the risk of vitamin...... and mineral deficiency, especially in low energy consumers. The sugar intake and the fat intake, expressed as percentage of energy, usually show an inverse association. This has lead to the statement that a diet with both a low sugar content and a low fat content is incompatible, but we will argue...... that this is not the fact. The significance of sugar for the development of obesity is not clarified. A high fat content in the diet seems to promote the development of obesity, while a high carbohydrate content tends to reduce obesity. It is not known if sugar in this connection is comparable to the other carbohydrates...

  2. Covalent structures of potato tuber lipases (patatins) and implications for vacuolar import

    Welinder, Karen Gjesing; Jørgensen, Malene

    2009-01-01

    patatin (Rydel, T. J., Williams, J. M., Krieger, E., Moshiri, F., Stallings, W. C., Brown, S. M., Pershing, J. C., Prucell, J. P., and Alibhai, M. F. (2003) Biochemistry 42, 6696-6708), which included this propeptide thus, for the first time, shows the structure of a putative ligand of the vacuolar...

  3. Sugar from Palms

    Barfod, Anders

    Throughout the tropics and subtropics a large number of products are derived from the sugar-rich sap tapped from palms. I will give an overview of the most important species being exploited, harvesting practices and yields. I will further provide insights in the biomechanmics of sugar...... transportation in palms, which remain an enigma. Finally, the prospects for developing palm sugar into a commodity of worlswide significance will be discussed....

  4. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    Guo, Jiangbo; Xu, Wenzhong; Ma, Mi

    2012-01-01

    Highlights: ► Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. ► Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. ► Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. ► A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2–10 folds cadmium/arsenite and 2–3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  5. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    Guo, Jiangbo [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Inner Mongolia Key Laboratory of Biomass-Energy Conversion, The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou 040100 (China); Xu, Wenzhong [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Ma, Mi, E-mail: mami@ibcas.ac.cn [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. Black-Right-Pointing-Pointer Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. Black-Right-Pointing-Pointer Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. Black-Right-Pointing-Pointer A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2-10 folds cadmium/arsenite and 2-3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  6. Pyrolytic sugars from cellulosic biomass

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  7. Arabidopsis Vacuolar Pyrophosphatase gene (AVP1) induces drought and salt tolerance in Nicotiana tabacum plants (abstract)

    Arif, A.; Mohsin, A.M.; Shafiq, S.; Zafar, Y.; Hameed, S.M.; Arif, M.; Javed, M.; Gaxiola, R.A.

    2005-01-01

    Drought and salinity are global problems. In Pakistan these problems are increasing to an alarming situation due to low rain-fall and bad agricultural practices. Salt and drought stress shows a high degree of similarity with respect to physiological, biochemical, molecular and genetic effects. This is due to the fact that sub-lethal salt-stress condition is ultimately an osmotic effect which is apparently similar to that brought in by water deficit. Genetic engineering allows the re-introduction of plant genes into their genomes by increasing their expression level. Plant vacuoles play a central role in cellular mechanisms of adaptation to salinity and drought stresses. In principle, increased vacuolar solute accumulation should have a positive impact in the adaptation of plants to salinity and drought. The active transport of the solutes depends on the proton gradients established by proton pumps. We have over expressed Arabidopsis gene AVP1 (Arabidopsis thaliana vacuolar pyro phosphatase H/sup +/ pump) to increase drought/salt tolerance in tobacco. The AVP1 ORF with a tandem repeat of 358 promoter was cloned in pPZP212 vector and Agrobacterium-mediated transformation was performed. Transgenic plants were selected on plant nutrient agar medium supplemented with 50 mg/liter kanamycin. Transgenic plants were confirmed for transfer of genes by AVP1 and nptll gene specific PCR and Southern hybridization. AVP1 transgenic plants were screened for salt tolerance by providing NaCl solution in addition to nutrient solution. AVP1 transgenic plants showed tolerance up to 300 mM NaCl as compared to control which died ten days after 200 mM NaCl. Sodium and potassium were measured in salt treated and control plants. Results showed that sodium ion uptake in the salt treated transgenic plants was four times more as compared to wild type. This remarkable increase in Na/sup +/ ion uptake indicates that AVP1 vacuole proton pumps are actively involved in the transport of Na

  8. Two Step Wittig/Dihydroxylation Synthetic Route to Higher Sugars

    Jørgensen, Morten; Madsen, Robert

    1999-01-01

    Higher carbon sugars are obtained by a two carbon, two step chain elongation of aldoses involving first a Wittig reaction and then an osmium tetroxide catalyzed dihydroxylation......Higher carbon sugars are obtained by a two carbon, two step chain elongation of aldoses involving first a Wittig reaction and then an osmium tetroxide catalyzed dihydroxylation...

  9. Correlation of ESR with lyoluminescence dosimetry using some sugars

    Azorin, Juan; Gutierrez, Alicia; Munoz, Eduardo; Gleason, Roberto

    1989-01-01

    Most applications involving ESR dosimetry currently center on aminoacids because of their relative tissue equivalence. Sugars, however, in addition to possessing high sensitivity and stability in their ESR and LL responses, are widely available as chemical reagents and as commercial sugar. In the present study, dosimetric characteristics of mannose, trehalose, sucrose and commercial sugar obtained by means of ESR and LL techniques are reported. Doses measured by both methods showed agreement within 5%. (author)

  10. Hereditary vacuolar internal anal sphincter myopathy causing proctalgia fugax and constipation: a new case contribution.

    de la Portilla, Fernando; Borrero, Juan José; Rafel, Enrique

    2005-03-01

    Hereditary anal sphincter myopathy is rare. We present a family with one affected member with proctalgia fugax, constipation and internal anal sphincter hypertrophy. Ultrastructural findings show vacuolization of smooth muscle cells without the characteristic polyglucosan inclusion. Further relief of symptoms was obtained using an oral calcium antagonist. Based on clinical presentation, endosonography and morphological findings, we consider our case is a histological variant of the vacuolar myopathy originally described.

  11. Intense pseudotransport of a cationic drug mediated by vacuolar ATPase: Procainamide-induced autophagic cell vacuolization

    Morissette, Guillaume; Lodge, Robert; Marceau, Francois

    2008-01-01

    Cationic drugs frequently exhibit large apparent volumes of distribution, consistent with various forms of cellular sequestration. The contributions of organelles and metabolic processes that may mimic drug transport were defined in human vascular smooth muscle cells. We hypothesized that procainamide-induced vacuolar cytopathology is driven by intense pseudotransport mediated by the vacuolar (V)-ATPase and pursued the characterization of vesicular trafficking alterations in this model. Large amounts of procainamide were taken up by intact cells (maximal in 2 h, reversible upon washout, apparent K M 4.69 mM; fluorometric determination of cell-associated drug). Procainamide uptake was extensively prevented or reversed by pharmacological inhibition of the V-ATPase with bafilomycin A1 or FR 167356, decreased at low extracellular pH and preceded vacuolar cell morphology. However, the uptake of procainamide was unaffected by mitochondrial poisons that reduced the uptake of rhodamine 6G. Large vacuoles induced by millimolar procainamide were labeled with the late endosome/lysosome markers Rab7 and CD63 and the autophagy effector LC3; their osmotic formation (but not procainamide uptake) was reduced by extracellular mannitol and parallel to LC3 II formation. Procainamide-induced vacuolization is associated with defective endocytosis of fluorophore-labeled bovine serum albumin, but not with induction of the unfolded protein response. The contents of a vacuole subset slowly (≥ 24 h) become positive for Nile red staining (phospholipidosis-like response). V-ATPase-driven ion trapping is a form of intense cation pseudotransport that concerns the uncharged form of the drugs, and is associated with a vacuolar, autophagic and evolutive cytopathology and profound effects on vesicular trafficking

  12. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  14. Low blood sugar

    ... a medical emergency. It can cause seizures and brain damage. Severe low blood sugar that causes you to become unconscious is called hypoglycemic or insulin shock. Even one episode of severe low blood ...

  15. Blood Sugar - Multiple Languages

    ... Mass Health Promotion Clearinghouse Massachusetts Department of Public Health Fasting Blood Sugar Test - español (Spanish) Bilingual PDF Health Information Translations Ukrainian (українська ) Expand Section Fasting Blood ...

  16. High blood sugar

    ... Alternative Names Hyperglycemia - self care; High blood glucose - self care; Diabetes - high blood sugar References American Diabetes Association. Standards of medical care in diabetes - 2017: 4. Lifestyle management and 6. Glycemic targets. Diabetes Care . 2017;40( ...

  17. Sweeteners - sugar substitutes

    ... exposed to heat. It is best used in beverages rather than baking. Well-studied, and hasn't ... sweeteners, such as saccharin, in carbonated low-calorie beverages and other products. Most similar to table sugar ...

  18. Alcohol from sugar beets

    Malchenko, A L; Verzhbitskaya, V A

    1962-01-01

    The factor which determines the economy in the EtOH industry which uses sugar beets as raw materials is the rapid and complete recovery of the sugar contained in the beets for fermentation purposes. It is best to extract the beets at 70 to 75/sup 0/. Thorough shredding of the beets then need no longer form part of the operation, and the protein compounds, which give rise to fuel oils, are extracted in small amounts only.

  19. Subcellular localization and vacuolar targeting of sorbitol dehydrogenase in apple seed.

    Wang, Xiu-Ling; Hu, Zi-Ying; You, Chun-Xiang; Kong, Xiu-Zhen; Shi, Xiao-Pu

    2013-09-01

    Sorbitol is the primary photosynthate and translocated carbohydrate in fruit trees of the Rosaceae family. NAD(+)-dependent sorbitol dehydrogenase (NAD-SDH, EC 1.1.1.14), which mainly catalyzes the oxidation of sorbitol to fructose, plays a key role in regulating sink strength in apple. In this study, we found that apple NAD-SDH was ubiquitously distributed in epidermis, parenchyma, and vascular bundle in developing cotyledon. NAD-SDH was localized in the cytosol, the membranes of endoplasmic reticulum and vesicles, and the vacuolar lumen in the cotyledon at the middle stage of seed development. In contrast, NAD-SDH was mainly distributed in the protein storage vacuoles in cotyledon at the late stage of seed development. Sequence analysis revealed there is a putative signal peptide (SP), also being predicated to be a transmembrane domain, in the middle of proteins of apple NAD-SDH isoforms. To investigate whether the putative internal SP functions in the vacuolar targeting of NAD-SDH, we analyzed the localization of the SP-deletion mutants of MdSDH5 and MdSDH6 (two NAD-SDH isoforms in apple) by the transient expression system in Arabidopsis protoplasts. MdSDH5 and MdSDH6 were not localized in the vacuoles after their SPs were deleted, suggesting the internal SP functions in the vacuolar targeting of apple NAD-SDH. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  1. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    Wang, Zhen-Yu; Gehring, Christoph A; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2014-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  2. Glycolytic control of vacuolar-type ATPase activity: A mechanism to regulate influenza viral infection

    Kohio, Hinissan P.; Adamson, Amy L., E-mail: aladamso@uncg.edu

    2013-09-15

    As new influenza virus strains emerge, finding new mechanisms to control infection is imperative. In this study, we found that we could control influenza infection of mammalian cells by altering the level of glucose given to cells. Higher glucose concentrations induced a dose-specific increase in influenza infection. Linking influenza virus infection with glycolysis, we found that viral replication was significantly reduced after cells were treated with glycolytic inhibitors. Addition of extracellular ATP after glycolytic inhibition restored influenza infection. We also determined that higher levels of glucose promoted the assembly of the vacuolar-type ATPase within cells, and increased vacuolar-type ATPase proton-transport activity. The increase of viral infection via high glucose levels could be reversed by inhibition of the proton pump, linking glucose metabolism, vacuolar-type ATPase activity, and influenza viral infection. Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection. - Highlights: • Increased glucose levels increase Influenza A viral infection of MDCK cells. • Inhibition of the glycolytic enzyme hexokinase inhibited Influenza A viral infection. • Inhibition of hexokinase induced disassembly the V-ATPase. • Disassembly of the V-ATPase and Influenza A infection was bypassed with ATP. • The state of V-ATPase assembly correlated with Influenza A infection of cells.

  3. Glycolytic control of vacuolar-type ATPase activity: A mechanism to regulate influenza viral infection

    Kohio, Hinissan P.; Adamson, Amy L.

    2013-01-01

    As new influenza virus strains emerge, finding new mechanisms to control infection is imperative. In this study, we found that we could control influenza infection of mammalian cells by altering the level of glucose given to cells. Higher glucose concentrations induced a dose-specific increase in influenza infection. Linking influenza virus infection with glycolysis, we found that viral replication was significantly reduced after cells were treated with glycolytic inhibitors. Addition of extracellular ATP after glycolytic inhibition restored influenza infection. We also determined that higher levels of glucose promoted the assembly of the vacuolar-type ATPase within cells, and increased vacuolar-type ATPase proton-transport activity. The increase of viral infection via high glucose levels could be reversed by inhibition of the proton pump, linking glucose metabolism, vacuolar-type ATPase activity, and influenza viral infection. Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection. - Highlights: • Increased glucose levels increase Influenza A viral infection of MDCK cells. • Inhibition of the glycolytic enzyme hexokinase inhibited Influenza A viral infection. • Inhibition of hexokinase induced disassembly the V-ATPase. • Disassembly of the V-ATPase and Influenza A infection was bypassed with ATP. • The state of V-ATPase assembly correlated with Influenza A infection of cells

  4. The Sugar Tax in Holland

    Ajjaji, Fadoua

    2016-01-01

    This inquiry supports the theory of a sugar tax has a positive influence on the sugar consumption of Dutch individuals. Once a tax is implemented, the sugar consumption declines. Furthermore, this study supported the hypothesis claiming that children have a positive influence on their parental sugar

  5. Apparatus for drying sugar cubes

    Derckx, H.A.J.; Torringa, H.M.

    1999-01-01

    Device for drying sugar cubes containing a heating apparatus for heating and dehumidifying the sugar cubes, a conditioning apparatus for cooling off and possibly further dehumidifying the sugar cubes and a conveying apparatus for conveying the sugar cubes through the heating apparatus and the

  6. Modeling the vacuolar storage of malate shed lights on pre- and post-harvest fruit acidity.

    Etienne, Audrey; Génard, Michel; Lobit, Philippe; Bugaud, Christophe

    2014-11-18

    Malate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. Several studies suggest that malate accumulation in fruit cells is controlled at the level of vacuolar storage. However, the regulation of vacuolar malate storage throughout fruit development, and the origins of the phenotypic variability of the malate concentration within fruit species remain to be clarified. In the present study, we adapted the mechanistic model of vacuolar storage proposed by Lobit et al. in order to study the accumulation of malate in pre and postharvest fruits. The main adaptation concerned the variation of the free energy of ATP hydrolysis during fruit development. Banana fruit was taken as a reference because it has the particularity of having separate growth and post-harvest ripening stages, during which malate concentration undergoes substantial changes. Moreover, the concentration of malate in banana pulp varies greatly among cultivars which make possible to use the model as a tool to analyze the genotypic variability. The model was calibrated and validated using data sets from three cultivars with contrasting malate accumulation, grown under different fruit loads and potassium supplies, and harvested at different stages. The model predicted the pre and post-harvest dynamics of malate concentration with fairly good accuracy for the three cultivars (mean RRMSE = 0.25-0.42). The sensitivity of the model to parameters and input variables was analyzed. According to the model, vacuolar composition, in particular potassium and organic acid concentrations, had an important effect on malate accumulation. The model suggested that rising temperatures depressed malate accumulation. The model also helped distinguish differences in malate concentration among the three cultivars and between the pre and post-harvest stages by highlighting the probable importance of proton pump activity and particularly of the free

  7. Sn-Beta catalysed conversion of hemicellulosic sugars

    Holm, Martin; Pagán-Torres, Yomaira J.; Shunmugavel, Saravanamurugan

    2012-01-01

    are observed for the pentoses. This finding is in accordance to a reaction pathway that involves the retro aldol condensation of the sugars to form a triose and glycolaldehyde for the pentoses, and two trioses for hexoses. When reacting glycolaldehyde (formally a C2-sugar) in the presence of Sn-Beta, aldol...... condensation occurs, leading to the formation of methyl lactate, methyl vinylglycolate and methyl 2-hydroxy-4-methoxybutanoate. In contrast, when converting the sugars in water at low temperatures (100 °C), Sn-Beta catalyses the isomerisation of sugars (ketose–aldose epimers), rather than the formation...

  8. Sugar dosimeters. Part 1. State of the art

    Peimel-Stuglik, Z.

    2008-01-01

    A review of the literature dealing with the possibility of using sugars, in particular sucrose, as dosimetric material is presented. All methods involved were divided according to analytical techniques used in dosimetric signal measurements (polarimetry, spectrophotometry and electron paramagnetic resonance - EPR). Double-signal sugar dosimeters (EPR + spectrophotometry) are also described. (author) [pl

  9. The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells.

    Miao, Yansong; Li, Kwun Yee; Li, Hong-Ye; Yao, Xiaoqiang; Jiang, Liwen

    2008-12-01

    Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.

  10. Mielite transversa como manifestação clínica inicial de linfoma não Hodgkin disseminado e mielopatia vacuolar associada ao HIV: relato de caso Transverse myelitis as initial symptom of disseminated non-Hodgkin lymphoma and HIV-associated vacuolar myelopathy: case report

    Leandro P. de Moura

    1996-06-01

    Full Text Available Linfomas não Hodgkin de alto grau são comumente relatados em pacientes com a síndrome da imunodeficiência adquirida (AIDS. Comprometendo com grande freqüência o sistema nervoso central, particularmente as leptomeninges e os hemisférios cerebrais. O acometimento epidural é pouco freqüente, variando de 3,5% a 8,3% de acordo com os registros da literatura. Os autores relatam o caso de um paciente de 27 anos de idade com AIDS, cuja manifestação clínica inicial da doença linfomatosa disseminada foi a mielite transversa associada à mielopatia vacuolar. Destaca-se a importância do diagnóstico diferencial precoce das mielopatias na AIDS, em virtude da alta malignidade da neoplasia e da evolução extremamente rápida nesses pacientes.Non-Hodgkin lymphoma is frequently seen in AIDS patients usually affecting the central nervous system (CNS, especially the leptomeninges and the cerebral hemispheres. The epidural involvement is rarely described, ranging from 3.5% to 8.3% among the CNS sites. The authors present a case of disseminated non Hodgkin lymphoma associated to vacuolar myelopathy in a 27 years-old male patient with AIDS emphasizing the importance of this differential diagnosis in the myelopathies of AIDS.

  11. Physiological desensitization of carbohydrate permeases and adenylate cyclase to regulation by the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium. Involvement of adenosine cyclic 3',5'-phosphate and inducer.

    Saier, M H; Keeler, D K; Feucht, B U

    1982-03-10

    Adenylate cyclase and a number of carbohydrate transport systems are subject to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. These sensitive carbohydrate transport systems are desensitized to regulation by the phosphotransferase system, and adenylate cyclase is deactivated when cells are grown in medium containing cyclic AMP. These effects are specific for cyclic AMP and are potentiated by the genetic loss of cyclic AMP phosphodiesterase. Inclusion in the growth medium of an inducer of a sensitive transport system also promotes desensitization of that particular transport system. Inducer-promoted desensitization is specific for the particular target transport system, while cyclic AMP-promoted desensitization is general and affects several systems. Desensitization of the permeases to regulation, and inactivation of adenylate cyclase, are slow processes which are blocked by chloramphenicol and are therefore presumably dependent on protein synthesis. Several sugar substrates of the phosphotransferase system are capable of regulating the sensitive carbohydrate transport systems. The evidence suggests that desensitization to this regulation does not result from a direct effect on the functioning of Enzyme I, a small heat-stable protein of the phosphotransferase system, HPr, or an Enzyme II of the phosphotransferase system, but specifically uncouples the permease systems from regulation.

  12. Evolutionary divergence of plant borate exporters and critical amino acid residues for the polar localization and boron-dependent vacuolar sorting of AtBOR1

    Wakuta, Shinji

    2015-01-24

    Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range of conditions. In this study, we examined the evolutionary divergence of BORs among terrestrial plants and showed that the lycophyte Selaginella moellendorffii and angiosperms have evolved two types of BOR (clades I and II). Clade I includes AtBOR1 and homologs previously shown to be involved in efficient transport of B under conditions of limited B availability. AtBOR1 shows polar localization in the plasma membrane and high-B-induced vacuolar sorting, important features for efficient B transport under low-B conditions, and rapid down-regulation to avoid B toxicity. Clade II includes AtBOR4 and barley Bot1 involved in B exclusion for high-B tolerance. We showed, using yeast complementation and B transport assays, that three genes in S. moellendorffii, SmBOR1 in clade I and SmBOR3 and SmBOR4 in clade II, encode functional BORs. Furthermore, amino acid sequence alignments identified an acidic di-leucine motif unique in clade I BORs. Mutational analysis of AtBOR1 revealed that the acidic di-leucine motif is required for the polarity and high-B-induced vacuolar sorting of AtBOR1. Our data clearly indicated that the common ancestor of vascular plants had already acquired two types of BOR for low- and high-B tolerance, and that the BOR family evolved to establish B tolerance in each lineage by adapting to their environments. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  13. Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells

    Mitchell, Gabriel

    2017-01-01

    Listeria monocytogenes causes listeriosis, a foodborne disease that poses serious risks to fetuses, newborns and immunocompromised adults. This intracellular bacterial pathogen proliferates in the host cytosol and exploits the host actin polymerization machinery to spread from cell-to-cell and disseminate in the host. Here, we report that during several days of infection in human hepatocytes or trophoblast cells, L. monocytogenes switches from this active motile lifestyle to a stage of persistence in vacuoles. Upon intercellular spread, bacteria gradually stopped producing the actin-nucleating protein ActA and became trapped in lysosome-like vacuoles termed Listeria-Containing Vacuoles (LisCVs). Subpopulations of bacteria resisted degradation in LisCVs and entered a slow/non-replicative state. During the subculture of host cells harboring LisCVs, bacteria showed a capacity to cycle between the vacuolar and the actin-based motility stages. When ActA was absent, such as in ΔactA mutants, vacuolar bacteria parasitized host cells in the so-called “viable but non-culturable” state (VBNC), preventing their detection by conventional colony counting methods. The exposure of infected cells to high doses of gentamicin did not trigger the formation of LisCVs, but selected for vacuolar and VBNC bacteria. Together, these results reveal the ability of L. monocytogenes to enter a persistent state in a subset of epithelial cells, which may favor the asymptomatic carriage of this pathogen, lengthen the incubation period of listeriosis, and promote bacterial survival during antibiotic therapy. PMID:29190284

  14. Sugar, Pressure and Pregnancy

    2017.v33i1.337. 1. Van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med 2001;345(19):1359-1367. https://doi.org/10.1056/nejmoa011300. 2. The NICE-SUGAR Study Investigators. Intensive ...

  15. The Maple Sugar Festival

    Johnston, Basil

    1978-01-01

    Describing the Iroquoi's Maple Sugar Festival, this article details the symbolism of renewal, becoming, and regeneration celebrated by the Iroquoi as the sap from the maple trees begins to flow each year. The symbolic role of woman, the sweet sap itself, and man's fellow creatures are described. (JC)

  16. Sugars, exercise and health.

    Codella, Roberto; Terruzzi, Ileana; Luzi, Livio

    2017-12-15

    There is a direct link between a variety of addictions and mood states to which exercise could be relieving. Sugar addiction has been recently counted as another binge/compulsive/addictive eating behavior, differently induced, leading to a high-significant health problem. Regularly exercising at moderate intensity has been shown to efficiently and positively impact upon physiological imbalances caused by several morbid conditions, including affective disorders. Even in a wider set of physchiatric diseases, physical exercise has been prescribed as a complementary therapeutic strategy. A comprehensive literature search was carried out in the Cochrane Library and MEDLINE databases (search terms: sugar addiction, food craving, exercise therapy, training, physical fitness, physical activity, rehabilitation and aerobic). Seeking high-sugar diets, also in a reward- or craving-addiction fashion, can generate drastic metabolic derangements, often interpolated with affective disorders, for which exercise may represent a valuable, universal, non-pharmachological barrier. More research in humans is needed to confirm potential exercise-mechanisms that may break the bond between sugar over-consumption and affective disorders. The purpose of this review is to address the importance of physical exercise in reversing the gloomy scenario of unhealthy diets and sedentary lifestyles in our modern society. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Inorganic polyphosphate in the yeast Saccharomyces cerevisiae with a mutation disturbing the function of vacuolar ATPase.

    Tomaschevsky, A A; Ryasanova, L P; Kulakovskaya, T V; Kulaev, I S

    2010-08-01

    A mutation in the vma2 gene disturbing V-ATPase function in the yeast Saccharomyces cerevisiae results in a five- and threefold decrease in inorganic polyphosphate content in the stationary and active phases of growth on glucose, respectively. The average polyphosphate chain length in the mutant cells is decreased. The mutation does not prevent polyphosphate utilization during cultivation in a phosphate-deficient medium and recovery of its level on reinoculation in complete medium after phosphate deficiency. The content of short chain acid-soluble polyphosphates is recovered first. It is supposed that these polyphosphates are less dependent on the electrochemical gradient on the vacuolar membrane.

  18. Transient anterior subcapsular vacuolar change of the crystalline lens in patients after posterior chamber phakic intraocular lens implantation.

    Chung, Jin Kwon; Shin, Jin Hee; Lee, Sung Jin

    2013-10-25

    We present two cases of transient vacuolar changes in the anterior subcapsular space of the crystalline lens in patients after posterior chamber phakic intraocular lens implantation. Implantable collamer lenses (ICL) were implanted in healthy myopic patients. Vacuolar changes developed just after the irrigating procedure through the narrow space between the ICL and the crystalline lens. Slit-lamp examinations and spectral domain optical coherence tomography showed bleb-like lesions in the anterior subcapsular space of one eye in each case, though the lesions gradually improved without visual deterioration. Consequently, the lesions turned into a few anterior subcapsular small faint opacities. Direct irrigation of the narrow space confined by the ICL and the crystalline lens is at risk for the development of vacuolar changes in the crystalline lens. The observed spontaneous reversal indicates that surgeons should not rush to surgical intervention but rather opt for close follow over several weeks.

  19. A chemical perspective on transcriptional fidelity dominant contributions of sugar integrity revealed by unlocked nucleic acids

    Xu, Liang; Plouffe, Steven W; Chong, Jenny

    2013-01-01

    Transcription unlocked: A synthetic chemical biology approach involving unlocked nucleic acids was used to dissect the contribution of sugar backbone integrity to the RNA Polymerase II (Pol II) transcription process. An unexpected dominant role for sugar-ring integrity in Pol II transcriptional...

  20. Alterations in reducing sugar in Triticum aestivum under irrigated ...

    DELL

    2012-03-13

    Mar 13, 2012 ... metabolic pathways. Among the major effects are those involving carbohydrate .... results on the effect of water and salt stress on sugar accumulation by many .... genotypic differences in osmoregulation in wheat. Aust. J. Plant.

  1. Monitoring Your Blood Sugar Level

    ... and NutritionHealth Insurance: Understanding What It CoversHigh Homocysteine Level: How It Affects Your Blood VesselsUnderstanding Your Medical ... Health Resources Healthcare Management Monitoring Your Blood Sugar Level Monitoring Your Blood Sugar Level Share Print What ...

  2. Manage your blood sugar (image)

    Checking your blood sugar levels often and writing down the results will tell you how well you are managing your diabetes so you ... possible. The best times to check your blood sugar are before meals and at bedtime. Your blood ...

  3. 76 FR 62339 - Domestic Sugar Program-2011-Crop Cane Sugar and Beet Sugar Marketing Allotments and Company...

    2011-10-07

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Domestic Sugar Program--2011-Crop Cane Sugar and Beet Sugar Marketing Allotments and Company Allocations AGENCY: Commodity Credit Corporation... the fiscal year (FY) 2012 State sugar marketing allotments and company allocations to sugarcane and...

  4. Vacuolar H+ -ATPase c protects glial cell death induced by sodium nitroprusside under glutathione-depleted condition.

    Byun, Yu Jeong; Lee, Seong-Beom; Lee, Hwa Ok; Son, Min Jeong; Kim, Ho-Shik; Kwon, Oh-Joo; Jeong, Seong-Whan

    2011-08-01

    We examined the role of the c subunit (ATP6L) of vacuolar H(+) -ATPase and its molecular mechanisms in glial cell death induced by sodium nitroprusside (SNP). ATP6L siRNA-transfected cells treated with SNP showed a significant increase in cytotoxicity under glutathione (GSH)-depleted conditions after pretreatment with buthionine sulfoximine, but reduction of ATP6L did not affect the regulation of lysosomal pH in analyses with lysosomal pH-dependent fluorescence probes. Photodegraded SNP and ferrous sulfate induced cytotoxicity with the same pattern as that of SNP, but SNAP and potassium cyanide did not show activity. Pretreatment of the transfected cells with deferoxamine (DFO) reduced ROS production and significantly inhibited the cytotoxicity, which indicates that primarily iron rather than nitric oxide or cyanide from SNP contributes to cell death. Involvement of apoptotic processes in the cells was not shown. Pretreatment with JNK or p38 chemical inhibitor significantly inhibited the cytotoxicity, and we also confirmed that the MAPKs were activated in the cells by immunoblot analysis. Significant increase of LC3-II conversion was observed in the cells, and the conversions were inhibited by cotransfection of the MAPK siRNAs and pretreatment with DFO. Introduction of Atg5 siRNA inhibited the cytotoxicity and inhibited the activation of MAPKs and the conversion of LC3. We finally confirmed autophagic cell death and involvement of MAPKs by observation of autophagic vacuoles via electron microscopy. These data suggest that ATP6L has a protective role against SNP-induced autophagic cell death via inhibition of JNK and p38 in GSH-depleted glial cells. Copyright © 2011 Wiley-Liss, Inc.

  5. Impacts of Sugar Import Policy on Sugar Production in Indonesia

    Suryantoro, Agustinus; Susilo, Albertus Magnus; Supriyono, Supriyono

    2013-01-01

    Production of sugar unful lled consumption of Indonesia society. The lack of consumption and productionhave ful lled by import. Assumption national consumption 2,7 million ton, Indonesia will import sugar in 2013predicted about 300.000 ton (Tempo.co, August, 21, 2012).The aims in general of this research are to understand the impact of sugar import policy on sugar production.Especially (1) to understand the factors that in uence sugar import price, (2) to understand impact of sugarimport pric...

  6. Carbohydrates, Sugar, and Your Child

    ... carbs are: simple carbohydrates (or simple sugars): including fructose, glucose, and lactose, which also are found in nutritious ... sugar, check the ingredients list for sugar, corn syrup, or other sweeteners, such as dextrose, fructose, honey, or molasses, to name just a few. ...

  7. Abscisic acid induction of vacuolar H+-ATPase activity in mesembryanthemum crystallinum is developmentally regulated

    Barkla; Vera-Estrella; Maldonado-Gama; Pantoja

    1999-07-01

    Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways.

  8. Starches, Sugars and Obesity

    Erik E. J. G. Aller

    2011-03-01

    Full Text Available The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages.

  9. Identification of a probable pore-forming domain in the multimeric vacuolar anion channel AtALMT9.

    Zhang, Jingbo; Baetz, Ulrike; Krügel, Undine; Martinoia, Enrico; De Angeli, Alexis

    2013-10-01

    Aluminum-activated malate transporters (ALMTs) form an important family of anion channels involved in fundamental physiological processes in plants. Because of their importance, the role of ALMTs in plant physiology is studied extensively. In contrast, the structural basis of their functional properties is largely unknown. This lack of information limits the understanding of the functional and physiological differences between ALMTs and their impact on anion transport in plants. This study aimed at investigating the structural organization of the transmembrane domain of the Arabidopsis (Arabidopsis thaliana) vacuolar channel AtALMT9. For that purpose, we performed a large-scale mutagenesis analysis and found two residues that form a salt bridge between the first and second putative transmembrane α-helices (TMα1 and TMα2). Furthermore, using a combination of pharmacological and mutagenesis approaches, we identified citrate as an "open channel blocker" of AtALMT9 and used this tool to examine the inhibition sensitivity of different point mutants of highly conserved amino acid residues. By this means, we found a stretch within the cytosolic moiety of the TMα5 that is a probable pore-forming domain. Moreover, using a citrate-insensitive AtALMT9 mutant and biochemical approaches, we could demonstrate that AtALMT9 forms a multimeric complex that is supposedly composed of four subunits. In summary, our data provide, to our knowledge, the first evidence about the structural organization of an ion channel of the ALMT family. We suggest that AtALMT9 is a tetramer and that the TMα5 domains of the subunits contribute to form the pore of this anion channel.

  10. Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase and Zea mays

    Bowman, E.J.; Mandala, S.; Taiz, L.; Bowman, B.J.

    1986-01-01

    The H + translocating ATPase located on vacuolar membranes of Neurospora crassa was partially purified by solubilization in two detergents, Triton X-100 and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, followed by centrifugation on sucrose density gradients. Two polypeptides of M/sub r/ ≅ 70,000 and ≅ 62,000 consistently migrated with activity, along with several minor bands of lower molecular weight. Radioactively labeled inhibitors of ATPase activity, N-[ 14 C]ethylmaleimide and 7-chloro-4-nitro[ 14 C]benzo-2-oxa-1,3-diazole, labeled the M/sub r/ ≅ 70,000 polypeptide; this labeling was reduced in the presence of ATP. N,N'-[ 14 C]dicyclohexylcarbodiimide labeled a polypeptide of M/sub r/ ≅ 15,000. Estimation of the functional size of the vacuolar membrane ATPase by radiation inactivation gave a value of M/sub r/ 5.2 x 10 5 , 10-15% larger than the mitochondrial ATPase. The Neurospora vacuolar ATPase showed no crossreactivity with antiserum to plasma membrane or mitochrondrial ATPase but stongly crossreacted with antiserum against a polypeptide of M/sub r/ ≅ 70,000 associated with the tonoplast ATPase of corn coleoptiles. These results suggest that fungal and plant vacuolar ATPases may be large multisubunit complexes, somewhat similar to, but immunologically distinct from, known F 0 F 1 ATPases

  11. Job Sharing in the Endomembrane System: Vacuolar Acidification Requires the Combined Activity of V-ATPase and V-PPase.

    Kriegel, Anne; Andrés, Zaida; Medzihradszky, Anna; Krüger, Falco; Scholl, Stefan; Delang, Simon; Patir-Nebioglu, M Görkem; Gute, Gezahegn; Yang, Haibing; Murphy, Angus S; Peer, Wendy Ann; Pfeiffer, Anne; Krebs, Melanie; Lohmann, Jan U; Schumacher, Karin

    2015-12-01

    The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H(+)-pyrophosphatase (V-PPase) and the vacuolar H(+)-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH. © 2015 American Society of Plant Biologists. All rights reserved.

  12. Ligand recognition and domain structure of Vps10p, a vacuolar protein sorting receptor in Saccharomyces cerevisiae

    Jørgensen, M U; Emr, S D; Winther, Jakob R.

    1999-01-01

    Vp10p is a receptor that sorts several different vacuolar proteins by cycling between a late Golgi compartment and the endosome. The cytoplasmic tail of Vps10p is necessary for the recycling, whereas the lumenal domain is predicted to interact with the soluble ligands. We have studied ligand bind...

  13. Mutational analysis of the vacuolar sorting signal of procarboxypeptidase Y in yeast shows a low requirement for sequence conservation

    van Voorst, F; Kielland-Brandt, Morten; Winther, Jakob R.

    1996-01-01

    The core of the vacuolar targeting signal of yeast carboxypeptidase Y (CPY) is recognized by the receptor Vps10p and consists of four contiguous amino acid residues, Gln24-Arg-Pro-Leu27, near the amino terminus of the propeptide (Valls, L.A., Winther, J. R., and Stevens, T. H. (1990) J. Cell Biol...

  14. Yeast carboxypeptidase Y requires glycosylation for efficient intracellular transport, but not for vacuolar sorting, in vivo stability, or activity

    Winther, Jakob R.; Stevens, T H; Kielland-Brandt, Morten

    1991-01-01

    Functions of the carbohydrate side chains of the yeast vacuolar enzyme carboxypeptidase Y (CPY) were investigated by removal, through site-directed mutagenesis, of the sequences which act as signals for N-linked glycosylation. The mutant forms of the enzyme were analysed with respect to activity...

  15. The patatin-like protein from the latex of Hevea brasiliensis (Hev b 7) is not a vacuolar protein

    Jekel, PA; Hofsteenge, J; Beintema, JJ

    Upon centrifugation, rubber latex is divided into a layer of rubber particles, the cytosol, and the lutoid-body fraction, which is of vacuolar origin. One of the proteins isolated from the lutoid-body fraction is a protein with a molecular mass of 43 kDa, which has esterase activity on

  16. The ultrasound-assisted sugar extraction from sugar beet cossettes

    Stasiak, D.M.

    2005-01-01

    The aim of this work was to study the ultrasound-assisted water extraction of sugar from sugar beet cossettes. The ultrasound bath device (25 kHz, 200 W) was used. The sonication accelerated sugar diffusion at both temperatures 18 deg C and 77.6 deg C and gave the higher level of dry matter content SS (4-6 percent) and sugar content CK (7-22 percent) in juice. The SS and CK depended on time of exposition, time and temperature of extraction. In particular, the effects of 5 min ultrasound-assisted extraction were equal to 20 min extraction in traditional conditions. The shorter time, lower temperature, higher efficiency and purity of juice could be the effects of sugar extraction with ultrasound. The change of thickness of diffusion membrane, microflows in tissue as well as it's environment caused by ultrasound was the reason of acceleration of sugar extraction

  17. Free Sugar Profile in Cycads

    Thomas Edward Marler

    2014-10-01

    Full Text Available The sugars fructose, glucose, maltose, and sucrose were quantified in seven tissues of Zamia muricata Willd. to determine their distribution throughout various organs of a model cycad species, and in lateral structural roots of 18 cycad species to determine the variation in sugar concentration and composition among species representing every cycad genus. Taproot and lateral structural roots contained more sugars than leaf, stem, female strobilus, or coralloid roots. For example, taproot sugar concentration was 6.4-fold greater than stem sugar concentration. The dominant root sugars were glucose and fructose, and the only detected stem sugar was sucrose. Sucrose also dominated the sugar profile for leaflet and coralloid root tissue, and fructose was the dominant sugar in female strobilus tissue. Maltose was a minor constituent of taproot, leaflet, and female strobilus tissue, but absent in other tissues. The concentration of total free sugars and each of the four sugars did not differ among genera or families. Stoichiometric relationships among the sugars, such as the quotient hexoses/disaccharides, differed among organs and families. Although anecdotal reports on cycad starch have been abundant due to its historical use as human food and the voluminous medical research invested into cycad neurotoxins, this is the first report on the sugar component of the non-structural carbohydrate profile of cycads. Fructose, glucose, and sucrose are abundant in cycad tissues, with their relative abundance highly contrasting among organs. Their importance as forms of carbon storage, messengers of information, or regulators of cycad metabolism have not been determined to date.

  18. Sap-Sugar Content of Grafted Sugar Maple Trees

    Maurice E. Jr. Demeritt; Maurice E. Jr. Demeritt

    1985-01-01

    In March and April 1983, 289 and 196 young grafted sugar maple trees were tapped and evaluated for sap-sugar content. In April, sap was collected from taps both above and below the graft union. Diameter of all tapped trees at 18 inches above the ground was measured. Analysis of the data revealed that: (1) trees selected for high sugar yield cannot be reproduced by...

  19. STATISTICAL ANALYSIS OF RAW SUGAR MATERIAL FOR SUGAR PRODUCER COMPLEX

    A. A. Gromkovskii; O. I. Sherstyuk

    2015-01-01

    Summary. In the article examines the statistical data on the development of average weight and average sugar content of sugar beet roots. The successful solution of the problem of forecasting these raw indices is essential for solving problems of sugar producing complex control. In the paper by calculating the autocorrelation function demonstrated that the predominant trend component of the growth raw characteristics. For construct the prediction model is proposed to use an autoregressive fir...

  20. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space.

    Coppens, Isabelle; Dunn, Joe Dan; Romano, Julia D; Pypaert, Marc; Zhang, Hui; Boothroyd, John C; Joiner, Keith A

    2006-04-21

    The intracellular compartment harboring Toxoplasma gondii satisfies the parasite's nutritional needs for rapid growth in mammalian cells. We demonstrate that the parasitophorous vacuole (PV) of T. gondii accumulates material coming from the host mammalian cell via the exploitation of the host endo-lysosomal system. The parasite actively recruits host microtubules, resulting in selective attraction of endo-lysosomes to the PV. Microtubule-based invaginations of the PV membrane serve as conduits for the delivery of host endo-lysosomes within the PV. These tubular conduits are decorated by a parasite coat, including the tubulogenic protein GRA7, which acts like a garrote that sequesters host endocytic organelles in the vacuolar space. These data define an unanticipated process allowing the parasite intimate and concentrated access to a diverse range of low molecular weight components produced by the endo-lysosomal system. More generally, they identify a unique mechanism for unidirectional transport and sequestration of host organelles.

  1. Targeting vacuolar H+-ATPases as a new strategy against cancer.

    Fais, Stefano; De Milito, Angelo; You, Haiyan; Qin, Wenxin

    2007-11-15

    Growing evidence suggests a key role of tumor acidic microenvironment in cancer development, progression, and metastasis. As a consequence, the need for compounds that specifically target the mechanism(s) responsible for the low pH of tumors is increasing. Among the key regulators of the tumor acidic microenvironment, vacuolar H(+)-ATPases (V-ATPases) play an important role. These proteins cover a number of functions in a variety of normal as well as tumor cells, in which they pump ions across the membranes. We discuss here some recent results showing that a molecular inhibition of V-ATPases by small interfering RNA in vivo as well as a pharmacologic inhibition through proton pump inhibitors led to tumor cytotoxicity and marked inhibition of human tumor growth in xenograft models. These results propose V-ATPases as a key target for new strategies in cancer treatment.

  2. I Mend It With Sugar

    Lindvall, Charlotta

    2015-01-01

    I mend it with sugar         Abstract   "Gluttony" and "sloth" is the sugar addictions best friend, or could it be that the addiction comes out of a disturbed hormone production caused by the environment that surrounds us? Trying to understand my own sugar addiction I weave in my personal story into my artistic research around this subject. The sugar might be the cause of the pandemic obesity and that's why it has to bee brought up into the light from its darkness down the basement of the fo...

  3. Expression analysis of Arabidopsis vacuolar sorting receptor 3 reveals a putative function in guard cells.

    Avila, Emily L; Brown, Michelle; Pan, Songqin; Desikan, Radhika; Neill, Steven J; Girke, Thomas; Surpin, Marci; Raikhel, Natasha V

    2008-01-01

    Vacuolar sorting receptors (VSRs) are responsible for the proper targeting of soluble cargo proteins to their destination compartments. The Arabidopsis genome encodes seven VSRs. In this work, the spatio-temporal expression of one of the members of this gene family, AtVSR3, was determined by RT-PCR and promoter::reporter gene fusions. AtVSR3 was expressed specifically in guard cells. Consequently, a reverse genetics approach was taken to determine the function of AtVSR3 by using RNA interference (RNAi) technology. Plants expressing little or no AtVSR3 transcript had a compressed life cycle, bolting approximately 1 week earlier and senescing up to 2 weeks earlier than the wild-type parent line. While the development and distribution of stomata in AtVSR3 RNAi plants appeared normal, stomatal function was altered. The guard cells of mutant plants did not close in response to abscisic acid treatment, and the mean leaf temperatures of the RNAi plants were on average 0.8 degrees C lower than both wild type and another vacuolar sorting receptor mutant, atvsr1-1. Furthermore, the loss of AtVSR3 protein caused the accumulation of nitric oxide and hydrogen peroxide, signalling molecules implicated in the regulation of stomatal opening and closing. Finally, proteomics and western blot analyses of cellular proteins isolated from wild-type and AtVSR3 RNAi leaves showed that phospholipase Dgamma, which may play a role in abscisic acid signalling, accumulated to higher levels in AtVSR3 RNAi guard cells. Thus, AtVSR3 may play an important role in responses to plant stress.

  4. Abscisic Acid Induction of Vacuolar H+-ATPase Activity in Mesembryanthemum crystallinum Is Developmentally Regulated1

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Maldonado-Gama, Minerva; Pantoja, Omar

    1999-01-01

    Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways. PMID:10398716

  5. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Narendranath Reddy Chintagari

    2010-02-01

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  6. Anaerobic Treatment of Cane Sugar Effluent from Muhoroni Sugar ...

    It was therefore concluded that anaerobic treatment, particularly with pH control and seeding shows potential in first stage management of sugar mill wastewater. Keywords: cane sugar mill effluent, anaerobic treatment, batch reactor, waste stabilization ponds. Journal of Civil Engineering Research and Practice Vol.

  7. Method for determining the composition of the sugar moiety of a sugar containing compound

    2016-01-01

    The present invention relates to methods of labeling sugar moieties of sugar containing compounds including glycopeptides. The compounds presented in the present invention facilitate reliable detection of sugar moieties of sugar containing compounds by a combination of spectroscopy methods...

  8. Suppression of the vacuolar invertase gene delays senescent sweetening in chipping potatoes

    Background: Potato chip processors require potato tubers that meet quality specifications for fried chip color, and color depends largely upon tuber sugar contents. At later times in storage, potatoes accumulate sucrose, glucose and fructose. This developmental process, senescent sweetening, manifes...

  9. Sugars, the clock and transition to flowering

    Mohammad Reza eBolouri Moghaddam

    2013-02-01

    Full Text Available Sugars do not only act as source of energy, but they also act as signals in plants. This mini review summarizes the emerging links between sucrose-mediated signaling and the cellular networks involved in flowering time control and defense. Cross-talks with gibberellin (GA and jasmonate (JA signaling pathways are highlighted. The circadian clock fulfills a crucial role at the heart of cellular networks and the bilateral relation between sugar signaling and the clock is discussed. It is proposed that important factors controlling plant growth (DELLAs, PIFs, invertases and trehalose- 6-phosphate or T6P might fulfill central roles in the transition to flowering as well. The emerging concept of ‘sweet immunity’, modulated by the clock, might at least partly rely on a sucrose-specific signaling pathway that needs further exploration.

  10. Sugar Sugar – don’t be misled / laat je niet misleiden

    Toebes, Brigit

    2017-01-01

    NRC Handelsblad’s Saturday 25 November issue contains an entry of eleven pages entirely devoted to sugar. It discusses a broad range of topics related to sugar, including the role of sugar throughout the centuries, sugar consumption in the Netherlands, the amount of sugar in bread, and sugar

  11. When Blood Sugar Is Too Low

    ... Videos for Educators Search English Español When Blood Sugar Is Too Low KidsHealth / For Kids / When Blood ... get too low. The Causes of Low Blood Sugar Low blood sugar levels can happen to kids ...

  12. Life Cycle Assessment of Sugar Production (VB)

    Teljigovic, Mehmed; Mengiardi, Jon; Factor, Gabriela

    1999-01-01

    The environmental organisation NOAH has proposed carrying out an environmental assessment of two different sugar productions (using sugar beet or sugar cane) in order to illustrate which of the systems has a higher environmental impact for sugar consumption in Denmark. Therefore a comparison...... will be made between sugar from sugar beet produced in Denmark versus sugar produces from sugar cane in a tropical country, Brazil, and transported afterwards to Denmark. To evaluate the environmental aspects of these two product systems a Life Cycle Assessement (LCA) will be carried out.From the results...... obtained in the present LCA of sugar produces from sugar canes or sugar beet it is difficult to make an immediate choice between the two possibilities. Indeed, Quantitative results from the EDIP (Environmental Design of Industrial Products) software are globally similar for both ways of producing sugar...

  13. Involvement of Vacuolar Sequestration and Active Transport in Tolerance of Saccharomyces cerevisiae to Hop Iso-?-Acids

    Hazelwood, L.A.; Walsh, M.C.; Pronk, J.T.; Daran, J.M.

    2009-01-01

    The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop -acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso--acids have hitherto been restricted to lactic acid bacteria.

  14. ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis[OPEN

    Baetz, Ulrike; Huck, Nicola V.; Zhang, Jingbo

    2017-01-01

    Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2−. Efflux of Mal2− from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2− release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2− efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2− efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2− efflux during ABA-induced stomatal closure and its activity depends on phosphorylation. PMID:28874508

  15. Choline but not its derivative betaine blocks slow vacuolar channels in the halophyte Chenopodium quinoa: implications for salinity stress responses.

    Pottosin, Igor; Bonales-Alatorre, Edgar; Shabala, Sergey

    2014-11-03

    Activity of tonoplast slow vacuolar (SV, or TPC1) channels has to be under a tight control, to avoid undesirable leak of cations stored in the vacuole. This is particularly important for salt-grown plants, to ensure efficient vacuolar Na(+) sequestration. In this study we show that choline, a cationic precursor of glycine betaine, efficiently blocks SV channels in leaf and root vacuoles of the two chenopods, Chenopodium quinoa (halophyte) and Beta vulgaris (glycophyte). At the same time, betaine and proline, two major cytosolic organic osmolytes, have no significant effect on SV channel activity. Physiological implications of these findings are discussed. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Simple Sugar Intake and Hepatocellular Carcinoma: Epidemiological and Mechanistic Insight

    Juan Carlos Laguna

    2014-12-01

    Full Text Available Sugar intake has dramatically increased during the last few decades. Specifically, there has been a clear trend towards higher consumption of fructose and high fructose corn syrup, which are the most common added sugars in processed food, soft drinks and other sweetened beverages. Although still controversial, this rising trend in simple sugar consumption has been positively associated with weight gain and obesity, insulin resistance and type 2 diabetes mellitus and non-alcoholic fatty liver disease. Interestingly, all of these metabolic alterations have also been related to the development of hepatocellular carcinoma. The purpose of this review is to discuss the evidence coming from epidemiological studies and data from animal models relating the consumption of simple sugars, and specifically fructose, with an increased risk of hepatocellular carcinoma and to gain insight into the putative molecular mechanisms involved.

  17. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping

    2012-01-01

    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  18. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+ -pumping pyrophosphatase in pepper plants.

    Vigani, Gianpiero; Rolli, Eleonora; Marasco, Ramona; Dell'Orto, Marta; Michoud, Grégoire; Soussi, Asma; Raddadi, Noura; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2018-05-22

    It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H + -ATPase (V-ATPase) and H + -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H + -ATPase (V-ATPase) and H + -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Vacuolar Localization of Endoproteinases EP(1) and EP(2) in Barley Mesophyll Cells.

    Thayer, S S; Huffaker, R C

    1984-05-01

    The localization of two previously characterized endoproteinases (EP(1) and EP(2)) that comprise more than 95% of the protease activity in primary Hordeum vulgare L. var Numar leaves was determined. Intact vacuoles released from washed mesophyll protoplasts by gentle osmotic shock and increase in pH, were purified by flotation through a four-step Ficoll gradient. These vacuoles contained endoproteinases that rapidly degraded purified barley ribulose-1,5-bisphosphate carboxylase (RuBPCase) substrate. Breakdown products and extent of digestion of RuBPCase were determined using 12% polyacrylamide-sodium dodecyl sulfate gels. Coomassie brilliant blue- or silver-stained gels were scanned, and the peaks were integrated to provide quantitative information. The characteristics of the vacuolar endoproteinases (e.g. sensitivity to various inhibitors and activators, and the molecular weights of the breakdown products, i.e. peptide maps) closely resembled those of purified EP(1) and partially purified EP(2). It is therefore concluded that EP(1) and EP(2) are localized in the vacuoles of mesophyll cells.

  20. Regulation of vacuolar H{sup +}-ATPase in microglia by RANKL

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Ochotny, Noelle [Department of Pharmacology, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Manolson, Morris F. [Faculty of Dentistry, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Holliday, L. Shannon, E-mail: sholliday@dental.ufl.edu [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610 (United States)

    2009-11-06

    Vacuolar H{sup +}-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor {kappa}B-ligand (RANKL). We found that Receptor Activator of Nuclear Factor {kappa}B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  1. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases

    Mazhab-Jafari, Mohammad T.; Rubinstein, John L.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) has significantly advanced our understanding of molecular structure in biology. Recent innovations in both hardware and software have made cryo-EM a viable alternative for targets that are not amenable to x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Cryo-EM has even become the method of choice in some situations where x-ray crystallography and NMR spectroscopy are possible but where cryo-EM can determine structures at higher resolution or with less time or effort. Rotary adenosine triphosphatases (ATPases) are crucial to the maintenance of cellular homeostasis. These enzymes couple the synthesis or hydrolysis of adenosine triphosphate to the use or production of a transmembrane electrochemical ion gradient, respectively. However, the membrane-embedded nature and conformational heterogeneity of intact rotary ATPases have prevented their high-resolution structural analysis to date. Recent application of cryo-EM methods to the different types of rotary ATPase has led to sudden advances in understanding the structure and function of these enzymes, revealing significant conformational heterogeneity and characteristic transmembrane α helices that are highly tilted with respect to the membrane. In this Review, we will discuss what has been learned recently about rotary ATPase structure and function, with a particular focus on the vacuolar-type ATPases. PMID:27532044

  2. Functional size of vacuolar H+ pumps: Estimates from radiation inactivation studies

    Sarafian, V.; Poole, R.J.

    1991-01-01

    The PPase and the ATPase from red beet (Beta vulgaris) vacuolar membranes were subjected to radiation inactivation by a 60 Co source in both the native tonoplast and detergent-solubilized states, in order to determine their target molecular sizes. Analysis of the residual phosphohydrolytic and proton transport activities, after exposure to varying doses of radiation, yielded exponential relationships between the activities and radiation doses. The deduced target molecular sizes for PPase activity in native and solubilized membranes were 125kD and 259kD respectively and 327kD for H + -transport. This suggests that the minimum number of subunits of 67kD for PPi hydrolysis is two in the native state and four after Triton X-100 solubilization. At least four subunits would be required for H + -translocation. Analysis of the ATPase inactivation patterns revealed target sizes of 384kD and 495kD for ATP hydrolysis in native and solubilized tonoplast respectively and 430kD for H + -transport. These results suggest that the minimum size for hydrolytic or transport functions is relatively constant for the ATPase

  3. Vacuolar biogenesis and aquaporin expression at early germination of broad bean seeds.

    Novikova, Galina V; Tournaire-Roux, Colette; Sinkevich, Irina A; Lityagina, Snejana V; Maurel, Christophe; Obroucheva, Natalie

    2014-09-01

    A key event in seed germination is water uptake-mediated growth initiation in embryonic axes. Vicia faba var. minor (broad bean) seeds were used for studying cell growth, vacuolar biogenesis, expression and function of tonoplast water channel proteins (aquaporins) in embryonic axes during seed imbibition, radicle emergence and growth. Hypocotyl and radicle basal cells showed vacuole restoration from protein storage vacuoles, whereas de novo vacuole formation from provacuoles was observed in cells newly produced by root meristem. cDNA fragments of seven novel aquaporin isoforms including five Tonoplast Intrinsic Proteins (TIP) from three sub-types were amplified by PCR. The expression was probed using q-RT-PCR and when possible with isoform-specific antibodies. Decreased expression of TIP3s was associated to the transformation of protein storage vacuoles to vacuoles, whereas enhanced expression of a TIP2 homologue was closely linked to the fast cell elongation. Water channel functioning checked by inhibitory test with mercuric chloride showed closed water channels prior to growth initiation and active water transport into elongating cells. The data point to a crucial role of tonoplast aquaporins during germination, especially during growth of embryonic axes, due to accelerated water uptake and vacuole enlargement resulting in rapid cell elongation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Vacuolar processing enzyme plays an essential role in the crystalline structure of glutelin in rice seed.

    Kumamaru, Toshihiro; Uemura, Yuji; Inoue, Yoshimi; Takemoto, Yoko; Siddiqui, Sadar Uddin; Ogawa, Masahiro; Hara-Nishimura, Ikuko; Satoh, Hikaru

    2010-01-01

    To identify the function of genes that regulate the processing of proglutelin, we performed an analysis of glup3 mutants, which accumulates excess amounts of proglutelin and lack the vacuolar processing enzyme (VPE). VPE activity in developing seeds from glup3 lines was reduced remarkably compared with the wild type. DNA sequencing of the VPE gene in glup3 mutants revealed either amino acid substitutions or the appearance of a stop codon within the coding region. Microscopic observations showed that alpha-globulin and proglutelin were distributed homogeneously within glup3 protein storage vacuoles (PSVs), and that glup3 PSVs lacked the crystalline lattice structure typical of wild-type PSVs. This suggests that the processing of proglutelin by VPE in rice is essential for proper PSV structure and compartmentalization of storage proteins. Growth retardation in glup3 seedlings was also observed, indicating that the processing of proglutelin influences early seedling development. These findings indicate that storage of glutelin in its mature form as a crystalline structure in PSVs is required for the rapid use of glutelin as a source of amino acids during early seedling development. In conclusion, VPE plays an important role in the formation of protein crystalline structures in PSVs.

  5. Maturation of sugar maple seed

    Clayton M., Jr. Carl; Albert G., Jr. Snow; Albert G. Snow

    1971-01-01

    The seeds of a sugar maple tree (Acer saccharum Marsh.) do not mature at the same time every year. And different trees mature their seeds at different times. So time of year is not a reliable measure of when seeds are ripe. Better criteria are needed. In recent studies we have found that moisture content and color are the best criteria for judging when sugar maple...

  6. Sugar beet processing into alcohol

    Malchenko, A L; Chistyakov, M P; Verzhbitskaya, V A; Tereshchenko, N R

    1963-08-28

    To produce a juice with high sugar content suitable for manufacture of alcohol, sugar beet is subjected to multistage pressing with an extraction following each pressing operation. The solvent in the first extraction is the juice obtained after the second pressing; hot water is used for the second extraction and vinasse for the third. The latter, after pressing, combined with molasses is used for manufacture of yeast.

  7. The integral membrane protein ITM2A, a transcriptional target of PKA-CREB, regulates autophagic flux via interaction with the vacuolar ATPase.

    Namkoong, Sim; Lee, Kang Il; Lee, Jin I; Park, Rackhyun; Lee, Eun-Ju; Jang, Ik-Soon; Park, Junsoo

    2015-01-01

    The PKA-CREB signaling pathway is involved in many cellular processes including autophagy. Recent studies demonstrated that PKA-CREB inhibits autophagy in yeast; however, the role of PKA-CREB signaling in mammalian cell autophagy has not been fully characterized. Here, we report that the integral membrane protein ITM2A expression is positively regulated by PKA-CREB signaling and ITM2A expression interferes with autophagic flux by interacting with vacuolar ATPase (v-ATPase). The ITM2A promoter contains a CRE element, and mutation at the CRE consensus site decreases the promoter activity. Forskolin treatment and PKA expression activate the ITM2A promoter confirming that ITM2A expression is dependent on the PKA-CREB pathway. ITM2A expression results in the accumulation of autophagosomes and interferes with autolysosome formation by blocking autophagic flux. We demonstrated that ITM2A physically interacts with v-ATPase and inhibits lysosomal function. These results support the notion that PKA-CREB signaling pathway regulates ITM2A expression, which negatively regulates autophagic flux by interfering with the function of v-ATPase.

  8. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4.

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-02-03

    Organic acids are essential to fruit flavor. The vacuolar H(+) transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties 'Ordinary Ponkan (OPK)' and an early maturing mutant 'Zaoshu Ponkan (ZPK)'. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis.

  9. A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae.

    Gao, Caiqiu; Wang, Yucheng; Jiang, Bo; Liu, Guifeng; Yu, Lili; Wei, Zhigang; Yang, Chuanping

    2011-02-01

    Plant vacuolar H(+)-ATPase (V-ATPase) plays an important role in response to different adverse environmental conditions. In the present study, we cloned and characterized a V-ATPase c subunit gene (ThVHAc1) from Tamarix hispida. The deduced ThVHAc1 amino acid sequence lacks a signal peptide and ThVHAc1 is a highly hydrophobic protein with four transmembrane regions. A transient expression assay showed that the ThVHAc1-GFP fusion protein is expressed on onion epidermal endomembrane cells. Real-time RT-PCR demonstrated that ThVHAc1 gene expression was induced by NaCl, NaHCO(3), PEG and CdCl(2) stress in T. hispida roots, stems and leaves. Exogenous application of abscisic acid (ABA) also stimulated ThVHAc1 transcript levels in the absence of stress, suggesting that ThVHAc1 is involved in ABA-dependent stress signaling pathway. Furthermore, the transgenic yeast expressing ThVHAc1 increased salt, drought, ultraviolet (UV), oxidative, heavy metal, cold and high temperature tolerance. Our results suggested that the ThVHAc1 gene from T. hispida serves a stress tolerance role in the species.

  10. Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic Calcium Elevations in Arabidopsis during Aphid Feeding[OPEN

    Vincent, Thomas R.; Avramova, Marieta; Canham, James; Higgins, Peter; Bilkey, Natasha; Mugford, Sam T.; Pitino, Marco; Toyota, Masatsugu

    2017-01-01

    A transient rise in cytosolic calcium ion concentration is one of the main signals used by plants in perception of their environment. The role of calcium in the detection of abiotic stress is well documented; however, its role during biotic interactions remains unclear. Here, we use a fluorescent calcium biosensor (GCaMP3) in combination with the green peach aphid (Myzus persicae) as a tool to study Arabidopsis thaliana calcium dynamics in vivo and in real time during a live biotic interaction. We demonstrate rapid and highly localized plant calcium elevations around the feeding sites of M. persicae, and by monitoring aphid feeding behavior electrophysiologically, we demonstrate that these elevations correlate with aphid probing of epidermal and mesophyll cells. Furthermore, we dissect the molecular mechanisms involved, showing that interplay between the plant defense coreceptor BRASSINOSTEROID INSENSITIVE-ASSOCIATED KINASE1 (BAK1), the plasma membrane ion channels GLUTAMATE RECEPTOR-LIKE 3.3 and 3.6 (GLR3.3 and GLR3.6), and the vacuolar ion channel TWO-PORE CHANNEL1 (TPC1) mediate these calcium elevations. Consequently, we identify a link between plant perception of biotic threats by BAK1, cellular calcium entry mediated by GLRs, and intracellular calcium release by TPC1 during a biologically relevant interaction. PMID:28559475

  11. Regulated Assembly of Vacuolar ATPase Is Increased during Cluster Disruption-induced Maturation of Dendritic Cells through a Phosphatidylinositol 3-Kinase/mTOR-dependent Pathway*

    Liberman, Rachel; Bond, Sarah; Shainheit, Mara G.; Stadecker, Miguel J.; Forgac, Michael

    2014-01-01

    The vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps composed of a peripheral V1 domain and a membrane-embedded V0 domain. Regulated assembly of V1 and V0 represents an important regulatory mechanism for controlling V-ATPase activity in vivo. Previous work has shown that V-ATPase assembly increases during maturation of bone marrow-derived dendritic cells induced by activation of Toll-like receptors. This increased assembly is essential for antigen processing, which is dependent upon an acidic lysosomal pH. Cluster disruption of dendritic cells induces a semi-mature phenotype associated with immune tolerance. Thus, semi-mature dendritic cells are able to process and present self-peptides to suppress autoimmune responses. We have investigated V-ATPase assembly in bone marrow-derived, murine dendritic cells and observed an increase in assembly following cluster disruption. This increased assembly is not dependent upon new protein synthesis and is associated with an increase in concanamycin A-sensitive proton transport in FITC-loaded lysosomes. Inhibition of phosphatidylinositol 3-kinase with wortmannin or mTORC1 with rapamycin effectively inhibits the increased assembly observed upon cluster disruption. These results suggest that the phosphatidylinositol 3-kinase/mTOR pathway is involved in controlling V-ATPase assembly during dendritic cell maturation. PMID:24273170

  12. Lipid and sugar profiles of various barley cultivars (Hordeum vulgare

    Pastor Kristian A.

    2015-01-01

    Full Text Available The lipid components and soluble sugars in flour samples of different cultivars of barley (Hordeum vulgare, involving winter malting barley, winter forage barley, spring barley, and hulless barley, were identified. Fatty acids were extracted from flour samples with n-hexane, and derivatized into volatile methyl esters, using TMSH (trimethylsulfonium hydroxide in methanol. Soluble sugars were extracted from defatted and dried samples of barley flour with 96% ethanol, and further derivatized into the corresponding trimethylsilyl (TMS oximes, using hydroxylamine hydrochloride solution and BSTFA (N,O-bis-(trimethylsilyl-trifluoroacetamide. The hexane and alcoholic extracts of barley cultivars were analyzed by GC-MS system. Lipid and sugar compositions were very similar in all barley cultivars. Therefore, multivariate analysis was applied to numerical values of automatically integrated areas of the identified fatty acid methyl esters and TMS oximes of soluble sugars. The application of hierarchical cluster analysis showed a great similarity between the investigated flour samples of barley cultivars, according to their fatty acid content (0.96. Also, significant, but somewhat less similarity was observed regarding the content of soluble sugars (0.70. These preliminary results indicate the possibility of distinguishing flour made of barley, regardless of the variety, from flours made of other cereal species, just by the analysis of the contents of fatty acids and soluble sugars.[Projekat Ministarstva nauke Republike Srbije, br. TR 31066

  13. 76 FR 50285 - Fiscal Year 2012 Tariff-Rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    2011-08-12

    ... for Raw Cane Sugar, Refined and Specialty Sugar and Sugar-Containing Products AGENCY: Office of the... quantity of the tariff-rate quotas for imported raw cane sugar, refined and specialty sugar and sugar...), the United States maintains tariff-rate quotas (TRQs) for imports of raw cane sugar and refined sugar...

  14. 77 FR 57180 - Fiscal Year 2013 Tariff-rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    2012-09-17

    ... Sugar, Refined and Specialty Sugar, and Sugar-Containing Products AGENCY: Office of the United States... quantity of the tariff-rate quotas for imported raw cane sugar, refined and specialty sugar, and sugar... imports of raw cane sugar and refined sugar. Pursuant to Additional U.S. Note 8 to Chapter 17 of the HTS...

  15. pH Regulation of Electrogenic Sugar/H+ Symport in MFS Sugar Permeases

    Bazzone, Andre; Madej, M. Gregor; Kaback, H. Ronald

    2016-01-01

    Bacterial sugar symporters in the Major Facilitator Superfamily (MFS) use the H+ (and in a few cases Na+) electrochemical gradients to achieve active transport of sugar into the cell. Because a number of structures of MFS sugar symporters have been solved recently, molecular insight into the transport mechanism is possible from detailed functional analysis. We present here a comparative electrophysiological study of the lactose permease (LacY), the fucose permease (FucP) and the xylose permease (XylE), which reveals common mechanistic principles and differences. In all three symporters energetically downhill electrogenic sugar/H+ symport is observed. Comparison of the pH dependence of symport at symmetrical pH exhibits broad bell-shaped pH profiles extending over 3 to 6 pH units and a decrease at extremely alkaline pH ≥ 9.4 and at acidic to neutral pH = 4.6–7.5. The pH dependence can be described by an acidic to neutral apparent pK (pKapp) and an alkaline pKapp. Experimental evidence suggests that the alkaline pKapp is due to H+ depletion at the protonation site, while the acidic pKapp is due to inhibition of deprotonation. Since previous studies suggest that a single carboxyl group in LacY (Glu325) may be the only side chain directly involved in H+ translocation and a carboxyl side chain with similar properties has been identified in FucP (Asp46) and XylE (Asp27), the present results imply that the pK of this residue is switched during H+/sugar symport in all three symporters. PMID:27227677

  16. Sugar Price Supports and Taxation

    Dilk, Abby; Savaiano, Dennis A.

    2017-01-01

    Domestic US sugar production has been protected by government policy for the past 82 years, resulting in elevated domestic prices and an estimated annual (2013) $1.4 billion dollar “tax” on consumers. These elevated prices and the simultaneous federal support for domestic corn production have ensured a strong market for high-fructose corn syrup. Americans have dramatically increased their consumption of caloric sweeteners during the same period. Consumption of “empty” calories (ie, foods with low-nutrient/high-caloric density)—sugar and high-fructose corn syrup being the primary sources—is considered by most public health experts to be a key contributing factor to the rise in obesity. There have been substantial efforts to tax sugar-sweetened beverages (SSBs) to both reduce consumption and provide a source of funds for nutrition education, thereby emulating the tobacco tax model. Volume-based SSB taxes levy the tax rate per ounce of liquid, where some are only imposed on beverages with added sugar content exceeding a set threshold. Nonetheless, volume-based taxes have significant limitations in encouraging consumers to reduce their caloric intake due to a lack of transparency at the point of purchase. Thus, it is hypothesized that point-of-purchase, nutrient-specific excise taxes on SSBs would be more effective at reducing sugar consumption. However, all SSB taxes are limited by the possibility that consumers may compensate their decreased intake from SSBs with other high-calorie junk foods. Furthermore, there are no existing studies to provide evidence on how SSB taxes will impact obesity rates in the long term. The paradox of sugar prices is that Americans have paid higher prices for sugar to protect domestic production for more than 80 years, and now, Americans are being asked to pay even more to promote public health. The effective use of sugar taxes should be considered based on their merits in reducing sugar consumption and making available a new

  17. The water footprint of sweeteners and bio-ethanol from sugar cane, sugar beet and maize

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2009-01-01

    Sugar cane and sugar beet are used for sugar for human consumption. In the US, maize is used, amongst others, for the sweetener High Fructose Maize Syrup (HFMS). Sugar cane, sugar beet and maize are also important for bio-ethanol production. The growth of crops requires water, a scarce resource. The

  18. Responses to sugar and sugar receptor gene expression in different social roles of the honeybee (Apis mellifera).

    Değirmenci, Laura; Thamm, Markus; Scheiner, Ricarda

    2018-04-01

    Honeybees (Apis mellifera) are well-known for their sophisticated division of labor with each bee performing sequentially a series of social tasks. Colony organization is largely based on age-dependent division of labor. While bees perform several tasks inside the hive such as caring for brood ("nursing"), cleaning or sealing brood cells or producing honey, older bees leave to colony to collect pollen (proteins) and nectar (carbohydrates) as foragers. The most pronounced behavioral transition occurs when nurse bees become foragers. For both social roles, the detection and evaluation of sugars is decisive for optimal task performance. Nurse bees rely on their gustatory senses to prepare brood food, while foragers evaluate a nectar source before starting to collect food from it. To test whether social organization is related to differential sensing of sugars we compared the taste of nurse bees and foragers for different sugars. Searching for molecular correlates for differences in sugar perception, we further quantified expression of gustatory receptor genes in both behavioral groups. Our results demonstrate that nurse bees and foragers perceive and evaluate different sugars differently. Both groups, however, prefer sucrose over fructose. At least part of the taste differences between social roles could be related to a differential expression of taste receptors in the antennae and brain. Our results suggest that differential expression of sugar receptor genes might be involved in regulating division of labor through nutrition-related signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Methods for dehydration of sugars and sugar alcohols

    Holladay, Johnathan E [Kennewick, WA; Hu, Jianli [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-08-10

    The invention includes a method of dehydration of a sugar using a dehydration catalyst and a co-catalyst within a reactor. A sugar is introduced and H.sub.2 is flowed through the reactor at a pressure of less than or equal to about 300 psig to convert at least some of the sugar into an anhydrosugar product. The invention includes a process for producing isosorbide. A starting material comprising sorbitol is flowed into a reactor. H.sub.2 is counter flowed through the reactor. The starting material is exposed to a catalyst in the presence of a co-catalyst which comprises at least one metal. The exposing is conducted at a hydrogen pressure of less than or equal to 300 psig within the reactor and the hydrogen removes at least some of any water present during the exposing and inhibits formation of colored byproducts.

  20. Glycosphingolipids with extended sugar chain have specialized functions in development and behavior of Drosophila

    Chen, Ya-Wen; Pedersen, Johannes W; Wandall, Hans H

    2007-01-01

    Glycosphingolipids (GSL) are glycosylated polar lipids in cell membranes essential for development of vertebrates as well as Drosophila. Mutants that impair enzymes involved in biosynthesis of GSL sugar chains provide a means to assess the functions of the sugar chains in vivo. The Drosophila gly...

  1. Inorganic elements in sugar samples

    Salles, Paulo M.B. de; Campos, Tarcisio P.R. de, E-mail: pauladesalles@yahoo.com.br, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Sugar is considered a safe food ingredient; however, it can be contaminated by organic elements since its planting until its production process. Thus, this study aims at checking the presence of inorganic elements in samples of crystal, refined and brown sugar available for consumption in Brazil. The applied technique was neutron activation analysis, the k{sub 0} method, using the TRIGA MARK - IPR-R1 reactor located at CDTN/CNEN, in Belo Horizonte. It was identified the presence of elements such as, Au, Br, Co, Cr, Hf, K, Na, Sb, Sc and Zn in the samples of crystal/refined sugar and the presence of As, Au, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Sb, Sc, Sm, Sr, Th and Zn in the brown sugar samples. The applied technique was appropriate to this study because it was not necessary to put the samples in solution, essential condition in order to apply other techniques, avoiding contaminations and sample losses, besides allowing a multi elementary detection in different sugar samples. (author)

  2. Inorganic elements in sugar samples

    Salles, Paulo M.B. de; Campos, Tarcisio P.R. de

    2013-01-01

    Sugar is considered a safe food ingredient; however, it can be contaminated by organic elements since its planting until its production process. Thus, this study aims at checking the presence of inorganic elements in samples of crystal, refined and brown sugar available for consumption in Brazil. The applied technique was neutron activation analysis, the k 0 method, using the TRIGA MARK - IPR-R1 reactor located at CDTN/CNEN, in Belo Horizonte. It was identified the presence of elements such as, Au, Br, Co, Cr, Hf, K, Na, Sb, Sc and Zn in the samples of crystal/refined sugar and the presence of As, Au, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Sb, Sc, Sm, Sr, Th and Zn in the brown sugar samples. The applied technique was appropriate to this study because it was not necessary to put the samples in solution, essential condition in order to apply other techniques, avoiding contaminations and sample losses, besides allowing a multi elementary detection in different sugar samples. (author)

  3. Photolabeling of tonoplast from sugar beet cell suspensions by [3H]-MIA, an inhibitor of the vacuolar Na+/H+ antiport

    Barkla, B.J.; Blumwald, E.

    1990-01-01

    A radiolabeled amiloride analog, [ 3 H]-MIA, was used for equilibrium binding studies and photolabeling of purified tonoplast vesicles. Scatchard analysis revealed a high affinity binding component with a K 4 of 1.4 μM which is closely related to constants of inhibition obtained for Na + -dependent H + efflux (5.9 μM) and pH-dependent 22 Na + influx (2.5 μM). This suggests that the high affinity component represents a class of sites associated with the Na + /H + antiport. Photolabeling of tonoplast with [ 3 H]-MIA in the presence of amiloride revealed the presence of two classes of receptors with distinct affinities for MIA, possibly representing the Na + /H + antiport and the Na + channel. In order to identify these receptors, amiloride analogues specific for the Na + /H + antiport or the Na + channel are being used to protect differentially against labeling of tonoplast proteins by photo-irradiation of [ 3 H]-MIA

  4. Regulation of proximal tubule vacuolar H+-ATPase by PKA and AMP-activated protein kinase

    Al-bataineh, Mohammad M.; Gong, Fan; Marciszyn, Allison L.; Myerburg, Michael M.

    2014-01-01

    The vacuolar H+-ATPase (V-ATPase) mediates ATP-driven H+ transport across membranes. This pump is present at the apical membrane of kidney proximal tubule cells and intercalated cells. Defects in the V-ATPase and in proximal tubule function can cause renal tubular acidosis. We examined the role of protein kinase A (PKA) and AMP-activated protein kinase (AMPK) in the regulation of the V-ATPase in the proximal tubule as these two kinases coregulate the V-ATPase in the collecting duct. As the proximal tubule V-ATPases have different subunit compositions from other nephron segments, we postulated that V-ATPase regulation in the proximal tubule could differ from other kidney tubule segments. Immunofluorescence labeling of rat ex vivo kidney slices revealed that the V-ATPase was present in the proximal tubule both at the apical pole, colocalizing with the brush-border marker wheat germ agglutinin, and in the cytosol when slices were incubated in buffer alone. When slices were incubated with a cAMP analog and a phosphodiesterase inhibitor, the V-ATPase accumulated at the apical pole of S3 segment cells. These PKA activators also increased V-ATPase apical membrane expression as well as the rate of V-ATPase-dependent extracellular acidification in S3 cell monolayers relative to untreated cells. However, the AMPK activator AICAR decreased PKA-induced V-ATPase apical accumulation in proximal tubules of kidney slices and decreased V-ATPase activity in S3 cell monolayers. Our results suggest that in proximal tubule the V-ATPase subcellular localization and activity are acutely coregulated via PKA downstream of hormonal signals and via AMPK downstream of metabolic stress. PMID:24553431

  5. Identification of a new target of miR-16, Vacuolar Protein Sorting 4a.

    Neeta Adhikari

    Full Text Available The rationale was to utilize a bioinformatics approach to identify miRNA binding sites in genes with single nucleotide mutations (SNPs to discover pathways in heart failure (HF.The objective was to focus on the genes containing miRNA binding sites with miRNAs that were significantly altered in end-stage HF and in response to a left ventricular assist device (LVAD.BEDTools v2.14.3 was used to discriminate SNPs within predicted 3'UTR miRNA binding sites. A member of the miR-15/107 family, miR-16, was decreased in the circulation of end-stage HF patients and increased in response to a LVAD (p<0.001. MiR-16 decreased Vacuolar Protein Sorting 4a (VPS4a expression in HEK 293T cells (p<0.01. The SNP rs16958754 was identified in the miR-15/107 family binding site of VPS4a which abolished direct binding of miR-16 to the 3'UTR of VPS4a (p<0.05. VPS4a was increased in the circulation of end-stage HF patients (p<0.001, and led to a decrease in the number of HEK 293T cells in vitro (p<0.001.We provide evidence that miR-16 decreases in the circulation of end-stage HF patients and increases with a LVAD. Modeling studies suggest that miR-16 binds to and decreases expression of VPS4a. Overexpression of VPS4a decreases cell number. Together, these experiments suggest that miR-16 and VPS4a expression are altered in end-stage HF and in response to unloading with a LVAD. This signaling pathway may lead to reduced circulating cell number in HF.

  6. Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae.

    Christopher L Brett

    Full Text Available Protons, the smallest and most ubiquitous of ions, are central to physiological processes. Transmembrane proton gradients drive ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH controls enzyme function. Despite this fundamental importance, the mechanisms underlying pH homeostasis are not entirely accounted for in any organelle or organism. We undertook a genome-wide survey of vacuole pH (pH(v in 4,606 single-gene deletion mutants of Saccharomyces cerevisiae under control, acid and alkali stress conditions to reveal the vacuolar pH-stat. Median pH(v (5.27±0.13 was resistant to acid stress (5.28±0.14 but shifted significantly in response to alkali stress (5.83±0.13. Of 107 mutants that displayed aberrant pH(v under more than one external pH condition, functional categories of transporters, membrane biogenesis and trafficking machinery were significantly enriched. Phospholipid flippases, encoded by the family of P4-type ATPases, emerged as pH regulators, as did the yeast ortholog of Niemann Pick Type C protein, implicated in sterol trafficking. An independent genetic screen revealed that correction of pH(v dysregulation in a neo1(ts mutant restored viability whereas cholesterol accumulation in human NPC1(-/- fibroblasts diminished upon treatment with a proton ionophore. Furthermore, while it is established that lumenal pH affects trafficking, this study revealed a reciprocal link with many mutants defective in anterograde pathways being hyperacidic and retrograde pathway mutants with alkaline vacuoles. In these and other examples, pH perturbations emerge as a hitherto unrecognized phenotype that may contribute to the cellular basis of disease and offer potential therapeutic intervention through pH modulation.

  7. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis.

    Verweij, Walter; Spelt, Cornelis E; Bliek, Mattijs; de Vries, Michel; Wit, Niek; Faraco, Marianna; Koes, Ronald; Quattrocchio, Francesca M

    2016-03-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) from Arabidopsis thaliana and associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein AN1 activate, together with the MYB protein AN2, anthocyanin biosynthesis and, together with the MYB protein PH4, distinct genes, such as PH1 and PH5, that acidify the vacuole. To understand how AN1 and AN11 activate anthocyanin biosynthetic and PH genes independently, we isolated PH3. We found that PH3 is a target gene of the AN11-AN1-PH4 complex and encodes a WRKY protein that can bind to AN11 and is required, in a feed-forward loop, together with AN11-AN1-PH4 for transcription of PH5. PH3 is highly similar to TTG2, which regulates hair development, tannin accumulation, and mucilage production in Arabidopsis. Like PH3, TTG2 can bind to petunia AN11 and the Arabidopsis homolog TTG1, complement ph3 in petunia, and reactivate the PH3 target gene PH5. Our findings show that the specificity of WD40-bHLH-MYB complexes is in part determined by interacting proteins, such as PH3 and TTG2, and reveal an unanticipated similarity in the regulatory circuitry that controls petunia vacuolar acidification and Arabidopsis hair development. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Sugar signalling and gene expression in relation to carbohydrate ...

    Sucrose is required for plant growth and development. The sugar status of plant cells is sensed by sensor proteins. The signal generated by signal transduction cascades, which could involve mitogen-activated protein kinases, protein phosphatases, Ca2+ and calmodulins, results in appropriate gene expression. A variety of ...

  9. Validity of Cognitive Predictors of Adolescent Sugar Snack Consumption

    Astrom, Anne Nordrehaug

    2004-01-01

    Objective: To estimate the applicability of an extended version of the theory of planned behavior (TPB) in predicting self-perceived sugar intake among adolescents in Uganda. Method: Two questionnaires were completed involving 1146 and 372 secondary school adolescents. Confirmatory factor and path analyses were performed using Amos software.…

  10. Intestinal sugar transport

    Drozdowski, Laurie A; Thomson, Alan BR

    2006-01-01

    Carbohydrates are an important component of the diet. The carbohydrates that we ingest range from simple monosaccharides (glucose, fructose and galactose) to disaccharides (lactose, sucrose) to complex polysaccharides. Most carbohydrates are digested by salivary and pancreatic amylases, and are further broken down into monosaccharides by enzymes in the brush border membrane (BBM) of enterocytes. For example, lactase-phloridzin hydrolase and sucrase-isomaltase are two disaccharidases involved ...

  11. Synthesis of the Sugar Moieties

    Grynkiewicz, Grzegorz; Szeja, Wieslaw

    Biological activity of the anthracycline antibiotics, which have found wide application in clinical oncology, is strongly related to their glycosidic structure. Modification or switch of the saccharide moiety became an important line of new drug discovery and study of their mechanism of action. Natural glycons (sugar moieties) of the anthracycline antibiotics belong to the 2,6-dideoxypyranose family and their principal representative, daunosamine, is 3-amino-2,3,6-trideoxy- l-lyxo-pyranose. Some newer chemical syntheses of this sugar, from a chiral pool as well as from achiral starting materials, are presented and their capability for scale-up and process development are commented upon. Rational sugar structural modifications, which are either useful for synthetic purposes or offer advantages in experimental therapy of cancer, are discussed from the chemical point of view.

  12. Worldwide trends in dietary sugars intake.

    Wittekind, Anna; Walton, Janette

    2014-12-01

    Estimating trends in dietary intake data is integral to informing national nutrition policy and monitoring progress towards dietary guidelines. Dietary intake of sugars is a controversial public health issue and guidance in relation to recommended intakes is particularly inconsistent. Published data relating to trends in sugars intake are relatively sparse. The purpose of the present review was to collate and review data from national nutrition surveys to examine changes and trends in dietary sugars intake. Only thirteen countries (all in the developed world) appear to report estimates of sugars intake from national nutrition surveys at more than one point in time. Definitions of dietary sugars that were used include 'total sugars', 'non-milk extrinsic sugars', 'added sugars', sucrose' and 'mono- and disaccharides'. This variability in terminology across countries meant that comparisons were limited to within countries. Hence trends in dietary sugars intake were examined by country for the whole population (where data permitted), and for specific or combined age and sex subpopulations. Findings indicate that in the majority of population comparisons, estimated dietary sugars intake is either stable or decreasing in both absolute (g/d) and relative (% energy) terms. An increase in sugars intake was observed in few countries and only in specific subpopulations. In conclusion, the findings from the present review suggest that, in the main, dietary sugars intake are decreasing or stable. A consistent approach to estimation of dietary sugars intake from national nutrition surveys is required if more valid estimates of changes in dietary sugars intakes are required in the future.

  13. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.

    Charoenbhakdi, Sirikarn; Dokpikul, Thanittra; Burphan, Thanawat; Techo, Todsapol; Auesukaree, Choowong

    2016-05-15

    During fermentation, increased ethanol concentration is a major stress for yeast cells. Vacuolar H(+)-ATPase (V-ATPase), which plays an important role in the maintenance of intracellular pH homeostasis through vacuolar acidification, has been shown to be required for tolerance to straight-chain alcohols, including ethanol. Since ethanol is known to increase membrane permeability to protons, which then promotes intracellular acidification, it is possible that the V-ATPase is required for recovery from alcohol-induced intracellular acidification. In this study, we show that the effects of straight-chain alcohols on membrane permeabilization and acidification of the cytosol and vacuole are strongly dependent on their lipophilicity. These findings suggest that the membrane-permeabilizing effect of straight-chain alcohols induces cytosolic and vacuolar acidification in a lipophilicity-dependent manner. Surprisingly, after ethanol challenge, the cytosolic pH in Δvma2 and Δvma3 mutants lacking V-ATPase activity was similar to that of the wild-type strain. It is therefore unlikely that the ethanol-sensitive phenotype of vma mutants resulted from severe cytosolic acidification. Interestingly, the vma mutants exposed to ethanol exhibited a delay in cell wall remodeling and a significant increase in intracellular reactive oxygen species (ROS). These findings suggest a role for V-ATPase in the regulation of the cell wall stress response and the prevention of endogenous oxidative stress in response to ethanol. The yeast Saccharomyces cerevisiae has been widely used in the alcoholic fermentation industry. Among the environmental stresses that yeast cells encounter during the process of alcoholic fermentation, ethanol is a major stress factor that inhibits yeast growth and viability, eventually leading to fermentation arrest. This study provides evidence for the molecular mechanisms of ethanol tolerance, which is a desirable characteristic for yeast strains used in alcoholic

  14. Effect of external pH on the cytoplasmic and vacuolar pHs in Mung bean root-tip cells

    Torimitsu, Keiichi; Yazaki, Yoshiaki; Nagasuka, Kinuyo; Ohta, Eiji; Sakata, Makoto

    1984-01-01

    The effect of the external pH on the intracellular pH in mung bean (Vigna mungo (L.) Hepper) root-tip cells was investigated with the 31 P nuclear magnetic resonance (NMR) method. The 31 P NMR spectra showed three peaks caused by cytoplasmic G-6-P, cytoplasmic Psub(i) and vacuolar Psub(i). The cytoplasmic and vacuolar pHs could be determined by comparing the Psub(i) chemical shifts with the titration curve. When the external pH was changed over a range from pH 3 to 10, the cytoplasmic pH showed smaller changes than the vacuolar pH, suggesting that the former is regulated more strictly than the latter. The H + -ATPase inhibitor, DCCD, caused the breakdown of the mechanism that regulates the intracellular pH. H + -ATPase appears to have an important part in the regulation of the intracellular pH. (author)

  15. Monitoring Blood Sugar: The Importance of Checking Blood Sugar Levels

    ... closer to the levels seen in people without diabetes) your child's HbA1c, the better controlled the blood sugars have ... Diabetes Hypoglycemia Diabetes Control: Why It's Important Your Child's Diabetes Health Care Team Helping Kids Deal With Injections ...

  16. Sugar holograms with erioglaucine and tartrazine

    Mejias-Brizuela, N. Y.; Olivares-Pérez, A.; Páez-Trujillo, G.; Fuentes-Tapia, I.

    2007-09-01

    An artificial green colorant, composed by erioglaucine (Blue 1) and tartrazine (Yellow 5), was employed in a sugar matrix to improve the material sensibility and to make a comparative analysis of the diffraction efficiency parameter, for holograms replications, the holographic pattern was obtained by a computer and recorded in sugar films and in modified sugar (sugar-colorant). Conventional lithography and UV radiation were used. The results show that the behavior diffraction efficiency of the sugar-colorant films is slightly larger than in the sugar matrix under the same recording conditions.

  17. Ion transporters involved in acidification of the resorption lacuna in osteoclasts

    Henriksen, K.; Sorensen, M.G.; Jensen, V.K.

    2008-01-01

    Osteoclasts possess a large amount of ion transporters, which participate in bone resorption; of these, the vacuolar-adenosine trisphosphatase (V-ATPase) and the chloride-proton antiporter ClC-7 acidify the resorption lacuna. However, whether other ion transporters participate in this process is ......, including carbonic anhydrase II, the NHEs, and potassium-chloride cotransporters, are all involved in resorption but do not seem to directly be involved in acidification of the lysosomes Udgivelsesdato: 2008/9......Osteoclasts possess a large amount of ion transporters, which participate in bone resorption; of these, the vacuolar-adenosine trisphosphatase (V-ATPase) and the chloride-proton antiporter ClC-7 acidify the resorption lacuna. However, whether other ion transporters participate in this process...

  18. Characterization of Sugar Contents and Sucrose Metabolizing Enzymes in Developing Leaves of Hevea brasiliensis

    Jinheng Zhu

    2018-02-01

    Full Text Available Sucrose-metabolizing enzymes in plant leaves have hitherto been investigated mainly in temperate plants, and rarely conducted in tandem with gene expression and sugar analysis. Here, we investigated the sugar content, gene expression, and the activity of sucrose-metabolizing enzymes in the leaves of Hevea brasiliensis, a tropical tree widely cultivated for natural rubber. Sucrose, fructose and glucose were the major sugars detected in Hevea leaves at four developmental stages (I to IV, with starch and quebrachitol as minor saccharides. Fructose and glucose contents increased until stage III, but decreased strongly at stage IV (mature leaves. On the other hand, sucrose increased continuously throughout leaf development. Activities of all sucrose-cleaving enzymes decreased markedly at maturation, consistent with transcript decline for most of their encoding genes. Activity of sucrose phosphate synthase (SPS was low in spite of its high transcript levels at maturation. Hence, the high sucrose content in mature leaves was not due to increased sucrose-synthesizing activity, but more to the decline in sucrose cleavage. Gene expression and activities of sucrose-metabolizing enzymes in Hevea leaves showed striking differences compared with other plants. Unlike in most other species where vacuolar invertase predominates in sucrose cleavage in developing leaves, cytoplasmic invertase and sucrose synthase (cleavage direction also featured prominently in Hevea. Whereas SPS is normally responsible for sucrose synthesis in plant leaves, sucrose synthase (synthesis direction was comparable or higher than that of SPS in Hevea leaves. Mature Hevea leaves had an unusually high sucrose:starch ratio of about 11, the highest reported to date in plants.

  19. Philippines sugar cane ethanol plant

    1981-03-06

    The Philippines' National Alcohol Commission has called for international tenders for the construction of ethanol from sugar cane plants. Interested companies have been asked to quote for capacities of 60,000, 120,000 and 180,000 litre per day. The initial tender calls for three plants but the figure could rise to ten which would then be worth about $20 million.

  20. Smut resistance in sugar cane

    1989-01-01

    Full text: From a mutation breeding programme with the popular early maturing sugar cane variety CoC 671 fourteen clones could be selected which were found to be free of smut infection after three successive years of artificial testing. Smut resistance was also found after in-vitro culture propagation of susceptible cultivars G80-454 and CoC 671. (author)

  1. Sugar pine and its hybrids

    W. B. Critchfield; B. B. Kinloch

    1986-01-01

    Unlike most white pines, sugar pine (Pinus lambertiana) is severely restricted in its ability to hybridize with other species. It has not been successfully crossed with any other North American white pine, nor with those Eurasian white pines it most closely resembles. Crosses with the dissimilar P. koraiensis and P....

  2. Sugar Transporters in Plants: New Insights and Discoveries.

    Julius, Benjamin T; Leach, Kristen A; Tran, Thu M; Mertz, Rachel A; Braun, David M

    2017-09-01

    Carbohydrate partitioning is the process of carbon assimilation and distribution from source tissues, such as leaves, to sink tissues, such as stems, roots and seeds. Sucrose, the primary carbohydrate transported long distance in many plant species, is loaded into the phloem and unloaded into distal sink tissues. However, many factors, both genetic and environmental, influence sucrose metabolism and transport. Therefore, understanding the function and regulation of sugar transporters and sucrose metabolic enzymes is key to improving agriculture. In this review, we highlight recent findings that (i) address the path of phloem loading of sucrose in rice and maize leaves; (ii) discuss the phloem unloading pathways in stems and roots and the sugar transporters putatively involved; (iii) describe how heat and drought stress impact carbohydrate partitioning and phloem transport; (iv) shed light on how plant pathogens hijack sugar transporters to obtain carbohydrates for pathogen survival, and how the plant employs sugar transporters to defend against pathogens; and (v) discuss novel roles for sugar transporters in plant biology. These exciting discoveries and insights provide valuable knowledge that will ultimately help mitigate the impending societal challenges due to global climate change and a growing population by improving crop yield and enhancing renewable energy production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Solubility data and modeling for sugar alcohols in ionic liquids

    Okuniewski, Marcin; Ramjugernath, Deresh; Naidoo, Paramespri; Domańska, Urszula

    2014-01-01

    Highlights: • Solubility of D-sorbitol and xylitol in six ILs. • The (liquid + liquid) phase equilibrium of (SA + IL) with UCST. • Interesting properties of [BMIM][TDI] IL. • The correlation with NRTL model. - Abstract: Ionic liquids (ILs) are novel media characterized by strong interactions with different organic substances which leads to a wide spectrum of applications involving extraction. Ionic liquids have been used as a solvent for sugar alcohols, sugars and hydrates. This work demonstrates the experimental and theoretical study of (liquid + liquid) phase equilibria for two sugar alcohols, D-sorbitol and xylitol in a few ILs based on different cations and anions (namely, 1-ethyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide [EMPIP][NTf 2 ], 1-hexyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide [HMPIP][NTf 2 ], N-hexylquinolinium bis(trifluoromethylsulfonyl)imide [HQuin][NTf 2 ], N-hexylisoquinolinium bis(trifluoromethylsulfonyl)imide [HiQuin][NTf 2 ], 1-butyl-1-methylimidazolium 4,5-dicyano-2-(trifluoromethyl)-imidazolide [BMIM][TDI] and 1-(cyanomethyl)-3-methylimidazolium 4,5-dicyano-2-(trifluoromethyl)-imidazolide [CCNMIM][TDI]). This study was conducted to assess the applicability of the studied ILs for dissolution of these biomass-related materials. (Liquid + liquid) phase equilibrium diagrams (LLE) in binary systems (sugar alcohol + ionic liquid) were measured using the dynamic technique. The influence of the chemical structure of both the ionic liquids and sugar alcohols were established and is discussed

  4. 75 FR 60715 - Domestic Sugar Program-FY 2010 and FY 2011 Cane Sugar and Beet Sugar Marketing Allotments and...

    2010-10-01

    ... marketing allotment and the associated production history will be transferred from MDFC to WSG, effective... Cane Sugar and Beet Sugar Marketing Allotments and Company Allocations AGENCY: Commodity Credit... publish the modifications to the fiscal year 2010 (FY 2010) State sugar marketing allotments and company...

  5. Fermentation of sugar-beet molasses

    Malchenko, A L; Krishtul, F B

    1956-08-25

    Sugar-beet molasses is fermented with yeast separated from the mash, sterilized, and reactivated. To reduce sugar losses and hasten fermentation, the yeast is removed from the mash as the cells fall to the bottom during the fermentation process.

  6. When Blood Sugar Is Too High

    ... Videos for Educators Search English Español When Blood Sugar Is Too High KidsHealth / For Teens / When Blood ... often can be unhealthy. What Is High Blood Sugar? The blood glucose level is the amount of ...

  7. Drug-induced low blood sugar

    Drug-induced low blood sugar is low blood glucose that results from taking medicine. ... Low blood sugar (hypoglycemia) is common in people with diabetes who are taking insulin or other medicines to control their diabetes. ...

  8. Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum.

    Khoudi, Habib; Maatar, Yafa; Brini, Faïçal; Fourati, Amine; Ammar, Najoua; Masmoudi, Khaled

    2013-01-01

    transgenic A. thaliana lines were more Cd-tolerant than the WT plants. These results suggested that ectopic expression of a vacuolar proton pump in A. thaliana plants can lead to various biotechnological applications including the phytoremediation of industrial wastes.

  9. vph6 mutants of Saccharomyces cerevisiae require calcineurin for growth and are defective in vacuolar H(+)-ATPase assembly.

    Hemenway, C S; Dolinski, K; Cardenas, M E; Hiller, M A; Jones, E W; Heitman, J

    1995-11-01

    We have characterized a Saccharomyces cerevisiae mutant strain that is hypersensitive to cyclosporin A (CsA) and FK506, immunosuppressants that inhibit calcineurin, a serine-threonine-specific phosphatase (PP2B). A single nuclear mutation, designated cev1 for calcineurin essential for viability, is responsible for the CsA-FK506-sensitive phenotype. The peptidyl-prolyl cis-trans isomerases cyclophilin A and FKBP12, respectively, mediate CsA and FK506 toxicity in the cev1 mutant strain. We demonstrate that cev1 is an allele of the VPH6 gene and that vph6 mutant strains fail to assemble the vacuolar H(+)-ATPase (V-ATPase). The VPH6 gene was mapped on chromosome VIII and is predicted to encode a 181-amino acid (21 kD) protein with no identity to other known proteins. We find that calcineurin is essential for viability in many mutant strains with defects in V-ATPase function or vacuolar acidification. In addition, we find that calcineurin modulates extracellular acidification in response to glucose, which we propose occurs via calcineurin regulation of the plasma membrane H(+)-ATPase PMA1. Taken together, our findings suggest calcineurin plays a general role in the regulation of cation transport and homeostasis.

  10. Human NKCC2 cation–Cl– co-transporter complements lack of Vhc1 transporter in yeast vacuolar membranes.

    Petrezselyova, Silvia; Dominguez, Angel; Herynkova, Pavla; Macias, Juan F; Sychrova, Hana

    2013-10-01

    Cation–chloride co-transporters serve to transport Cl– and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co-transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co-transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt-sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma-membrane alkali–metal cation exporters Nha1 and Ena1-5 and the vacuolar cation–chloride co-transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild-type and mutated cation–chloride co-transporters. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Vacuolar zinc transporter Zrc1 is required for detoxification of excess intracellular zinc in the human fungal pathogen Cryptococcus neoformans.

    Cho, Minsu; Hu, Guanggan; Caza, Mélissa; Horianopoulos, Linda C; Kronstad, James W; Jung, Won Hee

    2018-01-01

    Zinc is an important transition metal in all living organisms and is required for numerous biological processes. However, excess zinc can also be toxic to cells and cause cellular stress. In the model fungus Saccharomyces cerevisiae, a vacuolar zinc transporter, Zrc1, plays important roles in the storage and detoxification of excess intracellular zinc to protect the cell. In this study, we identified an ortholog of the S. cerevisiae ZRC1 gene in the human fungal pathogen Cryptococcus neoformans. Zrc1 was localized in the vacuolar membrane in C. neoformans, and a mutant lacking ZRC1 showed significant growth defects under high-zinc conditions. These results suggested a role for Zrc1 in zinc detoxification. However, contrary to our expectation, the expression of Zrc1 was induced in cells grown in zinc-limited conditions and decreased upon the addition of zinc. These expression patterns were similar to those of Zip1, the high-affinity zinc transporter in the plasma membrane of C. neoformans. Furthermore, we used the zrc1 mutant in a murine model of cryptococcosis to examine whether a mammalian host could inhibit the survival of C. neoformans using zinc toxicity. We found that the mutant showed no difference in virulence compared with the wildtype strain. This result suggests that Zrc1-mediated zinc detoxification is not required for the virulence of C. neoformans, and imply that zinc toxicity may not be an important aspect of the host immune response to the fungus.

  12. 21 CFR 184.1859 - Invert sugar.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous...

  13. 27 CFR 24.317 - Sugar record.

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Sugar record. 24.317... OF THE TREASURY LIQUORS WINE Records and Reports § 24.317 Sugar record. A proprietor who receives, stores, or uses sugar shall maintain a record of receipt and use. The record will show the date of...

  14. Reducing Sugar in Children's Diets: Why? How?

    Rogers, Cosby S.; Morris, Sandra S.

    1986-01-01

    Maintains that sugar intake should be reduced in young children's diets because of its link to dental cavities, poor nutrition, and obesity. Reducing the focus on sweetness, limiting sugar consumption, and using natural sources of sweetness and other treats are ways to help reduce sugar intake. (BB)

  15. 76 FR 36512 - USDA Increases the Domestic Sugar Overall Allotment Quantity, Reassigns Domestic Cane Sugar...

    2011-06-22

    ... imports. The OAQ was increased due to an increase in estimated sugar demand since the FY 2011 OAQ was... sugar imports, as required by law. Upon review of the domestic sugarcane processors' sugar marketing allocations relative to their FY 2011 expected raw sugar supplies, CCC determined that all sugarcane...

  16. Ray tissues as an indirect measure of relative sap-sugar concentration in sugar maple

    Peter W. Garrett; Kenneth R. Dudzik; Kenneth R. Dudzik

    1989-01-01

    Attempts to correlate ray tissue as a percentage of total wood volume with sap-sugar concentrations of sugar maple progenies were unsuccessful. These results raise doubts about our ability to use a relatively constant value such as ray-tissue volume in a selection program designed to increase the sap-sugar concentration of sugar maple seedlings.

  17. Role of potassium and nitrogen on sugar concentration of sugar beet

    Sugar is obtained from root of sugar beet (Beta vulgaris L.) in addition to other sources. Three important economic parameters are often considered and these are root yield, sugar concentration in root juice and total sugar yield. All the three are affected by cropping period and use of fertilisers. Existing literature suggests the ...

  18. Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy's sugar process (CLE Sugar).

    Gao, Johnway; Anderson, Dwight; Levie, Benjamin

    2013-01-28

    Woody biomass is one of the most abundant biomass feedstocks, besides agriculture residuals in the United States. The sustainable harvest residuals and thinnings alone are estimated at about 75 million tons/year. These forest residuals and thinnings could produce the equivalent of 5 billion gallons of lignocellulosic ethanol annually. Softwood biomass is the most recalcitrant biomass in pretreatment before an enzymatic hydrolysis. To utilize the most recalcitrant lignocellulosic materials, an efficient, industrially scalable and cost effective pretreatment method is needed. Obtaining a high yield of sugar from recalcitrant biomass generally requires a high severity of pretreatment with aggressive chemistry, followed by extensive conditioning, and large doses of enzymes. Catchlight Energy's Sugar process, CLE Sugar, uses a low intensity, high throughput variation of bisulfite pulping to pretreat recalcitrant biomass, such as softwood forest residuals. By leveraging well-proven bisulfite technology and the rapid progress of enzyme suppliers, CLE Sugar can achieve a high yield of total biomass carbohydrate conversion to monomeric lignocellulosic sugars. For example, 85.8% of biomass carbohydrates are saccharified for un-debarked Loblolly pine chips (softwood), and 94.0% for debarked maple chips (hardwood). Furan compound formation was 1.29% of biomass feedstock for Loblolly pine and 1.10% for maple. At 17% solids hydrolysis of pretreated softwood, an enzyme dose of 0.075 g Sigma enzyme mixture/g dry pretreated (unwashed) biomass was needed to achieve 8.1% total sugar titer in the hydrolysate and an overall prehydrolysate liquor plus enzymatic hydrolysis conversion yield of 76.6%. At a much lower enzyme dosage of 0.044 g CTec2 enzyme product/g dry (unwashed) pretreated softwood, hydrolysis at 17% solids achieved 9.2% total sugar titer in the hydrolysate with an overall sugar yield of 85.0% in the combined prehydrolysate liquor and enzymatic hydrolysate. CLE Sugar has

  19. Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana

    Blumwald Eduardo

    2007-04-01

    Full Text Available Abstract Background AtNHX1, the most abundant vacuolar Na+/H+ antiporter in Arabidopsis thaliana, mediates the transport of Na+ and K+ into the vacuole, influencing plant development and contributing to salt tolerance. In this report, microarray expression profiles of wild type plants, a T-DNA insertion knockout mutant of AtNHX1 (nhx1, and a 'rescued' line (NHX1::nhx1 were exposed to both short (12 h and 48 h and long (one and two weeks durations of a non-lethal salt stress to identify key gene transcripts associated with the salt response that are influenced by AtNHX1. Results 147 transcripts showed both salt responsiveness and a significant influence of AtNHX1. Fifty-seven of these genes showed an influence of the antiporter across all salt treatments, while the remaining genes were influenced as a result of a particular duration of salt stress. Most (69% of the genes were up-regulated in the absence of AtNHX1, with the exception of transcripts encoding proteins involved with metabolic and energy processes that were mostly down-regulated. Conclusion While part of the AtNHX1-influenced transcripts were unclassified, other transcripts with known or putative roles showed the importance of AtNHX1 to key cellular processes that were not necessarily limited to the salt stress response; namely calcium signaling, sulfur metabolism, cell structure and cell growth, as well as vesicular trafficking and protein processing. Only a small number of other salt-responsive membrane transporter transcripts appeared significantly influenced by AtNHX1.

  20. Na+/K+-ATPase and vacuolar-type H+-ATPase in the gills of the aquatic air-breathing fish Trichogaster microlepis in response to salinity variation.

    Huang, Chun-Yen; Chao, Pei-Lin; Lin, Hui-Chen

    2010-03-01

    The aquatic air-breathing fish, Trichogaster microlepis, can be found in fresh water and estuaries. We further evaluated the changes in two important osmoregulatory enzymes, Na(+)/K(+)-ATPase (NKA) and vacuolar-type H(+)-ATPase (VHA), in the gills when fish were subjected to deionized water (DW), fresh water (FW), and salinated brackish water (salinity of 10 g/L). Fish were sampled only 4 days after experimental transfer. The mortality, plasma osmolality, and Na(+) concentration were higher in 10 g/L acclimated fish, while their muscle water content decreased with elevated external salinity. The highest NKA protein abundance was found in the fish gills in 10 g/L, and NKA activity was highest in the DW and 10 g/L acclimated fish. The VHA protein levels were highest in 10 g/L, and VHA activity was highest in the DW treatment. From immunohistochemical results, we found three different cell populations: (1) NKA-immunoreactive (NKA-IR) cells, (2) both NKA-IR and HA-IR cells, and (3) HA-IR cells. NKA-IR cells in the lamellar and interlamellar regions significantly increased in DW and 10 g/L treatments. Only HA-IR cells in the lamellar region were significantly increased in DW. In the interlamellar region, there was no difference in the number of HA-IR cells among the three treated. From these results, T. microlepis exhibited osmoregulatory ability in DW and 10 g/L treatments. The cell types involved in ionic regulation were also examined with immunofluorescence staining; three ionocyte types were found which were similar to the zebrafish model. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Vacuolar ATPases, like F1,F0-ATPases, show a strong dependence of the reaction velocity on the binding of more than one ATP per enzyme

    Kasho, V.N.; Boyer, P.D.

    1989-01-01

    Recent studies with vacuolar ATPases have shown that multiple copies catalytic subunits are present and that these have definite sequence homology with catalytic subunits of the F 1 , F 0 -ATPases. Experiments are reported that assess whether the vacuolar ATPases may have the unusual catalytic cooperativity with sequential catalytic site participation as in the binding change mechanism for the F 1 ,F 0 -ATPases. The extent of reversal of bound ATP hydrolysis to bound ADP and P i as medium ATP concentration was lowered was determined by 18 O-exchange measurements for yeast and neurospora vacuolar ATPases. The results show a pronounced increase in the extent of water oxygen incorporation into the P i formed as ATP concentration is decreased to the micromolar range. The F 1 ,F 0 -ATPase from neurospora mitochondria showed an event more pronounced modulation, similar to that of other F 1 -type ATPases. The vacuolar ATPases thus appear to have a catalytic mechanism quite analogous to that of the F 1 ,F 0 -ATPases

  2. [Function of transport H+-ATPases in plant cell plasma and vacuolar membranes of maize under salt stress conditions and effect of adaptogenic preparations].

    Rybchenko, Zh I; Palladina, T O

    2011-01-01

    Participations of electrogenic H+-pumps of plasma and vacuolar membranes represented by E1-E2 and V-type H+-ATPases in plant cell adaptation to salt stress conditions has been studied by determination of their transport activities. Experiments were carried out on corn seedlings exposed during 1 or 10 days at 0.1 M NaCl. Preparations Methyure and Ivine were used by seed soaking at 10(-7) M. Plasma and vacuolar membrane fractions were isolated from corn seedling roots. In variants without NaCl a hydrolytical activity of plasma membrane H+-ATPase was increased with seedling age and its transport one was changed insignificantly, wherease the response of the weaker vacuolar H+-ATPase was opposite. NaCl exposition decreased hydrolytical activities of both H+-ATPases and increased their transport ones. These results demonstrated amplification of H+-pumps function especially represented by vacuolar H+-ATPase. Both preparations, Methyure mainly, caused a further increase of transport activity which was more expressed in NaCl variants. Obtained results showed the important role of these H+-pumps in plant adaptation under salt stress conditions realized by energetical maintenance of the secondary active Na+/H+ -antiporters which remove Na+ from cytoplasm.

  3. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants.

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  4. Shifting Sugars and Shifting Paradigms

    Siegal, Mark L.

    2015-01-01

    No organism lives in a constant environment. Based on classical studies in molecular biology, many have viewed microbes as following strict rules for shifting their metabolic activities when prevailing conditions change. For example, students learn that the bacterium Escherichia coli makes proteins for digesting lactose only when lactose is available and glucose, a better sugar, is not. However, recent studies, including three PLOS Biology papers examining sugar utilization in the budding yeast Saccharomyces cerevisiae, show that considerable heterogeneity in response to complex environments exists within and between populations. These results join similar recent results in other organisms that suggest that microbial populations anticipate predictable environmental changes and hedge their bets against unpredictable ones. The classical view therefore represents but one special case in a range of evolutionary adaptations to environmental changes that all organisms face. PMID:25688600

  5. Shifting sugars and shifting paradigms.

    Mark L Siegal

    2015-02-01

    Full Text Available No organism lives in a constant environment. Based on classical studies in molecular biology, many have viewed microbes as following strict rules for shifting their metabolic activities when prevailing conditions change. For example, students learn that the bacterium Escherichia coli makes proteins for digesting lactose only when lactose is available and glucose, a better sugar, is not. However, recent studies, including three PLOS Biology papers examining sugar utilization in the budding yeast Saccharomyces cerevisiae, show that considerable heterogeneity in response to complex environments exists within and between populations. These results join similar recent results in other organisms that suggest that microbial populations anticipate predictable environmental changes and hedge their bets against unpredictable ones. The classical view therefore represents but one special case in a range of evolutionary adaptations to environmental changes that all organisms face.

  6. Water Integration In Sugar Industry

    Wafa Hatim Balla

    2017-03-01

    Full Text Available The sugar industry uses much water and produces a significant amount of wastewater for disposal. Efficient utilization of water is vital in the process industries not only to reduce the cost of the supply and discharge of freshwater associated with the process but also to minimize environmental problems associated with the use and discharge of water. This paper presents the analysis of fresh water used and wastewater discharged in a sugar manufacturing process. In order to reduce the load of the cooling water system. The system was modified to an open recirculation cooling water system. Also the excess condensate internal water and the discharged water from cooling water system were analyzed and optimized using pinch analysis and mathematical optimization techniques by Resource Conversation Networks spreadsheet software.

  7. Sugar-Sweetened Beverages Are the Main Sources of Added Sugar Intake in the Mexican Population.

    Sánchez-Pimienta, Tania G; Batis, Carolina; Lutter, Chessa K; Rivera, Juan A

    2016-09-01

    Sugar intake has been associated with an increased prevalence of obesity, other noncommunicable diseases, and dental caries. The WHO recommends that free sugars should be ENSANUT (National Health and Nutrition Survey) 2012], which represents 3 geographic regions and urban and rural areas. Dietary information was obtained by administering a 24-h recall questionnaire to 10,096 participants. Total sugar intake was estimated by using the National Institute of Public Health (INSP) food-composition table and an established method to estimate added sugars. The mean intakes of total, intrinsic, and added sugars were 365, 127, and 238 kcal/d, respectively. Added sugars contributed 13% of TEI. Sugar-sweetened beverages (SSBs) were the main source of sugars, contributing 69% of added sugars. Food products high in saturated fat and/or added sugar (HSFAS) were the second main sources of added sugars, contributing 25% of added sugars. The average intake of added sugars in the Mexican diet is higher than WHO recommendations, which may partly explain the high prevalence of obesity and diabetes in Mexico. Because SSBs and HSFAS contribute >94% of total added sugars, strategies to reduce their intake should be strengthened. This includes stronger food labels to warn the consumer about the content of added sugars in foods and beverages. © 2016 American Society for Nutrition.

  8. Sugar in Infants, Children and Adolescents

    Mis, Nataša Fidler; Braegger, Christian; Bronsky, Jiri

    2017-01-01

    The consumption of sugars, particularly sugar-sweetened beverages (SSBs; beverages or drinks that contain added caloric sweeteners (i.e. sucrose, high-fructose corn syrup, fruit-juice concentrates), in European children and adolescents exceeds current recommendations. This is of concern because...... there is no nutritional requirement for free sugars, and infants have an innate preference for sweet taste, which may be modified and reinforced by pre- and postnatal exposures. Sugar containing beverages/free sugars increase the risk for overweight/obesity and dental caries, can result in poor nutrient supply...... and reduced dietary diversity and may be associated with increased risk of type 2 diabetes mellitus, cardiovascular risk, and other health effects. The term 'free sugars', includes all monosaccharides/disaccharides added to foods/beverages by the manufacturer/cook/consumer, plus sugars naturally present...

  9. Sugar in infants, children and adolescents

    Mis, Nataša Fidler; Braegger, Christian; Bronsky, Jiri

    2017-01-01

    The consumption of sugars, particularly sugar-sweetened beverages (SSBs; beverages or drinks that contain added caloric sweeteners (i.e. sucrose, high-fructose corn syrup, fruit-juice concentrates), in European children and adolescents exceeds current recommendations. This is of concern because...... there is no nutritional requirement for free sugars, and infants have an innate preference for sweet taste, which may be modified and reinforced by pre- and postnatal exposures. Sugar containing beverages/free sugars increase the risk for overweight/obesity and dental caries, can result in poor nutrient supply...... and reduced dietary diversity and may be associated with increased risk of type 2 diabetes mellitus, cardiovascular risk, and other health effects. The term 'free sugars', includes all monosaccharides/disaccharides added to foods/beverages by the manufacturer/cook/consumer, plus sugars naturally present...

  10. Scientists Discover Sugar in Space

    2000-06-01

    The prospects for life in the Universe just got sweeter, with the first discovery of a simple sugar molecule in space. The discovery of the sugar molecule glycolaldehyde in a giant cloud of gas and dust near the center of our own Milky Way Galaxy was made by scientists using the National Science Foundation's 12 Meter Telescope, a radio telescope on Kitt Peak, Arizona. "The discovery of this sugar molecule in a cloud from which new stars are forming means it is increasingly likely that the chemical precursors to life are formed in such clouds long before planets develop around the stars," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, MD. Hollis worked with Frank J. Lovas of the University of Illinois and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, on the observations, made in May. The scientists have submitted their results to the Astrophysical Journal Letters. "This discovery may be an important key to understanding the formation of life on the early Earth," said Jewell. Conditions in interstellar clouds may, in some cases, mimic the conditions on the early Earth, so studying the chemistry of interstellar clouds may help scientists understand how bio-molecules formed early in our planet's history. In addition, some scientists have suggested that Earth could have been "seeded" with complex molecules by passing comets, made of material from the interstellar cloud that condensed to form the Solar System. Glycolaldehyde, an 8-atom molecule composed of carbon, oxygen and hydrogen, can combine with other molecules to form the more-complex sugars Ribose and Glucose. Ribose is a building block of nucleic acids such as RNA and DNA, which carry the genetic code of living organisms. Glucose is the sugar found in fruits. Glycolaldehyde contains exactly the same atoms, though in a different molecular structure, as methyl formate and acetic acid, both of which were detected previously in interstellar clouds

  11. 75 FR 53013 - Fiscal Year 2011 Tariff-rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    2010-08-30

    ... for Raw Cane Sugar, Refined and Specialty Sugar, and Sugar-containing Products; Revision AGENCY... August 17, 2010 concerning Fiscal Year 2011 tariff-rate quota allocations of raw cane sugar, refined and special sugar, and sugar-containing products. USTR is revising the effective date of that notice to...

  12. 21 CFR 173.320 - Chemicals for controlling microorganisms in cane-sugar and beet-sugar mills.

    2010-04-01

    ...-sugar and beet-sugar mills. 173.320 Section 173.320 Food and Drugs FOOD AND DRUG ADMINISTRATION... controlling microorganisms in cane-sugar and beet-sugar mills. Agents for controlling microorganisms in cane-sugar and beet-sugar mills may be safely used in accordance with the following conditions: (a) They are...

  13. Complete oxidative conversion of lignocellulose derived non-glucose sugars to sugar acids by Gluconobacter oxydans.

    Yao, Ruimiao; Hou, Weiliang; Bao, Jie

    2017-11-01

    Non-glucose sugars derived from lignocellulose cover approximately 40% of the total carbohydrates of lignocellulose biomass. The conversion of the non-glucose sugars to the target products is an important task of lignocellulose biorefining research. Here we report a fast and complete conversion of the total non-glucose sugars from corn stover into the corresponding sugar acids by whole cell catalysis and aerobic fermentation of Gluconobacter oxydans. The conversions include xylose to xylonate, arabinose to arabonate, mannose to mannonate, and galactose to galactonate, as well as with glucose into gluconate. These cellulosic non-glucose sugar acids showed the excellent cement retard setting property. The mixed cellulosic sugar acids could be used as cement retard additives without separation. The conversion of the non-glucose sugars not only makes full use of lignocellulose derived sugars, but also effectively reduces the wastewater treatment burden by removal of residual sugars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Regulatory assembly of the vacuolar proton pump VoV1-ATPase in yeast cells by FLIM-FRET

    Ernst, Stefan; Batisse, Claire; Zarrabi, Nawid; Böttcher, Bettina; Börsch, Michael

    2010-02-01

    We investigate the reversible disassembly of VOV1-ATPase in life yeast cells by time resolved confocal FRET imaging. VOV1-ATPase in the vacuolar membrane pumps protons from the cytosol into the vacuole. VOV1-ATPase is a rotary biological nanomotor driven by ATP hydrolysis. The emerging proton gradient is used for secondary transport processes as well as for pH and Ca2+ homoeostasis in the cell. The activity of the VOV1-ATPase is regulated through assembly / disassembly processes. During starvation the two parts of VOV1-ATPase start to disassemble. This process is reversed after addition of glucose. The exact mechanisms are unknown. To follow the disassembly / reassembly in vivo we tagged two subunits C and E with different fluorescent proteins. Cellular distributions of C and E were monitored using a duty cycle-optimized alternating laser excitation scheme (DCO-ALEX) for time resolved confocal FRET-FLIM measurements.

  15. The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters.

    Cheng, Ning-Hui; Pittman, Jon K; Barkla, Bronwyn J; Shigaki, Toshiro; Hirschi, Kendal D

    2003-02-01

    The Arabidopsis Ca(2+)/H(+) transporter CAX1 (Cation Exchanger1) may be an important regulator of intracellular Ca(2+) levels. Here, we describe the preliminary localization of CAX1 to the tonoplast and the molecular and biochemical characterization of cax1 mutants. We show that these mutants exhibit a 50% reduction in tonoplast Ca(2+)/H(+) antiport activity, a 40% reduction in tonoplast V-type H(+)-translocating ATPase activity, a 36% increase in tonoplast Ca(2+)-ATPase activity, and increased expression of the putative vacuolar Ca(2+)/H(+) antiporters CAX3 and CAX4. Enhanced growth was displayed by the cax1 lines under Mn(2+) and Mg(2+) stress conditions. The mutants exhibited altered plant development, perturbed hormone sensitivities, and altered expression of an auxin-regulated promoter-reporter gene fusion. We propose that CAX1 regulates myriad plant processes and discuss the observed phenotypes with regard to the compensatory alterations in other transporters.

  16. The Arabidopsis cax1 Mutant Exhibits Impaired Ion Homeostasis, Development, and Hormonal Responses and Reveals Interplay among Vacuolar Transporters

    Cheng, Ning-Hui; Pittman, Jon K.; Barkla, Bronwyn J.; Shigaki, Toshiro; Hirschi, Kendal D.

    2003-01-01

    The Arabidopsis Ca2+/H+ transporter CAX1 (Cation Exchanger1) may be an important regulator of intracellular Ca2+ levels. Here, we describe the preliminary localization of CAX1 to the tonoplast and the molecular and biochemical characterization of cax1 mutants. We show that these mutants exhibit a 50% reduction in tonoplast Ca2+/H+ antiport activity, a 40% reduction in tonoplast V-type H+-translocating ATPase activity, a 36% increase in tonoplast Ca2+-ATPase activity, and increased expression of the putative vacuolar Ca2+/H+ antiporters CAX3 and CAX4. Enhanced growth was displayed by the cax1 lines under Mn2+ and Mg2+ stress conditions. The mutants exhibited altered plant development, perturbed hormone sensitivities, and altered expression of an auxin-regulated promoter-reporter gene fusion. We propose that CAX1 regulates myriad plant processes and discuss the observed phenotypes with regard to the compensatory alterations in other transporters. PMID:12566577

  17. Acceptance of sugar reduction in flavored yogurt.

    Chollet, M; Gille, D; Schmid, A; Walther, B; Piccinali, P

    2013-09-01

    To investigate what level of sugar reduction is accepted in flavored yogurt, we conducted a hedonic test focusing on the degree of liking of the products and on optimal sweetness and aroma levels. For both flavorings (strawberry and coffee), consumers preferred yogurt containing 10% added sugar. However, yogurt containing 7% added sugar was also acceptable. On the just-about-right scale, yogurt containing 10% sugar was more often described as too sweet compared with yogurt containing 7% sugar. On the other hand, the sweetness and aroma intensity for yogurt containing 5% sugar was judged as too low. A second test was conducted to determine the effect of flavoring concentration on the acceptance of yogurt containing 7% sugar. Yogurts containing the highest concentrations of flavoring (11% strawberry, 0.75% coffee) were less appreciated. Additionally, the largest percentage of consumers perceived these yogurts as "not sweet enough." These results indicate that consumers would accept flavored yogurts with 7% added sugar instead of 10%, but 5% sugar would be too low. Additionally, an increase in flavor concentration is undesirable for yogurt containing 7% added sugar. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Sugar addiction: the state of the science.

    Westwater, Margaret L; Fletcher, Paul C; Ziauddeen, Hisham

    2016-11-01

    As obesity rates continue to climb, the notion that overconsumption reflects an underlying 'food addiction' (FA) has become increasingly influential. An increasingly popular theory is that sugar acts as an addictive agent, eliciting neurobiological changes similar to those seen in drug addiction. In this paper, we review the evidence in support of sugar addiction. We reviewed the literature on food and sugar addiction and considered the evidence suggesting the addictiveness of highly processed foods, particularly those with high sugar content. We then examined the addictive potential of sugar by contrasting evidence from the animal and human neuroscience literature on drug and sugar addiction. We find little evidence to support sugar addiction in humans, and findings from the animal literature suggest that addiction-like behaviours, such as bingeing, occur only in the context of intermittent access to sugar. These behaviours likely arise from intermittent access to sweet tasting or highly palatable foods, not the neurochemical effects of sugar. Given the lack of evidence supporting it, we argue against a premature incorporation of sugar addiction into the scientific literature and public policy recommendations.

  19. [Sugar Chain Construction of Functional Natural Products Using Plant Glucosyltransferases].

    Mizukami, Hajime

    2015-01-01

    Plant secondary product glycosyltransferases belong to family 1 of the glycosyltransferase superfamily and mediate the transfer of a glycosyl residue from activated nucleotide sugars to lipophilic small molecules, thus affecting the solubility, stability and pharmacological activities of the sugar-accepting compounds. The biotechnological application of plant glycosyltransferases in glycoside synthesis has attracted attention because enzymatic glycosylation offers several advantages over chemical methods, including (1) avoiding the use of harsh conditions and toxic catalysts, (2) providing strict control of regio-and stereo-selectivity and (3) high efficiency. This review describes the in vivo and in vitro glycosylation of natural organic compounds using glycosyltransferases, focusing on our investigation of enzymatic synthesis of curcumin glycosides. Our current efforts toward functional characterization of some glycosyltransferases involved in the biosynthesis of iridoids and crocin, as well as in the sugar chain elongation of quercetin glucosides, are described. Finally, I describe the relationship of the structure of sugar chains and the intestinal absorption which was investigated using chemoenzymatically synthesized quercetin glycosides.

  20. Atomic cranks and levers control sugar ring conformations

    Zhang Qingmin; Lee, Gwangrog; Marszalek, Piotr E

    2005-01-01

    In this paper we review the conformational analysis of sugar rings placed under tension during mechanical manipulations of single polysaccharide molecules with the atomic force microscope and during steered molecular dynamics simulations. We examine the role of various chemical bonds and linkages between sugar rings in inhibiting or promoting their conformational transitions by means of external forces. Small differences in the orientation of one chemical bond on the sugar ring can produce significantly different mechanical properties at the polymer level as exemplified by two polysaccharides: cellulose, composed of β-1→4-linked D-glucose, and amylose, composed of α-1→4-linked D-glucose. In contrast to β-glucose rings, which are mechanically stable and produce simple entropic elasticity of the chain, α-glucose rings flip under tension from their chair to a boat-like structure and these transitions produce deviations of amylose elasticity from the freely jointed chain model. We also examine the deformation of two mechanically complementary 1→6-linked polysaccharides: pustulan, a β-1→6-linked glucan, and dextran, a α-1→6-linked glucan. Forced rotations about the C 5 -C 6 bonds govern the elasticity of pustulan, and complex conformational transitions that involve simultaneous C 5 -C 6 rotations and chair-boat transitions govern the elasticity of dextran. Finally, we discuss the likelihood of various conformational transitions in sugar rings in biological settings and speculate on their significance

  1. Characteristics of sugar uptake by immature maize embryos

    Griffith, S.M.; Jones, R.J.; Brenner, M.L.

    1986-01-01

    Characteristics of sugar uptake by immature maize embryos were determined in vitro utilizing a 14 C-sugar solution incubation method. Hexose uptake rates were greater than those for sucrose, however, all showed biphasic kinetics. Glucose and fructose saturable components were evidence at <50 mM and sucrose at <5 mM. Chemical inhibitors (CCCP, DNP, NaCN, and PCMBS) and low temperature reduced sugar uptake. Sucrose influx was pH dependent while glucose was not. Embryos maintained a high sucrose to hexose ratio throughout development. At 25 days after pollination sucrose levels exceeded 200 mM while hexose levels remained below 5 mM. Glucose was rapidly converted to sucrose upon transport into the embryo. These circumstantial data indicate that sugar uptake by immature maize embryos is metabolically dependent and carrier mediated. Furthermore, sucrose transport appears to occur against its concentration gradient involving a H+/sucrose cotransport mechanism, while glucose influx is driven by its concentration gradient and subsequent metabolism

  2. Sugar recognition by human galactokinase

    Timson David J

    2003-11-01

    Full Text Available Abstract Background Galactokinase catalyses the first committed step of galactose catabolism in which the sugar is phosphorylated at the expense of MgATP. Recent structural studies suggest that the enzyme makes several contacts with galactose – five side chain and two main chain hydrogen bonds. Furthermore, it has been suggested that inhibition of galactokinase may help sufferers of the genetic disease classical galactosemia which is caused by defects in another enzyme of the pathway galactose-1-phosphate uridyl transferase. Galactokinases from different sources have a range of substrate specificities and a diversity of kinetic mechanisms. Therefore only studies on the human enzyme are likely to be of value in the design of therapeutically useful inhibitors. Results Using recombinant human galactokinase expressed in and purified from E. coli we have investigated the sugar specificity of the enzyme and the kinetic consequences of mutating residues in the sugar-binding site in order to improve our understanding of substrate recognition by this enzyme. D-galactose and 2-deoxy-D-galactose are substrates for the enzyme, but N-acetyl-D-galactosamine, L-arabinose, D-fucose and D-glucose are all not phosphorylated. Mutation of glutamate-43 (which forms a hydrogen bond to the hydroxyl group attached to carbon 6 of galactose to alanine results in only minor changes in the kinetic parameters of the enzyme. Mutation of this residue to glycine causes a ten-fold drop in the turnover number. In contrast, mutation of histidine 44 to either alanine or isoleucine results in insoluble protein following expression in E. coli. Alteration of the residue that makes hydrogen bonds to the hydroxyl attached to carbons 3 and 4 (aspartate 46 results in an enzyme that although soluble is essentially inactive. Conclusions The enzyme is tolerant to small changes at position 2 of the sugar ring, but not at positions 4 and 6. The results from site directed mutagenesis could

  3. Increase The Sugar Concentration of The Solution Sugar by Reverse Osmotic Membrane

    Redjeki, S.; Hapsari, N.; Iriani

    2018-01-01

    Sugar is one of the basic needs of people and food and drink industry. As technology advances and the demand for efficient usage of sugar rises, crystal sugar is seen as less advantageous than liquid sugar. If sugar is always dissolved in water before use, then it will be more efficient and practical for consumers to use sugar in liquid form than in crystal form. Other than that, liquid sugar is also attractive to consumers because it is economical, hygienic, instantly soluble in hot and cold water, fresher and longer-lasting, able to thicken and enrich the texture of foods and drinks, and functions as sweetener, syrup, and flavor enhancer. Liquid sugar is also more beneficial for sugar producers because of simpler production process, cheaper production cost, and similar yield with no extra cost. In sugar production, separation process is found in most of its stages and therefore the use of membrane technology for separating solute and water content has a good potential. In this research, water content reduction of sugar solution was done in order to increase the sugar concentration of the solution. The parameters of this research were 4%, 5%, and 6% starting concentration of sugar solution; 20, 40, and 60 minutes of process time; and 85 and 60 PSI ΔP. The best result was acquired on 4% starting concentration, 60 PSI ΔP, and 60 minutes process time.

  4. Sugar-free medicines are counterproductive.

    Sundar, S

    2012-09-01

    Sugar in food and drinks is responsible for the poor dental health of many children and adults. On the other hand, there is no evidence that the small amount of sugar in medicines has been responsible for any dental problems. A recent British Heart Foundation survey found that nearly one in three UK children are eating sweets, chocolate and crisps three or more times a day. Hence it is futile administering sugar-free medicine to a child consuming lot of sweets. Moreover, sugar in medicines makes them palatable and bitter medicines inevitably affect compliance with the prescribed treatment. Poor compliance leads to inadequate treatment of illness and consequently increases the risk of complications from illness. Hence sugar-free medicines promoted as a public health policy could have actually caused more harm than any meaningful net benefit. There is an urgent need for a healthy debate and a fresh look at the policy of promoting sugar-free medicines.

  5. Sugar signaling regulation by Arabidopsis SIZ1-driven sumoylation is independent of salicylic acid

    Castro, Pedro Humberto Araújo R F; Verde, Nuno; Tavares, Rui Manuel

    2018-01-01

    inefficient responses to nutrient imbalance in phosphate, nitrate and copper. Recently, we reported that siz1 also displays altered responses to exogenous sugar supplementation. The siz1 mutant is a salicylic acid (SA) accumulator, and SA may interfere with sugar-dependent responses and signaling events. Here......, we extended our previous studies to determine the importance of SA in the SIZ1 response to sugars, by introducing the bacterial salicylate hydroxylase NahG into the siz1 background. Results demonstrate that siz1 phenotypes involving delayed germination are partially dependent of SA levels, whereas...

  6. 21 CFR 184.1857 - Corn sugar.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Corn sugar. 184.1857 Section 184.1857 Food and... Substances Affirmed as GRAS § 184.1857 Corn sugar. (a) Corn sugar (C6H12O6, CAS Reg. No. 50-99-7), commonly... monohydrate form and is produced by the complete hydrolysis of corn starch with safe and suitable acids or...

  7. Nuclear analytical techniques in Cuban Sugar Industry

    Diaz Riso, O.; Griffith Martinez, J.

    1996-01-01

    This paper is a review concerning the applications of Nuclear Analytical Techniques in the Cuban sugar industry. The most complete elemental composition of final molasses (34 elements ) and natural zeolites (38) this last one employed as an auxiliary agent in sugar technological processes has been performed by means of Instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence Analysis (XRFA). The trace elements sugar cane soil plant relationship and elemental composition of different types of Cuban sugar (rawr, blanco directo and refine) were also studied. As a result, valuable information referred to the possibilities of using these products in animal and human foodstuff so as in other applications are given

  8. Structural Features of Sugars That Trigger or Support Conidial Germination in the Filamentous Fungus Aspergillus niger

    Hayer, Kimran; Stratford, Malcolm

    2013-01-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia. PMID:23995938

  9. Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger.

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2013-11-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia.

  10. Sugar palm (Argena pinnata). Potential of sugar palm for bio-ethanol production

    Elbersen, H.W.; Oyen, L.P.A.

    2010-01-01

    The energetic and economic feasibility of bioethanol production from sugar palm is virtually unknown. A positive factor are the potentially very high yields while the long non-productive juvenile phase and the high labor needs can be seen as problematic. Expansion to large scale sugar palm cultivation comes with risks. Small-scale cultivation of sugar palm perfectly fits into local farming systems. In order to make a proper assessment of the value palm sugar as bio-ethanol crop more informati...

  11. Conversion of yellow crude sugar into alcohol. Conversion of yellow crude sugar in a mixture with sugar beet molasses

    Krishtul, F B; Malchenko, A L; Poluyanova, M T; Gromovich, V F; Maskimova, E A; Golodovskaya, A I; Pal' gova, L S

    1963-01-01

    Crude sugar (96.5 to 98.4% sucrose) in a mixture with molasses can be converted into alcohol by either batchwise or continuous fermentation processes with good process characteristics. Best yields are obtained when the amount of crude sugar is not more than 50% of the total weight of fermenting material. The bakers' yeast and alcohol produced are of good quality.

  12. A trial of sugar-free or sugar-sweetened beverages and body weight in children

    de Ruyter, Janne C; Olthof, Margreet R; Seidell, Jacob C; Katan, Martijn B

    2012-01-01

    BACKGROUND: The consumption of beverages that contain sugar is associated with overweight, possibly because liquid sugars do not lead to a sense of satiety, so the consumption of other foods is not reduced. However, data are lacking to show that the replacement of sugar-containing beverages with

  13. Effects of bagging on sugar metabolism and the activity of sugar ...

    To investigate the effects of bagging on sugar metabolism and the activity of sugar metabolism related enzymes in Qingzhong loquat fruit development, the contents of sucrose, glucose and soluble solids as well as the activities of sugar metabolism related enzymes were evaluated. The content of sucrose, glucose and ...

  14. Different exogenous sugars affect the hormone signal pathway and sugar metabolism in "Red Globe" (Vitis vinifera L.) plantlets grown in vitro as shown by transcriptomic analysis.

    Mao, Juan; Li, Wenfang; Mi, Baoqin; Dawuda, Mohammed Mujitaba; Calderón-Urrea, Alejandro; Ma, Zonghuan; Zhang, Yongmei; Chen, Baihong

    2017-09-01

    knowledge of the genes involved in sugar metabolism and improves the understanding of complex regulatory networks involved in signal transduction in grape plantlets.

  15. Microbiological Spoilage of High-Sugar Products

    Thompson, Sterling

    The high-sugar products discussed in this chapter are referred to as chocolate, sugar confectionery (non-chocolate), liquid sugars, sugar syrups, and honey. Products grouped in the sugar confectionery category include hard candy, soft/gummy candy, caramel, toffee, licorice, marzipan, creams, jellies, and nougats. A common intrinsic parameter associated with high-sugar products is their low water activity (a w), which is known to inhibit the growth of most spoilage and pathogenic bacteria. However, spoilage can occur as a result of the growth of osmophilic yeasts and xerophilic molds (Von Richter, 1912; Anand & Brown, 1968; Brown, 1976). The a w range for high-sugar products is between 0.20 and 0.80 (Banwart, 1979; Richardson, 1987; Lenovich & Konkel, 1992; ICMSF, 1998; Jay, Loessner, & Golden, 2005). Spoilage of products, such as chocolate-covered cherries, results from the presence of yeasts in the liquid sugar brine or the cherry. Generally, the spoiled product will develop leakers. The chocolate covering the cherry would not likely be a source of yeast contamination.

  16. Maple Sugar Harvesting/Wild Rice Harvesting.

    Minneapolis Public Schools, MN.

    Comprised of two separate booklets, this resource unit assists elementary teachers in explaining how the Ojibwe people harvest maple sugar and wild rice. The first booklet explains the procedure of tapping the maple trees for sap, preparation for boiling the sap, and the three forms the sugar is made into (granulated, "molded," and…

  17. Engineering of sugar metabolism in Lactococcus lactis

    Pool, Weia Arianne

    2008-01-01

    Short English Summary Lactococcus lactis is a lactic acid bacterium used in the dairy industry. This thesis decribes the genetic engineering performed on the sugar metabolism of L. lactis. Besides our fundamental interest for sugar metabolism and its regulation in L. lactis, this project had the

  18. Blood Sugar Testing: Why, When and How

    ... exercise affect blood sugar levels Understand how other factors, such as illness or stress, affect blood sugar levels Monitor the effect of ... appropriate device for you. Your doctor or diabetes educator can also help you ... how the process works: Wash and dry your hands well. Insert a ...

  19. Sugar amino acids and related molecules

    Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature's molecular arsenal. In recent years, sugar amino acids have been used extensively in the area of ...

  20. Characterization of sugar beet pulp derived oligosaccharides

    Leijdekkers, M.

    2015-01-01

    Abstract

    This thesis aimed at characterizing complex mixtures of sugar beet pulp derived oligosaccharides, in order to be able to monitor and optimize the enzymatic saccharification of sugar beet pulp.

    Hydrophilic interaction chromatography with on-line evaporative

  1. A sugar maple planting study in Vermont

    Harry W. Yawney; Clayton M., Jr. Carl; Clayton M. Carl

    1970-01-01

    Past attempts to establish sugar maple (Acer saccharum Marsh.) by planting have generally met with little success. The failures have been blamed mainly on competition by other vegetation and on damage done by animals. Finding an effective way to establish sugar maple seedlings is a key part in the research being carried on in Vermont by the USDA Forest Service to...

  2. Sugar maple: its characteristics and potentials

    Ralph D. Nyland

    1999-01-01

    Sugar maple dominates the northern hardwood forest, but grows over a broader geographic area. Conditions of soil and climate largely limit its distribution, and account for its less continuous cover along fringes of the range. Sugar maple regenerates readily following a wide range of overstory treatments. Success depends upon its status as advance regeneration,...

  3. Grading sugar pine saw logs in trees.

    John W. Henley

    1972-01-01

    Small limbs and small overgrown limbs cause problems when grading saw logs in sugar pine trees. Surface characteristics and lumber recovery information for 426 logs from 64 sugar pine trees were examined. Resulting modifications in the grading specification that allow a grader to ignore small limbs and small limb indicators do not appear to decrease the performance of...

  4. The sugar industry in Peru

    Klaren, Peter F.

    2005-04-01

    Full Text Available Since the early Colonial times sugar production has been a key sector in the Peruvian export economy. This article analyzes its evolution as from the beginning of its modern phase by mid 19th Century, its consolidation in the Northern coastal region, and its concentration in scale-economy plants. The prosperity of this type of production contributed to the formation of both an oligarchy which governed the country until 1968, and the populist party (APRA and its electoral basis (the so-called «Aprista North». In the sixties Velasco Alvarado’s military revolution nationalized the sugar industry, which underwent structural changes leading to a serious crisis in the eighties that has not been overcome up-todate.

    La producción de azúcar ha constituido un importante sector en la economía exportadora del Perú desde el período colonial temprano. Este artículo analiza su evolución, sobre todo tras el inicio de su fase moderna, fechada a partir de mediados del siglo XIX, cuando se modernizó, se consolidó en la región costera septentrional y se concentró en fábricas que operaban con economías de escala. Su prosperidad, contribuyó, además, a la formación de una oligarquía que gobernó el país hasta 1968 y del partido populista, APRA, y su base electoral (el llamado «sólido Norte aprista». La revolución militar de Velasco Alvarado nacionalizó la industria en la década de 1960 y los cambios estructurales que sufrió posteriormente le condujeron a una grave crisis en los años ochenta que aún no ha superado.

  5. Comparative anatomy of the peduncles of Thai Sugar Palms provides insight on putative sugar transport mechanisms

    Somjaiai, Pananun; Barfod, Anders; Jampeetong, Arunothai

    Inflorescences of sugar palms exude copious amounts of sugar-rich sap, when their peduncles are scarred. In Thailand this phenomenon form the basis of a widespread cottage industry based on species such as Arenga pinnata, Borassus flabellifera, Cocos nucifera and Nypa fruticans. The extracted sugar...... sap is used mainly for jaggery, syrup and different types of beverages. In this study we looked for anatomical correlates of the elevated sap flow in injured peduncles of sugar palms. Despite a limited sample size we observed that sugar producing palms differ from the reference palm Chamaedorea...

  6. 75 FR 22095 - USDA Reassigns Domestic Cane Sugar Allotments and Increases the Fiscal Year 2010 Raw Sugar Tariff...

    2010-04-27

    ... USDA Reassigns Domestic Cane Sugar Allotments and Increases the Fiscal Year 2010 Raw Sugar Tariff-Rate... announced a reassignment of surplus sugar under domestic cane sugar allotments of 200,000 short tons raw value (STRV) to imports, and increased the fiscal year (FY) 2010 raw sugar tariff-rate quota (TRQ) by...

  7. 75 FR 38764 - USDA Reassigns Domestic Cane Sugar Allotments and Increases the Fiscal Year 2010 Raw Sugar Tariff...

    2010-07-06

    ... USDA Reassigns Domestic Cane Sugar Allotments and Increases the Fiscal Year 2010 Raw Sugar Tariff-Rate... announced a reassignment of surplus sugar under domestic cane sugar allotments of 300,000 short tons raw value (STRV) to imports, and increased the fiscal year (FY) 2010 raw sugar tariff-rate quota (TRQ) by...

  8. 76 FR 20305 - USDA Reassigns Domestic Cane Sugar Allotments and Increases the Fiscal Year 2011 Raw Sugar Tariff...

    2011-04-12

    ... USDA Reassigns Domestic Cane Sugar Allotments and Increases the Fiscal Year 2011 Raw Sugar Tariff-Rate... announced a reassignment of surplus sugar under domestic cane sugar allotments of 325,000 short tons raw value (STRV) to imports, and increased the fiscal year (FY) 2011 raw sugar tariff-rate quota (TRQ) by...

  9. Synthesis of O-Amino Sugars and Nucleosides

    Na Chen

    2018-03-01

    Full Text Available Nucleic acids and carbohydrates are essential biomolecules involved in numerous biological and pathological processes. Development of multifunctional building blocks based on nucleosides and sugars is in high demand for the generation of novel oligonucleotide mimics and glycoconjugates for biomedical applications. Recently, aminooxyl-functionalized compounds have attracted increasing research interest because of their easy derivatization through oxime ligation or N-oxyamide formation reactions. Various biological applications have been reported for O-amino carbohydrate- and nucleoside-derived compounds. Here, we report our efforts in the design and synthesis of glyco-, glycosyl, nucleoside- and nucleo-aminooxy acid derivatives from readily available sugars and amino acids, and their use for the generation of N-oxyamide-linked oligosaccharides, glycopeptides, glycolipids, oligonucleosides and nucleopeptides as novel glycoconjugates or oligonucleotide mimics. Delicate and key points in the synthesis will be emphasized.

  10. Work and health conditions of sugar cane workers in Brazil.

    Rocha, Fernanda Ludmilla Rossi; Marziale, Maria Helena Palucci; Hong, Oi-Saeng

    2010-12-01

    This is an exploratory research, with a quantitative approach, developed with the objective of analyzing the work and of life situations that can offer risks to the workers' health involved in the manual and automated cut of the sugar cane. The sample was composed by 39 sugar cane cutters and 16 operators of harvesters. The data collection occurred during the months of July and August of 2006, by the technique of direct observation of work situations and workers' homes and through interviews semi-structured. The interviews were recorded and later transcribed. Data were analyzed according to Social Ecological Theory. It was observed that the workers deal with multiple health risk situations, predominantly to the risks of occurrence of respiratory, musculoskeletal and psychological problems and work-related accidents due to the work activities. The interaction of individual, social and environmental factors can determine the workers' tendency to falling ill.

  11. THE FACTORS FORMING QUALITY OF GRANULATED SUGAR

    N. G. Kulneva

    2015-01-01

    Full Text Available Sugar, with good taste and high caloric, is one of the most popular human food. Consumers sugar must be sure that the sugar under normal conditions of use is of high quality and is not harmful to the health of the product. One reason for the decline in the quality of sugar is bacterial contamination. This is because the sugar industry products are good targets for the development of different groups of microorganisms, e.g., Bacillus subtilis, Clostridium perfringes, Leuconostoc dextranicum, Torula alba, Pseudomonas fluorescens, Sarcina lutea and others. These organisms are affected with beets, and then with sugar beet chips and diffusion juice fall into the processing line of sugar production. Their number in the diffusion juice varies and depends on many facto rs such as the quality of raw materials, the quality of cleaning beet root colonization of transporter-washing and the supply of water to the diffusion process, the temperature of the diffusion and others. In the diffusion unit has the most favorable conditions for the development of micro-organisms. Some of them, especially resistant bacteria and thermophilic bacteria or their spores, forming a capsule which protects against external influences occur in the final product sugar. When injected into the fresh crop of product (juice, syrup, they begin to multiply rapidly, causing difficulties in the process. The higher seeding beet microorganisms, the more they decompose and emit sucrose metabolism byproducts. To reduce the negative impact of microbiological and reduce losses from decomposition of sucrose conducted research on the possibility of using chlorine-containing substances in the sugar industry. It was established experimentally that the investigated chlorinated drug has bacteriostatic action and can be recommended for use in sugar beet production.

  12. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars.

    Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun

    2014-01-01

    In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of "Gala" apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.

  13. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars

    Xiaoyu eWei

    2014-11-01

    Full Text Available In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of ‘Gala’ apple. Genes for sugar alcohol (including 17 sorbitol transporters, sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs. Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.

  14. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.).

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-07-31

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. Copyright © 2014 Schreiber et al.

  15. Added sugars in kids' meals from chain restaurants

    Scourboutakos, Mary J.; Semnani-Azad, Zhila; L'Abbé, Mary R.

    2016-01-01

    Objective To analyze the added sugars in kids' meals from Canadian chain restaurants in relation to the World Health Organization's proposed sugar recommendation (less than 5% of total daily calories should come from added sugars) and current recommendation (less than 10% of total daily calories should come from added sugars). Methods Total sugar levels were retrieved from the websites of 10 fast-food and 7 sit-down restaurants in 2010. The added sugar levels in 3178 kids' meals from Canadian...

  16. Prebiotic Synthesis of Autocatalytic Products From Formaldehyde-Derived Sugars as the Carbon and Energy Source

    Weber, Arthur L.

    2003-01-01

    Our research objective is to understand and model the chemical processes on the primitive Earth that generated the first autocatalytic molecules and microstructures involved in the origin of life. Our approach involves: (a) investigation of a model origin-of-life process named the Sugar Model that is based on the reaction of formaldehyde- derived sugars (trioses and tetroses) with ammonia, and (b) elucidation of the constraints imposed on the chemistry of the origin of life by the fixed energies and rates of C,H,O-organic reactions under mild aqueous conditions. Recently, we demonstrated that under mild aqueous conditions the Sugar Model process yields autocatalytic products, and generates organic micropherules (2-20 micron dia.) that exhibit budding, size uniformity, and chain formation. We also discovered that the sugar substrates of the Sugar Model are capable of reducing nitrite to ammonia under mild aqueous conditions. In addition studies done in collaboration with Sandra Pizzarrello (Arizona State University) revealed that chiral amino acids (including meteoritic isovaline) catalyze both the synthesis and specific handedness of chiral sugars. Our systematic survey of the energies and rates of reactions of C,H,O-organic substrates under mild aqueous conditions revealed several general principles (rules) that govern the direction and rate of organic reactions. These reactivity principles constrain the structure of chemical pathways used in the origin of life, and in modern and primitive metabolism.

  17. Economic analyse of industrial production and electric energy consumption on a sugar-alcohol plant; Analise economica da producao industrial e do consumo de energia eletrica em uma usina sucro-alcooleira

    Bini, Aderson

    1993-10-01

    Economic aspects of industrial production of sugar cane and automotive alcohol fuel, the relation between its production and electric energy consumption, electric energy costs to self generated electric power and concessionary supply, involved in plant production on Ribeirao Preto, SP, Brazil, are presented. Studies to verify the relationships between sugar and alcohol production with milling ours as well as sugar cane processed with sugar and alcohol produced are also discussed 27 refs., 12 figs., 38 tabs.

  18. SILAGE CANE SUGAR ADDED WITH DRIED BREWER

    W. J. R. Castro

    2015-02-01

    Full Text Available The objective of this experiment was to evaluate the fermentative parameters and chemical composition of silage cane sugar added with residue dried brewery. The experimental design was completely randomized with four treatments and four replications: 100% cane sugar; 90% of cane sugar + 10% residue dried brewer; 80% of cane sugar + 20% residue dried brewer and 70% cane sugar + 30% dried brewer based on natural matter, composed silages. The sugar cane was chopped in a stationary machine with forage particle size of approximately 2 cm, and homogenized manually with the additives. For storage chopped fresh weight were used in experimental silos capacity of about 4 liters. The results showed that the contents of dry matter and crude protein showed positive linear (P0.05 with mean value of 3.81, while for ether extract and ash results were positive linear (P0.05 for N ammonia presented average value of 4.18. It is concluded that the addition of brewer dehydrated improves the fermentation process of silage cane sugar, in addition to improving their nutritional characteristics.

  19. Improved molecular tools for sugar cane biotechnology.

    Kinkema, Mark; Geijskes, Jason; Delucca, Paulo; Palupe, Anthony; Shand, Kylie; Coleman, Heather D; Brinin, Anthony; Williams, Brett; Sainz, Manuel; Dale, James L

    2014-03-01

    Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.

  20. Sugar Metabolism in Hummingbirds and Nectar Bats.

    Suarez, Raul K; Welch, Kenneth C

    2017-07-12

    Hummingbirds and nectar bats coevolved with the plants they visit to feed on floral nectars rich in sugars. The extremely high metabolic costs imposed by small size and hovering flight in combination with reliance upon sugars as their main source of dietary calories resulted in convergent evolution of a suite of structural and functional traits. These allow high rates of aerobic energy metabolism in the flight muscles, fueled almost entirely by the oxidation of dietary sugars, during flight. High intestinal sucrase activities enable high rates of sucrose hydrolysis. Intestinal absorption of glucose and fructose occurs mainly through a paracellular pathway. In the fasted state, energy metabolism during flight relies on the oxidation of fat synthesized from previously-ingested sugar. During repeated bouts of hover-feeding, the enhanced digestive capacities, in combination with high capacities for sugar transport and oxidation in the flight muscles, allow the operation of the "sugar oxidation cascade", the pathway by which dietary sugars are directly oxidized by flight muscles during exercise. It is suggested that the potentially harmful effects of nectar diets are prevented by locomotory exercise, just as in human hunter-gatherers who consume large quantities of honey.

  1. Sugar Metabolism in Hummingbirds and Nectar Bats

    Raul K. Suarez

    2017-07-01

    Full Text Available Hummingbirds and nectar bats coevolved with the plants they visit to feed on floral nectars rich in sugars. The extremely high metabolic costs imposed by small size and hovering flight in combination with reliance upon sugars as their main source of dietary calories resulted in convergent evolution of a suite of structural and functional traits. These allow high rates of aerobic energy metabolism in the flight muscles, fueled almost entirely by the oxidation of dietary sugars, during flight. High intestinal sucrase activities enable high rates of sucrose hydrolysis. Intestinal absorption of glucose and fructose occurs mainly through a paracellular pathway. In the fasted state, energy metabolism during flight relies on the oxidation of fat synthesized from previously-ingested sugar. During repeated bouts of hover-feeding, the enhanced digestive capacities, in combination with high capacities for sugar transport and oxidation in the flight muscles, allow the operation of the “sugar oxidation cascade”, the pathway by which dietary sugars are directly oxidized by flight muscles during exercise. It is suggested that the potentially harmful effects of nectar diets are prevented by locomotory exercise, just as in human hunter-gatherers who consume large quantities of honey.

  2. A vacuolar carboxypeptidase mutant of Arabidopsis thaliana is degraded by the ERAD pathway independently of its N-glycan

    Yamamoto, Masaya; Kawanabe, Mitsuyoshi; Hayashi, Yoko; Endo, Toshiya; Nishikawa, Shuh-ichi

    2010-01-01

    Misfolded proteins produced in the endoplasmic reticulum (ER) are degraded by a mechanism, the ER-associated degradation (ERAD). Here we report establishment of the experimental system to analyze the ERAD in plant cells. Carboxypeptidase Y (CPY) is a vacuolar enzyme and its mutant CPY* is degraded by the ERAD in yeast. Since Arabidopsis thaliana has AtCPY, an ortholog of yeast CPY, we constructed and expressed fusion proteins consisting of AtCPY and GFP and of AtCPY*, which carries a mutation homologous to yeast CPY*, and GFP in A. thaliana cells. While AtCPY-GFP was efficiently transported to the vacuole, AtCPY*-GFP was retained in the ER to be degraded in proteasome- and Cdc48-dependent manners. We also found that AtCPY*-GFP was degraded by the ERAD in yeast cells, but that its single N-glycan did not function as a degradation signal in yeast or plant cells. Therefore, AtCPY*-GFP can be used as a marker protein to analyze the ERAD pathway, likely for nonglycosylated substrates, in plant cells.

  3. Clinical features of progressive vacuolar hepatopathy in Scottish Terriers with and without hepatocellular carcinoma: 114 cases (1980-2013).

    Cortright, Catherine C; Center, Sharon A; Randolph, John F; McDonough, Sean P; Fecteau, Kellie A; Warner, Karen L; Chiapella, Ann M; Pierce, Rhonda L; Graham, A Heather; Wall, Linda J; Heidgerd, John H; Degen, Melisa A; Lucia, Patricia A; Erb, Hollis N

    2014-10-01

    To characterize signalment, clinical features, clinicopathologic variables, hepatic ultrasonographic characteristics, endocrinologic profiles, treatment response, and age at death of Scottish Terriers with progressive vacuolar hepatopathy (VH) with or without hepatocellular carcinoma (HCC). Retrospective case series. 114 Scottish Terriers with progressive VH. Electronic databases from 1980 to 2013 were searched for adult (age > 1 year) Scottish Terriers with histopathologic diagnoses of diffuse glycogen-like VH. Available sections of liver specimens were histologically reevaluated to confirm diffuse VH with or without HCC; 8 dogs with HCC only had neoplastic tissue available. Physical examination, clinicopathologic, treatment, and survival data were obtained. 39 of 114 (34%) dogs with VH had HCC detected at surgery or necropsy or by abdominal ultrasonography. Histologic findings indicated that HCC was seemingly preceded by dysplastic hepatocellular foci. No significant differences were found in clinicopathologic variables or age at death between VH-affected dogs with or without HCC. Fifteen of 26 (58%) dogs with high hepatic copper concentrations had histologic features consistent with copper-associated hepatopathy. Although signs consistent with hyperadrenocorticism were observed in 40% (46/114) of dogs, definitive diagnosis was inconsistently confirmed. Assessment of adrenal sex hormone concentrations before and after ACTH administration identified high progesterone and androstenedione concentrations in 88% (22/25) and 80% (20/25) of tested dogs, respectively. Results suggested that VH in Scottish Terriers may be linked to adrenal steroidogenesis and a predisposition to HCC. In dogs with VH, frequent serum biochemical analysis and ultrasonographic surveillance for early tumor detection are recommended.

  4. A vacuolar carboxypeptidase mutant of Arabidopsis thaliana is degraded by the ERAD pathway independently of its N-glycan

    Yamamoto, Masaya; Kawanabe, Mitsuyoshi; Hayashi, Yoko; Endo, Toshiya [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Nishikawa, Shuh-ichi, E-mail: shuh@biochem.chem.nagoya-u.ac.jp [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan)

    2010-03-12

    Misfolded proteins produced in the endoplasmic reticulum (ER) are degraded by a mechanism, the ER-associated degradation (ERAD). Here we report establishment of the experimental system to analyze the ERAD in plant cells. Carboxypeptidase Y (CPY) is a vacuolar enzyme and its mutant CPY* is degraded by the ERAD in yeast. Since Arabidopsis thaliana has AtCPY, an ortholog of yeast CPY, we constructed and expressed fusion proteins consisting of AtCPY and GFP and of AtCPY*, which carries a mutation homologous to yeast CPY*, and GFP in A. thaliana cells. While AtCPY-GFP was efficiently transported to the vacuole, AtCPY*-GFP was retained in the ER to be degraded in proteasome- and Cdc48-dependent manners. We also found that AtCPY*-GFP was degraded by the ERAD in yeast cells, but that its single N-glycan did not function as a degradation signal in yeast or plant cells. Therefore, AtCPY*-GFP can be used as a marker protein to analyze the ERAD pathway, likely for nonglycosylated substrates, in plant cells.

  5. Plasmodium falciparum chloroquine resistance transporter (PfCRT) isoforms PH1 and PH2 perturb vacuolar physiology.

    Callaghan, Paul S; Siriwardana, Amila; Hassett, Matthew R; Roepe, Paul D

    2016-03-31

    Recent work has perfected yeast-based methods for measuring drug transport by the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT). The approach relies on inducible heterologous expression of PfCRT in Saccharomyces cerevisiae yeast. In these experiments selecting drug concentrations are not toxic to the yeast, nor is expression of PfCRT alone toxic. Only when PfCRT is expressed in the presence of CQ is the growth of yeast impaired, due to inward transport of chloroquine (CQ) via the transporter. During analysis of all 53 known naturally occurring PfCRT isoforms, two isoforms (PH1 and PH2 PfCRT) were found to be intrinsically toxic to yeast, even in the absence of CQ. Additional analysis of six very recently identified PfCRT isoforms from Malaysia also showed some toxicity. In this paper the nature of this yeast toxicity is examined. Data also show that PH1 and PH2 isoforms of PfCRT transport CQ with an efficiency intermediate to that catalyzed by previously studied CQR conferring isoforms. Mutation of PfCRT at position 160 is found to perturb vacuolar physiology, suggesting a fitness cost to position 160 amino acid substitutions. These data further define the wide range of activities that exist for PfCRT isoforms found in P. falciparum isolates from around the globe.

  6. The Loss of Vacuolar Protein Sorting 11 (vps11) Causes Retinal Pathogenesis in a Vertebrate Model of Syndromic Albinism

    Thomas, Jennifer L.; Vihtelic, Thomas S.; denDekker, Aaron D.; Willer, Gregory; Luo, Xixia; Murphy, Taylor R.; Gregg, Ronald G.; Hyde, David R.

    2011-01-01

    Purpose. To establish the zebrafish platinum mutant as a model for studying vision defects caused by syndromic albinism diseases such as Chediak-Higashi syndrome, Griscelli syndrome, and Hermansky-Pudlak syndrome (HPS). Methods. Bulked segregant analysis and candidate gene sequencing revealed that the zebrafish platinum mutation is a single-nucleotide insertion in the vps11 (vacuolar protein sorting 11) gene. Expression of vps11 was determined by RT-PCR and in situ hybridization. Mutants were analyzed for pigmentation defects and retinal disease by histology, immunohistochemistry, and transmission electron microscopy. Results. Phenocopy and rescue experiments determined that a loss of Vps11 results in the platinum phenotype. Expression of vps11 appeared ubiquitous during zebrafish development, with stronger expression in the developing retina and retinal pigmented epithelium (RPE). Zebrafish platinum mutants exhibited reduced pigmentation in the body and RPE; however, melanophore development, migration, and dispersion occurred normally. RPE, photoreceptors, and inner retinal neurons formed normally in zebrafish platinum mutants. However, a gradual loss of RPE, an absence of mature melanosomes, and the subsequent degradation of RPE/photoreceptor interdigitation was observed. Conclusions. These data show that Vps11 is not necessary for normal retinal development or initiation of melanin biosynthesis, but is essential for melanosome maturation and healthy maintenance of the RPE and photoreceptors. PMID:21330665

  7. The LRRC8A Mediated “Swell Activated” Chloride Conductance Is Dispensable for Vacuolar Homeostasis in Neutrophils

    Philippe Behe

    2017-05-01

    Full Text Available The dialysis of human and mouse neutrophils in patch clamp experiments in the conventional whole-cell mode induces the emergence of a chloride (Cl- current that appeared to be primarily regulated by cytoplasmic ionic strength. The characteristics of this current resembled that of the classical, and ubiquitous volume-sensitive outwardly rectifying Cl- current: strong outward rectification, selectivity sequence of the Eisenman1 type, insensitivity to external pH and strong inhibition by tamoxifen, DCPIB and WW781. We show that this current is essentially supported by the leucine rich repeat containing 8 A (LRRC8A; the naturally occurring LRRC8A truncation mutant in ebo/ebo mice drastically reduced Cl- conductance in neutrophils. Remarkably, the residual component presents a distinct pharmacology, but appears equally potentiated by reduced ionic strength. We have investigated the role of the LRRC8A-supported current in the ionic homeostasis of the phagosomal compartment. The vacuolar pH, measured using SNARF-1 labeled Candida albicans, normally rises because of NADPH oxidase activity, and this elevation is blocked by certain Cl- channel inhibitors. However, the pH rise remains intact in neutrophils from the ebo/ebo mice which also demonstrate preserved phagocytic and respiratory burst capacities and normal-sized vacuoles. Thus, the LRRC8A-dependent conductance of neutrophils largely accounts for their “swell activated” Cl- current, but is not required for homeostasis of the phagosomal killing compartment.

  8. Inhibition of the Vacuolar-like ATPase from Halobacterium saccharovorum by Thiol Reagents: Evidence for Different Functional Thiols

    Hochstein, L. I.; Stanlotter, H.; Emrich, E.; Morrison, David (Technical Monitor)

    1994-01-01

    N-Ethylmaleimide (NEM) inhibited the vacuolar-like ATPase from Halobacterium saccharovorum (K(sub i) approximately 1 mM) by modifying one or more of the thiols located on the largest of the subunit. ATP protected against inhibition and coincidentally prevented NEM binding which suggested that NEM acts at or near the catalytic site. p-Chloromercuriphenylsulfonate (PCMS) also inhibited this ATPase (K(sub i) approximately 90 microM). ATP did not protect against PCMS inhibition. Dithiothreitol (DTT) partially reversed PCMS inhibition and restored approximately half of the initial activity of 90% inhibited enzyme. DTT did not restore activity of the NEM-inhibited enzyme or the PCMS-inhibited enzyme when it was subsequently incubated with NEM. The failure of ATP to protect against PCMS inhibition and the inability of DTT to restore activity of enzyme incubated in the presence of PCMS and NEM suggests these reagents react with different thiols and that the PCMS-sensitive thiol may have a structural role.

  9. Confronting the 'sugar daddy' stereotype: age and economic asymmetries and risky sexual behavior in urban Kenya.

    Luke, Nancy

    2005-03-01

    "Sugar daddy" relationships, which are characterized by large age and economic asymmetries between partners, are believed to be a major factor in the spread of HIV in Sub-Saharan Africa. Information is needed about sugar daddy partnerships-and about age and economic asymmetries more generally-to determine how common they are and whether they are related to unsafe sexual behavior. The sample comprised 1,052 men aged 21-45 who were surveyed in Kisumu, Kenya, in 2001. Data on these men and their 1,614 recent non-marital partnerships were analyzed to calculate the prevalence of sugar daddies and sugar daddy relationships, as well as a range of age and economic disparities within non-marital partnerships. Logistic regression models were constructed to assess relationships between condom use at last sexual intercourse and various measures of age and economic asymmetry. The mean age difference between non-marital sexual partners was 5.5 years, and 47% of men's female partners were adolescents. Fourteen percent of partnerships involved an age difference of at least 10 years, and 23% involved more than the mean amount of male-to-female material assistance. Men who reported at least one partnership with both these characteristics were defined as sugar daddies and made up 5% of the sample; sugar daddy relationships accounted for 4% of partnerships. Sugar daddy partnerships and the largest age and economic asymmetries we constructed were associated with decreased odds of condom use. Although sugar daddy relationships are not as pervasive as generally assumed, age and economic asymmetries in non-marital partnerships are relatively common. All these types of asymmetries are associated with nonuse of condoms. Increasing women's power within asymmetric sexual relationships could improve their ability to negotiate safer sexual behaviors, such as condom use.

  10. Residues in the H+ Translocation Site Define the pKa for Sugar Binding to LacY†

    Smirnova, Irina; Kasho, Vladimir; Sugihara, Junichi; Choe, Jun-Yong; Kaback, H. Ronald

    2009-01-01

    A remarkably high pKa of approximately 10.5 has been determined for sugar-binding affinity to the lactose permease of Escherichia coli (LacY), indicating that, under physiological conditions, substrate binds to fully protonated LacY. We have now systematically tested site-directed replacements for the residues involved in sugar binding, as well as H+ translocation and coupling, in order to determine which residues may be responsible for this alkaline pKa. Mutations in the sugar-binding site (Glu126, Trp151, Glu269) markedly decrease affinity for sugar but do not alter the pKa for binding. In contrast, replacements for residues involved in H+ translocation (Arg302, Tyr236, His322, Asp240, Glu325, Lys319) exhibit pKa values for sugar binding that are either shifted toward neutral pH or independent of pH. Values for the apparent dissociation constant for sugar binding (Kdapp) increase greatly for all mutants except neutral replacements for Glu325 or Lys319, which are characterized by remarkably high affinity sugar binding (i.e., low Kdapp) from pH 5.5 to pH 11. The pH dependence of the on- and off-rate constants for sugar binding measured directly by stopped-flow fluorometry implicates koff as a major factor for the affinity change at alkaline pH and confirms the effects of pH on Kdapp inferred from steady-state fluorometry. These results indicate that the high pKa for sugar binding by wild-type LacY cannot be ascribed to any single amino acid residue but appears to reside within a complex of residues involved in H+ translocation. There is structural evidence for water bound in this complex, and the water could be the site of protonation responsible for the pH dependence of sugar binding. PMID:19689129

  11. Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H(+)-ATPase inhibitor concanamycin A and the autophagy-related protein Atg8.

    Yano, Kanako; Yanagisawa, Takahiro; Mukae, Kyosuke; Niwa, Yasuo; Inoue, Yuko; Moriyasu, Yuji

    2015-01-01

    Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H(+)-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H(+)-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation.

  12. USE CELLULOSE FOR CLEANING CONCENTRATED SUGAR SOLUTIONS

    N. G. Kul’neva

    2015-01-01

    Full Text Available Summary. Producing high quality intermediate products in the boiling-crystallization station is an actual problem of sugar production. In the production of white sugar brown sugar syrup is not further purified that decreases the quality of the end product. Studies have been conducted using cellulose as an adsorbent for the purification of concentrated sugar solutions, having affinity to dyes and other impurities. Research have been carried out with the intermediate products of the Lebedyan sugar plant. Test results have shown cellulose ability to adsorb the dyes in sugar production. The influence of the adsorbent concentration and the mass fraction of solids in the syrup on the decolorization effect has been studied; rational process parameters have been obtained. It has been found that proceeding an additional adsorption purification of brown sugars syrup allows to reduce the solution color, increase the amount and quality of the end product. Adsorbing means, received from production wastes on the basis of organic resources, have many advantages: economical, environmentally friendly for disposal, safe to use, reliable and efficient in use. Conducted research on using cellulose as adsorbent for treatment of concentrated sugar solutions, having an affinity for colouring matter and other impurities. The experiments were carried out on the intermediates Lebedyanskiy sugar factory. The test results showed the ability of cellulose to adsorb coloring matter of sugar production. To evaluate the effect of bleaching depending on the mass fraction of dry substances prepared yellow juice filtration of sugar concentration of 55, 60, 65 % with subsequent adsorption purification of cellulose. The results of the experiment built adsorption isotherm of dyestuffs. The influence of the concentration of the adsorbent and a mass fraction of solids of juice filtration on the efficiency of decolorization obtained by rational parameters of the process. It is

  13. The Determination of Sugars by Chromatographic Method

    Sumartini, Sri; Kantasubrata, Julia

    1992-01-01

    Experiments have been carried out to analyse sugars using TLC and HPLC methods, In the TLC method, separation of sugars was performed on silica plates impregnated with monosodium phosphate and using mixture of ethylacettuel pyridinde/water as an eluent. Whilst in the HPLC method, the use of three column types i.e. diol, RP-18 and modified silica column were tested. The results showed that TLC method was able to measure three sugars i:e. sucrose, glucose and fructose with standard deviations o...

  14. Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (Malus domestica Borkh.).

    Xing, Li-Bo; Zhang, Dong; Li, You-Mei; Shen, Ya-Wen; Zhao, Cai-Ping; Ma, Juan-Juan; An, Na; Han, Ming-Yu

    2015-10-01

    Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  15. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier

    Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A.; Traub, Michaela; Martinoia, Enrico; Neuhaus, H. Ekkehard

    2003-01-01

    Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in ...

  16. Kinetics of growth and sugar consumption in yeasts.

    van Dijken, J P; Weusthuis, R A; Pronk, J T

    1993-01-01

    An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts. Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called 'Crabtree effect' probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect in S. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast. S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions. 'Non-Saccharomyces' yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeast Candida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.

  17. Treatment of biomass to obtain fermentable sugars

    Dunson, Jr., James B.; Tucker, Melvin [Lakewood, CO; Elander, Richard [Evergreen, CO; Hennessey, Susan M [Avondale, PA

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  18. Anomalous Enantiomer Ratios in Meteoritic Sugar Derivatives

    Cooper, G.; Sant, M.; Asiyo, C.

    2009-03-01

    The enantiomer (mirror-image) ratios of sugar acids in carbonaceous meteorites have been measured. D-enantiomer excesses are found in all acids measured thus far. This includes rare as well as common compounds.

  19. Root rot diseases of sugar beet

    Jacobsen Barry J.

    2006-01-01

    Full Text Available Root rot diseases of sugar beet caused by Rhizoctonia solani (AG 2-2 IIIB and AG 2-2 IV, R. crocorum, Aphanomyces cochlioides, Phoma betae, Macrophomina phaeseolina, Fusarium oxysporum f.sp. radicis-betae, Pythium aphanidermatum Phytophthora drechsleri, Rhizopus stolonifer, R. arrhizus and Sclerotium rolfsii cause significant losses wherever sugar beets are grown. However, not all these soil-borne pathogens have been reported in all sugar beet production areas. Losses include reduced harvestable tonnage and reduced white sugar recovery. Many of these pathogens also cause post harvest losses in storage piles. Control for diseases caused by these pathogens include disease resistant cultivars, avoidance of stresses, cultural practices such as water management and the use of fungicides.

  20. Nuclear analytical techniques in Cuban sugar industry

    Diaz R, O.; Griffith M, J.

    1997-01-01

    This paper is a review concerning the application of Nuclear Analytical Techniques in the Cuban sugar industry. The most complete elemental composition of final molasses (34 elements) and natural zeolites (38) this last one employed as an auxiliary agent in sugar technological processe4s has been performed by means of instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence Analysis (XRFA). The trace elemental sugar cane soill-plant relationship and elemental composition of different types of Cuban sugar (raw, blanco-directo and refine) were also studied. As a result, valuable information referred to the possibilities of using these products in animal and human foodstuff so as in the other applications are given. (author). 34 refs., 6 figs., 1 tab

  1. Sustainability Issues and Opportunities in the Sugar and Sugar-Bioproduct Industries

    Gillian Eggleston

    2015-09-01

    Full Text Available Like many other industries, the sugar and sugar-bioproduct industries are facing important sustainability issues and opportunities. The relatively low and fluctuating profit for sugar, surpluses of sugar, world-wide trend to produce alternative, renewable bio-based fuels and chemicals to those derived from petroleum and reduce greenhouse gases, water- and energy-intensive factories and refineries, and increased consumer demands for sustainably manufactured products are putting pressure on the industries to diversify for sustainability. Sugar crops, including sugar and energy cane (Saccharum officinarum, sugar and energy beets (Beta vulgaris, and sweet sorghum (Sorghum bicolor L. Moench, are excellent, renewable biomass feedstocks because of their availability, their being amongst the plants that give the highest yields of carbohydrates per hectare, and high sugar contents. While much research has been focused on conversion technologies for advanced biofuels and bioproducts, attention is now focused on developing sustainable supply chains of sugar feedstocks for the new, flexible biorefineries, with customers wanting maximum feedstock reliability and quality, while minimizing cost. All biomass from sugar crops are potential feedstocks. The cogeneration of bioelectricity from bagasse and leaf residues is being increasingly manufactured in more countries and, due to the high carbon content of bagasse and leaves, can also be converted into value-added products such as biochar. Sugar crops are superior feedstocks for the production of platform chemicals for the manufacture of a range of end-products, e.g., bioplastics, chemicals, and biomaterials. In several countries and regions, green sustainability criteria are now in place and have to be met to count against national biofuel targets. Processes to convert high-fiber sugar crop biomass into biofuel have been developed but there has only been limited commercialization at the large-scale.

  2. Respiration-Dependent Utilization of Sugars in Yeasts: a Determinant Role for Sugar Transporters

    Goffrini, Paola; Ferrero, Iliana; Donnini, Claudia

    2002-01-01

    In many yeast species, including Kluyveromyces lactis, growth on certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory conditions. If respiration is blocked by inhibitors, mutation, or anaerobiosis, growth does not take place. This apparent dependence on respiration for the utilization of certain sugars has often been suspected to be associated with the mechanism of the sugar uptake step. We hypothesized that in many yeast species, the permease activities fo...

  3. What Price Sugar? Land, Labor, and Revolution

    Daniel C. Littlefield

    2008-12-01

    Full Text Available [First paragraph] Sugar, Slavery, and Society: Perspectives on the Caribbean, India, the Mascarenes, and the United States. Bernard Moitt (ed.. Gainesville: University Press of Florida, 2004. vii + 203 pp. (Cloth US $ 65.00 Tropical Babylons: Sugar and the Making of the Atlantic World, 1450-1680. Stuart B. Schwartz (ed.. Chapel Hill: University of North Carolina Press, 2004. xiii + 347 pp. (Paper US $ 22.50 These two books illustrate the fascination that sugar, slavery, and the plantation still exercise over the minds of scholars. One of them also reflects an interest in the influence these have had on the modern world. For students of the history of these things the Schwartz collection is in many ways the more useful. It seeks to fill a lacuna left by the concentration of monographs on the eighteenth and nineteenth centuries, suggesting that we know less about the history of sugar than we thought we did. Perhaps in no other single place is such a range of information on so wide an area presented in such detail for so early a period. Ranging from Iberia to the Caribbean and including consumption as well as production of sugar, with a nod to the slave trade and a very useful note on weights and currencies, this volume is a gold mine of information. It considers (briefly the theoretical meaning as well as the growing of this important crop, contrasting its production in Iberia with that on the Atlantic islands of Madeira and the Canaries, colonized by Iberian powers, and continuing the contrast with São Tomé, off the coast of Africa, and on to Brazil and the Spanish American empire before ending with the British in Barbados. In the transit, it of necessity considers and complicates the meaning of “sugar revolution” and shows how scholars using that term do not always mean the same thing. John McCusker and Russell Menard, for example, tackling a cornerstone of the traditional interpretation of the development of sugar, argue that there

  4. Holograms recorded in dichromated with simple sugars

    Mejias-Brizuela, N Y; Olivares-Perez, A [Instituto Tecnologico Superior de Atlixco, Coordinacion de Bioquimica, Prolongacion Heliotropo N0 1201, Vista Hermosa Atlixco, Puebla (Mexico); Grande-Grande, A, E-mail: nilyame@inaoep.mx, E-mail: olivares@inaoep.mx

    2011-01-01

    Sugars as glucose and fructose can be used to holographic record. These materials have the advantage to mix very well with K{sub 2}Cr{sub 2}O{sub 7}.Holographic gratings recorded in sugars, were made by a lineal setup to producing interference pattern using a wavelength at 473 nm. These materials have the ability to register information in real time.

  5. Worldwide trends in dietary sugars intake.

    Wittekind, Anna; Walton, Janette

    2014-01-01

    Estimating trends in dietary intake data is integral to informing national nutrition policy and monitoring progress towards dietary guidelines. Dietary intake of sugars is a controversial public health issue and guidance in relation to recommended intakes is particularly inconsistent. Published data relating to trends in sugars intake are relatively sparse. The purpose of the present review was to collate and review data from national nutrition surveys to examine changes and trends in dietary...

  6. SUGAR-SWEETENED BEVERAGE, SUGAR INTAKE OF INDIVIDUALS AND THEIR BLOOD PRESSURE: INTERMAP STUDY

    Brown, Ian J.; Stamler, Jeremiah; Van Horn, Linda; Robertson, Claire E.; Chan, Queenie; Dyer, Alan R.; Huang, Chiang-Ching; Rodriguez, Beatriz L.; Zhao, Liancheng; Daviglus, Martha L.; Ueshima, Hirotsugu; Elliott, Paul

    2011-01-01

    The obesity epidemic has focused attention on relationships of sugars and sugar-sweetened beverages (SSB) to cardiovascular risk factors. Here we report cross-sectional associations of SSB, diet beverages, sugars with blood pressure (BP) for UK and USA participants of the International Study of Macro/Micro-nutrients and Blood Pressure (INTERMAP). Data collected includes four 24-h dietary recalls, two 24-h urine collections, eight BP readings, questionnaire data for 2,696 people ages 40-59 from 10 USA/UK population samples. Associations of SSB, diet beverages, and sugars (fructose, glucose, sucrose) with BP were assessed by multiple linear regression. Sugar-sweetened beverage intake related directly to BP, P-values 0.005 to Sugar-sweetened beverage intake higher by 1 serving/day (355 ml/24-h) was associated with systolic/diastolic BP differences of +1.6/+0.8 mm Hg (both P sugar-sodium interactions: for individuals with above-median 24-h urinary sodium excretion, fructose intake higher by 2 SD (5.6 %kcal) was associated with systolic/diastolic BP differences of +3.4/+2.2 mm Hg (both P sugar-BP differences for persons with higher sodium excretion, lend support to recommendations that intake of SSB, sugars, and salt be substantially reduced. PMID:21357284

  7. Sugar Intake, Obesity, and Diabetes in India

    Seema Gulati

    2014-12-01

    Full Text Available Sugar and sweet consumption have been popular and intrinsic to Indian culture, traditions, and religion from ancient times. In this article, we review the data showing increasing sugar consumption in India, including traditional sources (jaggery and khandsari and from sugar-sweetened beverages (SSBs. Along with decreasing physical activity, this increasing trend of per capita sugar consumption assumes significance in view of the high tendency for Indians to develop insulin resistance, abdominal adiposity, and hepatic steatosis, and the increasing “epidemic” of type 2 diabetes (T2DM and cardiovascular diseases. Importantly, there are preliminary data to show that incidence of obesity and T2DM could be decreased by increasing taxation on SSBs. Other prevention strategies, encompassing multiple stakeholders (government, industry, and consumers, should target on decreasing sugar consumption in the Indian population. In this context, dietary guidelines for Indians show that sugar consumption should be less than 10% of total daily energy intake, but it is suggested that this limit be decreased.

  8. [Consumption pattern and recommended intakes of sugar].

    Quiles i Izquierdo, Joan

    2013-07-01

    Sugars are sweet-flavored carbohydrates that provide energy to the body. The adult brain uses about 140 g of glucose per day, amount which can represent up to 50 of the total number of carbohydrates consumed. In our country the sugar in food consumption pattern remains constant, while the consumption of soft drinks has increased in the past four years. The national survey of dietary intake of Spain (ENIDE, 2010-11) estimated that 20% of calories intake comes from carbohydrates called sugars. Sugar consumption has been associated with various pathologies (diabetes, obesity, tooth decay, cardiovascular disease) but these relationships are not consistent enough. Food information through nutritional labeling, including sugars present in food, pretend to protect the consumer health and to guarantee their right to information so they can make their own decisions with criterion. In view of different appraisals and existing studies, and above all, in the absence of a solid scientific evidence that concrete data on which make recommendations, the best nutritional advice for the general population could be a diet varied and balanced with food and nutrients from different sources, combining such a diet with exercise and physical activity. More specifically in terms of moderate consumption of sugar in the previous context of varied and balanced diet is perfectly compatible. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  9. Effect on Caries of Restricting Sugars Intake

    Moynihan, P.J.; Kelly, S.A.M.

    2014-01-01

    A systematic review of studies in humans was conducted to update evidence on the association between the amount of sugars intake and dental caries and on the effect of restricting sugars intake to caries to inform the updating of World Health Organization guidelines on sugars consumption. Data sources included MEDLINE, EMBASE, Cochrane Database, Cochrane Central Register of Controlled Trials, Latin American and Caribbean Health Sciences, China National Knowledge Infrastructure, Wanfang, and South African Department of Health. Eligible studies reported the absolute amount of sugars and dental caries, measured as prevalence, incidence, or severity. The review was conducted and reported in accordance with the PRISMA statement, and the evidence was assessed according to GRADE Working Group guidelines. From 5,990 papers identified, 55 studies were eligible – 3 intervention, 8 cohort, 20 population, and 24 cross-sectional. Data variability limited meta-analysis. Of the studies, 42 out of 50 of those in children and 5 out of 5 in adults reported at least one positive association between sugars and caries. There is evidence of moderate quality showing that caries is lower when free-sugars intake is caries risk throughout the life course. PMID:24323509

  10. 19 CFR 151.22 - Estimated duties on raw sugar.

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Estimated duties on raw sugar. 151.22 Section 151... THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.22 Estimated duties on raw sugar. Estimated duties shall be taken on raw sugar, as defined...

  11. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...

  12. 27 CFR 24.181 - Use of sugar.

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Use of sugar. 24.181... OF THE TREASURY LIQUORS WINE Production of Wine § 24.181 Use of sugar. Only sugar, as defined in § 24.10, may be used in the production of standard wine. The quantity of sugar used will be determined...

  13. Sugar preferences and digestion by Cape white-eyes, Zosterops ...

    Sugar preferences and digestion of sugars in artificial fruit of different sugar types and concentrations were investigated in a South African facultative frugivore, the Cape white-eye (Zosterops virens). We studied sugar preferences, daily food and energy intake, and digestive efficiencies and transit times with birds that were ...

  14. Sugar beet genotype effect on potential of bioethanol production ...

    Variation on ethanol production were intensively related to the chemical composition of root, especially sugar content, potassium impurity, syrup purity and some characteristics such as root dry matter and root length. Bioethanol production was enhanced by increasing the sugar content and root yield in sugar beet. Sugar ...

  15. Supply optimization for the production of raw sugar

    Grunow, Martin; Günther, H.O.; Westinner, R.

    2007-01-01

    Based on a case study from Venezuela, the production of raw sugar is investigated. Ideally, sugar mills operate at a constant production rate. However, safety stocks of the raw material cannot be maintained as sugar cane quality deteriorates very rapidly. Sugar cane is therefore continuously...

  16. Source-to-sink transport of sugar and regulation by environmental factors.

    Lemoine, Remi; La Camera, Sylvain; Atanassova, Rossitza; Dédaldéchamp, Fabienne; Allario, Thierry; Pourtau, Nathalie; Bonnemain, Jean-Louis; Laloi, Maryse; Coutos-Thévenot, Pierre; Maurousset, Laurence; Faucher, Mireille; Girousse, Christine; Lemonnier, Pauline; Parrilla, Jonathan; Durand, Mickael

    2013-01-01

    Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols) across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air, and soil pollutants) and biotic (mutualistic and pathogenic microbes, viruses, aphids, and parasitic plants) factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favored in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g., by callose deposition) and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses…) also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.

  17. A Nostoc punctiforme sugar transporter necessary to establish a Cyanobacterium-plant symbiosis.

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L; Meeks, John C; Flores, Enrique

    2013-04-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using (14)C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work.

  18. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.

    Madhavan, Anjali; Srivastava, Aradhana; Kondo, Akihiko; Bisaria, Virendra S

    2012-03-01

    Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.

  19. Sugar Restriction Leads to Increased Ad Libitum Sugar Intake by Overweight Adolescents in an Experimental Test Meal Setting.

    O'Reilly, Gillian A; Black, David S; Huh, Jimi; Davis, Jaimie N; Unger, Jennifer; Spruijt-Metz, Donna

    2017-07-01

    The impact of sugar restriction on subsequent sugar intake by overweight adolescents is unknown. Our aim was to examine the effect of sugar restriction on subsequent ad libitum sugar intake by overweight adolescents and whether habitual sugar intake and impulsivity influence the effect of sugar restriction on subsequent sugar intake. This was an in-laboratory crossover feeding trial with sugar-exposure and sugar-restriction conditions. Eighty-seven overweight Latino and African-American adolescents underwent both meal conditions in two separate 8-hour in-laboratory visits. Participants had access to ad libitum snack trays for 3 hours after the condition-specific meals. Ad libitum sugar intake during the snack period was measured at each visit. Habitual sugar intake and impulsivity were assessed at baseline. Repeated measures analysis of covariance was used to examine the within-person effect of meal condition on ad libitum sugar intake. Mixed models were used to examine the moderating effects of habitual sugar intake and impulsivity on the meal condition-ad libitum sugar intake relationship. Participants consumed more ad libitum sugar during the snack period in the sugar-restriction condition than in the sugar-exposure condition (sugar restriction=78.63±38.84 g, sugar exposure=70.86±37.73 g; F=9.64, P=0.002). There was no relationship between habitual sugar intake and how much ad libitum sugar participants consumed during either condition. Higher impulsivity was associated with greater ad libitum sugar intake during both conditions (sugar restriction: b=.029, standard error=.01, Poverweight adolescents restricted from sugar intake consume greater amounts of sugar when they are later given access to high-sugar foods. Overweight adolescents with higher impulsivity appear to consume greater amounts of sugar regardless of previous levels of sugar consumption. Compensatory sugar intake and trait impulsivity may have implications for dietary interventions in this

  20. Vacuolar Protein Sorting Genes in Parkinson's Disease: A Re-appraisal of Mutations Detection Rate and Neurobiology of Disease.

    Gambardella, Stefano; Biagioni, Francesca; Ferese, Rosangela; Busceti, Carla L; Frati, Alessandro; Novelli, Giuseppe; Ruggieri, Stefano; Fornai, Francesco

    2016-01-01

    Mammalian retromers play a critical role in protein trans-membrane sorting from endosome to the trans-Golgi network (TGN). Recently, retromer alterations have been related to the onset of Parkinson's Disease (PD) since the variant p.Asp620Asn in VPS35 (Vacuolar Protein Sorting 35) was identified as a cause of late onset PD. This variant causes a primary defect in endosomal trafficking and retromers formation. Other mutations in VPS genes have been reported in both sporadic and familial PD. These mutations are less defined. Understanding the specific prevalence of all VPS gene mutations is key to understand the relevance of retromers impairment in the onset of PD. A number of PD-related mutations despite affecting different biochemical systems (autophagy, mitophagy, proteasome, endosomes, protein folding), all converge in producing an impairment in cell clearance. This may explain how genetic predispositions to PD may derive from slightly deleterious VPS mutations when combined with environmental agents overwhelming the clearance of the cell. This manuscript reviews genetic data produced in the last 5 years to re-define the actual prevalence of VPS gene mutations in the onset of PD. The prevalence of p.Asp620Asn mutation in VPS35 is 0.286 of familial PD. This increases up to 0.548 when considering mutations affecting all VPS genes. This configures mutations in VPS genes as the second most frequent autosomal dominant PD genotype. This high prevalence, joined with increased awareness of the role played by retromers in the neurobiology of PD, suggests environmentally-induced VPS alterations as crucial in the genesis of PD.

  1. Experimental feeding of Hydrilla verticillata colonized by stigonematales cyanobacteria induces vacuolar myelinopathy in painted turtles (Chrysemys picta.

    Albert D Mercurio

    Full Text Available Vacuolar myelinopathy (VM is a neurologic disease primarily found in birds that occurs when wildlife ingest submerged aquatic vegetation colonized by an uncharacterized toxin-producing cyanobacterium (hereafter "UCB" for "uncharacterized cyanobacterium". Turtles are among the closest extant relatives of birds and many species directly and/or indirectly consume aquatic vegetation. However, it is unknown whether turtles can develop VM. We conducted a feeding trial to determine whether painted turtles (Chrysemys picta would develop VM after feeding on Hydrilla (Hydrilla verticillata, colonized by the UCB (Hydrilla is the most common "host" of UCB. We hypothesized turtles fed Hydrilla colonized by the UCB would exhibit neurologic impairment and vacuolation of nervous tissues, whereas turtles fed Hydrilla free of the UCB would not. The ability of Hydrilla colonized by the UCB to cause VM (hereafter, "toxicity" was verified by feeding it to domestic chickens (Gallus gallus domesticus or necropsy of field collected American coots (Fulica americana captured at the site of Hydrilla collections. We randomly assigned ten wild-caught turtles into toxic or non-toxic Hydrilla feeding groups and delivered the diets for up to 97 days. Between days 82 and 89, all turtles fed toxic Hydrilla displayed physical and/or neurologic impairment. Histologic examination of the brain and spinal cord revealed vacuolations in all treatment turtles. None of the control turtles exhibited neurologic impairment or had detectable brain or spinal cord vacuolations. This is the first evidence that freshwater turtles can become neurologically impaired and develop vacuolations after consuming toxic Hydrilla colonized with the UCB. The southeastern United States, where outbreaks of VM occur regularly and where vegetation colonized by the UCB is common, is also a global hotspot of freshwater turtle diversity. Our results suggest that further investigations into the effect of the

  2. Vacuolar Protein Sorting Genes in Parkinson's Disease: A Re-appraisal of Mutations Detection Rate and Neurobiology of Disease

    Gambardella, Stefano; Biagioni, Francesca; Ferese, Rosangela; Busceti, Carla L.; Frati, Alessandro; Novelli, Giuseppe; Ruggieri, Stefano; Fornai, Francesco

    2016-01-01

    Mammalian retromers play a critical role in protein trans-membrane sorting from endosome to the trans-Golgi network (TGN). Recently, retromer alterations have been related to the onset of Parkinson's Disease (PD) since the variant p.Asp620Asn in VPS35 (Vacuolar Protein Sorting 35) was identified as a cause of late onset PD. This variant causes a primary defect in endosomal trafficking and retromers formation. Other mutations in VPS genes have been reported in both sporadic and familial PD. These mutations are less defined. Understanding the specific prevalence of all VPS gene mutations is key to understand the relevance of retromers impairment in the onset of PD. A number of PD-related mutations despite affecting different biochemical systems (autophagy, mitophagy, proteasome, endosomes, protein folding), all converge in producing an impairment in cell clearance. This may explain how genetic predispositions to PD may derive from slightly deleterious VPS mutations when combined with environmental agents overwhelming the clearance of the cell. This manuscript reviews genetic data produced in the last 5 years to re-define the actual prevalence of VPS gene mutations in the onset of PD. The prevalence of p.Asp620Asn mutation in VPS35 is 0.286 of familial PD. This increases up to 0.548 when considering mutations affecting all VPS genes. This configures mutations in VPS genes as the second most frequent autosomal dominant PD genotype. This high prevalence, joined with increased awareness of the role played by retromers in the neurobiology of PD, suggests environmentally-induced VPS alterations as crucial in the genesis of PD. PMID:27932943

  3. The Effect of Ultrasonic Waves on Sugar Extraction and Mechanical Properties of Sugar Beet

    K Hedayati

    2013-09-01

    Full Text Available Sugar, which can be extracted from sugar cane and sugar beet, is one of the most important ingredients of food. Conducting more research to increase the extraction efficiency of sugar is necessary due to high production of sugar beet and its numerous processing units in northern Khorasan province. In this research, the effect of temperature, time and the frequency of ultrasonic waves on mechanical properties of sugar beet and its extraction rate of sugar in moisture content of 75% were studied. In this regard, an ultrasonic bath in laboratory scale was used. The studied parameters and their levels were frequency in three levels (zero, 25 and 45 KHz, temperature in three levels (25, 50 and 70 ° C and the imposed time of ultrasonic waves in three levels (10, 20 and 30 min. Samples were prepared using planned experiments and the results were compared with control sugar beet samples. A Saccharimeter was used to measure the concenteration of sugar in samples. Two different types of probe including semi-spherical end and the other one with sharpened edges were used to measure mechanical properties. The studied parameters of frequency, temperature and time showed significant effect on sugar extraction and their resulted effect in optimized levels revealed up to 56% increase in sugar extraction compared with control samples. The obtained values of elastic modulus and shear modulus showed a decreasing trend. The obtained values of total energy of rupture, the total energy of shear, the maximum force of rupture, and the yield point of rupture showed an increasing trend. The frequency had no significant effect on the yield point of rupture and shear force.

  4. 75 FR 23631 - Sugar Re-Export Program, the Sugar-Containing Products Re-Export Program, and the Polyhydric...

    2010-05-04

    ... Part 1530 Sugar Re-Export Program, the Sugar-Containing Products Re-Export Program, and the Polyhydric...), Additional U.S. Note 6, which authorizes entry of raw cane sugar under subheading 1701.11.20 of the HTS for the production of polyhydric alcohols, except polyhydric alcohols for use as a substitute for sugar in...

  5. Estimating Free and Added Sugar Intakes in New Zealand

    Rachael Kibblewhite; Alice Nettleton; Rachael McLean; Jillian Haszard; Elizabeth Fleming; Devonia Kruimer; Lisa Te Morenga

    2017-01-01

    The reduction of free or added sugar intake (sugars added to food and drinks as a sweetener) is almost universally recommended to reduce the risk of obesity-related diseases and dental caries. The World Health Organisation recommends intakes of free sugars of less than 10% of energy intake. However, estimating and monitoring intakes at the population level is challenging because free sugars cannot be analytically distinguished from naturally occurring sugars and most national food composition...

  6. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases

    Daniel Decker

    2017-09-01

    Full Text Available UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes UDP-glucose pyrophosphorylases (UGPase, Arabidopsis UDP-sugar pyrophosphorylase (USPase and Arabidopsis UDP-N-acetyl glucosamine pyrophosphorylase2 (UAGPase2 were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P (Km values over 10 mM. Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P (Km of 1.3 mM, β-L-Ara-1-P and α-D-Fuc-1-P (Km of 3.4 mM, but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P (Km of 1 mM and, to some extent, D-Glc-1-P (Km of 3.2 mM. Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products.

  7. ERG2 and ERG24 Are Required for Normal Vacuolar Physiology as Well as Candida albicans Pathogenicity in a Murine Model of Disseminated but Not Vaginal Candidiasis.

    Luna-Tapia, Arturo; Peters, Brian M; Eberle, Karen E; Kerns, Morgan E; Foster, Timothy P; Marrero, Luis; Noverr, Mairi C; Fidel, Paul L; Palmer, Glen E

    2015-10-01

    Several important classes of antifungal agents, including the azoles, act by blocking ergosterol biosynthesis. It was recently reported that the azoles cause massive disruption of the fungal vacuole in the prevalent human pathogen Candida albicans. This is significant because normal vacuolar function is required to support C. albicans pathogenicity. This study examined the impact of the morpholine antifungals, which inhibit later steps of ergosterol biosynthesis, on C. albicans vacuolar integrity. It was found that overexpression of either the ERG2 or ERG24 gene, encoding C-8 sterol isomerase or C-14 sterol reductase, respectively, suppressed C. albicans sensitivity to the morpholines. In addition, both erg2Δ/Δ and erg24Δ/Δ mutants were hypersensitive to the morpholines. These data are consistent with the antifungal activity of the morpholines depending upon the simultaneous inhibition of both Erg2p and Erg24p. The vacuoles within both erg2Δ/Δ and erg24Δ/Δ C. albicans strains exhibited an aberrant morphology and accumulated large quantities of the weak base quinacrine, indicating enhanced vacuolar acidification compared with that of control strains. Both erg mutants exhibited significant defects in polarized hyphal growth and were avirulent in a mouse model of disseminated candidiasis. Surprisingly, in a mouse model of vaginal candidiasis, both mutants colonized mice at high levels and induced a pathogenic response similar to that with the controls. Thus, while targeting Erg2p or Erg24p alone could provide a potentially efficacious therapy for disseminated candidiasis, it may not be an effective strategy to treat vaginal infections. The potential value of drugs targeting these enzymes as adjunctive therapies is discussed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Pollination in Nicotiana alata stimulates synthesis and transfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinase inhibitor homologue.

    Busot, Grethel Yanet; McClure, Bruce; Ibarra-Sánchez, Claudia Patricia; Jiménez-Durán, Karina; Vázquez-Santana, Sonia; Cruz-García, Felipe

    2008-01-01

    After landing on a wet stigma, pollen grains hydrate and germination generally occurs. However, there is no certainty of the pollen tube growth through the style to reach the ovary. The pistil is a gatekeeper that evolved in many species to recognize and reject the self-pollen, avoiding endogamy and encouraging cross-pollination. However, recognition is a complex process, and specific factors are needed. Here the isolation and characterization of a stigma-specific protein from N. alata, NaStEP (N. alata Stigma Expressed Protein), that is homologous to Kunitz-type proteinase inhibitors, are reported. Activity gel assays showed that NaStEP is not a functional serine proteinase inhibitor. Immunohistochemical and protein blot analyses revealed that NaStEP is detectable in stigmas of self-incompatible (SI) species N. alata, N. forgetiana, and N. bonariensis, but not in self-compatible (SC) species N. tabacum, N. plumbaginifolia, N. benthamiana, N. longiflora, and N. glauca. NaStEP contains the vacuolar targeting sequence NPIVL, and immunocytochemistry experiments showed vacuolar localization in unpollinated stigmas. After self-pollination or pollination with pollen from the SC species N. tabacum or N. plumbaginifolia, NaStEP was also found in the stigmatic exudate. The synthesis and presence in the stigmatic exudate of this protein was strongly induced in N. alata following incompatible pollination with N. tabacum pollen. The transfer of NaStEP to the stigmatic exudate was accompanied by perforation of the stigmatic cell wall, which appeared to release the vacuolar contents to the apoplastic space. The increase in NaStEP synthesis after pollination and its presence in the stigmatic exudates suggest that this protein may play a role in the early pollen-stigma interactions that regulate pollen tube growth in Nicotiana.

  9. Identification, cloning and characterization of sis7 and sis10 sugar-insensitive mutants of Arabidopsis

    Biddle Kelly D

    2008-10-01

    Full Text Available Abstract Background The levels of soluble sugars, such as glucose and sucrose, help regulate many plant metabolic, physiological and developmental processes. Genetic screens are helping identify some of the loci involved in plant sugar response and reveal extensive cross-talk between sugar and phytohormone response pathways. Results A forward genetic screen was performed to identify mutants with increased resistance to the inhibitory effects of high levels of exogenous sugars on early Arabidopsis seedling development. The positional cloning and characterization of two of these sugar insensitive (sis mutants, both of which are also involved in abscisic acid (ABA biosynthesis or response, are reported. Plants carrying mutations in SIS7/NCED3/STO1 or SIS10/ABI3 are resistant to the inhibitory effects of high levels of exogenous Glc and Suc. Quantitative RT-PCR analyses indicate transcriptional upregulation of ABA biosynthesis genes by high concentrations of Glc in wild-type germinating seeds. Gene expression profiling revealed that a significant number of genes that are expressed at lower levels in germinating sis7-1/nced3-4/sto1-4 seeds than in wild-type seeds are implicated in auxin biosynthesis or transport, suggesting cross-talk between ABA and auxin response pathways. The degree of sugar insensitivity of different sis10/abi3 mutant seedlings shows a strong positive correlation with their level of ABA insensitivity during seed germination. Conclusion Mutations in the SIS7/NCED3/STO1 gene, which is primarily required for ABA biosynthesis under drought conditions, confer a sugar-insensitive phenotype, indicating that a constitutive role in ABA biosynthesis is not necessary to confer sugar insensitivity. Findings presented here clearly demonstrate that mutations in ABI3 can confer a sugar-insensitive phenotype and help explain previous, mixed reports on this topic by showing that ABA and sugar insensitivity exhibit a strong positive correlation in

  10. Fat, Sugar, and Bone Health: A Complex Relationship

    Li Tian

    2017-05-01

    Full Text Available With people aging, osteoporosis is expected to increase notably. Nutritional status is a relatively easily-modified risk factor, associated with many chronic diseases, and is involved in obesity, diabetes, and coronary heart disease (CHD, along with osteoporosis. Nutrients, such as fats, sugars, and proteins, play a primary function in bone metabolism and maintaining bone health. In Western nations, diets are generally high in saturated fats, however, currently, the nutritional patterns dominating in China continue to be high in carbohydrates from starch, cereals, and sugars. Moreover, high fat or high sugar (fructose, glucose, or sucrose impart a significant impact on bone structural integrity. Due to diet being modifiable, demonstrating the effects of nutrition on bone health can provide an approach for osteoporosis prevention. Most researchers have reported that a high-fat diet consumption is associated with bone mineral density (BMD and, as bone strength diminishes, adverse microstructure changes occur in the cancellous bone compartment, which is involved with lipid metabolism modulation disorder and the alteration of the bone marrow environment, along with an increased inflammatory environment. Some studies, however, demonstrated that a high-fat diet contributes to achieving peak bone mass, along with microstructure, at a younger age. Contrary to these results, others have shown that a high-fructose diet consumption leads to stronger bones with a superior microarchitecture than those with the intake of a high-glucose diet and, at the same time, research indicated that a high-fat diet usually deteriorates cancellous bone parameters, and that the incorporation of fructose into a high-fat diet did not aggravate bone mass loss. High-fat/high-sucrose diets have shown both beneficial and detrimental influences on bone metabolism. Combined, these studies showed that nutrition exerts different effects on bone health. Thus, a better understanding of

  11. Fat, Sugar, and Bone Health: A Complex Relationship.

    Tian, Li; Yu, Xijie

    2017-05-17

    With people aging, osteoporosis is expected to increase notably. Nutritional status is a relatively easily-modified risk factor, associated with many chronic diseases, and is involved in obesity, diabetes, and coronary heart disease (CHD), along with osteoporosis. Nutrients, such as fats, sugars, and proteins, play a primary function in bone metabolism and maintaining bone health. In Western nations, diets are generally high in saturated fats, however, currently, the nutritional patterns dominating in China continue to be high in carbohydrates from starch, cereals, and sugars. Moreover, high fat or high sugar (fructose, glucose, or sucrose) impart a significant impact on bone structural integrity. Due to diet being modifiable, demonstrating the effects of nutrition on bone health can provide an approach for osteoporosis prevention. Most researchers have reported that a high-fat diet consumption is associated with bone mineral density (BMD) and, as bone strength diminishes, adverse microstructure changes occur in the cancellous bone compartment, which is involved with lipid metabolism modulation disorder and the alteration of the bone marrow environment, along with an increased inflammatory environment. Some studies, however, demonstrated that a high-fat diet contributes to achieving peak bone mass, along with microstructure, at a younger age. Contrary to these results, others have shown that a high-fructose diet consumption leads to stronger bones with a superior microarchitecture than those with the intake of a high-glucose diet and, at the same time, research indicated that a high-fat diet usually deteriorates cancellous bone parameters, and that the incorporation of fructose into a high-fat diet did not aggravate bone mass loss. High-fat/high-sucrose diets have shown both beneficial and detrimental influences on bone metabolism. Combined, these studies showed that nutrition exerts different effects on bone health. Thus, a better understanding of the regulation

  12. Added sugars in kids' meals from chain restaurants.

    Scourboutakos, Mary J; Semnani-Azad, Zhila; L'Abbé, Mary R

    2016-06-01

    To analyze the added sugars in kids' meals from Canadian chain restaurants in relation to the World Health Organization's proposed sugar recommendation (less than 5% of total daily calories should come from added sugars) and current recommendation (less than 10% of total daily calories should come from added sugars). Total sugar levels were retrieved from the websites of 10 fast-food and 7 sit-down restaurants in 2010. The added sugar levels in 3178 kids' meals from Canadian chain restaurants were calculated in 2014 (in Toronto, Canada) by subtracting all naturally occurring sugars from the total sugar level. The average amount of added sugars in restaurant kids' meals (25 ± 0.36 g) exceeded the WHO's proposed daily recommendation for sugar intake. There was a wide range of added sugar levels in kids' meals ranging from 0 g to 114 g. 50% of meals exceeded the WHO's proposed daily sugar recommendation, and 19% exceeded the WHO's current daily sugar recommendation. There is a wide range of sugar levels in kids' meals from restaurants, and many contain more than a day's worth of sugar.

  13. Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability

    Li, X.; Luque-Moreno, L.C.; Oudenhoven, Stijn; Rehmann, L.; Kersten, Sascha R.A.; Schuur, Boelo

    2016-01-01

    Fermentative bioethanol production from pyrolytic sugars was improved via aromatics removal by liquid–liquid extraction. As solvents, the ionic liquid (IL) trihexyltetradecylphosphonium dicyanamide (P666,14[N(CN)2]) and ethyl acetate (EA) were compared. Two pyrolytic sugar solutions were created

  14. Sugar palm (Argena pinnata). Potential of sugar palm for bio-ethanol production

    Elbersen, H.W.; Oyen, L.P.A.

    2010-01-01

    The energetic and economic feasibility of bioethanol production from sugar palm is virtually unknown. A positive factor are the potentially very high yields while the long non-productive juvenile phase and the high labor needs can be seen as problematic. Expansion to large scale sugar palm

  15. Stress regulated members of the plant organic cation transporter family are localized to the vacuolar membrane

    Koch Wolfgang

    2008-07-01

    Full Text Available Abstract Background In Arabidopsis six genes group into the gene family of the organic cation transporters (OCTs. In animals the members of the OCT-family are mostly characterized as polyspecific transporters involved in the homeostasis of solutes, the transport of monoamine neurotransmitters and the transport of choline and carnitine. In plants little is known about function, localisation and regulation of this gene family. Only one protein has been characterized as a carnitine transporter at the plasma membrane so far. Findings We localized the five uncharacterized members of the Arabidopsis OCT family, designated OCT2-OCT6, via GFP fusions and protoplast transformation to the tonoplast. Expression analysis with RNA Gel Blots showed a distinct, organ-specific expression pattern of the individual genes. With reporter gene fusion of four members we analyzed the tissue specific distribution of OCT2, 3, 4, and 6. In experiments with salt, drought and cold stress, we could show that AtOCT4, 5 and 6 are up-regulated during drought stress, AtOCT3 and 5 during cold stress and AtOCT 5 and 6 during salt stress treatments. Conclusion Localisation of the proteins at the tonoplast and regulation of the gene expression under stress conditions suggests a specific role for the transporters in plant adaptation to environmental stress.

  16. Parental involvement

    Ezra S Simon

    2005-01-01

    Full Text Available Parent-Teacher Associations and other community groups can play a significant role in helping to establish and run refugee schools; their involvement can also help refugee adults adjust to their changed circumstances.

  17. Protective gloves on manual sugar cane cutting are really effective?

    Abrahão, R F; Gonzaga, M C; Braunbeck, O A

    2012-01-01

    Problems related to the use of personal protective equipment (PPE), specially the use of protective gloves for the manual sugar cane cutting, motivated this research, made possible by a tripartite negotiation involving the Ministry of Labor, the Union of Rural Workers and the Employer's Association of sugarcane agribusiness. The main objective was to evaluate, from an ergonomics perspective, the impact of use of the gloves during the manual cane sugar cutting, raising questions on safety, effectiveness and comfort. The research was carried in a sugarcane industry of São Paulo for two seasons involving 47 workers who made a qualitative analysis of acceptance of four models of protective gloves. The methodology included the use of semi-structured interviews, questionnaires and field observations and the experimental determination of the coefficient of static friction developed between the gloves and the surfaces of the machete handle. The main results indicate the general inadequacy of the gloves currently used forcing the employees to improvise. Workers found the glove of leather and nylon scraping the best reported for comfort in use. The overall results highlight the problem of detachment of test standards for the manufacture of PPE, ignoring users and the activity to be performed.

  18. Perceived parenting style and practices and the consumption of sugar-sweetened beverages by adolescents

    K. van der Horst (Klazine); S. Kremers (Stef); A. Ferreira (Isabel); A. Singh (Amika); A. Oenema (Anke); J. Brug (Hans)

    2007-01-01

    textabstractThe purpose of this study was to investigate whether perceived parenting practices and parenting style dimensions (strictness and involvement) are associated with adolescents' consumption of sugar-sweetened beverages. In this cross-sectional study, secondary school students (n = 383,

  19. Perceived Parenting Style and Practices and the Consumption of Sugar-Sweetened Beverages by Adolescents

    van der Horst, Klazine; Kremers, Stef; Ferreira, Isabel; Singh, Amika; Oenema, Anke; Brug, Johannes

    2007-01-01

    The purpose of this study was to investigate whether perceived parenting practices and parenting style dimensions (strictness and involvement) are associated with adolescents' consumption of sugar-sweetened beverages. In this cross-sectional study, secondary school students (n = 383, mean age 13.5 years) completed a self-administered questionnaire…

  20. A Kinesthetic Activity Using LEGO Bricks and Buckets for Illustrating the Regulation of Blood Sugar

    Urschler, Margaret; Meidl, Katherine; Browning, Samantha; Khan, Basima; Milanick, Mark

    2015-01-01

    This article describes how, when first faced with understanding blood sugar regulation, students often resort to simple memorization.Many students would like to get more involved with the conceptual framework but do not know how to start. The authors have developed an activity based on the Modell approach, a "view from the inside." This…

  1. Exploration and metamorphosis in Balanus amphitrite Darwin (Cirripedia ; Thoracica) cyprids: significance of sugars and adult extract

    Khandeparker, L.; Anil, A.C.; Raghukumar, S.

    (AE) have been suggested to be involved in the settlement of Balanus amphitrite. In the present study experiments were carried out to assess how cypris larvae would explore and metamorphose when treated with LCA specific sugars (i.e. D-glucose and D...

  2. Enzymatic approaches to rare sugar production.

    Zhang, Wenli; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    Rare sugars have recently attracted much attention because of their potential applications in the food, nutraceutical, and pharmaceutical industries. A systematic strategy for enzymatic production of rare sugars, named Izumoring, was developed >10years ago. The strategy consists of aldose-ketose isomerization, ketose C-3 epimerization, and monosaccharide oxidation-reduction. Recent development of the Izumoring strategy is reviewed herein, especially the genetic approaches to the improvement of rare sugar-producing enzymes and the applications of target-oriented bioconversion. In addition, novel non-Izumoring enzymatic approaches are also summarized, including enzymatic condensation, phosphorylation-dephosphorylation cascade reaction, aldose epimerization, ulosonic acid decarboxylation, and biosynthesis of rare disaccharides. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Sap flow and sugar transport in plants

    Jensen, Kaare Hartvig; Berg-Sørensen, Kirstine; Bruus, Henrik

    2016-01-01

    Green plants are Earth’s primary solar energy collectors. They harvest the energy of the Sun by converting light energy into chemical energy stored in the bonds of sugar molecules. A multitude of carefully orchestrated transport processes are needed to move water and minerals from the soil to sites...... of photosynthesis and to distribute energy-rich sugars throughout the plant body to support metabolism and growth. The long-distance transport happens in the plants’ vascular system, where water and solutes are moved along the entire length of the plant. In this review, the current understanding of the mechanism...... and the quantitative description of these flows are discussed, connecting theory and experiments as far as possible. The article begins with an overview of low-Reynolds-number transport processes, followed by an introduction to the anatomy and physiology of vascular transport in the phloem and xylem. Next, sugar...

  4. СHIPS FROM SUGAR BEET

    G. O. Magomedov

    2014-01-01

    Full Text Available Summary. Priority social problem in the Russian Federation is to provide diverse populations rational healthy diet, taking into account their traditions and economic status. Solving this problem requires the development of processing industries of agriculture on the basis of the improvement of existing and creation of new energy-saving environmentally friendly technologies that can provide deep, if possible without waste, recycling of raw materials. Therefore, the aim of research was the development of technology for production of sugar beet chips. Technology is as follows: sugar beet supplied into the washing machine to remove dirt from its surface. Washed roots inspect on conveyor belts. Next pure sugar beets sent to steam-heat treatment for cleaning the skin. After the beets is subjected to cutting by combining this process with a treatment with an aqueous solution of citric acid. Then he sent for the drying process is completed upon reaching a product of moisture content of 4-5 %. Drying chips feature is that under the high temperature reaction proceeds melanoidins between proteins and sugars present in sugar beet. As a result, the product obtained has the following characteristics: gold-yellow color; absence of a characteristic odor of sugar beet; pleasant sour taste; humidity of 4-5%. Thus, the new technology is relevant, because now the chips are one of the most popular products, ready to eat. A beet chips are rich in dietary fiber (pectin, hemicellulose and cellulose - 4-5 % minerals - macroelements (potassium, sodium, magnesium, calcium, phosphorus, trace elements (iron, zinc, copper, manganese - 0.5-0.6 %, and are the product of a functional food.

  5. Sugar export limits size of conifer needles

    Rademaker, Hanna; Zwieniecki, Maciej A.; Bohr, Tomas

    2017-01-01

    Plant leaf size varies by more than three orders of magnitude, from a few millimeters to over one meter. Conifer leaves, however, are relatively short and the majority of needles are no longer than 6 cm. The reason for the strong confinement of the trait-space is unknown. We show that sugars...... does not contribute to sugar flow. Remarkably, we find that the size of the active part does not scale with needle length. We predict a single maximum needle size of 5 cm, in accord with data from 519 conifer species. This could help rationalize the recent observation that conifers have significantly...

  6. Sugar and Sugar Derivatives in Residues Produced from the UV Irradiation of Astrophysical Ice Analogs

    Nuevo, M.; Sandford, S. A.; Cooper, G.

    2016-01-01

    A large variety and number of organic compounds of prebiotic interest are known to be present in carbonaceous chondrites. Among them, one sugar (dihydroxyacetone) as well as several sugar acids, sugar alcohols, and other sugar derivatives have been reported in the Murchison and Murray meteorites. Their presence, along with amino acids, amphiphiles, and nucleobases strongly suggests that molecules essential to life can form abiotically under astrophysical conditions. This hypothesis is supported by laboratory studies on the formation of complex organic molecules from the ultraviolet (UV) irradiation of simulated astrophysical ice mixtures consisting of H2O, CO, CO2, CH3OH, CH4, NH3, etc., at low temperature. In the past 15 years, these studies have shown that the organic residues recovered at room temperature contain amino acids, amphiphiles, nucleobases, as well as other complex organics. However, no systematic search for the presence of sugars and sugar derivatives in laboratory residues have been reported to date, despite the fact that those compounds are of primary prebiotic significance. Indeed, only small (up to 3 carbon atoms) sugar derivatives including glycerol and glyceric acid have been detected in residues so far.

  7. A Loose Relationship: Incomplete H+/Sugar Coupling in the MFS Sugar Transporter GlcP.

    Bazzone, Andre; Zabadne, Annas J; Salisowski, Anastasia; Madej, M Gregor; Fendler, Klaus

    2017-12-19

    The glucose transporter from Staphylococcus epidermidis, GlcP Se , is a homolog of the human GLUT sugar transporters of the major facilitator superfamily. Together with the xylose transporter from Escherichia coli, XylE Ec , the other prominent prokaryotic GLUT homolog, GlcP Se , is equipped with a conserved proton-binding site arguing for an electrogenic transport mode. However, the electrophysiological analysis of GlcP Se presented here reveals important differences between the two GLUT homologs. GlcP Se , unlike XylE Ec , does not perform steady-state electrogenic transport at symmetrical pH conditions. Furthermore, when a pH gradient is applied, partially uncoupled transport modes can be generated. In contrast to other bacterial sugar transporters analyzed so far, in GlcP Se sugar binding, translocation and release are also accomplished by the deprotonated transporter. Based on these experimental results, we conclude that coupling of sugar and H + transport is incomplete in GlcP Se . To verify the viability of the observed partially coupled GlcP Se transport modes, we propose a universal eight-state kinetic model in which any degree of coupling is realized and H + /sugar symport represents only a specific instance. Furthermore, using sequence comparison with strictly coupled XylE Ec and similar sugar transporters, we identify an additional charged residue that may be essential for effective H + /sugar symport. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Respiration-dependent utilization of sugars in yeasts: a determinant role for sugar transporters.

    Goffrini, Paola; Ferrero, Iliana; Donnini, Claudia

    2002-01-01

    In many yeast species, including Kluyveromyces lactis, growth on certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory conditions. If respiration is blocked by inhibitors, mutation, or anaerobiosis, growth does not take place. This apparent dependence on respiration for the utilization of certain sugars has often been suspected to be associated with the mechanism of the sugar uptake step. We hypothesized that in many yeast species, the permease activities for these sugars are not sufficient to ensure the high substrate flow that is necessary for fermentative growth. By introducing additional sugar permease genes, we have obtained K. lactis strains that were capable of growing on galactose and raffinose in the absence of respiration. High dosages of both the permease and maltase genes were indeed necessary for K. lactis cells to grow on maltose in the absence of respiration. These results strongly suggest that the sugar uptake step is the major bottleneck in the fermentative assimilation of certain sugars in K. lactis and probably in many other yeasts.

  9. COMPUTER SYSTEM FOR DETERMINATION OF COST DAILY SUGAR PRODUCTION AND INCIDENTS DECISIONS FOR COMPANIES SUGAR (SACODI

    Alejandro Álvarez-Navarro

    2016-01-01

    Full Text Available The process of sugar production is complex; anything that affects this chain has direct repercussions in the sugar production’s costs, it’s synthetic and decisive indicator for the taking of decisions. Currently the Cuban sugar factory determine this cost weekly, for that, its process of taking of decisions is affected. Looking for solutions to this problem, the present work, being part of a territorial project approved by CITMA, intended to calculate the cost of production daily, weekly, monthly and accumulated until indicated date, according to an adaptation to the methodology used by the National Costs System of sugarcane created by the MINAZ, it’s supported by a computer system denominated SACODI. This adaptation registers the physical and economic indicators of all direct and indirect expenses of the  sugarcane and besides this information generates an economic-mathematical model of goal programming whose solution indicates the best balance in amount of sugar of the entities of the sugar factory, in short term. The implementation of the system in the sugar factory «Julio A. Mella» in Santiago de Cuba in the sugar-cane production 08-09 produced an estimate of decrease of the cost of until 3,5 % for the taking of better decisions. 

  10. Sugar consumption, metabolic disease and obesity: The state of the controversy

    Stanhope, Kimber L.

    2016-01-01

    The impact of sugar consumption on health continues to be a controversial topic. The objective of this review is to discuss the evidence and lack of evidence that allows the controversy to continue, and why resolution of the controversy is important. There are plausible mechanisms and research evidence that support the suggestion that consumption of excess sugar promotes the development of cardiovascular disease (CVD) and type 2 diabetes (T2DM) both directly and indirectly. The direct pathway involves the unregulated hepatic uptake and metabolism of fructose, which leads to liver lipid accumulation, dyslipidemia, decreased insulin sensitivity and increased uric acid levels. The epidemiological data suggest that these direct effects of fructose are pertinent to the consumption of the fructose-containing sugars, sucrose and HFCS, which are the predominant added sugars. Consumption of added sugar is associated with development and/or prevalence of fatty liver, dyslipidemia, insulin resistance, hyperuricemia, cardiovascular disease and type 2 diabetes, and many of these associations are independent of body weight gain or total energy intake. There are diet intervention studies in which human subjects exhibited increased circulating lipids and decreased insulin sensitivity when consuming high sugar compared with control diets. Most recently, our group has reported that supplementing the ad libitum diets of young adults with beverages containing 0, 10, 17.5 or 25% of daily energy requirement (Ereq) as high fructose corn syrup (HFCS) increased lipid/lipoprotein risk factors for cardiovascular disease (CVD) and uric acid in a dose response manner. However, un-confounded studies conducted in healthy humans under a controlled, energy-balanced diet protocol that allow determination of the effects of sugar with diets that do not allow for body weight gain are lacking. Furthermore, there are recent reports that conclude that there are no adverse effects of consuming beverages

  11. Theory of the interaction of flat sensing organ with the head of the sugar beet root

    Volodymyr Bulgakov

    2017-12-01

    Full Text Available Sugar beet leaves now are very widely used for livestock feeding, as an organic fertiliser, and also as a raw material for the production of biogas. Therefore the harvest of the sugar beet tops (including leaves can be considered as current task for the sugar beet growing system. Modern technologies involve harvest of the tops of sugar beet in two stages: flat basic cut and collecting of the entire green mass at higher altitude and the subsequent cutting of the heads of root crops from the residues. Therefore, topical issues of the sensing of the heads of sugar beet roots arranged in rows, are related to the majority of the sugar beet toppers, cleaners of the sugar beet heads, leaves cutters and, digging up working bodies of some designs. The aim of this study is theoretical determination the optimum design and kinematic parameters of a new sensing mechanism of the sugar beet heads located in the soil on the basis of the theory of interaction of flat passive swath board sensing organ with the sugar beet heads during their topping when located in the soil. In the study there are used methods of creation of mathematical models of functioning of the agricultural machines and their working bodies with the using of main provisions of mathematics, theoretical mechanics, programming and numerical calculations on the PC. In this paper, there is presented a theoretical study of the interaction of passive sensing organ with the head of the sugar beet root when there are located residues of the leaves on a root head spherical surface in the form of short elastic rods. Thus, for such an interaction of the sensing organ and the head of sugar beet root head there is taken into account elastic-damping properties of the sugar beet leaves residues. In the study there was first of all developed a new design of the topper for sugar beet heads with the use of a flat swath board sensing organ, there was developed the equivalent scheme of the interaction of the

  12. Epizootic vacuolar myelinopathy of the central nervous system of bald eagles (Haliaeetus leucocephalus) and American coots (Fulica americana)

    Thomas, N.J.; Meteyer, C.U.; Sileo, L.

    1998-01-01

    toxicity from hexachlorophene, triethyltin, bromethalin, isonicotinic acid hydrazide, and certain exotic plant toxins; however, despite exhaustive testing, no etiology was determined for the DeGray Lake mortality events. This is the first report of vacuolar myelinopathy associated with spontaneous mortality in wild birds.

  13. Decreased proteinase A excretion by strengthening its vacuolar sorting and weakening its constitutive secretion in Saccharomyces cerevisiae.

    Chen, Yefu; Song, Lulu; Han, Yueran; Liu, Mingming; Gong, Rui; Luo, Weiwei; Guo, Xuewu; Xiao, Dongguang

    2017-01-01

    Proteinase A (PrA), encoded by PEP4 gene, is detrimental to beer foam stability. There are two transport pathways for the new synthesized PrA in yeast, sorting to the vacuole normally, or excreting out of the cells under stress conditions. They were designated as the Golgi-to-vacuole pathway and the constitutive secretory pathway, respectively. To reduce PrA excretion in some new way instead of its coding gene deletion, which had a negative effect on cell metabolism and beer fermentation, we modified the PrA transport based on these above two pathways. In the Golgi-to-vacuole pathway, after the verification that Vps10p is the dominant sorting receptor for PrA Golgi-to-vacuolar transportation by VPS10 deletion, VPS10 was then overexpressed. Furthermore, SEC5, encoding exocyst complexes' central subunit (Sec5p) in the constitutive secretory pathway, was deleted. The results show that PrA activity in the broth fermented with WGV10 (VPS10 overexpressing strain) and W∆SEC5 (SEC5 deletion strain) was lowered by 76.96 and 32.39%, compared with the parental strain W303-1A, at the end of main fermentation. There are negligible changes in fermentation performance between W∆SEC5 and W303-1A, whereas, surprisingly, WGV10 had a significantly improved fermentation performance compared with W303-1A. WGV10 has an increased growth rate, resulting in higher biomass and faster fermentation speed; finally, wort fermentation is performed thoroughly. The results show that the biomass production of WGV10 is always higher than that of W∆SEC5 and W303-1A at all stages of fermentation, and that ethanol production of WGV10 is 1.41-fold higher than that of W303-1A. Obviously, VPS10 overexpression is beneficial for yeast and is a more promising method for reduction of PrA excretion.

  14. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome

    Valerio Alejandro

    2011-10-01

    Full Text Available Abstract Background Volutin granules appear to be universally distributed and are morphologically and chemically identical to acidocalcisomes, which are electron-dense granular organelles rich in calcium and phosphate, whose functions include storage of phosphorus and various metal ions, metabolism of polyphosphate, maintenance of intracellular pH, osmoregulation and calcium homeostasis. Prokaryotes are thought to differ from eukaryotes in that they lack membrane-bounded organelles. However, it has been demonstrated that as in acidocalcisomes, the calcium and polyphosphate-rich intracellular "volutin granules (polyphosphate bodies" in two bacterial species, Agrobacterium tumefaciens, and Rhodospirillum rubrum, are membrane bound and that the vacuolar proton-translocating pyrophosphatases (V-H+PPases are present in their surrounding membranes. Volutin granules and acidocalcisomes have been found in organisms as diverse as bacteria and humans. Results Here, we show volutin granules also occur in Archaea and are, therefore, present in the three superkingdoms of life (Archaea, Bacteria and Eukarya. Molecular analyses of V-H+PPase pumps, which acidify the acidocalcisome lumen and are diagnostic proteins of the organelle, also reveal the presence of this enzyme in all three superkingdoms suggesting it is ancient and universal. Since V-H+PPase sequences contained limited phylogenetic signal to fully resolve the ancestral nodes of the tree, we investigated the divergence of protein domains in the V-H+PPase molecules. Using Protein family (Pfam database, we found a domain in the protein, PF03030. The domain is shared by 31 species in Eukarya, 231 in Bacteria, and 17 in Archaea. The universal distribution of the V-H+PPase PF03030 domain, which is associated with the V-H+PPase function, suggests the domain and the enzyme were already present in the Last Universal Common Ancestor (LUCA. Conclusion The importance of the V-H+PPase function and the

  15. Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis.

    Lopez, J M; Thoms, B

    1977-01-01

    Many phosphorylated intermediates exert catabolite repression on the enzyme acetoin dehydrogenase in Bacillus subtilis. This was shown with strains that are blocked at different positions in central metabolism when they receive sugars that cannot be metabolized past enzymatic block(s). In the case of sorbitol, transport events were not involved in catabolite repression, for this sugar cannot repress acetoin dehydrogenase in a strain lacking sorbitol dehydrogenase but otherwise able to take up sorbitol. The presence of glucose did not markedly influence the uptake of acetoin. PMID:401492

  16. [Synthesis and Characterization of a Sugar Based Electrolyte for Thin-film Polymer Batteries

    1998-01-01

    The work performed during the current renewal period, March 1,1998 focused primarily on the synthesis and characterization of a sugar based electrolyte for thin-film polymer batteries. The initial phase of the project involved developing a suitable sugar to use as the monomer in the polymeric electrolyte synthesis. The monomer has been synthesized and characterized completely. Overall the yield of this material is high and it can be produced in relatively large quantity easily and in high purity. The scheme used for the preparation of the monomer is outlined along with pertinent yields.

  17. Activity of the C-terminal-dependent vacuolar sorting signal of horseradish peroxidase C1a is enhanced by its secondary structure.

    Matsui, Takeshi; Tabayashi, Ayako; Iwano, Megumi; Shinmyo, Atsuhiko; Kato, Ko; Nakayama, Hideki

    2011-02-01

    Plant class III peroxidase (PRX) catalyzes the oxidation and oxidative polymerization of a variety of phenolic compounds while reducing hydrogen peroxide. PRX proteins are classified into apoplast type and vacuole type based on the absence or the presence of C-terminal propeptides, which probably function as vacuolar sorting signals (VSSs). In this study, in order to improve our understanding of vacuole-type PRX, we analyzed regulatory mechanisms of vacuolar sorting of a model vacuole-type PRX, the C1a isozyme of horseradish (Armoracia rusticana) (HRP C1a). Using cultured transgenic tobacco cells and protoplasts derived from horseradish leaves, we characterized HRP C1a's VSS, which is a 15 amino acid C-terminal propeptide (C15). We found that the C-terminal hexapeptide of C15 (C6), which is well conserved among vacuole-type PRX proteins, forms the core of the C-terminal-dependent VSS. We also found that the function of C6 is enhanced by the remaining N-terminal part of C15 which probably folds into an amphiphilic α-helix.

  18. Tonoplast Na+/H+ Antiport Activity and Its Energization by the Vacuolar H+-ATPase in the Halophytic Plant Mesembryanthemum crystallinum L.

    Barkla, B. J.; Zingarelli, L.; Blumwald, E.; Smith, JAC.

    1995-10-01

    Tonoplast vesicles were isolated from leaf mesophyll tissue of the inducible Crassulacean acid metabolism plant Mesembryanthemum crystallinum to investigate the mechanism of vacuolar Na+ accumulation in this halophilic species. In 8-week-old plants exposed to 200 mM NaCl for 2 weeks, tonoplast H+-ATPase activity was approximately doubled compared with control plants of the same age, as determined by rates of both ATP hydrolysis and ATP-dependent H+ transport. Evidence was also obtained for the presence of an electroneutral Na+/H+ antiporter at the tonoplast that is constitutively expressed, since extravesicular Na+ was able to dissipate a pre-existing transmembrane pH gradient. Initial rates of H+ efflux showed saturation kinetics with respect to extravesicular Na+ concentration and were 2.1-fold higher from vesicles of salt-treated plants compared with the controls. Na+-dependent H+ efflux also showed a high selectivity for Na+ over K+, was insensitive to the transmembrane electrical potential difference, and was more than 50% inhibited by 200 [mu]M N-amidino-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride. The close correlation between increased Na+/H+ antiport and H+-ATPase activities in response to salt treatment suggests that accumulation of the very high concentrations of vacuolar Na+ found in M. crystallinum is energized by the H+ electrochemical gradient across the tonoplast.

  19. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    Atanassova Rossitza

    2010-11-01

    Full Text Available Abstract Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters, has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3, one polyol (VvPMT5 and one sucrose (VvSUC27 transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2 and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2 genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5, in roots (VvHT2 or in mature leaves (VvHT5. Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and

  20. Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange.

    Qiao, Liang; Cao, Minghao; Zheng, Jian; Zhao, Yihong; Zheng, Zhi-Liang

    2017-10-30

    The ratio of sugars to organic acids, two of the major metabolites in fleshy fruits, has been considered the most important contributor to fruit sweetness. Although accumulation of sugars and acids have been extensively studied, whether plants evolve a mechanism to maintain, sense or respond to the fruit sugar/acid ratio remains a mystery. In a prior study, we used an integrated systems biology tool to identify a group of 39 acid-associated genes from the fruit transcriptomes in four sweet orange varieties (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). We reanalyzed the prior sweet orange fruit transcriptome data, leading to the identification of 72 genes highly correlated with the fruit sugar/acid ratio. The majority of these sugar/acid ratio-related genes are predicted to be involved in regulatory functions such as transport, signaling and transcription or encode enzymes involved in metabolism. Surprisingly, only three of these sugar/acid ratio-correlated genes are weakly correlated with sugar level and none of them overlaps with the acid-associated genes. Weighted Gene Coexpression Network Analysis (WGCNA) has revealed that these genes belong to four modules, Blue, Grey, Brown and Turquoise, with the former two modules being unique to the sugar/acid ratio control. Our results indicate that orange fruits contain a possible mechanistically distinct class of genes that may potentially be involved in maintaining fruit sugar/acid ratios and/or responding to the cellular sugar/acid ratio status. Therefore, our analysis of orange transcriptomes provides an intriguing insight into the potentially novel genetic or molecular mechanisms controlling the sugar/acid ratio in fruits.

  1. Total, Added, and Free Sugars: Are Restrictive Guidelines Science-Based or Achievable?

    Jennifer Erickson; Joanne Slavin

    2015-01-01

    Sugar consumption, especially added sugars, is under attack. Various government and health authorities have suggested new sugar recommendations and guidelines as low as 5% of total calories from free sugars. Definitions for total sugars, free sugars, and added sugars are not standardized, nor are there accepted nutrient databases for this information. Our objective was to measure total sugars and added sugars in sample meal plans created by the United States Department of Agriculture (USDA) a...

  2. Dynamics of sugar-metabolic enzymes and sugars accumulation during watermelon (citrullus lanatus) fruit development

    Zhang, H.

    2016-01-01

    We analyzed sugar accumulation and the activities of sugar-metabolic enzymes in ripening fruits of three cultivars of watermelon; a high-sugar type w2, a low-sugar type (w1), and their hybrid. In w2, the glucose and fructose contents were higher than the sucrose content in the earlier stage of fruit development, and fruit growth was accompanied by increases in glucose, fructose, and sucrose contents. The sucrose content increased substantially after 20 days after anthesis (DAA) and it was the main soluble sugar in mature fruit (sucrose: hexoses ratio, 0.71). In W, the fructose and glucose contents were significantly higher than the sucrose content in mature fruit (sucrose: hexoses ratio, 0.25). Comparing the two parent cultivars, sucrose was the most important factor affecting the total sugar content in mature fruit, although glucose and fructose also contributed to total sugar contents. The fructose and glucose contents in the fruit of F1 were mid-way between those of their parents, while the sucrose content was closer to that of W (sucrose:hexoses ratio in F1, 0.26). In the early stage of fruit development of W2, the activities of acid invertase and neutral invertase were higher than those of sucrose synthase and sucrose phosphate synthase. After 20 DAA, the acid invertase and neutral invertase activities decreased and those of sucrose synthase and sucrose phosphate synthase increased, leading to increased sucrose content. In W1, the activities of acid invertase and neutral invertase were higher than those of sucrose synthase and sucrose phosphate synthase at the early stage. The sucrose synthase and sucrose phosphate synthase activities were lower in W1 than in W2 at the later stages of fruit development. The patterns of sugar accumulation and sugar-metabolic enzyme activities during fruit development in F1 were similar to those in W1. (author)

  3. Biomass by-product from crystal sugar production: A comparative study between Ngadirejo and Mauritius sugar mill

    Gunawan; Bantacut, T.; Romli, M.; Noor, E.

    2018-03-01

    Sugarcane has been used as raw material in crystal sugar industry. Sugar cane that contains high sugar will be utilized into crystals sugar. In addition, the productivity of sugarcane is large enough in 2016 approximately 360 713 tons/year. Crystal sugar itself is a daily necessity for its use in the food and beverage industry. Problem that occurs in Indonesia is the energy consumption. The sugar mills supposed to be an independent energy source which means it can produce its own energy by utilization the material that is available in the sugar mills such as by-product (bagasse, molasses, filter cake, etc.), the by product in every production stage are quite a lot in sugar industry especially in Indonesia. In this paper, a comparison between two sugar mills was examined between Ngedirejo sugar mill and Mauritius sugar mill which has the same geological state as Indonesia. The results of comparison between the two sugar factories demonstrated the difference in terms of productivity of the sugar that has been produced and the effectiveness of the production process in a sugar mill seen from the amount of waste and the by product.

  4. Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway

    K. E. Yttri

    2007-08-01

    Full Text Available Sugars and sugar-alcohols are demonstrated to be important constituents of the ambient aerosol water-soluble organic carbon fraction, and to be tracers for primary biological aerosol particles (PBAP. In the present study, levels of four sugars (fructose, glucose, sucrose, trehalose and three sugar-alcohols (arabitol, inositol, mannitol in ambient aerosols have been quantified using a novel HPLC/HRMS-TOF (High Performance Liquid Chromatography in combination with High Resolution Mass Spectrometry – Time of Flight method to assess the contribution of PBAP to PM>sub>10 and PM2.5. Samples were collected at four sites in Norway at different times of the year in order to reflect the various contributing sources and the spatial and seasonal variation of the selected compounds.

    Sugars and sugar-alcohols were present at all sites investigated, underlining the ubiquity of these highly polar organic compounds. The highest concentrations were reported for sucrose, reaching a maximum concentration of 320 ng m−3 in PM10 and 55 ng m−3 in PM2.5. The mean concentration of sucrose was up to 10 times higher than fructose, glucose and the dimeric sugar trehalose. The mean concentrations of the sugar-alcohols were typically lower, or equal, to that of the monomeric sugars and trehalose. Peak concentrations of arabitol and mannitol did not exceed 30 ng m−3 in PM10, and for PM2.5 all concentrations were below 6 ng m−3.

    Sugars and sugar-alcohols were associated primarily with coarse aerosols except during wintertime at the suburban site in Elverum, where a shift towards sub micron aerosols was observed. It is proposed that this shift was due to the intensive use of wood burning for residential heating at this site during winter, confirmed by high concurrent concentrations of levoglucosan. Elevated concentrations of sugars in PM2

  5. Dietary sources of sugars in adolescents' diet: the HELENA study.

    Mesana, M I; Hilbig, A; Androutsos, O; Cuenca-García, M; Dallongeville, J; Huybrechts, I; De Henauw, S; Widhalm, K; Kafatos, A; Nova, E; Marcos, A; González-Gross, M; Molnar, D; Gottrand, F; Moreno, L A

    2018-03-01

    To report dietary sugars consumption and their different types and food sources, in European adolescents. Food consumption data of selected groups were obtained from 1630 adolescents (45.6% males, 12.5-17.5 years) from the HELENA study using two nonconsecutive 24-h recalls. Energy intake, total sugars and free sugars were assessed using the HELENA-DIAT software. Multiple regression analyses were performed adjusting for relevant confounders. Total sugars intake (137.5 g/day) represented 23.6% and free sugars (110.1 g/day), 19% of energy intake. Girls had significantly lower intakes of energy, carbohydrates, total sugars and free sugars. 94% of adolescents had a consumption of free sugars above 10% of total energy intake. The main food contributor to free sugars was 'carbonated, soft and isotonic drinks,' followed by 'non-chocolate confectionary' and 'sugar, honey, jam and syrup.' Older boys and girls had significantly higher intakes of free sugars from 'cakes, pies and biscuits.' Free sugars intake was negatively associated with low socioeconomic status for 'non-chocolate confectionary' and 'sugar, honey and jam' groups; with low maternal educational level for carbonated and 'soft drinks,' 'sugar, honey and jam,' 'cakes and pies' and 'breakfast cereals' groups; and with high paternal educational level for 'carbonated and soft drinks' and 'chocolates' group. The majority (94%) of studied adolescents consumed free sugars above 10% of daily energy intake. Our data indicate a broad variety in foods providing free sugars. Continued efforts are required at different levels to reduce the intake of free sugars, especially in families with a low educational level.

  6. Sugars as tobacco ingredient: Effects on mainstream smoke composition.

    Talhout, Reinskje; Opperhuizen, Antoon; van Amsterdam, Jan G C

    2006-11-01

    Sugars are natural tobacco components, and are also frequently added to tobacco during the manufacturing process. This review describes the fate of sugars during tobacco smoking, in particular the effect of tobacco sugars on mainstream smoke composition. In natural tobacco, sugars can be present in levels up to 20 wt%. In addition, various sugars are added in tobacco manufacturing in amounts up to 4 wt% per sugar. The added sugars are usually reported to serve as flavour/casing and humectant. However, sugars also promote tobacco smoking, because they generate acids that neutralize the harsh taste and throat impact of tobacco smoke. Moreover, the sweet taste and the agreeable smell of caramelized sugar flavors are appreciated in particular by starting adolescent smokers. Finally, sugars generate acetaldehyde, which has addictive properties and acts synergistically with nicotine in rodents. Apart from these consumption-enhancing pyrolysis products, many toxic (including carcinogenic) smoke compounds are generated from sugars. In particular, sugars increase the level of formaldehyde, acetaldehyde, acetone, acrolein, and 2-furfural in tobacco smoke. It is concluded that sugars in tobacco significantly contribute to the adverse health effects of tobacco smoking.

  7. Seasonal variation of prices of sugar cane, ethanol and electric power

    Melo, Carmem Ozana de; Silva, Gerson Henrique da; Bueno, Osmar de Carvalho; Esperancini, Maura Seiko Tsutsui

    2010-01-01

    The aim of this study was to assess the seasonal price of sugar cane, fuel alcohol (hydrated and anhydrous) and electricity tariffs as a way of aiding tool for optimization of energy generation, using biomass originating from cane sugar. Using the method of moving average centered was concluded that cane and electricity rates were close to seasonal average, with low range of prices, suggesting the non-occurrence of seasonal variation in prices. Unlike the seasonal indices of ethanol showed seasonal variation of prices with greater amplitude of seasonal index. Thus, the results suggest that the utilization of by-products of sugar cane to produce electrical power points to the prospect of reducing risks associated with variations in the price of ethanol, thereby contributing to greater stability and possibility to those involved in planning alcohol sector. (author)

  8. BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis.

    Peng, Yuancheng; Chen, Liangliang; Li, Shengjun; Zhang, Yueying; Xu, Ran; Liu, Zupei; Liu, Wuxia; Kong, Jingjing; Huang, Xiahe; Wang, Yingchun; Cheng, Beijiu; Zheng, Leiying; Li, Yunhai

    2018-04-18

    Sugars function as signal molecules to regulate growth, development, and gene expression in plants, yeasts, and animals. A coordination of sugar availability with phytohormone signals is crucial for plant growth and development. The molecular link between sugar availability and hormone-dependent plant growth are largely unknown. Here we report that BRI1 and BAK1 are involved in sugar-responsive growth and development. Glucose influences the physical interactions and phosphorylations of BRI1 and BAK1 in a concentration-dependent manner. BRI1 and BAK1 physically interact with G proteins that are essential for mediating sugar signaling. Biochemical data show that BRI1 can phosphorylate G protein β subunit and γ subunits, and BAK1 can phosphorylate G protein γ subunits. Genetic analyses suggest that BRI1 and BAK1 function in a common pathway with G-protein subunits to regulate sugar responses. Thus, our findings reveal an important genetic and molecular mechanism by which BR receptors associate with G proteins to regulate sugar-responsive growth and development.

  9. Utilization of sugar beets iin alcohol plants

    Kuznetsov, N M

    1958-01-01

    It is shown that it is easily possible to switch EtOH plants, which have used potatoes as raw material, to sugar beets. The whole regime is presented with respect to volumes, temperatures, amounts, and yields in the various steps.

  10. Sugar transport by maize endosperm suspension cultures

    Felker, F.C.; Goodwin, J.C.

    1987-01-01

    To determine the mechanism of sugar uptake by suspension cultures derived from developing maize (Zea mays L.) endosperm, incorporation of radioactivity from 14 C-sugars by the tissue in the mid-log phase of growth was examined. Among the sugars tested was l'-deoxy-l'-fluorosucrose (FS), a derivative not hydrolyzed by invertase but recognized by sucrose carriers in other systems. At 40 mM, uptake of label from FS was 23% of that from sucrose, while uptake of label from L-glucose (used as a control for medium carry-over and adsorption) was 16% of that from sucrose. Uptake of label from sucrose did not increase at concentrations above 50 mM, possibly due to a rate-limiting requirement for extracellular hydrolysis. Kinetic analysis revealed both saturable and linear components of uptake for glucose and fructose. The rate of fructose uptake exceeded that of glucose at all concentrations. Fructose uptake at 20 mM was inhibited by NaN 3 , HgCl 2 , dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, and p-chloromercuribenzenesulfonic acid. Results suggest that sucrose is hydrolyzed prior to uptake, and that fructose is transported preferentially by a carrier sensitive to an external sulfhydryl group inhibitor. Metabolic activity is required for sugar uptake. The specificity of the hexose transporter is currently being investigated

  11. Study of fiber optic sugar sensor

    is connected. By varying the concentration of sugar solution, the output power is noted. ... and Lin [3] and Ghatak et al [4] have studied the use of optical fibers as sensing elements. ... at the interface, an evanescent wave propagates parallel to the interface. .... the ends of the fiber are fixed with fiber holders on either side.

  12. Storage requirements for sugar maple seeds

    Harry W. Yawney; Clayton M., Jr. Carl

    1974-01-01

    Sugar maple seeds, collected from three trees in northern Vermont, were stored at four temperatures (18, 7, 2, and -10ºC) in combination with four seed moisture contents (35, 25, 17, and 10 percent). Seed moisture content and storage temperature significantly affected keeping ability, and these factors were highly interrelated. Seeds from all trees kept best...

  13. Mapping sugar beet pectin acetylation pattern.

    Ralet, Marie-Christine; Cabrera, Juan Carlos; Bonnin, Estelle; Quéméner, Bernard; Hellìn, Pilar; Thibault, Jean-François

    2005-08-01

    Homogalacturonan-derived partly methylated and/or acetylated oligogalacturonates were recovered after enzymatic hydrolysis (endo-polygalacturonase+pectin methyl esterase+side-chain degrading enzymes) of sugar beet pectin followed by anion-exchange and size exclusion chromatography. Around 90% of the GalA and 75% of the acetyl groups present in the initial sugar beet pectin were recovered as homogalacturonan-derived oligogalacturonates, the remaining GalA and acetyl belonging to rhamnogalacturonic regions. Around 50% of the acetyl groups present in sugar beet homogalacturonans were recovered as partly methylated and/or acetylated oligogalacturonates of degree of polymerisation 5 whose structures were determined by electrospray ionization ion trap mass spectrometry (ESI-IT-MSn). 2-O-acetyl- and 3-O-acetyl-GalA were detected in roughly similar amounts but 2,3-di-O-acetylation was absent. Methyl-esterified GalA residues occurred mainly upstream 2-O-acetyl GalA. Oligogalacturonates containing GalA residues that are at once methyl- and acetyl-esterified were recovered in very limited amounts. A tentative mapping of the distribution of acetyl and methyl esters within sugar beet homogalacturonans is proposed. Unsubstituted GalA residues are likely to be present in limited amounts (approximately 10% of total GalA residues), due to the fact that methyl and acetyl groups are assumed to be most often not carried by the same residues.

  14. Sugar pine management—an annotated bibliography

    James L. Averell; John C. Crowell; Clarence R. Quick; Gilbert H. Schubert

    1955-01-01

    The purposes of this bibliography are to enumerate and describe publications that have a bearing on the growing of sugar pine for timber production. It is intended primarily for the information of forest managers, and it includes mainly those articles which appeared to pertain rather directly to management. Although a careful search was made for titles, no claim is...

  15. Dietary sugars, not lipids, drive hypothalamic inflammation

    Yuanqing Gao

    2017-08-01

    Conclusions: Combined overconsumption of fat and sugar, but not the overconsumption of fat per se, leads to excessive CML production in hypothalamic neurons, which, in turn, stimulates hypothalamic inflammatory responses such as microgliosis and eventually leads to neuronal dysfunction in the control of energy metabolism.

  16. Building improved models of sugar maple mortality

    Charles H. Perry; Patrick L. Zimmerman

    2012-01-01

    The decline of sugar maple (Acer saccharum Marsh.) in the northern United States is causing concern, and several studies have identified soil properties that are linked to the observation of dead/dying trees. Unfortunately, the sample of trees supporting these studies is purposive in nature; soil properties are assessed only on those plots where dead...

  17. Idiomatic Control used in Sugar Plants

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard; Pedersen, Tom Søndergaard

    1993-01-01

    A description of a control system for a large scale industrial plant - the evaporator section of a sugar plant. The control system is based on the idiomatic control concept, causing decomposition into loop control units - idioms. Dynamic decoupling, feedforward- and feedback loops eg. have been...

  18. Identification of a 170-kDa protein associated with the vacuolar Na+/H+ antiport of Beta vulgaris.

    Barkla, B J; Blumwald, E

    1991-01-01

    The effect of the addition of amiloride to the growth medium was tested on the Na+/H+ antiport activity of tonoplast vesicles isolated from sugar beet (beta vulgaris L.) cell suspensions. Cells grown in the presence of NaCl and amiloride displayed an increased antiport activity. Analysis of the kinetic data showed that while the affinity of the antiport for Na+ ions did not change, the maximal velocity of the Na+/H+ exchange increased markedly. These results suggest the addition of more antip...

  19. Complementing the sugar code: role of GAGs and sialic acid in complement regulation

    Alex eLangford-Smith

    2015-02-01

    Full Text Available Sugar molecules play a vital role on both microbial and mammalian cells, where they are involved in cellular communication, govern microbial virulence and modulate host immunity and inflammatory responses. The complement cascade, as part of a host’s innate immune system, is a potent weapon against invading bacteria but has to be tightly regulated to prevent inappropriate attack and damage to host tissues. A number of complement regulators, such as factor H and properdin, interact with sugar molecules, such as glycosaminoglycans and sialic acid, on host and pathogen membranes and direct the appropriate complement response by either promoting the binding of complement activators or inhibitors. The binding of these complement regulators to sugar molecules can vary from location to location, due to their different specificities and because distinct structural and functional subpopulations of sugars are found in different human organs, such as the brain, kidney and eye. This review will cover recent studies that have provided important new insights into the role of glycosaminoglycans and sialic acid in complement regulation and how sugar recognition may be compromised in disease

  20. Trends in Sugar-Sweetened Beverages: Are Public Health and the Market Aligned or in Conflict?

    Shrapnel, William

    2015-09-23

    Adverse health consequences of consuming sugar-sweetened beverages are frequently cited as an example of market failure, justifying government intervention in the marketplace, usually in the form of taxation. However, declining sales of sugar-sweetened beverages in Australia and a corresponding increase in sales of drinks containing non-nutritive sweeteners, in the absence of significant government regulation, appear to reflect market forces at work. If so, the public health challenge in relation to sugar-sweetened beverages may have less to do with regulating the market and more to do with harnessing it. Contrary to assertions that consumers fail to appreciate the links between their choice of beverage and its health consequences, the health conscious consumer appears to be driving the changes taking place in the beverage market. With the capacity to meet consumer expectations for convenience and indulgence without unwanted kilojoules, drinks containing non-nutritive sweeteners enable the "small change" in health behaviour that individuals are willing to consider. Despite the low barriers involved in perpetuating the current trend of replacing sugar-sweetened beverages with drinks containing non-nutritive sweeteners, some public health advocates remain cautious about advocating this dietary change. In contrast, the barriers to taxation of sugar-sweetened beverages appear high.

  1. Cell culture media supplementation of infrequently used sugars for the targeted shifting of protein glycosylation profiles.

    Hossler, Patrick; Racicot, Christopher; Chumsae, Christopher; McDermott, Sean; Cochran, Keith

    2017-03-01

    Mammalian cells in culture rely on sources of carbohydrates to supply the energy requirements for proliferation. In addition, carbohydrates provide a large source of the carbon supply for supporting various other metabolic activities, including the intermediates involved in the protein glycosylation pathway. Glucose and galactose, in particular, are commonly used sugars in culture media for these purposes. However, there exists a very large repertoire of other sugars in nature, and many that have been chemically synthesized. These sugars are particularly interesting because they can be utilized by cells in culture in distinct ways. In the present work it has been found that many infrequently used sugars, and the corresponding cellular response towards them as substrates, led to differences in the protein N-glycosylation profile of a recombinant glycoprotein. The selective media supplementation of raffinose, trehalose, turanose, palatinose, melezitose, psicose, lactose, lactulose, and mannose were found to be capable of redirecting N-glycan oligosaccharide profiles. Despite this shifting of protein glycosylation, there were no other adverse changes in culture performance, including both cell growth and cellular productivity over a wide range of supplemented sugar concentrations. The approach presented highlights a potential means towards both the targeted shifting of protein glycosylation profiles and ensuring recombinant protein comparability, which up to this point in time has remained under-appreciated for these under-utilized compounds. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:511-522, 2017. © 2017 American Institute of Chemical Engineers.

  2. Trends in Sugar-Sweetened Beverages: Are Public Health and the Market Aligned or in Conflict?

    William Shrapnel

    2015-09-01

    Full Text Available Adverse health consequences of consuming sugar-sweetened beverages are frequently cited as an example of market failure, justifying government intervention in the marketplace, usually in the form of taxation. However, declining sales of sugar-sweetened beverages in Australia and a corresponding increase in sales of drinks containing non-nutritive sweeteners, in the absence of significant government regulation, appear to reflect market forces at work. If so, the public health challenge in relation to sugar-sweetened beverages may have less to do with regulating the market and more to do with harnessing it. Contrary to assertions that consumers fail to appreciate the links between their choice of beverage and its health consequences, the health conscious consumer appears to be driving the changes taking place in the beverage market. With the capacity to meet consumer expectations for convenience and indulgence without unwanted kilojoules, drinks containing non-nutritive sweeteners enable the “small change” in health behaviour that individuals are willing to consider. Despite the low barriers involved in perpetuating the current trend of replacing sugar-sweetened beverages with drinks containing non-nutritive sweeteners, some public health advocates remain cautious about advocating this dietary change. In contrast, the barriers to taxation of sugar-sweetened beverages appear high.

  3. Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H+-ATPase inhibitor concanamycin A and the autophagy-related protein Atg8

    Yano, Kanako; Yanagisawa, Takahiro; Mukae, Kyosuke; Niwa, Yasuo; Inoue, Yuko; Moriyasu, Yuji

    2015-01-01

    Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H+-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H+-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation. PMID:26368310

  4. Enantiomer Ratios of Meteoritic Sugar Derivatives

    Cooper, George

    2012-01-01

    Carbonaceous meteorites contain a diverse suite of soluble organic compounds. Studies of these compounds reveal the Solar System's earliest organic chemistry. Among the classes of organic compounds found in meteorites are keto acids (pyruvic acid, etc.), hydroxy tricarboxylic acids (1), amino acids, amides, purines and pyrimidines. The Murchison and Murray meteorites are the most studied for soluble and insoluble organic compounds and organic carbon phases. The majority of (indigenous) meteoritic compounds are racemic, (i.e., their D/L enantiomer ratios are 50:50). However, some of the more unusual (non-protein) amino acids contain slightly more of one enantiomer (usually the L) than the other. This presentation focuses on the enantiomer analyses of three to six-carbon (3C to 6C) meteoritic sugar acids. The molecular and enantiomer analysis of corresponding sugar alcohols will also be discussed. Detailed analytical procedures for sugar-acid enantiomers have been described. Results of several meteorite analyses show that glyceric acid is consistently racemic (or nearly so) as expected of non-biological mechanisms of synthesis. Also racemic are 4-C deoxy sugar acids: 2-methyl glyceric acid; 2,4-dihydroxybutyric acid; 2,3-dihydroxybutyric acid (two diastereomers); and 3,4-dihydroxybutyric acid. However, a 4C acid, threonic acid, has never been observed as racemic, i.e., it possesses a large D excess. In several samples of Murchison and one of GRA 95229 (possibly the most pristine carbonaceous meteorite yet analyzed) threonic acid has nearly the same D enrichment. In Murchison, preliminary isotopic measurements of individual threonic acid enantiomers point towards extraterrestrial sources of the D enrichment. Enantiomer analyses of the 5C mono-sugar acids, ribonic, arabinonic, xylonic, and lyxonic also show large D excesses. It is worth noting that all four of these acids (all of the possible straight-chained 5C sugar acids) are present in meteorites, including the

  5. Decolorization of turbid sugar juice from sugar factory using waste powdered carbon

    Aljohani, Hind; Ahmed, Youssef; El-Shafey, Ola; El-Shafey, Shaymaa; Fouad, Rasha; Shoueir, Kamel

    2018-03-01

    Waste management of powdered activated carbon from cyclone of some sugar factories was used for decolorization of sugar mud juice (SMJ) in this study. The presence of powdered activated carbon waste (PACW) was admitted again for their use in SMJ decolorization. The determined specific surface area are typically S BET = 613.887 m2/g and the pore distribution lies in mesoporous domain. Color removal (CR%) and decolorization capacity (DC) of the characterized PACW are similar to those of decolorants used at this time for sugar refining. The CR% with PACW reached 81.03% at pH7.0 and dosed in the amount 0.5 g/50 ml of SMJ. There are two acceptable mechanisms illustrates the attachments between phenols and carboxylate ions. In this paper, we put a simple and rapid dark liquid decolorization by controlling rejected carbon waste, which will be useful for treatment of dark liquid sugar.

  6. Sugar in Moderation: Variable Sugar Diets Affect Short-Term Parasitoid Behavior

    The biological control potential of parasitic wasps in the field is expected to increase with provisioning of sugar sources, which increase longevity and replenish carbohydrate reserves. Apanteles aristoteliae Viereck is an important parasitoid of Argyrotaenia franciscana (Walsingham), the orange to...

  7. RESEARCH OF LIMY AND CARBONATE SYSTEM OF SUGAR PRODUCTION

    N. G. Kulneva

    2012-01-01

    Full Text Available Influence of рН and temperature on activity of suspension of lime and carbonate in sugar production is investigated. Possibility of decrease in a consumption of reagents on purification of production sugar solutions is established.

  8. Comparative study of effects of table sugar, laboratory grade ...

    cntaganda

    In the second phase of the experiment, the quantity of carbohydrates ... Key words: Banana, tissue culture, sugars, table sugar, laboratory grade sucrose, mannitol. ..... 9. TAIZ, L. & ZEIGER, E., 2006. Stress physiology. Plant Physiology, Taiz, L.

  9. 15 CFR 2011.204 - Entry of specialty sugars.

    2010-01-01

    ... UNITED STATES TRADE REPRESENTATIVE ALLOCATION OF TARIFF-RATE QUOTA ON IMPORTED SUGARS, SYRUPS AND... present a certificate to the appropriate customs official at the date of entry of specialty sugars. Entry...

  10. Sugar maple ecology and health: proceedings of an international symposium

    Stephen B. Horsley; Robert P. Long; eds.

    1999-01-01

    Contains 28 papers and abstracts on sugar maple history and ecology; recent sugar maple declines; nutrient and belowground dynamics in northeastern forests; and interactions of forest health with biotic and abiotic stressors.

  11. Reconciliation of opposing views on membrane-sugar interactions

    Andersen, Heidi D.; Wang, Chunhua; Arleth, Lise

    2011-01-01

    It is well established that small sugars exert different types of stabilization of biomembranes both in vivo and in vitro. However, the essential question of whether sugars are bound to or expelled from membrane surfaces, i.e., the sign and size of the free energy of the interaction, remains...... unresolved, and this prevents a molecular understanding of the stabilizing mechanism. We have used small-angle neutron scattering and thermodynamic measurements to show that sugars may be either bound or expelled depending on the concentration of sugar. At low concentration, small sugars bind quite strongly...... to a lipid bilayer, and the accumulation of sugar at the interface makes the membrane thinner and laterally expanded. Above â¼0.2 M the sugars gradually become expelled from the membrane surface, and this repulsive mode of interaction counteracts membrane thinning. The dual nature of sugar...

  12. Widespread sugar maple decline and regeneration failure in the Adirondacks

    Jerry C. Jenkins; Elizabeth Moffett; Daphne Ross

    1999-01-01

    Over large areas of the Adirondacks, hardwood stands whose canopies are dominated by or contain abundant mature sugar maple (Acer saccharum Marsh.) have almost no sugar maple saplings or seedlings in the understory.

  13. Biogas from sugar beet press pulp as substitute of fossil fuel in sugar beet factories.

    Brooks, L; Parravicini, V; Svardal, K; Kroiss, H; Prendl, L

    2008-01-01

    Sugar beet press pulp (SBP) accumulates as a by-product in sugar factories and it is generally silaged or dried to be used as animal food. Rising energy prices and the opening of the European Union sugar market has put pressure on the manufacturers to find alternatives for energy supply. The aim of this project was to develop a technology in the treatment of SBP that would lead to savings in energy consumption and would provide a more competitive sugar production from sugar beets. These goals were met by the anaerobic digestion of SBP for biogas production. Lab-scale experiments confirmed the suitability of SBP as substrate for anaerobic bacteria. Pilot-scale experiments focused on process optimization and procedures for a quick start up and operational control. Both single-stage and two-stage process configurations showed similar removal efficiency. A stable biogas production could be achieved in single-stage at a maximum volumetric loading rate of 10 kgCSB/(m(3) x d). Degradation efficiency was 75% for VS and 72% for COD. Average specific gas production reached 530 NL/kgCOD(SBP) or 610 NL/kgVS(SBP). (CH(4): 50 to 53%). The first large-scale biogas plant was put into operation during the sugar processing period 2007 at a Hungarian sugar factory. Digesting approximately 50% of the SBP (800 t/d, 22%TS), the biogas produced could substitute about 40% of the natural gas required for the thermal energy supply within the sugar processing. Copyright IWA Publishing 2008.

  14. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel

    The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1– expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and p...

  15. Ethanol Production from Different Intermediates of Sugar Beet Processing

    Mladen Pavlečić; Ivna Vrana; Kristijan Vibovec; Mirela Ivančić Šantek; Predrag Horvat; Božidar Šantek

    2010-01-01

    In this investigation, the production of ethanol from the raw sugar beet juice and raw sugar beet cossettes has been studied. For ethanol production from the raw sugar beet juice, batch and fed-batch cultivation techniques in the stirred tank bioreactor were used, while batch ethanol production from the raw sugar beet cossettes was carried out in horizontal rotating tubular bioreactor (HRTB). In both cases, Saccharomyces cerevisiae was used as a production microorganism. During batch ethanol ...

  16. Sugar amount analysis in food from Lithuanian food market

    Gudauskaitė, Milda

    2015-01-01

    When taking too much simple sugar, especially sucrose, harmful health effects occur: more tooth decay occurs, the excess sugar coverts into fat, digestive system gets irritated, increase of weight, possibility in increasing of developing cancer cells, pancreatic and other misbalances in the endocrine organs. Thesis goal: to perform sugar amount analysis in Lithuanian food market Analysis methodology. Assessing the amount of sugar (g/100g) there was analyzed 147 major food la...

  17. Sugar and metabolic health: is there still a debate?

    Moore, JB; Fielding, BA

    2016-01-01

    Purpose of review: There is considerable political and public awareness of new recommendations to reduce sugars and sugar-sweetened beverages in our diets. It is therefore timely to review the most recent changes in guidelines, with a focus on evidence for metabolic health, recent research in the area and gaps in our knowledge. Recent findings: Sufficient evidence links a high intake of sugar to dental caries and obesity, and high intakes of sugar-sweetened beverages in particular to increase...

  18. PROCESS OF OBTAINING OF SUGAR FROM SUGAR BEET AND INFLUENCE ON ITS QUALITY

    Marián Tokár

    2011-02-01

    Full Text Available Cooking of massecuites has been study in the connection with different particle size distribution of white sugar. During the crystallization is possible to operate with parameters which have influence on particle size of white sugar. Dry matter of juice in crystallizer, volume of the standard syrup in crystallizer and heating curve of crystallization process are constant parameters in this process. Quantity of slurry (seed magma crystallizate and volume of slurry massecuite are parameters which can be changed for control the particle size distribution of white sugar. Five variants of viable parameters have been trying for obtain ideal particle size distribution of white sugar. As a best has been evaluated variant with 1100 cm3 of slurry and 20 % of volume of slurry massecuite in crystallizer. This variant has had the crystals proportions captured by the sieves between 1.00 and 0.40 mm with minimal differences in weight. More results have been related to reduction of losses of sugar in molasses with the right setting for the line of cooling crystallization process. The looses of sugar can be reduced by adding two coolers in the end of cooling crystalization process what will decrease a temperature to 40 ° C. This temperature will lead to more efficient crystallization in the cooling crystallization process.doi:10.5219/122

  19. Factors associated with the acceptance of sugar and sugar substitutes by the public.

    Mackay, D A

    1985-09-01

    Acceptance is described in both market and sensory research terminology and recent developments in the fields of applied psychology and physiology are examined for their pertinence to public acceptance of sucrose and its substitutes. Information on the function of sucrose in foods other than beverages is presented with emphasis on salivation as an acceptance factor and attention is drawn to its possible dental significance. Distinctions are made between the sweetening and bulking properties of sucrose and sugar substitutes. Factors having a bearing on the acceptance of sweet foods and the determination of their optimal sugar content are described in detail. While major decreases in sucrose intake in the US resulted from high-fructose corn-sweetener usage in soft drinks, no evidence is yet available to suggest that the use of sugar substitutes of the intense artificial sweetener type has caused any decrease in ordinary sugar consumption. Neither is the consumption of polyols (sorbitol, mannitol, xylitol) high enough in confectionery categories to cause any discernible decrease in sugar usage. The evidence suggests not so much that sugar substitutes may have stopped the growth in sucrose usage, but that new product categories such as diet foods and "sugarless' confections may have been created. These categories were never available to fermentable carbohydrate sweeteners and equivalence in acceptance to sucrose-sweetened products was not an important factor in their growth.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Ethanol production in fermentation of mixed sugars containing xylose

    Viitanen, Paul V [West Chester, PA; Mc Cutchen, Carol M [Wilmington, DE; Li,; Xu, [Newark, DE; Emptage, Mark [Wilmington, DE; Caimi, Perry G [Kennett Square, PA; Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Lakewood, CO; Franden, Mary Ann [Centennial, CO

    2009-12-08

    Xylose-utilizing Z. mobilis strains were found to have improved ethanol production when grown in medium containing mixed sugars including xylose if sorbitol or mannitol was included in the medium. The effect was seen in concentrations of mixed sugars where no growth lag period occurs, as well as in higher sugars concentrations.

  1. Sugar beet leaves: from biorefinery to techno-functionality

    Kiskini, Alexandra

    2017-01-01

    Sugar beet leaves (SBL), which are a side stream of the sugar beets cultivation, are currently left unexploited after sugar beets have been harvested. The general aim of this thesis was to study the biorefinery of SBL, with a special focus on the isolation of proteins. To reach this aim the

  2. 19 CFR 151.25 - Mixing classes of sugar.

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Mixing classes of sugar. 151.25 Section 151.25... TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.25 Mixing classes of sugar. No regulations relative to the weighing, taring, sampling, classifying...

  3. Estimating Free and Added Sugar Intakes in New Zealand.

    Kibblewhite, Rachael; Nettleton, Alice; McLean, Rachael; Haszard, Jillian; Fleming, Elizabeth; Kruimer, Devonia; Te Morenga, Lisa

    2017-11-27

    The reduction of free or added sugar intake (sugars added to food and drinks as a sweetener) is almost universally recommended to reduce the risk of obesity-related diseases and dental caries. The World Health Organisation recommends intakes of free sugars of less than 10% of energy intake. However, estimating and monitoring intakes at the population level is challenging because free sugars cannot be analytically distinguished from naturally occurring sugars and most national food composition databases do not include data on free or added sugars. We developed free and added sugar estimates for the New Zealand (NZ) food composition database (FOODfiles 2010) by adapting a method developed for Australia. We reanalyzed the 24 h recall dietary data collected for 4721 adults aged 15 years and over participating in the nationally representative 2008/09 New Zealand Adult Nutrition Survey to estimate free and added sugar intakes. The median estimated intake of free and added sugars was 57 and 49 g/day respectively and 42% of adults consumed less than 10% of their energy intake from free sugars. This approach provides more direct estimates of the free and added sugar contents of New Zealand foods than previously available and will enable monitoring of adherence to free sugar intake guidelines in future.

  4. Determination of Sugar and Some Trace Metals Content in Selected ...

    Ten brands of commercial fruit juices were analyzed for pH, specific gravity, total solids, reducing sugar and total sugar trace metals contents. The pH was determined using a Hanna pH meter. Sugar content was determined using the Lane and Eynon method. Sodium and potassium were determined by flame photometry ...

  5. 21 CFR 172.585 - Sugar beet extract flavor base.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sugar beet extract flavor base. 172.585 Section 172... CONSUMPTION Flavoring Agents and Related Substances § 172.585 Sugar beet extract flavor base. Sugar beet extract flavor base may be safely used in food in accordance with the provisions of this section. (a...

  6. Possibility as monosaccharide laxative of rare sugar alcohols.

    Oosaka, Kazumasa

    2009-05-01

    Allitol, D-talitol and L-iditol are sugar alcohols that are rare in nature. Due to their previous rarity, little is known about the laxative effects of these rare sugar alcohols. Therefore, reliable data on the laxative effect that these sugar alcohols cause in experimental animals could help to evaluate the effectiveness of new monosaccharide laxative drugs. To investigate the laxative effect of rare sugar alcohols, the study was designed to observe the diarrhea that occurred after oral administration of these sugar alcohols in mice. Moreover, to investigate the influence on intestinal function of rare sugar alcohols, the study was designed to examine small intestine transit and the luminal water content. Results indicated that rare sugar alcohols have a laxative effect in mice. Diarrhea started at a dose of 4.95 g/kg of rare sugar alcohols. There was a statistically significant laxative effect for D-talitol and L-iditol at a dose of 9.9 g/kg as compared to vehicle. Moreover, rare sugar alcohols significantly increased the small intestinal transit and the luminal water content of the small intestine and cecum in mice as compared to each vehicle. Overall, L-iditol greatly changes the function of intestine. In conclusion, rare sugar alcohols increase water content in small intestine and accelerate small intestine transit. These results support laxative effect of rare sugar alcohols. Therefore, rare sugar alcohols may be useful as monosaccharide laxatives and may be used to treat constipation.

  7. Estimating Free and Added Sugar Intakes in New Zealand

    Rachael Kibblewhite

    2017-11-01

    Full Text Available The reduction of free or added sugar intake (sugars added to food and drinks as a sweetener is almost universally recommended to reduce the risk of obesity-related diseases and dental caries. The World Health Organisation recommends intakes of free sugars of less than 10% of energy intake. However, estimating and monitoring intakes at the population level is challenging because free sugars cannot be analytically distinguished from naturally occurring sugars and most national food composition databases do not include data on free or added sugars. We developed free and added sugar estimates for the New Zealand (NZ food composition database (FOODfiles 2010 by adapting a method developed for Australia. We reanalyzed the 24 h recall dietary data collected for 4721 adults aged 15 years and over participating in the nationally representative 2008/09 New Zealand Adult Nutrition Survey to estimate free and added sugar intakes. The median estimated intake of free and added sugars was 57 and 49 g/day respectively and 42% of adults consumed less than 10% of their energy intake from free sugars. This approach provides more direct estimates of the free and added sugar contents of New Zealand foods than previously available and will enable monitoring of adherence to free sugar intake guidelines in future.

  8. Power generation from fuelwood by the Nicaraguan sugar mills

    Carneiro de Miranda, R.; Broek, R. van den

    1997-01-01

    With new concept development for the sugar industry and with new power market opportunities, two sugar mills in Nicaragua initiated projects aimed at becoming power plants during the sugar cane off-season. Basically the idea is to use more efficient boilers and turbines, and generate power beyond

  9. Estimating Free and Added Sugar Intakes in New Zealand

    Kibblewhite, Rachael; Nettleton, Alice; McLean, Rachael; Haszard, Jillian; Fleming, Elizabeth; Kruimer, Devonia

    2017-01-01

    The reduction of free or added sugar intake (sugars added to food and drinks as a sweetener) is almost universally recommended to reduce the risk of obesity-related diseases and dental caries. The World Health Organisation recommends intakes of free sugars of less than 10% of energy intake. However, estimating and monitoring intakes at the population level is challenging because free sugars cannot be analytically distinguished from naturally occurring sugars and most national food composition databases do not include data on free or added sugars. We developed free and added sugar estimates for the New Zealand (NZ) food composition database (FOODfiles 2010) by adapting a method developed for Australia. We reanalyzed the 24 h recall dietary data collected for 4721 adults aged 15 years and over participating in the nationally representative 2008/09 New Zealand Adult Nutrition Survey to estimate free and added sugar intakes. The median estimated intake of free and added sugars was 57 and 49 g/day respectively and 42% of adults consumed less than 10% of their energy intake from free sugars. This approach provides more direct estimates of the free and added sugar contents of New Zealand foods than previously available and will enable monitoring of adherence to free sugar intake guidelines in future. PMID:29186927

  10. A free sugars daily value (DV) identifies more "less healthy" prepackaged foods and beverages than a total sugars DV.

    Bernstein, Jodi T; Labonté, Marie-Ève; Franco-Arellano, Beatriz; Schermel, Alyssa; L'Abbé, Mary R

    2018-04-01

    Regulatory changes in Canada will require food labels to have a benchmark [% Daily Value, %DV] for total sugars, based on 100 g/day, while US labels will require a %DV for added sugars, based on 50 g/day. The objective of this study was to compare two labelling policies, a total sugars DV (100 g/day) and a free sugars DV (50 g/day) on food labels. This cross-sectional analysis of the Food Label Information Program database focussed on top sources of total sugars intake in Canada (n = 6924 foods). Products were categorized as "less healthy" using two sets of criteria: a) free sugars levels exceeding the WHO guidelines (≥10% energy from free sugars); and b) exceeding healthfulness cut-offs of the Food Standards Australia New Zealand Nutrient Profiling Scoring Criterion (FSANZ-NPSC). The proportion of "less healthy" products with ≥15%DV (defined as "a lot" of sugars i.e. high in sugars, based on Health Canada's %DV labelling footnote and educational message for dietary guidance) were compared for each sugar labelling scenario. The free sugars DV showed better alignment with both methods for assessing "healthfulness" than the total sugars DV. The free sugars DV identified a greater proportion of "less healthy" foods with ≥15%DV, based on both the FSANZ-NPSC (70% vs. 45%, p chocolate bars, confectionery, and frozen desserts categories. Compared to total sugars DV labelling, using a free sugars DV identified more "less healthy" foods. Findings support the adoption of free sugars labelling. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The Effect of Sugar Price Policy on U.S. Imports of Processed Sugar-containing foods

    Jabara, Cathy L.

    1988-01-01

    This paper examines the effects of sugar protection, as well as the effects of these other factors, on U.S. demand for imports of sugar-containing products. The paper also addresses two main issues: (1) whether substitution of alternative sweeteners has allowed U.S. food manufactures to reduce the competitive advantage provided to foreign manufactures by U.S. sugar policies, and (2) which countries -- developed or developing -- have been able to increase their exports of sugar-containing prod...

  12. Turgor-mediated transport of sugars

    Daie, J.

    1986-01-01

    Membrane associated processes have been suggested to be modulated by cellular turgor. The nature of this regulation is not, however, clearly understood. Evidence is presented that active but not passive transport of sugars is turgor regulated. Isolated phloem tissue, vascular bundles or storage parenchyma of celery were incubated in buffered solutions adjusted to 100, 200 or 400 m osmolal that contained various concentrations of 14 C-sugars. Cellular turgor was manipulated by using the non-permeating PEG (3350). Saturating carrier-mediated sucrose transport which is present only in phloem-containing tissue was enhanced under low turgor conditions. Sucrose diffusion, the predominant mode of uptake in non-phloem parenchyma tissue was not affected by cellular turgor. Furthermore, GA and IAA seem to interact with cellular turgor to bring about modified rates of sucrose uptake. The data are consistent with observations that sucrose loading is enhanced under mild water deficit conditions

  13. How to Crack the Sugar Code.

    Gabius, H-J

    2017-01-01

    The known ubiquitous presence of glycans fulfils an essential prerequisite for fundamental roles in cell sociology. Since carbohydrates are chemically predestined to form biochemical messages of a maximum of structural diversity in a minimum of space, coding of biological information by sugars is the reason for the broad occurrence of cellular glycoconjugates. Their glycans originate from sophisticated enzymatic assembly and dynamically adaptable remodelling. These signals are read and translated into effects by receptors (lectins). The functional pairing between lectins and their counterreceptor(s) is highly specific, often orchestrated by intimate co-regulation of the receptor, the cognate glycan and the bioactive scaffold (e.g., an integrin). Bottom-up approaches, teaming up synthetic and supramolecular chemistry to prepare fully programmable nanoparticles as binding partners with systematic network analysis of lectins and rational design of variants, enable us to delineate the rules of the sugar code.

  14. Strip-till seeder for sugar beets

    Peter Schulze Lammers

    2014-06-01

    Full Text Available Strip-till save costs by reducing tillage on the area of sugar beet rows only. The seeding system is characterized by a deep loosening of soil with a tine combined with a share and by following tools generating fine-grained soil as seed bed. In cooperation with the Kverneland company group Soest/Germany a strip tiller combined with precision seeder was designed and tested in field experiments. Tilling and seeding was performed in one path on fields with straw and mustard mulch. Even the plant development was slower as compared to conventional sawn sugar beets the yield was on equivalent level. Further field experiments are planned to attest constant yield, cost and energy efficiency of the seeding system.

  15. [Sugar and the birth of dentistry].

    Dijs, F

    2004-06-01

    It took mankind some ten thousand years to get sugarcane from the Pacific to the Mediterranean. Once it reached Europe and the Europeans knew how to handle it, it took them only a hundred years to turn the production of sugar into the biggest industry of the world. Exactly in those hundred years the birth of modern medicine--and dentistry--is placed. This coincidence is too particular to be left unnoticed.

  16. Membrane proteins involved in transport, vesicle traffic and Ca(2+) signaling increase in beetroots grown in saline soils.

    Lino, Bárbara; Chagolla, Alicia; E González de la Vara, Luis

    2016-07-01

    By separating plasma membrane proteins according to their hydropathy from beetroots grown in saline soils, several proteins probably involved in salt tolerance were identified by mass spectrometry. Beetroots, as a salt-tolerant crop, have developed mechanisms to cope with stresses associated with saline soils. To observe which plasma membrane (PM) proteins were more abundant in beet roots grown in saline soils, beet root plants were irrigated with water or 0.2 M NaCl. PM-enriched membrane preparations were obtained from these plants, and their proteins were separated according to their hydropathy by serial phase partitioning with Triton X-114. Some proteins whose abundance increased visibly in membranes from salt-grown beetroots were identified by mass spectrometry. Among them, there was a V-type H(+)-ATPase (probably from contaminating vacuolar membranes), which increased with salt at all stages of beetroots' development. Proteins involved in solute transport (an H(+)-transporting PPase and annexins), vesicle traffic (clathrin and synaptotagmins), signal perception and transduction (protein kinases and phospholipases, mostly involved in calcium signaling) and metabolism, appeared to increase in salt-grown beetroot PM-enriched membranes. These results suggest that PM and vacuolar proteins involved in transport, metabolism and signal transduction increase in beet roots adapted to saline soils. In addition, these results show that serial phase partitioning with Triton X-114 is a useful method to separate membrane proteins for their identification by mass spectrometry.

  17. Rapid screening for anthocyanins in cane sugars using ESR spectroscopy.

    Thamaphat, Kheamrutai; Goodman, Bernard A; Limsuwan, Pichet; Smith, Siwaporn Meejoo

    2015-03-15

    Anthocyanin, which is soluble in water and released into sugar steam during extraction, was investigated in this study. The anthocyanin content in refined sugar, plantation white sugar, soft brown sugar and raw sugar was determined using electron spin resonance (ESR) spectroscopy, which was operated at room temperature, and compared with spectra from standard anthocyanin. The ESR spectra of red and violet anthocyanins was predominantly g ≈ 2.0055, which corresponded to an unpaired electron located in the pyrylium ring. Signals for Fe(III) and Mn(II), which naturally occur in plants, were found in raw sugar, soft brown sugar and standard anthocyanin but were absent from refined sugar and plantation white sugar due to the refining process. In addition, the ESR results were correlated with the apparent colour of the sugar, which was determined using the method of the International Commission for Uniform Methods of Sugar Analysis and inductively coupled plasma optical emission spectroscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. An econometrics method to estimate demand of sugar

    Negar Seyed Soleimany

    2012-01-01

    Full Text Available Sugar is one of the strategic goods in the basket of households in each country and it plays an important role in supplying the required energy. On the other hand, it is one of the goods, which Iranian government is about to change its subsidy strategies. To design useful sugar subsidy strategies, it is necessary to know sugar position in the basket of households and be familiar with households' sugar demand or consumption behavior. This research estimates sugar demand for Iranian households by using time series of 1984-2008, which is taken from central bank of Iran. In this paper, first independent and dependent variables of household sugar demand model are chosen based on the literature review and theory of demand. Then, sugar demand is estimated by OLS technique and linear regression. The preliminary statistical observations such as Durbin-Watson, F statistic and R2 indicate that the regression is admissible. The results seem plausible and consistent with theory and show that sugar demand in Iranian households is associated with household expenditure, relative sugar price, family size and indicate that demand of sugar is affected during the war time. The results also show the income elasticity is 0.8 and price elasticity is -0.2 which means sugar is essential good for Iranian households and is inelastic to price.

  19. THE TECHNOLOGY OF PASTE FROM SUGAR BEET OBTAINING

    M. G. Magomedov

    2014-01-01

    Full Text Available We considered a new technology for processing sugar beet into intermediate product for the food industry. Nowadays sugar beet is mainly used for processing into granulated sugar. In the granulated sugar obtaining sugar beet undergoes deep extraction of all nutrients: proteins, minerals, pectin, organic acids, preventing the crystallization process, and then the refined product (granulated sugar with a mass fraction of sucrose not less than 99.75% is obtained. We developed a technology for producing a sugar beet paste, which allows to preserve both sucrose, and almost all useful for human food substances containing in beet. A sugar beet paste is a valuable food product. Carbohydrates, organic acids, minerals, proteins, dietary fibers and vitamins are found in it. The block diagram of a sugar beet paste is given in the article. Technology of obtaining a sugar beet paste was tested under production conditions at the cannery (Joint Stock Company "Sadovoye" Liskinsky district,. Storozhevoe village, Voronezh region. The chemical composition of the paste (Dry Substances = 40% was determined, the degree of meeting of daily requirement for nutrients was calculated. 100 g of the product satisfy the daily requirement for dietary fiber by 42.5%, organic acids by 27.5% potassium by 24.0%, magnesium by 40.0%, iron by 26.7%. The sugar beet paste can be used as a semi-finished product in the confectionery, bakery, food concentrates industry, for products with increased nutritional value, as well as the finished product instead of marmalade and jam.

  20. Consumer understanding of sugars claims on food and drink products.

    Patterson, N J; Sadler, M J; Cooper, J M

    2012-06-01

    Consumer understanding of nutrition and health claims is a key aspect of current regulations in the European Union (EU). In view of this, qualitative and quantitative research techniques were used to investigate consumer awareness and understanding of product claims in the UK, focusing particularly on nutrition claims relating to sugars. Both research methods identified a good awareness of product claims. No added sugars claims were generally preferred to reduced sugars claims, and there was a general assumption that sweeteners and other ingredients would be added in place of sugars. However, there was little awareness of the level of sugar reduction and the associated calorie reduction in products when reduced sugars claims were made on pack. In focus groups, participants felt deceived if sugar reduction claims were being made without a significant reduction in calories. This was reinforced in the quantitative research which showed that respondents expected a similar and meaningful level of calorie reduction to the level of sugar reduction. The research also identified consumer confusion around the calorie content of different nutrients, including over-estimation of the calorie content of sugars. This is crucial to consumers' expectations as they clearly link sugar to calories and therefore expect a reduction in sugar content to deliver a reduction in calorie content.

  1. Sugars and Desiccation Tolerance in Seeds 1

    Koster, Karen L.; Leopold, A. Carl

    1988-01-01

    Soluble sugars have been shown to protect liposomes and lobster microsomes from desiccation damage, and a protective role has been proposed for them in several anhydrous systems. We have studied the relationship between soluble sugar content and the loss of desiccation tolerance in the axes of germinating soybean (Glycine max L. Merr. cv Williams), pea (Pisum sativum L. cv Alaska), and corn (Zea mays L. cv Merit) axes. The loss of desiccation tolerance during imbibition was monitored by following the ability of seeds to germinate after desiccation following various periods of preimbibition and by following the rates of electrolyte leakage from dried, then rehydrated axes. Finally, we analyzed the soluble sugar contents of the axes throughout the transition from desiccation tolerance to intolerance. These analyses show that sucrose and larger oligosaccharides were consistently present during the tolerant stage, and that desiccation tolerance disappeared as the oligosaccharides were lost. The results support the idea that sucrose may serve as the principal agent of desiccation tolerance in these seeds, with the larger oligosaccharides serving to keep the sucrose from crystallizing. PMID:16666392

  2. Negative effects of sugar-sweetened beverages

    Nataša Fidler Mis

    2013-10-01

    Full Text Available The rising prevalence of obesity in children has been linked in part to the consumption of sugary drinks (sugar-sweetened beverages (SSBs and fruit juices. They have high sugar content, low satiety effect and incomplete compensation for energy, so they pose a risk for promoting positive energy balance. Each extra serving of SSBs children consume per day increases their chance of becoming obese by 60 %. Other main negative health effects of sugary drinks are: the development of preference for sweet taste, poor nutrient supply, lower mineral density, bone fractures, development of dental caries, high blood pressure, cardiovascular disease and type 2 diabetes. SSBs are the leading source of added sugar in the diet of Slovenian adolescents. Water does not contain energy and may support a healthy weight status if it replaces sugary drinks. Cutting back on SSBs can control weight in children and adults. It is necessary that present public health strategies include education about beverage intake. Consumption of SSBs should be discouraged, whereas promoting the consumption of water should be made a priority.

  3. Sugar and Glycerol Transport in Saccharomyces cerevisiae.

    Bisson, Linda F; Fan, Qingwen; Walker, Gordon A

    2016-01-01

    In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.

  4. Naturally Occurring Cinnamic Acid Sugar Ester Derivatives

    Yuxin Tian

    2016-10-01

    Full Text Available Cinnamic acid sugar ester derivatives (CASEDs are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3′,6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM, presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae. This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

  5. Oxidative enzymatic gelation of sugar beet pectin for emulsion stabilization

    Abang Zaidel, Dayang Norulfairuz; Meyer, Anne S.

    2013-01-01

    Pectin from sugar beet is derived from the sugar beet pulp residue which results when sugar beets are processed for sucrose extraction. The sugar beet pectin has poor gelationability by the classic divalentcation molecular mechanism because of a relatively high acetylation degree and short...... polygalacturonate backbone chain length. However, due to the feruloyl-substitutions on the side chains, the sugar beet pectic polysaccharides can be cross-linked via enzyme catalyzed oxidation. The enzyme kinetics and functionality of such oxidativelycross-linked sugar beet pectin, in relation to stabilizing...... emulsions has recently been investigated in model food emulsions. This paper reviews the pectin chemistry, enzymatic oxidative gelation mechanisms, interaction mechanisms of the sugar beet pectin with the emulsion droplets and explores how the gelation affects the rheology and stability of emulsion systems...

  6. Involving women.

    Agbo, J

    1994-01-01

    I am a primary health care (PHC) coordinator working with the May Day Rural project, a local NGO involved in integrated approaches and programs with rural communities in the Ga District of the Greater-Accra region in Ghana. When we talk about the community development approach we must first and foremost recognize that we are talking about women, because in the developing world frequent childbirths mean that her burden of mortality is higher than a man's; her workload is extremely heavy--whether in gardening, farming, other household duties, caring for the sick, or the rearing of children; she has a key role in PHC and community development, because men are always looking for greener pastures elsewhere, leaving the women behind. Women's concerns are critical in most health care projects and women and children are their main beneficiaries. Why not include women in the management team, project design, implementation and evaluation processes? That is what the May Day Rural project is practicing, encouraging women's participation and creating a relationship of trust. full text

  7. Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.).

    Nakamura, Atsuko; Fukuda, Atsunori; Sakai, Shingo; Tanaka, Yoshiyuki

    2006-01-01

    We isolated two cDNA clones (OsCLC-1 and OsCLC-2) homologous to tobacco CLC-Nt1, which encodes a voltage-gated chloride channel, from rice (Oryza sativa L. ssp. japonica, cv. Nipponbare). The deduced amino acid sequences were highly conserved (87.9% identity with each other). Southern blot analysis of the rice genomic DNA revealed that OsCLC-1 and OsCLC-2 were single-copy genes on chromosomes 4 and 2, respectively. OsCLC-1 was expressed in most tissues, whereas OsCLC-2 was expressed only in the roots, nodes, internodes and leaf sheaths. The level of expression of OsCLC-1, but not of OsCLC-2, was increased by treatment with NaCl. Both genes could partly substitute for GEF1, which encodes the sole chloride channel in yeast, by restoring growth under ionic stress. These results indicate that both genes are chloride channel genes. The proteins from both genes were immunochemically detected in the tonoplast fraction. Tagged synthetic green fluorescent protein which was fused to OsCLC-1 or OsCLC-2 localized in the vacuolar membranes. These results indicate that the proteins may play a role in the transport of chloride ions across the vacuolar membrane. We isolated loss-of-function mutants of both genes from a panel of rice mutants produced by the insertion of a retrotransposon, Tos17, in the exon region, and found inhibition of growth at all life stages.

  8. Receptor-independent, vacuolar ATPase-mediated cellular uptake of histamine receptor-1 ligands: Possible origin of pharmacological distortions and side effects

    Morissette, Guillaume; Lodge, Robert; Bouthillier, Johanne; Marceau, Francois

    2008-01-01

    The aims of this study were to investigate whether several histamine receptor agonists and antagonists are subjected to receptor-independent ion trapping into acidic organelles, and whether this sequestration influences their pharmacological or toxicological properties. Vacuolar (V)-ATPase-dependent intracellular sequestration of agonists was recognized as morphological alterations (large fluid-filled vacuoles for betahistine and 1-methylhistamine, granular uptake for fluorescent BODIPY FL histamine) prevented by the specific V-ATPase inhibitor bafilomycin A1 in rabbit vascular smooth muscle cells. Lipophilicity was the major determinant of these cellular effects (order of potency: BODIPY FL histamine > betahistine > 1-methylhistamine > histamine) that occurred at high concentrations. This ranking was dissociable from the potency order for H 1 receptor-mediated contraction of the rabbit aorta, a response uninfluenced by bafilomycin. Antihistamines are inherently more lipophilic and caused vacuolization of a proportion of cells at 5-500 μM. Agonist or antagonist-induced vacuoles were of macroautophagic nature (labeled with GFP-conjugated LC3, Rab7 and CD63; detection of LC3 II). Further, the 2 most lipophilic antihistamines tested, astemizole and terfenadine, were potentiated by V-ATPase blockade in the aortic contractility assay (13- and 3.6-fold more potent, respectively, pA 2 scale), suggesting that V-ATPase-mediated cation trapping sequesters these antagonists from the vicinity of H 1 receptors in the therapeutic concentration range. This potentiation did not apply to less lipophilic antagonists (pyrilamine, diphenhydramine). While some agonists and all tested antagonists of the histamine H 1 receptors induce the V-ATPase-dependent vacuolar and autophagic cytopathology, sequestration affects the pharmacology of only the most lipophilic antagonists, the ones prone to off-target arrhythmogenic side effects

  9. Fumaric acid production using renewable resources from biodiesel and cane sugar production processes.

    Papadaki, Aikaterini; Papapostolou, Harris; Alexandri, Maria; Kopsahelis, Nikolaos; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise M G; Koutinas, Apostolis A

    2018-04-13

    The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.

  10. The Effects of Sugars on the Biofilm Formation of Escherichia coli 185p on Stainless Steel and Polyethylene Terephthalate Surfaces in a Laboratory Model.

    Khangholi, Mahdi; Jamalli, Ailar

    2016-09-01

    Bacteria utilize various methods in order to live in protection from adverse environmental conditions. One such method involves biofilm formation; however, this formation is dependent on many factors. The type and concentration of substances such as sugars that are present in an environment can be effective facilitators of biofilm formation. First, the physico-chemical properties of the bacteria and the target surface were studied via the MATS and contact angle measurement methods. Additionally, adhesion to different surfaces in the presence of various concentrations of sugars was compared in order to evaluate the effect of these factors on the biofilm formation of Escherichia coli , which represents a major food contaminant . Results showed that the presence of sugars has no effect on the bacterial growth rate; all three concentrations of sugars were hydrophilic and demonstrated a high affinity toward binding to the surfaces. The impact of sugars and other factors on biofilm formation can vary depending on the type of bacteria present.

  11. Intake of added sugar in Malaysia: a review.

    Amarra, Maria Sofia V; Khor, Geok Lin; Chan, Pauline

    2016-01-01

    The term 'added sugars' refers to sugars and syrup added to foods during processing or preparation, and sugars and syrups added at the table. Calls to limit the daily intakes of added sugars and its sources arose from evidence analysed by WHO, the American Heart Association and other organizations. The present review examined the best available evidence regarding levels of added sugar consumption among different age and sex groups in Malaysia and sources of added sugars. Information was extracted from food balance sheets, household expenditure surveys, nutrition surveys and published studies. Varying results emerged, as nationwide information on intake of sugar and foods with added sugar were obtained at different times and used different assessment methods. Data from the 2003 Malaysian Adult Nutrition Survey (MANS) using food frequency questionnaires suggested that on average, Malaysian adults consumed 30 grams of sweetened condensed milk (equivalent to 16 grams sugar) and 21 grams of table sugar per day, which together are below the WHO recommendation of 50 grams sugar for every 2000 kcal/day to reduce risk of chronic disease. Published studies suggested that, for both adults and the elderly, frequently consumed sweetened foods were beverages (tea or coffee) with sweetened condensed milk and added sugar. More accurate data should be obtained by conducting population-wide studies using biomarkers of sugar intake (e.g. 24-hour urinary sucrose and fructose excretion or serum abundance of the stable isotope 13C) to determine intake levels, and multiple 24 hour recalls to identify major food sources of added sugar.

  12. A Nostoc punctiforme Sugar Transporter Necessary to Establish a Cyanobacterium-Plant Symbiosis1[C][W

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L.; Meeks, John C.; Flores, Enrique

    2013-01-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using 14C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work. PMID:23463784

  13. Toll-like receptor 4 mediates fat, sugar, and umami taste preference and food intake and body weight regulation.

    Camandola, Simonetta; Mattson, Mark P

    2017-07-01

    Immune and inflammatory pathways play important roles in the pathogenesis of metabolic disorders. This study investigated the role of toll-like receptor 4 (TLR4) in orosensory detection of dietary lipids and sugars. Taste preferences of TLR4 knockout (KO) and wild-type (WT) male mice under a standard and a high-fat, high-sugar diet were assessed with two-bottle tests. Gene expression of taste signaling molecules was analyzed in the tongue epithelium. The role of TLR4 in food intake and weight gain was investigated in TLR4 KO and WT mice fed a high-fat and high-sugar diet for 12 weeks. Compared to WT mice, TLR4 KO mice showed reduced preference for lipids, sugars, and umami in a two-bottle preference test. The altered taste perception was associated with decreased levels of key taste regulatory molecules in the tongue epithelium. TLR4 KO mice on a high-fat and high-sugar diet consumed less food and drink, resulting in diminished weight gain. TLR4 signaling promotes ingestion of sugar and fat by a mechanism involving increased preference for such obesogenic foods. © 2017 The Obesity Society.

  14. Effect of electron radiation on sugar content in inverted liquid sugar

    Podadera, P.; Sabato, S.F.

    2009-01-01

    Inverted liquid sugar is a mixture of sucrose, glucose and fructose, which shows its relevant characteristic on high sweetness power. Ionizing radiation has been applied to different kind of food and ingredients for different reasons, such as pathogens reduction, disinfestations, quarantine purposes, ripening delay among others. Radiation from an electron beam can be utilized as a technique to treat this ingredient because it can process a great volume of material per unit of time. The main goal of this paper was to verify the effect of radiation on the properties of inverted liquid sugar. This ingredient was irradiated in an electron accelerator (Radiation Dynamics) at a dose ranging from 5 to 50 kGy. Sucrose content measurements were reduced by 23% at 30 kGy when compared to control and the reduced sugar content increased around 11%. Density and moisture values were not affected by radiation. The total soluble solids (Brix degrees) rose in function of the absorbed dose. (authors)

  15. Are restrictive guidelines for added sugars science based?

    Erickson, Jennifer; Slavin, Joanne

    2015-12-12

    Added sugar regulations and recommendations have been proposed by policy makers around the world. With no universal definition, limited access to added sugar values in food products and no analytical difference from intrinsic sugars, added sugar recommendations present a unique challenge. Average added sugar intake by American adults is approximately 13% of total energy intake, and recommendations have been made as low 5% of total energy intake. In addition to public health recommendations, the Food and Drug Administration has proposed the inclusion of added sugar data to the Nutrition and Supplemental Facts Panel. The adoption of such regulations would have implications for both consumers as well as the food industry. There are certainly advantages to including added sugar data to the Nutrition Facts Panel; however, consumer research does not consistently show the addition of this information to improve consumer knowledge. With excess calorie consumption resulting in weight gain and increased risk of obesity and obesity related co-morbidities, added sugar consumption should be minimized. However, there is currently no evidence stating that added sugar is more harmful than excess calories from any other food source. The addition of restrictive added sugar recommendations may not be the most effective intervention in the treatment and prevention of obesity and other health concerns.

  16. Big Sugar in southern Africa: rural development and the perverted potential of sugar/ethanol exports.

    Richardson, Ben

    2010-01-01

    This paper asks how investment in large-scale sugar cane production has contributed, and will contribute, to rural development in southern Africa. Taking a case study of the South African company Illovo in Zambia, the argument is made that the potential for greater tax revenue, domestic competition, access to resources and wealth distribution from sugar/ethanol production have all been perverted and with relatively little payoff in wage labour opportunities in return. If the benefits of agro-exports cannot be so easily assumed, then the prospective 'balance sheet' of biofuels needs to be re-examined. In this light, the paper advocates smaller-scale agrarian initiatives.

  17. The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways.

    Foyer, Christine H; Kerchev, Pavel I; Hancock, Robert D

    2012-02-01

    The cellular reduction-oxidation (redox) hub processes information from metabolism and the environment and so regulates plant growth and defense through integration with the hormone signaling network. One key pathway of redox control involves interactions with ABSCISIC ACID (ABA). Accumulating evidence suggests that the ABA-INSENSITIVE-4 (ABI4) transcription factor plays a key role in transmitting information concerning the abundance of ascorbate and hence the ability of cells to buffer oxidative challenges. ABI4 is required for the ascorbate-dependent control of growth, a process that involves enhancement of salicylic acid (SA) signaling and inhibition of jasmonic acid (JA) signaling pathways. Low redox buffering capacity reinforces SA- JA- interactions through the mediation of ABA and ABI4 to fine-tune plant growth and defense in relation to metabolic cues and environmental challenges. Moreover, ABI4-mediated pathways of sugar sensitivity are also responsive to the abundance of ascorbate, providing evidence of overlap between redox and sugar signaling pathways.

  18. Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.

    Chen, Yi-Shih; Chao, Yi-Chi; Tseng, Tzu-Wei; Huang, Chun-Kai; Lo, Pei-Ching; Lu, Chung-An

    2017-02-01

    Sugar regulation of gene expression has profound effects at all stages of the plant life cycle. Although regulation at the transcriptional level is one of the most prominent mechanisms by which gene expression is regulated, only a few transcription factors have been identified and demonstrated to be involved in the regulation of sugar-regulated gene expression. OsMYBS1, an R1/2-type MYB transcription factor, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase gene expression in rice. Arabidopsis contains two OsMYBS1 homologs. In the present study, we investigate MYBS1 and MYBS2 in sugar signaling in Arabidopsis. Our results indicate that MYBS1 and MYBS2 play opposite roles in regulating glucose and ABA signaling in Arabidopsis during seed germination and early seedling development. MYB proteins have been classified into four subfamilies: R2R3-MYB, R1/2-MYB, 3R-MYB, and 4R-MYB. An R1/2-type MYB transcription factor, OsMYBS1, has been demonstrated to be involved in sugar- and hormone-regulated α-amylase genes expression in rice. In this study, two genes homologous to OsMYBS1, MYBS1 and MYBS2, were investigated in Arabidopsis. Subcellular localization analysis showed that MYBS1 and MYBS2 were localized in the nucleus. Rice embryo transient expression assays indicated that both MYBS1 and MYBS2 could recognize the sugar response element, TA-box, in the promoter and induced promoter activity. mybs1 mutant exhibited hypersensitivity to glucose, whereas mybs2 seedlings were hyposensitive to it. MYBS1 and MYBS2 are involved in the control of glucose-responsive gene expression, as the mybs1 mutant displayed increased expression of a hexokinase gene (HXK1), chlorophyll a/b-binding protein gene (CAB1), ADP-glucose pyrophosphorylase gene (APL3), and chalcone synthase gene (CHS), whereas the mybs2 mutant exhibited decreased expression of these genes. mybs1 also showed an enhanced response to abscisic acid (ABA) in the seed germination and seedling

  19. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system

    Gosset Guillermo

    2005-05-01

    Full Text Available Abstract The application of metabolic engineering in Escherichia coli has resulted in the generation of strains with the capacity to produce metabolites of commercial interest. Biotechnological processes with these engineered strains frequently employ culture media containing glucose as the carbon and energy source. In E. coli, the phosphoenolpyruvate:sugar phosphotransferase system (PTS transports glucose when this sugar is present at concentrations like those used in production fermentations. This protein system is involved in phosphoenolpyruvate-dependent sugar transport, therefore, its activity has an important impact on carbon flux distribution in the phosphoenolpyruvate and pyruvate nodes. Furthermore, PTS has a very important role in carbon catabolite repression. The properties of PTS impose metabolic and regulatory constraints that can hinder strain productivity. For this reason, PTS has been a target for modification with the purpose of strain improvement. In this review, PTS characteristics most relevant to strain performance and the different strategies of PTS modification for strain improvement are discussed. Functional replacement of PTS by alternative phosphoenolpyruvate-independent uptake and phosphorylation activities has resulted in significant improvements in product yield from glucose and productivity for several classes of metabolites. In addition, inactivation of PTS components has been applied successfully as a strategy to abolish carbon catabolite repression, resulting in E. coli strains that use more efficiently sugar mixtures, such as those obtained from lignocellulosic hydrolysates.

  20. Recent advances in the synthesis of rare sugars using DHAP-dependent aldolases.

    Li, Aimin; Cai, Li; Chen, Zhou; Wang, Mayan; Wang, Ning; Nakanishi, Hideki; Gao, Xiao-Dong; Li, Zijie

    2017-11-27

    The occurrence rates of non-communicable diseases like obesity, diabetes and hyperlipidemia have increased remarkably due to excessive consumption of a high-energy diet. Rare sugars therefore have become increasingly attractive owing to their unique nutritional properties. In the past two decades, various rare sugars have been successfully prepared guided by the "Izumoring strategy". As a valuable complement to the Izumoring approach, the controllable dihydroxyacetone phosphate (DHAP)-dependent aldolases have generally predictable regio- and stereoselectivity, which makes them powerful tools in C-C bond construction and rare sugar production. However, the main disadvantage for this group of aldolases is their strict substrate specificity toward the donor molecule DHAP, a very expensive and relatively unstable compound. Among the current methods involving DHAP, the one that couples DHAP production from inexpensive starting materials (for instance, glycerol, DL-glycerol 3-phosphate, dihydroxyacetone, and glucose) with aldol condensation appears to be the most promising. This review thus focuses on recent advances in the application of L-rhamnulose-1-phosphate aldolase (RhaD), L-fuculose-1-phosphate aldolase (FucA), and D-fructose-1,6-bisphosphate aldolase (FruA) for rare sugar synthesis in vitro and in vivo, while illustrating strategies for supplying DHAP in efficient and economical ways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Formation of Polyphenol-Denatured Protein Flocs in Alcohol Beverages Sweetened with Refined Cane Sugars.

    Eggleston, Gillian; Triplett, Alexa

    2017-11-08

    The sporadic appearance of floc from refined, white cane sugars in alcohol beverages remains a technical problem for both beverage manufacturers and sugar refiners. Cane invert sugars mixed with 60% pure alcohol and water increased light scattering by up to ∼1000-fold. Insoluble and soluble starch, fat, inorganic ash, oligosaccharides, Brix, and pH were not involved in the prevailing floc-formation mechanism. Strong polynomial correlations existed between the haze floc and indicator values (IVs) (color at 420 nm pH 9.0/color at pH 4.0-an indirect measure of polyphenolic and flavonoid colorants) (R 2 = 0.815) and protein (R 2 = 0.819) content of the invert sugars. Ethanol-induced denaturation of the protein exposed hydrophobic polyphenol-binding sites that were further exposed when heated to 80 °C. A tentative mechanism for floc formation was advanced by molecular probing with a haze (floc) active protein and polyphenol as well as polar, nonpolar, and ionic solvents.

  2. Acid-producing capacity from sugars and sugar alcohols among Lactobacillus isolates collected in connection with radiation therapy.

    Almståhl, Annica; Rudbäck, Helena; Basic, Amina; Carlén, Anette; Alstad, Torgny

    2017-12-01

    To investigate the acid-producing capacity from sugars and sugar alcohols of oral Lactobacillus collected in connection with radiation therapy (RT) to the head and neck region. Lactobacillus were collected from the tongue, buccal mucosa and supragingival plaque in 24 patients before, during, and after RT. The acid-producing capacity of Lactobacillus isolates (n=211) was analyzed using a colorimetric fermentation test in microtiter plates. Solutions containing 2% sugars (sucrose, glucose, fructose, lactose) or sugar-alcohols (sorbitol and xylitol) were used. After 24h of incubation, bacterial acid-producing capacity was determined as strong (pH6). Data regarding intake frequency of sugar-rich products and products with sugar-alcohols was collected. The highest acid-producing capacity using the sugars was seen for isolates collected during RT. Sorbitol was fermented to a higher extent during and post RT, especially among isolates from plaque. Lactobacillus fermenting xylitol showed the highest acid-producing capacity during RT (psugar-rich products or sugar-alcohol containing products and Lactobacillus acid-producing capacity, were found. The results suggest that Lactobacillus isolates, collected from the tongue, buccal mucosa and supragingival plaque, have a higher acid-producing capacity using sugars and sugar-alcohols during RT than one year post RT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hydrolyzed sugar in cattle feeding. [In Russian

    Ernst, L K; Kurilov, N V; Mysnik, N D

    1978-01-01

    Hydrolyzed wood molasses (32% sugar) at 1 kg/day increased weight gains of bulls 14.6% in 86-day exports when given along with urea-containing granulated feed and straw. Rumen volatile fatty acids, feed digestibility, and N utilization were increased in bulls, and cow productivity was increased along with a 0.1 to 0.15% increase in milk fat content. Sulfite liquor at 400 g/day (4% of feed) also increased weight gains 13.9% in bulls.

  4. Dynamic Allocation of Sugars in Barley

    Cumberbatch, L. C.; Crowell, A. S.; Fallin, B. A.; Howell, C. R.; Reid, C. D.; Weisenberger, A. G.; Lee, S. J.; McKisson, J. E.

    2014-03-01

    Allocation of carbon and nitrogen is a key factor for plant productivity. Measurements are carried out by tracing 11C-tagged sugars using positron emission tomography and coincidence counting. We study the mechanisms of carbon allocation and transport from carbohydrate sources (leaves) to sinks (stem, shoot, roots) under various environmental conditions such as soil nutrient levels and atmospheric CO2 concentration. The data are analyzed using a transfer function analysis technique to model transport and allocation in barley plants. The experimental technique will be described and preliminary results presented. This work was supported in part by USDOE Grant No. DE-FG02-97-ER41033 and DE-SC0005057.

  5. Increasing alcohol yield in sugar fermentation

    Colin, P

    1962-02-20

    The yield of alcohol from yeast fermentations of sugar solutions is increased 1.5 to 5% by the addition of 0.1 to 0.5 parts by volume of a monohydric saturated aliphatic alcohol of at least 6 C atoms in a straight chain such as hexanol or heptanol, or branched chain, such as 2-ethylbutanol or 2-ethylhexanol, or a mixture consisting mostly of C/sub 7/, C/sub 8/, C/sub 9/, or C/sub 10/ alcohols.

  6. Evidence that biosynthesis of the second and third sugars of the archaellin Tetrasaccharide in the archaeon Methanococcus maripaludis occurs by the same pathway used by Pseudomonas aeruginosa to make a di-N-acetylated sugar.

    Siu, Sarah; Robotham, Anna; Logan, Susan M; Kelly, John F; Uchida, Kaoru; Aizawa, Shin-Ichi; Jarrell, Ken F

    2015-05-01

    Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354 and mmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions in mmp0350, mmp0351, mmp0352, or mmp0353 were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352 strain confirmed a glycan with only GalNAc, suggesting mmp0350 to mmp0353 were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357 mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr). M. maripaludis mmp0350, mmp0351, mmp0352, mmp0353, and mmp0357 are proposed to be functionally equivalent to Pseudomonas aeruginosa wbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of the P. aeruginosa pathway with mmp0357 supports this hypothesis. This work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins of Methanococcus maripaludis. This posttranslational modification of archaellins is important, as it is necessary for

  7. Application of Life Cycle Assessment (LCA) in Sugar Industries

    Astuti, Arieyanti Dwi; Astuti, Rahayu Siwi Dwi; Hadiyanto, Hadiyanto

    2018-02-01

    Sugar is one of the main commodities that are needed for human life. The demand of sugar is very high with the trend increase from year to year. This condition makes the sugar industry become a leading industry that must be maintained sustainability. The sustainability of the sugar industry is influenced by the use of energy and natural resources and the resulting environmental impacts. Therefore, an effort is needed to analyze the environmental aspects and potential environmental impacts resulting from a product (sugar), by using Life Cycle Assessment (LCA). LCA is a very important tool for the analysis of a process/system from its cradle to grave. This technique is very useful in the estimation of energy usage and environmental load of a product/system. This paper aims to describe the main elements of sugar industries using Life Cycle Assessment.

  8. Discrimination of genetically modified sugar beets based on terahertz spectroscopy

    Chen, Tao; Li, Zhi; Yin, Xianhua; Hu, Fangrong; Hu, Cong

    2016-01-01

    The objective of this paper was to apply terahertz (THz) spectroscopy combined with chemometrics techniques for discrimination of genetically modified (GM) and non-GM sugar beets. In this paper, the THz spectra of 84 sugar beet samples (36 GM sugar beets and 48 non-GM ones) were obtained by using terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.2 to 1.2 THz. Three chemometrics methods, principal component analysis (PCA), discriminant analysis (DA) and discriminant partial least squares (DPLS), were employed to classify sugar beet samples into two groups: genetically modified organisms (GMOs) and non-GMOs. The DPLS method yielded the best classification result, and the percentages of successful classification for GM and non-GM sugar beets were both 100%. Results of the present study demonstrate the usefulness of THz spectroscopy together with chemometrics methods as a powerful tool to distinguish GM and non-GM sugar beets.

  9. Sugar-sweetened beverage intake associations with fasting glucose and insulin concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway: A meta-analysis

    Sugar-sweetened beverages (SSBs) are a major dietary contributor to fructose intake. A molecular pathway involving the carbohydrate responsive element-binding protein (ChREBP) and the metabolic hormone fibroblast growth factor 21 (FGF21) may influence sugar metabolism and, thereby, contribute to fru...

  10. Study of sugar cooking degree to sugar obtention using gamma attenuation

    Holanda Cavalcanti, J. de.

    1984-01-01

    The application of gamma radiation attenuation methodology in the determination of sugar cooking degree is studied. Several experiments with samples of vacuum equipment during the cooking were made, based on beam intensity variations of a radioactive source of Americium 241. One sensible difference between the sirup emergent radiation and the cooked mass was observed. (M.A.C.) [pt

  11. Understanding the Effect of Sugar and Sugar Replacement in Short Dough Biscuits

    Laguna, L.; Vallons, K.J.R.; Jurgens, A.; Sanz, T.

    2013-01-01

    Sucrose is the main sugar used in short dough biscuit formula, and it plays an important role in the biscuit manufacturing as well as in the biscuits final quality. However, for health reasons, high levels of sucrose are undesirable, making sucrose replacement an important issue to study. The

  12. Impact of sugars and sugar taxation on body weight control: A comprehensive literature review.

    Bes-Rastrollo, Maira; Sayon-Orea, Carmen; Ruiz-Canela, Miguel; Martinez-Gonzalez, Miguel A

    2016-07-01

    To conduct a comprehensive literature review in the field of added-sugar consumption on weight gain including the effect of fructose-containing caloric sweeteners and sugar taxation. A search of three databases was conducted in the time period from the inception of the databases to August 2015. Sensitive search strategies were used in order to retrieve systematic reviews (SR) of fructose, sucrose, or sugar-sweetened beverages (SSBs) on weight gain and metabolic adverse effects, conducted on humans and written in English, Spanish, or French. In addition, a review about SSB taxation and weight outcomes was conducted. The search yielded 24 SRs about SSBs and obesity, 23 SRs on fructose or SSBs and metabolic adverse effects, and 24 studies about SSB taxation and weight control. The majority of SRs, especially the most recent ones, with the highest quality and without any disclosed conflict of interest, suggested that the consumption of SSBs is a risk factor for obesity. The effect of fructose-containing caloric sweeteners, on weight gain is mediated by overconsumption of beverages with these sweeteners, leading to an extra provision of energy intake. The tax tool alone on added sugars appears insufficient to curb the obesity epidemic, but it needs to be included in a multicomponent structural strategy. © 2016 The Obesity Society.

  13. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon

    The molecular mechanism controlling accumulation of soluble sugars in watermelon (Citrullus lanatus) fruit, a trait associated with sweet-dessert watermelon domestication, is still unknown. We re-sequenced 96 recombinant inbred lines, derived from a cross between sweet and unsweet watermelon accessi...

  14. Technical and Economical Feasibility of Production of Ethanol from Sugar Cane and Sugar Cane Bagasse

    Efe, C.; Straathof, A.J.J.; Van der Wielen, L.A.M.

    2005-01-01

    The primary aim of this study is to investigate and analyze the sugar-ethanol plants operating in Brazil to construct a raw model to gain better understanding and insight about the technical and economical aspects of the currently operating plants. And, the secondary aim is to combine the knowledge

  15. Spectrophotometric determination of sugars labelled with 14C

    Vatsikova, A.; Kralikova, M.; Vyskochilova, Z.

    1982-01-01

    Comparative analysis of methods for determination of microgram amounts of 14 C-labelled sugars has been carried out. The ferricyanide and Shomodyi-Nelson methods were approbated in experimental study. The relative error of the ferricyanide method was found to be smaller than that of the Shomodyi-Nelson method. Thus the ferricyanide method was used for obtaining calibration curves for 15 sugars. The accuracy for sugar amounts higher than 3 μg/10 ml was better than +, - 5% [ru

  16. The Utilization of Sugars and Other Substances by Drosophila,

    1948-03-01

    many compounds, including sugars, polysaccharides , polyhydric alcohols, aliphatic acids, etc. 2. In equivalent solutions, ’the order of usefulness of...span’between flies fed on disaccharides and their constituent monosaccharides . 4’. Doubtful sugars can usually be resolved into toxic, reprl- lent...The molaritie.s of the sugar solutions were varied so as to equate the monosaccharides and disaccharides. The longevity of flies fed on di- and

  17. IRREVERSIBILITY GENERATION IN SUGAR, ALCOHOL AND BIOGAS INTEGRATED PRODUCTIONS

    Meilyn González Cortés; Yenisleidy Martínez Martínez; Yailet Albernas Carvajal; Raúl A. Pérez Bermúdez

    2017-01-01

    In this work, the stages of losses and lower exergetic efficiency are determined when the sugar production process is integrated with others for the production of products such as biogas, torula yeast and electricity. The study is carried out in three scenarios of integrated processes for obtaining the indicated products. A sugar factory in which sugar and electricity are produced is considered as the base scenario and from this; a second scenario is inferred in which alcohol is produced from...

  18. Sugar palm ethanol. Analysis of economic feasibility and sustainability

    Van de Staaij, J.; Van den Bos, A.; Hamelinck, C. [Ecofys Netherlands, Utrecht (Netherlands); Martini, E.; Roshetko, J.; Walden, D. [Winrock, Little Rock, AR (United States)

    2011-08-15

    This study evaluates whether sugar palm is a suitable crop for biofuels and how production of ethanol from sugar palm in a large-scale setting is sustainable and economically feasible. Key questions are: Are the assumed high yields realistic in practice for sustained periods in largescale plantations?; Can sugar palm indeed compete economically with other crops for biofuels?; What are the effects of large-scale cultivation and processing of sugar palm for the natural environment and the local community? To answer these questions, Ecofys and Winrock have assessed the feasibility of largescale sugar palm cultivation for the production of ethanol using empirical data from existing sugar palm plantings. We analysed two production models to investigate the range of outcomes when varying important parameters: (1) a conservative system, whereby sugar palms are mixed with other crops and (2) an intensive system to explore the theoretical maximum yield when solely focusing on sugar palm. As background, Chapter 2 first describes the process of sugar palm cultivation, the 'tapping' and conversion into ethanol. Chapter 3 describes the data collection by Winrock. It presents an overview of the collected field data and explains the main empirical findings. Chapter 4 elaborates the two production systems and presents the results of the economic analyses (summarized in cash flow diagrams showing the timing of costs and benefits). Chapter 5 analyses the possible sustainability risks and benefits of sugar palm ethanol and investigates the integration possibilities of sugar palm in agro-forestry systems with other crops. Finally, Chapter 6 concludes by evaluating the potential of sugar palm as a source of biofuel and providing recommendations.

  19. Consumer understanding of sugars claims on food and drink products

    Patterson, N J; Sadler, M J; Cooper, J M

    2012-01-01

    Consumer understanding of nutrition and health claims is a key aspect of current regulations in the European Union (EU). In view of this, qualitative and quantitative research techniques were used to investigate consumer awareness and understanding of product claims in the UK, focusing particularly on nutrition claims relating to sugars. Both research methods identified a good awareness of product claims. No added sugars claims were generally preferred to reduced sugars claims, and there was ...

  20. Sugar ester surfactants: enzymatic synthesis and applications in food industry.

    Neta, Nair S; Teixeira, José A; Rodrigues, Lígia R

    2015-01-01

    Sugar esters are non-ionic surfactants that can be synthesized in a single enzymatic reaction step using lipases. The stability and efficiency of lipases under unusual conditions and using non-conventional media can be significantly improved through immobilization and protein engineering. Also, the development of de novo enzymes has seen a significant increase lately under the scope of the new field of synthetic biology. Depending on the esterification degree and the nature of fatty acid and/or sugar, a range of sugar esters can be synthesized. Due to their surface activity and emulsifying capacity, sugar esters are promising for applications in food industry.

  1. Sugar cane bagasse prehydrolysis using hot water

    D. Abril

    2012-03-01

    Full Text Available Results are presented on the hot water prehydrolysis of sugar cane bagasse for obtaining ethanol by fermentation. The experimental study consisted of the determination of the effect of temperature and time of prehydrolysis on the extraction of hemicelluloses, with the objective of selecting the best operating conditions that lead to increased yield of extraction with a low formation of inhibitors. The study, carried out in a pilot plant scale rotational digester, using a 3² experimental design at temperatures of 150-190ºC and times of 60-90 min, showed that it is possible to perform the hot water prehydrolysis process between 180-190ºC in times of 60-82 min, yielding concentrations of xylose > 35 g/L, furfural < 2.5 g/L, phenols from soluble lignin < 1.5 g/L, and concentrations < 3.0 g/L of hemicelluloses in the cellolignin residue. These parameters of temperature and prehydrolysis time could be used for the study of the later hydrolysis and fermentation stages of ethanol production from sugar cane bagasse.

  2. SOUFFLE WITH REDUCED AMOUNT OF SUGAR

    G. O. Magomedov

    2014-01-01

    Full Text Available Summary. Was studied the technology of producing aerated candies "Souffle" with replacement of sugar to molasses with increased shelf life, molded by "jetting" with a vacuum syringe with continuous action, which is used in the meat industry, into metallized film type "flow-pack ". Studied the process of foaming disperse systems. Studied the process of gelation and gelation affected by various factors. To establish a relationship between the effective viscosity and jelly mass of gelation ability of agar were achieved the dependence according to the effective viscosity of the jelly mass shear rate and a shear rate on the shear stress at temperature of 65 ˚C and a mass fraction of solids of 78%. Viscosity reduction has a positive effect on the process of molding molasses candies by the "extrusion". Were definede values of the plastic strength of jelly masses and found that replacing sugar to molasses reduces the plastic strength, but it does not affect a good form-stable ability. Cinnamon was added into the prescription whipped composition to improve the nutritional value of products. Were defined organoleptic, physical and chemical qualities, calculated energy value of the products. High hygroscopic souffle on molasses requires hermetic packaging. Proposed a new progressive method of forming a souffle with a vacuum syringe with continuous action, which is used in the meat industry to form sausages. Curing and structure foarming implemented directly in the shell for 2 h, which is an important advantage of this method. Whipped products on molasses are functional.

  3. Comparative studies on the photosynthesis of higher plants, 4. Further studies on the photosynthetic sugar formation pathway in C/sub 4/-plants

    Imai, H [National Inst. of Agricultural Sciences, Tokyo (Japan); Iwai, Sumio; Yamada, Yoshio

    1975-03-01

    In this paper, studies were carried out to confirm whether carbon atoms except C-4 of C/sub 4/-compounds were involved in the photosynthetic sugar formation in C/sub 4/ plants. In feeding of uniformly-labeled malate to maize leaves, sugar formation under aerobic conditions was 3 times as large as that under anaerobic conditions. There was no detectable difference in the amount of activity in the sugar formed from ..beta..-carboxyl-labeled malate between aerobic and anaerobic conditions; however. Under anaerobic conditions, sugar was formed from alanine-1-/sup 14/C in maize but not in rice leaves. Sugar formation of this case might have occurred by the direct conversion of pyruvate to sugar via PEP and PGA. From these results, we assume that the following three pathways function cooperatively in the photosynthetic sugar formation in C/sub 4/-plants. 1) One carbon atom at number 4 in C/sub 4/-dicarboxylic acid is transferred to RuDP, resulting in the formation of PGA and this is metabolized into sugar. 2) After transferring C-4 of C/sub 4/-dicarboxylic acid, the remaining C/sub 3/-compound is introduced into the TCA cycle and completely degradated there, and thus-produced CO/sub 2/ is refixed by PEP carboxylase in the mesophyll and metabolized into sugar the same pathway as in atmospheric CO/sub 2/ fixation. 3) The remaining C/sub 3/-compound is directly converted to PEP and then to sugar via PGA.

  4. Relationships between soluble sugar concentrations in roots and ecosystem stress for first-year sugar maple seedlings

    McLaughlin, J.W.; Reed, D.D.; Jurgensen, M.F.; Mroz, G.D.; Bagley, S.T. [Michigan Technological University, Houghton, MI (United States). School of Forestry and Wood Products

    1996-03-01

    Accumulation of reducing sugars (i.e. glucose and fructose) in plant roots has been consistently correlated with forest dieback and decline and, therefore, has potential as a biological indicator of ecosystem stress. In this study, the relationships between acidic deposition and `natural` (temperature, mycorrhizae, and nutrition) factors with first-year sugar maple seedling root sugar concentrations and growth were assessed in two sugar maple dominated forests in Michigan. Seedlings at the southern site (Wellston) had greater root growth, phosphorus, total sugar, and sucrose concentrations in roots, but lower reducing sugar concentration in roots. In addition, percent root length colonized by vesicular-arbuscular mycorrhizal fungi was less than that found for seedlings growing at the northern site (Alberta). Throughfall deposition of nitrate, sulfate, and hydrogen ions was not significantly correlated with seedling total or reducing sugar concentration. Total sugar concentration in seedling roots was positively correlated with air and soil temperatures at the southern site, but not at the northern site. Seedling tissue phosphorus concentration was correlated with total sugars at both sites, with sucrose at the southern site, and reducing sugars at the northern site. Mycorrhizal colonization rates at the Alberta site were positively correlated with reducing sugar concentration in seedling roots and negatively correlated with sucrose concentration. The results suggest that differences in seedling root sugar concentrations in these two forests are related to seedling root growth and are most likely due to ecological variables, such as available soil phosphorus, temperature, and growing season length through some complex interaction with mycorrhizae rather than acidic deposition stress. 56 refs., 3 figs.

  5. Octopamine and Tyramine Contribute Separately to the Counter-Regulatory Response to Sugar Deficit in Drosophila

    Christine Damrau

    2018-01-01

    Full Text Available All animals constantly negotiate external with internal demands before and during action selection. Energy homeostasis is a major internal factor biasing action selection. For instance, in addition to physiologically regulating carbohydrate mobilization, starvation-induced sugar shortage also biases action selection toward food-seeking and food consumption behaviors (the counter-regulatory response. Biogenic amines are often involved when such widespread behavioral biases need to be orchestrated. In mammals, norepinephrine (noradrenalin is involved in the counterregulatory response to starvation-induced drops in glucose levels. The invertebrate homolog of noradrenalin, octopamine (OA and its precursor tyramine (TA are neuromodulators operating in many different neuronal and physiological processes. Tyrosine-ß-hydroxylase (tßh mutants are unable to convert TA into OA. We hypothesized that tßh mutant flies may be aberrant in some or all of the counter-regulatory responses to starvation and that techniques restoring gene function or amine signaling may elucidate potential mechanisms and sites of action. Corroborating our hypothesis, starved mutants show a reduced sugar response and their hemolymph sugar concentration is elevated compared to control flies. When starved, they survive longer. Temporally controlled rescue experiments revealed an action of the OA/TA-system during the sugar response, while spatially controlled rescue experiments suggest actions also outside of the nervous system. Additionally, the analysis of two OA- and four TA-receptor mutants suggests an involvement of both receptor types in the animals' physiological and neuronal response to starvation. These results complement the investigations in Apis mellifera described in our companion paper (Buckemüller et al., 2017.

  6. European Sugar Market – Impact of Quota System

    Irena Benešová

    2015-01-01

    Full Text Available The European agricultural market has been criticized for its heavy regulations and subsidization. The sugar market is one of the most regulated ones; however, this will change radically in 2017 when the current system of production quotas will end. The aim of this paper is to present the basic characteristics of the EU quota sugar market. The analysis identifies the main drivers of EU sugar market and their position within the EU sugar market. The paper identifies especially those drivers/companies/alliances which take control over the EU sugar production realized under the quota production system. The paper also highlights the level of EU sugar market concentration and also identifies those countries and companies which are the main leaders in the sugar production area realized under the quota system. Based on the results deriving from the paper, it is possible to characterize the EU sugar market as a heavily concentrated one – nearly 75% (10 mil. tonnes of the quota is controlled by five multinational companies only; these companies are operating more than 50% of all the available sugar plants located in the EU. These multinational alliances are also in control of the production capacities of their subsidiaries. In most countries, this causes serious problems as the given quota is controlled by one or two producers only. The EU sugar market is extremely concentrated especially if we take into consideration the location of each alliance’s headquarters. The majority of production capacities are under (the control of especially German and French companies. These two countries are also the main beneficiaries in relation to the EU sugar production quota system.

  7. Total antioxidant content of alternatives to refined sugar.

    Phillips, Katherine M; Carlsen, Monica H; Blomhoff, Rune

    2009-01-01

    Oxidative damage is implicated in the etiology of cancer, cardiovascular disease, and other degenerative disorders. Recent nutritional research has focused on the antioxidant potential of foods, while current dietary recommendations are to increase the intake of antioxidant-rich foods rather than supplement specific nutrients. Many alternatives to refined sugar are available, including raw cane sugar, plant saps/syrups (eg, maple syrup, agave nectar), molasses, honey, and fruit sugars (eg, date sugar). Unrefined sweeteners were hypothesized to contain higher levels of antioxidants, similar to the contrast between whole and refined grain products. To compare the total antioxidant content of natural sweeteners as alternatives to refined sugar. The ferric-reducing ability of plasma (FRAP) assay was used to estimate total antioxidant capacity. Major brands of 12 types of sweeteners as well as refined white sugar and corn syrup were sampled from retail outlets in the United States. Substantial differences in total antioxidant content of different sweeteners were found. Refined sugar, corn syrup, and agave nectar contained minimal antioxidant activity (sugar had a higher FRAP (0.1 mmol/100 g). Dark and blackstrap molasses had the highest FRAP (4.6 to 4.9 mmol/100 g), while maple syrup, brown sugar, and honey showed intermediate antioxidant capacity (0.2 to 0.7 mmol FRAP/100 g). Based on an average intake of 130 g/day refined sugars and the antioxidant activity measured in typical diets, substituting alternative sweeteners could increase antioxidant intake an average of 2.6 mmol/day, similar to the amount found in a serving of berries or nuts. Many readily available alternatives to refined sugar offer the potential benefit of antioxidant activity.

  8. Prospective association between added sugars and frailty in older adults.

    Laclaustra, Martin; Rodriguez-Artalejo, Fernando; Guallar-Castillon, Pilar; Banegas, Jose R; Graciani, Auxiliadora; Garcia-Esquinas, Esther; Ordovas, Jose; Lopez-Garcia, Esther

    2018-04-09

    Sugar-sweetened beverages and added sugars (monosaccharides and disaccharides) in the diet are associated with obesity, diabetes, and cardiovascular disease, which are all risk factors for decline in physical function among older adults. The aim of this study was to examine the association between added sugars in the diet and incidence of frailty in older people. Data were taken from 1973 Spanish adults ≥60 y old from the Seniors-ENRICA cohort. In 2008-2010 (baseline), consumption of added sugars (including those in fruit juices) was obtained using a validated diet history. Study participants were followed up until 2012-2013 to assess frailty based on Fried's criteria. Statistical analyses were performed with logistic regression adjusted for age, sex, education, smoking status, body mass index, energy intake, self-reported comorbidities, Mediterranean Diet Adherence Score (excluding sweetened drinks and pastries), TV watching time, and leisure-time physical activity. Compared with participants consuming added sugars (lowest tertile), those consuming ≥36 g/d (highest tertile) were more likely to develop frailty (OR: 2.27; 95% CI: 1.34, 3.90; P-trend = 0.003). The frailty components "low physical activity" and "unintentional weight loss" increased dose dependently with added sugars. Association with frailty was strongest for sugars added during food production. Intake of sugars naturally appearing in foods was not associated with frailty. The consumption of added sugars in the diet of older people was associated with frailty, mainly when present in processed foods. The frailty components that were most closely associated with added sugars were low level of physical activity and unintentional weight loss. Future research should determine whether there is a causal relation between added sugars and frailty.

  9. 7 CFR 1435.504 - Timing of distribution of CCC-owned sugar.

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Timing of distribution of CCC-owned sugar. 1435.504... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Processor Sugar Payment-In-Kind (PIK) Program § 1435.504 Timing of distribution of CCC-owned sugar. Distribution of sugar...

  10. Total and Free Sugar Content of Canadian Prepackaged Foods and Beverages

    Bernstein, Jodi T.; Schermel, Alyssa; Mills, Christine M.; L’Abbé, Mary R.

    2016-01-01

    A number of recommendations for policy and program interventions to limit excess free sugar consumption have emerged, however there are a lack of data describing the amounts and types of sugar in foods. This study presents an assessment of sugar in Canadian prepackaged foods including: (a) the first systematic calculation of free sugar contents; (b) a comprehensive assessment of total sugar and free sugar levels; and (c) sweetener and free sugar ingredient use, using the University of Toronto’s Food Label Information Program (FLIP) database 2013 (n = 15,342). Food groups with the highest proportion of foods containing free sugar ingredients also had the highest median total sugar and free sugar contents (per 100 g/mL): desserts (94%, 15 g, and 12 g), sugars and sweets (91%, 50 g, and 50 g), and bakery products (83%, 16 g, and 14 g, proportion with free sugar ingredients, median total sugar and free sugar content in Canadian foods, respectively). Free sugar accounted for 64% of total sugar content. Eight of 17 food groups had ≥75% of the total sugar derived from free sugar. Free sugar contributed 20% of calories overall in prepackaged foods and beverages, with the highest at 70% in beverages. These data can be used to inform interventions aimed at limiting free sugar consumption. PMID:27657125

  11. Total and Free Sugar Content of Canadian Prepackaged Foods and Beverages

    Jodi T. Bernstein

    2016-09-01

    Full Text Available A number of recommendations for policy and program interventions to limit excess free sugar consumption have emerged, however there are a lack of data describing the amounts and types of sugar in foods. This study presents an assessment of sugar in Canadian prepackaged foods including: (a the first systematic calculation of free sugar contents; (b a comprehensive assessment of total sugar and free sugar levels; and (c sweetener and free sugar ingredient use, using the University of Toronto’s Food Label Information Program (FLIP database 2013 (n = 15,342. Food groups with the highest proportion of foods containing free sugar ingredients also had the highest median total sugar and free sugar contents (per 100 g/mL: desserts (94%, 15 g, and 12 g, sugars and sweets (91%, 50 g, and 50 g, and bakery products (83%, 16 g, and 14 g, proportion with free sugar ingredients, median total sugar and free sugar content in Canadian foods, respectively. Free sugar accounted for 64% of total sugar content. Eight of 17 food groups had ≥75% of the total sugar derived from free sugar. Free sugar contributed 20% of calories overall in prepackaged foods and beverages, with the highest at 70% in beverages. These data can be used to inform interventions aimed at limiting free sugar consumption.

  12. Membrane-localized ubiquitin ligase ATL15 functions in sugar-responsive growth regulation in Arabidopsis.

    Aoyama, Shoki; Terada, Saki; Sanagi, Miho; Hasegawa, Yoko; Lu, Yu; Morita, Yoshie; Chiba, Yukako; Sato, Takeo; Yamaguchi, Junji

    2017-09-09

    Ubiquitin ligases play important roles in regulating various cellular processes by modulating the protein function of specific ubiquitination targets. The Arabidopsis Tóxicos en Levadura (ATL) family is a group of plant-specific RING-type ubiquitin ligases that localize to membranes via their N-terminal transmembrane-like domains. To date, 91 ATL isoforms have been identified in the Arabidopsis genome, with several ATLs reported to be involved in regulating plant responses to environmental stresses. However, the functions of most ATLs remain unknown. This study, involving transcriptome database analysis, identifies ATL15 as a sugar responsive ATL gene in Arabidopsis. ATL15 expression was rapidly down-regulated in the presence of sugar. The ATL15 protein showed ubiquitin ligase activity in vitro and localized to plasma membrane and endomembrane compartments. Further genetic analyses demonstrated that the atl15 knockout mutants are insensitive to high glucose concentrations, whereas ATL15 overexpression depresses plant growth. In addition, endogenous glucose and starch amounts were reciprocally affected in the atl15 knockout mutants and the ATL15 overexpressors. These results suggest that ATL15 protein plays a significant role as a membrane-localized ubiquitin ligase that regulates sugar-responsive plant growth in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Genetic improvement of sugar cane for bioenergy: the Brazilian experience in network research with RIDESA

    Luiz Alexandre Peternelli

    2012-01-01

    Full Text Available In this paper, it is presented RIDESA’s model for sugar cane breeding to ethanol, and its scientific, technological and human resources training contributions. RIDESA is an inter-university network for the development of sugar cane industry in Brazil, and was formed by a technical cooperation agreement between ten public universities. The model of network management is presented in this study, which involves, among other things, the public-private partnership (Universities-Mills for the development of cultivars. RIDESA has produced 59 cultivars since 1990 and is now responsible for 59% of the total area cultivated with this plant in Brazil. In the last five years, 286 agronomists were trained in breeding programs at universities that comprise RIDESA. In this same period, the network formed 35 professors, 24 doctors and 7 post-docs in researches with this crop. It is also presented a conceptual approach on methods of sugar cane breeding involving families and genome-wide selection.

  14. Coil irrigation in sugar cane (Saccharum officinarum

    Jesús Sánchez Gutiérrez

    2016-01-01

    Full Text Available This study was made at the Basic Seed Bank of the Local Sugar Cane Research Station for the Mideastern Cuba, based in Camaguey, on brown carbonate soil, between 2013 and 12014. Coil irrigation was applied to meet the water requirements for the crop, according to the edafoclimatic conditions and the different phenological phases it has. The Savo method was used to determine useful rain water. Adjustment and complementation of the irrigation program was based on indicators that characterize the exploitation scheme. The machine´s working parameters were determined to meet the water needs, and increase crop´s overall yields. The evaluations and results achieved have contributed to new proposals for management and operation of coil irrigation, and they are important to increase its efficiency.

  15. Bioproduction strategies for rare hexose sugars

    Izumori, Ken

    2002-03-01

    A new strategy for the bioproduction of all ketohexoses was developed using hexitols as intermediates. Biocatalysts used to employ the strategy were D-tagatose 3-epimerase, which epimerizes ketohexoses at the C-3 position, and oxidoreductases, which catalyze oxidation-reduction reactions between ketohexoses and the corresponding hexitols. Arranging all the ketohexoses and hexitols in a symmetric ring and connecting them with 20 biochemical reactions, I was able to construct a design for the bioproduction of all the rare ketohexoses. Various aldose isomerases transform ketohexoses into the corresponding aldohexoses, so the strategy is useful for the bioproduction of all the rare hexose sugars. Furthermore, the design revealed that there are four routes to the L-hexose world from the D-hexose one.

  16. WATER NETWORK INTEGRATION IN RAW SUGAR PRODUCTION

    Junior Lorenzo Llanes

    2017-07-01

    Full Text Available One of the main process industries in Cuba is that of the sugarcane. Among the characteristics of this industry is the high demand of water in its processes. In this work a study of water integration was carried out from the different operations of the production process of raw sugar, in order to reduce the fresh water consumption. The compound curves of sources and demands were built, which allowed the determination of the minimum water requirement of the network (1587,84 m3/d, as well as the amount of effluent generated (0,35 m3/tcane.The distribution scheme of fresh water and water reuse among different operations were obtained from the nearest neighbor algorithm. From considering new quality constrains was possible to eliminate the external water consumption, as well as to reduce the amount of effluent in a 37% in relation to the initial constrains.

  17. Radiation sterilization of triple sugar iron agar

    Altmann, G.; Eisenberg, E.; Bogokowsky, B.

    1979-01-01

    Triple sugar iron agar (TSI), a medium used for the identification of enteric bacteria, was sterilized by gamma radiation using radiation doses of 750-2000 krad. The radio-sterilized medium, slightly modified by increasing its Phenol Red content, performed well when tested with different enterobacteriaceae and other gram negative bacteria. Growth, change of indicator reaction in slant and butt and formation of gas and H 2 S were equal in irradiated and autoclaved TSI. Slants of irradiated TSI in stoppered plastic tubes kept their diagnostic properties during storage for at least 4 months. Gamma irradiation appears to be an attractive and economical method of sterilising nutrient media in sealed tubes or other containers, avoiding the risk of contamination during processing. (author)

  18. Maple sugaring with vacuum pumping during the fall season

    H. Clay Smith; Alan G., Jr. Snow

    1971-01-01

    Vacuum pumping of sugar maple trees during the late fall and early winter months is not advisable in northern Vermont. However, fall pumping may be profitable in other areas of the sugar maple range. It is recommended that the weather pattern in a given locale be observed; and if conditions are favorable, vacuum pumping should be tried on a small scale before...

  19. The ionic balance of the sugar-beet plant

    Egmond, van F.

    1975-01-01

    The ionic balance of the sugar-beet plant was studied by measuring dry weight and chemical composition of every leaf, the crown and the root during the growing season.

    The sugar-beet plant has an almost neutral uptake. The nitrate and sulphate reduction determines the amount of carboxylates

  20. Sugar signals and the control of plant growth and development

    Lastdrager, Jeroen|info:eu-repo/dai/nl/357520076; Hanson, Johannes|info:eu-repo/dai/nl/304822299; Smeekens, Sjef|info:eu-repo/dai/nl/072489995

    2014-01-01

    Sugars have a central regulatory function in steering plant growth. This review focuses on information presented in the past 2 years on key players in sugar-mediated plant growth regulation, with emphasis on trehalose 6-phosphate, target of rapamycin kinase, and Snf1-related kinase 1 regulatory

  1. Investigation of Copper Sorption by Sugar Beet Processing Lime Waste

    In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 Mg yr-1) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairi...

  2. Dynamic analysis of sugar metabolism in different harvest seasons ...

    user

    2011-04-04

    Apr 4, 2011 ... sugars and reducing sugars of pineapple treated by methyl jasmonate (MeJA) on chilling injuries were not significantly different from that of the control pineapple. Liu et al. (2009) reported that the flavor in summer pineapple fruit was better than that of the winter fruit. Joomwong (2006) showed that the fruit ...

  3. Effects of import tariff implementation policy of refined sugar ...

    The competitiveness of sugar products in Indonesia was evaluated using the of East Java wet and dry farmlands and was found to be higher than similar products from overseas as shown by DRC value of less than 1. Keyword: Sugar, Welfare distribution, Domestic Resource Cost (DRC), import tariff, Indonesia ...

  4. Sugar-Sweetened Beverages and Obesity among Children and Adolescents

    Keller, Amélie; Bucher Della Torre, Sophie

    2015-01-01

    BACKGROUND: The prevalence of overweight and obesity among children and adolescents has increased worldwide and has reached alarming proportions. Currently, sugar-sweetened beverages (SSBs) are the primary source of added sugar in the diet of children and adolescents. Contradictive findings from...

  5. Effects of sugar intake on body weight: A review

    Vermunt, S.H.F.; Pasman, W.J.; Schaafsma, G.; Kardinaal, A.F.M.

    2003-01-01

    Weight reduction programmes are mainly focused on reducing intake of fat and sugar. In this review we have evaluated whether the replacement of dietary (added) sugar by low-energy sweeteners or complex carbohydrates contributes to weight reduction. In two experimental studies, no short-term

  6. Association of usual intake of added sugars with nutrient adequacy

    Recommendations for intakes of added sugars have varied considerably and the scientific basis supporting these recommendations has been inconsistent. The goal of this study was to examine the association of usual intake (UI) of added sugars and nutrient adequacy in those participating in NHANES 2009...

  7. Root rot in sugar beet piles at harvest

    Sugar beet root rots are not only a concern because of reduced yields, but can also be associated with losses in storage. Our primary sugar beet root rot disease problem in the Amalgamated production area is Rhizoctonia root rot. However, this rot frequently only penetrates a short distance past t...

  8. Sugar Cane Genome Numbers Assumption by Ribosomal DNA FISH Techniques

    Thumjamras, S.; Jong, de H.; Iamtham, S.; Prammanee, S.

    2013-01-01

    Conventional cytological method is limited for polyploidy plant genome study, especially sugar cane chromosomes that show unstable numbers of each cultivar. Molecular cytogenetic as fluorescent in situ hybridization (FISH) techniques were used in this study. A basic chromosome number of sugar cane

  9. Individual sugar and acid composition within southeastern peach germplasm

    eaches grown in the southeast are valued for their acidic, sweet flavor. A complex mixture of various sugars and acids at different ratios play a key role in determining these unique peach flavor attributes. To understand the flavor profile of fresh market peaches, individual sugar and acid compone...

  10. Ethanol and sugar tolerance of wine yeasts isolated from fermenting ...

    Seventeen wine yeasts isolated from fermenting cashew apple juice were screened for ethanol and sugar tolerance. Two species of Saccharomyces comprising of three strains of S. cerevisiae and one S. uvarum showed measurable growth in medium containing 9% (v/v) ethanol. They were equally sugar-tolerant having ...

  11. Diabetes Management: How Lifestyle, Daily Routine Affect Blood Sugar

    ... Sugar-sweetened beverages — including those sweetened with high fructose corn syrup or sucrose — tend to be high in calories ... blood sugar level. Stay hydrated. Drink plenty of water or other fluids ... have a small snack or glucose tablets with you during exercise in case your ...

  12. Conversion of oligomeric starch, cellulose, hydrolysates or sugars to hydrocarbons

    Silks, Louis A; Sutton, Andrew; Kim, Jin Kyung; Gordon, John Cameron; Wu, Ruilian; Kimball, David B.

    2017-09-05

    Embodiments of the present invention are directed to the conversion of a source material (e.g., a depolymerized oligosaccharide mixture, a monomeric sugar, a hydrolysate, or a mixture of monomeric sugars) to intermediate molecules containing 7 to 26 contiguous carbon atoms. These intermediates may also be converted to saturated hydrocarbons. Such saturated hydrocarbons are useful as, for example, fuels.

  13. Sugar catabolism during growth on plant biomass in Aspergillus

    Khosravi, C.

    2017-01-01

    A growing industrial sector in which plant degrading enzymes are used is the production of alternative fuels, such as bio-ethanol, and biochemicals. Plant polysaccharides can be converted to fermentable sugars by fungal enzymes. The sugars are then fermented to ethanol and other products mainly by

  14. HOW to Identify and Control Sugar Maple Borer

    William H. Hoffard; Philip T. Marshall

    1978-01-01

    The sugar maple borer, Glycobius speciosus (Say), a long-horned wood boring beetle, is a common pest of sugar maple (the only known host) throughout the range of the tree. Although borer-caused mortality is rare, infestations lead to value loss through lumber defect caused by larval galleries, discoloration, decay, and twisted grain.

  15. "Sugar" jõuab lavale / Ülle Hallik

    Hallik, Ülle, 1963-

    2008-01-01

    Vanemuises esietendub 5. juunil "Sugar", lavastaja Mare Tommingas. Muusikal põhineb Jule Styne muusikalil "Sugar ehk Dzhässis ainult tüdrukud". Muusikali libreto kirjutas Peter Stone Robert Thoereni jutustuse ning Billy Wilderi ja I. A. L. Dimanondi filmi "Some Like It Hot" põhjal

  16. The cogeneration potential of the sugar industry in Vietnam

    Bhattacharyya, S.C.; Thang, D.N.Q.

    2004-01-01

    Vietnam produces about 15 million tons of sugarcane per year and about five mt of bagasse. There is the potential for cogeneration using bagasse, which can also help overcome power shortages in the country. This paper analyses the potential for cogeneration from the sugar industry in Vietnam under three different scenarios and finds that between 100 and 300 megawatts of power-generating capacity could be supported by the bagasse generated from sugar mills, depending on the technology considered for sugar mills and cogeneration and the possibility of renovation of the existing mills. The paper also assesses the expense of cogeneration and finds it to be a cost-effective option for all types of sugar mill. It is found that the cost savings from cogeneration would more than offset the cost of introducing cogeneration in sugar mills with inefficient cane processing technologies. Sugar mills with modern technologies would have a significant amount of excess power and most of these plants would break-even if they sold excess power at around 4.5 cents per kilowatt hour. The break-even cost and the average production cost are sensitive to the investment cost assumptions. The paper thus suggests that cogeneration from the sugar industry is an attractive option for investors in existing mills or new sugar mills alike. (Author)

  17. Monitoring the Health of Sugar Maple, "Acer Saccharum"

    Carlson, Martha

    2013-01-01

    The sugar maple, "Acer saccharum," is projected to decline and die in 88 to 100 percent of its current range in the United States. An iconic symbol of the northeastern temperate forest and a dominant species in this forest, the sugar maple is identified as the most sensitive tree in its ecosystem to rising temperatures and a warming…

  18. Effect Of Import Tariff Implementation Policy On Refined Sugar ...

    economization, are influenced by the import tariff and elasticity price toward supply and demand. It also showed that sugar product competitiveness in Indonesia is higher than the same product from other countries as the value of DRC is less than one. Key word: Sugar, Welfare Distribution, Domestic Resource Cost (DRC), ...

  19. 13 Comparative Effects of Cassava Starch and Simple Sugar in ...

    Arc. Usman A. Jalam

    Abstract. Comparative effects of simple laboratory quality sugar and cassava starch on grade C35 concrete were studied in the laboratory. The simple white sugar was used at concentrations of 0 to 1% by weight of cement in concrete cured at 3, 7, 14 and 28 days using ordinary Portland cement. Cassava starch of the same ...

  20. 7 CFR 1435.305 - State cane sugar allotments.

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments... of 325,000 short tons, raw value, of the cane sugar allotment. (b) A new entrant cane State will receive an allotment to accommodate a new processor's allocation under 1435.308. (c) Subject to paragraphs...