WorldWideScience

Sample records for involving ultra-high resolution

  1. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  2. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  3. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  4. Ultra high resolution X-ray detectors

    International Nuclear Information System (INIS)

    Hess, U.; Buehler, M.; Hentig, R. von; Hertrich, T.; Phelan, K.; Wernicke, D.; Hoehne, J.

    2001-01-01

    CSP Cryogenic Spectrometers GmbH is developing cryogenic energy dispersive X-ray spectrometers based on superconducting detector technology. Superconducting sensors exhibit at least a 10-fold improvement in energy resolution due to their low energy gap compared to conventional Si(Li) or Ge detectors. These capabilities are extremely valuable for the analysis of light elements and in general for the analysis of the low energy range of the X-ray spectrum. The spectrometer is based on a mechanical cooler needing no liquid coolants and an adiabatic demagnetization refrigerator (ADR) stage which supplies the operating temperature of below 100 mK for the superconducting sensor. Applications include surface analysis in semiconductor industry as well material analysis for material composition e.g. in ceramics or automobile industry

  5. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5μm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼1000 Angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼6000 Angstrom, however some features were clearly reconstructed with a depth resolution of ∼1000 Angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to ∼1200 Angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  6. The Aragoscope: Ultra-High Resolution Optics at Low Cost

    Data.gov (United States)

    National Aeronautics and Space Administration — The diagram shows a conventional telescope pointed at an opaque disk along an axis to a distant target. Rather than block the view, the disk boosts the resolution of...

  7. Ultra-high resolution optical CT dosimetry for the visualisation of synchrotron microbeam therapy doses

    OpenAIRE

    Doran, S. J.; Rahman, A. T. Abdul; Braeuer-Krisch, E.; Brochard, T.; Adamovics, J.

    2012-01-01

    International audience; Optical CT is a method that can potentially provide both accurate dosimetry at high spatial resolution and 3-D visualisation over a large field-of-view in a single dataset. The major factors limiting spatial resolution in previous studies are analysed here and it is shown that improvements in equipment specification can overcome many of these. The need for ultra-high spatial resolution in the verification of microbeam radiation therapy verification is demonstrated and ...

  8. ESSENSE: Ultra high resolution spectroscopy for the ESS

    International Nuclear Information System (INIS)

    Pasini, Stefano; Monkenbusch, Michael; Kozielewski, Tadeusz

    2016-01-01

    The instrument concept for a very high intensity neutron spin-echo spectrometer with ultimate resolution properties has been developed and submitted as an instrument proposal to ESS. Effective intensity gain factors up to 30 compared to the best current instruments are anticipated. In addition the resolution will be boosted to the technical limits by newly designed superconducting precession solenoids. The intensity gain results from the use of an optimized guide transporting the high flux from the ESS cold moderator on the one side and from the utilization of an extended wavelength frame of 8 Å yielding a multiplication of information collection rate on the other side. The instrument thus enables novel views on soft matter systems ranging from polymers, functional gels and more to to dynamics of biological molecules with relevance for MD development; the employment of new techniques for surface NSE (GINSE) may contribute to new knowledge in tribology and lubrication and other surface phenomena that currently are hampered by low intensity. New developments in “intelligent” polymers as e.g. self-healing, the properties of which depend on molecular mobility and dynamics, require observation at many 100 ns of correlation times with high intensity, which can be made with ESSENSE. (paper)

  9. Measurement of ciliary beat frequency using ultra-high resolution optical coherence tomography

    Science.gov (United States)

    Chen, Jason J.; Jing, Joseph C.; Su, Erica; Badger, Christopher; Coughlan, Carolyn A.; Chen, Zhongping; Wong, Brian J. F.

    2016-02-01

    Ciliated epithelial cells populate up to 80% of the surface area of the human airway and are responsible for mucociliary transport, which is the key protective mechanism that provides the first line of defense in the respiratory tract. Cilia beat in a rhythmic pattern and may be easily affected by allergens, pollutants, and pathogens, altering ciliary beat frequency (CBF) subsequently. Diseases including cystic fibrosis, chronic obstructive pulmonary disease, and primary ciliary dyskinesia may also decrease CBF. CBF is therefore a critical component of respiratory health. The current clinical method of measuring CBF is phase-contrast microscopy, which involves a tissue biopsy obtained via brushing of the nasal cavity. While this method is minimally invasive, the tissue sample must be oriented to display its profile view, making the visualization of a single layer of cilia challenging. In addition, the conventional method requires subjective analysis of CBF, e.g., manually counting by visual inspection. On the contrary, optical coherence tomography (OCT) has been used to study the retina in ophthalmology as well as vasculature in cardiology, and offers higher resolution than conventional computed tomography and magnetic resonance imaging. Based on this technology, our lab specifically developed an ultra-high resolution OCT system to image the microstructure of the ciliated epithelial cells. Doppler analysis was also performed to determine CBF. Lastly, we also developed a program that utilizes fast Fourier transform to determine CBF under phase-contrast microscopy, providing a more objective method compared to the current method.

  10. Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study

    OpenAIRE

    Kourtchev, I; Godoi, RHM; Connors, S; Levine, JG; Archibald, AT; Godoi, AFL; Paralovo, SL; Barbosa, CGG; Souza, RAF; Manzi, AO; Seco, R; Sjostedt, S; Park, J-H; Guenther, A; Kim, S

    2016-01-01

    The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM$_{2.5}$ aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagr...

  11. Motivation for an SSC detector with ultra-high resolution photon detection

    International Nuclear Information System (INIS)

    Gunion, J.F.; Kane, G.

    1992-01-01

    It is well known that incorporating ultra-high resolution photon detection into a general purpose detector for the SSC will be extremely difficult. The authors will argue that the physics signals that could be missed without such resolution are of such importance that a special purpose detector designed specifically for photon final state modes should be constructed, if sufficient resolution cannot be achieved with general purpose detectors. The potentially great value of these signals as a probe of extremely high mass scales is stressed

  12. X-ray interferometry with transmissive beam combiners for ultra-high angular resolution astronomy

    OpenAIRE

    Skinner, G. K.; Krizmanic, J. F.

    2009-01-01

    Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by us...

  13. Advanced Characterization of Soil Organic Matter Using Ultra High Resolution Mass Spectrometry

    Science.gov (United States)

    Tfaily, M. M.; Chu, R.; Tolic, N.; Roscioli, K.; Robinson, E. R.; Paša-Tolić, L.; Hess, N. J.

    2014-12-01

    The focus on ecosystem stress and climate change is currently relevant as researchers and policymakers strive to understand the feedbacks between soil C dynamics and climate change. Successful development of molecular profiles that link soil microbiology with soil carbon (C) to ascertain soil vulnerability and resilience to climate change would have great impact on assessments of soil ecosystems in response to climate change. Additionally, better understanding of the dynamics of soil organic matter (SOM) plays a central role to climate modeling, and fate and transport of carbon. The use of ultra-high resolution mass spectrometry (UHR MS) has enabled the examination of molecules, directly from mixtures, with ultrahigh mass resolution and sub-ppm mass accuracy. In this study, EMSL's extensive expertise and capabilities in UHR MS proteomics were leveraged to develop extraction protocols for the characterization of carbon compounds in SOM, thereby providing the chemical and structural detail needed to develop mechanistic descriptions of soil carbon flow processes. Our experiments have allowed us to identify thousands of individual compounds in complex soil mixtures with a wide range of C content representing diverse ecosystems within the USA. The yield of the chemical extraction was dependent on (1) the type of solvent used and its polarity, (2) sample-to-solvent ratios and (3) the chemical and physical nature of the samples including their origins. Hexane, a non-polar organic solvent, was efficient in extracting lipid-like compounds regardless of soil origin or organic carbon %. For samples with high organic carbon %, acetonitrile extracted a wide range of compounds characterized with high O/C ratios, identified as polyphenolic compounds that were not observed with methanol extraction. Soils extracted with pyridine showed a similar molecular distribution to those extracted by methanol. Solvent extraction followed by UHR MS is a promising tool to understand the

  14. Magnetic Microcalorimeter (MMC) Gamma Detectors with Ultra-High Energy Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    The goal of this LCP is to develop ultra-high resolution gamma detectors based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material, and implement several geometry and design changes to improve the signal-to-noise ratio. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers, and by developing a cryogenic Compton veto to reduce the spectral background. Since best MMC performance requires detector operation at ~10 mK, we will purchase a dilution refrigerator with a base temperature <10 mK and adapt it for MMC operation. The detector performance will be tested with radioactive sources of interest to the safeguards community.

  15. Ultra-high-resolution alpha spectrometry for nuclear forensics and safeguards applications

    International Nuclear Information System (INIS)

    Bacrania, Minesh K.; Croce, Mark; Bond, Evelyn; Dry, Donald; Moody, W. Allen; Lamont, Stephen; Rabin, Michael; Rim, Jung; Smith, Audrey; Beall, James; Bennett, Douglas; Kotsubo, Vincent; Horansky, Robert; Hilton, Gene; Schmidt, Daniel; Ullom, Joel; Cantor, Robin

    2010-01-01

    We will present our work on the development of ultra-high-resolution detectors for alpha particle spectrometry. These detectors, based on superconducting transition-edge sensors, offer energy resolution that is five to ten times better than conventional silicon detectors. Using these microcalorimeter detectors, the isotopic composition of mixed-actinide samples can be determined rapidly without the need for actinide separation chemistry to isolate each element, or mass spectrometry to separate isotopic signatures that can not be resolved using traditional alpha spectrometry (e.g. Pu-239/Pu-240, or Pu-238/Am-241). This paper will cover the detector and measurement system, actinide source preparation, and the quantitative isotopic analysis of a number of forensics- and safeguards-relevant radioactive sources.

  16. Ultra-high resolution optical coherence tomography for encapsulation quality inspection

    KAUST Repository

    Czajkowski, Jakub

    2011-08-28

    We present the application of ultra-high resolution optical coherence tomography (UHR-OCT) in evaluation of thin, protective films used in printed electronics. Two types of sample were investigated: microscopy glass and organic field effect transistor (OFET) structure. Samples were coated with thin (1-3 μm) layer of parylene C polymer. Measurements were done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti: sapphire femtosecond laser, photonic crystal fibre and modified, free-space Michelson interferometer. Submicron resolution offered by the UHR-OCT system applied in the study enables registration of both interfaces of the thin encapsulation layer. Complete, volumetric characterisation of protective layers is presented, demonstrating possibility to use OCT for encapsulation quality inspection. © Springer-Verlag 2011.

  17. Toward an ultra-high resolution community climate system model for the BlueGene platform

    International Nuclear Information System (INIS)

    Dennis, John M; Jacob, Robert; Vertenstein, Mariana; Craig, Tony; Loy, Raymond

    2007-01-01

    Global climate models need to simulate several small, regional-scale processes which affect the global circulation in order to accurately simulate the climate. This is particularly important in the ocean where small scale features such as oceanic eddies are currently represented with adhoc parameterizations. There is also a need for higher resolution to provide climate predictions at small, regional scales. New high-performance computing platforms such as the IBM BlueGene can provide the necessary computational power to perform ultra-high resolution climate model integrations. We have begun to investigate the scaling of the individual components of the Community Climate System Model to prepare it for integrations on BlueGene and similar platforms. Our investigations show that it is possible to successfully utilize O(32K) processors. We describe the scalability of five models: the Parallel Ocean Program (POP), the Community Ice CodE (CICE), the Community Land Model (CLM), and the new CCSM sequential coupler (CPL7) which are components of the next generation Community Climate System Model (CCSM); as well as the High-Order Method Modeling Environment (HOMME) which is a dynamical core currently being evaluated within the Community Atmospheric Model. For our studies we concentrate on 1/10 0 resolution for CICE, POP, and CLM models and 1/4 0 resolution for HOMME. The ability to simulate high resolutions on the massively parallel petascale systems that will dominate high-performance computing for the foreseeable future is essential to the advancement of climate science

  18. CGLXTouch: A multi-user multi-touch approach for ultra-high-resolution collaborative workspaces

    KAUST Repository

    Ponto, Kevin

    2011-06-01

    This paper presents an approach for empowering collaborative workspaces through ultra-high resolution tiled display environments concurrently interfaced with multiple multi-touch devices. Multi-touch table devices are supported along with portable multi-touch tablet and phone devices, which can be added to and removed from the system on the fly. Events from these devices are tagged with a device identifier and are synchronized with the distributed display environment, enabling multi-user support. As many portable devices are not equipped to render content directly, a remotely scene is streamed in. The presented approach scales for large numbers of devices, providing access to a multitude of hands-on techniques for collaborative data analysis. © 2011 Elsevier B.V. All rights reserved.

  19. Photoionization study of doubly-excited helium at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kaindl, G.; Schulz, K.; Domke, M. [Freie Universitaet Berlin (Germany)] [and others

    1997-04-01

    Ever since the pioneering work of Madden & Codling and Cooper, Fano & Prats on doubly-excited helium in the early sixties, this system may be considered as prototypical for the study of electron-electron correlations. More detailed insight into these states could be reached only much later, when improved theoretical calculations of the optically-excited {sup 1}P{sup 0} double-excitation states became available and sufficiently high energy resolution ({delta}E=4.0 meV) was achieved. This allowed a systematic investigation of the double-excitation resonances of He up to excitation energies close to the double-ionization threshold, I{sub infinity}=79.003 eV, which stimulated renewed theoretical interest into these correlated electron states. The authors report here on striking progress in energy resolution in this grazing-incidence photon-energy range of grating monochromators and its application to hitherto unobservable states of doubly-excited He. By monitoring an extremely narrow double-excitation resonance of He, with a theoretical lifetime width of less than or equal to 5 {mu}eV, a resolution of {delta}E=1.0 meV (FWHM) at 64.1 eV could be achieved. This ultra-high spectral resolution, combined with high photon flux, allowed the investigation of new Rydberg resonances below the N=3 ionization threshold, I{sub 3}, as well as a detailed comparison with ab-initio calculations.

  20. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.

    Science.gov (United States)

    Kim, Kyeongtae; Jeong, Wonho; Lee, Woochul; Reddy, Pramod

    2012-05-22

    Understanding energy dissipation at the nanoscale requires the ability to probe temperature fields with nanometer resolution. Here, we describe an ultra-high vacuum (UHV)-based scanning thermal microscope (SThM) technique that is capable of quantitatively mapping temperature fields with ∼15 mK temperature resolution and ∼10 nm spatial resolution. In this technique, a custom fabricated atomic force microscope (AFM) cantilever, with a nanoscale Au-Cr thermocouple integrated into the tip of the probe, is used to measure temperature fields of surfaces. Operation in an UHV environment eliminates parasitic heat transport between the tip and the sample enabling quantitative measurement of temperature fields on metal and dielectric surfaces with nanoscale resolution. We demonstrate the capabilities of this technique by directly imaging thermal fields in the vicinity of a 200 nm wide, self-heated, Pt line. Our measurements are in excellent agreement with computational results-unambiguously demonstrating the quantitative capabilities of the technique. UHV-SThM techniques will play an important role in the study of energy dissipation in nanometer-sized electronic and photonic devices and the study of phonon and electron transport at the nanoscale.

  1. Ultra-high resolution water window x ray microscope optics design and analysis

    Science.gov (United States)

    Shealy, David L.; Wang, C.

    1993-01-01

    This project has been focused on the design and analysis of an ultra-high resolution water window soft-x-ray microscope. These activities have been accomplished by completing two tasks contained in the statement of work of this contract. The new results from this work confirm: (1) that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use spherical mirror surfaces and to use graded multilayer coatings on the secondary in order to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater; (2) that surface contour errors will have a significant effect on the optical performance of the microscope and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror; and (3) that tolerance analysis of the spherical Schwarzschild microscope has been shown that the water window operations will require 2-3 times tighter tolerances to achieve a similar performance of operations with 130 A radiation. These results have been included in a manuscript included in the appendix.

  2. Electron attachment to oxygen, ozone and other compounds of atmospheric relevance as studied with ultra-high energy resolution

    International Nuclear Information System (INIS)

    Maerk, T.D.; Matejcik, S.; Kiendler, A.; Cicman, P.; Senn, G.; Skalny, J.; Stampfli, P.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    The processes of electron attachment to oxygen, ozone, ozone/oxygen cluster and oxygen cluster as well as other compounds of atmospheric relevance (CF 2 Cl 2 , CHCl 3 and CCl 3 Br) were studied with ultra-high energy resolution crossed beam technique

  3. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    DEFF Research Database (Denmark)

    Bravo Gonzalo, Ivan; Maria, Michael; Engelsholm, Rasmus Dybbro

    2018-01-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolut...

  4. Mnemonic discrimination relates to perforant path integrity: An ultra-high resolution diffusion tensor imaging study.

    Science.gov (United States)

    Bennett, Ilana J; Stark, Craig E L

    2016-03-01

    Pattern separation describes the orthogonalization of similar inputs into unique, non-overlapping representations. This computational process is thought to serve memory by reducing interference and to be mediated by the dentate gyrus of the hippocampus. Using ultra-high in-plane resolution diffusion tensor imaging (hrDTI) in older adults, we previously demonstrated that integrity of the perforant path, which provides input to the dentate gyrus from entorhinal cortex, was associated with mnemonic discrimination, a behavioral outcome designed to load on pattern separation. The current hrDTI study assessed the specificity of this perforant path integrity-mnemonic discrimination relationship relative to other cognitive constructs (identified using a factor analysis) and white matter tracts (hippocampal cingulum, fornix, corpus callosum) in 112 healthy adults (20-87 years). Results revealed age-related declines in integrity of the perforant path and other medial temporal lobe (MTL) tracts (hippocampal cingulum, fornix). Controlling for global effects of brain aging, perforant path integrity related only to the factor that captured mnemonic discrimination performance. Comparable integrity-mnemonic discrimination relationships were also observed for the hippocampal cingulum and fornix. Thus, whereas perforant path integrity specifically relates to mnemonic discrimination, mnemonic discrimination may be mediated by a broader MTL network. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Multi-application inter-tile synchronization on ultra-high-resolution display walls

    KAUST Repository

    Nam, Sungwon

    2010-01-01

    Ultra-high-resolution tiled-display walls are typically driven by a cluster of computers. Each computer may drive one or more displays. Synchronization between the computers is necessary to ensure that animated imagery displayed on the wall appears seamless. Most tiled-display middleware systems are designed around the assumption that only a single application instance is running in the tiled display at a time. Therefore synchronization can be achieved with a simple solution such as a networked barrier. When a tiled display has to support multiple applications at the same time, however, the simple networked barrier approach does not scale. In this paper we propose and experimentally validate two synchronization algorithms to achieve low-latency, intertile synchronization for multiple applications with independently varying frame rates. The two-phase algorithm is more generally applicable to various highresolution tiled display systems. The one-phase algorithm provides superior results but requires support for the Network Time Protocol and is more CPU-intensive. Copyright 2010 ACM.

  6. Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study

    Directory of Open Access Journals (Sweden)

    I. Kourtchev

    2016-09-01

    Full Text Available The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI ultra-high-resolution mass spectrometry (UHRMS for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic–biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.

  7. Ultra-High Resolution Spectroscopic Remote Sensing: A Microscope on Planetary Atmospheres

    Science.gov (United States)

    Kostiuk, Theodor

    2010-01-01

    Remote sensing of planetary atmospheres is not complete without studies of all levels of the atmosphere, including the dense cloudy- and haze filled troposphere, relatively clear and important stratosphere and the upper atmosphere, which are the first levels to experience the effects of solar radiation. High-resolution spectroscopy can provide valuable information on these regions of the atmosphere. Ultra-high spectral resolution studies can directly measure atmospheric winds, composition, temperature and non-thermal phenomena, which describe the physics and chemistry of the atmosphere. Spectroscopy in the middle to long infrared wavelengths can also probe levels where dust of haze limit measurements at shorter wavelength or can provide ambiguous results on atmospheric species abundances or winds. A spectroscopic technique in the middle infrared wavelengths analogous to a radio receiver. infrared heterodyne spectroscopy [1], will be describe and used to illustrate the detailed study of atmospheric phenomena not readily possible with other methods. The heterodyne spectral resolution with resolving power greater than 1,000.000 measures the true line shapes of emission and absorption lines in planetary atmospheres. The information on the region of line formation is contained in the line shapes. The absolute frequency of the lines can be measured to I part in 100 ,000,000 and can be used to accurately measure the Doppler frequency shift of the lines, directly measuring the line-of-sight velocity of the gas to --Im/s precision (winds). The technical and analytical methods developed and used to measure and analyze infrared heterodyne measurements will be described. Examples of studies on Titan, Venus, Mars, Earth, and Jupiter will be presented. 'These include atmospheric dynamics on slowly rotating bodies (Titan [2] and Venus [3] and temperature, composition and chemistry on Mars 141, Venus and Earth. The discovery and studies of unique atmospheric phenomena will also be

  8. Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography.

    Science.gov (United States)

    Ruggeri, Marco; Major, James C; McKeown, Craig; Knighton, Robert W; Puliafito, Carmen A; Jiao, Shuliang

    2010-11-01

    To reveal three-dimensional (3-D) information about the retinal structures of birds of prey in vivo. An ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of retinas of birds of prey. The calibrated imaging depth and axial resolution of the system were 3.1 mm and 2.8 μm (in tissue), respectively. 3-D segmentation was performed for calculation of the retinal nerve fiber layer (RNFL) map. High-resolution OCT images were obtained of the retinas of four species of birds of prey: two diurnal hawks (Buteo platypterus and Buteo brachyurus) and two nocturnal owls (Bubo virginianus and Strix varia). These images showed the detailed retinal anatomy, including the retinal layers and the structure of the deep and shallow foveae. The calculated thickness map showed the RNFL distribution. Traumatic injury to one bird's retina was also successfully imaged. Ultra-high resolution SD-OCT provides unprecedented high-quality 2-D and 3-D in vivo visualization of the retinal structures of birds of prey. SD-OCT is a powerful imaging tool for vision research in birds of prey.

  9. Ultra high-resolution gene centric genomic structural analysis of a non-syndromic congenital heart defect, Tetralogy of Fallot.

    Directory of Open Access Journals (Sweden)

    Douglas C Bittel

    Full Text Available Tetralogy of Fallot (TOF is one of the most common severe congenital heart malformations. Great progress has been made in identifying key genes that regulate heart development, yet approximately 70% of TOF cases are sporadic and nonsyndromic with no known genetic cause. We created an ultra high-resolution gene centric comparative genomic hybridization (gcCGH microarray based on 591 genes with a validated association with cardiovascular development or function. We used our gcCGH array to analyze the genomic structure of 34 infants with sporadic TOF without a deletion on chromosome 22q11.2 (n male = 20; n female = 14; age range of 2 to 10 months. Using our custom-made gcCGH microarray platform, we identified a total of 613 copy number variations (CNVs ranging in size from 78 base pairs to 19.5 Mb. We identified 16 subjects with 33 CNVs that contained 13 different genes which are known to be directly associated with heart development. Additionally, there were 79 genes from the broader list of genes that were partially or completely contained in a CNV. All 34 individuals examined had at least one CNV involving these 79 genes. Furthermore, we had available whole genome exon arrays from right ventricular tissue in 13 of our subjects. We analyzed these for correlations between copy number and gene expression level. Surprisingly, we could detect only one clear association between CNVs and expression (GSTT1 for any of the 591 focal genes on the gcCGH array. The expression levels of GSTT1 were correlated with copy number in all cases examined (r = 0.95, p = 0.001. We identified a large number of small CNVs in genes with varying associations with heart development. Our results illustrate the complexity of human genome structural variation and underscore the need for multifactorial assessment of potential genetic/genomic factors that contribute to congenital heart defects.

  10. USING A MICRO-UAV FOR ULTRA-HIGH RESOLUTION MULTI-SENSOR OBSERVATIONS OF ANTARCTIC MOSS BEDS

    Directory of Open Access Journals (Sweden)

    A. Lucieer

    2012-07-01

    Full Text Available This study is the first to use an Unmanned Aerial Vehicle (UAV for mapping moss beds in Antarctica. Mosses can be used as indicators for the regional effects of climate change. Mapping and monitoring their extent and health is therefore important. UAV aerial photography provides ultra-high resolution spatial data for this purpose. We developed a technique to extract an extremely dense 3D point cloud from overlapping UAV aerial photography based on structure from motion (SfM algorithms. The combination of SfM and patch-based multi-view stereo image vision algorithms resulted in a 2 cm resolution digital terrain model (DTM. This detailed topographic information combined with vegetation indices derived from a 6-band multispectral sensor enabled the assessment of moss bed health. This novel UAV system has allowed us to map different environmental characteristics of the moss beds at ultra-high resolution providing us with a better understanding of these fragile Antarctic ecosystems. The paper provides details on the different UAV instruments and the image processing framework resulting in DEMs, vegetation indices, and terrain derivatives.

  11. The Israeli EA-FEL Upgrade Towards Long Pulse Operation for Ultra-High Resolution Single Pulse Coherent Spectroscopy

    CERN Document Server

    Gover, A; Kanter, M; Kapilevich, B; Litvak, B; Peleg, S; Socol, Y; Volshonok, M

    2005-01-01

    The Israeli Electrostatic Accelerator FEL (EA-FEL) is now being upgraded towards long pulse (1005s) operation and ultra-high resolution (10(-6)) single pulse coherent spectroscopy. We present quantitative estimations regarding the applications of controlled radiation chirp for spectroscopic applications with pulse-time Fourier Transform limited spectral resolution. Additionally, we describe a novel extraction-efficiency-improving scheme based on increase of accelerating voltage (boosting) after saturation is achieved. The efficiency of the proposed scheme is confirmed by theoretical and numerical calculations. The latter are performed using software, based on 3D space-frequency domain model. The presentation provides an overview of the upgrade status: the high-voltage terminal is being reconfigured to accept the accelerating voltage boost system; a new broad band low-loss resonator is being manufactured; multi-stage depressed collector is assembled.

  12. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging.

    Science.gov (United States)

    Zeng, Zhiping; Chen, Xuanze; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-02-10

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition. As the joint-tagging scheme can decrease the labeling density in each spectral channel, thereby bring it closer to single-molecule state, we can faithfully reconstruct the continuous microtubule structure with high resolution through collection of only 100 frames per channel. The improved continuity of the microtubule structure is quantitatively validated with image skeletonization, thus demonstrating the advantage of JT-SOFI over other localization-based super-resolution methods.

  13. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  14. Space technology from x-ray telescopes for ultra high resolution SANS and reflectometry

    International Nuclear Information System (INIS)

    Alefeld, B.; Dohmen, L.; Richter, D.; Brueckel, Th.

    1999-01-01

    Presently high resolution instruments for small angle neutron scattering use the conventional pinhole collimation. For high resolution these instruments have to be extremely long (80 m for D11). Much shorter instruments with high resolution and better intensity can be built with focusing mirrors. The high quality mirrors, which were developed for the x-ray telescope ROSAT, served as prototypes for our neutron imaging mirrors. Recently a 20 m long focusing instrument has been built at the ILL in Grenoble. The image has a very low parasitic halo. Abberations are mainly due to gravity. Test experiments on polymeric precipitates down to Q = 4 x 10 -1 A -1 were successfully carried out. In Juelich now a focusing SANS-instrument and reflectometer are being built with major geometrical improvements of the mirror design. (author)

  15. The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths

    Science.gov (United States)

    Matthews, L. D.; Crew, G. B.; Doeleman, S. S.; Lacasse, R.; Saez, A. F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J. M.; Barkats, D. A.; Baudry, A.; Broguière, D.; Escoffier, R.; Fish, V. L.; Greenberg, J.; Hecht, M. H.; Hiriart, R.; Hirota, A.; Honma, M.; Ho, P. T. P.; Impellizzeri, C. M. V.; Inoue, M.; Kohno, Y.; Lopez, B.; Martí-Vidal, I.; Messias, H.; Meyer-Zhao, Z.; Mora-Klein, M.; Nagar, N. M.; Nishioka, H.; Oyama, T.; Pankratius, V.; Perez, J.; Phillips, N.; Pradel, N.; Rottmann, H.; Roy, A. L.; Ruszczyk, C. A.; Shillue, B.; Suzuki, S.; Treacy, R.

    2018-01-01

    The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub)millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u–v coverage and north–south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.

  16. Ultra High-Mass Resolution Paper Spray by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Kevin D. Quinn

    2012-01-01

    Full Text Available Paper Spray Ionization is an atmospheric pressure ionization technique that utilizes an offline electro-osmotic flow to generate ions off a paper medium. This technique can be performed on a Bruker SolariX Fourier transform ion cyclotron resonance mass spectrometer by modifying the existing nanospray source. High-resolution paper spray spectra were obtained for both organic and biological samples to demonstrate the benefit of linking the technique with a high-resolution mass analyzer. Error values in the range 0.23 to 2.14 ppm were obtained for calf lung surfactant extract with broadband mass resolving power (m/Δm50% above 60,000 utilizing an external calibration standard.

  17. Magnetic Microcalorimeters with Ultra-High Energy Resolution (FY17 Q2 report)

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramos, Chris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-28

    We will continue to characterize the Ag:Er MMC in detail to compare it with existing models and understand its limiting performance, both in New Mexico and at LLNL. For best resolution, it will be important to reduce external electromagnetic interference and ensure good thermal coupling to the cryostat. Improved resolution will be important for our presentations at the LTD-17 conference in Japan in Q3. We have also hired Cameron Flynn, a junior in physics at the university of New Hampshire, as a summer student to work on the MMC detector project. If he turns out to be as smart and as strong in the lab as his letters of recommendation and his interview performance suggests, we will try to attract him into one of the bay area universities for his Ph.D. and recruit him to LLNL for his thesis research.

  18. Report on Ultra-high Resolution Gamma- / X-ray Analysis of Uranium Skull Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S; Velazquez, M; Drury, O; Salaymeh, S

    2009-11-02

    We have utilized the high energy resolution and high peak-to-background ratio of superconducting TES {gamma}-detectors at very low energies for non-destructive analysis of a skull oxide derived from reprocessed nuclear fuel. Specifically, we demonstrate that superconducting detectors can separate and analyze the strong actinide emission lines in the spectral region below 60 keV that are often obscured in {gamma}-measurements with conventional Ge detectors.

  19. Ultra-high resolution mass separator--application to detection of nuclear weapons tests.

    Science.gov (United States)

    Peräjärvi, K; Eronen, T; Elomaa, V-V; Hakala, J; Jokinen, A; Kettunen, H; Kolhinen, V S; Laitinen, M; Moore, I D; Penttilä, H; Rissanen, J; Saastamoinen, A; Toivonen, H; Turunen, J; Aystö, J

    2010-03-01

    A Penning trap-based purification process having a resolution of about 1 ppm is reported. In this context, we present for the first time a production method for the most complicated and crucially important nuclear weapons test signature, (133m)Xe. These pure xenon samples are required by the Comprehensive Nuclear-Test-Ban Treaty Organization to standardize and calibrate the worldwide network of xenon detectors. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Development of compact and ultra-high-resolution spectrograph with multi-GHz optical frequency comb

    Science.gov (United States)

    Endo, Mamoru; Sukegawa, Takashi; Silva, Alissa; Kobayashi, Yohei

    2014-08-01

    In recent years, a calibration method for an astronomical spectrograph using an optical frequency comb (OFC) with a repetition rate of more than ten GHz has been developed successfully [1-5]. But controlling filtering cavities that are used for thinning out longitudinal modes precludes long term stability. The super-mode noise coming from the fundamental repetition rate is an additional problem. We developed a laser-diode pumped Yb:Y2O3 ceramic oscillator, which enabled the generation of 4-GHz (maximum repetition rate of 6.7 GHz) pulse trains directly with a spectrum width of 7 nm (full-width half-maximum, FWHM), and controlled its optical frequency within a MHz level of accuracy using a beat note between the 4-GHz laser and a 246-MHz Yb-fiber OFC. The optical frequency of the Yb-fiber OFC was phase locked to a Rb clock frequency standard. Furthermore we also built a table-top multi-pass spectrograph with a maximum frequency resolution of 600 MHz and a bandwidth of 1 nm using a large-size high-efficiency transmission grating. The resolution could be changed by selecting the number of passes through the grating. This spectrograph could resolve each longitudinal mode of our 4-GHz OFC clearly, and more than 10% throughput was obtained when the resolution was set to 600 MHz. We believe that small and middle scale astronomical observatories could easily implement such an OFC-calibrated spectrograph.

  1. Ultra high resolution neutron scattering: Neutron Resonance Spin-Echo and Larmor Diffraction

    Science.gov (United States)

    Walters, Andrew; Keller, Thomas; Keimer, Bernhard

    2012-02-01

    The TRISP spectrometer at the FRM II neutron source near Munich, Germany, is a unique world-leading neutron scattering instrument which employs the Neutron Resonance Spin-Echo technique (NRSE). Linewidths of dispersive excitations with energy transfers up to 50 meV can be measured with an energy resolution in the μeV range without the restrictive flux limitations that normally apply to high resolution neutron triple-axis spectrometers. Pioneering studies on the electron-phonon interaction in elemental superconductorsootnotetextP. Aynajian et al., Science 319 1509 (2008) and the lifetimes of magnetic excitations in archetypal magnetic systems will be reviewed.ootnotetextS. Bayrakci et al., Science 312 1928 (2006) The instrument can also be used as a Larmor diffractometer, enabling d-spacings to be measured with a resolution of δdd ˜10-6, i.e. more than one order of magnitude more sensitive than conventional diffraction techniques.ootnotetextC. Pfleiderer et al., Science 316 1871 (2007) Ongoing and future NRSE and Larmor diffraction projects will be outlined, especially in regard to prospective studies which will take full advantage of the new low temperature and high pressure sample environment capabilities now available at TRISP.

  2. SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W; Laura Tovo, L

    2008-07-08

    The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms

  3. Electron beam excitation assisted optical microscope with ultra-high resolution.

    Science.gov (United States)

    Inami, Wataru; Nakajima, Kentaro; Miyakawa, Atsuo; Kawata, Yoshimasa

    2010-06-07

    We propose electron beam excitation assisted optical microscope, and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.

  4. Optical Analysis of an Ultra-High resolution Two-Mirror Soft X-Ray Microscope

    Science.gov (United States)

    Shealy, David L.; Wang, Cheng; Hoover, Richard B.

    1994-01-01

    This work has summarized for a Schwarzschild microscope some relationships between numerical aperture (NA), magnification, diameter of the primary mirror, radius of curvature of the secondary mirror, and the total length of the microscope. To achieve resolutions better than a spherical Schwarzschild microscope of 3.3 Lambda for a perfectly aligned and fabricated system. it is necessary to use aspherical surfaces to control higher-order aberrations. For an NA of 0.35, the aspherical Head microscope provides diffraction limited resolution of 1.4 Lambda where the aspherical surfaces differ from the best fit spherical surface by approximately 1 micrometer. However, the angle of incidence varies significantly over the primary and the secondary mirrors, which will require graded multilayer coatings to operate near peak reflectivities. For higher numerical apertures, the variation of the angle of incidence over the secondary mirror surface becomes a serious problem which must be solved before multilayer coatings can be used for this application. Tolerance analysis of the spherical Schwarzschild microscope has shown that water window operations will require 2-3 times tighter tolerances to achieve a similar performance for operations with 130 A radiation. Surface contour errors have been shown to have a significant impact on the MTF and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror.

  5. A new processing scheme for ultra-high resolution direct infusion mass spectrometry data

    Science.gov (United States)

    Zielinski, Arthur T.; Kourtchev, Ivan; Bortolini, Claudio; Fuller, Stephen J.; Giorio, Chiara; Popoola, Olalekan A. M.; Bogialli, Sara; Tapparo, Andrea; Jones, Roderic L.; Kalberer, Markus

    2018-04-01

    High resolution, high accuracy mass spectrometry is widely used to characterise environmental or biological samples with highly complex composition enabling the identification of chemical composition of often unknown compounds. Despite instrumental advancements, the accurate molecular assignment of compounds acquired in high resolution mass spectra remains time consuming and requires automated algorithms, especially for samples covering a wide mass range and large numbers of compounds. A new processing scheme is introduced implementing filtering methods based on element assignment, instrumental error, and blank subtraction. Optional post-processing incorporates common ion selection across replicate measurements and shoulder ion removal. The scheme allows both positive and negative direct infusion electrospray ionisation (ESI) and atmospheric pressure photoionisation (APPI) acquisition with the same programs. An example application to atmospheric organic aerosol samples using an Orbitrap mass spectrometer is reported for both ionisation techniques resulting in final spectra with 0.8% and 8.4% of the peaks retained from the raw spectra for APPI positive and ESI negative acquisition, respectively.

  6. Progress, Performance, and Prospects of Ultra-High Resolution Microcalorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Andrew Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, D. A. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Croce, Mark Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rabin, Michael W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ullom, J. N. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Univ. of Colorado, Boulder, CO (United States)

    2017-01-23

    In 2005 the LANL/NIST team used a single high-resolution microcalorimeter detector to measure the gamma-ray spectrum of a plutonium sample. After more than a decade of research and development on this topic, both the technology and our general understanding of its capabilities have advanced greatly, such that a progress review is now timely. We examine the scenario of a large-scale reprocessing plant and conclude that current non-destructive analysis (NDA) methods are inadequate to safeguard such a facility to the desired levels, leading to undesirable dependence on massspectrometry (MS) destructive analysis (DA). The development of microcalorimeter detectors is intended to close the performance gap between NDA and DA methods to address the needs of nuclear facilities.

  7. Cryogenic microcalorimeter system for ultra-high resolution alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Rabin, Michael W.; Hoover, Andrew S.; Bacrania, Minesh K.; Croce, Mark P.; Hoteling, N.J.; Lamont, S.P.; Plionis, A.A.; Dry, D.E.; Ullom, J.N.; Bennett, D.A.; Horansky, R.; Kotsubo, V.; Cantor, R.

    2009-01-01

    Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with ∼15 uK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by a commercial SQUID readout system and digitized for further analysis, This paper will discuss design and operation of our microcalorimeter alpha spectrometer, and will show recent results.

  8. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution

    Directory of Open Access Journals (Sweden)

    Iman Esmaeil Zadeh

    2017-11-01

    Full Text Available Single-photon detection with high efficiency, high time resolution, low dark counts, and high photon detection rates is crucial for a wide range of optical measurements. Although efficient detectors have been reported before, combining all performance parameters in a single device remains a challenge. Here, we show a broadband NbTiN superconducting nanowire detector with an efficiency exceeding 92%, over 150 MHz photon detection rate, and a dark count rate below 130 Hz operated in a Gifford-McMahon cryostat. Furthermore, with careful optimization of the detector design and readout electronics, we reach an ultra-low system timing jitter of 14.80 ps (13.95 ps decoupled while maintaining high detection efficiencies (>75%.

  9. Urban reconnaissance with an ultra high resolution ground vehicle mounted laser radar (Invited Paper)

    Science.gov (United States)

    Morrison, Ryan A.; Turner, Jeffrey T.; Barwick, Mike; Hardaway, G. Mike

    2005-05-01

    The Urban Recon Advanced Concepts Technology Demonstration (ACTD) has integrated a high rate 3-D laser scanner with an Inertial Navigation System (INS). The moving vehicle LIDAR sensors capture the entire street-level scene in 3-D including people, cars, building windows, doorways, and the entire gamut of urban clutter. The vehicle can travel at speeds of 20-30 mph collecting 5cm - 10cm resolution 3-D point cloud data of the street-level scene. The system collects below-the-roofline data as a vehicle moves down the street at a rate of 250,000 points per second. Data must not only be collected at a high rate of speed, but the data must rapidly be processed and ready for visualization and analysis to be useful. Software has been created, extended or integrated to support the collection, processing and visualization of these data. The hardware and software which Urban Recon has assembled and integrated will be examined.

  10. Energy optimization of a regular macromolecular crystallography beamline for ultra-high-resolution crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Gerd; Ginell, Stephan L.; Chen, Julian C. -H.

    2015-01-01

    A practical method for operating existing undulator synchrotron beamlines at photon energies considerably higher than their standard operating range is described and applied at beamline 19-ID of the Structural Biology Center at the Advanced Photon Source enabling operation at 30 keV. Adjustments to the undulator spectrum were critical to enhance the 30 keV flux while reducing the lower- and higher-energy harmonic contamination. A Pd-coated mirror and Al attenuators acted as effective low- and high-bandpass filters. The resulting flux at 30 keV, although significantly lower than with X-ray optics designed and optimized for this energy, allowed for accurate data collection on crystals of the small protein crambin to 0.38 Å resolution.

  11. Ultra High Resolution Imaging of Enceladus Tiger Stripe Thermal Emission with Cassini CIRS

    Science.gov (United States)

    Spencer, John R.; Gorius, Nicolas; Howett, Carly; Verbiscer, Anne J.; Cassini CIRS Team

    2017-10-01

    In October 2015, Cassini flew within 48 km of Enceladus’ south pole. The spacecraft attitude was fixed during the flyby, but the roll angle of the spacecraft was chosen so that the remote sensing instrument fields of view passed over Damascus, Baghdad, and Cairo Sulci. The Composite Infrared Spectrometer (CIRS) instrument obtained a single interferometer scan during the flyby, using a special mode, enabled by a flight software update, which bypassed numerical filters to improve the fidelity of the interferograms. This generated a total of 11 interferograms, at 5 contiguous spatial locations for each of the 7 - 9 micron (FP4) and 9 - 17 micron (FP3) focal planes, and a single larger field of view for the 17 - 500 micron focal plane (FP1). Strong spikes were seen in the interferograms when crossing each of the sulci, due to the rapid passage of warm material through the field of view. For FP3 and FP4, the temporal variations of the signals from the 5 contiguous detectors can be used to generated 5-pixel-wide images of the thermal emission, which show excellent agreement between the two focal planes. FP3 and FP4 spatial resolution, limited along track by the 5 msec time sampling of the interferogram, and across track by the CIRS field of view, is a remarkable 40 x 40 meters. At this resolution, the tiger stripe thermal emission shows a large amount of structure, including both continuous emission along the fractures, discrete hot spots less than 100 meters across, and extended emission with complex structure.

  12. Ultra-high resolution optical coherence tomography analysis of bull's eye maculopathy in chloroquine users

    Directory of Open Access Journals (Sweden)

    Celso Morita

    2014-06-01

    Full Text Available Purpose: Register and compare anatomical changes, structural and quantitative found in optical coherence tomography Stratus and Topcon 3D in chronic users of chloroquine. Methods: Five patients were diagnosed with toxic "bull's eye" maculopathy was submitted to macular optical coherence tomography examination (Stratus and Topcon 3D. Results: Both tools demonstrated an increase reflectivity of choriocapillaris unit just foveal retinal pigment epithelium atrophy. However, Topcon 3D provided to all patients better description of the line corresponding to the transition between inner and outer segments of photoreceptors. Using the possibility of assembling threedimensional images and subtraction selective retinal layers, we found a lesion with a target that reflects the greater thickness of retinal pigment epithelium in central and parafoveal region that is matched to preserve macular photoreceptors. Conclusion: it was observed better resolution and faster image capture by Topcon 3D than Stratus OCT, that provided more detailed analysis of the line corresponding to transition between outer and inner segment of photoreceptors in macular region. With Topcon 3D, it was possible to evaluate soundly the thickness of retinal pigment epithelium in central and parafoveal region that caused an increase reflectivity of choriocapillaris creating a image with a target unpublished before.

  13. CubeSats in Hydrology: Ultra-High Resolution Insights into Vegetation Dynamics and Terrestrial Evaporation

    KAUST Repository

    McCabe, Matthew

    2017-12-01

    Satellite-based remote sensing has generally necessitated a trade-off between spatial resolution and temporal frequency, affecting the capacity to observe fast hydrological processes and rapidly changing land surface conditions. An avenue for overcoming these spatiotemporal restrictions is the concept of using constellations of satellites, as opposed to the mission focus exemplified by the more conventional space-agency approach to earth observation. Referred to as CubeSats, these platforms offer the potential to provide new insights into a range of earth system variables and processes. Their emergence heralds a paradigm shift from single-sensor launches to an operational approach that envisions tens to hundreds of small, lightweight and comparatively inexpensive satellites placed into a range of low earth orbits. Although current systems are largely limited to sensing in the optical portion of the electromagnetic spectrum, we demonstrate the opportunity and potential that CubeSats present the hydrological community via the retrieval of vegetation dynamics and terrestrial evaporation and foreshadow future sensing capabilities.

  14. Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry

    Directory of Open Access Journals (Sweden)

    K. E. Altieri

    2009-04-01

    Full Text Available Wet deposition is an important removal mechanism for atmospheric organic matter, and a potentially important input for receiving ecosystems, yet less than 50% of rainwater organic matter is considered chemically characterized. Precipitation samples collected in New Jersey, USA, were analyzed by negative ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS. Elemental compositions of 552 unique molecular species were determined in the mass range 50–500 Da in the rainwater. Four main groups of organic compounds were identified: compounds containing carbon, hydrogen, and oxygen (CHO only, sulfur (S containing CHOS compounds, nitrogen (N containing CHON compounds, and S- and N- containing CHONS compounds. Organic acids commonly identified in precipitation were detected in the rainwater. Within the four main groups of compounds detected in the rainwater, oligomers, organosulfates, and nitrooxy-organosulfates were assigned based on elemental formula comparisons. The majority of the compounds identified are products of atmospheric reactions and are known contributors to secondary organic aerosol (SOA formed from gas phase, aerosol phase, and in-cloud reactions in the atmosphere. It is suggested that the large uncharacterized component of SOA is the main contributor to the large uncharacterized component of rainwater organic matter.

  15. Microarray-based ultra-high resolution discovery of genomic deletion mutations

    Science.gov (United States)

    2014-01-01

    Background Oligonucleotide microarray-based comparative genomic hybridization (CGH) offers an attractive possible route for the rapid and cost-effective genome-wide discovery of deletion mutations. CGH typically involves comparison of the hybridization intensities of genomic DNA samples with microarray chip representations of entire genomes, and has widespread potential application in experimental research and medical diagnostics. However, the power to detect small deletions is low. Results Here we use a graduated series of Arabidopsis thaliana genomic deletion mutations (of sizes ranging from 4 bp to ~5 kb) to optimize CGH-based genomic deletion detection. We show that the power to detect smaller deletions (4, 28 and 104 bp) depends upon oligonucleotide density (essentially the number of genome-representative oligonucleotides on the microarray chip), and determine the oligonucleotide spacings necessary to guarantee detection of deletions of specified size. Conclusions Our findings will enhance a wide range of research and clinical applications, and in particular will aid in the discovery of genomic deletions in the absence of a priori knowledge of their existence. PMID:24655320

  16. An Ultra-High Resolution Investigation of 1 Ma Old Ice from Allan Hills Blue Ice Area, Antarctica

    Science.gov (United States)

    Clifford, H.; Mayewski, P. A.; Higgins, J. A.; Introne, D.; Kurbatov, A.; Sneed, S. B.; Spaulding, N. E.; Yan, Y.

    2016-12-01

    Here we present continuous sampling data from the oldest known ice recovered from a 125.64 -126.31 m depth interval at the Allan Hills Blue Ice area in Antarctica during 2010-2011 field season. The ca. 1-Ma old ice is investigated with our unique sampling technique, laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) and complimented by traditional glaciochemical measurements. The LA-ICP-MS achieves a realistic measure of variability of select chemical species from an ultra-high resolution (as low as 121 mm), non-destructive sampling method. Elements are measured using single-element or multi-element line scans, producing a continuous LA profile along the length of the ice sample. Multiple single-element passes for Ca, Na and Fe along with a multi-element pass for Na, Al and Mg were ablated and analyzed along parallel tracks down the ice core. Additionally, we further examine the 1-Ma old ice using novel very-high resolution (3 mm) stable water ∂18O and ∂D sampling system Our results show evidence of environmental signals preserved within the 1-Ma old ice. The signals from the stable water isotope measurements and ablated chemical elements, previously established as a proxy for marine and continental (dust) air-mass sources, show fluctuations and variability that are consistent with existing ice core based paleoclimate records. The extensive data collected by the combination of these techniques may enable us to provide a snapshot of climate that operated before transition from 40ka to 100ka world. Research was funded by Division of Polar Programs NSF

  17. Ensonifying Change: Repeat Ultra-High-Resolution Surveys in Monterey Canyon before and after Passage of a Turbidity Current

    Science.gov (United States)

    Wolfson-Schwehr, M.; Paull, C. K.; Caress, D. W.; Carvajal, C.; Thomas, H. J.; Maier, K. L.; Parsons, D. R.; Simmons, S.

    2017-12-01

    Turbidity currents are one of the primary means of global sediment transport, yet our understanding of how they interact with the seafloor is hindered by the limited number of direct measurements. The Coordinated Canyon Experiment (CCE; October 2015 - April 2017) has made great strides in addressing this issue by providing direct measurements of turbidity currents and detailed observations of the resulting seafloor change in Monterey Canyon, offshore California. Here we focus on a section of the canyon at 1850-m water depth, where a Seafloor Instrument Node (SIN) recorded passage of three turbidity currents using a range of sensors, including three upward-looking acoustic Doppler current profilers. The fastest event at this site had a maximum velocity of 2.8 m/s, and dragged the 430-Kg SIN 26 m down-canyon. Repeat mapping surveys were conducted four times during the CCE, utilizing a prototype ultra-high-resolution mapping system mounted on the ROV Doc Ricketts. The survey platform hosts a 400-kHz Reson 7125 multibeam sonar, a 3DatDepth SL1 subsea LiDAR, two stereo color cameras, and a Kearfott SeaDevil INS. At a survey altitude of 2.5 m above the bed, the system provides remarkable 5-cm resolution multibeam bathymetry, 1-cm resolution LiDAR bathymetry, and 2-mm resolution photomosaics, and can cover a 100-m2 survey area. Surveys of the SIN site prior to and after the fastest event show areas of net deposition/erosion of 60 cm and 20 cm, respectively. Net deposition occurred in the topographic lows between bedforms, while erosion was focused on the bedform crests. At the end of the experiment, transects of sediment cores were taken by ROV within areas of net deposition. The cores show a variety of sedimentary facies, including muds, sands, gravel, and organic rich layers. Gravel layers have sharp erosive bases. The repeat surveys document the dynamic nature of flute-like scours as the flow events erode and deposit material along the canyon floor, as well as the

  18. Analysis of Biophysical Mechanisms of Gilgai Microrelief Formation in Dryland Swelling Soils Using Ultra-High Resolution Aerial Imagery

    Science.gov (United States)

    Krell, N.; DeCarlo, K. F.; Caylor, K. K.

    2015-12-01

    Microrelief formations ("gilgai"), which form due to successive wetting-drying cycles typical of swelling soils, provide ecological hotspots for local fauna and flora, including higher and more robust vegetative growth. The distribution of these gilgai suggests a remarkable degree of regularity. However, it is unclear to what extent the mechanisms that drive gilgai formation are physical, such as desiccation-induced fracturing, or biological in nature, namely antecedent vegetative clustering. We investigated gilgai genesis and pattern formation in a 100 x 100 meter study area with swelling soils in a semiarid grassland at the Mpala Research Center in central Kenya. Our ongoing experiment is composed of three 9m2 treatments: we removed gilgai and limited vegetative growth by herbicide application in one plot, allowed for unrestricted seed dispersal in another, and left gilgai unobstructed in a control plot. To estimate the spatial frequencies of the repeating patterns of gilgai, we obtained ultra-high resolution (0.01-0.03m/pixel) images with an unmanned aerial vehicle (UAV) from which digital elevation models were also generated. Geostatistical analyses using wavelet and fourier methods in 1- and 2-dimensions were employed to characterize gilgai size and distribution. Preliminary results support regular spatial patterning across the gilgaied landscape and heterogeneities may be related to local soil properties and biophysical influences. Local data on gilgai and fracture characteristics suggest that gilgai form at characteristic heights and spacing based on fracture morphology: deep, wide cracks result in large, highly vegetated mounds whereas shallow cracks, induced by animal trails, are less correlated with gilgai size and shape. Our experiments will help elucidate the links between shrink-swell processes and gilgai-vegetation patterning in high activity clay soils and advance our understanding of the mechanisms of gilgai formation in drylands.

  19. Classification of Ultra-High Resolution Orthophotos Combined with DSM Using a Dual Morphological Top Hat Profile

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2015-12-01

    Full Text Available New aerial sensors and platforms (e.g., unmanned aerial vehicles (UAVs are capable of providing ultra-high resolution remote sensing data (less than a 30-cm ground sampling distance (GSD. This type of data is an important source for interpreting sub-building level objects; however, it has not yet been explored. The large-scale differences of urban objects, the high spectral variability and the large perspective effect bring difficulties to the design of descriptive features. Therefore, features representing the spatial information of the objects are essential for dealing with the spectral ambiguity. In this paper, we proposed a dual morphology top-hat profile (DMTHP using both morphology reconstruction and erosion with different granularities. Due to the high dimensional feature space, we have proposed an adaptive scale selection procedure to reduce the feature dimension according to the training samples. The DMTHP is extracted from both images and Digital Surface Models (DSM to obtain complimentary information. The random forest classifier is used to classify the features hierarchically. Quantitative experimental results on aerial images with 9-cm and UAV images with 5-cm GSD are performed. Under our experiments, improvements of 10% and 2% in overall accuracy are obtained in comparison with the well-known differential morphological profile (DMP feature, and superior performance is observed over other tested features. Large format data with 20,000 × 20,000 pixels are used to perform a qualitative experiment using the proposed method, which shows its promising potential. The experiments also demonstrate that the DSM information has greatly enhanced the classification accuracy. In the best case in our experiment, it gives rise to a classification accuracy from 63.93% (spectral information only to 94.48% (the proposed method.

  20. Ultra-high-resolution dual-source CT for forensic dental visualization-discrimination of ceramic and composite fillings.

    Science.gov (United States)

    Jackowski, C; Wyss, M; Persson, A; Classens, M; Thali, M J; Lussi, A

    2008-07-01

    Dental identification is the most valuable method to identify human remains in single cases with major postmortem alterations as well as in mass casualties because of its practicability and demanding reliability. Computed tomography (CT) has been investigated as a supportive tool for forensic identification and has proven to be valuable. It can also scan the dentition of a deceased within minutes. In the present study, we investigated currently used restorative materials using ultra-high-resolution dual-source CT and the extended CT scale for the purpose of a color-encoded, in scale, and artifact-free visualization in 3D volume rendering. In 122 human molars, 220 cavities with 2-, 3-, 4- and 5-mm diameter were prepared. With presently used filling materials (different composites, temporary filling materials, ceramic, and liner), these cavities were restored in six teeth for each material and cavity size (exception amalgam n = 1). The teeth were CT scanned and images reconstructed using an extended CT scale. Filling materials were analyzed in terms of resulting Hounsfield units (HU) and filling size representation within the images. Varying restorative materials showed distinctively differing radiopacities allowing for CT-data-based discrimination. Particularly, ceramic and composite fillings could be differentiated. The HU values were used to generate an updated volume-rendering preset for postmortem extended CT scale data of the dentition to easily visualize the position of restorations, the shape (in scale), and the material used which is color encoded in 3D. The results provide the scientific background for the application of 3D volume rendering to visualize the human dentition for forensic identification purposes.

  1. The 2006 Pingtung Earthquake Doublet Triggered Seafloor Liquefaction: Revisiting the Evidence with Ultra-High-Resolution Seafloor Mapping

    Science.gov (United States)

    Su, C. C.; Chen, T. T.; Paull, C. K.; Gwiazda, R.; Chen, Y. H.; Lundsten, E. M.; Caress, D. W.; Hsu, H. H.; Liu, C. S.

    2017-12-01

    Since Heezen and Ewing's (1952) classic work on the 1929 Grand Banks earthquake, the damage of submarine cables have provided critical information on the nature of seafloor mass movements or sediment density flows. However, the understanding of the local conditions that lead to particular seafloor failures earthquakes trigger is still unclear. The Decemeber 26, 2006 Pingtung earthquake doublet which occurred offshore of Fangliao Township, southwestern Taiwan damaged 14 submarine cables between Gaoping slope to the northern terminus of the Manila Trench. Local fisherman reported disturbed waters at the head of the Fangliao submarine canyon, which lead to conjectures that eruptions of mud volcanoes which are common off the southwestern Taiwan. Geophysical survey were conducted to evaluate this area which revealed a series of faults, liquefied strata, pockmarks and acoustically transparent sediments with doming structures which may relate to the submarine groundwater discharge. Moreover, shipboard multi-beam bathymetric survey which was conducted at the east of Fangliao submarine canyon head shows over 10 km2 area with maximum depth around 40 m of seafloor subsidence after Pingtung earthquake. The north end of the subsidence is connected to the Fangliao submarine canyon where the first cable failed after Pingtung earthquake. The evidences suggests the earthquake triggered widespeard liquefaction and generated debris flows within Fangliao submarine canyon. In May 2017, an IONTU-MBARI Joint Survey Cruise (OR1-1163) was conducted on using MBARI Mapping AUV and miniROV to revisit the area where the cable damaged after Pingtung earthquake. From newly collected ultra-high-resolution (1-m lateral resolution) bathymetry data, the stair-stepped morphology is observed at the edge of canyon. The comet-shaped depressions are located along the main headwall of the seafloor failure. The new detailed bathymetry reveal details which suggest Fangliao submarine canyon head is

  2. Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry

    Science.gov (United States)

    Altieri, K. E.; Hastings, M. G.; Peters, A. J.; Sigman, D. M.

    2012-04-01

    Atmospheric water soluble organic nitrogen (WSON) is a subset of the complex organic matter in aerosols and rainwater, which impacts cloud condensation processes and aerosol chemical and optical properties and may play a significant role in the biogeochemical cycle of N. However, its sources, composition, connections to inorganic N, and variability are largely unknown. Rainwater samples were collected on the island of Bermuda (32.27° N, 64.87° W), which experiences both anthropogenic and marine influenced air masses. Samples were analyzed by ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to chemically characterize the WSON. Elemental compositions of 2281 N containing compounds were determined over the mass range m/z+ 50 to 500. The five compound classes with the largest number of elemental formulas identified, in order from the highest number of formulas to the lowest, contained carbon, hydrogen, oxygen, and nitrogen (CHON+), CHON compounds that contained sulfur (CHONS+), CHON compounds that contained phosphorus (CHONP+), CHON compounds that contained both sulfur and phosphorus (CHONSP+), and compounds that contained only carbon, hydrogen, and nitrogen (CHN+). Compared to rainwater collected in the continental USA, average O:C ratios of all N containing compound classes were lower in the marine samples whereas double bond equivalent values were higher, suggesting a reduced role of secondary formation mechanisms. Despite their prevalence in continental rainwater, no organonitrates or nitrooxy-organosulfates were detected, but there was an increased presence of organic S and organic P containing compounds in the marine rainwater. Cluster analysis showed a clear chemical distinction between samples collected during the cold season (October to March) which have anthropogenic air mass origins and samples collected during the warm season (April to September) with remote marine air mass origins. This, in

  3. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  4. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Augustinack, Jean C.; Nguyen, Khoa

    2015-01-01

    level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 0.13 mm isotropic resolution (on average) using customized hardware. The images were manually segmented into 13 different hippocampal substructures using a protocol specifically designed for this study; precise...... datasets with different types of MRI contrast. The results show that the atlas and companion segmentation method: 1) can segment T1 and T2 images, as well as their combination, 2) replicate findings on mild cognitive impairment based on high-resolution T2 data, and 3) can discriminate between Alzheimer......'s disease subjects and elderly controls with 88% accuracy in standard resolution (1 mm) T1 data, significantly outperforming the atlas in FreeSurfer version 5.3 (86% accuracy) and classification based on whole hippocampal volume (82% accuracy)....

  5. Research and Development of a portable microfocus x-ray system capable of providing ultra-high resolutions images of improvised explosive devices

    International Nuclear Information System (INIS)

    Korkala, G.

    1989-01-01

    The utilization of x-ray screening has long been a recognized valuable tool as a means to evaluate and identify suspect articles for possible improvised explosive devices. Recent bombings indicate an increase in technical sophistication by the terrorist which demand additional means to further the possibility of detecting these devices before they reach their target or detonate. This paper discusses history of the use of x-ray and the design parameters of a portable micro-focus x-ray system capable of providing ultra high resolution radiographs as well as being able to be used with additional state-of-the-art imaging systems

  6. High-resolution T2-weighted cervical cancer imaging : a feasibility study on ultra-high-field 7.0-T MRI with an endorectal monopole antenna

    OpenAIRE

    Hoogendam, Jaap; van Kalleveen, Irene; Arteaga de Castro, Catalina; Raaijmakers, AJE; Verheijen, René H M; van Den Bosch, Maurice A A J; Klomp, DWJ; Zweemer, RP; Veldhuis, Wouter B.

    2017-01-01

    Objectives We studied the feasibility of high-resolution T2-weighted cervical cancer imaging on an ultra-high-field 7.0-T magnetic resonance imaging (MRI) system using an endorectal antenna of 4.7-mm thickness. Methods A feasibility study on 20 stage IB1?IIB cervical cancer patients was conducted. All underwent pre-treatment 1.5-T MRI. At 7.0-T MRI, an external transmit/receive array with seven dipole antennae and a single endorectal monopole receive antenna were used. Discomfort levels were ...

  7. Varenicline increases in vivo striatal dopamine D2/3 receptor binding: an ultra-high-resolution pinhole [123I]IBZM SPECT study in rats

    International Nuclear Information System (INIS)

    Crunelle, Cleo L.; Wit, Tim C. de; Bruin, Kora de; Ramakers, Ruud M.; Have, Frans van der; Beekman, Freek J.; Brink, Wim van den; Booij, Jan

    2012-01-01

    Introduction: Ex vivo storage phosphor imaging rat studies reported increased brain dopamine D 2/3 receptor (DRD 2/3 ) availability following treatment with varenicline, a nicotinergic drug. However, ex vivo studies can only be performed using cross-sectional designs. Small-animal imaging offers the opportunity to perform serial assessments. We evaluated whether high-resolution pinhole single photon emission computed tomography (SPECT) imaging in rats was able to reproduce previous ex vivo findings. Methods: Rats were imaged for baseline striatal DRD 2/3 availability using ultra-high-resolution pinhole SPECT (U-SPECT-II) and [ 123 I]IBZM as a radiotracer, and randomized to varenicline (n=7; 2 mg/kg) or saline (n=7). Following 2 weeks of treatment, a second scan was acquired. Results: Significantly increased striatal DRD 2/3 availability was found following varenicline treatment compared to saline (time⁎treatment effect): posttreatment difference in binding potential between groups corrected for initial baseline differences was 2.039 (P=.022), indicating a large effect size (d=1.48). Conclusions: Ultra-high-resolution pinhole SPECT can be used to assess varenicline-induced changes in DRD 2/3 availability in small laboratory animals over time. Future small-animal studies should include imaging techniques to enable repeated within-subjects measurements and reduce the amount of animals.

  8. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength.

    Science.gov (United States)

    Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W

    2017-11-10

    Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters

    Science.gov (United States)

    Ierodiaconou, Daniel; Schimel, Alexandre C. G.; Kennedy, David; Monk, Jacquomo; Gaylard, Grace; Young, Mary; Diesing, Markus; Rattray, Alex

    2018-01-01

    Habitat mapping data are increasingly being recognised for their importance in underpinning marine spatial planning. The ability to collect ultra-high resolution (cm) multibeam echosounder (MBES) data in shallow waters has facilitated understanding of the fine-scale distribution of benthic habitats in these areas that are often prone to human disturbance. Developing quantitative and objective approaches to integrate MBES data with ground observations for predictive modelling is essential for ensuring repeatability and providing confidence measures for habitat mapping products. Whilst supervised classification approaches are becoming more common, users are often faced with a decision whether to implement a pixel based (PB) or an object based (OB) image analysis approach, with often limited understanding of the potential influence of that decision on final map products and relative importance of data inputs to patterns observed. In this study, we apply an ensemble learning approach capable of integrating PB and OB Image Analysis from ultra-high resolution MBES bathymetry and backscatter data for mapping benthic habitats in Refuge Cove, a temperate coastal embayment in south-east Australia. We demonstrate the relative importance of PB and OB seafloor derivatives for the five broad benthic habitats that dominate the site. We found that OB and PB approaches performed well with differences in classification accuracy but not discernible statistically. However, a model incorporating elements of both approaches proved to be significantly more accurate than OB or PB methods alone and demonstrate the benefits of using MBES bathymetry and backscatter combined for class discrimination.

  10. Qualitative and quantitative determination of YiXinShu Tablet using ultra high performance liquid chromatography with Q Exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry.

    Science.gov (United States)

    Sun, Zhi; Li, Zhuolun; Zuo, Lihua; Wang, Zhenhui; Zhou, Lin; Shi, Yingying; Kang, Jian; Zhu, Zhenfeng; Zhang, Xiaojian

    2017-11-01

    To clarify and quantify the chemical profile of YiXinShu Tablet rapidly, a feasible and accurate strategy was developed by applying ultra high performance liquid chromatography with Q Exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry. A total of 105 components were identified, including 25 phenanthraquinones, 11 lactones, 19 lignans, 24 acids, and 26 other compounds. Among them, 26 major compounds were unambiguously detected by comparing with reference standards. And 19 of these compounds in three batches of YiXinShu Tablet were selected for quantitative determination. (Z)-Ligustilide, salvianic acid A, salvianolic acid A, salvianolic acid B, and rosmarinic acid were abundant in these three batches with contents over 1 mg/g. The established analysis methods were examined to be accurate and feasible. The results show that the ultra high performance liquid chromatography with Q Exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry method has a powerful qualitative ability and promising quantitative application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ultra-high resolution C-Arm CT arthrography of the wrist: Radiation dose and image quality compared to conventional multidetector computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Werncke, Thomas, E-mail: Werncke.Thomas@mh-hannover.de [Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Sonnow, Lena; Meyer, Bernhard C. [Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Lüpke, Matthias [University of Veterinary Medicine Hannover, Institute for General Radiology and Medical Physics, Bischofsholer Damm 15, 30173 Hannover (Germany); Hinrichs, Jan; Wacker, Frank K.; Falck, Christian von [Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany)

    2017-04-15

    Objective: Objective of this phantom and cadaveric study was to compare the effective radiation dose (ED) and image quality (IQ) between C-arm computed tomography (CACT) using an ultra-high resolution 1 × 1 binning with a standard 16-slice CT (MDCT) arthrography of the wrist. Methods: ED was determined with thermoluminescence dosimetry using an anthropomorphic phantom and different patient positions. Imaging was conducted in 10 human cadaveric wrists after tri-compartmental injection of diluted iodinated contrast material and a wire phantom. IQ of MDCT was compared with CACT reconstructed with a soft (CACT1) and sharp (CACT2) kernel. High and low contrast resolution was determined. Three radiologists assessed IQ of wrist structures and occurrence of image artifacts using a 5-point Likert scale. Results: ED of MDCT was comparable to standard CACT (4.3 μSv/3.7 μSv). High contrast resolution was best for CACT2, decreased to CACT1 and MDCT. Low contrast resolution increased between CACT2 and MDCT (P < 0.001). IQ was best for CACT2 (1.3 ± 0.5), decreased to CACT1 (1.9 ± 0.6) and MDCT (3.5 ± 0.6). Non-compromising artifacts were only reported for CACT. Conclusions: The results of this phantom and cadaveric study indicate that ultra-high resolution C-Arm CT arthrography of the wrist bears the potential to outperform MDCT arthrography in terms of image quality and workflow at the cost of mildly increasing image artifacts while radiation dose to the patient is comparably low for both, MDCT and C-Arm CT.

  12. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible (3)He/10 T cryostat.

    Science.gov (United States)

    von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  13. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible 3He/10 T cryostat

    Science.gov (United States)

    von Allwörden, H.; Ruschmeier, K.; Köhler, A.; Eelbo, T.; Schwarz, A.; Wiesendanger, R.

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped 3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  14. Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging.

    Science.gov (United States)

    Meyer, Mathias; Haubenreisser, Holger; Raupach, Rainer; Schmidt, Bernhard; Lietzmann, Florian; Leidecker, Christianne; Allmendinger, Thomas; Flohr, Thomas; Schad, Lothar R; Schoenberg, Stefan O; Henzler, Thomas

    2015-01-01

    To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm(2) removes the necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p generation examination as compared to the first and second generation DSCT. Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. • Omitting the z-axis-filter allows a reduction in radiation dose of 50% • A smaller focal spot of 0.2 mm (2) significantly improves spatial resolutionUltra-high-resolution temporal-bone-CT helps to gain diagnostic information of the middle/inner ear.

  15. Food contaminant analysis at ultra-high mass resolution: application of hybrid linear ion trap - orbitrap mass spectrometry for the determination of the polyether toxins, azaspiracids, in shellfish.

    LENUS (Irish Health Repository)

    2010-10-30

    The biotoxins, azaspiracids (AZAs), from marine phytoplankton accumulate in shellfish and affect human health by causing severe gastrointestinal disturbance, diarrhea, nausea and vomiting. Specific and sensitive methods have been developed and validated for the determination of the most commonly occurring azaspiracid analogs. An LTQ Orbitrap mass spectrometer is a hybrid instrument that combines linear ion trap (LIT) mass spectrometry (MS) with high-resolution Fourier transform (FT) MS and this was exploited to perform simultaneous ultra-high-resolution full-scan MS analysis and collision-induced dissociation (CID) tandem mass spectrometry (MS\\/MS). Using the highest mass resolution setting (100,000 FWHM) in full-scan mode, the methodology was validated for the determination of six AZAs in mussel (Mytilus galloprovincialis) tissue extracts. Ultra-high mass resolution, together with a narrow mass tolerance window of ±2 mDa, dramatically improved detection sensitivity. In addition to employing chromatographic resolution to distinguish between the isomeric azaspiracid analogs, AZA1\\/AZA6 and AZA4\\/AZA5, higher energy collisionally induced dissociation (HCD) fragmentation on selected precursor ions were performed in parallel with full-scan FTMS. Using HCD MS\\/MS, most precursor and product ion masses were determined within 1 ppm of the theoretical m\\/z values throughout the mass spectral range and this enhanced the reliability of analyte identity.For the analysis of mussels (M. galloprovincialis), the method limit of quantitation (LOQ) was 0.010 µg\\/g using full-scan FTMS and this was comparable with the LOQ (0.007 µg\\/g) using CID MS\\/MS. The repeatability data were; intra-day RSD% (1.8-4.4%; n = 6) and inter-day RSD% (4.7-8.6%; n = 3). Application of these methods to the analysis of mussels (M. edulis) that were naturally contaminated with azaspiracids, using high-resolution full-scan Orbitrap MS and low-resolution CID MS\\/MS, produced

  16. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    Science.gov (United States)

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime.

    Science.gov (United States)

    Vila-Comamala, Joan; Gorelick, Sergey; Färm, Elina; Kewish, Cameron M; Diaz, Ana; Barrett, Ray; Guzenko, Vitaliy A; Ritala, Mikko; David, Christian

    2011-01-03

    X-ray microscopy based on Fresnel zone plates is a powerful technique for sub-100 nm resolution imaging of biological and inorganic materials. Here, we report on the modeling, fabrication and characterization of zone-doubled Fresnel zone plates for the multi-keV regime (4-12 keV). We demonstrate unprecedented spatial resolution by resolving 15 nm lines and spaces in scanning transmission X-ray microscopy, and focusing diffraction efficiencies of 7.5% at 6.2 keV photon energy. These developments represent a significant step towards 10 nm spatial resolution for hard X-ray energies of up to 12 keV.

  18. Ultra-high resolution HLA genotyping and allele discovery by highly multiplexed cDNA amplicon pyrosequencing

    Directory of Open Access Journals (Sweden)

    Lank Simon M

    2012-08-01

    Full Text Available Abstract Background High-resolution HLA genotyping is a critical diagnostic and research assay. Current methods rarely achieve unambiguous high-resolution typing without making population-specific frequency inferences due to a lack of locus coverage and difficulty in exon-phase matching. Achieving high-resolution typing is also becoming more challenging with traditional methods as the database of known HLA alleles increases. Results We designed a cDNA amplicon-based pyrosequencing method to capture 94% of the HLA class I open-reading-frame with only two amplicons per sample, and an analogous method for class II HLA genes, with a primary focus on sequencing the DRB loci. We present a novel Galaxy server-based analysis workflow for determining genotype. During assay validation, we performed two GS Junior sequencing runs to determine the accuracy of the HLA class I amplicons and DRB amplicon at different levels of multiplexing. When 116 amplicons were multiplexed, we unambiguously resolved 99%of class I alleles to four- or six-digit resolution, as well as 100% unambiguous DRB calls. The second experiment, with 271 multiplexed amplicons, missed some alleles, but generated high-resolution, concordant typing for 93% of class I alleles, and 96% for DRB1 alleles. In a third, preliminary experiment we attempted to sequence novel amplicons for other class II loci with mixed success. Conclusions The presented assay is higher-throughput and higher-resolution than existing HLA genotyping methods, and suitable for allele discovery or large cohort sampling. The validated class I and DRB primers successfully generated unambiguously high-resolution genotypes, while further work is needed to validate additional class II genotyping amplicons.

  19. Enhanced Isotopic Ratio Outlier Analysis (IROA Peak Detection and Identification with Ultra-High Resolution GC-Orbitrap/MS: Potential Application for Investigation of Model Organism Metabolomes

    Directory of Open Access Journals (Sweden)

    Yunping Qiu

    2018-01-01

    Full Text Available Identifying non-annotated peaks may have a significant impact on the understanding of biological systems. In silico methodologies have focused on ESI LC/MS/MS for identifying non-annotated MS peaks. In this study, we employed in silico methodology to develop an Isotopic Ratio Outlier Analysis (IROA workflow using enhanced mass spectrometric data acquired with the ultra-high resolution GC-Orbitrap/MS to determine the identity of non-annotated metabolites. The higher resolution of the GC-Orbitrap/MS, together with its wide dynamic range, resulted in more IROA peak pairs detected, and increased reliability of chemical formulae generation (CFG. IROA uses two different 13C-enriched carbon sources (randomized 95% 12C and 95% 13C to produce mirror image isotopologue pairs, whose mass difference reveals the carbon chain length (n, which aids in the identification of endogenous metabolites. Accurate m/z, n, and derivatization information are obtained from our GC/MS workflow for unknown metabolite identification, and aids in silico methodologies for identifying isomeric and non-annotated metabolites. We were able to mine more mass spectral information using the same Saccharomyces cerevisiae growth protocol (Qiu et al. Anal. Chem 2016 with the ultra-high resolution GC-Orbitrap/MS, using 10% ammonia in methane as the CI reagent gas. We identified 244 IROA peaks pairs, which significantly increased IROA detection capability compared with our previous report (126 IROA peak pairs using a GC-TOF/MS machine. For 55 selected metabolites identified from matched IROA CI and EI spectra, using the GC-Orbitrap/MS vs. GC-TOF/MS, the average mass deviation for GC-Orbitrap/MS was 1.48 ppm, however, the average mass deviation was 32.2 ppm for the GC-TOF/MS machine. In summary, the higher resolution and wider dynamic range of the GC-Orbitrap/MS enabled more accurate CFG, and the coupling of accurate mass GC/MS IROA methodology with in silico fragmentation has great

  20. The design of a novel tip enhanced near-field scanning probe microscope for ultra-high resolution optical imaging

    Science.gov (United States)

    Nowak, Derek Brant

    Traditional light microscopy suffers from the diffraction limit, which limits the spatial resolution to lambda/2. The current trend in optical microscopy is the development of techniques to bypass the diffraction limit. Resolutions below 40 nm will make it possible to probe biological systems by imaging the interactions between single molecules and cell membranes. These resolutions will allow for the development of improved drug delivery mechanisms by increasing our understanding of how chemical communication within a cell occurs. The materials sciences would also benefit from these high resolutions. Nanomaterials can be analyzed with Raman spectroscopy for molecular and atomic bond information, or with fluorescence response to determine bulk optical properties with tens of nanometer resolution. Near-field optical microscopy is one of the current techniques, which allows for imaging at resolutions beyond the diffraction limit. Using a combination of a shear force microscope (SFM) and an inverted optical microscope, spectroscopic resolutions below 20 nm have been demonstrated. One technique, in particular, has been named tip enhanced near-field optical microscopy (TENOM). The key to this technique is the use of solid metal probes, which are illuminated in the far field by the excitation wavelength of interest. These probes are custom-designed using finite difference time domain (FDTD) modeling techniques, then fabricated with the use of a focused ion beam (FIB) microscope. The measure of the quality of probe design is based directly on the field enhancement obtainable. The greater the field enhancement of the probe, the more the ratio of near-field to far-field background contribution will increase. The elimination of the far-field signal by a decrease of illumination power will provide the best signal-to-noise ratio in the near-field images. Furthermore, a design that facilitates the delocalization of the near-field imaging from the far-field will be beneficial

  1. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    Science.gov (United States)

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  2. Ultra-high resolution steady-state micro-thermometry using a bipolar direct current reversal technique

    Science.gov (United States)

    Wu, Jason Yingzhi; Wu, Wei; Pettes, Michael Thompson

    2016-09-01

    The suspended micro-thermometry measurement technique is one of the most prominent methods for probing the in-plane thermal conductance of low dimensional materials, where a suspended microdevice containing two built-in platinum resistors that serve as both heater and thermometer is used to measure the temperature and heat flow across a sample. The presence of temperature fluctuations in the sample chamber and background thermal conductance through the device, residual gases, and radiation are dominant sources of error when the sample thermal conductance is comparable to or smaller than the background thermal conductance, on the order of 300 pW/K at room temperature. In this work, we present a high resolution thermal conductance measurement scheme in which a bipolar direct current reversal technique is adopted to replace the lock-in technique. We have demonstrated temperature resolution of 1.0-2.6 mK and thermal conductance resolution of 1.7-26 pW/K over a temperature range of 30-375 K. The background thermal conductance of the suspended microdevice is determined accurately by our method and allows for straightforward isolation of this parasitic signal. This simple and high-throughput measurement technique yields an order of magnitude improvement in resolution over similarly configured lock-in amplifier techniques, allowing for more accurate investigation of fundamental phonon transport mechanisms in individual nanomaterials.

  3. Energy resolution measurements of LaBr3:Ce scintillating crystals with an ultra-high quantum efficiency photomultiplier tube

    International Nuclear Information System (INIS)

    Pani, R.; Cinti, M.N.; Scafe, R.; Pellegrini, R.; Vittorini, F.; Bennati, P.; Ridolfi, S.; Lo Meo, S.; Mattioli, M.; Baldazzi, G.; Pisacane, F.; Navarria, F.; Moschini, G.; Boccaccio, P.; Orsolini Cencelli, V.; Sacco, D.

    2009-01-01

    The performance of the new prototype of high quantum efficiency PMT (43% at 380 nm), Hamamatsu R7600U-200, was studied coupled to a LaBr 3 :Ce crystal with the size of o12.5 mmx12.5 mm. The energy resolution results were compared with ones from two PMTs, Hamamatsu R7600U and R6231MOD, with 22% and 30% quantum efficiency (QE), respectively. Moreover, the photodetectors were equipped with tapered and un-tapered voltage dividers to study the non-linearity effects on pulse height distribution, due to very high peak currents induced in the PMT by the fast and intense light pulse of LaBr 3 :Ce. The results show an energy resolution improvement with UBA PMT of about 20%, in the energy range of 80-662 keV, with respect to the BA one.

  4. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    Directory of Open Access Journals (Sweden)

    Mitch Bryson

    Full Text Available Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae and animal (e.g. gastropods assemblages at multiple spatial and temporal scales.

  5. Kite Aerial Photography for Low-Cost, Ultra-high Spatial Resolution Multi-Spectral Mapping of Intertidal Landscapes

    Science.gov (United States)

    Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J.; Bongiorno, Daniel

    2013-01-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales. PMID:24069206

  6. In-depth compositional analysis of water-soluble and -insoluble organic substances in fine (PM2.5) airborne particles using ultra-high-resolution 15T FT-ICR MS and GC×GC-TOFMS.

    Science.gov (United States)

    Choi, Jung Hoon; Ryu, Jijeong; Jeon, Sodam; Seo, Jungju; Yang, Yung-Hun; Pack, Seung Pil; Choung, Sungwook; Jang, Kyoung-Soon

    2017-06-01

    Airborne particulate matter consisting of ionic species, salts, heavy metals and carbonaceous material is one of the most serious environmental pollutants owing to its impacts on the environment and human health. Although elemental and organic carbon compounds are known to be major components of aerosols, information on the elemental composition of particulate matter remains limited because of the broad range of compounds involved and the limits of analytical instruments. In this study, we investigated water-soluble and -insoluble organic compounds in fine (PM 2.5 ) airborne particles collected during winter in Korea to better understand the elemental compositions and distributions of these compounds. To collect ultra-high-resolution mass profiles, we analyzed water-soluble and -insoluble organic compounds, extracted with water and dichloromethane, respectively, using an ultra-high-resolution 15 T Fourier transform ion cyclotron resonance (15T FT-ICR) mass spectrometer in positive ion mode (via both electrospray ionization [ESI] and atmospheric pressure photoionization [APPI] for water-extracts and via APPI for dichloromethane-extracts). In conjunction with the FT-ICR mass spectrometry (MS) data, subsequent two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) data were used to identify potentially hazardous organic components, such as polycyclic aromatic hydrocarbons. This analysis provided information on the sources of ambient particles collected during winter season and partial evidence of contributions to the acidity of organic content in PM 2.5 particles. The compositional and structural features of water-soluble and -insoluble organic compounds from PM 2.5 particles are important for understanding the potential impacts of aerosol-carried organic substances on human health and global ecosystems in future toxicological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Task-Based Modeling of a 5k Ultra-High-Resolution Medical Imaging System for Digital Breast Tomosynthesis.

    Science.gov (United States)

    Zhao, Chumin; Kanicki, Jerzy

    2017-09-01

    High-resolution, low-noise X-ray detectors based on CMOS active pixel sensor (APS) technology have demonstrated superior imaging performance for digital breast tomosynthesis (DBT). This paper presents a task-based model for a high-resolution medical imaging system to evaluate its ability to detect simulated microcalcifications and masses as lesions for breast cancer. A 3-D cascaded system analysis for a 50- [Formula: see text] pixel pitch CMOS APS X-ray detector was integrated with an object task function, a medical imaging display model, and the human eye contrast sensitivity function to calculate the detectability index and area under the ROC curve (AUC). It was demonstrated that the display pixel pitch and zoom factor should be optimized to improve the AUC for detecting small microcalcifications. In addition, detector electronic noise of smaller than 300 e - and a high display maximum luminance (>1000 cd/cm 2 ) are desirable to distinguish microcalcifications of [Formula: see text] in size. For low contrast mass detection, a medical imaging display with a minimum of 12-bit gray levels is recommended to realize accurate luminance levels. A wide projection angle range of greater than ±30° in combination with the image gray level magnification could improve the mass detectability especially when the anatomical background noise is high. On the other hand, a narrower projection angle range below ±20° can improve the small, high contrast object detection. Due to the low mass contrast and luminance, the ambient luminance should be controlled below 5 cd/ [Formula: see text]. Task-based modeling provides important firsthand imaging performance of the high-resolution CMOS-based medical imaging system that is still at early stage development for DBT. The modeling results could guide the prototype design and clinical studies in the future.

  8. Improved image quality and diagnostic potential using ultra-high-resolution computed tomography of the lung with small scan FOV: A prospective study.

    Science.gov (United States)

    Zhu, Huiyuan; Zhang, Lian; Wang, Yali; Hamal, Preeti; You, Xiaofang; Mao, Haixia; Li, Fei; Sun, Xiwen

    2017-01-01

    The aim of this study was to assess whether CT imaging using an ultra-high-resolution CT (UHRCT) scan with a small scan field of view (FOV) provides higher image quality and helps to reduce the follow-up period compared with a conventional high-resolution CT (CHRCT) scan. We identified patients with at least one pulmonary nodule at our hospital from July 2015 to November 2015. CHRCT and UHRCT scans were conducted in all enrolled patients. Three experienced radiologists evaluated the image quality using a 5-point score and made diagnoses. The paired images were displayed side by side in a random manner and annotations of scan information were removed. The following parameters including image quality, diagnostic confidence of radiologists, follow-up recommendations and diagnostic accuracy were assessed. A total of 52 patients (62 nodules) were included in this study. UHRCT scan provides a better image quality regarding the margin of nodules and solid internal component compared to that of CHRCT (P images than of CHRCT images (Pimages (P 0.05). These findings suggest that the UHRCT prototype scanner provides a better image quality of subsolid nodules compared to CHRCT and contributes significantly to reduce the patients' follow-up period.

  9. Improved image quality and diagnostic potential using ultra-high-resolution computed tomography of the lung with small scan FOV: A prospective study.

    Directory of Open Access Journals (Sweden)

    Huiyuan Zhu

    Full Text Available The aim of this study was to assess whether CT imaging using an ultra-high-resolution CT (UHRCT scan with a small scan field of view (FOV provides higher image quality and helps to reduce the follow-up period compared with a conventional high-resolution CT (CHRCT scan. We identified patients with at least one pulmonary nodule at our hospital from July 2015 to November 2015. CHRCT and UHRCT scans were conducted in all enrolled patients. Three experienced radiologists evaluated the image quality using a 5-point score and made diagnoses. The paired images were displayed side by side in a random manner and annotations of scan information were removed. The following parameters including image quality, diagnostic confidence of radiologists, follow-up recommendations and diagnostic accuracy were assessed. A total of 52 patients (62 nodules were included in this study. UHRCT scan provides a better image quality regarding the margin of nodules and solid internal component compared to that of CHRCT (P 0.05. These findings suggest that the UHRCT prototype scanner provides a better image quality of subsolid nodules compared to CHRCT and contributes significantly to reduce the patients' follow-up period.

  10. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis.

    Science.gov (United States)

    Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley

    2015-06-01

    Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Harmful Algal Bloom Characterization at Ultra-High Spatial and Temporal Resolution Using Small Unmanned Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Deon Van der Merwe

    2015-03-01

    Full Text Available Harmful algal blooms (HABs degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV. Correlations between BNDVI and BPCV follow a logarithmic model, with r2-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level.

  12. Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic X-ray scattering instrument

    Science.gov (United States)

    Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy

    2015-04-14

    A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.

  13. Single molecule real-time DNA sequencing of HLA genes at ultra-high resolution from 126 International HLA and Immunogenetics Workshop cell lines.

    Science.gov (United States)

    Turner, T R; Hayhurst, J D; Hayward, D R; Bultitude, W P; Barker, D J; Robinson, J; Madrigal, J A; Mayor, N P; Marsh, S G E

    2018-02-01

    The hyperpolymorphic HLA genes play important roles in disease and transplantation and act as genetic markers of migration and evolution. A panel of 107 B-lymphoblastoid cell lines (B-LCLs) was established in 1987 at the 10th International Histocompatibility Workshop as a resource for the immunogenetics community. These B-LCLs are well characterised and represent diverse ethnicities and HLA haplotypes. Here we have applied Pacific Biosciences' Single Molecule Real-Time (SMRT) DNA sequencing to HLA type 126 B-LCL, including the 107 International HLA and Immunogenetics Workshop (IHIW) cells, to ultra-high resolution. Amplicon sequencing of full-length HLA class I genes (HLA-A, -B and -C) and partial length HLA class II genes (HLA-DRB1, -DQB1 and -DPB1) was performed. We typed a total of 931 HLA alleles, 895 (96%) of which were consistent with the typing in the IPD-IMGT/HLA Database (Release 3.27.0, January 20, 2017), with 595 (64%) typed at a higher resolution. Discrepant types, including novel alleles (n = 10) and changes in zygosity (n = 13), as well as previously unreported types (n = 34) were observed. In addition, patterns of linkage disequilibrium were distinguished by four-field resolution typing of HLA-B and HLA-C. By improving and standardising the HLA typing of these B-LCLs, we have ensured their continued usefulness as a resource for the immunogenetics community in the age of next generation DNA sequencing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI.

    Science.gov (United States)

    Iglesias, Juan Eugenio; Augustinack, Jean C; Nguyen, Khoa; Player, Christopher M; Player, Allison; Wright, Michelle; Roy, Nicole; Frosch, Matthew P; McKee, Ann C; Wald, Lawrence L; Fischl, Bruce; Van Leemput, Koen

    2015-07-15

    Automated analysis of MRI data of the subregions of the hippocampus requires computational atlases built at a higher resolution than those that are typically used in current neuroimaging studies. Here we describe the construction of a statistical atlas of the hippocampal formation at the subregion level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 0.13 mm isotropic resolution (on average) using customized hardware. The images were manually segmented into 13 different hippocampal substructures using a protocol specifically designed for this study; precise delineations were made possible by the extraordinary resolution of the scans. In addition to the subregions, manual annotations for neighboring structures (e.g., amygdala, cortex) were obtained from a separate dataset of in vivo, T1-weighted MRI scans of the whole brain (1mm resolution). The manual labels from the in vivo and ex vivo data were combined into a single computational atlas of the hippocampal formation with a novel atlas building algorithm based on Bayesian inference. The resulting atlas can be used to automatically segment the hippocampal subregions in structural MRI images, using an algorithm that can analyze multimodal data and adapt to variations in MRI contrast due to differences in acquisition hardware or pulse sequences. The applicability of the atlas, which we are releasing as part of FreeSurfer (version 6.0), is demonstrated with experiments on three different publicly available datasets with different types of MRI contrast. The results show that the atlas and companion segmentation method: 1) can segment T1 and T2 images, as well as their combination, 2) replicate findings on mild cognitive impairment based on high-resolution T2 data, and 3) can discriminate between Alzheimer's disease subjects and elderly controls with 88% accuracy in standard resolution (1mm) T1 data, significantly outperforming the atlas in FreeSurfer version 5.3 (86% accuracy) and

  15. [Secondary Structure of Aβ(1-16) Complexes with Zinc: A Study in the Gas Phase Using Deuterium/Hydrogen Exchange and Ultra-High-Resolution Mass Spectrometry].

    Science.gov (United States)

    Kostyukevich, Yu I; Kononikhin, A S; Indeykina, M I; Popov, I A; Bocharov, K V; Spassky, A I; Kozin, S A; Makarov, A A; Nikolaev, E N

    2017-01-01

    Complexes of peptide fragment 1-16 of beta-amyloid with transition metals play an important role in the development of a broad class of neurodegenerative diseases, which determines the interest in investigating the structures of these complexes. In this work, we have applied the method of the deuterium/hydrogen exchange in combination with ultra-high-resolution mass spectrometry to study conformational changes in (1-16) beta-amyloid peptide induced by binding of zinc(II) atoms. The efficiency of the deuterium/hydrogen exchange depended on the number of zinc atoms bound to the peptide and on the temperature of the ionization source region. Deuterium/hydrogen exchange reactions have been performed directly in the ionization source. The number of exchanges decreased considerably with an increasing numbers of zinc atoms. The relationship has been described with a damped exponential curve, which indicated that the binding of zinc atoms altered the conformation of the peptide ion by making it less open, which limits the access to inner areas of the molecule.

  16. Analysis of impact of temperature and saltwater on Nannochloropsis salina bio-oil production by ultra high resolution APCI FT-ICR MS

    KAUST Repository

    Sanguineti, Michael Mario

    2015-05-01

    Concentrated Nannochloropsis salina paste was reconstituted in distilled water and synthetic saltwater and processed at 250°C and 300°C via hydrothermal liquefaction. The resulting bio-oils yielded a diverse distribution of product classes, as analyzed by ultra high resolution APCI FT-ICR MS. The organic fractions were analyzed and both higher temperatures and distilled water significantly increase the number of total compounds present and the number of product classes. Major bio-oil products consisted of N1O1, hydrocarbon, and O2 classes, while O1, O4, S1, N1O2, and N2O2 classes represented the more significant minor classes. Both chlorine and sulfur containing compounds were detected in both distilled and saltwater reactions, while fewer numbers of chlorine and sulfur containing products were present in the organic fraction of the saltwater reactions. Further refinement to remove the chlorine and sulfur contents appears necessary with marine microalgal bio-oils produced via hydrothermal liquefaction. The higher heating value (MJ/kg) as calculated by the Boie equation of classes of interest in the bio-oil reveals a significant potential of algal hydrothermal liquefaction products as a sustainable and renewable fuel feedstock. © 2015.

  17. [Screening and confirmation of 24 hormones in cosmetics by ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry].

    Science.gov (United States)

    Li, Zhaoyong; Wang, Fengmei; Niu, Zengyuan; Luo, Xin; Zhang, Gang; Chen, Junhui

    2014-05-01

    A method of ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry (UPLC-LTQ/Orbitrap MS) was established to screen and confirm 24 hormones in cosmetics. Various cosmetic samples were extracted with methanol. The extract was loaded onto a Waters ACQUITY UPLC BEH C18 column (50 mm x 2.1 mm, 1.7 microm) using a gradient elution of acetonitrile/water containing 0.1% (v/v) formic acid for the separation. The accurate mass of quasi-molecular ion was acquired by full scanning of electrostatic field orbitrap. The rapid screening was carried out by the accurate mass of quasi-molecular ion. The confirmation analysis for targeted compounds was performed with the retention time and qualitative fragments obtained by data dependent scan mode. Under the optimal conditions, the 24 hormones were routinely detected with mass accuracy error below 3 x 10(-6) (3 ppm), and good linearities were obtained in their respective linear ranges with correlation coefficients higher than 0.99. The LODs (S/N = 3) of the 24 compounds were hormones in 50 cosmetic samples. The results demonstrate that the method is a useful tool for the rapid screening and identification of the hormones in cosmetics.

  18. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim

    2012-05-04

    RATIONALE To enhance the ionization efficiencies in atmospheric pressure photoionization mass spectrometry a dopant with favorable ionization energy such as chlorobenzene is typically used. These dopants are typically toxic and difficult to mix with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs) was developed and optimized using ultra high performance liquid chromatography (UPLC) coupled to atmospheric pressure photoionization high-resolution mass spectrometry. Various single and multicomponent mixed dopants consisting of ethanol, chlorobenzene, bromobenzene, anisole and toluene were evaluated. RESULTS Fourteen out of eighteen PAHs were successfully separated and detected at low pg/μL levels within 5 min with high mass accuracy ≤4 ppm. The optimal mixed multicomponent dopant consisted of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v %) and it improved the limit of detection (LOD) by 2- to 10-fold for the tested PAHs compared to those obtained with pure chlorobenzene. CONCLUSIONS A novel multicomponent dopant that contains 99% ethanol and 1% mixture of chlorobenzene, bromobenzene and anisole was found to be an effective dopant mixture to ionize PAHs. The developed UPLC multicomponent dopant assisted atmospheric pressure photoionization high-resolution mass spectrometry offered a rapid non targeted screening method for detecting the PAHs at low pg/;μL levels within a 5 min run time with high mass accuracy a;circ4 ppm. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Exo-metabolome of Pseudovibrio sp. FO-BEG1 analyzed by ultra-high resolution mass spectrometry and the effect of phosphate limitation.

    Directory of Open Access Journals (Sweden)

    Stefano Romano

    Full Text Available Oceanic dissolved organic matter (DOM is an assemblage of reduced carbon compounds, which results from biotic and abiotic processes. The biotic processes consist in either release or uptake of specific molecules by marine organisms. Heterotrophic bacteria have been mostly considered to influence the DOM composition by preferential uptake of certain compounds. However, they also secrete a variety of molecules depending on physiological state, environmental and growth conditions, but so far the full set of compounds secreted by these bacteria has never been investigated. In this study, we analyzed the exo-metabolome, metabolites secreted into the environment, of the heterotrophic marine bacterium Pseudovibrio sp. FO-BEG1 via ultra-high resolution mass spectrometry, comparing phosphate limited with phosphate surplus growth conditions. Bacteria belonging to the Pseudovibrio genus have been isolated worldwide, mainly from marine invertebrates and were described as metabolically versatile Alphaproteobacteria. We show that the exo-metabolome is unexpectedly large and diverse, consisting of hundreds of compounds that differ by their molecular formulae. It is characterized by a dynamic recycling of molecules, and it is drastically affected by the physiological state of the strain. Moreover, we show that phosphate limitation greatly influences both the amount and the composition of the secreted molecules. By assigning the detected masses to general chemical categories, we observed that under phosphate surplus conditions the secreted molecules were mainly peptides and highly unsaturated compounds. In contrast, under phosphate limitation the composition of the exo-metabolome changed during bacterial growth, showing an increase in highly unsaturated, phenolic, and polyphenolic compounds. Finally, we annotated the detected masses using multiple metabolite databases. These analyses suggested the presence of several masses analogue to masses of known bioactive

  20. Determination of steroid hormones and their metabolite in several types of meat samples by ultra high performance liquid chromatography-Orbitrap high resolution mass spectrometry.

    Science.gov (United States)

    López-García, Marina; Romero-González, Roberto; Garrido Frenich, Antonia

    2018-03-09

    A new analytical method based on ultra-high performance liquid chromatography (UHPLC) coupled to Orbitrap high resolution mass spectrometry (Orbitrap-HRMS) has been developed for the determination of steroid hormones (hydrocortisone, cortisone, progesterone, prednisone, prednisolone, testosterone, melengesterol acetate, hydrocortisone-21-acetate, cortisone-21-acetate, testosterone propionate, 17α-methyltestosterone, 6α-methylprednisolone and medroxyprogesterone) and their metabolite (17α-hydroxyprogesterone) in three meat samples (chicken, pork and beef). Two different extraction approaches were tested (QuEChERS "quick, easy, cheap, effective, rugged and safe" and "dilute and shoot"), observing that the QuEChERS method provided the best results in terms of recovery. A clean-up step was applied comparing several sorbents, obtaining the best results when florisil and aluminum oxide were used. The optimized method was validated, obtaining suitable results for all validation parameters in the three meat matrices evaluated. Recovery values ranged from 70% to 103% (except for prednisone in beef samples), meanwhile repeatability and reproducibility were obtained at values lower than 18% and 21%, respectively. The limit of quantification (LOQ) was established for most of the compounds at 1.0 μg/kg, except for testosterone in chicken and hydrocortisone-21-acetate and cortisone-21-acetate in pork at 2.0 μg/kg. Decision limit (CCα) and detection capability (CCβ) values ranged from 1.0-2.7 μg/kg and 1.9-5.5 μg/kg, respectively, in the three matrices. Finally, thirty one meat samples were analyzed and two hormones, progesterone and hydrocortisone, were detected in a beef and pork sample at 1.7 and 2.8 μg/kg respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The variability of the isotopic signal during the last Glacial as seen from the ultra-high resolution NEEM and NorthGRIP ice cores.

    Science.gov (United States)

    Gkinis, Vasileios; Møllesøe Vinther, Bo; Terkelsen Holme, Christian; Capron, Emilie; Popp, Trevor James; Olander Rasmussen, Sune

    2017-04-01

    The continuity and high resolution available in polar ice core records constitutes them an excellent tool for the study of the stadial-interstadial transitions, notably through the study of the water isotopic composition of polar precipitation (δ18O, δD ). The quest for the highest resolution possible has resulted in experimental sampling and analysis techniques that have yielded data sets with a potential to change the current picture on the climatic signals of the last Glacial. Specifically, the ultra-high resolution δ18O signals from the NorthGRIP and NEEM ice cores, present a variability at multi-annual and decadal time scales, whose interpretation gives rise to further puzzling though interesting questions and an obvious paradox. By means of simple firn isotope diffusion and densification calculations, we firstly demonstrate that the variability of observed signals is unlikely to be due to post depositional effects that are known to occur on the surface of the Greenland ice cap and alter the δ18O composition of the precipitated snow. Assuming specific values for the δ18O sensitivity to temperature (commonly referred to as the δ18O slope), we estimate that the temperature signal during the stadials has a variability that extents from interstadial to extremely cold levels with peak-to-peak fluctuations of almost 35 K occurring in a few years. Similarly, during interstadial phases the temperature varies rapidly from stadial to Holocene levels while the signal variability shows a maximum during the LGM, with magnitudes of up to 15‰ that translate to ≈ 50 K when a δ18O slope of 0.3‰K-1 is used. We assess the validity of these results and comment on the stability of the δ18O slope. Driven by a simple logical queue, we conclude that the observed δ18O variability reflects a climatic signal although not necessarily attributed 100% to temperature changes. From this we can assume that there occur climatic mechanisms during the previously thought stable

  2. Sea Level History in 3D: Early results of an ultra-high resolution MCS survey across IODP Expedition 313 drillsites

    Science.gov (United States)

    Mountain, G. S.; Kucuk, H. M.; Nedimovic, M. R.; Austin, J. A., Jr.; Fulthorpe, C.; Newton, A.; Baldwin, K.; Johnson, C.; Stanley, J. N.; Bhatnagar, T.

    2015-12-01

    Although globally averaged sea level is rising at roughly 3 mm/yr (and is accelerating), rates of local sea-level change measured at coastlines may differ from this number by a factor of two or more; at some locations, sea level may even be falling. This is due to local processes that can match or even reverse the global trend, making it clear that reliable predictions of future impacts of sea-level rise require a firm understanding of processes at the local level. The history of local sea-level change and shoreline response is contained in the geologic record of shallow-water sediments. We report on a continuing study of sea-level history in sediments at the New Jersey continental margin, where compaction and glacial isostatic adjustment are currently adding 2 mm/yr to the globally averaged rise. We collected 570 sq km of ultra-high resolution 3D MCS data aboard the R/V Langseth in June-July 2015; innovative recording and preliminary results are described by Nedimovic et al. in this same session. The goal was to provide regional context to coring and logging at IODP Exp 313 sites 27-29 that were drilled 750 m into the New Jersey shelf in 2009. These sites recovered a nearly continuous record of post-Eocene sediments from non-marine soils, estuaries, shoreface, delta front, pro-delta and open marine settings. Existing seismic data are good but are 2D high-resolution profiles at line spacings too wide to enable mapping of key nearshore features. The Langseth 3D survey used shallow towing of a tuned air gun array to preserve high frequencies, and twenty-four 50-m PCables each 12.5 apart provided 6.25 x 3.125 m common-midpoint bins along seventy-seven 50-km sail lines. With this especially dense spatial resolution of a pre-stack time migrated volume we expect to map rivers, incised valleys, barrier islands, inlets and bays, pro-delta clinoforms, tidal deltas, sequence boundaries, debris flow aprons, and more. Seismic attributes linked to sedimentary facies and

  3. Sub-metric Resolution FWI of Ultra-High-Frequency Marine Reflection Seismograms. A Remote Sensing Tool for the Characterisation of Shallow Marine Geohazard

    Science.gov (United States)

    Provenzano, G.; Vardy, M. E.; Henstock, T.; Zervos, A.

    2017-12-01

    A quantitative high-resolution physical model of the top 100 meters of the sub-seabed is of key importance for a wide range of shallow geohazard scenarios: identification of potential shallow landsliding, monitoring of gas storage sites, and assessment of offshore structures stability. Cur- rently, engineering-scale sediment characterisation relies heavily on direct sampling of the seabed and in-situ measurements. Such an approach is expensive and time-consuming, as well as liable to alter the sediment properties during the coring process. As opposed to reservoir-scale seismic exploration, ultra-high-frequency (UHF, 0.2-4.0 kHz) multi-channel marine reflection seismic data are most often limited to a to semi-quantitative interpretation of the reflection amplitudes and facies geometries, leaving largely unexploited its intrinsic value as a remote characterisation tool. In this work, we develop a seismic inversion methodology to obtain a robust sub-metric resolution elastic model from limited-offset, limited-bandwidth UHF seismic reflection data, with minimal pre-processing and limited a priori information. The Full Waveform Inversion is implemented as a stochastic optimiser based upon a Genetic Algorithm, modified in order to improve the robustness against inaccurate starting model populations. Multiple independent runs are used to create a robust posterior model distribution and quantify the uncertainties on the solution. The methodology has been applied to complex synthetic examples and to real datasets acquired in areas prone to shallow landsliding. The inverted elastic models show a satisfactory match with the ground-truths and a good sensitivity to relevant variations in the sediment texture and saturation state. We apply the methodology to a range of synthetic consolidating slopes under different loading conditions and sediment properties distributions. Our work demonstrates that the seismic inversion of UHF data has the potential to become an important

  4. Ultra-high-resolution C-arm flat-detector CT angiography evaluation reveals 3-fold higher association rate for sporadic intracranial cavernous malformations and developmental venous anomalies: a retrospective study in consecutive 58 patients with 60 cavernous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Kocak, Burak [Aksaray State Hospital, Department of Radiology, Aksaray (Turkey); Kizilkilic, Osman; Kocer, Naci; Islak, Civan [Istanbul University, Department of Radiology, Cerrahpasa Medical Faculty, Istanbul (Turkey); Oz, Buge; Bakkaloglu, Dogu Vuralli [Istanbul University, Department of Pathology, Cerrahpasa Medical Faculty, Istanbul (Turkey); Isler, Cihan [Istanbul University, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul (Turkey)

    2017-06-15

    The imaging and surgical literature has confusing association rates for the association between sporadic intracranial cavernous malformations (CMs) and developmental venous anomalies (DVAs). In this study, our purpose was to determine the association rate using ultra-high-resolution C-arm flat-detector CT angiography (FDCTA) and compare it with literature. Fifty-eight patients with 60 sporadic intracranial CMs that underwent an FDCTA study were included in our retrospective study. Re-evaluation of radiological data was performed based on the criteria defined by authors. Isotropic volumetric reconstructions with ultra-high resolution (voxel size of 102 μm{sup 3} for initial; 67 μm{sup 3} and 32 μm{sup 3} for further evaluation) were used for assessment. Sixteen patients underwent surgery for excision of their CMs. Fifty-one of all patients (87.9 %) were associated with a DVA. Undefined local venous structures (UD-LVSs) were observed in the remaining 7 patients (12.1 %). The strength of interobserver agreement was excellent [kappa(k) coefficient = 0.923]. Ultra-high-resolution FDCTA evaluation of CMs and DVAs reveals 3-fold higher association rate compared to the literature. FDCTA for patients with sporadic CMs could help identify the associated DVAs that remained undetected or unclear with other imaging modalities, which can be useful in decision-making processes, planning surgery, and during operation. (orig.)

  5. Detection of anabolic and androgenic steroids and/or their esters in horse hair using ultra-high performance liquid chromatography-high resolution mass spectrometry.

    Science.gov (United States)

    Kwok, Karen Y; Choi, Timmy L S; Kwok, Wai Him; Wong, Jenny K Y; Wan, Terence S M

    2017-04-14

    Anabolic and androgenic steroids (AASs) are a class of prohibited substances banned in horseracing at all times. The common approach for controlling the misuse of AASs in equine sports is by detecting the presence of AASs and/or their metabolites in urine and blood samples using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). This approach, however, often falls short as the duration of effect for many AASs are longer than their detection time in both urine and blood. As a result, there is a high risk that such AASs could escape detection in their official race-day samples although they may have been used during the long period of training. Hair analysis, on the other hand, can afford significantly longer detection windows. In addition, the identification of synthetic ester derivatives of AASs in hair, particularly for the endogenous ones, can provide unequivocal proof of their exogenous origin. This paper describes the development of a sensitive method (at sub to low parts-per-billion or ppb levels) for detecting 48 AASs and/or their esters in horse hair using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Decontaminated horse hair was pulverised and subjected to in-situ liquid-liquid extraction in a mixture of hexane - ethyl acetate (7:3, v/v) and phosphate buffer (0.1M, pH 9.5), followed by additional clean-up using mixed-mode solid-phase extraction. The final extract was analysed using UHPLC-HRMS in the positive electrospray ionisation (ESI) mode with both full scan and parallel reaction monitoring (PRM). This method was validated for qualitative identification purposes. Validation data, including method specificity, method sensitivity, extraction recovery, method precision and matrix effect are presented. Method applicability was demonstrated by the successful detection and confirmation of testosterone propionate in a referee hair sample. To our knowledge, this was

  6. Detection and Segmentation of Vine Canopy in Ultra-High Spatial Resolution RGB Imagery Obtained from Unmanned Aerial Vehicle (UAV: A Case Study in a Commercial Vineyard

    Directory of Open Access Journals (Sweden)

    Carlos Poblete-Echeverría

    2017-03-01

    Full Text Available The use of Unmanned Aerial Vehicles (UAVs in viticulture permits the capture of aerial Red-Green-Blue (RGB images with an ultra-high spatial resolution. Recent studies have demonstrated that RGB images can be used to monitor spatial variability of vine biophysical parameters. However, for estimating these parameters, accurate and automated segmentation methods are required to extract relevant information from RGB images. Manual segmentation of aerial images is a laborious and time-consuming process. Traditional classification methods have shown satisfactory results in the segmentation of RGB images for diverse applications and surfaces, however, in the case of commercial vineyards, it is necessary to consider some particularities inherent to canopy size in the vertical trellis systems (VSP such as shadow effect and different soil conditions in inter-rows (mixed information of soil and weeds. Therefore, the objective of this study was to compare the performance of four classification methods (K-means, Artificial Neural Networks (ANN, Random Forest (RForest and Spectral Indices (SI to detect canopy in a vineyard trained on VSP. Six flights were carried out from post-flowering to harvest in a commercial vineyard cv. Carménère using a low-cost UAV equipped with a conventional RGB camera. The results show that the ANN and the simple SI method complemented with the Otsu method for thresholding presented the best performance for the detection of the vine canopy with high overall accuracy values for all study days. Spectral indices presented the best performance in the detection of Plant class (Vine canopy with an overall accuracy of around 0.99. However, considering the performance pixel by pixel, the Spectral indices are not able to discriminate between Soil and Shadow class. The best performance in the classification of three classes (Plant, Soil, and Shadow of vineyard RGB images, was obtained when the SI values were used as input data in trained

  7. Chromatographic column evaluation for the untargeted profiling of glucosinolates in cauliflower by means of ultra-high performance liquid chromatography coupled to high resolution mass spectrometry.

    Science.gov (United States)

    Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Montone, Carmela Maria; Piovesana, Susy; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2018-03-01

    The untargeted profiling is a promising approach for the characterization of secondary metabolites in biological matrices. Thanks to the recent rapid development of high-resolution mass spectrometry (HRMS) instrumentations, the number of applications by untargeted approaches for biological samples profiling has widely increased in the recent years. Despite the high potentialities of HRMS, however, a major issue in natural products analysis often arises in the upstream process of compounds separation. A separation technique is necessary to avoid phenomena such as signal suppression, and it is especially needed in the presence of isomeric metabolites, which are otherwise indistinguishable. Glucosinolates (GLSs), a group of secondary metabolites widely distributed among plants, resulted to be associated to the prevention of some serious diseases, such as cancer. This led to the development of several methods for the analysis of GLSs in vegetables tissues. The issue of GLSs chromatographic separation has been widely studied in the past because of the difficulty in the analysis of this highly polar and variable class of compounds. Several alternatives to reversed phase (RP) chromatography, sometimes not compatible with the coupling of liquid chromatography with mass spectrometry, have been tested for the analysis of intact GLSs. However, the availability of new stationary phases, in the last years, could allow the re-evaluation of RP chromatography for the analysis of intact GLSs. In this work, a thorough evaluation of four RP chromatographic columns for the analysis of GLSs in cauliflower (Brassica oleracea L. var. botrytis) extracts by an ultra-high performance liquid chromatographic system coupled via electrospray source to a hybrid quadrupole-Orbitrap mass spectrometer is presented. The columns tested were the following: one column Luna Omega polar C 18 , one column Kinetex Biphenyl, one column Kinetex core-shell XB-C 18 , two columns Kinetex core-shell XB-C 18

  8. Ultra High Vacuum Sputtering System

    Science.gov (United States)

    1991-07-25

    NO. NO. Washington, D.C. 20332-6448 E.. 1,1. T IT LE (Incirot Securi ty Ciassificalion) (U L t ra High Vacuum Spattering System _1__ 12. PERSONAL...ABSTRACT (Continue on reuerse it necessary and identify by bioc, number) This grant provided for the purchase of an ultra high vacuum sputtering system, for...FOR GRANT FROM DEFENSE UNIVERSITY RESEARCH INSTRUMENTATION PROGRAM Grant no. AFOSR-89-0138 Date Submitted: 27 July, 1991 Title: Ultra High Vacuum Sputtering

  9. Chemical profiling and quantification of Dan-Deng-Tong-Nao-capsule using ultra high performance liquid chromatography coupled with high resolution hybrid quadruple-orbitrap mass spectrometry.

    Science.gov (United States)

    Lv, Xiao-Jing; Sun, Zhi; Wang, Pei-Le; Yang, Jing; Xu, Tan-Ye; Jia, Qing-Quan; Li, Da-Wei; Su, Fang-Yi; Zhu, Zhen-Feng; Kang, Jian; Zhang, Xiao-Jian

    2018-01-30

    Dan-Deng-Tong-Nao capsule (DDTN) was a traditional Chinese medicine (TCM) formula, and has been widely used for the treatment of stroke clinically which caused by blood stasis. However, the bioactive substances and mechanism are unclear because of the complex compositions in DDTN. In this research, An ultra high-performance liquid chromatography (UHPLC) coupled with hybrid quadruple-orbitrap mass spectrometry (Q-Orbitrap MS) method was utilized to identify the chemical constituents of DDTN. In total, 102 compounds including diterpenes, lactones, flavonoids, and phenolic acids were identified by the accurate masses and fragmentation pathways, and 18 of them were unambiguously determined by comparison of reference standards. Besides, 12 representative compounds were simultaneously quantification analyzed and successfully applified for detecting in 9 batches of DDTN samples by UHPLC-Q-Orbitrap MS in parallel reaction monitoring (PRM) mode. The proposed approach was validated to be satisfied in terms of linearity (0.9954-0.9999), LOD (0.771ng/mL), LOQ (2.568ng/mL), intra-day precision ( <2.68%), inter-day precision ( <4.52%), repeatability ( <2.96%), stability ( <3.21%), and recovery (94.6-105.5%). The results indicate that the method of combining UHPLC with Q-Orbitrap MS is practical and efficient for the chemical clarification in DDTN, and has great potential for the integrating quality control of other traditional Chinese medicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Analysis of Non-Volatile Chemical Constituents of Menthae Haplocalycis Herba by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Lu-Lu Xu

    2017-10-01

    Full Text Available Menthae Haplocalycis herba, one kind of Chinese edible herbs, has been widely utilized for the clinical use in China for thousands of years. Over the last decades, studies on chemical constituents of Menthae Haplocalycis herba have been widely performed. However, less attention has been paid to non-volatile components which are also responsible for its medical efficacy than the volatile constituents. Therefore, a rapid and sensitive method was developed for the comprehensive identification of the non-volatile constituents in Menthae Haplocalycis herba using ultra-high performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap. Separation was performed with Acquity UPLC® BEH C18 column (2.1 mm × 100 mm, 1.7 μm with 0.2% formic acid aqueous solution and acetonitrile as the mobile phase under gradient conditions. Based on the accurate mass measurement (<5 ppm, MS/MS fragmentation patterns and different chromatographic behaviors, a total of 64 compounds were unambiguously or tentatively characterized, including 30 flavonoids, 20 phenolic acids, 12 terpenoids and two phenylpropanoids. Finally, target isolation of three compounds named Acacetin, Rosmarinic acid and Clemastanin A (first isolated from Menthae Haplocalycis herba were performed based on the obtained results, which further confirmed the deduction of fragmentation patterns and identified the compounds profile in Menthae Haplocalycis herba. Our research firstly systematically elucidated the non-volatile components of Menthae Haplocalycis herba, which laid the foundation for further pharmacological and metabolic studies. Meanwhile, our established method was useful and efficient to screen and identify targeted constituents from traditional Chinese medicine extracts.

  11. Fe- and Cu-complex formation with artificial ligands investigated by ultra-high resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS: Implications for natural metal-organic complex studies

    Directory of Open Access Journals (Sweden)

    Hannelore Waska

    2016-07-01

    Full Text Available In recent years, electrospray-ionization mass spectrometry (ESI-MS has been increasingly used to complement the bulk determination of metal-ligand equilibria, for example via competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV. However, ESI-MS speciation analyses may be impacted by instrumental artefacts such as reduction reactions, fragmentation, and adduct formation at the ESI source, changes in the ionization efficiencies of the detected species in relation to sample matrix, and peak overlaps in response to increasing sample complexity. In our study, equilibria of the known artificial ligands citrate, ethylenediaminetetraacetic acid (EDTA, 1-nitroso-2-naphthol (NN, and salicylaldoxime (SA with iron (Fe and copper (Cu were investigated by ultra-high resolution ESI-MS, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS, under a variety of sample matrix and ionization settings. The acquired mass spectra were compared with metal-ligand equilibrium data from the literature as well as an adapted speciation model. Overall, the mass spectra produced representative species mentioned in previous reports and predicted by the speciation calculations, such as Fe(Cit, Cu(Cit2, Fe(EDTA, Cu(EDTA, Fe(NN3, and Cu(SA2. The analyses furthermore revealed new species which had been hypothesized but not measured directly using other methods, for example ternary complexes of citrate with Fe and Cu, Cu(SA monomers, and the dimer Fe(SA2. Finally, parallel measurements of a Cu+SA calibration series and a Cu+SA+EDTA competition series indicated that FT-ICR-MS can produce linear responses and low detection limits analogous to those of ACSV. We propose that ultra-high resolution FT-ICR-MS can be used as a representative tool to study interactions of trace metals with artificial as well as natural, unknown ligands at the molecular level.

  12. Comprehensive chemical comparison of fuel composition and aerosol particles emitted from a ship diesel engine by gas chromatography atmospheric pressure chemical ionisation ultra-high resolution mass spectrometry with improved data processing routines.

    Science.gov (United States)

    Rüger, Christopher P; Schwemer, Theo; Sklorz, Martin; O'Connor, Peter B; Barrow, Mark P; Zimmermann, Ralf

    2017-02-01

    The analysis of petrochemical materials and particulate matter originating from combustion sources remains a challenging task for instrumental analytical techniques. A detailed chemical characterisation is essential for addressing health and environmental effects. Sophisticated instrumentation, such as mass spectrometry coupled with chromatographic separation, is capable of a comprehensive characterisation, but needs advanced data processing methods. In this study, we present an improved data processing routine for the mass chromatogram obtained from gas chromatography hyphenated to atmospheric pressure chemical ionisation and ultra high resolution mass spectrometry. The focus of the investigation was the primary combustion aerosol samples, i.e. particulate matter extracts, as well as the corresponding fossil fuels fed to the engine. We demonstrate that utilisation of the entire transient and chromatographic information results in advantages including minimisation of ionisation artefacts and a reliable peak assignment. A comprehensive comparison of the aerosol and the feed fuel was performed by applying intensity weighted average values, compound class distribution and principle component analysis. Certain differences between the aerosol generated with the two feed fuels, diesel fuel and heavy fuel oil, as well as between the aerosol and the feed were revealed. For the aerosol from heavy fuel oil, oxidised species from the CHN and CHS class precursors of the feed were predominant, whereas the CHO x class is predominant in the combustion aerosol from light fuel oil. Furthermore, the complexity of the aerosol increases significantly compared to the feed and incorporating a higher chemical space. Coupling of atmospheric pressure chemical ionisation to gas chromatography was found to be a useful additional approach for characterisation of a combustion aerosol, especially with an automated utilisation of the information from the ultra-high resolution mass spectrometer

  13. Interregional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using 18F-FDG.

    Science.gov (United States)

    Kim, J H; Son, Y D; Kim, J M; Kim, H K; Kim, Y B; Lee, C; Oh, C H

    2017-11-13

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an interregional correlation analysis of the 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using 18F-FDG. For detailed interregional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the interregional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using 18F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders.

  14. Effect of Matrix Size on the Image Quality of Ultra-high-resolution CT of the Lung: Comparison of 512 × 512, 1024 × 1024, and 2048 × 2048.

    Science.gov (United States)

    Hata, Akinori; Yanagawa, Masahiro; Honda, Osamu; Kikuchi, Noriko; Miyata, Tomo; Tsukagoshi, Shinsuke; Uranishi, Ayumi; Tomiyama, Noriyuki

    2018-01-16

    This study aimed to assess the effect of matrix size on the spatial resolution and image quality of ultra-high-resolution computed tomography (U-HRCT). Slit phantoms and 11 cadaveric lungs were scanned on U-HRCT. Slit phantom scans were reconstructed using a 20-mm field of view (FOV) with 1024 matrix size and a 320-mm FOV with 512, 1024, and 2048 matrix sizes. Cadaveric lung scans were reconstructed using 512, 1024, and 2048 matrix sizes. Three observers subjectively scored the images on a three-point scale (1 = worst, 3 = best), in terms of overall image quality, noise, streak artifact, vessel, bronchi, and image findings. The median score of the three observers was evaluated by Wilcoxon signed-rank test with Bonferroni correction. Noise was measured quantitatively and evaluated with the Tukey test. A P value of matrix had the highest resolution and was significantly better than the 1024 matrix in terms of overall quality, solid nodule, ground-glass opacity, emphysema, intralobular reticulation, honeycombing, and clarity of vessels (P matrix (P matrix size maintained the spatial resolution and improved the image quality and assessment of lung diseases, despite an increase in image noise, when compared to a 512 matrix size. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  15. Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.; Garimella, Sandilya V. B.; Webb, Ian K.; Zheng, Xueyun; Prost, Spencer A.; Sandoval, Jeremy A.; Norheim, Randolph V.; Anderson, Gordon A.; Tolmachev, Aleksey V.; Baker, Erin S.; Smith, Richard D.

    2016-09-20

    We report the development and initial evaluation of a 13-m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC and TW electrodes and positioned with a 2.75-mm inter-surface gap. Ions were effective confined between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 “U” turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, TW and RF parameters. After initial optimization the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s-1, respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled e.g., isomeric sugars (Lacto-N-fucopentaose I and Lacto-N-fucopentaose II) to be baseline resolved, and peptides from a albumin tryptic digest much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multi-pass designs.

  16. A strategy for fast screening and identification of sulfur derivatives in medicinal Pueraria species based on the fine isotopic pattern filtering method using ultra-high-resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Min [National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203 (China); Zhou, Zhe [ThermoFisher Scientific China Co., Ltd, No 6 Building, 27 Xinjinqiao Road, Shanghai 201206 (China); Guo, De-an, E-mail: daguo@simm.ac.cn [National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203 (China)

    2015-09-24

    Sulfurous compounds are commonly present in plants, fungi, and animals. Most of them were reported to possess various bioactivities. Isotopic pattern filter (IPF) is a powerful tool for screening compounds with distinct isotope pattern. Over the past decades, the IPF was used mainly to study Cl- and Br-containing compounds. To our knowledge, the algorithm was scarcely used to screen S-containing compounds, especially when combined with chromatography analyses, because the {sup 34}S isotopic ion is drastically affected by {sup 13}C{sub 2} and {sup 18}O. Thus, we present a new method for a fine isotopic pattern filter (FIPF) based on the separated M + 2 ions ({sup 12}C{sub x}{sup 1}H{sub y}{sup 16}O{sub z}{sup 32}S{sup 13}C{sub 2}{sup 18}O, {sup 12}C{sub x+2}{sup 1}H{sub y}{sup 16}O{sub z+1}{sup 34}S, tentatively named M + 2OC and M + 2S) with an ultra-high-resolution mass (100,000 FWHM @ 400 m/z) to screen sulfur derivatives in traditional Chinese medicines (TCM).This finer algorithm operates through convenient filters, including an accurate mass shift of M + 2OC and M + 2S from M and their relative intensity compared to M. The method was validated at various mass resolutions, mass accuracies, and screening thresholds of flexible elemental compositions. Using the established FIPF method, twelve S-derivatives were found in the popular medicinal used Pueraria species, and 9 of them were tentatively identified by high-resolution multiple stage mass spectrometry (HRMS{sup n}). The compounds were used to evaluate the sulfurous compounds' situation in commercially purchased Pueraria products. The strategy presented here provides a promising application of the IPF method in a new field. - Highlights: • We provide a new strategy for specifically screening of sulfurous compounds. • The fine isotopic pattern filter (FIPF) bases on separation of {sup 13}C{sub 2}+{sup 18}O and {sup 34}S. • Ultra high resolution mass (100,000 FWHM @ 400 m/z) is essential

  17. Local structure and global connectivity in the cerebral cortex: neuroinformatics, histology and ultra high resolution diffusion MRI in the rhesus and marmoset monkey brain

    OpenAIRE

    Reveley, Colin

    2017-01-01

    This thesis concerns the cortical connectivity in Primates. The efficacy of Diffusion weighted MRI (dMRI) is examined. White matter (“WM”) systems subjacent to cortex (“superficial WM” ) are found to be a limiting factor to dMRI tractography. Superficial WM systems are examined with dMRI itself, and with analysis of histological data from the scanned brains. dMRI data was acquired ex-vivo at exceptional spatial and angular resolution (250μm in Rhesus, 150μm in Marmoset). The superficial WM wa...

  18. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV Imagery, Based on Structure from Motion (SfM Point Clouds

    Directory of Open Access Journals (Sweden)

    Christopher Watson

    2012-05-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are an exciting new remote sensing tool capable of acquiring high resolution spatial data. Remote sensing with UAVs has the potential to provide imagery at an unprecedented spatial and temporal resolution. The small footprint of UAV imagery, however, makes it necessary to develop automated techniques to geometrically rectify and mosaic the imagery such that larger areas can be monitored. In this paper, we present a technique for geometric correction and mosaicking of UAV photography using feature matching and Structure from Motion (SfM photogrammetric techniques. Images are processed to create three dimensional point clouds, initially in an arbitrary model space. The point clouds are transformed into a real-world coordinate system using either a direct georeferencing technique that uses estimated camera positions or via a Ground Control Point (GCP technique that uses automatically identified GCPs within the point cloud. The point cloud is then used to generate a Digital Terrain Model (DTM required for rectification of the images. Subsequent georeferenced images are then joined together to form a mosaic of the study area. The absolute spatial accuracy of the direct technique was found to be 65–120 cm whilst the GCP technique achieves an accuracy of approximately 10–15 cm.

  19. Spatial Co-Registration of Ultra-High Resolution Visible, Multispectral and Thermal Images Acquired with a Micro-UAV over Antarctic Moss Beds

    Directory of Open Access Journals (Sweden)

    Darren Turner

    2014-05-01

    Full Text Available In recent times, the use of Unmanned Aerial Vehicles (UAVs as tools for environmental remote sensing has become more commonplace. Compared to traditional airborne remote sensing, UAVs can provide finer spatial resolution data (up to 1 cm/pixel and higher temporal resolution data. For the purposes of vegetation monitoring, the use of multiple sensors such as near infrared and thermal infrared cameras are of benefit. Collecting data with multiple sensors, however, requires an accurate spatial co-registration of the various UAV image datasets. In this study, we used an Oktokopter UAV to investigate the physiological state of Antarctic moss ecosystems using three sensors: (i a visible camera (1 cm/pixel, (ii a 6 band multispectral camera (3 cm/pixel, and (iii a thermal infrared camera (10 cm/pixel. Imagery from each sensor was geo-referenced and mosaicked with a combination of commercially available software and our own algorithms based on the Scale Invariant Feature Transform (SIFT. The validation of the mosaic’s spatial co-registration revealed a mean root mean squared error (RMSE of 1.78 pixels. A thematic map of moss health, derived from the multispectral mosaic using a Modified Triangular Vegetation Index (MTVI2, and an indicative map of moss surface temperature were then combined to demonstrate sufficient accuracy of our co-registration methodology for UAV-based monitoring of Antarctic moss beds.

  20. A general protocol of ultra-high resolution MR angiography to image the cerebro-vasculature in 6 different rats strains at high field.

    Science.gov (United States)

    Pastor, Géraldine; Jiménez-González, María; Plaza-García, Sandra; Beraza, Marta; Padro, Daniel; Ramos-Cabrer, Pedro; Reese, Torsten

    2017-09-01

    Differences in the cerebro-vasculature among strains as well as individual animals might explain variability in animal models and thus, a non-invasive method tailored to image cerebral vessel of interest with high signal to noise ratio is required. Experimentally, we describe a new general protocol of three-dimensional time-of-flight magnetic resonance angiography to visualize non-invasively the cerebral vasculature in 6 different rat strains. Flow compensated angiograms of Sprague Dawley, Wistar Kyoto, Lister Hooded, Long Evans, Fisher 344 and Spontaneous Hypertensive Rat strains were obtained without the use of contrast agents. At 11.7T using a repetition time of 60ms, an isotropic resolution of up to 62μm was achieved; total imaging time was 98min for a 3D data set. The visualization of the cerebral arteries was improved by removing extra-cranial vessels prior to the calculation of maximum intensity projection to obtain the angiograms. Ultimately, we demonstrate that the newly implemented method is also suitable to obtain angiograms following middle cerebral artery occlusion, despite the presence of intense vasogenic edema 24h after reperfusion. The careful selection of the excitation profile and repetition time at a higher static magnetic field allowed an increase in spatial resolution to reliably detect of the hypothalamic artery, the anterior choroidal artery as well as arterial branches of the peri-amygdoidal complex and the optical nerve in six different rat strains. MR angiography without contrast agent can be utilized to study cerebro-vascular abnormalities in various animal models. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. BAKABLE ULTRA-HIGH VACUUM VALVE

    Science.gov (United States)

    Mark, J.T.; Gantz, I.H.

    1962-07-10

    S>This patent relates to a valve useful in applications involving successively closing and opening a communication between a chamber evacuated to an ultra-high vacuum condition of the order of 10/sup -10/ millimeters of mercury and another chamber or the ambient. The valve is capable of withstanding extended baking at 450 deg C and repeated opening and closing without repiacement of the valve seat (approximately 200 cycle limit). The seal is formed by mutual interdiffusion weld, coerced by a pneumatic actuator. (AEC)

  2. Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles

    Directory of Open Access Journals (Sweden)

    M. H. M. Groot

    2011-03-01

    Full Text Available Here we developed a composite pollen-based record of altitudinal vegetation changes from Lake Fúquene (5° N in Colombia at 2540 m elevation. We quantitatively calibrated Arboreal Pollen percentages (AP% into mean annual temperature (MAT changes with an unprecedented ~60-year resolution over the past 284 000 years. An age model for the AP% record was constructed using frequency analysis in the depth domain and tuning of the distinct obliquity-related variations to the latest marine oxygen isotope stacked record. The reconstructed MAT record largely concurs with the ~100 and 41-kyr (obliquity paced glacial cycles and is superimposed by extreme changes of up to 7 to 10° Celsius within a few hundred years at the major glacial terminations and during marine isotope stage 3, suggesting an unprecedented North Atlantic – equatorial link. Using intermediate complexity transient climate modelling experiments, we demonstrate that ice volume and greenhouse gasses are the major forcing agents causing the orbital-related MAT changes, while direct precession-induced insolation changes had no significant impact on the high mountain vegetation during the last two glacial cycles.

  3. Ultra high performance liquid chromatography coupled with high resolution quantitation mass spectrometry method development and validation for determining genotoxic 2,5-dichlorobenzoyl chloride in MLN9708 drug substance.

    Science.gov (United States)

    Fu, Mingkun; Lu, Qing; Hewitt, Elizabeth; Wang, Jun

    2014-02-01

    A novel reversed-phase ultra high performance liquid chromatography coupled with high resolution quantitation mass spectrometry (UHPLC/HRQMS) method was developed to quantify 2,5-dichlorobenzoyl chloride (DCBC), a genotoxic impurity, in MLN9708 drug substance. A surrogate strategy was utilized whereby DCBC was intentionally hydrolyzed to 2,5-dichlorobenzoic acid (DCBA) to provide a stable and reliable detection target. The hydrolysis approach was conservative since the measured signal represented the sum of DCBC and DCBA in MLN9708 drug substance, and such approach was acknowledged and accepted by food and drug administration (FDA). HRQMS was used as the detection method since conventional MS/MS methodology gave poor sensitivity and selectivity due to non-specific fragmentation of carbon dioxide loss upon collision activation dissociation. Profile algorithm mass spectrometry data were acquired with mass resolving power (MRP) of 60,000. Quantitation was based on the extracted ion chromatography (EIC) peak area signal, which was extracted at m/z 188.9515 with a mass extraction window (MEW) of 5ppm. The UHPLC/HRQMS method was validated based on International Conference on Harmonization (ICH) guidelines, which included selectivity, limit of detection (LOD), limit of quantitation (LOQ), repeatability, linearity, accuracy, and stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Ultra high vacuum seal arrangement

    Science.gov (United States)

    Flaherty, Robert

    1981-01-01

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  5. High-resolution T{sub 2}-weighted cervical cancer imaging: a feasibility study on ultra-high-field 7.0-T MRI with an endorectal monopole antenna

    Energy Technology Data Exchange (ETDEWEB)

    Hoogendam, Jacob P.; Verheijen, Rene H.M.; Zweemer, Ronald P. [University Medical Centre Utrecht, Department of Gynaecological Oncology, UMC Utrecht Cancer Centre, PO Box 85500, Utrecht (Netherlands); Kalleveen, Irene M.L.; Castro, Catalina S.A. de; Raaijmakers, Alexander J.E.; Bosch, Maurice A.A.J. van den; Klomp, Dennis W.J.; Veldhuis, Wouter B. [University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands)

    2017-03-15

    We studied the feasibility of high-resolution T{sub 2}-weighted cervical cancer imaging on an ultra-high-field 7.0-T magnetic resonance imaging (MRI) system using an endorectal antenna of 4.7-mm thickness. A feasibility study on 20 stage IB1-IIB cervical cancer patients was conducted. All underwent pre-treatment 1.5-T MRI. At 7.0-T MRI, an external transmit/receive array with seven dipole antennae and a single endorectal monopole receive antenna were used. Discomfort levels were assessed. Following individualised phase-based B{sub 1} {sup +} shimming, T{sub 2}-weighted turbo spin echo sequences were completed. Patients had stage IB1 (n = 9), IB2 (n = 4), IIA1 (n = 1) or IIB (n = 6) cervical cancer. Discomfort (ten-point scale) was minimal at placement and removal of the endorectal antenna with a median score of 1 (range, 0-5) and 0 (range, 0-2) respectively. Its use did not result in adverse events or pre-term session discontinuation. To demonstrate feasibility, T{sub 2}-weighted acquisitions from 7.0-T MRI are presented in comparison to 1.5-T MRI. Artefacts on 7.0-T MRI were due to motion, locally destructive B{sub 1} interference, excessive B{sub 1} under the external antennae and SENSE reconstruction. High-resolution T{sub 2}-weighted 7.0-T MRI of stage IB1-IIB cervical cancer is feasible. The addition of an endorectal antenna is well tolerated by patients. (orig.)

  6. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    with a photonic layer on top to interconnect them. For such systems, silicon is an attractive candidate enabling both electronic and photonic control. For some network scenarios, it may be beneficial to use optical on-chip packet switching, and for high data-density environments one may take advantage...... of the ultra-fast nonlinear response of silicon photonic waveguides. These chips offer ultra-broadband wavelength operation, ultra-high timing resolution and ultra-fast response, and when used appropriately offer energy-efficient switching. In this presentation we review some all-optical functionalities based...... on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show...

  7. Accelerator Technology: Ultra-High Vacuum

    CERN Document Server

    Baglin, V

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.5 Ultra-High Vacuum' of the Chapter '8 Accelerator Technology' with the content: 8.5 Ultra-High Vacuum 8.5.1 Introduction 8.5.2 Vacuum Fundamentals 8.5.3 Vacuum Dynamics 8.5.4 Vacuum Engineering

  8. Ultra high speed image processing techniques. [electronic packaging techniques

    Science.gov (United States)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  9. Expectations for ultra-high energy interactions

    International Nuclear Information System (INIS)

    Feynman, R.P.

    1978-01-01

    Strong interactions at ultra-high energies are discussed with emphasis on the hadrons produced in high energy collisions. Evidence is considered that quantum chromodynamics might be the right theory, and also some estimates are given of quantum chromodynamics asymptotic-freedom phenomena, the work under discussion being very preliminary. 6 references

  10. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  11. Detecting ultra high energy neutrinos with LOFAR

    NARCIS (Netherlands)

    Mevius, M.; Buitink, S.; Falcke, H.; Horandel, J.; James, C. W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; ter Veen, S.

    2012-01-01

    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (similar to 150 MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the

  12. Performance of the Ultra-High Rate Germanium (UHRGe) System

    Energy Technology Data Exchange (ETDEWEB)

    Fast, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dion, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rodriguez, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); VanDevender, Brent A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Lynn S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wright, Michael E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    This report describes the final performance achieved with the detector system developed for the Ultra High Rate Germanium (UHRGe) project. The system performance has been evaluated at low, moderate and high rates and includes the performance of real-time analysis algorithms running in the FPGA of the data acquisition system. This performance is compared to that of offline analyses of streaming waveform data collected with the same data acquisition system the performance of a commercial Multi-Channel Analyzer designed for high-resolution spectroscopy applications, the Canberra LYNX.

  13. Integration of ultra-high field MRI and histology for connectome based research of brain disorders

    Directory of Open Access Journals (Sweden)

    Shan eYang

    2013-09-01

    Full Text Available Ultra-high field magnetic resonance imaging (MRI became increasingly relevant for in vivo neuroscientific research because of improved spatial resolutions. However, this is still the unchallenged domain of histological studies, which long played an important role in the investigation of neuropsychiatric disorders. While the field of biological psychiatry strongly advanced on macroscopic levels, current developments are rediscovering the richness of immunohistological information when attempting a multi-level systematic approach to brain function and dysfunction. For most studies, histology sections lost information on three-dimensional reconstructions. Translating histological sections to 3D-volumes would thus not only allow for multi-stain and multi-subject alignment in post mortem data, but also provide a crucial step in big data initiatives involving the network analyses currently performed with in vivo MRI. We therefore investigated potential pitfalls during integration of MR and histological information where no additional blockface information is available. We demonstrated that strengths and requirements from both methods seem to be ideally merged at a spatial resolution of 200 μm. However, the success of this approach is heavily dependent on choices of hardware, sequence and reconstruction. We provide a fully automated pipeline that optimizes histological 3D reconstructions, providing a potentially powerful solution not only for primary human post mortem research institutions in neuropsychiatric research, but also to help alleviate the massive workloads in neuroanatomical atlas initiatives. We further demonstrate (for the first time the feasibility and quality of ultra-high spatial resolution (150 µm isotopic imaging of the entire human brain MRI at 7T, offering new opportunities for analyses on MR-derived information.

  14. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using 18F-FDG

    International Nuclear Information System (INIS)

    Kim, J.H.; Son, Y.D.; Kim, H.K.; Oh, C.H.; Kim, J.M.; Kim, Y.B.; Lee, C.

    2018-01-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using 18 F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using 18 F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  15. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using {sup 18}F-FDG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H. [Research Institute for Advanced Industrial Technology, Korea University, Sejong (Korea, Republic of); Son, Y.D.; Kim, H.K.; Oh, C.H., E-mail: ohch@korea.ac.kr [College of Health Science, Gachon University, Incheon, (Korea, Republic of); Kim, J.M. [College of Science and Technology, Korea University, Sejong (Korea, Republic of); Kim, Y.B. [Gachon University School of Medicine, Incheon (Korea, Republic of); Lee, C. [Bioimaging Research Team, Korea Basic Science Institute, Cheongju (Korea, Republic of)

    2018-02-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using {sup 18}F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using {sup 18}F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  16. Ultra-high vacuum technology for accelerators

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Hilleret, Noël; Strubin, Pierre M

    2002-01-01

    The lectures will start with a review of the basics of vacuum physics required to build Ultra High Vacuum (UHV) systems, such as static and dynamic outgassing. Before reviewing the various pumping and measurement devices, including the most modern one like Non Evaporable Getter (NEG) coatings, an overview of adequate materials to be used in UHV systems will be given together with their treatment (e.g. cleaning procedures and bake out). Practical examples based on existing or future accelerators will be used to illustrate the topics. Finally, a short overview of modern vacuum controls and interlocks will be given.

  17. Ultra-high vacuum photoelectron linear accelerator

    Science.gov (United States)

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  18. Ductility of Ultra High Purity Copper

    OpenAIRE

    Fujiwara, S.; Abiko, K.

    1995-01-01

    The ductility of ultra-high purity copper at elevated temperatures was investigated : purity 99.9999% (6N) and 99.999999% (8N). Tensile tests were conducted at temperatures ranging from 293K to 1073K at strain rates of 4.2x10-5 s-1 in a high vacuum. The results are discussed in comparison with those for 99.9% (3N) copper. Ductility at intermediate temperatures was improved by an increase in purity. The temperature at which ductility dropped decreased with increases in purity. Even at the ultr...

  19. Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging- From animal anatomy to in vivo imaging in humans

    Directory of Open Access Journals (Sweden)

    Coraline D. Metzger

    2013-05-01

    Full Text Available The thalamus, a crucial node in the well-described cortico-striatal-thalamo-cortical circuits, has been the focus of functional and structural imaging studies investigating human emotion, cognition and memory. Invasive work in animals and post-mortem investigations have revealed the rich cytoarchitectonics and functional specificity of the thalamus. Given current restrictions in the spatial resolution of non-invasive imaging modalities, there is, however, a translational gap between functional and structural information on these circuits in humans and animals as well as between histological and cellular evidence and their relationship to psychological functioning.With the advance of higher field strengths for MR approaches, better spatial resolution is now available promising to overcome this conceptual problem.We here review these two levels, which exist for both neuroscientific and clinical investigations, and then focus on current attempts to overcome conceptual boundaries of these observations with the help of high-resolution imaging.

  20. Ultra-high vacuum compatible image furnace.

    Science.gov (United States)

    Neubauer, A; Boeuf, J; Bauer, A; Russ, B; Löhneysen, H v; Pfleiderer, C

    2011-01-01

    We report the design of an optical floating-zone furnace for single-crystal growth under ultra-high vacuum (UHV) compatible conditions. The system is based on a commercial image furnace, which has been refurbished to be all-metal sealed. Major changes concern the use of UHV rotary feedthroughs and bespoke quartz-metal seals with metal-O-rings at the lamp stage. As a consequence, the procedure of assembling the furnace for crystal growth is changed completely. Bespoke heating jackets permit to bake the system. For compounds with elevated vapor pressures, the ultra-high vacuum serves as a precondition for the use of a high-purity argon atmosphere up to 10 bar. In the ferromagnetic Heusler compound Cu(2)MnAl, the improvements of purity result in an improved stability of the molten zone, grain selection, and, hence, single-crystal growth. Similar improvements are observed in traveling-solvent floating-zone growth of the antiferromagnetic Heusler compound Mn(3)Si. These improvements underscore the great potential of optical float-zoning for the growth of high-purity single crystals of intermetallic compounds.

  1. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M.T.

    2015-05-22

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  2. Detecting ultra high energy neutrinos with LOFAR

    International Nuclear Information System (INIS)

    Mevius, M.; Buitink, S.; Falcke, H.; Hörandel, J.; James, C.W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; Veen, S. ter

    2012-01-01

    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (∼150MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the cut-off in sensitivity at lower energies. A first upper limit on the UHE neutrino flux from data of the Westerbork Radio Telescope (WSRT) has been published, while a second experiment, using the new LOFAR telescope, is in preparation. The advantages of LOFAR over WSRT are the larger collecting area, the better pointing accuracy and the use of ring buffers, which allow the implementation of a sophisticated self-trigger algorithm. The expected sensitivity of LOFAR reaches flux limits within the range of some theoretical production models.

  3. The Bendability of Ultra High strength Steels

    Science.gov (United States)

    Hazra, S. K.; Efthymiadis, P.; Alamoudi, A.; Kumar, R. L. V.; Shollock, B.; Dashwood, R.

    2016-08-01

    Automotive manufacturers have been reducing the weight of their vehicles to meet increasingly stringent environmental legislation that reflects public demand. A strategy is to use higher strength materials for parts with reduced cross-sections. However, such materials are less formable than traditional grades. The frequent result is increased processing and piece costs. 3D roll forming is a novel and flexible process: it is estimated that a quarter of the structure of a vehicle can be made with a single set of tooling. Unlike stamping, this process requires material with low work hardening rates. In this paper, we present results of ultra high strength steels that have low elongation in a tension but display high formability in bending through the suppression of the necking response.

  4. High Purity Smelting Technology for Ultra-high Strength Steels

    Directory of Open Access Journals (Sweden)

    JIANG Zhouhua

    2017-12-01

    Full Text Available Ultra-high strength steel with high tensile strength, good toughness, high specific strength, modulus and other characteristics are widely used in aviation, aerospace and national defense and other fields. Ultra-high strength steel is preferred material for aircraft and aero-engines and other aviation equipments. The application of ultra-high strength steel represents a country's highest level of steel research and production, and it is also an important symbol of the development of national science and technology and national defense industry. The development and application of high purity smelting technology for manufacture of ultra-high strength steels at domestic and overseas is briefly reviewed in the paper, and then the control ability about the impurity elements such as S, P, O and N in typical ultra-high strength steels, and the research status and development trend of non-metallic inclusions control are discussed. The progress in research work of high purity smelting technology for ultra-high strength steels carried out by the authors in recent years has been introduced, it shows that the control level of impurity elements and non-metallic inclusion has been greatly improved, and it also creates a new route for China to manufacture the ultra-high strength steel with high alloy, especially with high purity for ultra-high strength stainless steel, bearing steel and gear steel. Finally, the development direction of high purity smelting technology of ultra-high strength steel in China is pointed out.

  5. Magnetic resonance imaging and spectroscopy at ultra high fields

    International Nuclear Information System (INIS)

    Neuberger, Thomas

    2009-01-01

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  6. Magnetic resonance imaging and spectroscopy at ultra high fields

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Thomas

    2009-06-23

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  7. Projects for ultra-high-energy circular colliders at CERN

    Science.gov (United States)

    Bogomyagkov, A. V.; Koop, I. A.; Levichev, E. B.; Piminov, P. A.; Sinyatkin, S. V.; Shatilov, D. N.; Benedict, M.; Oide, K.; Zimmermann, F.

    2016-12-01

    Within the Future Circular Collider (FCC) design study launched at CERN in 2014, it is envisaged to construct hadron (FCC-hh) and lepton (FCC-ee) ultra-high-energy machines aimed to replace the LHC upon the conclusion of its research program. The Budker Institute of Nuclear Physics is actively involved in the development of the FCC-ee electron-positron collider. The Crab Waist (CR) scheme of the collision region that has been proposed by INP and will be implemented at FCC-ee is expected to provide high luminosity over a broad energy range. The status and development of the FCC project are described, and its parameters and limitations are discussed for the lepton collider in particular.

  8. Mid to late Holocene oceanographic changes offshore Adélie Land, Antarctica: Ultra-high resolution foraminiferal assemblage and isotopic records from IODP Expedition 318 Site U1357

    Science.gov (United States)

    Hendricks, E.; Salman, F. I.; Pekar, S. F.; Dunbar, R. B.; DeCesare, M.

    2014-12-01

    Foraminiferal biofacies as well as δ18O and δ13C records from IODP Site U1357 reveal significant changes in deep and surface water properties that include temperature, ventilation, and productivity during the mid to late Holocene. Site U1357 is located in the Adélie Trough, a glacially scoured valley on the continental shelf ~50km off the coast of East Antarctica. Sediment samples were taken at 10cm intervals resulting in an approximate time step for each sample of 7yr resolution based on extensive C14 dating and visible band counting exercises. As part of a collaborative effort between Queens College and Stanford University, samples from the upper part of the core were used in this study, which spanned from near Recent to 6kyr BP. Neogloboquadrina pachyderma make up nearly 50% of all foraminifers counted and was used to construct pelagic stable isotope records. From nearly 10,000 foraminifers counted, ~34 foraminiferal species were identified. The highest δ18O values occur from ~3.0 to ~6.1kyr and ~1kyr to Recent, with the lowest occurring from ~1.4 to ~3.8kyr. The highest δ13C values occur when δ18O are low. Total benthic foraminiferal abundances are highest during two intervals: Recent to ~1.4kyr and ~3.6 to ~6.1kyr. For ~2 to ~3.6kyr, the agglutinated species are the most dominant with calcareous benthic foraminifers being mainly absent. The higher δ18O values observed are consistent with lower surface water temperatures and decreased melt water from icebergs, with lower δ18O values ascribed to increased melt waters and possibly higher surface water temperatures. Previous studies indicate that cooler waters occurred when we observe lower foraminiferal δ18O values. This suggests that the N. pachyderma δ18O record was influenced primarily by the δ18O of seawater (e.g., iceberg melt waters), with temperature being a minor control. Higher δ13C values are associated with lower δ18O, which implies increased water column stratification coupled with high

  9. Demonstration of Ultra High-Strength Nanocrystalline Copper Alloys for Military Applications

    Science.gov (United States)

    2012-01-22

    the consolidated samples was determined by using Archimedes principle . Processing diagram 1 shows a general flow process for the steps involved in...Demonstration of Ultrahigh-Strength Nanocrystalline Copper Alloys for Military Applications Project Number: WP-2139 Performing...1-26-2012 Final Dec 2010 - Dec 2011 Demonstration of Ultra High-Strength Nanocrystalline Copper Alloys for Military Applications WP-2139Kris

  10. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    parametric studies by varying the volume fraction of steel fibres. Keywords. Ultra high strength concrete; panel; drop weight test; impact analysis;. ABAQUS. 1. Introduction. Ultra high strength concrete is a special type of concrete which is characterized by a low water- binder ratio, high quality pozzolanic material, and without ...

  11. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    Keywords. Ultra high strength concrete; panel; drop weight test; impact analysis; ABAQUS. Abstract. This paper presents the results of an investigation carried out on Ultra High Strength Concrete (UHSC) panels subjected to low velocity projectile impact to assess impact resistance. UHSC panel of size 350 × 350 mm and ...

  12. Ultra-High Energy Probes of Classicalization

    CERN Document Server

    Dvali, Gia

    2012-01-01

    Classicalizing theories are characterized by a rapid growth of the scattering cross section. This growth converts these sort of theories in interesting probes for ultra-high energy experiments even at relatively low luminosity, such as cosmic rays or Plasma Wakefield accelerators. The microscopic reason behind this growth is the production of N-particle states, classicalons, that represent self-sustained lumps of soft Bosons. For spin-2 theories this is the quantum portrait of what in the classical limit are known as black holes. We emphasize the importance of this quantum picture which liberates us from the artifacts of the classical geometric limit and allows to scan a much wider landscape of experimentally-interesting quantum theories. We identify a phenomenologically-viable class of spin-2 theories for which the growth of classicalon production cross section can be as efficient as to compete with QCD cross section already at 100 TeV energy, signaling production of quantum black holes with graviton occupat...

  13. Ultra high-frequency ultrasound: New capabilities for nail anatomy exploration.

    Science.gov (United States)

    Berritto, Daniela; Iacobellis, Francesca; Rossi, Claudia; Reginelli, Alfonso; Cappabianca, Salvatore; Grassi, Roberto

    2017-01-01

    Recent development of ultra high-resolution ultrasound systems, with frequencies as high as 70 MHz and capability resolution as fine as 30 μm, could permit new diagnostic applications to small parts. A variety of superficial targets within the first 1 cm of the skin surface could be imaged, including dermatological applications such as assessment of skin layers, hair follicles and the nail unit. Nail disorders are frequent but they are diagnosed mainly based on clinical examination; although biopsies and scrapings can provide clinically significant information, most patients do not perceive biopsies positively. To image the skin layer and annexes is often difficult with conventional ultrasound but, because of anatomical details obtained with the newest systems, this method holds great promise for addressing important biomedical applications offering unique advantages over the existing non-invasive imaging modalities. This will enable physicians to assess and manage the conditions involving the nails of a large and growing segment of the population in a better way. © 2016 Japanese Dermatological Association.

  14. Ultra high performance concrete dematerialization study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    Concrete is the most widely used building material in the world and its use is expected to grow. It is well recognized that the production of portland cement results in the release of large amounts of carbon dioxide, a greenhouse gas (GHG). The main challenge facing the industry is to produce concrete in an environmentally sustainable manner. Reclaimed industrial by-proudcts such as fly ash, silica fume and slag can reduce the amount of portland cement needed to make concrete, thereby reducing the amount of GHGs released to the atmosphere. The use of these supplementary cementing materials (SCM) can also enhance the long-term strength and durability of concrete. The intention of the EcoSmart{sup TM} Concrete Project is to develop sustainable concrete through innovation in supply, design and construction. In particular, the project focuses on finding a way to minimize the GHG signature of concrete by maximizing the replacement of portland cement in the concrete mix with SCM while improving the cost, performance and constructability. This paper describes the use of Ductal{sup R} Ultra High Performance Concrete (UHPC) for ramps in a condominium. It examined the relationship between the selection of UHPC and the overall environmental performance, cost, constructability maintenance and operational efficiency as it relates to the EcoSmart Program. The advantages and challenges of using UHPC were outlined. In addition to its very high strength, UHPC has been shown to have very good potential for GHG emission reduction due to the reduced material requirements, reduced transport costs and increased SCM content. refs., tabs., figs.

  15. Birefringent Microlens Array for Ultra High Resolution HMDs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will be used to analyze, design, model, and test a birefringent microlens array for use in a new type of...

  16. Birefringent Microlens Array for Ultra High Resolution HMDs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will be used to analyze, design, model, and test a birefringent microlens array for use in a new type of...

  17. Scalable Delivery of Navigable and Ultra-High Resolution Video

    NARCIS (Netherlands)

    Macq, J.; Rondão Alface, P.; Brandenburg, R. van; Niamut, O.A.; Prins, M.; Verzijp, N.

    2014-01-01

    In recent years many developments have addressed the generic objective of delivering audiovisual content based on a single representation made available at the source, and where the network gets the ability to adapt the content on an end user basis. This chapter reviews the different aspects related

  18. Precision optical slit for high heat load or ultra high vacuum

    Science.gov (United States)

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  19. Pulmonary leukemic involvement: high-resolution computed tomography evaluation

    International Nuclear Information System (INIS)

    Oliveira, Ana Paola de; Marchiori, Edson; Souza Junior, Arthur Soares

    2004-01-01

    Objective: To evaluate the role of high-resolution computed tomography (HRCT) in patients with leukemia and pulmonary symptoms, to establish the main patterns and to correlate them with the etiology. Materials and Methods: This is a retrospective study of the HRCT of 15 patients with leukemia and pulmonary symptoms. The examinations were performed using a spatial high-resolution protocol and were analyzed by two independent radiologists. Results: The main HRCT patterns found were ground-glass opacity (n=11), consolidation (n=9), airspace nodules (n=3), septal thickening (n=3), tree-in-bud pattern (n=3), and pleural effusion (n=3). Pulmonary infection was the most common finding seen in 12 patients: bacterial pneumonia (n=6), fungal infection (n = 4), pulmonary tuberculosis (n=1) and viral infection (n=1). Leukemic pleural infiltration (n=1), lymphoma (n=1) and pulmonary hemorrhage (n=1) were detected in the other three patients. Conclusion: HRCT is an important tool that may suggest the cause of lung involvement, its extension and in some cases to guide invasive procedures in patients with leukemia. (author)

  20. Application of ultra-high performance concrete to bridge girders.

    Science.gov (United States)

    2009-02-01

    "Ultra-High Performance Concrete (UHPC) is a new class of concrete that has superior performance characteristics : compared to conventional concrete. The enhanced strength and durability properties of UHPC are mainly due to optimized : particle grada...

  1. Design of an image sensor for an ultra-high-speed and ultra-high-sensitive video microscope

    Science.gov (United States)

    Otsuka, Nao; Cuong, Vo Le; Karimov, Pavel; Takehara, Kohsei; Etoh, T. Goji

    2007-01-01

    This paper outlines a special microscope under development, named "Ultra-high-speed bionanoscope" for ultra-highspeed imaging in biological applications, and preliminary design of the image sensor, which is the key component in the system. The ultra-high-speed bionanoscope consists of two major subsystems: a video camera operating at more than 10 Mfps with ultra-high-sensitivity and the special microscope to minimize loss of light for seriously reduced illumination light energy due to the ultra-high-speed imaging. The ultra-high-frame rate is achieved by introducing a special structure of a CCD imager, the ISIS, In-situ Storage Image Sensor, invented by Etoh and Mutoh. The ISIS has an array of pixels each of which equips with a slanted linear CCD storage area for more than 100 image signals for reproduction of smoothly moving images. The ultra-high-sensitivity of the sensor of less than 10 photons is achieved by introducing three existing technologies, backside-illumination, cooling, and the CCM, Charge Carrier Multiplication invented by Hynecek.

  2. Wear Behavior of an Ultra-High-Strength Eutectoid Steel

    Science.gov (United States)

    Mishra, Alok; Maity, Joydeep

    2018-02-01

    Wear behavior of an ultra-high-strength AISI 1080 steel developed through incomplete austenitization-based combined cyclic heat treatment is investigated in comparison with annealed and conventional hardened and tempered conditions against an alumina disk (sliding speed = 1 m s-1) using a pin-on-disk tribometer at a load range of 7.35-14.7 N. On a gross scale, the mechanism of surface damage involves adhesive wear coupled with abrasive wear (microcutting effects in particular) at lower loads. At higher loads, mainly the abrasive wear (both microcutting and microploughing mechanisms) and evolution of adherent oxide are observed. Besides, microhardness of matrix increases with load indicating substantial strain hardening during wear test. The rate of overall wear is found to increase with load. As-received annealed steel with the lowest initial hardness suffers from severe abrasive wear, thereby exhibiting the highest wear loss. Such a severe wear loss is not observed in conventional hardened and tempered and combined cyclic heat treatment conditions. Combined cyclic heat-treated steel exhibits the greatest wear resistance (lowest wear loss) due to its initial high hardness and evolution of hard abrasion-resistant tribolayer during wear test at higher load.

  3. Cosmogenic neutrinos and ultra-high energy cosmic ray models

    Energy Technology Data Exchange (ETDEWEB)

    Aloisio, R.; Petrera, S. [Gran Sasso Science Institute (INFN), L' Aquila (Italy); Boncioli, D.; Grillo, A.F. [INFN/Laboratori Nazionali Gran Sasso, Assergi (Italy); Di Matteo, A. [INFN and Department of Physical and Chemical Sciences, University of L' Aquila, L' Aquila (Italy); Salamida, F., E-mail: aloisio@arcetri.astro.it, E-mail: denise.boncioli@lngs.infn.it, E-mail: armando.dimatteo@aquila.infn.it, E-mail: aurelio.grillo@lngs.infn.it, E-mail: sergio.petrera@aquila.infn.it, E-mail: salamida@ipno.in2p3.fr [Institut de Physique Nucléaire d' Orsay (IPNO), Université Paris 11, CNRS-IN2P3, Orsay (France)

    2015-10-01

    We use an updated version of SimProp, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.

  4. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    ... involves compaction of polymeric powder under pressure and sintering of the preforms at temperature above its melting point. In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering temperatures and strength development.

  5. Influence of curing regimes on compressive strength of ultra high ...

    Indian Academy of Sciences (India)

    The present paper is aimed to identify an efficient curing regime for ultra high performance concrete (UHPC), to achieve a target compressive strength more than 150 MPa, using indigenous materials. The thermal regime plays a vital role due to the limited fineness of ingredients and low water/binder ratio. By activation of the ...

  6. Recent Advances in Ultra-High-Speed Optical Signal Processing

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao

    2012-01-01

    We review recent advances in the optical signal processing of ultra-high-speed serial data signals up to 1.28 Tbit/s, with focus on applications of time-domain optical Fourier transformation. Experimental methods for the generation of symbol rates up to 1.28 Tbaud are also described....

  7. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  8. Optical Systems for Ultra-High-Speed TDM Networking

    Directory of Open Access Journals (Sweden)

    Michael Galili

    2014-04-01

    Full Text Available This paper discusses key results in the field of high speed optical networking with particular focus on packet-based systems. Schemes for optical packet labeling, packet switching and packet synchronization will be discussed, along with schemes for optical clock recovery, channel identification and detection of ultra-high-speed optical signals.

  9. Status of Ultra-High Energy Cosmic Rays

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I will review the recent results on Ultra-High energy cosmic rays obtained by the Auger and Telescope Array Observatories, and discuss some of the Astrophysical scenarios that could account for them, a connection with LHC results  as well as the possible connections to neutrino and gamma ray observations.

  10. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    Multi-terabit/s, ultra-high speed optical transmissions over several thousands kilometers on fibers are becoming a reality. Most use RZ (Return to Zero) format in dispersion-managed fibers. This format is the only stable waveform in the presence of fiber Kerr nonlinearity and dispersion in all optical transmission lines with ...

  11. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  12. Photonic Technologies for Ultra-High-Speed Information Highways

    DEFF Research Database (Denmark)

    Bouchoule, S; Lèfevre, R.; Legros, E.

    1999-01-01

    The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbed...

  13. The principles of ultra high pressure technology and its application ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... Key words: Ultra-high pressure (UHP), food processing/preservation and new food-processing technologies. INTRODUCTION. Increasing .... solutions, silicone oil, sodium benzoate solutions, ethanol solutions, inert gases and .... The residual enzyme activity and dissolved oxygen results in enzymatic and ...

  14. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    oped to simulate the impact behaviour of UHSC panel. The Brittle cracking model is used to simulate the behaviour of UHSC panel under impact loading and to perform parametric studies by varying the volume fraction of steel fibres. Keywords. Ultra high strength concrete; panel; drop weight test; impact analysis;. ABAQUS.

  15. Fiber based hydrophones for ultra-high energy neutrino detection

    NARCIS (Netherlands)

    Buis, E.J.; Doppenberg, E.J.J.; Eijk, D. van; Lahmann, R.; Nieuwland, R.A.; Toet, P.M.

    2014-01-01

    It is a well studied process [1, 2] that energy deposition of cosmic ray particles in water that generate thermo-acoustic signals. Hydrophones of sufficient sensitivity could measure this signal and provide a means of detecting ultra-high energetic cosmic neutrinos. We investigate optical

  16. Hybrid orientation technology and strain engineering for ultra-high ...

    Indian Academy of Sciences (India)

    Hybrid orientation technology and strain engineering for ultra-high speed MOSFETs. T K MAITI and C K MAITI. ∗. Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology,. Kharagpur 721 302, India. MS received 27 March 2012. Abstract. We report here RF MOSFET performance ...

  17. Brain–heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field

    Science.gov (United States)

    Raven, Erika P.; Duyn, Jeff H.

    2016-01-01

    Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain–heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain–heart interactions. PMID:27044994

  18. The Heart of China revisited: II Early Paleozoic (ultra)high-pressure and (ultra)high-temperature metamorphic Qinling orogenic collage

    Science.gov (United States)

    Bader, Thomas; Franz, Leander; Ratschbacher, Lothar; de Capitani, Christian; Webb, A. Alexander G.; Yang, Zhao; Pfänder, Jörg A.; Hofmann, Mandy; Linnemann, Ulf

    2013-07-01

    Orogens with multiple (ultra)high-pressure ((U)HP) and (ultra)high-temperature ((U)HT) metamorphic events provide a complex but telling record of oceanic and continental interaction. The Early Paleozoic history of the "Heart of China," the Qinling orogenic collage, offers snapshots of at least three (U)HP and two (U)HT metamorphic events. The preservation of remnants of both oceanic and continental domains together with a ≥110 Myr record of magmatism allows the reconstruction of the processes that resulted in this disparate metamorphism. Herein, we first illuminate the pressure-temperature-time (P-T-t) evolution of the Early Paleozoic (U)HP and (U)HT events by refining the petrographic descriptions and P-T estimates, assess published, and employ new U/Th-Pb zircon, monazite, and titanite, and 40Ar-39Ar phengite geochronology to date the magmatic and metamorphic events. Then we explore how the metamorphic and magmatic events are related tectonically and how they elucidate the affinities among the various complexes in the Qinling orogenic collage. We argue that a Meso-Neoproterozoic crustal fragment—the Qinling complex—localized subduction-accretion events that involved subduction, oceanic-arc formation, and back-arc spreading along its northern margin, and mtantle-wedge exhumation and spreading-ridge subduction along its southern margin.

  19. Ultra-high pressure water jet: Baseline report; Greenbook (chapter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The technologies being tested for concrete decontamination are targeted for alpha contamination. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  20. Direct-write polymer nanolithography in ultra-high vacuum.

    Science.gov (United States)

    Lee, Woo-Kyung; Yang, Minchul; Laracuente, Arnaldo R; King, William P; Whitman, Lloyd J; Sheehan, Paul E

    2012-01-01

    Polymer nanostructures were directly written onto substrates in ultra-high vacuum. The polymer ink was coated onto atomic force microscope (AFM) probes that could be heated to control the ink viscosity. Then, the ink-coated probes were placed into an ultra-high vacuum (UHV) AFM and used to write polymer nanostructures on surfaces, including surfaces cleaned in UHV. Controlling the writing speed of the tip enabled the control over the number of monolayers of the polymer ink deposited on the surface from a single to tens of monolayers, with higher writing speeds generating thinner polymer nanostructures. Deposition onto silicon oxide-terminated substrates led to polymer chains standing upright on the surface, whereas deposition onto vacuum reconstructed silicon yielded polymer chains aligned along the surface.

  1. Direct-write polymer nanolithography in ultra-high vacuum

    Directory of Open Access Journals (Sweden)

    Woo-Kyung Lee

    2012-01-01

    Full Text Available Polymer nanostructures were directly written onto substrates in ultra-high vacuum. The polymer ink was coated onto atomic force microscope (AFM probes that could be heated to control the ink viscosity. Then, the ink-coated probes were placed into an ultra-high vacuum (UHV AFM and used to write polymer nanostructures on surfaces, including surfaces cleaned in UHV. Controlling the writing speed of the tip enabled the control over the number of monolayers of the polymer ink deposited on the surface from a single to tens of monolayers, with higher writing speeds generating thinner polymer nanostructures. Deposition onto silicon oxide-terminated substrates led to polymer chains standing upright on the surface, whereas deposition onto vacuum reconstructed silicon yielded polymer chains aligned along the surface.

  2. Ultra-high pressure water jet: Baseline report; Greenbook (chapter)

    International Nuclear Information System (INIS)

    1997-01-01

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU's evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky trademark pump feeds water to a lance that directs the high pressure water at the surface to be removed. The technologies being tested for concrete decontamination are targeted for alpha contamination. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust

  3. Applications of Ultra High Performance Liquid Chromatography for Natural Products

    International Nuclear Information System (INIS)

    Rosniza Razali; Hazlina Ahmad Hassali; Azfar Hanif Abd Aziz; Daryl Jesus Arapoc

    2015-01-01

    Ultra high performance liquid chromatography (UHPLC) is a very powerful and versatile chromatographic technique for the separation of natural products in complex matrices, such as crude extracts for quantification or general profiling. The method is widespread and has been adapted to the analysis of a broad range of natural products generally without the need for complex sample preparation. The present paper overviews regarding the UHPLC and its applications for natural products. (author)

  4. Exhumation of (ultra-high-pressure terranes: concepts and mechanisms

    Directory of Open Access Journals (Sweden)

    C. J. Warren

    2013-02-01

    Full Text Available The formation and exhumation of high and ultra-high-pressure, (UHP, rocks of crustal origin appears to be ubiquitous during Phanerozoic plate subduction and continental collision events. Exhumation of (UHP material has been shown in some orogens to have occurred only once, during a single short-lived event; in other cases exhumation appears to have occurred multiple discrete times or during a single, long-lived, protracted event. It is becoming increasingly clear that no single exhumation mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. Subduction zone style and internal force balance change in both time and space, responding to changes in width, steepness, composition of subducting material and velocity of subduction. In order for continental crust, which is relatively buoyant compared to the mantle even when metamorphosed to (UHP assemblages, to be subducted to (UHP conditions, it must remain attached to a stronger and denser substrate. Buoyancy and external tectonic forces drive exhumation, although the changing spatial and temporal dominance of different driving forces still remains unclear. Exhumation may involve whole-scale detachment of the terrane from the subducting slab followed by exhumation within a subduction channel (perhaps during continued subduction or a reversal in motion of the entire plate (eduction following the removal of a lower part of the subducting slab. Weakening mechanisms that may be responsible for the detachment of deeply subducted crust from its stronger, denser substrate include strain weakening, hydration, melting, grain size reduction and the development of foliation. These may act locally to form narrow high-strain shear zones separating stronger, less-strained crust or may act on the bulk of the subducted material, allowing whole-scale flow. Metamorphic reactions, metastability and the composition of the subducted crust

  5. Ultra-high-energy cosmic rays from radio galaxies

    Science.gov (United States)

    Eichmann, B.; Rachen, J. P.; Merten, L.; van Vliet, A.; Becker Tjus, J.

    2018-02-01

    Radio galaxies are intensively discussed as the sources of cosmic rays observed above about 3 × 1018 eV, called ultra-high energy cosmic rays (UHECRs). We present a first, systematic approach that takes the individual characteristics of these sources into account, as well as the impact of the extragalactic magnetic-field structures up to a distance of 120 Mpc. We use a mixed simulation setup, based on 3D simulations of UHECRs ejected by observed, individual radio galaxies taken out to a distance of 120 Mpc, and on 1D simulations over a continuous source distribution contributing from beyond 120 Mpc. Additionally, we include the ultra-luminous radio galaxy Cygnus A at a distance of about 250 Mpc, as its contribution is so strong that it must be considered as an individual point source. The implementation of the UHECR ejection in our simulation setup, both that of individual radio galaxies and the continuous source function, is based on a detailed consideration of the physics of radio jets and standard first-order Fermi acceleration. This allows to derive the spectrum of ejected UHECR as a function of radio luminosity, and at the same time provides an absolute normalization of the problem involving only a small set of parameters adjustable within narrow constraints. We show that the average contribution of radio galaxies taken over a very large volume cannot explain the observed features of UHECRs measured at Earth. However, we obtain excellent agreement with the spectrum, composition, and arrival-direction distribution of UHECRs measured by the Pierre Auger Observatory, if we assume that most UHECRs observed arise from only two sources: the ultra-luminous radio galaxy Cygnus A, providing a mostly light composition of nuclear species dominating up to about 6 × 1019 eV, and the nearest radio galaxy Centaurus A, providing a heavy composition dominating above 6 × 1019 eV . Here we have to assume that extragalactic magnetic fields out to 250 Mpc, which we did not

  6. Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics.

    Science.gov (United States)

    Duocastella, Martí; Sun, Bo; Arnold, Craig B

    2012-05-01

    Traditional white-light and fluorescent imaging techniques provide powerful methods to extract high-resolution information from two-dimensional (2-D) sections, but to retrieve information from a three-dimensional (3-D) volume they require relatively slow scanning methods that result in increased acquisition time. Using an ultra-high speed liquid lens, we circumvent this problem by simultaneously acquiring images from multiple focal planes. We demonstrate this method by imaging microparticles and cells flowing in 3-D microfluidic channels.

  7. Native defects in ultra-high vacuum grown graphene islands on Cu(1 1 1).

    Science.gov (United States)

    Hollen, S M; Tjung, S J; Mattioli, K R; Gambrel, G A; Santagata, N M; Johnston-Halperin, E; Gupta, J A

    2016-01-27

    We present a scanning tunneling microscopy (STM) study of native defects in graphene islands grown by ultra-high vacuum decomposition of ethylene on Cu(1 1 1). We characterize these defects through a survey of their apparent heights, atomic-resolution imaging, and detailed tunneling spectroscopy. Bright defects that occur only in graphene regions are identified as C site point defects in the graphene lattice and are most likely single C vacancies. Dark defect types are observed in both graphene and Cu regions, and are likely point defects in the Cu surface. We also present data showing the importance of bias and tip termination to the appearance of the defects in STM images and the ability to achieve atomic resolution. Finally, we present tunneling spectroscopy measurements probing the influence of point defects on the local electronic landscape of graphene islands.

  8. Bayesian Multiresolution Variable Selection for Ultra-High Dimensional Neuroimaging Data.

    Science.gov (United States)

    Zhao, Yize; Kang, Jian; Long, Qi

    2018-01-01

    Ultra-high dimensional variable selection has become increasingly important in analysis of neuroimaging data. For example, in the Autism Brain Imaging Data Exchange (ABIDE) study, neuroscientists are interested in identifying important biomarkers for early detection of the autism spectrum disorder (ASD) using high resolution brain images that include hundreds of thousands voxels. However, most existing methods are not feasible for solving this problem due to their extensive computational costs. In this work, we propose a novel multiresolution variable selection procedure under a Bayesian probit regression framework. It recursively uses posterior samples for coarser-scale variable selection to guide the posterior inference on finer-scale variable selection, leading to very efficient Markov chain Monte Carlo (MCMC) algorithms. The proposed algorithms are computationally feasible for ultra-high dimensional data. Also, our model incorporates two levels of structural information into variable selection using Ising priors: the spatial dependence between voxels and the functional connectivity between anatomical brain regions. Applied to the resting state functional magnetic resonance imaging (R-fMRI) data in the ABIDE study, our methods identify voxel-level imaging biomarkers highly predictive of the ASD, which are biologically meaningful and interpretable. Extensive simulations also show that our methods achieve better performance in variable selection compared to existing methods.

  9. Wide band cryogenic ultra-high vacuum microwave absorber

    Science.gov (United States)

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  10. Invisible decays of ultra-high energy neutrinos

    Directory of Open Access Journals (Sweden)

    Luis eDorame

    2013-12-01

    Full Text Available Gamma-ray bursts (GRBs are expected to provide a source of ultra high energy cosmic rays, accompanied with potentially detectable neutrinos at neutrino telescopes. Recently, IceCube has set an upper bound on this neutrino flux well below theoretical expectation. We investigate whether this mismatch between expectation and observation can be due to neutrino decay. We demosntrate the phenomenological consistency and theoretical plausibility of the neutrino decay hypothesis. A potential implication is the observability of majoron-emitting neutrinoless double beta decay.

  11. Ultra-High-Sensitivity Aerosol Spectrometer (UHSAS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The Ultra-High-Sensitivity Aerosol Spectrometer (UHSAS) (Figure 1) is an optical-scattering, laser-based aerosol particle spectrometer system for sizing particles in the 60 to 1000 nanometer (nm) range [1–3]. The instrument counts particles in up to 100 user-specified sizing bins. The instrument’s laser illuminates particles, which scatter light. The system captures the peak light signals that are generated. These signals are used for particle sizing, since the amount of light scattered correlates strongly with particle size.

  12. Ultra high vacuum broad band high power microwave window

    Science.gov (United States)

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  13. Design of Ultra High Performance Fiber Reinforced Concrete Shells

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Lambertsen, Søren Heide; Damkilde, Lars

    2013-01-01

    The paper treats the redesign of the float structure of the Wavestar wave energy converter. Previously it was designed as a glass fiber structure, but due to cost reduction requirements a redesign has been initiated. The new float structure will be designed as a double curved Ultra High Performance...... Fiber Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by means of the finite element method, to optimize the structure regarding overall...

  14. Cyclic impact compaction of ultra high molecular weight polyethylene powder

    Science.gov (United States)

    Zlobin, B. S.; Shtertser, A. A.; Kiselev, V. V.; Shemelin, S. D.; Poluboyarov, V. A.; Zhdanok, A. A.

    2017-05-01

    Bulk specimens of GUR 4150 ultra-high-molecular-weight polyethylene with a molar mass of 9.2 · 106 g/mol are obtained by cyclic impact compaction. During compaction, the material remains in the solid state, which ensures the preservation of the crystalline phase with a volume fraction of up to 66%. The strength properties of the specimens are not inferior to those of the products obtained using the industrial hot molding process. It is shown that the method described here is suitable for producing compacts with micro- and nanosized additives.

  15. ATLAS and ultra high energy cosmic ray physics

    Directory of Open Access Journals (Sweden)

    Pinfold James

    2017-01-01

    Full Text Available After a brief introduction to extended air shower cosmic ray physics the current and future deployment of forward detectors at ATLAS is discussed along with the various aspects of the current and future ATLAS programs to explore hadronic physics. The emphasis is placed on those results and future plans that have particular relevance for high-energy, and ultra high-energy, cosmic ray physics. The possible use of ATLAS as an “underground” cosmic muon observatory is briefly considered.

  16. Ultra-high pressure water jet: Baseline report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  17. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  18. Advanced optical systems for ultra high energy cosmic rays detection

    Science.gov (United States)

    Gambicorti, L.; Pace, E.; Mazzinghi, P.

    2017-11-01

    A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.

  19. Live Ultra-High Definition from the International Space Station

    Science.gov (United States)

    Grubbs, Rodney; George, Sandy

    2017-01-01

    The first ever live downlink of Ultra-High Definition (UHD) video from the International Space Station (ISS) was the highlight of a 'Super Session' at the National Association of Broadcasters (NAB) in April 2017. The Ultra-High Definition video downlink from the ISS all the way to the Las Vegas Convention Center required considerable planning, pushed the limits of conventional video distribution from a space-craft, and was the first use of High Efficiency Video Coding (HEVC) from a space-craft. The live event at NAB will serve as a pathfinder for more routine downlinks of UHD as well as use of HEVC for conventional HD downlinks to save bandwidth. HEVC may also enable live Virtual Reality video downlinks from the ISS. This paper will describe the overall work flow and routing of the UHD video, how audio was synchronized even though the video and audio were received many seconds apart from each other, and how the demonstration paves the way for not only more efficient video distribution from the ISS, but also serves as a pathfinder for more complex video distribution from deep space. The paper will also describe how a 'live' event was staged when the UHD coming from the ISS had a latency of 10+ seconds. Finally, the paper will discuss how NASA is leveraging commercial technologies for use on-orbit vs. creating technology as was required during the Apollo Moon Program and early space age.

  20. Ultra-high pressure water jet: Baseline report

    International Nuclear Information System (INIS)

    1997-01-01

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU's evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky trademark pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems

  1. Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature

    Directory of Open Access Journals (Sweden)

    Chia-Chi Yu

    2016-11-01

    Full Text Available We report the first example of room-temperature rubber-like deformation in thin-film metallic glasses (TFMGs, 260-nm-thick Zr60Cu24Al11Ni5 layers, under ultra-high shear strain. The TFMGs were deposited, with no external heating, on Zr-based bulk metallic glass (BMG and Si(001 substrates by rf magnetron sputtering in a 3 mTorr Ar plasma. Cross-sectional transmission electron microscopy (XTEM analyses and nanoindentation results reveal that the TFMGs undergo an incredibly large shear strain, estimated to be ∼4000%, during fatigue tests, and thickness reductions of up to 61.5%, with no shear-banding or cracking, during extreme nanoindentation experiments extending through the film and into the substrate. TFMG/BMG samples also exhibit film/substrate diffusion bonding during deformation as shown by high-resolution XTEM.

  2. Analog Readout and Analysis Software for the Ultra-High Rate Germanium (UHRGe) Project

    Energy Technology Data Exchange (ETDEWEB)

    Fast, James E.; Aguayo Navarrete, Estanislao; Evans, Allan T.; VanDevender, Brent A.; Rodriguez, Douglas C.; Wood, Lynn S.

    2011-09-01

    High-resolution high-purity germanium (HPGe) spectrometers are needed for Safeguards applications such as spent fuel assay and uranium hexafluoride cylinder verification. In addition, these spectrometers would be applicable to other high-rate applications such as non-destructive assay of nuclear materials using nuclear resonance fluorescence. Count-rate limitations of today's HPGe technologies, however, lead to concessions in their use and reduction in their efficacy. Large-volume, very high-rate HPGe spectrometers are needed to enable a new generation of nondestructive assay systems. The Ultra-High Rate Germanium (UHRGe) project is developing HPGe spectrometer systems capable of operating at unprecedented rates, 10 to 100 times those available today. This report documents current status of developments in the analog electronics and analysis software.

  3. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    Science.gov (United States)

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultra-high-ohmic microstripline resistors for Coulomb blockade devices

    International Nuclear Information System (INIS)

    Lotkhov, Sergey V

    2013-01-01

    In this paper, we report on the fabrication and low-temperature characterization of ultra-high-ohmic microstripline resistors made of a thin film of weakly oxidized titanium. Nearly linear voltage–current characteristics were measured at temperatures down to T ∼ 20 mK for films with sheet resistivities as high as ∼7 kΩ, i.e. about an order of magnitude higher than our previous findings for weakly oxidized Cr. Our analysis indicates that such an improvement can help to create an advantageous high-impedance environment for different Coulomb blockade devices. Further properties of the Ti film addressed in this work show the promise of low-noise behavior of the resistors when applied in different realizations of the quantum standard of current. (paper)

  5. Ultra-high current density thin-film Si diode

    Science.gov (United States)

    Wang, Qi [Littleton, CO

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  6. Micro-damage propagation in ultra-high vacuum seals

    CERN Document Server

    Lutkiewicz, P; Garion, C

    2010-01-01

    The paper addresses a fundamental problem of tightness of ultra-high vacuum systems (UHV) at cryogenic temperatures in the light of continuum damage mechanics (CDM). The problem of indentation of a rigid punch into an elastic-plastic half-space is investigated based on rate independent plasticity with mixed kinematic and isotropic hardening. The micro-damage fields are modeled by using an anisotropic approach with a kinetic law of damage evolution suitable for ductile materials and cryogenic temperatures. The model has been experimentally validated and the results are used to predict the onset of macro-cracking (loss of tightness) and the corresponding load (contact pressure). The algorithm is applied in the design of UHV systems for particle accelerators. (C) 2009 Published by Elsevier Ltd.

  7. Achieving Mixtures of Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Mircea POPA

    2013-07-01

    Full Text Available Ultra-High Performance Concrete (UHPC is a relatively new concrete. According to [11] UHPC is that concrete which features compressive strength over C100/115 class. Up to this point standards for this type of concrete were not adopted, although its characteristic strength exceeds those specified in [33]. Its main property is high compressive strength. This provides the possibility of reducing the section of elements (beams or columns made of this type of concrete, while the load capacity remains high. The study consists in blending mixtures of UHPC made of varying proportions of materials. The authors have obtained strengths of up to 160 MPa. The materials used are: Portland cement, silica fume, quartz powder, steel fibers, superplasticiser, sand and crushed aggregate for concrete - andesite.

  8. Ultra High-Speed CMOS Circuits Beyond 100 GHz

    CERN Document Server

    Gharavi, Sam

    2012-01-01

    The book covers the CMOS-based millimeter wave circuits and devices and presents methods and design techniques to use CMOS technology for circuits operating beyond 100 GHz.� Coverage includes a detailed description of both active and passive devices, including modeling techniques and performance optimization. Various mm-wave circuit blocks are discussed, emphasizing their design distinctions from low-frequency design methodologies. This book also covers a device-oriented circuit design technique that is essential for ultra high speed circuits and gives some examples of device/circuit co-design that can be used for mm-wave technology. Offers a detailed description of high frequency device modeling from a circuit designer perspective; Presents a set of techniques for optimizing the performance of CMOS for mm-wave technology, including noise and low noise design for mm-wave; Introduces circuit/device co-design techniques. �

  9. Ultra-high-ohmic microstripline resistors for Coulomb blockade devices

    Science.gov (United States)

    Lotkhov, Sergey V.

    2013-06-01

    In this paper, we report on the fabrication and low-temperature characterization of ultra-high-ohmic microstripline resistors made of a thin film of weakly oxidized titanium. Nearly linear voltage-current characteristics were measured at temperatures down to T ˜ 20 mK for films with sheet resistivities as high as ˜7 kΩ, i.e. about an order of magnitude higher than our previous findings for weakly oxidized Cr. Our analysis indicates that such an improvement can help to create an advantageous high-impedance environment for different Coulomb blockade devices. Further properties of the Ti film addressed in this work show the promise of low-noise behavior of the resistors when applied in different realizations of the quantum standard of current.

  10. Invitation to neutron scattering study at ultra high pressure

    International Nuclear Information System (INIS)

    Hamaya, Nozomu

    2006-01-01

    Understanding of the pressure evolution of physical and chemical properties of hydrogen is the ultimate goal of the high pressure science. This purpose has simulated the development of low-temperature high-pressure technique for neutron diffraction study. With benefit of high intensity neutron sources a new diamond anvil cell (DAC) has been invented by I.N. Goncharenko. This device allows us to study neutron diffraction under extreme conditions of pressures up to 50 GPa, temperatures down to 0.1 K and applied magnetic fields up to 7.5 T. We describe the details of this technique in the hope that J-PARC (Japan Proton Accelerator Research Complex) will make an epoch in ultra-high-pressure research. (author)

  11. Holographic memory module with ultra-high capacity and throughput

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir A. Markov, Ph.D.

    2000-06-04

    High capacity, high transfer rate, random access memory systems are needed to archive and distribute the tremendous volume of digital information being generated, for example, the human genome mapping and online libraries. The development of multi-gigabit per second networks underscores the need for next-generation archival memory systems. During Phase I we conducted the theoretical analysis and accomplished experimental tests that validated the key aspects of the ultra-high density holographic data storage module with high transfer rate. We also inspected the secure nature of the encoding method and estimated the performance of full-scale system. Two basic architectures were considered, allowing for reversible compact solid-state configuration with limited capacity, and very large capacity write once read many memory system.

  12. Ultra-high pressure water jet: Baseline report; Summary

    International Nuclear Information System (INIS)

    1997-01-01

    The Husky trademark is an ultra high pressure waterjet cutting tool system. The pump is mounted on a steel tube frame which includes slots for transport by a forklift. The Husky trademark features an automatic shutdown for several conditions such as low oil pressure and high oil temperature. Placement of the Husky trademark must allow for a three foot clearance on all sides for operation and service access. At maximum continuous operation, the output volume is 7.2 gallons per minute with an output pressure of 40,000 psi. A diesel engine provides power for the system. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust

  13. submitter Projects for ultra-high-energy circular colliders at CERN

    CERN Document Server

    Bogomyagkov, A V; Levichev, E B; Piminov, P A; Sinyatkin, S V; Shatilov, D N; Benedict, M; Oide, K; Zimmermann, F

    2016-01-01

    Within the Future Circular Collider (FCC) design study launched at CERN in 2014, it is envisaged to construct hadron (FCC-hh) and lepton (FCC-ee) ultra-high-energy machines aimed to replace the LHC upon the conclusion of its research program. The Budker Institute of Nuclear Physics is actively involved in the development of the FCC-ee electron–positron collider. The Crab Waist (CR) scheme of the collision region that has been proposed by INP and will be implemented at FCC-ee is expected to provide high luminosity over a broad energy range. The status and development of the FCC project are described, and its parameters and limitations are discussed for the lepton collider in particular.

  14. Development and data analysis of a radio-detection of ultra high energy cosmic rays experiment

    International Nuclear Information System (INIS)

    Belletoile, A.

    2007-10-01

    The radio-detection of cosmic rays was first attempted in the sixties. Unfortunately at that time, the results suffered from poor reproducibility and the technique was abandoned in favour of direct particle and fluorescence detection. Taking advantage of recent technological improvements the radio-detection of ultra high energy cosmic rays is being reinvestigated. In this document, first, we remind the reader of the global problematic of cosmic rays. Then, the several mechanisms involved in the emission of an electric field associated with extensive air showers are discussed. The CODALEMA (cosmic detection array with logarithmic electro magnetic antenna) experiment that aims to demonstrate the feasibility of cosmic ray radio-detection, is extensively described along with the first experimental results. A radio-detection test experiment implanted at the giant detector Pierre Auger is presented. It should provide inputs to design the future detector using this technique at extreme energies. (author)

  15. Adsorption of water on graphene/Ru(0001)-an experimental ultra-high vacuum study.

    Science.gov (United States)

    Chakradhar, A; Burghaus, U

    2014-07-21

    Data for water adsorption on epitaxial graphene grown on Ru(0001) at ultra-high vacuum (clean conditions) are discussed. Accordingly, water adsorption was not affected by the support. The interaction is not strictly hydrophobic. We propose simple rules based on ultra-high vacuum kinetics to classify the water-graphene-support interactions.

  16. Ultra high performance concrete made with rice husk ash for reduced autogenous shrinkage

    NARCIS (Netherlands)

    Van Breugel, K.; Van Tuan, N.

    2014-01-01

    Ultra High Strength Concrete (UHPC) is generally made with low w/c mixtures and by adding silica fume. Low w/c mixtures, however, exhibit high autogenous shrinkage, while a high amount of silica fume increases the price of these mixtures. For designing ultra high strength mixtures with low

  17. Tecnologia radio cognitiva en la banda ultra high frequency (UHF

    Directory of Open Access Journals (Sweden)

    Hernán Paz Penagos

    2014-01-01

    Full Text Available Mobile cellular communication companies in Colombia require more spectrum resources to expand their portfolio of services. However, additional frequency bands for that particular purpose are scarce, yet it is well known that there are many underutilized licensed bands. Therefore new radio technologies are being studied in order to solve this problem, e.g. Software Defined Radio SDR Cognitive Radio CR and Dynamic Spectrum Access DSA. These strategies recommend mobility across the radio spectrum to meet various needs and achieve greater efficiency when managing such a scarce resource. In this context, a case study is presented in an attempt to examine the require¬ments that must be met for the implementation of cognitive radio networks in Bogota. The case study includes evaluation for the possibility of migration from cellular communications to cognitive radio since the bands assigned to UltraHigh Frequency UHF television offer possible free-of-interference coexistence between the two services (i.e. Cellular and TV. The study shows feasibility to migration; however, the implementations of cognitive radio need availability of hardware, software and flexible radio platforms.

  18. Refractivity variations and propagation at Ultra High Frequency

    Directory of Open Access Journals (Sweden)

    I. Alam

    Full Text Available Present framework is established to deal with the refractivity variations normally affected the radio waves propagation at different frequencies, ranges and different environments. To deal such kind of effects, many researchers proposed several methodologies. One method is to use the parameters from meteorology to investigate these effects of variations in refractivity on propagation. These variations are region specific and we have selected a region of one kilometer height over the English Channel. We have constructed different modified refractivity profiles based on the local meteorological data. We have recorded more than 48 million received signal strength from a communication links of 50 km operating at 2015 MHz in the Ultra High Frequency band giving path loss between transmitting and receiving stations of the experimental setup. We have used parabolic wave equation method to simulate an hourly value of signal strength and compared the obtained simulated loss to the experimental loss. The analysis is made to compute refractivity distribution of standard (STD and ITU (International Telecommunication Union refractivity profiles for various evaporation ducts. It is found that a standard refractivity profile is better than the ITU refractivity profiles for the region at 2015 MHz. Further, it is inferred from the analysis of results that 10 m evaporation duct height is the dominant among all evaporation duct heights considered in the research. Keywords: Refractive index, Refractivity, Parabolic wave equation, Propagation, UHF, Antennas

  19. Some aspects of ultra high energy gamma ray astronomy

    International Nuclear Information System (INIS)

    De Jager, O.C.

    1983-11-01

    A short review of ultra high energy (UHE) gamma ray astronomy (10 11 14 eV) as well as a description of a planned experiment to be erected at Potchefstroom is given in the introduction. This experiment will be the first and only one in the Southern Hemisphere and as such may play an important role in this new field of astronomy and astrophysics. In the first part the necessary infrastructure for astronomical observations of known celestial objects is developed. This embodies the special physical, mechanical and astronomical constraints in this type of astronomy, such as the definition of the various astronomical coordinate systems and transformations between them, the effect of precession and nutation on the source position etc. This leads to automatic observation schedules for the various applicable techniques of observation. In the second part the various effects which may influence the arrival time of a gamma ray at the telescope is investigated. It is found that dispersion and relativistic effects are negligible, given the special type of analysis used in this low counting rate system. The classic Doppler effect due to the motion of Earth as well as the configuration of the telescope does have a major effect and must be taken into consideration when analysing the data. A simple method, depending only on the movement of Earth around the sun, is developed to simplify the identification of pulsars at the planned observatory where computing facilities are limited

  20. Cold water, ultra-high pressure cleaning of abattoirs.

    Science.gov (United States)

    Dempster, J F

    1977-02-01

    Cold water (10 degrees C) at ultra-high pressure (38-5--49 kg/cm2) was compared with (a) hot water 65-6--82.2 degrees C) at low pressure (4-2--5-6 kg/cm2) and (b) hot water containing a detergent (2% (w/v) sodium silicate). Seven sites were examined in a beef abattoir and six in a bacon factor. Three surfaces in the beef abattoir had lower residual colony counts (higher reductions) after hot water/low pressure than after cold water/high pressure. However, the differences were not significant (P greater than 0-05). The range of the mean log10 count/cm2 before cleaning was 4-02-5.15, and after cleaning 1-73-2.32 (hot water) and 1-9--2-85 (cold water). On three of the remaining sites, the three methods were compared. The total differences between treatments were not significant (P greater than 0-05), although there was an effect of surface and an interaction between surface and treatment. The cold water produced lower residual counts on three sites in the bacon factory than the hot water (45--54 degrees C). However, the differences were not significant on the remaining surfaces.

  1. Ultra-high vacuum compatible preparation chain for intermetallic compounds.

    Science.gov (United States)

    Bauer, A; Benka, G; Regnat, A; Franz, C; Pfleiderer, C

    2016-11-01

    We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi 2 Ge 2 .

  2. Fracture toughness of ultra high performance concrete by flexural performance

    Directory of Open Access Journals (Sweden)

    Manolova Emanuela

    2016-01-01

    Full Text Available This paper describes the fracture toughness of the innovative structural material - Ultra High Performance Concrete (UHPC, evaluated by flexural performance. For determination the material behaviour by static loading are used adapted standard test methods for flexural performance of fiber-reinforced concrete (ASTM C 1609 and ASTM C 1018. Fracture toughness is estimated by various deformation parameters derived from the load-deflection curve, obtained by testing simple supported beam under third-point loading, using servo-controlled testing system. This method is used to be estimated the contribution of the embedded fiber-reinforcement into improvement of the fractural behaviour of UHPC by changing the crack-resistant capacity, fracture toughness and energy absorption capacity with various mechanisms. The position of the first crack has been formulated based on P-δ (load- deflection response and P-ε (load - longitudinal deformation in the tensile zone response, which are used for calculation of the two toughness indices I5 and I10. The combination of steel fibres with different dimensions leads to a composite, having at the same time increased crack resistance, first crack formation, ductility and post-peak residual strength.

  3. Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use

    Science.gov (United States)

    Levine, Stanley R.; Opila, Elizabeth J.; Halbig, Michael C.; Kiser, James D.; Singh, Mrityunjay; Salem, Jonathan A.

    2001-01-01

    Among the ultra-high temperature ceramics (UHTC) are a group of materials consisting of zirconium diboride or hafnium diboride plus silicon carbide, and in some instances, carbon. These materials offer a good combination of properties that make them candidates for airframe leading edges on sharp-bodied reentry vehicles. These UHTC perform well in the environment for such applications, i.e., air at low pressure. The purpose of this study was to examine three of these materials under conditions more representative of a propulsion environment, i.e., higher oxygen partial pressure and total pressure. Results of strength and fracture toughness measurements, furnace oxidation and high velocity thermal shock exposures are presented for ZrB2 plus 20 volume % SiC, ZrB2 plus 14 volume % SiC plus 30 volume % C, and SCS-9a SiC fiber reinforced ZrB2 plus 20 volume % SiC. The poor oxidation resistance of UHTCs is the predominant factor limiting their applicability to propulsion applications.

  4. Application of ultra high pressure (UHP) in starch chemistry.

    Science.gov (United States)

    Kim, Hyun-Seok; Kim, Byung-Yong; Baik, Moo-Yeol

    2012-01-01

    Ultra high pressure (UHP) processing is an attractive non-thermal technique for food treatment and preservation at room temperature, with the potential to achieve interesting functional effects. The majority of UHP process applications in food systems have focused on shelf-life extension associated with non-thermal sterilization and a reduction or increase in enzymatic activity. Only a few studies have investigated modifications of structural characteristics and/or protein functionalities. Despite the rapid expansion of UHP applications in food systems, limited information is available on the effects of UHP on the structural and physicochemical properties of starch and/or its chemical derivatives included in most processed foods as major ingredients or minor additives. Starch and its chemical derivatives are responsible for textural and physical properties of food systems, impacting their end-use quality and/or shelf-life. This article reviews UHP processes for native (unmodified) starch granules and their effects on the physicochemical properties of UHP-treated starch. Furthermore, functional roles of UHP in acid-hydrolysis, hydroxypropylation, acetylation, and cross-linking reactions of starch granules, as well as the physicochemical properties of UHP-assisted starch chemical derivatives, are discussed.

  5. Characterization of the behavior of ultra-high performance concrete

    Science.gov (United States)

    Graybeal, Benjamin A.

    In the past decade significant advances have been made in the field of high performance concretes. The next generation of concrete, Ultra-High Performance Concrete (UHPC), exhibits exceptional strength and durability characteristics that make it well suited for use in highway bridge structures. This material can exhibit compressive strength of 28 ksi, tensile strength of 1.3 ksi, significant tensile toughness, elastic modulus of 7600 ksi, and minimal long-term creep or shrinkage. It can also resist freeze-thaw and scaling conditions with virtually no damage and is nearly impermeable to chloride ions. Prestressed highway bridge girders were cast from this material and tested under flexure and shear loadings. The testing of these AASHTO Type II girders containing no mild steel reinforcement indicated that UHPC, with its internal passive fiber reinforcement, could effectively be used in highway bridge girders. A large suite of material characterization tests was also completed. Based on this research, a basic structural design philosophy for bridge girder design is proposed.

  6. Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper

    Energy Technology Data Exchange (ETDEWEB)

    Dr. VIjay K. Mathur

    2009-04-30

    The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

  7. Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging.

    Directory of Open Access Journals (Sweden)

    Shailesh B Raval

    Full Text Available The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity].A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization].High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]-images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by fiber tractography. The

  8. How perception of ultra-high definition is modified by viewing distance and screen size

    Science.gov (United States)

    Lachat, Amélie; Gicquel, Jean-Charles; Fournier, Jérôme

    2015-01-01

    Ultra High Definition (UHD) is a new technology, which main idea is to improve user's perception of details and sensation of immersion in comparison with High Definition systems (HD). However, it is important to understand the influence of the new UHD technical parameters on user's perception. Hence, to investigate the influence of the viewing distance, screen size and scene content on perceived video quality and feelings of users, a series of subjective experiments with four different contents (3 documentaries and 1 sport content) shooted by UHD camera were performed. These contents were displayed using three different image resolutions (SD, HD, UHD) and two UHD displays (55-inch and 84-inch). Each subject had to assess content for three different viewing distances (1.5, 3, 4.5 times of the screen height corresponding to optimal viewing distances of respectively UHD, HD, and close to SD optimal distance). Finally, 72 test conditions were evaluated. For each scene, observers reported their opinion on the perceived video quality using a 5-grade subjective scale. Results have shown that viewing distance has a significant influence on perceived quality. Moreover the highest MOS was obtained at optimal viewing for UHD, with a small difference between HD an UHD. At 3H and 4.5H, there is no difference from a statistical point of view. Screen size influences the perception of quality but not in the same way for the three image resolution and three viewing distances.

  9. Separation of Aliphatic and Aromatic Carboxylic Acids by Conventional and Ultra High Performance Ion Exclusion Chromatography.

    Science.gov (United States)

    Mansour, Fotouh R; Kirkpatrick, Christine L; Danielson, Neil D

    2013-06-01

    An ion exclusion chromatography (IELC) comparison between a conventional ion exchange column and an ultra-high performance liquid chromatography (UHPLC) dynamically surfactant modified C18 column for the separation of an aliphatic carboxylic acid and two aromatic carboxylic acids is presented. Professional software is used to optimize the conventional IELC separation conditions for acetylsalicylic acid and the hydrolysis products: salicylic acid and acetic acid. Four different variables are simultaneously optimized including H 2 SO 4 concentration, pH, flow rate, and sample injection volume. Thirty different runs are suggested by the software. The resolutions and the time of each run are calculated and feed back to the software to predict the optimum conditions. Derringer's desirability functions are used to evaluate the test conditions and those with the highest desirability value are utilized to separate acetylsalicylic acid, salicylic acid, and acetic acid. These conditions include using a 0.35 m M H 2 SO 4 (pH 3.93) eluent at a flow rate of 1 mL min -1 and an injection volume of 72 μL. To decrease the run time and improve the performance, a UHPLC C18 column is used after dynamic modification with sodium dodecyl sulfate. Using pure water as a mobile phase, a shorter analysis time and better resolution are achieved. In addition, the elution order is different from the IELC method which indicates the contribution of the reversed-phase mode to the separation mechanism.

  10. An ultra-high-vacuum multiple grating chamber and scan drive with improved grating change

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Holly, D.J.; Middleton, F.H.; Wallace, D.J.; Wisconsin Univ., Stoughton, WI; Wisconsin Univ., Stoughton, WI

    1989-01-01

    We describe a new grating chamber and scan drive which has been designed, built, and tested by Physical Sciences Laboratory of the University of Wisconsin for the new high flux, high-resolution spectroscopy branch line of the TOK hybrid wiggler/undulator on the NSLS VUV ring. The chamber will contain spherical gratings to be used in the Spherical Grating Monochromator (SGM) configuration introduced by Chen and Sette. The grating chamber houses five 180 mm x 35 mm x 30 mm gratings capable of scanning a range of 12 degree (-14 degree to +8 degree with respect to the incoming beam direction) for VUV and soft X-ray diffraction. The gratings can be switched and precisely indexed while under ultra-high vacuum (UHV) at any scan angle and are mechanically isolated from the vacuum chamber to prevent inaccuracies due to chamber distortions. The gratings can separately be adjusted for height, yaw, pitch, and roll, with the latter three performed while in vacuo. The scan drive provides a resolution of 0.03 arc sec with linearity over the 12 degree range of ∼1.5 arc sec and absolute reproducibility of 1 arc sec. 5 refs., 5 figs

  11. Rapid screening for drugs of abuse in biological fluids by ultra high performance liquid chromatography/Orbitrap mass spectrometry.

    Science.gov (United States)

    Jagerdeo, Eshwar; Schaff, Jason E

    2016-08-01

    We present a UPLC(®)-High Resolution Mass Spectrometric method to simultaneously screen for nineteen benzodiazepines, twelve opiates, cocaine and three metabolites, and three "Z-drug" hypnotic sedatives in both blood and urine specimens. Sample processing consists of a high-speed, high-temperature enzymatic hydrolysis for urine samples followed by a rapid supported liquid extraction (SLE). The combination of ultra-high resolution chromatography with high resolution mass spectrometry allows all 38 analytes to be uniquely detected with a ten minute analytical run. Limits of detection for all target analytes are 3ng/mL or better, with only 0.3mL of specimen used for analysis. The combination of low sample volume with fast processing and analysis makes this method a suitable replacement for immunoassay screening of the targeted drug classes, while providing far superior specificity and better limits of detection than can routinely be obtained by immunoassay. Published by Elsevier B.V.

  12. Advanced Ultra-High Speed Motor for Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at

  13. Ultra-high energy physics and standard basic principles

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mestres Luis

    2014-04-01

    Full Text Available It has not yet been elucidated whether the observed flux suppression for ultra-high energy cosmic rays (UHECR at energies above ≃ 4 x 1019 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a long-term program, UHECR data can hopefully be used to test relativity, quantum mechanics, energy and momentum conservation, vacuum properties... as well as the elementariness of standard particles. Data on cosmic rays at energies ≃ 1020 eV may also be sensitive to new physics generated well beyond Planck scale. A typical example is provided by the search for possible signatures of a Lorentz symmetry violation (LSV associated to a privileged local reference frame (the "vacuum rest frame", VRF. If a VRF exists, the internal structure of standard particles at ultra-high energy can undergo substantial modifications. Similarly, the conventional particle symmetries may cease to be valid at such energies instead of heading to a grand unification and the structure of vacuum may no longer be governed by standard quantum field theory. Then, the question whether the notion of Planck scale still makes sense clearly becomes relevant and the very grounds of Cosmology can undergo essential modifications. UHECR studies naturally interact with the interpretation of WMAP and Planck observations. Recent Planck data analyses tend to confirm the possible existence of a privileged space direction. If the observed phenomenon turns out to be a signature of the spinorial space-time (SST we suggested in 1996-97, then conventional Particle Physics may correspond to the local properties of standard matter at low enough energy and large enough distances. This would clearly strengthen the cosmological

  14. On the Origin of Ultra High Energy Cosmic Rays II

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  15. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  16. Acoustic detection of ultra-high energy cascades in ice

    Energy Technology Data Exchange (ETDEWEB)

    Boeser, S.

    2006-12-08

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km{sup 3} scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km{sup 3} will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and

  17. Acoustic detection of ultra-high energy cascades in ice

    International Nuclear Information System (INIS)

    Boeser, S.

    2006-01-01

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km 3 scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km 3 will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and transmitters was

  18. Ultra High Temperature (UHT) SiC Fiber (Phase 2)

    Science.gov (United States)

    Dicarlo, James A.; Jacobson, Nathan S.; Lizcano, Maricela; Bhatt, Ramakrishna T.

    2015-01-01

    Silicon-carbide fiber-reinforced silicon-carbide ceramic matrix composites (SiCSiC CMC) are emerginglightweight re-usable structural materials not only for hot section components in gas turbine engines, but also for controlsurfaces and leading edges of reusable hypersonic vehicles as well as for nuclear propulsion and reactor components. Ithas been shown that when these CMC are employed in engine hot-section components, the higher the upper usetemperature (UUT) of the SiC fiber, the more performance benefits are accrued, such as higher operating temperatures,reduced component cooling air, reduced fuel consumption, and reduced emissions. The first generation of SiCSiC CMC with a temperature capability of 2200-2400F are on the verge of being introduced into the hot-section components ofcommercial and military gas turbine engines.Today the SiC fiber type currently recognized as the worlds best in terms ofthermo-mechanical performance is the Sylramic-iBN fiber. This fiber was previously developed by the PI at NASA GRC using patented processes to improve the high-cost commercial Sylramic fiber, which in turn was derived from anotherlow-cost low-performance commercial fiber. Although the Sylramic-iBN fiber shows state-of-the art creep and rupture resistance for use temperatures above 2550oF, NASA has shown by fundamental creep studies and model developmentthat its microstructure and creep resistance could theoretically be significantly improved to produce an Ultra HighTemperature (UHT) SiC fiber.This Phase II Seedling Fund effort has been focused on the key objective of effectively repeating the similar processes used for producing the Sylramic-iBN fiber using a design of experiments approach to first understand the cause of the less than optimum Sylramic-iBN microstructure and then attempting to develop processconditions that eliminate or minimize these key microstructural issues. In so doing, it is predicted that that theseadvanced process could result in an UHT Si

  19. Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications

    Energy Technology Data Exchange (ETDEWEB)

    Trattnig, Siegfried [Medical University of Vienna/Vienna General Hospital, MR Centre - High Field MR, Department of Radiology, Vienna (Austria); Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna (Austria); Zbyn, Stefan; Schmitt, Benjamin; Friedrich, Klaus; Bogner, Wolfgang [Medical University of Vienna/Vienna General Hospital, MR Centre - High Field MR, Department of Radiology, Vienna (Austria); Juras, Vladimir; Szomolanyi, Pavol [Medical University of Vienna/Vienna General Hospital, MR Centre - High Field MR, Department of Radiology, Vienna (Austria); Slovak Academy of Sciences, Department of Imaging Methods, Institute of Measurement Science, Bratislava (Slovakia)

    2012-11-15

    This article provides an overview of the initial clinical results of musculoskeletal studies performed at 7 Tesla, with special focus on sodium imaging, new techniques such as chemical exchange saturation transfer (CEST) and T2* imaging, and multinuclear MR spectroscopy. Sodium imaging was clinically used at 7 T in the evaluation of patients after cartilage repair procedures because it enables the GAG content to be monitored over time. Sodium imaging and T2* mapping allow insights into the ultra-structural composition of the Achilles tendon and help detect early disease. Chemical exchange saturation transfer was, for the first time, successfully applied in the clinical set-up at 7 T in patients after cartilage repair surgery. The potential of phosphorus MR spectroscopy in muscle was demonstrated in a comparison study between 3 and 7 T, with higher spectral resolution and significantly shorter data acquisition times at 7 T. These initial clinical studies demonstrate the potential of ultra-high field MR at 7 T, with the advantage of significantly improved sensitivity for other nuclei, such as {sup 23}Na (sodium) and {sup 31}P (phosphorus). The application of non-proton imaging and spectroscopy provides new insights into normal and abnormal physiology of musculoskeletal tissues, particularly cartilage, tendons, and muscles. (orig.)

  20. The Time Lens Concept Applied to Ultra-High-Speed OTDM Signal Processing

    DEFF Research Database (Denmark)

    Clausen, Anders; Palushani, Evarist; Mulvad, Hans Christian Hansen

    2013-01-01

    This survey paper presents some of the applications where the versatile time-lens concept successfully can be applied to ultra-high-speed serial systems by offering expected needed functionalities for future optical communication networks....

  1. Failure Modes of a Unidirectional Ultra-High-Modulus Carbon-Fiber/Carbon-Matrix Composite

    National Research Council Canada - National Science Library

    Zaldivar, R

    1998-01-01

    The objective of this study was to observe the effects of various microstructural features on the in situ, room-temperature tensile fracture behavior of an ultra-high-modulus, unidirectional carbon/carbon (C/C...

  2. Ultra-high performance concrete : a state-of-the-art report for the bridge community.

    Science.gov (United States)

    2013-06-01

    "The term Ultra-High Performance Concrete (UHPC) refers to a relatively new class of advanced cementitious : composite materials whose mechanical and durability properties far surpass those of conventional concrete. This : class of concrete has been ...

  3. Press and Dryer Roll Surgaces and Web Transfer Systems for Ultra High Paper Maching Speeds

    Energy Technology Data Exchange (ETDEWEB)

    T. F. Patterson

    2004-03-15

    The objective of the project was to provide fundamental knowledge and diagnostic tools needed to design new technologies that will allow ultra high speed web transfer from press rolls and dryer cylinders.

  4. Innovative Ultra-High Efficiency Cryogenic Actuators for Rocket Test Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The SBIR Phase I project will develop advanced ultra-high efficiency cryogenic actuators for NASA cryogenic fluid transfer application. The actuator will have low...

  5. Design and evaluation of a single-span bridge using ultra-high performance concrete.

    Science.gov (United States)

    2009-09-01

    "Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possib...

  6. Design, construction, and field testing of an ultra high performance concrete pi-girder bridge.

    Science.gov (United States)

    2011-01-01

    The Jakway Park Bridge in Buchanan County, Iowa is the first bridge constructed with a new prestesssed girder system composed of : precast Ultra-High Performance Concrete (UHPC). These girders employ an integral deck to facilitate construction and ar...

  7. Durability and smart condition assessment of ultra-high performance concrete in cold climates.

    Science.gov (United States)

    2016-12-31

    The goals of this study were to develop ecological ultra-high performance concrete (UHPC) with local materials and supplementary cementitious materials and to evaluate the long-term performance of UHPC in cold climates using effective mechanical test...

  8. Design of ultra high performance concrete as an overlay in pavements and bridge decks.

    Science.gov (United States)

    2014-08-01

    The main objective of this research was to develop ultra-high performance concrete (UHPC) as a reliable, economic, low carbon foot : print and durable concrete overlay material that can offer shorter traffic closures due to faster construction. The U...

  9. The effect of cognitive remediation in individuals at ultra-high risk for psychosis

    DEFF Research Database (Denmark)

    Glenthøj, Louise Birkedal; Hjorthøj, Carsten; Kristensen, Tina Dam

    2017-01-01

    of social functioning and social adjustment. Zero out of the five studies that reported such an outcome found cognitive remediation to affect the magnitude of clinical symptoms. Research on the effect of cognitive remediation in the ultra-high risk state is still scarce. The current state of evidence...... indicates an effect of cognitive remediation on cognition and functioning in ultra-high risk individuals. More research on cognitive remediation in ultra-high risk is needed, notably in large-scale trials assessing the effect of neurocognitive and/or social cognitive remediation on multiple outcomes.......Cognitive deficits are prominent features of the ultra-high risk state for psychosis that are known to impact functioning and course of illness. Cognitive remediation appears to be the most promising treatment approach to alleviate the cognitive deficits, which may translate into functional...

  10. Premorbid adjustment in individuals at ultra-high risk for developing psychosis

    DEFF Research Database (Denmark)

    Dannevang, Anders; Randers, Lasse; Gondan, Matthias

    2017-01-01

    Objective: Deterioration in premorbid adjustment is related to ultra-high risk (UHR) individuals developing psychosis, but it has not been examined how UHR individuals’ development differs compared to healthy controls. This study investigates differences in premorbid adjustment between UHR...

  11. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard

    1995-01-01

    Ultra high-strength concrete adds new dimensions to the design of concrete structures. It is a brittle material but introducing fibres into the matrix changes the material into a highly ductile material. Furthermore, the fibre reinforcement increases the anchorage of traditional reinforcement bars...... and the fire resistance. Such a fibre reinforced ultra high-strength material has been used to develop a simple joint solution between slab elements in a column - slab building system....

  12. Ultra-high voltage capillary electrophoresis >300 kV: recent advances in instrumentation and analyte detection.

    Science.gov (United States)

    Henley, W Hampton; Jorgenson, James W

    2012-10-26

    Instrumentation has been developed for the implementation of ultra-high voltage capillary electrophoresis (UHVCE) with potentials up to and exceeding 300 kV. Several separations have been used to demonstrate the utility of higher applied voltages for improving the resolution of peptide, protein, and nucleic acid separations. Previously reported instrumentation was limited to 120 kV and required submersion in a bath of transformer oil to prevent corona and high voltage arcing between the components of the instrument [Hutterer, 1999, 2000, 2005] [1-3]. A modular design that uses plastic dielectric materials to overcome these obstacles enabling simplified operation of the instrument in air is described here in detail. A forced air system developed to control the temperature of the instrument to within a few degrees over a range of 25-60 °C for use with ultra-high voltage capillary gel electrophoresis is also described. UHVCE instrumentation and its applications with UV absorption and laser induced fluorescence detection are further developed, and the first demonstration of UHVCE coupled to electrospray ionization-mass spectrometry is shown. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Design Strategies for Ultra-high Efficiency Photovoltaics

    Science.gov (United States)

    Warmann, Emily Cathryn

    While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired

  14. Ultra-high accuracy optical testing: creating diffraction-limited short-wavelength optical systems

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman, Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli, Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-01-01

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-(angstrom) and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date

  15. Detection of ultra-high energy neutrino interactions in ice: comparing radio detector array designs

    Science.gov (United States)

    Bechtol, Keith; Vieregg, Abigail

    2014-08-01

    Ultra-high energy (UHE, >10^18 eV) cosmic neutrinos are anticipated to reveal the most distant, most obscured, and highest energy particle accelerators in the Universe. An almost guaranteed flux of UHE neutrinos is predicted from the interactions of UHE cosmic rays with the cosmic microwave background, and additional contributions may arise from prompt emission at individual sources. The spectrum of UHE neutrinos is a sensitive discriminator of the cosmological evolution of UHE sources, as well as the composition of UHE cosmic rays. At the same time, UHE neutrinos will enable several tests of fundamental physics, including constraints on the neutrino-nucleon interaction cross section at center-of-momentum energies ~100 TeV, and searches for Lorentz invariance violation.Theoretical predictions and subsequent laboratory measurements of coherent radio emission from showers initiated by neutrino interactions in dielectric media (e.g., ice, sand, salt, lunar regolith) have motivated diverse experimental approaches involving "detectors" comprised of up to millions of cubic kilometers of natural materials. I will discuss simulation results comparing the expected performance of several proposed radio detector array designs with subterranean, ice shelf, and above ice configurations.

  16. Imaging Frontostriatal Function in Ultra-High-Risk, Early, and Chronic Schizophrenia During Executive Processing

    Science.gov (United States)

    Morey, Rajendra A.; Inan, Seniha; Mitchell, Teresa V.; Perkins, Diana O.; Lieberman, Jeffrey A.; Belger, Aysenil

    2009-01-01

    Context Individuals experiencing prodromal symptoms of schizophrenia (ultra-high-risk group) demonstrate impaired performance on tasks of executive function, attention, and working memory. The neurobiological underpinnings of such executive deficits in ultra-high-risk individuals remains unclear. Objective We assessed frontal and striatal functions during a visual oddball continuous performance task, in ultra-high-risk, early, and chronic schizophrenic patients with the use of functional magnetic resonance imaging. Design Cross-sectional case-control design. Setting Community; outpatient clinic. Patients Fifty-two individuals (control, n = 16; ultra-high risk, n = 10; early, n = 15; chronic, n = 11) from a referred clinical sample and age- and sex-matched control volunteers underwent scanning. Main Outcome Measures Percentage of active voxels and percentage signal change calculated for the anterior cingulate gyrus (ACG), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), basal ganglia, and thalamus. Performance on the visual oddball task was measured with percentage of hits and d′ (a measure based on the hit rate and the false-alarm rate). Results The ultra-high-risk group showed significantly smaller differential activation between task-relevant and task-irrelevant stimuli in the frontal regions (ACG, IFG, MFG) than the control group. Frontostriatal activation associated with target stimuli in the early and chronic groups was significantly lower than the control group, while the ultra-high-risk group showed a trend toward the early group. Conclusions Our findings suggest that prefrontal function begins to decline before the onset of syndromally defined illness and hence may represent a vulnerability marker in assessing the risk of developing psychotic disorders among ultra-high-risk individuals. PMID:15753238

  17. Role of high-resolution CT in cholesteatoma involving the supratubal recess

    Energy Technology Data Exchange (ETDEWEB)

    Funai, Hiroaki; Yabe, Toshie; Kase, Yasuhiro; Kitahara, Nobuo; Horiuchi, Koji; Yano, Jun; Ushijima, Tatsujiro; Iinuma, Toshitaka

    1987-11-01

    Operative findings of the supratubal recess were examined in the 30 patients with acquired cholesteatoma. They were compared with findings of high-resolution CTs (HRCTs) obtained preoperatively. Thus the role of HRCT in cholesteatoma involving the supratubal recess were evaluated. HRCTs of 172 ears without otitis media and 65 ears with tubotympanic type otitis media were analyzed as control. The HRCT has proved to provide excellent informations regarding the presence of cholesteatoma in the supratubal recess. Diagnostic points were as follows. (1) Destruction of the ''cog''. (2) Erosion or destruction of surrounding bony structures, for example, facial canal, tympanic tegmen. (3) Soft tissue density in the supratubal recess.

  18. Widely tunable/wavelength-swept SLM fiber laser with ultra-narrow linewidth and ultra-high OSNR

    Science.gov (United States)

    Feng, Ting; Ding, Dong-liang; Liu, Peng; Su, Hong-xin; Yao, X. Steve

    2016-11-01

    We propose and demonstrate a novel single-longitudinal-mode (SLM) erbium-doped fiber laser (EDFL) capable of operating at fixed-wavelength lasing mode with a tunable range more than 54 nm, an ultra-narrow linewidth of 473 Hz and an ultra-high optical signal-to-noise ratio ( OSNR) more than 72 dB, or operating at wavelength-swept mode with tunable sweep rate of 10—200 Hz and a sweep range more than 50 nm. The excellent features mainly benefit from a triple-ring subring cavity constructed by three optical couplers nested one another and a fiber Fabry-Pérot tunable filter which can be driven by a constant voltage or a periodic sweep voltage for fixed or wavelength- swept operation, respectively. The proposed EDFL has potential applications in high-resolution spectroscopy and fiber optic sensing.

  19. Interwell coupling effect in Si/SiGe quantum wells grown by ultra high vacuum chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Loh Ter-Hoe

    2007-01-01

    Full Text Available AbstractSi/Si0.66Ge0.34coupled quantum well (CQW structures with different barrier thickness of 40, 4 and 2 nm were grown on Si substrates using an ultra high vacuum chemical vapor deposition (UHV-CVD system. The samples were characterized using high resolution x-ray diffraction (HRXRD, cross-sectional transmission electron microscopy (XTEM and photoluminescence (PL spectroscopy. Blue shift in PL peak energy due to interwell coupling was observed in the CQWs following increase in the Si barrier thickness. The Si/SiGe heterostructure growth process and theoretical band structure model was validated by comparing the energy of the no-phonon peak calculated by the 6 + 2-bandk·pmethod with experimental PL data. Close agreement between theoretical calculations and experimental data was obtained.

  20. Mechanical analysis on magnesium alloy rotating mirror for ultra-high-speed camera

    Science.gov (United States)

    Li, Chunbo; Liu, Minqiu; Ren, Xikui; Du, Chenlin; Huang, Hongbin; Ruan, Shuangchen

    2018-03-01

    Rotating mirror is not only as an imaging element in optical path of ultra-high speed camera, where imaging quality is affected by surface quality and plane deformation of the rotating mirror, but also as an element to implement ultra-high speed, because performances of the ultra-high-speed camera system are mainly dependent on the static and dynamic mechanical properties of the rotating mirror. In this paper, the static and dynamic properties of magnesium alloy rotating mirror with equilateral-triangle cross-sections were investigated by theoretically and numerically method. At the speed of 2×105 rpm, the maximum lateral deformations of the mirror facet with width 17.32 mm and length 40 mm is 2.476 μm. The maximum von Mises stress is 35.1 MPa. The deformation and stress are less than that of aluminum alloy rotating mirror, which has been successfully applied in many types of RM for ultra-high speed cameras. The first three frequencies of magnesium alloy rotating mirror are 9,539.9 Hz, 9,540.9 Hz and 12,726.0 Hz, respectively. While the first three frequencies of aluminium alloy rotating-mirror are 9,683.9 Hz, 9,685.2 Hz and 11,016.0 Hz. From which it is preliminarily shown that a magnesium alloy rotating mirror can be used as replacement for an aluminium alloy rotating mirror in ultra-high-speed camera.

  1. Ultra-high Efficiency DC-DC Converter using GaN Devices

    DEFF Research Database (Denmark)

    Ramachandran, Rakesh

    2016-01-01

    for many decades. However, the rate of improvement slowed as the silicon power materials asymptotically approached its theoretical bounds. Compared to Si, wideband gap materials such as Silicon Carbide (SiC) and Gallium Nitride (GaN) are promising semiconductors for power devices due to their superior...... properties of GaN devices can be utilized in power converters to make them more compact and highly efficient. This thesis entitled “Ultra-high Efficiency DC-DC Converter using GaN devices” focuses on achieving ultra-high conversion efficiency in an isolated dc-dc converter by the optimal utilization of Ga...... in this thesis. Efficiency measurements from the hardware prototype of both the topologies are also presented in this thesis. Finally, the bidirectional operation of an optimized isolated dc-dc converter is presented. The optimized converter has achieved an ultra-high efficiency of 98.8% in both directions...

  2. Thermal characterization of Ag and Ag + N ion implanted ultra-high molecular weight polyethylene (UHMWPE)

    Science.gov (United States)

    Sokullu Urkac, E.; Oztarhan, A.; Tihminlioglu, F.; Kaya, N.; Ila, D.; Muntele, C.; Budak, S.; Oks, E.; Nikolaev, A.; Ezdesir, A.; Tek, Z.

    2007-08-01

    Most of total hip joints are composed of ultra-high molecular weight polyethylene (UHMWPE). However, as ultra-high molecular weight polyethylene is too stable in a body, wear debris may accumulate and cause biological response such as bone absorption and loosening of prosthesis. In this study, ultra-high molecular weight polyethylene samples were Ag and Ag + N hybrid ion implanted by using MEVVA ion implantation technique to improve its surface properties. Samples were implanted with a fluence of 1017 ion/cm2 and extraction voltage of 30 kV. Implanted and unimplanted samples were investigated by thermo-gravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), optical microscopy (OM) and contact Angle measurement. Thermal characterization results showed that the ion bombardment induced an increase in the % crystallinity, onset and termination degradation temperatures of UHMWPE.

  3. Thermal characterization of Ag and Ag + N ion implanted ultra-high molecular weight polyethylene (UHMWPE)

    Energy Technology Data Exchange (ETDEWEB)

    Sokullu Urkac, E. [Department of Materials Science, Izmir High Technology Institute, Gulbahcekoyu Urla, Izmir (Turkey)]. E-mail: emelsu@gmail.com; Oztarhan, A. [Bioengineering Department, Ege University, Bornova, Izmir 35100 (Turkey); Tihminlioglu, F. [Department of Chemical Engineering, Izmir High Technology Institute, Gulbahcekoyu Urla, Izmir (Turkey); Kaya, N. [Bioengineering Department, Ege University, Bornova, Izmir 35100 (Turkey); Ila, D. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Muntele, C. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Budak, S. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Oks, E. [H C Electronics Institute, Tomsk (Russian Federation); Nikolaev, A. [H C Electronics Institute, Tomsk (Russian Federation); Ezdesir, A. [R and D Department, PETKIM Holding A.S., Aliaga, Izmir 35801 (Turkey); Tek, Z. [Department of Physics, Celal Bayar University, Manisa (Turkey)

    2007-08-15

    Most of total hip joints are composed of ultra-high molecular weight polyethylene (UHMWPE ). However, as ultra-high molecular weight polyethylene is too stable in a body, wear debris may accumulate and cause biological response such as bone absorption and loosening of prosthesis. In this study, ultra-high molecular weight polyethylene samples were Ag and Ag + N hybrid ion implanted by using MEVVA ion implantation technique to improve its surface properties. Samples were implanted with a fluence of 10{sup 17} ion/cm{sup 2} and extraction voltage of 30 kV. Implanted and unimplanted samples were investigated by thermo-gravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), optical microscopy (OM) and contact Angle measurement. Thermal characterization results showed that the ion bombardment induced an increase in the % crystallinity, onset and termination degradation temperatures of UHMWPE.

  4. The subclinical involvement of the lung in rheumatoid arthritis: evaluation by high-resolution computed tomography

    Directory of Open Access Journals (Sweden)

    E. Bichi Secchi

    2011-09-01

    Full Text Available Pulmonary involvement is one of the most frequent extra-articular manifestations of rheumatoid arthritis (RA and represents a serious complication, being the second cause of death after infection. High-resolution computed tomography (HRCT, owing to its increased sensitivity and diagnostic accuracy respect to the conventional chest radiograph (CXR, allows to detect pulmonary abnormalities in RA patients more frequently than CXR. The aim of this study was to assess pulmonary involvement by HRCT in lifelong non-smoking RA patients without symptoms and clinical signs of pulmonary disease. Seventy-two patients (54 women and 18 men with a mean age of 56.8±10.4 years (range, 40- 77 years and mean duration of disease of 6.9±4.7 years (range, 2-12 years entered the study. 52/72 (72% were positive for rheumatoid factor (> 20 UI/ml. Standard CXR and HRCT were carried out in each patient. CXR showed a mild interstitial fibrosis in 7 patients (9.7%, whereas HRCT demonstrated pulmonary abnormalities in an higher number of them (22/72 = 30.5%. The most frequent abnormal findings on HRCT were irregular pleural margins (13.8% and septal/subpleural lines (18%, both compatible with pulmonary fibrosis. Ground-glass opacities were found in 8.3% of the patients. Pulmonary nodules (diameter, range 0,5-2 cm predominantly located in the subpleural portions of the lung, were demonstrated in the same percentage (8.3% of patients. Small airway involvement, represented by bronchiectasis/bronchioloectasis, was shown in 15.2% of patients. Subpleural cysts were present in two cases (2.8%. No patient had evidence of honeycombing on HRCT. In conclusion, HRCT is an accurate, non-invasive and safe method of diagnosing lung abnormalities in RA patients without signs and clinical symptoms of pulmonary disease...

  5. Technology Development for Ultra-High-Resolution X-ray Optics

    Data.gov (United States)

    National Aeronautics and Space Administration — Readiness of the fabrication method is needed to justify future NASA astrophysics & heliophysics Missions.We propose to develop a novel optics fabrication method...

  6. Ultra-High-Resolution Observations of MHD Waves in Photospheric Magnetic Structures

    Science.gov (United States)

    Jess, D. B.; Verth, G.

    2016-02-01

    This chapter reviews the recent observations of waves and oscillations manifesting in fine-scale magnetic structures in the solar photosphere, which are often interpreted as the "building blocks' of the magnetic Sun. The authors found, through phase relationships between the various waveforms, that small-scale magnetic bright points (MBPs) in the photosphere demonstrated signatures of specific magnetoacoustic waves, in particular the sausage and kink modes. Modern magnetohydrodynamic (MHD) simulations of the lower solar atmosphere clearly show how torsional motions can easily be induced in magnetic elements in the photosphere through the processes of vortical motions and/or buffeting by neighboring granules. The authors detected significant power associated with high-frequency horizontal motions, and suggested that these cases may be especially important in the creation of a turbulent environment that efficiently promotes Alfvén wave dissipation.

  7. Use of an ultra-high resolution magnetic spectrograph for materials research

    NARCIS (Netherlands)

    Boerma, DO; Arnoldbik, WM; Wolfswinkel, W; Balogh, AG; Walter, G

    1997-01-01

    A brief description is given of a magnetic spectrograph for RBS and ERD analysis with MeV beams, delivered by a Tandem accelerator. With a number of examples of thin layer analysis it is shown that the spectrograph is uniquely suited for the measurement of concentration depth profiles up to a depth

  8. Ultra high throughput four-reflection x-ray telescope for high resolution spectroscopy

    Science.gov (United States)

    Tawara, Yuzuru; Mitsuishi, Ikuyuki; Babazaki, Yasunori; Nakamichi, Ren; Bandai, Ayako

    2015-09-01

    The first application of four-times reflection X-ray optics is planned for the DIOS mission, in which very soft X-ray observation is expected. On the other hand, effective area of the telescope for higher X-ray energy (E < 10 keV) including iron K emission lines has been so far limited to about 1000 cm2 for assumed several meter focal length. However, if we introduce four-reflection optics to this energy range, we can get several times large effective area for single telescope with same several meter focal length. To prove this possibility, we performed ray tracing simulation for four-reflection telescope with 6 m focal length and found that effective area of 3100 cm2 at 6 keV can be obtained for single telescope. In this paper, we will discuss about other telescope performances, mechanical properties and application to fine spectroscopic mission using X-ray micro-calorimeter.

  9. Development of an ultra-high resolution diffraction grating forsoft x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Voronov, Dmitriy L.; Cambie, Rossana; Feshchenko, Ruslan M.; Gullikson, Eric M.; Padmore, Howard A.; Vinogradov, Alexander V.; Yashchuk, Valeriy V.

    2007-08-21

    Resonant Inelastic X-ray Scattering (RIXS) is the one of themost powerful methods for investigation of the electronic structure ofmaterials, specifically of excitations in correlated electron systems.However the potential of the RIXS technique has not been fully exploitedbecause conventional grating spectrometers have not been capable ofachieving the extreme resolving powers that RIXS can utilize. State ofthe art spectrometers in the soft x-ray energy range achieve ~;0.25 eVresolution, compared to the energy scales of soft excitations andsuperconducting gap openings down to a few meV. Development ofdiffraction gratings with super high resolving power is necessary tosolve this problem. In this paper we study the possibilities offabrication of gratings of resolving power of up to 106 for the 0.5 1.5KeV energy range. This energy range corresponds to all or most of theuseful dipole transitions for elements of interest in most correlatedelectronic systems, i.e., oxygen K-edge of relevance to all oxides, thetransition metal L2,3 edges, and the M4,5 edges of the rare earths.Various approaches based on different kinds of diffraction gratings suchas deep-etched multilayer gratings, and multilayer coated echelettes arediscussed. We also present simulations of diffraction efficiency for suchgratings, and investigate the necessary fabricationtolerances.

  10. IN15 ultra-high-resolution spin-echo project. First experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schleger, P.; Hayes, C. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Kollmar, A. [Forschungszentrum Juelich GmbH (Germany)

    1997-04-01

    The IN15 project is a collaboration between the ILL, HMI (Berlin), and FZ (Juelich) to construct a spin-echo spectrometer with a fourier time-range surpassing half a microsecond. Three different operational modes are possible: normal, with neutron focusing, and time-of-flight. Present status of the project is described. (author). 3 refs.

  11. All-optical ultra-high-speed OFDM to Nyquist-WDM conversion

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2015-01-01

    We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER <10−9 performance for all channels.......We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER

  12. The effect of surface layer properties on bendability of ultra-high strength steel

    Science.gov (United States)

    Arola, Anna-Maija; Kaijalainen, Antti; Kesti, Vili

    2016-10-01

    Bendability is an important property for ultra-high strength steel because air-bending is the most common forming process for the material. In this paper the bendability of two ultra-high strength steels with similar mechanical properties but different bendability was investigated using tensile testing with optical strain measurements. The tensile tests were conducted also for specimens cut from the surface layer and the middle layer of the sheet. It was discovered that the mechanical properties of the surface of the sheet affect the bendability in great manner.

  13. Ultra high temperature ceramics for hypersonic vehicle applications.

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.; Loehman, Ronald E.; Kotula, Paul Gabriel

    2006-01-01

    HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2} ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.

  14. Generation and evaluation of an ultra-high-field atlas with applications in DBS planning

    Science.gov (United States)

    Wang, Brian T.; Poirier, Stefan; Guo, Ting; Parrent, Andrew G.; Peters, Terry M.; Khan, Ali R.

    2016-03-01

    Purpose Deep brain stimulation (DBS) is a common treatment for Parkinson's disease (PD) and involves the use of brain atlases or intrinsic landmarks to estimate the location of target deep brain structures, such as the subthalamic nucleus (STN) and the globus pallidus pars interna (GPi). However, these structures can be difficult to localize with conventional clinical magnetic resonance imaging (MRI), and thus targeting can be prone to error. Ultra-high-field imaging at 7T has the ability to clearly resolve these structures and thus atlases built with these data have the potential to improve targeting accuracy. Methods T1 and T2-weighted images of 12 healthy control subjects were acquired using a 7T MR scanner. These images were then used with groupwise registration to generate an unbiased average template with T1w and T2w contrast. Deep brain structures were manually labelled in each subject by two raters and rater reliability was assessed. We compared the use of this unbiased atlas with two other methods of atlas-based segmentation (single-template and multi-template) for subthalamic nucleus (STN) segmentation on 7T MRI data. We also applied this atlas to clinical DBS data acquired at 1.5T to evaluate its efficacy for DBS target localization as compared to using a standard atlas. Results The unbiased templates provide superb detail of subcortical structures. Through one-way ANOVA tests, the unbiased template is significantly (p brain nuclei and an increase in accuracy over single-template and lower field strength atlases.

  15. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

    Directory of Open Access Journals (Sweden)

    Urs Gysin

    2015-12-01

    Full Text Available Background: The resolution in electrostatic force microscopy (EFM, a descendant of atomic force microscopy (AFM, has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection.Results: We present Kelvin probe force microscopy (KPFM measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  16. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.

    Science.gov (United States)

    Gysin, Urs; Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst

    2015-01-01

    The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip-sample interface for optically excited measurements such as local surface photo voltage detection. We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  17. Physico-chemical characterization of polyethylene of ultra high molecular weight modified with gamma irradiation and heavy ions

    International Nuclear Information System (INIS)

    Lagarde, M; Del Grosso, M; Fasce, D; Dommarco, R; Laino, S; Fasce, L.A

    2012-01-01

    The ultra high molecular weight polyethylene (UHMWPE) is a biomaterial widely used in total joint replacement. In this work, the effect of two different irradiation techniques on UHMWPE is analyzed. One technique involves gamma irradiation (γ) followed by a thermal treatment, thus modifying the material bulk. The other implies swift heavy ion irradiation (SHI), which have an effect only on the near surface layers. The surface nanomechanical properties are evaluated from depth sensing indentation experiments, while changes in crystallinity and chemical structure are determined by DSC and Raman spectroscopy. The results show that even when both techniques are able to improve the UHMWPE wear behavior, the effect on other mechanical properties and molecular structure modification is different. The γ irradiated sample exhibits lower crystallinity, hardness and modulus than the pristine UHMWPE, while the SHI irradiated sample exhibits higher crystallinity and enhanced mechanical properties than the later

  18. Implementation of trigger for detection of ultra high energy cosmic rays with LOFAR

    NARCIS (Netherlands)

    Singh, K.; Bähren, L.; Falcke, H.; Horneffer, A.; Kooistra, E.; Scholten, O.

    2008-01-01

    Using all stations of LOFAR we are planning to explore the possibility of using Moon as a detector of ultra high energy (>10 21 eV) cosmic rays. The idea is to cover the whole visible lunar surface and to look for short pulses of Cherenkov radiation emitted by showers induced just below the surface

  19. White matter maturation during 12 months in individuals at ultra-high-risk for psychosis

    DEFF Research Database (Denmark)

    Krakauer, K; Nordentoft, M; Glenthøj, B Y

    2018-01-01

    OBJECTIVE: The neurodevelopmental hypothesis of psychosis suggests that disrupted white matter (WM) maturation underlies disease onset. In this longitudinal study, we investigated WM connectivity and compared WM changes between individuals at ultra-high-risk for psychosis (UHR) and healthy contro...

  20. Deformation and degradation of polymers in ultra-high-pressure liquid chromatography

    NARCIS (Netherlands)

    Uliyanchenko, E.; van der Wal, S.; Schoenmakers, P.J.

    2011-01-01

    Ultra-high-pressure liquid chromatography (UHPLC) using columns packed with sub-2 μm particles has great potential for separations of many types of complex samples, including polymers. However, the application of UHPLC for the analysis of polymers meets some fundamental obstacles. Small particles

  1. Ultra-high-speed optical signal processing of serial data signals

    DEFF Research Database (Denmark)

    Clausen, Anders; Mulvad, Hans Christian Hansen; Palushani, Evarist

    2012-01-01

    To ensure that ultra high-speed serial data signals can be utilised in future optical communication networks, it is indispensable to have all-optical signal processing elements at our disposal. In this paper, the most recent advances in our use of non-linear materials incorporated in different...... function blocks for high-speed signal processing are reviewed....

  2. Neutrino-nucleon cross-section at ultra-high energies in models with ...

    Indian Academy of Sciences (India)

    sUKANTA PANDA. Physics Department, Indian Institute of Technology, Kanpur 208 016, India. Abstract. We examine whether the models with large extra dimensions can provide an explanation for the GZK violating ultra-high energy cosmic rays (UHECR). In these models the neutrino-nucleon cross-section rises rapidly ...

  3. The Radio Cerenkov Technique for Ultra-High Energy Neutrino Detection

    OpenAIRE

    Connolly, Amy

    2008-01-01

    I review the status of the Radio Cerenkov detection technique in searches for ultra-high energy (UHE) neutrinos of cosmic origin. After outlining the physics motivations for UHE neutrino searches, I give an overview of the status of current and proposed experiments in the field.

  4. Extension induced phase separation and crystallization in semidilute solutions of ultra high molecular weight polyethylene

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Imperiali, Luna; Stepanyan, Roman

    2018-01-01

    Abstract We investigate the influence of controlled uniaxial extension on various flow induced phenomena in semidilute solutions of ultra high molecular weight polyethylene (UHMwPE). Concentrations range from 9 w% to 29 w% and the choice of solvent is paraffin oil (PO). The start-up extensional b...

  5. Solutions for ultra-high speed optical wavelength conversion and clock recovery

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    This paper reports on our recent advances in ultra-fast optical communications relying on ultra-short pulses densely stacked in ultra-high bit rate serial data signals at a single wavelength. The paper describes details in solutions for the network functionalities of wavelength conversion and clock...

  6. Probing physics at extreme energies with cosmic ultra-high energy ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 60; Issue 2. Probing physics at extreme energies with cosmic ultra-high energy radiation ... Their existence triggered a flurry of theoretical explanations ranging from conventional shock acceleration to particle physics beyond the standard model (SM) and processes ...

  7. Bond behavior of reinforcing steel in ultra-high performance concrete.

    Science.gov (United States)

    2014-10-01

    Ultra-High Performance Concrete (UHPC) is a relatively new class of advanced cementitious composite : materials, which exhibits high compressive [above 21.7 ksi (150 MPa)] and tensile [above 0.72 ksi (5 MPa)] : strengths. The discrete steel fiber rei...

  8. Ultra-High-Efficiency Apodized Grating Coupler Using a Fully Etched Photonic Crystal

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan

    2013-01-01

    We demonstrate an apodized fiber-to-chip grating coupler using fully etched photonic crystal holes on the silicon-on-insulator platform. An ultra-high coupling efficiency of 1.65 dB (68%) with 3 dB bandwidth of 60 nm is experimentally demonstrated....

  9. Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo

    Czech Academy of Sciences Publication Activity Database

    Lapčíková, Monika; Šlouf, Miroslav; Dybal, Jiří; Zolotarevova, E.; Entlicher, G.; Pokorný, D.; Gallo, J.; Sosna, A.

    2009-01-01

    Roč. 266, 1-2 (2009), s. 349-355 ISSN 0043-1648 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : ultra high molecular weight polyethylene * nanometer size wear debris * morphology of wear particles Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.771, year: 2009

  10. Ultra-high efficiency, fast graphene micro-heater on silicon

    DEFF Research Database (Denmark)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn

    2017-01-01

    We demonstrate an ultra-high efficiency and fast graphene microheater on silicon photonic crystal waveguide. By taking advantage of slow-light effect, a tuning efficiency of 1.07 nm/mW and power consumption per free spectral range of 3.99 mW. A fast rise and decay times (10% to 90%) of only 750 ns...

  11. THE DEISGN AND USE OF DIFFUSION FILL DEVICES IN ULTRA-HIGH VACUUM APPLICATIONS,

    Science.gov (United States)

    The properties of a helium fill device (influx rate, purification factor, intrinsic gas load, and switchnig times) and its application in ultra- high ... vacuum work are discussed in detail. Several limitations and their remedies are considered and experimental results are given. (Author)

  12. Ultra high energy cosmic rays above 10 GeV: Hints to new physics ...

    Indian Academy of Sciences (India)

    Ultra high energy cosmic rays above 10. 11. GeV: Hints to new physics beyond Standard Model. PIJUSHPANI BHATTACHARJEE. Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India. Abstract. The observed cosmic ray events above 10ЅЅ GeV are difficult to explain within the con- text of known physics ...

  13. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    Science.gov (United States)

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  14. Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

    Czech Academy of Sciences Publication Activity Database

    Fujii, T.; Malacari, M.; Bertaina, M.; Casolino, E.; Dawson, B.; Horváth, P.; Hrabovský, M.; Jiang, J.; Mandát, Dušan; Matalon, A.; Matthews, J.N.; Motloch, P.; Palatka, Miroslav; Pech, Miroslav; Privitera, P.; Schovánek, Petr; Takizawa, Y.; Thomas, S.B.; Trávníček, Petr; Yamazaki, K.

    2016-01-01

    Roč. 74, Feb (2016), s. 64-72 ISSN 0927-6505 R&D Projects: GA MŠk(CZ) LG13007 Institutional support: RVO:68378271 Keywords : ultra-high energy cosmic rays * fluorescence detector * extensive air shower Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.257, year: 2016

  15. Prescription of antipsychotic medication to patients at ultra high risk of developing psychosis

    NARCIS (Netherlands)

    Nieman, D.H.; Becker, H.E.; Dingemans, P.M.; van Amelsvoort, T.A.; Haan, L.; van der Gaag, M.; Denys, D.A.J.P.; Linszen, D.H.

    2009-01-01

    Little is known about medication prescription in a naturalistic setting to patients at ultra high risk (UHR) of developing psychosis. Antipsychotic medication prescription to UHR patients is not recommended in clinical practice guidelines based on the current evidence. The aim of this study is to

  16. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    Czech Academy of Sciences Publication Activity Database

    Alvarez-Muñiz, J.; Soares, E.A.; Berlin, A.; Bogdan, M.; Boháčová, Martina; Bonifazi, C.; Carvalho, W.R.; de Mello Neto, J.R.T.; San Luis, P.F.; Genat, J.F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.; Ramos de Castro, A.; Reyes, L.C.; Richardson, M.; Rouille D’Orfeuil, B.; Santos, E.M.; Wayne, S.; Williams, C.; Zas, E.; Zhou, J.

    2013-01-01

    Roč. 719, Aug (2013), s. 70-80 ISSN 0168-9002 Institutional support: RVO:68378271 Keywords : ultra high energy cosmic rays * radio-detection * microwave * GHz Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.316, year: 2013

  17. Probing physics at extreme energies with cosmic ultra-high energy ...

    Indian Academy of Sciences (India)

    ultra-high energy radiation. G ¨UNTER SIGL. GReCO, Institut d'Astrophysique de Paris, CNRS, 98bis Boulevard Arago, 75014 Paris, France. Abstract. The highest energy cosmic rays observed possess macroscopic energies and their origin is likely to be associated with the most energetic processes in the universe.

  18. Lunar detection of ultra-high-energy cosmic rays and neutrinos with the Square Kilometre Array

    NARCIS (Netherlands)

    Bray, J.; Alvarez-Muniz, J.; Buitink, S.; Dagkesamanskii, R.; Ekers, R. D.; Falcke, H. D. E.; Gayley, K.; Huege, T.; James, C. W.; Mevius, M.; Mutel, R.; Protheroe, R. J.; Scholten, O.; Schroeder, F.; Spencer, R. E.; ter Veen, S.

    2014-01-01

    The origin of the most energetic particles in nature, the ultra-high-energy (UHE) cosmic rays, is still a mystery. Only the most energetic of these have sufficiently small angular deflections to be used for directional studies, and their flux is so low that even the 3,000 km^2 Pierre Auger detector

  19. Research of a Novel Ultra-High Pressure Sensor with High-Temperature Resistance

    Directory of Open Access Journals (Sweden)

    Guo-Dong Zhang

    2017-12-01

    Full Text Available Ultra-high pressure measurement has significant applications in various fields such as high pressure synthesis of new materials and ultra-high pressure vessel monitoring. This paper proposes a novel ultra-high pressure sensor combining a truncated-cone structure and a silicon-on-insulator (SOI piezoresistive element for measuring the pressure up to 1.6 GPa. The truncated-cone structure attenuates the measured pressure to a level that can be detected by the SOI piezoresistive element. Four piezoresistors of the SOI piezoresistive element are placed along specific crystal orientation and configured as a Wheatstone bridge to obtain voltage signals. The sensor has an advantage of high-temperature resistance, in that the structure of the piezoresistive element can avoid the leakage current at high temperature and the truncated-cone structure separates the piezoresistive element from the heat environment. Furthermore, the upper surface diameter of the truncated-cone structure is designed to be 2 mm for the application of small scale. The results of static calibration show that the sensor exhibits a good performance in hysteresis and repeatability. The temperature experiment indicates that the sensor can work steadily at high temperature. This study would provide a better insight to the research of ultra-high pressure sensors with larger range and smaller size.

  20. Particle physics explanations for ultra-high energy cosmic ray events

    Indian Academy of Sciences (India)

    physics pp. 207-218. Particle physics explanations for ultra-high energy cosmic ray events. MANUEL DREEs. Physik Department, TU Miunchen, .... responsible for the spontaneous breaking of supersymmetry [20], which by definition only has ... the original qqpair is not produced on-shell, but with initial time-like virtualities of.

  1. Kinetic and thermodynamic analysis of ultra-high pressure and heat ...

    African Journals Online (AJOL)

    Purpose: To undertake comparative kinetic and thermodynamic analyses of the interaction of bovine serum albumin (BSA) with IgG pre-treated with ultra-high pressure (UHP) and moderate heat. Methods: BSA solutions were processed at 100 – 600 MPa and 25 – 40 °C. We applied an optical biosensor based on surface ...

  2. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields.

    Science.gov (United States)

    Assig, Maximilian; Etzkorn, Markus; Enders, Axel; Stiepany, Wolfgang; Ast, Christian R; Kern, Klaus

    2013-03-01

    We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5 kBT = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface.

  3. A 10Â mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields

    Science.gov (United States)

    Assig, Maximilian; Etzkorn, Markus; Enders, Axel; Stiepany, Wolfgang; Ast, Christian R.; Kern, Klaus

    2013-03-01

    We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5kBT = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface.

  4. Preliminary experience with 4K ultra-high definition endoscope: analysis of pros and cons in skull base surgery.

    Science.gov (United States)

    Rigante, M; La Rocca, G; Lauretti, L; D'Alessandris, G Q; Mangiola, A; Anile, C; Olivi, A; Paludetti, G

    2017-06-01

    During the last two decades endoscopic skull base surgery observed a continuous technical and technological development 3D endoscopy and ultra High Definition (HD) endoscopy have provided great advances in terms of visualisation and spatial resolution. Ultra-high definition (UHD) 4K systems, recently introduced in the clinical practice, will shape next steps forward especially in skull base surgery field. Patients were operated on through transnasal transsphenoidal endoscopic approaches performed using Olympus NBI 4K UHD endoscope with a 4 mm 0° Ultra Telescope, 300 W xenon lamp (CLV-S400) predisposed for narrow band imaging (NBI) technology connected through a camera head to a high-quality control unit (OTV-S400 - VISERA 4K UHD) (Olympus Corporation, Tokyo, Japan). Two screens are used, one 31" Monitor - (LMD-X310S) and one main ultra-HD 55" screen optimised for UHD image reproduction (LMD-X550S). In selected cases, we used a navigation system (Stealthstation S7, Medtronic, Minneapolis, MN, US). We evaluated 22 pituitary adenomas (86.3% macroadenomas; 13.7% microadenomas). 50% were not functional (NF), 22.8% GH, 18.2% ACTH, 9% PRL-secreting. Three of 22 were recurrences. In 91% of cases we achieved total removal, while in 9% near total resection. A mean follow-up of 187 days and average length of hospitalisation was 3.09 ± 0.61 days. Surgical duration was 128.18± 30.74 minutes. We experienced only 1 case of intraoperative low flow fistula with no further complications. None of the cases required any post- or intraoperative blood transfusion. The visualisation and high resolution of the operative field provided a very detailed view of all anatomical structures and pathologies allowing an improvement in safety and efficacy of the surgical procedure. The operative time was similar to the standard 2D HD and 3D procedures and the physical strain was also comparable to others in terms of ergonomics and weight. © Copyright by Società Italiana di Otorinolaringologia

  5. Present Status and Prospect of Ultra High Strength Steel Applied to Aircraft Landing Gear

    Directory of Open Access Journals (Sweden)

    ZHAO Bo

    2017-12-01

    Full Text Available The paper presents the domestic and overseas current status of the steel applied to aircraft landing gear in combination of the design concept and requirements for aircraft landing gear. The application features and concept of the steel used for landing gear are summarized and the domestic and overseas status are compared. For the moment, the low-alloy ultra-high strength steel and high-alloy ultra-high strength steel are all being used in the material system for aircraft landing gear steel, and the complete technical system for its anti-fatigue manufacturing is built. At present, China's development and application of high strength steel applied to aircraft landing gear is at the world advanced level. At last, the prospect for future development is analyzed.

  6. The Promise and Challenges of Ultra High Bypass Ratio Engine Technology and Integration

    Science.gov (United States)

    Hughes, Chris

    2011-01-01

    In this presentation, an overview of the research being conducted by the ERA Project in Ultra High Bypass aircraft propulsion and in partnership with Pratt & Whitney with their Geared TurboFan (GTF) is given. The ERA goals are shown followed by a discussion of what areas need to be addressed on the engine to achieve the goals and how the GTF is uniquely qualified to meet the goals through a discussion of what benefits the cycle provides. The first generation GTF architecture is then shown highlighting the areas of collaboration with NASA, and the fuel burn, noise and emissions reductions possible based on initial static ground test and flight test data of the first GTF engine. Finally, a 5 year technology roadmap is presented focusing on Ultra High Bypass propulsion technology research areas that are being pursued and being planned by ERA and P&W under their GTF program.

  7. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    International Nuclear Information System (INIS)

    Micheli, Leonardo; Mallick, Tapas K.; Fernandez, Eduardo F.; Almonacid, Florencia; Reddy, K. S.

    2015-01-01

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the results of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151$/W p is expected for a passive least-material heat sink developed for 4000x applications

  8. Study of application technology of ultra-high speed computer to the elucidation of complex phenomena

    International Nuclear Information System (INIS)

    Sekiguchi, Tomotsugu

    1996-01-01

    The basic design of numerical information library in the decentralized computer network was explained at the first step of constructing the application technology of ultra-high speed computer to the elucidation of complex phenomena. Establishment of the system makes possible to construct the efficient application environment of ultra-high speed computer system to be scalable with the different computing systems. We named the system Ninf (Network Information Library for High Performance Computing). The summary of application technology of library was described as follows: the application technology of library under the distributed environment, numeric constants, retrieval of value, library of special functions, computing library, Ninf library interface, Ninf remote library and registration. By the system, user is able to use the program concentrating the analyzing technology of numerical value with high precision, reliability and speed. (S.Y.)

  9. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    Science.gov (United States)

    Micheli, Leonardo; Fernandez, Eduardo F.; Almonacid, Florencia; Reddy, K. S.; Mallick, Tapas K.

    2015-09-01

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the results of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151/Wp is expected for a passive least-material heat sink developed for 4000x applications.

  10. Ultra-High Field Magnets for X-Ray and Neutron Scattering using High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States); Bird, M. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Breneman, Bruce C. [General Atomics, San Diego, CA (United States); Coffey, Michael [Cryomagnetics, Oak Ridge, TN (United States); Cutler, Roy I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duckworth, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erwin, R. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Hahn, Seungyong [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Hernandez, Yamali [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Herwig, Kenneth W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holland, Leo D. [General Atomics, San Diego, CA (United States); Lonergan, Kevin M. [Oxford Instruments, Abingdon (United Kingdom); Melhem, Ziad [Oxford Instruments, Abingdon (United Kingdom); Minter, Stephen J. [Cryomagnetics, Oak Ridge, TN (United States); Nelson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Paranthaman, M. Parans [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pierce, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruff, Jacob [Cornell Univ., Ithaca, NY (United States); Shen, Tengming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherline, Todd E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smeibidl, Peter G. [Helmholtz-Zentrum Berlin (HZB), (Germany); Tennant, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); van der Laan, Danko [Advanced Conductor Technologies, LLC, Boulder, CO (United States); Wahle, Robert J. [Helmholtz-Zentrum Berlin (HZB), (Germany); Zhang, Yifei [SuperPower, Inc., Schenectady, NY (United States)

    2017-01-01

    X-ray and neutron scattering techniques are capable of acquiring information about the structure and dynamics of quantum matter. However, the high-field magnet systems currently available at x-ray and neutron scattering facilities in the United States are limited to fields of 16 tesla (T) at maximum, which precludes applications that require and/or study ultra-high field states of matter. This gap in capability—and the need to address it—is a central conclusion of the 2005 National Academy of Sciences report by the Committee on Opportunities in High Magnetic Field Science. To address this gap, we propose a magnet development program that would more than double the field range accessible to scattering experiments. With the development and use of new ultra-high field–magnets, the program would bring into view new worlds of quantum matter with profound impacts on our understanding of advanced electronic materials.

  11. Ground Glass Pozzolan in Conventional, High, and Ultra-High Performance Concrete

    OpenAIRE

    Tagnit-Hamou Arezki; Zidol Ablam; Soliman Nancy; Deschamps Joris; Omran Ahmed

    2018-01-01

    Ground-glass pozzolan (G) obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM), given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC), high-performance concrete (HPC), and ultra-high performance concrete (UHPC). The current paper reports on the characteristics and performance of G in these concrete types. The use of G pro...

  12. Silver Nanoparticles Modification of Ultra High Molecular Weight Polyethylene in Non-Aqueous Medium

    OpenAIRE

    V. N. Glushko; L. I. Blokhina; E. E. Anisimova; M. V. Bogdanovskaya; V. I. Kozhukhov; T. A. Cherdyntseva

    2016-01-01

    A series of experiments for obtaining modified with silver nanoparticles ultra-high molecular weight polyethylene (UHMWPE) is done. Optimal precursors are silver trifluoroacetate, silver nitrate and silver methanesulfonate. Three variants of UHMWPE modification is studied: 1) the polyol synthesis, 2) polymer processing silver nanoparticle colloid and 3) reduction of silver salt solution in the UHMWPE polymer matrix. It is found that the last method is optimal. The specific surface of obtained...

  13. Measurement of ultra-high energy cosmic rays: An experimental summary and prospects

    Directory of Open Access Journals (Sweden)

    Fukushima M.

    2013-06-01

    Full Text Available Measurements of Ultra-High Energy Cosmic Rays achieved remarkable progress in the last 10 years. Physicists, gathered from around the world in the symposium UHECR-2012 held at CERN on February 13-16 2012, reported their most up-to-date observations, discussed the meaning of their findings, and identified remaining problems and future challenges in this field. This paper is a part of the symposium proceedings on the experimental summary and future prospects of the UHECR study.

  14. Note: Simple leak sealing technique for ultra-high vacuum cryostat by using freezable liquid.

    Science.gov (United States)

    Kim, Min-Seong; Kim, Ji-Ho; Lyo, In-Whan

    2015-05-01

    Here we introduce a simple, low-cost, contamination-free, and highly reliable technique for sealing an ultra-high vacuum (UHV) cryostat by using cryogenically freezable liquid. We demonstrate it by sealing an UHV cryostat with dry leaks in the high vacuum range; ethanol was utilized to fill and block the leakage pathways through the subsequent in situ solidification by LN2. The seal is reversible and can be maintained as long as the cryostat is kept at cryogenic temperature.

  15. Patterns of white matter microstructure in individuals at ultra-high-risk for psychosis

    DEFF Research Database (Denmark)

    Krakauer, K; Ebdrup, B H; Glenthøj, B Y

    2017-01-01

    BACKGROUND: Individuals at ultra-high-risk (UHR) for psychosis present with emerging symptoms and decline in functioning. Previous univariate analyses have indicated widespread white matter (WM) aberrations in multiple brain regions in UHR individuals and patients with schizophrenia. Using multiv......, MO, and higher RD. CONCLUSIONS: UHR individuals demonstrate complex brain patterns of WM abnormalities. Despite the subtle psychopathology of UHR individuals, aberrations in WM appear associated with positive and negative symptoms as well as level of functioning....

  16. Specific features of high-cycle and ultra-high-cycle fatigue

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík

    2002-01-01

    Roč. 25, - (2002), s. 747-753 ISSN 8756-758X R&D Projects: GA AV ČR KSK1010104; GA AV ČR IAA2041002 Institutional research plan: CEZ:AV0Z2041904 Keywords : ultra high cycle fatigue * fatigue mechanisms * cyclic plastic deformation Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.701, year: 2002

  17. A novel ultra-high vacuum manipulator with six degrees of freedom

    International Nuclear Information System (INIS)

    Auciello, O.; Lulich, C.; Alonso, E.V.; Baragiola, R.A.

    1977-01-01

    An ultra-high vacuum goniometer of novel design for use in experiments with ion beams is described. The goniometer uses a wire system to transmit movements, is bakeable to 200 0 C and is reproducible in its angular positions to within 1.3 X 10 -4 rad (0.008 0 ). It allows a sample to be rotated around two axes over 360 0 , around a third over 180 0 , and to be translated along three perpendicular axes. (Auth.)

  18. The lateral characteristics of several ultra-high energy photon and hadron families

    International Nuclear Information System (INIS)

    Buja, Z.; Gladysz, E.; Mazurkiewicz, J.; Mikocki, S.; Szarska, M.; Zawiejski, L.

    1980-01-01

    In a thick lead X-ray film emulsion chamber of the Experiment Pamir, 8 ultra-high energy photon and hadron families were detected. They are considered to be almost ''pure'' families. The compound lateral characteristics for photon families indicate an existence of two groups of particles which have different average transverse momenta. A quite well visible azimuthal asymmetry in the number and transverse momenta values of produced particles is observed. (author)

  19. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Guodong Zhang

    2018-03-01

    Full Text Available With the development of energetic materials (EMs and microelectromechanical systems (MEMS initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size.

  20. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement.

    Science.gov (United States)

    Zhang, Guodong; Zhao, Yulong; Zhao, Yun; Wang, Xinchen; Wei, Xueyong; Ren, Wei; Li, Hui; Zhao, You

    2018-03-01

    With the development of energetic materials (EMs) and microelectromechanical systems (MEMS) initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor's sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa -1 . The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size.

  1. Flexural Strength Evaluation of Reinforced Concrete Members with Ultra High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Baek-Il Bae

    2016-01-01

    Full Text Available Flexural strength evaluation models for steel fiber reinforced ultra high strength concrete were suggested and evaluated with test results. Suggested flexural strength models were composed of compression stress blocks and tension stress blocks. Rectangular stress block, triangular stress block, and real distribution shape of stress were used on compression side. Under tension, rectangular stress block distributed to whole area of tension side and partial area of tension side was used. The last model for tension side is realistic stress distribution. All these models were verified with test result which was carried out in this study. Test was conducted by four-point loading with 2,000 kN actuator for slender beam specimen. Additional verifications were carried out with previous researches on flexural strength of steel fiber reinforced concrete or ultra high strength concrete. Total of 21 test specimens were evaluated. As a result of comparison for flexural strength of section, neutral axis depth at ultimate state, models with triangular compression stress block, and strain-softening type tension stress block can be used as exact solution for ultra high performance concrete. For the conservative and convenient design of section, modified rectangular stress block model can be used with strain softening type tension stress block.

  2. The Dynamics of Charged Particle of Ultra High Energy in CMB

    Science.gov (United States)

    Musakhanyan, Viktor

    The dynamics of charged particle of ultra high-energy moving in the Cosmic Microwave Background (CMB) is considered. Since the CMB parameters, 1) the intensity and 2) the ratio of quantum's energy to the energy of charged particle are small, we handle the problem within the frameworks of Classical Electrodynamics. Solution of relativistic equation of motion results, after averaging over random phases of the waves, in a small additional acceleration, hence the well-known 'GZK cut-off' for charged Ultra High Energy Cosmic Rays (UHECR) becomes controversial. Owing to the relativistic invariance of the wave' phase, the huge increase of frequency both in the rest and in the center of mass reference frames of the ultra high-energy charged particle results in the corresponding decrease of the length of interaction. Therefore, the obtained energy gain is independent of chosen reference frames. Thus, there is no theoretical constrains for UHECR originated in far Universe during their long journey to Earth. Spectrum of UHECR is discussed and both the knee and the ankle are considered.

  3. Simulation of press-forming for automobile part using ultra high tension steel

    Directory of Open Access Journals (Sweden)

    Tanabe I.

    2012-08-01

    Full Text Available In recent years, ultra high tension steel has gradually been used in the automobile industry. The development of press-forming technology is now essential by reason of its high productivity and high product quality. In this study, tensile tests were performed with a view to understanding the material properties. Press-forming tests were then carried out with regard to the behaviors of spring back and deep-drawability, and manufacturing a real product. The ultra high tension steel used in the experiments had a thickness of 1 mm and a tensile strength of 1000 MPa. Finally, simulations of spring back, deep-drawability and manufacturing a real product in ultra high tension steel were conducted and evaluated in order to calculate the optimum-press-forming conditions and the optimum shape of the die. FEM with non-linear and dynamic analysis using Euler-Lagrange’s element was used for the simulations. It is concluded from the results that (1 the simulations conformed to the results of the experiments (2 the simulations proved very effective for calculating the optimum press conditions and die shape.

  4. All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities.

    Science.gov (United States)

    Yoshiki, Wataru; Honda, Yoshihiro; Tetsumoto, Tomohiro; Furusawa, Kentaro; Sekine, Norihiko; Tanabe, Takasumi

    2017-09-06

    All-optical tunable buffering was recently achieved on a chip by using dynamically tuned coupled mode induced transparency, which is an optical analogue of electromagnetically induced transparency. However, the small Q s of about 10 5 used in those systems were limiting the maximum buffering time to a few hundred ps. Although employing an ultra-high Q whispering gallery mode (WGM) microcavity can significantly improve the maximum buffering time, the dynamic tuning of the WGM has remained challenging because thermo-optic and pressure tunings, which are widely used for WGM microcavities, have a very slow response. Here we demonstrate all-optical tunable buffering utilizing coupled ultra-high Q WGM cavities and the Kerr effect. The Kerr effect can change the refractive index instantaneously, and this allowed us to tune the WGM cavity very quickly. In addition, from among the various WGM cavities we employed a silica toroid microcavity for our experiments because it has an ultra-high Q factor (>2 × 10 7 ) and a small mode volume, and can be fabricated on a chip. Use of the Kerr effect and the silica toroid microcavity enabled us to observe an on-chip all-optical tunable buffering operation and achieve a maximum buffering time of 20 ns.

  5. Ultra-high throughput real-time instruments for capturing fast signals and rare events

    Science.gov (United States)

    Buckley, Brandon Walter

    Wide-band signals play important roles in the most exciting areas of science, engineering, and medicine. To keep up with the demands of exploding internet traffic, modern data centers and communication networks are employing increasingly faster data rates. Wide-band techniques such as pulsed radar jamming and spread spectrum frequency hopping are used on the battlefield to wrestle control of the electromagnetic spectrum. Neurons communicate with each other using transient action potentials that last for only milliseconds at a time. And in the search for rare cells, biologists flow large populations of cells single file down microfluidic channels, interrogating them one-by-one, tens of thousands of times per second. Studying and enabling such high-speed phenomena pose enormous technical challenges. For one, parasitic capacitance inherent in analog electrical components limits their response time. Additionally, converting these fast analog signals to the digital domain requires enormous sampling speeds, which can lead to significant jitter and distortion. State-of-the-art imaging technologies, essential for studying biological dynamics and cells in flow, are limited in speed and sensitivity by finite charge transfer and read rates, and by the small numbers of photo-electrons accumulated in short integration times. And finally, ultra-high throughput real-time digital processing is required at the backend to analyze the streaming data. In this thesis, I discuss my work in developing real-time instruments, employing ultrafast optical techniques, which overcome some of these obstacles. In particular, I use broadband dispersive optics to slow down fast signals to speeds accessible to high-bit depth digitizers and signal processors. I also apply telecommunication multiplexing techniques to boost the speeds of confocal fluorescence microscopy. The photonic time stretcher (TiSER) uses dispersive Fourier transformation to slow down analog signals before digitization and

  6. NATURE OF THE INTERACTION BETWEEN ELECTRONS AND WELL-DEFINED SURFACES. III. ULTRA-HIGH VACUUM SYSTEM AND SAMPLE OUTGASSING. IV. GAS SOURCE FOR THE ULTRA-HIGH VACUUM STUDY OF ADSORPTION OF KNOWN GAS LAYERS ON CLEAR SURFACES

    Science.gov (United States)

    such cleaning is to incorporate the sample and necessary measuring components in an ultra- high vacuum system, capable of maintaining a pressure of 1...layers on a clean surface necessitates an ultra- high vacuum gas manifold system. The vacuum pumping, valving, measuring equipment and gas manifold are...described. Ion gauges can be calibrated absolutely against a high vacuum McLeod gauge. By this system, capable of 1 x 10 to the -9th power to 1 x 10 to

  7. Metabolite profiling and quantification of phytochemicals in potato extracts using ultra-high-performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Chong, Esther Swee Lan; McGhie, Tony K; Heyes, Julian A; Stowell, Kathryn M

    2013-12-01

    Potatoes contain a diverse range of phytochemicals which have been suggested to have health benefits. Metabolite profiling and quantification were conducted on plant extracts made from a white potato cultivar and 'Urenika', a purple potato cultivar traditionally consumed by New Zealand Maori. There is limited published information regarding the metabolite profile of Solanum tuberosum cultivar 'Urenika'. Using ultra-high- performance liquid chromatography-mass spectrometry (UHPLC-MS), a total of 31 compounds were identified and quantified in the potato extracts. The majority of the compounds were identified for the first time in 'Urenika'. These compounds include several types of anthocyanins, hydroxycinnamic acid (HCA) derivatives, and hydroxycinnamic amides (HCAA). Six classes of compounds, namely organic acids, amino acids, HCA, HCAA, flavonols and glycoalkaloids, were present in both extracts but quantities varied between the two extracts. The unknown plant metabolites in both potato extracts were assigned with molecular formulae and identified with high confidence. Quantification of the metabolites was achieved using a number of appropriate standards. High-resolution mass spectrometry data critical for accurate identification of unknown phytochemicals were achieved and could be added to potato or plant metabolomic database. © 2013 Society of Chemical Industry.

  8. Ultra High Temperature and Multifunctional Ceramic Matrix Composite – Coating Systems for Light-Weight Space and Aero Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Revolutionary ultra-high temperature, high mechanical loading capable, oxidation resistant, durable ceramic coatings and light-weight fiber-reinforced Ceramic Matrix...

  9. Garnet growth interruptions during high- and ultra high-pressure metamorphism constrained by thermodynamic forward models

    Science.gov (United States)

    Konrad-Schmolke, M.; Schildhauer, H.

    2013-12-01

    Growth and chemical composition of garnet in metamorphic rocks excellently reflect thermodynamic as well kinetic properties of the host rock during garnet growth. This valuable information can be extracted from preserved compositional growth zoning patterns in garnet. However, metamorphic rocks often contain multiple garnet generations that commonly develop as corona textures with distinct compositional core-overgrowth features. This circumstance can lead to a misinterpretation of information extracted from such grains if the age- and metamorphic relations between different garnet generations are unclear. Especially garnets from high-pressure (HP) and ultra high-pressure (UHP) rocks often preserve textures that show multiple growth stages reflected in core-overgrowth differences both in main and trace element composition and in the inclusion assemblage. Distinct growth zones often have sharp boundaries with strong compositional gradients and/or inclusion- and trace-element-enriched zones. Such growth patterns indicate episodic garnet growth as well as growth interruptions during the garnet evolution. A quantitative understanding of these distinct growth pulses enables the relationship between reaction path, age determinations in spatially controlled garnet domains or temperature-time constraints to be fully characterised. In this study we apply thermodynamic forward models to simulate garnet growth along a series of HP and UHP P-T paths, representative for subducted oceanic crust. We study garnet growth in different basaltic rock compositions and under different element fractionation scenarios in order to detect path-dependent P-T regions of limited or ceased garnet growth. Modeled data along P-T trajectories involving fractional crystallisation are assembled in P-T diagrams reflecting garnet growth in a changing bulk rock composition. Our models show that in all investigated rock compositions garnet growth along most P-T trajectories is discontinuous, pulse

  10. Progressive Decline in Hippocampal CA1 Volume in Individuals at Ultra-High-Risk for Psychosis Who Do Not Remit: Findings from the Longitudinal Youth at Risk Study.

    Science.gov (United States)

    Ho, New Fei; Holt, Daphne J; Cheung, Mike; Iglesias, Juan Eugenio; Goh, Alex; Wang, Mingyuan; Lim, Joseph Kw; de Souza, Joshua; Poh, Joann S; See, Yuen Mei; Adcock, Alison R; Wood, Stephen J; Chee, Michael Wl; Lee, Jimmy; Zhou, Juan

    2017-05-01

    Most individuals identified as ultra-high-risk (UHR) for psychosis do not develop frank psychosis. They continue to exhibit subthreshold symptoms, or go on to fully remit. Prior work has shown that the volume of CA1, a subfield of the hippocampus, is selectively reduced in the early stages of schizophrenia. Here we aimed to determine whether patterns of volume change of CA1 are different in UHR individuals who do or do not achieve symptomatic remission. Structural MRI scans were acquired at baseline and at 1-2 follow-up time points (at 12-month intervals) from 147 UHR and healthy control subjects. An automated method (based on an ex vivo atlas of ultra-high-resolution hippocampal tissue) was used to delineate the hippocampal subfields. Over time, a greater decline in bilateral CA1 subfield volumes was found in the subgroup of UHR subjects whose subthreshold symptoms persisted (n=40) and also those who developed clinical psychosis (n=12), compared with UHR subjects who remitted (n=41) and healthy controls (n=54). No baseline differences in volumes of the overall hippocampus or its subfields were found among the groups. Moreover, the rate of volume decline of CA1, but not of other hippocampal subfields, in the non-remitters was associated with increasing symptom severity over time. Thus, these findings indicate that there is deterioration of CA1 volume in persistently symptomatic UHR individuals in proportion to symptomatic progression.

  11. Identification and characterization of the chemical constituents of Simiao Wan by ultra high performance liquid chromatography with mass spectrometry coupled to an automated multiple data processing method.

    Science.gov (United States)

    Zhang, Aihua; Zou, Di; Yan, Guangli; Tan, Yunlong; Sun, Hui; Wang, Xijun

    2014-07-01

    The chemical constituents of Simiao Wan (SW), a traditional Chinese medicine preparation, are difficult to determine and remain unclear. To more efficiently detect ions, a multiple data processing approach has been used in the characterization of the compounds. In this study, a rapid and sensitive method based on ultra high performance liquid chromatography with mass spectrometry and the multiple data processing approach was established to characterize the chemical constituents of SW. Ultra high performance liquid chromatography with mass spectrometry coupled with the multiple data processing approach could efficiently remove nonrelated ion signals from accurate mass data. We report the application of the multiple data processing approach for comprehensive detection and rapid identification of chemical constituents of SW. Of note, the total analysis time for separation was less than 20 min without losing any resolution. In the variable, importance in projection plot of orthogonal projection to latent structure-discriminant analysis, a total of 72 ions of interest (37 ions in positive mode, 38 ions in negative mode and three ions in both mode) were extracted or tentatively characterized based on their retention times, exact mass measurement for each molecular ion and subsequent fragment ions. In summary, the methodology proposed in this study could be valuable for the structural characterization and identification of the multiple constituents in the traditional Chinese medicine formula SW. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Design and Fabrication of a Piezoresistive Pressure Sensor for Ultra High Temperature Environment

    International Nuclear Information System (INIS)

    Zhao, L B; Zhao, Y L; Jiang, Z D

    2006-01-01

    In order to solve the pressure measurement problem in the harsh environment, a piezoresistive pressure sensor has been developed, which can be used under high temperature above 200 deg. C and is able to endure instantaneous ultra high temperature (2000deg. C, duration≤2s) impact. Based on the MEMS (Micro Electro-Mechanical System) and integrated circuit technology, the piezoresistive pressure sensor's sensitive element was fabricated and constituted by silicon substrate, a thin buried silicon dioxide layer, four p-type resistors in the measuring circuit layer by boron ion implantation and photolithography, the top SiO2 layer by oxidation, stress matching Si3N4 layer, and a Ti-Pt-Au beam lead layer for connecting p-type resistors by sputtering. In order to decrease the leak-current influence to sensor in high temperature above 200deg. C, the buried SiO2 layer with the thickness 367 nm was fabricated by the SIMOX (Separation by Implantation of Oxygen) technology, which was instead of p-n junction to isolate the upper measuring circuit layer from Si substrate. In order to endure instantaneous ultra high temperature impact, the mechanical structure with cantilever and diaphragm and transmitting beam was designed. By laser welding and high temperature packaging technology, the high temperature piezoresistive pressure sensor was fabricated with range of 120MPa. After the thermal compensation, the sensor's thermal zero drift k 0 and thermal sensitivity drift k s were easy to be less than 3x10 -4 FS/deg. C. The experimental results show that the developed piezoresistive pressure sensor has good performances under high temperature and is able to endure instantaneous ultra high temperature impact, which meets the requirements of modern industry, such as aviation, oil, engine, etc

  13. Recent Ultra High Energy neutrino bounds and multimessenger observations with the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Zas Enrique

    2017-01-01

    Full Text Available The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth’s crust. It covers a large field of view between −85◦ and 60◦ declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.

  14. Recent Ultra High Energy neutrino bounds and multimessenger observations with the Pierre Auger Observatory

    Science.gov (United States)

    Zas, Enrique

    2018-01-01

    The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth's crust. It covers a large field of view between -85° and 60° declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.

  15. Investigation and basic evaluation for ultra-high burnup fuel cladding material

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Nagase, Fumihisa; Futakawa, Masatoshi; Kiuchi, Kiyoshi

    2001-03-01

    In ultra-high burnup of the power reactor, it is an essential problem to develop the cladding with excellent durability. First, development history and approach of the safety assessment of Zircaloy for the high burnup fuel were summarized in the report. Second, the basic evaluation and investigation were carried out on the material with high practicability in order to select the candidate materials for the ultra-high burnup fuel. In addition, the basic research on modification technology of the cladding surface was carried out from the viewpoint of the addition of safety margin as a cladding. From the development history of the zirconium alloy including the Zircaloy, it is hard to estimate the results of in-pile test from those of the conventional corrosion test (out-pile test). Therefore, the development of the new testing technology that can simulate the actual environment and the elucidation of the corrosion-controlling factor of the cladding are desired. In cases of RIA (Reactivity Initiated Accident) and LOCA (Loss of Coolant Accident), it seems that the loss of ductility in zirconium alloys under heavy irradiation and boiling of high temperature water restricts the extension of fuel burnup. From preliminary evaluation on the high corrosion-resistance materials (austenitic stainless steel, iron or nickel base superalloys, titanium alloy, niobium alloy, vanadium alloy and ferritic stainless steel), stabilized austenitic stainless steels with a capability of future improvement and high-purity niobium alloys with a expectation of the good corrosion resistance were selected as candidate materials of ultra-high burnup cladding. (author)

  16. Ultra-high vacuum surface analysis study of rhodopsin incorporation into supported lipid bilayers.

    Science.gov (United States)

    Michel, Roger; Subramaniam, Varuni; McArthur, Sally L; Bondurant, Bruce; D'Ambruoso, Gemma D; Hall, Henry K; Brown, Michael F; Ross, Eric E; Saavedra, S Scott; Castner, David G

    2008-05-06

    Planar supported lipid bilayers that are stable under ambient atmospheric and ultra-high-vacuum conditions were prepared by cross-linking polymerization of bis-sorbylphosphatidylcholine (bis-SorbPC). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to investigate bilayers that were cross-linked using either redox-initiated radical polymerization or ultraviolet photopolymerization. The redox method yields a more structurally intact bilayer; however, the UV method is more compatible with incorporation of transmembrane proteins. UV polymerization was therefore used to prepare cross-linked bilayers with incorporated bovine rhodopsin, a light-activated, G-protein-coupled receptor (GPCR). A previous study (Subramaniam, V.; Alves, I. D.; Salgado, G. F. J.; Lau, P. W.; Wysocki, R. J.; Salamon, Z.; Tollin, G.; Hruby, V. J.; Brown, M. F.; Saavedra, S. S. J. Am. Chem. Soc. 2005, 127, 5320-5321) showed that rhodopsin retains photoactivity after incorporation into UV-polymerized bis-SorbPC, but did not address how the protein is associated with the bilayer. In this study, we show that rhodopsin is retained in supported bilayers of poly(bis-SorbPC) under ultra-high-vacuum conditions, on the basis of the increase in the XPS nitrogen concentration and the presence of characteristic amino acid peaks in the ToF-SIMS data. Angle-resolved XPS data show that the protein is inserted into the bilayer, rather than adsorbed on the bilayer surface. This is the first study to demonstrate the use of ultra-high-vacuum techniques for structural studies of supported proteolipid bilayers.

  17. Kernel based methods for accelerated failure time model with ultra-high dimensional data

    Directory of Open Access Journals (Sweden)

    Jiang Feng

    2010-12-01

    Full Text Available Abstract Background Most genomic data have ultra-high dimensions with more than 10,000 genes (probes. Regularization methods with L1 and Lp penalty have been extensively studied in survival analysis with high-dimensional genomic data. However, when the sample size n ≪ m (the number of genes, directly identifying a small subset of genes from ultra-high (m > 10, 000 dimensional data is time-consuming and not computationally efficient. In current microarray analysis, what people really do is select a couple of thousands (or hundreds of genes using univariate analysis or statistical tests, and then apply the LASSO-type penalty to further reduce the number of disease associated genes. This two-step procedure may introduce bias and inaccuracy and lead us to miss biologically important genes. Results The accelerated failure time (AFT model is a linear regression model and a useful alternative to the Cox model for survival analysis. In this paper, we propose a nonlinear kernel based AFT model and an efficient variable selection method with adaptive kernel ridge regression. Our proposed variable selection method is based on the kernel matrix and dual problem with a much smaller n × n matrix. It is very efficient when the number of unknown variables (genes is much larger than the number of samples. Moreover, the primal variables are explicitly updated and the sparsity in the solution is exploited. Conclusions Our proposed methods can simultaneously identify survival associated prognostic factors and predict survival outcomes with ultra-high dimensional genomic data. We have demonstrated the performance of our methods with both simulation and real data. The proposed method performs superbly with limited computational studies.

  18. Static, Fire and Fatigue Tests of Ultra High-Strength Fibre Reinforced Concrete and Ribbed Bars

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard; Heshe, Gert

    2001-01-01

    A new building system has been developed during the last 10 years. This new system consists of a column / slab system with 6 x 6 m distance between the columns. The slabs are precast concrete elements of size 2.9 x 5.9 m connected through joints of ultra high strength fibre reinforced concrete...... tests of tensile specimens consisting of reinforcing bars embedded in Densit Joint Cast ®. The objective of these fatigue tests is to show that the system / connection can presumably also be used in structures subjected to dominant time- varying loads and thus for example in earthquake regions....

  19. Assessment of the State of the Art of Ultra High Temperature Ceramics

    Science.gov (United States)

    Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.

  20. Theoretical aspects of heavy-flavour production at ultra-high cosmic ray energies

    Directory of Open Access Journals (Sweden)

    Gonçalves V. P.

    2015-01-01

    Full Text Available The main theoretical aspects of heavy-flavour production at ultra-high cosmic ray energies are reviewed, with particular emphasis in the new dynamical effects which are expected to be present in the kinematical range probed by the IceCube and Pierre Auger Observatories. The gluon saturation effects for heavy quark production and the contribution of double parton scattering processes are analysed. Finally, the intrinsic heavy quark hypothesis is presented and some of its phenomenological implications at high energies are discussed.

  1. Search for ultra-high energy photons and neutrinos using Telescope Array surface detector

    Directory of Open Access Journals (Sweden)

    Troitsky S.V.

    2013-06-01

    Full Text Available We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive upper limits on the absolute flux of primary photons with energies above 1019eV, 1019.5eV and above 1020eV based on the three years data from Telescope Array surface detector (May 2008 – May 2011. We report the results of down-going neutrino search based on the analysis of very inclined events.

  2. O-Ring sealing arrangements for ultra-high vacuum systems

    Science.gov (United States)

    Kim, Chang-Kyo; Flaherty, Robert

    1981-01-01

    An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  3. Properties of Low-fat Yogurt Made From Ultrafiltered and Ultra-high Temperature Treated Milk

    OpenAIRE

    Dargan, Richard Alan

    1992-01-01

    Yogurts were made from intermediate-high temperature (100, 110, 120, and 130°C for 4 or 16 s), ultra-high temperature (140°C for 4 or 16 s), and vat heat (82°C for 20 min) treatments of skim milk fortified to 5% protein by either ultrafiltration or the addition of nonfat dry milk (NOM). Whey protein denaturation in heated milks increased with temperature and holding time from indirect plate heating and was highest in vat-heated milks. Whey protein denaturation and yogurt water-holding capacit...

  4. In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites

    Science.gov (United States)

    Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)

    2013-01-01

    A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.

  5. Fire resistance of ultra-high performance fibre reinforced concrete due to heating and cooling

    Directory of Open Access Journals (Sweden)

    Nazri Fadzli Mohamed

    2017-01-01

    Full Text Available This study investigated the performance of ultra-high performance fibre reinforced concrete (UHPFRC at elevated temperatures. The specimens were exposed to high temperatures, specifically 200, 400, and 600 °C, for 2 h.The fire resistance performance of the specimens was classified on the basis of their compressive strength, spalling, and weight loss; residual strength after heating was also examined. Results showed that UHPFRC processes excellent fire resistance in terms of flame spread and fire growth. While strength loss was not significant at low temperatures, the specimen subjected to high temperature spalled severly and showed deterioration because of heat.

  6. EFFECTIVE FRACTURE ENERGY OF ULTRA-HIGH-PERFORMANCE FIBRE-REINFORCED CONCRETE UNDER INCREASED STRAIN RATES

    Directory of Open Access Journals (Sweden)

    Radoslav Sovják

    2014-10-01

    Full Text Available The main objective of this paper is to contribute to the development of ultra-high performance fibre reinforced concrete (UHPFRC with respect to its effective fracture energy. Effective fracture energy was investigated in this paper considering different fibre volume fractions and different strain rates. It was concluded that the effective fracture energy is dependent on the strain rate. In addition, it was found that higher fibre volume fractions tend to decrease the sensitivity of the UHPFRC to increased strain rates.

  7. A study of some features of the ultra high vacuum systems for EPIC

    International Nuclear Information System (INIS)

    Elsey, R.J.; Bennett, J.R.J.; Dossett, A.J.

    1977-01-01

    This report covers the experimental work carried out towards the development of the ultra high vacuum for the proposed electron positron storage ring, EPIC. Experiments included outgassing tests on samples of materials and pump-down tests on full scale aluminium vessels. The effect of baking was investigated. The approval of the similar machine PETRA at Hamburg and the subsequent withdrawal of the EPIC proposal in October 1975 curtailed the vacuum work. The experiments reported here are therefore incomplete, but nevertheless proved useful in showing that there should have been no major problems with building the vacuum system for EPIC. (author)

  8. Ultra-High Voltage DC Convertor Station Equipment Condition Data Access Technology Based on multi-Source Heterogeneous Fusion

    Science.gov (United States)

    Wang, Feng; Zhang, Bo-wen; Han, Shuai; Ren, Wei; Xu, Hai-jun; Fu, Long-ming

    2017-07-01

    With the large-scale construction of special high-voltage project, as well as power supply reliability, security, economic and other increasingly demanding, state monitoring equipment involved in more and more monitoring projects and more and more monitoring data, because these data exist in multiple isolated systems in the Ultra-High Voltage(UHV) AC-DC substation, there is no data sharing mechanism, so a holistic analysis, application and sharing approach for the data set will need a deep consideration. In this paper, the equipment condition monitoring system frame of the UHV converter station and the scheme of the equipment state data access of UHV converter station based on the multi-source and heterogeneous data fusion are presented. Then, data exchange technology of UHV equipment state early warning center was introduced, and a data access and conversion device in the Zhongzhou converter station was deployed to solve the timeliness and functionality difficult of the existing system to meet the requirements of UHV operation and maintenance support.

  9. A general strategy to achieve ultra-high gene transfection efficiency using lipid-nanoparticle composites.

    Science.gov (United States)

    Vankayala, Raviraj; Chiang, Chi-Shiun; Chao, Jui-I; Yuan, Chiun-Jye; Lin, Shyr-Yeu; Hwang, Kuo Chu

    2014-09-01

    Gene therapy provides a new hope for previously "incurable" diseases. Low gene transfection efficiency, however, is the bottle-neck to the success of gene therapy. It is very challenging to develop non-viral nanocarriers to achieve ultra-high gene transfection efficiencies. Herein, we report a novel design of "tight binding-but-detachable" lipid-nanoparticle composite to achieve ultrahigh gene transfection efficiencies of 60∼82%, approaching the best value (∼90%) obtained using viral vectors. We show that Fe@CNPs nanoparticles coated with LP-2000 lipid molecules can be used as gene carriers to achieve ultra-high (60-80%) gene transfection efficiencies in HeLa, U-87MG, and TRAMP-C1 cells. In contrast, Fe@CNPs having surface-covalently bound N,N,N-trimethyl-N-2-methacryloxyethyl ammonium chloride (TMAEA) oligomers can only achieve low (23-28%) gene transfection efficiencies. Similarly ultrahigh gene transfection/expression was also observed in zebrafish model using lipid-coated Fe@CNPs as gene carriers. Evidences for tight binding and detachability of DNA from lipid-nanoparticle nanocarriers will be presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Equal channel angular extrusion of ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reinitz, Steven D., E-mail: Steven.D.Reinitz.TH@Dartmouth.edu; Engler, Alexander J.; Carlson, Evan M.; Van Citters, Douglas W.

    2016-10-01

    Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications. - Highlights: • A new processing method for ultra-high molecular weight polyethylene is introduced. • The process produces a highly entangled polyethylene material. • Entanglements are hypothesized to enhance the wear resistance of polyethylene. • This process eliminates the trade-off between mechanical and wear properties.

  11. Temperature control in large-internal-diameter scaffolded monolithic columns operated at ultra-high pressures.

    Science.gov (United States)

    Vonk, Rudy J; Aalbers, Tom; Eeltink, Sebastiaan; Schoenmakers, Peter J

    2015-07-03

    Scaffolding makes it feasible to create organic-polymer monoliths in large confinements, such as wide-bore columns. By creating the scaffold from a metal good heat conductivity inside the column is obtained, which renders the relatively large columns (comparable with 4.6 mm i.d.) suitable for application under ultra-high-pressure LC conditions. It was anticipated that the metal scaffold would allow accurate control of the temperature within the columns, but the temperature profiles within the columns could not be characterized using the previously available small-internal-diameter scaffolded columns. In the current study the internal diameter of the scaffolded columns was increased up to square conduits of 4×4 mm. Prior to the formation of the stationary phase the heating efficiency in the empty scaffolded conduits was addressed. The performance of stationary phases created in the large scaffolds was investigated using the kinetic performance approach and the results were compared to those of the previous studies. Finally, scaffolded columns were tested under ultra-high-pressure LC conditions, where good temperature control is essential. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Nanocomposites of TiO2/cyanoethylated cellulose with ultra high dielectric constants

    International Nuclear Information System (INIS)

    Madusanka, Nadeesh; Shivareddy, Sai G; Hiralal, Pritesh; Choi, Youngjin; Amaratunga, Gehan A J; Eddleston, Mark D; Oliver, Rachel A

    2016-01-01

    A novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO 2 nanoparticles was successfully prepared with different weight percentages (10%, 20% and 30%) of TiO 2 . The intermolecular interactions and morphology within the polymer nanocomposites were analysed. TiO 2 /CRS nanofilms on SiO 2 /Si wafers were used to form metal–insulator–metal type capacitors. Capacitances and loss factors in the frequency range of 1 kHz–1 MHz were measured. At 1 kHz CRS-TiO 2 nanocomposites exhibited ultra high dielectric constants of 118, 176 and 207 for nanocomposites with 10%, 20% and 30% weight of TiO 2 respectively, significantly higher than reported values of pure CRS (21), TiO 2 (41) and other dielectric polymer-TiO 2 nanocomposite films. Furthermore, all three CRS-TiO 2 nanocomposites show a loss factor <0.3 at 1 kHz and low leakage current densities (10 −6 –10 −7 A cm −2 ). Leakage was studied using conductive atomic force microscopy and it was observed that the leakage is associated with TiO 2 nanoparticles embedded in the CRS polymer matrix. A new class of ultra high dielectric constant hybrids using nanoscale inorganic dielectrics dispersed in a high permittivity polymer suitable for energy management applications is reported. (paper)

  13. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    Science.gov (United States)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  14. Dynamic tensile behavior of AZ31B magnesium alloy at ultra-high strain rates

    Directory of Open Access Journals (Sweden)

    Geng Changjian

    2015-04-01

    Full Text Available The samples having {0001} parallel to extruding direction (ED present a typical true stress–true strain curve with concave-down shape under tension at low strain rate. Ultra-rapid tensile tests were conducted at room temperature on a textured AZ31B magnesium alloy. The dynamic tensile behavior was investigated. The results show that at ultra-high strain rates of 1.93 × 102 s−1 and 1.70 × 103 s−1, the alloy behaves with a linear stress–strain response in most strain range and exhibits a brittle fracture. In this case, {10-12}  extension twinning is basic deformation mode. The brittleness is due to the macroscopic viscosity at ultra-high strain rate, for which the external critical shear stress rapidly gets high to result in a cleavage fracture before large amounts of dislocations are activated. Because {10-12} tension twinning, {10-11} compressive twinning, basal slip, prismatic slip and pyramidal slip have different critical shear stresses (CRSS, their contributions to the degree of deformation are very differential. In addition, Schmid factor plays an important role in the activity of various deformation modes and it is the key factor for the samples with different strain rates exhibit various mechanical behavior under dynamic tensile loading.

  15. Effects of anesthetic agents on brain blood oxygenation level revealed with ultra-high field MRI.

    Directory of Open Access Journals (Sweden)

    Luisa Ciobanu

    Full Text Available During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is stable. Brain-wide monitoring of this effect remains highly challenging. Because T(2*-weighted imaging at ultra-high magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor anesthesia effects on brain blood oxygenation. We scanned rat brains at 7T and 17.2T under general anesthesia using different anesthetics (isoflurane, ketamine-xylazine, medetomidine. We showed that the brain/vessels contrast in T(2*-weighted images at 17.2T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that was visible, but to a much smaller extent at 7T. This variation is in agreement with the mechanism of action of these agents. These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation.

  16. Effects of anesthetic agents on brain blood oxygenation level revealed with ultra-high field MRI

    International Nuclear Information System (INIS)

    Ciobanu, Luisa; Reynaud, Olivier; Le Bihan, Denis; Uhrig, Lynn; Jarraya, Bechir

    2012-01-01

    During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is stable. Brain-wide monitoring of this effect remains highly challenging. Because T2'*-weighted imaging at ultra-high magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor anesthesia effects on brain blood oxygenation. We scanned rat brains at 7 T and 17.2 T under general anesthesia using different anesthetics (isoflurane, ketamine-xylazine, medetomidine). We showed that the brain/vessels contrast in T2'*- weighted images at 17.2 T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that was visible, but to a much smaller extent at 7 T. This variation is in agreement with the mechanism of action of these agents. These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation. (authors)

  17. New solid laser: Ceramic laser. From ultra stable laser to ultra high output laser

    International Nuclear Information System (INIS)

    Ueda, Kenichi

    2006-01-01

    An epoch-making solid laser is developed. It is ceramic laser, polycrystal, which is produced as same as glass and shows ultra high output. Ti 3+ :Al 2 O 3 laser crystal and the CPA (chirped pulse amplification) technique realized new ultra high output lasers. Japan has developed various kinds of ceramic lasers, from 10 -2 to 67 x 10 3 w average output, since 1995. These ceramic lasers were studied by gravitational radiation astronomy. The scattering coefficient of ceramic laser is smaller than single crystals. The new fast ignition method is proposed by Institute of Laser Engineering of Osaka University, Japan. Ultra-intense short pulse laser can inject the required energy to the high-density imploded core plasma within the core disassembling time. Ti 3+ :Al 2 O 3 crystal for laser, ceramic YAG of large caliber for 100 kW, transparent laser ceramic from nano-crystals, crystal grain and boundary layer between grains, the scattering coefficient of single crystal and ceramic, and the derived release cross section of Yb:YAG ceramic are described. (S.Y.)

  18. Ultra-high vacuum compatible induction-heated rod casting furnace.

    Science.gov (United States)

    Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  19. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    Science.gov (United States)

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, Sanghyeon; Choi, Won Jun

    2016-02-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates.

  20. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang

    2016-03-01

    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  1. An Ultra-High Pressure Proportional Counter for Hard X-Ray Astronomy.

    Science.gov (United States)

    Ye, Zongnan

    1992-01-01

    This thesis describes the successful development of ultra-high pressure proportional counters for balloon -borne hard X-ray astronomy. The proportional counters were filled with argon/xenon at pressures up to {~}30atm. The properties of proportional counters filled at such pressures have been studied by the author in the laboratory. The spatial response of these counters to X-rays and charged particles, and the energy response to X-rays up to 1MeV have been analysed. Gas gain measurements using the charge collection technique and analysis of the subsequent data show that simple extrapolation from low pressures cannot explain the observed behaviour (e.g. the mobility of positive ions and quenching efficiency) of these counters at high pressures. A hard X-ray telescope consisting of 32 such proportional counters filled at ultra-high pressures is being constructed, details of which are described. The sensitivity of this telescope for both continuum and narrow-line spectra is superb compared to contemporary balloon-and satellite-borne hard X-ray detectors. Together with an imaging phoswich Anger camera, it is scheduled for launch from Alice Springs in November 1992. An anticoincidence system for an X-ray detector, consisting of a combined passive and active shield, has been designed and constructed by the author, and flown on a balloon. The active shield, made of a plastic scintillator, has resulted in an additional reduction of 25% in the background registered at balloon altitudes.

  2. Fatigue Properties of the Ultra-High Strength Steel TM210A.

    Science.gov (United States)

    Yin, Guang-Qiang; Kang, Xia; Zhao, Gui-Ping

    2017-09-09

    This paper presents the results of an experiment to investigate the high cycle fatigue properties of the ultra-high strength steel TM210A. A constant amplitude rotating bending fatigue experiment was performed at room temperature at stress ratio R = -1. In order to evaluate the notch effect, the fatigue experiment was carried out upon two sets of specimens, smooth and notched, respectively. In the experiment, the rotating bending fatigue life was tested using the group method, and the rotating bending fatigue limit was tested using the staircase method at 1 × 10⁷ cycles. A double weighted least square method was then used to fit the stress-life (S-N) curve. The S-N curves of the two sets of specimens were obtained and the morphologies of the fractures of the two sets of specimens were observed with scanning electron microscopy (SEM). The results showed that the fatigue limit of the smooth specimen for rotating bending fatigue was 615 MPa; the ratio of the fatigue limit to tensile strength was 0.29, and the cracks initiated at the surface of the smooth specimen; while the fatigue limit of the notched specimen for rotating bending fatigue was 363 MPa, and the cracks initiated at the edge of the notch. The fatigue notch sensitivity index of the ultra-high strength maraging steel TM210A was 0.69.

  3. Approaches for springback reduction when forming ultra high-strength sheet metals

    Science.gov (United States)

    Radonjic, R.; Liewald, M.

    2016-11-01

    Nowadays, the automotive industry is challenged constantly by increasing environmental regulations and the continuous enhancement of standards with regard to passenger's safety (NCAP, Part 1). In order to fulfil the aforementioned requirements, the use of ultra high-strength steels in research and industrial applications is of high interest. When forming such materials, the main problem results from the large amount of springback which occurs after the release of the part. This paper shows the applicability of several approaches for the reduction of springback amount by forming of one hat channel shaped component. A novel approach for springack reduction which is based on forming with an alternating blank draw-in is presented as well. In this investigation an ultra high-strength steel of the grade DP 980 was used. The part's measurements were taken at significant cross-sections in order to provide a qualitative comparison between the reference geometry and the part's released shape. The obtained results were analysed and used in order to quantify the success of particular approaches for springback reduction. When taking a curved hat channel shaped component as an example, the results achieved in the investigations showed that it is possible to reduce part shape deviations significantly when using DP 980 as workpiece material.

  4. A method to assess the loss of a dipole antenna for ultra-high-field MRI.

    Science.gov (United States)

    Chen, Gang; Collins, Christopher M; Sodickson, Daniel K; Wiggins, Graham C

    2018-03-01

    To describe a new bench measurement based on quality (Q) factors to estimate the coil noise relative to the sample noise of dipole antennas at 7 T. Placing a dipole antenna close to a highly conductive sample surrogate (HCSS) greatly reduces radiation loss, and using Q HCSS gives a more accurate estimate of coil resistance than Q unloaded . Instead of using the ratio of unloaded and sample-loaded Q factors, the ratio of HCSS-loaded and sample-loaded Q factors should be used at ultra-high fields. A series of simulations were carried out to analyze the power budget of sample-loaded or HCSS-loaded dipole antennas. Two prototype dipole antennas were also constructed for bench measurements to validate the simulations. Simulations showed that radiation loss was suppressed when the dipole antenna was HCSS-loaded, and coil loss was largely the same as when the dipole was loaded by the sample. Bench measurements also showed good alignment with simulations. Using the ratio Q HCSS /Q loaded gives a good estimate of the coil loss for dipole antennas at 7 T, and provides a convenient bench measurement to predict the body noise dominance of dipole antenna designs. The new approach also applies to conventional surface loop coils at ultra-high fields. Magn Reson Med 79:1773-1780, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Equal channel angular extrusion of ultra-high molecular weight polyethylene

    International Nuclear Information System (INIS)

    Reinitz, Steven D.; Engler, Alexander J.; Carlson, Evan M.; Van Citters, Douglas W.

    2016-01-01

    Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications. - Highlights: • A new processing method for ultra-high molecular weight polyethylene is introduced. • The process produces a highly entangled polyethylene material. • Entanglements are hypothesized to enhance the wear resistance of polyethylene. • This process eliminates the trade-off between mechanical and wear properties.

  6. Encoding methods for B1+ mapping in parallel transmit systems at ultra high field

    Science.gov (United States)

    Tse, Desmond H. Y.; Poole, Michael S.; Magill, Arthur W.; Felder, Jörg; Brenner, Daniel; Jon Shah, N.

    2014-08-01

    Parallel radiofrequency (RF) transmission, either in the form of RF shimming or pulse design, has been proposed as a solution to the B1+ inhomogeneity problem in ultra high field magnetic resonance imaging. As a prerequisite, accurate B1+ maps from each of the available transmit channels are required. In this work, four different encoding methods for B1+ mapping, namely 1-channel-on, all-channels-on-except-1, all-channels-on-1-inverted and Fourier phase encoding, were evaluated using dual refocusing acquisition mode (DREAM) at 9.4 T. Fourier phase encoding was demonstrated in both phantom and in vivo to be the least susceptible to artefacts caused by destructive RF interference at 9.4 T. Unlike the other two interferometric encoding schemes, Fourier phase encoding showed negligible dependency on the initial RF phase setting and therefore no prior B1+ knowledge is required. Fourier phase encoding also provides a flexible way to increase the number of measurements to increase SNR, and to allow further reduction of artefacts by weighted decoding. These advantages of Fourier phase encoding suggest that it is a good choice for B1+ mapping in parallel transmit systems at ultra high field.

  7. Co-existence generation of XG-PON and single carrier XLG-PON for ultra-high definition TV transmission with entirely passive optical plant

    Science.gov (United States)

    Niazi, Shahab Ahmad; Zhang, Xiao-guang; Xi, Li-xia; Munir, Abid; Idress, Muhammad

    2013-05-01

    International telecommunication union (ITU) recently has standardized ultra-high definition television (UHD-TV) with a resolution which is 16 times more than that of current high definition TV. Increasing the efficiency of video source coding or the capacity of transmission channels will be needed to deliver such programs by passive optical network (PON). In this paper, a complete passive co-existence of 10 Gbit-PON (XG-PON) and single carrier 40 Gbit-PON (XLG-PON) for overlay of UHD-TV distribution to 32 optical network units (ONUs) on broadcast basis is presented. The results show error free transmission performance with negligible power penalty over a 20 km bidirectional fiber.

  8. Antioxidant Capability of Ultra-high Temperature Milk and Ultra-high Temperature Soy Milk and their Fermented Products Determined by Four Distinct Spectrophotometric Methods

    Directory of Open Access Journals (Sweden)

    Sahar Torki Baghbadorani

    2017-01-01

    Full Text Available Background: Due to the recent emerging information on the antioxidant properties of soy products, substitution of soy milk for milk in the diet has been proposed by some nutritionists. We aimed to compare four distinct antioxidant measuring methods in the evaluation of antioxidant properties of industrial ultra-high temperature (UHT milk, UHT soy milk, and their fermented products by Lactobacillus plantarum A7. Materials and Methods: Ascorbate auto-oxidation inhibition assay, 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH free radical scavenging method, hydrogen peroxide neutralization assay and reducing activity test were compared for the homogeneity and accuracy of the results. Results: The results obtained by the four tested methods did not completely match with each other. The results of the DPPH assay and the reducing activity were more coordinated than the other methods. By the use of these methods, the antioxidant capability of UHT soy milk was measured more than UHT milk (33.51 ± 6.00% and 945 ± 56 μM cysteine compared to 8.70 ± 3.20% and 795 ± 82 μM cysteine. The negative effect of fermentation on the antioxidant potential of UHT soy milk was revealed as ascorbate auto-oxidation inhibition assay, DPPH method and reducing activity tests ended to approximately 52%, 58%, and 80% reduction in antioxidant potential of UHT soy milk, respectively. Conclusions: The antioxidative properties of UHT soy milk could not be solely due to its phenolic components. Peptides and amino acids derived from thermal processing in soy milk probably have a main role in its antioxidant activity, which should be studied in the future.

  9. Antioxidant Capability of Ultra-high Temperature Milk and Ultra-high Temperature Soy Milk and their Fermented Products Determined by Four Distinct Spectrophotometric Methods.

    Science.gov (United States)

    Baghbadorani, Sahar Torki; Ehsani, Mohammad Reza; Mirlohi, Maryam; Ezzatpanah, Hamid; Azadbakht, Leila; Babashahi, Mina

    2017-01-01

    Due to the recent emerging information on the antioxidant properties of soy products, substitution of soy milk for milk in the diet has been proposed by some nutritionists. We aimed to compare four distinct antioxidant measuring methods in the evaluation of antioxidant properties of industrial ultra-high temperature (UHT) milk, UHT soy milk, and their fermented products by Lactobacillus plantarum A7. Ascorbate auto-oxidation inhibition assay, 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging method, hydrogen peroxide neutralization assay and reducing activity test were compared for the homogeneity and accuracy of the results. The results obtained by the four tested methods did not completely match with each other. The results of the DPPH assay and the reducing activity were more coordinated than the other methods. By the use of these methods, the antioxidant capability of UHT soy milk was measured more than UHT milk (33.51 ± 6.00% and 945 ± 56 μM cysteine compared to 8.70 ± 3.20% and 795 ± 82 μM cysteine). The negative effect of fermentation on the antioxidant potential of UHT soy milk was revealed as ascorbate auto-oxidation inhibition assay, DPPH method and reducing activity tests ended to approximately 52%, 58%, and 80% reduction in antioxidant potential of UHT soy milk, respectively. The antioxidative properties of UHT soy milk could not be solely due to its phenolic components. Peptides and amino acids derived from thermal processing in soy milk probably have a main role in its antioxidant activity, which should be studied in the future.

  10. Analysis of therapeutic proteins and peptides using multiangle light scattering coupled to ultra high performance liquid chromatography.

    Science.gov (United States)

    Espinosa-de la Garza, Carlos E; Miranda-Hernández, Mariana P; Acosta-Flores, Lilia; Pérez, Néstor O; Flores-Ortiz, Luis F; Medina-Rivero, Emilio

    2015-05-01

    Analysis of the physical properties of biotherapeutic proteins is crucial throughout all the stages of their lifecycle. Herein, we used size-exclusion ultra high performance liquid chromatography coupled to multiangle light scattering and refractive index detection systems to determine the molar mass, mass-average molar mass, molar-mass dispersity and hydrodynamic radius of two monoclonal antibodies (rituximab and trastuzumab), a fusion protein (etanercept), and a synthetic copolymer (glatiramer acetate) employed as models. A customized instrument configuration was set to diminish band-broadening effects and enhance sensitivity throughout detectors. The customized configuration showed a performance improvement with respect to the high-performance liquid chromatography standard configuration, as observed by a 3 h column conditioning and a higher resolution analysis in 20 min. Analysis of the two monoclonal antibodies showed averaged values of 148.0 kDa for mass-average molar mass and 5.4 nm for hydrodynamic radius, whereas for etanercept these values were 124.2 kDa and 6.9 nm, respectively. Molar-mass dispersity was 1.000 on average for these proteins. Regarding glatiramer acetate, a molar mass range from 3 to 45 kDa and a molar-mass dispersity of 1.304 were consistent with its intrinsic peptide diversity, and its mass-average molar mass was 10.4 kDa. Overall, this method demonstrated an accurate determination of molar mass, overcoming the difficulties of size-exclusion chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.

    2012-01-01

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ..., 110 highest energy events with a corresponding minimum energy threshold of about 51 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.

  12. Ultra high-frequency data acquisition AMC module for high performance applications

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, R.C., E-mail: ritacp@ipfn.ist.utl.pt [Associação EURATOM/IST Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Combo, A.; Correia, M.; Rodrigues, A.P.; Fernandes, A.; Sousa, J. [Associação EURATOM/IST Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Correia, C.M.B.A. [Centro de Instrumentação, Dept. de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Gonçalves, B.; Varandas, C.A.F. [Associação EURATOM/IST Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal)

    2013-10-15

    Highlights: ► Advanced mezzanine card (AMC). ► FPGA mezzanine card (FMC). ► Ultra high-speed ADC: dual-channel sampling rate up to 1.6 GSPS at 10/12-bit or single-channel up to 3.2 GSPS at 10/12-bit. ► Support of multiple switch fabric protocols (PCIe, SRIO, and GigE). ► Module management controller. -- Abstract: This paper describes the design and implementation of an ultra high-frequency data acquisition advanced mezzanine card (AMC) module, suitable for use in micro advanced telecommunications computing architecture (μATCA) and ATCA systems. This module is designed to meet the processing needs of high-performance applications required by the fast plant system controllers. It is also designed for high-availability (HA) and is envisaged to be used by the next generation of nuclear fusion diagnostics (e.g. as microwave reflectometry, plasma position reflectometry and Thomson scattering), foreseen for future fusion devices like the International Thermonuclear Experimental Reactor (ITER) tokamak or the Wendelstein 7-X (W7X) stellarator. The developed module is a full size AMC designed to cope with the PICMG{sup ®} AMC.0 R2.0 specifications. All the architecture is based on the ultra high-speed ADC that allows dual-channel sampling rate up to 1.0/1.6 GSPS at 10/12-bit or a single-channel up to 2.0/3.2 GSPS at 10/12-bit. The AMC module features a Field Programmable Gate Array (FPGA), Virtex™-6 from Xilinx that is able to manage high-speed data paths and implement high data rate processing algorithms. This FPGA supports multiple switch fabric protocols (PCIe, SRIO, and GigE). The module features also up to 2 GB of double data rate (DDR3) memory for data storage and 128 MB DDR3 memory for general purpose application, like, for instance, a soft processor core or digital filters. Also, a module management controller (MMC), required by the AMC standard, is implemented on-board to monitor the available and required hardware system management parameters.

  13. Social Cognition in Individuals at Ultra-High Risk for Psychosis: A Meta-Analysis.

    Science.gov (United States)

    van Donkersgoed, R J M; Wunderink, L; Nieboer, R; Aleman, A; Pijnenborg, G H M

    2015-01-01

    Treatment in the ultra-high risk stage for a psychotic episode is critical to the course of symptoms. Markers for the development of psychosis have been studied, to optimize the detection of people at risk of psychosis. One possible marker for the transition to psychosis is social cognition. To estimate effect sizes for social cognition based on a quantitative integration of the published evidence, we conducted a meta-analysis of social cognitive performance in people at ultra high risk (UHR). A literature search (1970-July 2015) was performed in PubMed, PsychINFO, Medline, Embase, and ISI Web of Science, using the search terms 'social cognition', 'theory of mind', 'emotion recognition', 'attributional style', 'social knowledge', 'social perception', 'empathy', 'at risk mental state', 'clinical high risk', 'psychosis prodrome', and 'ultra high risk'. The pooled effect size (Cohen's D) and the effect sizes for each domain of social cognition were calculated. A random effects model with 95% confidence intervals was used. Seventeen studies were included in the analysis. The overall significant effect was of medium magnitude (d = 0.52, 95% Cl = 0.38-0.65). No moderator effects were found for age, gender and sample size. Sub-analyses demonstrated that individuals in the UHR phase show significant moderate deficits in affect recognition and affect discrimination in faces as well as in voices and in verbal Theory of Mind (TOM). Due to an insufficient amount of studies, we did not calculate an effect size for attributional bias and social perception/ knowledge. A majority of studies did not find a correlation between social cognition deficits and transition to psychosis, which may suggest that social cognition in general is not a useful marker for the development of psychosis. However some studies suggest the possible predictive value of verbal TOM and the recognition of specific emotions in faces for the transition into psychosis. More research is needed on these subjects

  14. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  15. Social Cognition in Individuals at Ultra-High Risk for Psychosis: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    R J M van Donkersgoed

    Full Text Available Treatment in the ultra-high risk stage for a psychotic episode is critical to the course of symptoms. Markers for the development of psychosis have been studied, to optimize the detection of people at risk of psychosis. One possible marker for the transition to psychosis is social cognition. To estimate effect sizes for social cognition based on a quantitative integration of the published evidence, we conducted a meta-analysis of social cognitive performance in people at ultra high risk (UHR.A literature search (1970-July 2015 was performed in PubMed, PsychINFO, Medline, Embase, and ISI Web of Science, using the search terms 'social cognition', 'theory of mind', 'emotion recognition', 'attributional style', 'social knowledge', 'social perception', 'empathy', 'at risk mental state', 'clinical high risk', 'psychosis prodrome', and 'ultra high risk'. The pooled effect size (Cohen's D and the effect sizes for each domain of social cognition were calculated. A random effects model with 95% confidence intervals was used.Seventeen studies were included in the analysis. The overall significant effect was of medium magnitude (d = 0.52, 95% Cl = 0.38-0.65. No moderator effects were found for age, gender and sample size. Sub-analyses demonstrated that individuals in the UHR phase show significant moderate deficits in affect recognition and affect discrimination in faces as well as in voices and in verbal Theory of Mind (TOM. Due to an insufficient amount of studies, we did not calculate an effect size for attributional bias and social perception/ knowledge. A majority of studies did not find a correlation between social cognition deficits and transition to psychosis, which may suggest that social cognition in general is not a useful marker for the development of psychosis. However some studies suggest the possible predictive value of verbal TOM and the recognition of specific emotions in faces for the transition into psychosis. More research is needed on

  16. Social Cognition in Individuals at Ultra-High Risk for Psychosis: A Meta-Analysis

    Science.gov (United States)

    van Donkersgoed, R. J. M.; Wunderink, L.; Nieboer, R.; Aleman, A.; Pijnenborg, G. H. M.

    2015-01-01

    Objective Treatment in the ultra-high risk stage for a psychotic episode is critical to the course of symptoms. Markers for the development of psychosis have been studied, to optimize the detection of people at risk of psychosis. One possible marker for the transition to psychosis is social cognition. To estimate effect sizes for social cognition based on a quantitative integration of the published evidence, we conducted a meta-analysis of social cognitive performance in people at ultra high risk (UHR). Methods A literature search (1970-July 2015) was performed in PubMed, PsychINFO, Medline, Embase, and ISI Web of Science, using the search terms ‘social cognition’, ‘theory of mind’, ‘emotion recognition’, ‘attributional style’, ‘social knowledge’, ‘social perception’, ‘empathy’, ‘at risk mental state’, ‘clinical high risk’, ‘psychosis prodrome’, and ‘ultra high risk’. The pooled effect size (Cohen’s D) and the effect sizes for each domain of social cognition were calculated. A random effects model with 95% confidence intervals was used. Results Seventeen studies were included in the analysis. The overall significant effect was of medium magnitude (d = 0.52, 95% Cl = 0.38–0.65). No moderator effects were found for age, gender and sample size. Sub-analyses demonstrated that individuals in the UHR phase show significant moderate deficits in affect recognition and affect discrimination in faces as well as in voices and in verbal Theory of Mind (TOM). Due to an insufficient amount of studies, we did not calculate an effect size for attributional bias and social perception/ knowledge. A majority of studies did not find a correlation between social cognition deficits and transition to psychosis, which may suggest that social cognition in general is not a useful marker for the development of psychosis. However some studies suggest the possible predictive value of verbal TOM and the recognition of specific emotions in faces

  17. Metamaterial-based transmit and receive system for whole-body magnetic resonance imaging at ultra-high magnetic fields.

    Science.gov (United States)

    Herrmann, Tim; Liebig, Thorsten; Mallow, Johannes; Bruns, Christian; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Svedja, Jan Taro; Chen, Zhichao; Rennings, Andreas; Scheich, Henning; Plaumann, Markus; Hauser, Marcus J B; Bernarding, Johannes; Erni, Daniel

    2018-01-01

    Magnetic resonance imaging (MRI) at ultra-high fields (UHF), such as 7 T, provides an enhanced signal-to-noise ratio and has led to unprecedented high-resolution anatomic images and brain activation maps. Although a variety of radio frequency (RF) coil architectures have been developed for imaging at UHF conditions, they usually are specialized for small volumes of interests (VoI). So far, whole-body coil resonators are not available for commercial UHF human whole-body MRI systems. The goal of the present study was the development and validation of a transmit and receive system for large VoIs that operates at a 7 T human whole-body MRI system. A Metamaterial Ring Antenna System (MRAS) consisting of several ring antennas was developed, since it allows for the imaging of extended VoIs. Furthermore, the MRAS not only requires lower intensities of the irradiated RF energy, but also provides a more confined and focused injection of excitation energy on selected body parts. The MRAS consisted of several antennas with 50 cm inner diameter, 10 cm width and 0.5 cm depth. The position of the rings was freely adjustable. Conformal resonant right-/left-handed metamaterial was used for each ring antenna with two quadrature feeding ports for RF power. The system was successfully implemented and demonstrated with both a silicone oil and a water-NaCl-isopropanol phantom as well as in vivo by acquiring whole-body images of a crab-eating macaque. The potential for future neuroimaging applications was demonstrated by the acquired high-resolution anatomic images of the macaque's head. Phantom and in vivo measurements of crab-eating macaques provided high-resolution images with large VoIs up to 40 cm in xy-direction and 45 cm in z-direction. The results of this work demonstrate the feasibility of the MRAS system for UHF MRI as proof of principle. The MRAS shows a substantial potential for MR imaging of larger volumes at 7 T UHF. This new technique may provide new diagnostic potential

  18. Porous carbon with small mesoporesas an ultra-high capacity adsorption medium

    Science.gov (United States)

    Gao, Biaofeng; Zhou, Haitao; Chen, De; Yang, Jianhong

    2017-10-01

    Resins (732-type), abundant and inexpensive resources were used to prepare porous carbon with small mesopores (CSM) by carbonization and post-chemical-activation with potassium hydroxide (KOH). The N2 adsorption measurements revealed that CSM had high surface areas (1776.5 m2 g-1), large pore volumes (1.10 cm3 g-1), and nearly optimal narrow small mesopore sizes ranging from 2 to 7 nm. CSM was used as adsorbent to investigate the adsorption behavior for Rhodamine B (RhB). Due to the optimal pore size distributions (PSD), intensive-stacking interaction, S-doped, and electrostatic attraction, the CSM exhibited an ultra-high-capacity of 1590 mg g-1 for RhB in aqueous solutions.

  19. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports

    International Nuclear Information System (INIS)

    Sugime, Hisashi; Esconjauregui, Santiago; Yang, Junwei; D'Arsié, Lorenzo; Robertson, John; Oliver, Rachel A.; Bhardwaj, Sunil; Cepek, Cinzia

    2013-01-01

    We grow ultra-high mass density carbon nanotube forests at 450 °C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 μm and a mass density of 1.6 g cm −3 . This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ∼22 kΩ), suggesting Co-Mo is useful for applications requiring forest growth on conductors

  20. Monte Carlo simulations of ultra high vacuum and synchrotron radiation for particle accelerators

    CERN Document Server

    AUTHOR|(CDS)2082330; Leonid, Rivkin

    With preparation of Hi-Lumi LHC fully underway, and the FCC machines under study, accelerators will reach unprecedented energies and along with it very large amount of synchrotron radiation (SR). This will desorb photoelectrons and molecules from accelerator walls, which contribute to electron cloud buildup and increase the residual pressure - both effects reducing the beam lifetime. In current accelerators these two effects are among the principal limiting factors, therefore precise calculation of synchrotron radiation and pressure properties are very important, desirably in the early design phase. This PhD project shows the modernization and a major upgrade of two codes, Molflow and Synrad, originally written by R. Kersevan in the 1990s, which are based on the test-particle Monte Carlo method and allow ultra-high vacuum and synchrotron radiation calculations. The new versions contain new physics, and are built as an all-in-one package - available to the public. Existing vacuum calculation methods are overvi...

  1. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    International Nuclear Information System (INIS)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S.L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.

    2014-01-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems

  2. Social cognition in patients at ultra-high risk for psychosis

    DEFF Research Database (Denmark)

    Glenthøj, Louise B.; Fagerlund, Birgitte; Hjorthøj, Carsten

    2016-01-01

    Objective: Patients at ultra-high risk (UHR) for psychosis show significant impairments in functioning. It is essential to determine which factors influence functioning, as it may have implications for intervention strategies. This study examined whether social cognitive abilities and clinical...... symptoms are associated with functioning and social skills. Methods: The study included 65 UHR patients and 30 healthy controls. Social cognitive function, social skills, and a broad range of functioning measures were assessed. Results: The UHR patients demonstrated significant decrements on The Awareness...... of Social Inferences Task total score (p = .046, d = .51), and on the CANTAB emotion recognition task total percent correct (p = .023, d = .54) displaying particular difficulties in negative affect recognition. The patients exhibited significant impairments in social skills measured with the High Risk...

  3. 100 Gigabit-per-second: Ultra-high transmission bitrate for next generation optical transport networks

    Science.gov (United States)

    Veith, Gustav; Lach, Eugen; Schuh, Karsten

    2008-11-01

    Modern telecommunication networks have to provide enormous data transport capacity in order to enable the dramatic annual internet traffic growth rates. As an illustration, today some internet exchange nodes partly exhibit annual peak traffic growth rates of more than 200% due to strongly emerging data and broadband video services. This explosion of internet data and video traffic can only be assured by the implementation of the most advanced optical metro and core transport network technologies. It is likely that next generation telecommunication transport networks will be based on 100 Gigabit/s Ethernet (100 GbE) interconnections. Here we will report on the technical challenges and achievements associated with the development of ultra-high speed components and systems for serial 100 Gbit/s optical transmission. To cite this article: G. Veith et al., C. R. Physique 9 (2008).

  4. Theoretical Challenges in Acceleration and Transport of Ultra High Energy Cosmic Rays: A Review

    CERN Document Server

    Blasi, Pasquale

    2012-01-01

    The wealth of data collected in the last few years thanks to the Pierre Auger Observatory and recently to the Telescope Array made the problem of the origin of ultra high energy cosmic rays a genuinely experimental/observational one. The apparently contradictory results provided by these experiments in terms of spectrum, chemical composition and anisotropies do not allow to reach any final conclusions as yet. Here I will discuss some of the theoretical challenges imposed by these data: in particular I will discuss some issues related to the transition from Galactic to extragalactic cosmic rays and how the different models confront our understanding of Galactic cosmic rays in terms of supernova remnants paradigm. I will also discuss the status of theories aiming at describing acceleration of cosmic rays to the highest energies in relativistic shocks and unipolar inductors.

  5. Influence of Carbide Modifications on the Mechanical Properties of Ultra-High-Strength Stainless Steels

    Science.gov (United States)

    Seo, Joo-Young; Park, Soo-Keun; Kwon, Hoon; Cho, Ki-Sub

    2017-10-01

    The mechanical properties of ultra-high-strength secondary hardened stainless steels with varying Co, V, and C contents have been studied. A reduced-Co alloy based on the chemical composition of Ferrium S53 was made by increasing the V and C content. This changed the M2C-strengthened microstructure to a MC plus M2C-strengthened microstructure, and no deteriorative effects were observed for peak-aged and over-aged samples despite the large reduction in Co content from 14 to 7 wt pct. The mechanical properties according to alloying modification were associated with carbide precipitation kinetics, which was clearly outlined by combining analytical tools including small-angle neutron scattering (SANS) as well as an analytical TEM with computational simulation.

  6. Effect of ultra-high pressure on small animals, tardigrades and Artemia

    Directory of Open Access Journals (Sweden)

    Fumihisa Ono

    2016-12-01

    Full Text Available This research shows that small animals, tardigrades (Milnesium tardigradum in tun (dehydrated state and Artemia salina cists (dried eggs can tolerate the very high hydrostatic pressure of 7.5 GPa. It was really surprising that living organisms can survive after exposure to such a high pressure. We extended these studies to the extremely high pressure of 20 GPa by using a Kawai-type octahedral anvil press. After exposure to this pressure for 30 min, the tardigrades were soaked in pure water and investigated under a microscope. Their bodies regained metabolic state and no serious injury could be seen. But they were not alive. A few of Artemia eggs went part of the way to hatching after soaked in sea water, but they never grew any further. Comparing with the case of blue-green alga, these animals are weaker under ultra-high pressure.

  7. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Science.gov (United States)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W. H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.; Thomson, G. B.; Von Maluski, D.

    2014-12-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest "conventional" cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  8. Catalytic enantioselective synthesis of chiral organic compounds of ultra-high purity of >99% ee.

    Science.gov (United States)

    Negishi, Ei-ichi; Xu, Shiqing

    2015-01-01

    Shortly after the discovery of Zr-catalyzed carboalumination of alkynes in 1978, we sought expansion of the scope of this reaction so as to develop its alkene version for catalytic asymmetric C-C bond formation, namely the ZACA (Zr-catalyzed asymmetric carboalumination of alkenes). However, this seemingly easy task proved to be quite challenging. The ZACA reaction was finally discovered in 1995 by suppressing three competitive side reactions, i.e., (i) cyclic carbometalation, (ii) β-H transfer hydrometalation, and (iii) alkene polymerization. The ZACA reaction has been used to significantly modernize and improve syntheses of various natural products including deoxypolypropionates and isoprenoids. This review focuses on our recent progress on the development of ZACA-lipase-catalyzed acetylation-transition metal-catalyzed cross-coupling processes for highly efficient and enantioselective syntheses of a wide range of chiral organic compounds with ultra-high enantiomeric purities.

  9. A portable transfer chamber for electrochemical measurements on electrodes prepared in ultra-high vacuum.

    Science.gov (United States)

    El-Jawad, M; Chemin, J-L; Gilles, B; Maillard, F

    2013-06-01

    This paper describes a versatile, light weight, and portable chamber dedicated to the transfer of electrodes from ultra-high vacuum (UHV) to atmospheric pressure and the liquid phase. This chamber can be connected to a liquid-phase reaction cell to perform electrochemical measurements and transfer back the electrode to the UHV environment. The experimental set-up can also be turned in order to make the electrode the bottom of the electrochemical cell. The validity and the efficiency of the experimental set-up were tested with a Pt(111) surface that provides unique electrochemical features in acidic sulphate-containing solution. This transfer chamber concept provides the surface science community with a new and versatile tool, complementary to existing systems, which allows fast electrolyte purging or electrochemical measurements under well-controlled mass transport conditions.

  10. An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments.

    Science.gov (United States)

    Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Oldřich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude

    2015-02-01

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  11. Fluorescence resonance energy transfer of gas-phase ions under ultra high vacuum and ambient conditions.

    Science.gov (United States)

    Frankevich, Vladimir; Chagovets, Vitaliy; Widjaja, Fanny; Barylyuk, Konstantin; Yang, Zhiyi; Zenobi, Renato

    2014-05-21

    We report evidence for fluorescence resonance energy transfer (FRET) of gas-phase ions under ultra high vacuum conditions (10(-9) mbar) inside a mass spectrometer as well as under ambient conditions inside an electrospray plume. Two different FRET pairs based on carboxyrhodamine 6G (donor) and ATTO590 or Bodipy TR (acceptor) dyes were examined and their gas-phase optical properties were studied. Our measurements indicate a different behavior for the two FRET pairs, which can be attributed to their different conformations in the gas phase. Upon desolvation via electrospray ionization, one of the FRET pairs undergoes a conformational change that leads to disappearance of FRET. This study shows the promise of FRET to obtain a direct correlation between solution and gas-phase structures.

  12. Miniature active damping stage for scanning probe applications in ultra high vacuum.

    Science.gov (United States)

    Assig, Maximilian; Koch, Andreas; Stiepany, Wolfgang; Strasser, Carola; Ast, Alexandra; Kern, Klaus; Ast, Christian R

    2012-03-01

    Scanning probe microscope (SPM) experiments demand a low vibration level to minimize the external influence on the measured signal. We present a miniature six-degree of freedom active damping stage based on a Gough-Stewart platform (hexapod) which is positioned in ultra high vacuum as close to the SPM as possible. In this way, vibrations originating from the experimental setup can be effectively reduced providing a quiet environment for the SPM. In addition, the hexapod provides a rigid reference point, which facilitates wiring as well as sample transfer. We outline the main working principle and show that for scanning tunneling microscopy (STM) measurements of a Si(111) 7 × 7 surface, the hexapod significantly improves the stability and quality of the topographic images.

  13. Note: A simple sample transfer alignment for ultra-high vacuum systems.

    Science.gov (United States)

    Tamtögl, A; Carter, E A; Ward, D J; Avidor, N; Kole, P R; Jardine, A P; Allison, W

    2016-06-01

    The alignment of ultra-high-vacuum sample transfer systems can be problematic when there is no direct line of sight to assist the user. We present the design of a simple and cheap system which greatly simplifies the alignment of sample transfer devices. Our method is based on the adaptation of a commercial digital camera which provides live views from within the vacuum chamber. The images of the camera are further processed using an image recognition and processing code which determines any misalignments and reports them to the user. Installation has proven to be extremely useful in order to align the sample with respect to the transfer mechanism. Furthermore, the alignment software can be easily adapted for other systems.

  14. Transient line starting analysis of the ultra-high speed PMSM

    Directory of Open Access Journals (Sweden)

    Wenjie Cheng

    2017-05-01

    Full Text Available Aiming at the ultra high speed permanent magnet synchronous motor (PMSM supported by gas foil bearings (GFBs, this paper calculates the transient line starting of the motor. Firstly, the start effect of the rotor composed of cylindrical PM and stainless steel sleeve is studied. Then, in order to enhance the start torque, copper ring, nickel ring and copper squirrel-cage are introduced in the rotor and their start effect are analysed, respectively. It can be found that the rotor including nickel ring can be accelerated to set speed, but all the other rotors are failed due to the higher PM and braking torques. It can be concluded that some material owning slight large relative permeability can be applied in the rotor to reduce the PM field and contribute to start by using the line-start method.

  15. Construction and commissioning of the AGS Booster ultra-high vacuum system

    International Nuclear Information System (INIS)

    Hseuh, H.C.; Mapes, M.; Shen, B.; Sikora, R.

    1991-01-01

    The recently completed AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. To minimize the beam loss due to charge exchange of the partially stripped, low β (= v/c), very heavy ions with the residual gas molecules, ultra high vacuum of 10 -11 Torr is required for the 200 m Booster ring. An average pressure of mid 10 -11 Torr has been achieved and maintained after initial insitu bakes and commissioning. In this paper we describe: (1) design and layout of the vacuum systems; (2) material selection and vacuum processing; (3) PC/PLC based bakeout system; (4) operation of vacuum instrumentation over long cable length; (5) results of bakeout and evaluation; and (6) experience gained during construction and commissioning

  16. On the Anisotropy in the Arrival Directions of Ultra-high-energy Cosmic Rays

    Science.gov (United States)

    Wittkowski, David; Kampert, Karl-Heinz

    2018-02-01

    We present results of elaborate four-dimensional simulations of the propagation of ultra-high-energy cosmic rays (UHECRs), which are based on a realistic astrophysical scenario. The distribution of the arrival directions of the UHECRs is found to have a pronounced dipolar anisotropy and rather weak higher-order contributions to the angular power spectrum. This finding agrees well with the recent observation of a dipolar anisotropy for UHECRs with arrival energies above 8 {EeV} by the Pierre Auger Observatory and constitutes an important prediction for other energy ranges and higher-order angular contributions for which sufficient experimental data are not yet available. Since our astrophysical scenario enables simulations that are completely consistent with the available data, this scenario will be a very useful basis for related future studies.

  17. Ballistic behavior of ultra-high molecular weight polyethylene composite: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L. dos Santos; Nascimento, Lucio F.C.; Suarez, Joao C. Miguez; lucio2002bol.com.br

    2003-01-01

    Since World War II, textile composites have been used as ballistic armor. Ultra-high molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials. As they have been developed and commercialized only recently, there is not enough information about the effect of environmental agents in the ballistic performance of UHMWPE composites. In the present work, was evaluated the ballistic behavior of composite plates manufactured with UHMWPE fibers after exposure to gamma radiation. The ballistic tests results were related to the macromolecular alterations induced by the radiation through mechanical (hardness, impact and flexure) and physicochemical (Ftir/Mir. DSC and TGA) testing. It was observed that irradiation induces changes in the UHMWPE, degrading the ballistic performance of the composite. These results are presented and discussed. (author)

  18. Ultra-High Density Electron Beams for Beam Radiation and Beam Plasma Interaction

    CERN Document Server

    Anderson, Scott; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Jacob, Jeremy S; Lim, Jae; Musumeci, Pietro; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    Current and future applications of high brightness electron beams, which include advanced accelerators such as the plasma wake-field accelerator (PWFA) and beam-radiation interactions such as inverse-Compton scattering (ICS), require both transverse and longitudinal beam sizes on the order of tens of microns. Ultra-high density beams may be produced at moderate energy (50 MeV) by compression and subsequent strong focusing of low emittance, photoinjector sources. We describe the implementation of this method used at LLNL's PLEIADES ICS x-ray source in which the photoinjector-generated beam has been compressed to 300 fsec duration using the velocity bunching technique and focused to 20 μm rms size using an extremely high gradient, permanent magnet quadrupole (PMQ) focusing system.

  19. Surface free energy of ultra-high molecular weight polyethylene modified by electron and gamma irradiation

    International Nuclear Information System (INIS)

    Abdul-Kader, A.M.; Turos, A.; Radwan, R.M.; Kelany, A.M.

    2009-01-01

    Surface free energy of biocompatible polymers is important factor which affects the surface properties such as wetting, adhesion and biocompatibility. In the present work, the change in the surface free energy of ultra-high molecular weight polyethylene (UHMWPE) samples, which is produced by electron beam and gamma ray irradiation were, investigated. Mechanism of the changes in surface free energy induced by irradiations of doses ranging from 25 to 500 kGy was studied. FTIR technique was applied for sample analysis. Contact angle measurements showed that wettability and surface free energy of samples have increased with increasing the irradiation dose, where the values of droplet contact angle of the samples decrease gradually with increasing the radiation dose. The increase in the wettability and surface free energy of the irradiated samples are attributed to formation of hydrophilic groups on the polymer surface by the oxidation, which apparently occurs by exposure of irradiated samples to the air.

  20. Ultra-high-energy cosmic ray acceleration in engine-driven relativistic supernovae.

    Science.gov (United States)

    Chakraborti, S; Ray, A; Soderberg, A M; Loeb, A; Chandra, P

    2011-02-01

    The origin of ultra-high-energy cosmic rays (UHECRs) remains an enigma. They offer a window to new physics, including tests of physical laws at energies unattainable by terrestrial accelerators. They must be accelerated locally, otherwise, background radiations would severely suppress the flux of protons and nuclei, at energies above the Greisen-Zatsepin-Kuzmin (GZK) limit. Nearby, gamma ray bursts (GRBs), hypernovae, active galactic nuclei and their flares have all been suggested and debated as possible sources. A local sub-population of type Ibc supernovae (SNe) with mildly relativistic outflows have been detected as sub-energetic GRBs, X-ray flashes and recently as radio afterglows without detected GRB counterparts. Here, we measure the size-magnetic field evolution, baryon loading and energetics, using the observed radio spectra of SN 2009bb. We place such engine-driven SNe above the Hillas line and establish that they can readily explain the post-GZK UHECRs.

  1. Determining the Environmental Benefits of Ultra High Performance Concrete as a Bridge Construction Material

    Science.gov (United States)

    Lande Larsen, Ingrid; Granseth Aasbakken, Ida; O'Born, Reyn; Vertes, Katalin; Terje Thorstensen, Rein

    2017-10-01

    Ultra High Performance Concrete (UHPC) is a material that is attracting attention in the construction industry due to the high mechanical strength and durability, leading to structures having low maintenance requirements. The production of UHPC, however, has generally higher environmental impact than normal strength concrete due to the increased demand of cement required in the concrete mix. What is still not sufficiently investigated, is if the longer lifetime, slimmer construction and lower maintenance requirements lead to a net environmental benefit compared to standard concrete bridge design. This study utilizes life cycle assessment (LCA) to determine the lifetime impacts of two comparable highway crossing footbridges spanning 40 meters, designed respectively with UHPC and normal strength concrete. The results of the study show that UHPC is an effective material for reducing lifetime emissions from construction and maintenance of long lasting infrastructure, as the UHPC design outperforms the normal strength concrete bridge in most impact categories.

  2. The influence of the observatory latitude on the study of ultra high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Rita C. dos [Departamento de Engenharias e Exatas, Universidade Federal do Paraná (UFPR), Pioneiro, 2153, Palotina, PR, 85950-000 Brazil (Brazil); De Souza, Vitor [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, São Carlos, SP, 13560-970 Brazil (Brazil); De Almeida, Rogerio M. [EEIMVR, Universidade Federal Fluminense, Volta Redonda, RJ (Brazil); Santos, Edivaldo M., E-mail: ritacassia@ufpr.br, E-mail: vitor@ifsc.usp.br, E-mail: rmenezes@id.uff.br, E-mail: emoura@if.usp.br [Instituto de Física, Universidade de São Paulo, Rua do Matão trav. R 187, São Paulo, 05508-090 Brazil (Brazil)

    2017-07-01

    Recent precision measurements of the Ultra High Energy Cosmic Rays (UHECR) arrival directions, spectrum and parameters related to the mass of the primary particle have been done by the HiRes, Pierre Auger and Telescope Array (TA) Observatories. In this paper, distributions of arrival directions of events in the nearby Universe are assumed to correlate with sources in the 2MASS Redshift Survey (2MRS), IRAS 1.2 Jy Survey, Palermo Swift-BAT and Swift-BAT catalogs, and the effect of the latitude of the observatory on the measurement of the energy spectrum and on the capability of measuring anisotropy is studied. The differences between given latitudes on the northern and southern hemispheres are quantified. It is shown that the latitude of the observatory: a) has an influence on the total flux measured and b) imposes an important limitation on the capability of measuring an anisotropic sky.

  3. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, R.; Othman, M. Abou Bakr [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Allen, C. [University of Kansas, Lawrence, KS 66045 (United States); Beard, L. [Purdue University, West Lafayette, IN 47907 (United States); Belz, J. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Besson, D. [University of Kansas, Lawrence, KS 66045 (United States); Moscow Engineering and Physics Institute, 31 Kashirskaya Shosse, Moscow 115409 (Russian Federation); Byrne, M.; Farhang-Boroujeny, B.; Gardner, A. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Gillman, W.H. [Gillman and Associates, Salt Lake City, UT 84106 (United States); Hanlon, W. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Hanson, J. [University of Kansas, Lawrence, KS 66045 (United States); Jayanthmurthy, C. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Kunwar, S. [University of Kansas, Lawrence, KS 66045 (United States); Larson, S.L. [Utah State University, Logan, Utah 84322 (United States); Myers, I., E-mail: isaac@cosmic.utah.edu [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Prohira, S.; Ratzlaff, K. [University of Kansas, Lawrence, KS 66045 (United States); Sokolsky, P. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Takai, H. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-12-11

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  4. A Novel Technique for Design of Ultra High Tunable Electrostatic Parallel Plate RF MEMS Variable Capacitor

    Science.gov (United States)

    Baghelani, Masoud; Ghavifekr, Habib Badri

    2017-12-01

    This paper introduces a novel method for designing of low actuation voltage, high tuning ratio electrostatic parallel plate RF MEMS variable capacitors. It is feasible to achieve ultra-high tuning ratios way beyond 1.5:1 barrier, imposed by pull-in effect, by the proposed method. The proposed method is based on spring strengthening of the structure just before the unstable region. Spring strengthening could be realized by embedding some dimples on the spring arms with the precise height. These dimples shorten the spring length when achieved to the substrate. By the proposed method, as high tuning ratios as 7.5:1 is attainable by only considering four dimple sets. The required actuation voltage for this high tuning ratio is 14.33 V which is simply achievable on-chip by charge pump circuits. Brownian noise effect is also discussed and mechanical natural frequency of the structure is calculated.

  5. Radio-frequency coils for ultra-high field magnetic resonance.

    Science.gov (United States)

    Ipek, Özlem

    2017-07-15

    Radiofrequency (RF) coils are key components of magnetic resonance imaging (MRI) systems. The primary purpose of this review is to provide a basic theory of RF coil designs and their characterization by bench measurements, electromagnetic field simulations and MR measurements. With the continuing increase of magnetic field strength in MRI instruments, the RF wavelength in the subject under study becomes comparable to or smaller in size than the anatomical dimensions of the tissue under study, which amplifies the signal inhomogeneity. Also, RF energy increases quadratically with the Larmor frequency, which leads to increased heat deposition in the subject, especially at ultra-high field. Elegant RF coil designs are explored here to address these challenges. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Pressure measurements in the AGS Booster ultra-high vacuum system

    International Nuclear Information System (INIS)

    Gabusi, J.; Geller, J.; Hseuh, H.C.; Mapes, M.; Stattel, P.

    1992-01-01

    An average pressure of mid 10 -11 Torr has been achieved and maintained in the AGS Booster ring vacuum system during its first year of operation. This ultra-high vacuum system is monitored through remote controlled Bayard-Alpert Gauges (BAGs). The characteristics of the pressure measurements with BAGs over the long cable lengths (up to 200 m) and under various accelerator operating conditions will be described. Two types of noise in the pressure readouts have been identified; the electromagnetic interference (EMI) associated with the acceleration cycles of the Booster and the environment noise associated with the temperature of the collector cables. The magnitude of the noise pickup depends on the routing of the collector cables and reaches the equivalent pressure of low 10 -9 Torr

  7. The physical and chemical properties of plasma treated ultra-high-molecular-weight polyethylene fibers

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Teodoru, Steluta; Hansen, Charles M.

    2011-01-01

    polymer assures maximum physical adhesion to transfer loads uniformly. Plasma treatment of ultra-high-molecular-weight polyethylene (UHMWPE) fibers is shown to significantly increase the amount of oxygen in the surface. There are two distinct types of surfaces in both the plasma treated and the untreated......A uniform and smooth transfer of stresses across the polymer matrix/fiber interface is enhanced when adhesion between the matrix and fiber surface is optimized. In the absence of covalent bonds matching the Hansen solubility (cohesion) parameters (HSP) of the fiber surface with the HSP of a matrix...... UHMWPE fibers. One type is typical of polyethylene (PE) polymers while the other is characteristic of the oxygenated surface at much higher values of HSP. The oxygenated surface of the plasma treated fibers has the HSP δD, δP, and δH equal to 16.5, 15.3, and 8.2, compared to the pure PE surface with HSP...

  8. Calibration of ultra-high frequency (UHF) partial discharge sensors using FDTD method

    Science.gov (United States)

    Ishak, Asnor Mazuan; Ishak, Mohd Taufiq

    2018-02-01

    Ultra-high frequency (UHF) partial discharge sensors are widely used for conditioning monitoring and defect location in insulation system of high voltage equipment. Designing sensors for specific applications often requires an iterative process of manufacturing, testing and mechanical modifications. This paper demonstrates the use of finite-difference time-domain (FDTD) technique as a tool to predict the frequency response of UHF PD sensors. Using this approach, the design process can be simplified and parametric studies can be conducted in order to assess the influence of component dimensions and material properties on the sensor response. The modelling approach is validated using gigahertz transverse electromagnetic (GTEM) calibration system. The use of a transient excitation source is particularly suitable for modeling using FDTD, which is able to simulate the step response output voltage of the sensor from which the frequency response is obtained using the same post-processing applied to the physical measurement.

  9. Shape Memory Alloy connectors for Ultra High Vacuum applications: a breakthrough for accelerator technologies

    CERN Document Server

    AUTHOR|(CDS)2091326; Garion, Cedric

    Beam-pipe coupling in particle accelerators is nowadays provided by metallic flanges that are tightly connected by several screws or heavy collars. Their installation and dismounting in radioactive areas contribute to the radiation doses received by the technical personnel. Owing to the increased proton-beam intensity and luminosity of the future High-Luminosity LHC (HL-LHC), radioactivity in some specific zones will be significantly higher than in the present LHC; the presence of the technical staff in these areas will be strictly controlled and minimized. Remote interventions are being considered, too. Shape Memory Alloys (SMAs) offer a unique possibility to generate tight connections and fast clamping/unclamping by remotely changing the temperature of the junction unit. In fact, SMAs exhibit unique strain and stress recovery capabilities which are related to reversible phase transition mechanisms, induced thermally or mechanically. In this PhD work, a novel Ultra-High Vacuum (UHV) coupling system based on ...

  10. Searches for ultra-high energy neutrinos at the Pierre Auger observatory

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muñiz, Jaime [Dept. Física de Partículas & Instituto Galego de Física de Altas Enerxías, Univ. de Santiago de Compostela (Spain); Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe (Argentina)

    2015-07-15

    Neutrinos in the sub-EeV energy range and above can be detected and identified with the Surface Detector array of the Pierre Auger Observatory. The identification can be efficiently done for neutrinos of all flavours interacting in the atmosphere, typically above 60° (downward-going), as well as for “Earth-skimming” neutrino interactions in the case of tau neutrinos (upward-going). Three sets of identification criteria were designed to search for downward-going neutrinos in the zenith angle bins 60° − 75° and 75° − 90° as well as for upward-going neutrinos. The three searches have been recently combined, providing, in the absence of candidates in data from 1 January 04 until 31 December 12, a stringent limit to the diffuse flux of ultra-high energy neutrinos.

  11. Bursts of the Crab Nebula gamma-ray emission at high and ultra-high energies

    Directory of Open Access Journals (Sweden)

    Lidvansky A.S.

    2017-01-01

    Full Text Available Characteristics of the flares of gamma rays detected from the Crab Nebula by the AGILE and Fermi-LAT satellite instruments are compared with those of a gamma ray burst recorded by several air shower arrays on February 23, 1989 and with one recent observation made by the ARGO-YBJ array. It is demonstrated that though pulsar-periodicity and energy spectra of emissions at 100 MeV (satellite gamma ray telescopes and 100 TeV (EAS arrays are different, their time structures seem to be similar. Moreover, maybe the difference between “flares” and “waves” recently found in the Crab Nebula emission by the AGILE team also exists at ultra-high energies.

  12. Selection and evaluation of an ultra high vacuum gate valve for Isabelle beam line vacuum system

    International Nuclear Information System (INIS)

    Foerster, C.L.; McCafferty, D.

    1980-01-01

    A minimum of eighty-four (84) Ultra High Vacuum Gate Valves will be utilized in ISABELLE to protect proton beam lines from catastrophic vacuum failure and to provide sector isolation for maintenance requirements. The valve to be selected must function at less than 1 x 10 -11 Torr pressure and be bakeable to 300 0 C in its open or closed position. In the open position, the valve must have an RF shield to make the beam line walls appear continuous. Several proposed designs were built and evaluated. The evaluation consisted mainly of leak testing, life tests, thermal cycling, mass spectrometer analysis, and 10 -12 Torr operation. Problems with initial design and fabrication were resolved. Special requirements for design and construction were developed. This paper describes the tests on two final prototypes which appear to be the best candidates for ISABELLE operation

  13. Ultra high energy cosmic rays and possible signature of black strings

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Rita C. dos; Coimbra-Araújo, Carlos H. [Departamento de Engenharias e Exatas, Universidade Federal do Paraná (UFPR), Pioneiro, 2153, 85950-000 Palotina, PR, Brazil. (Brazil); Rocha, Roldão da [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-580, Santo André-SP, Brazil. (Brazil); De Souza, Vitor, E-mail: ritacassia@ufpr.br, E-mail: carlos.coimbra@ufpr.br, E-mail: roldao.rocha@ufabc.edu.br, E-mail: vitor@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense 400, São Carlos (Brazil)

    2016-03-01

    Ultra high energy cosmic rays (UHECRs) probably originate in extreme conditions in which extra dimension effects might be important. In this paper we calculate the correction in black hole accretion mechanisms due to extra dimension effects in the static and rotating cases. A parametrization of the external Kerr horizons in both cases is presented and analysed. We use previous calculations of upper limits on the UHECR flux to set limits on the UHECR production efficiency of nine sources. The upper limit on the UHECR luminosity calculation is based on GeV-TeV gamma-ray measurements. The total luminosity due to the accretion mechanism is compared to the upper limit on UHECRs. The dependence of the UHECR production efficiency upper limit on black hole mass is also presented and discussed.

  14. Application of Ultra High Pressure Cavitation Peening to Prevent PWSCC on Primary Plant Components

    Energy Technology Data Exchange (ETDEWEB)

    Poling, G.R.

    2015-07-01

    Primary Water Stress Corrosion Cracking (PWSCC) on Alloy 600/82/182 susceptible materials can lead to increased costs for maintenance and repair/replacement activities on nuclear power plant primary components. A process called Ultra High Pressure (UHP) cavitation peening can be safely and cost effectively applied to the susceptible materials to generate compressive stresses on the surface and prevent PWSCC initiation. AREVA has developed the tooling systems to apply the UHP cavitation peening process on reactor vessel head penetration nozzles, bottom mounted nozzles and primary nozzles. Applying the UHP cavitation peening process before PWSCC initiation will prevent future repairs/replacements, reduce maintenance costs, and provide more effective on-time for the reactor. (Author)

  15. Granulites and charnockites of the Gruf Complex: Evidence for Permian ultra-high temperature metamorphism in the Central Alps

    Science.gov (United States)

    Galli, A.; Le Bayon, B.; Schmidt, M. W.; Burg, J.-P.; Caddick, M. J.; Reusser, E.

    2011-05-01

    We present a detailed field and petrological study of charnockites and ultra-high temperature (UHT) granulites from the Gruf Complex, eastern Central Alps. Charnockites occur as up to 0.5 km wide and 8 km long, internally boudinaged, opx-bearing sheet-like bodies within the regionally dominant migmatitic biotite-orthogneisses. Granulites occur as garnet-orthopyroxene-biotite-alkali feldspar-bearing schlieren (± sapphirine, sillimanite, cordierite, corundum, spinel, plagioclase, and quartz) within charnockites and as residual enclaves both in the charnockites and the migmatitic orthogneisses. Thermobarometric calculations, P-T pseudosections and orthopyroxene Al content, show that both charnockites and granulites equilibrated at metamorphic peak conditions of T = 920-940 °C and P = 8.5-9.5 kbar. Peak assemblages were subsequently overprinted by intergrowth, symplectite and corona textures involving orthopyroxene, sapphirine, cordierite and spinel at T = 720-740 °C and P = 7-7.5 kbar. We suggest that granulites and charnockites are lower crustal relicts preserved in the migmatitic orthogneisses. Garnet diffusion modelling shows that metamorphic garnet-opx ± sapphirine ± sillimanite peak assemblages and post-peak reaction textures always involving cordierite developed during two separate metamorphic cycles. Peak assemblages reflect UHT metamorphism related to post-Varican Permian extension, but post-peak coronae and symplectites formed during the mid-Tertiary, upper amphibolite facies, Alpine regional metamorphism. Fluid-absent partial melting of pelitic and psammitic sediments during the Permian UHT event lead to the formation of charnockitic magmas and granulitic residues. Intense melt loss and thorough dehydration of the granulites (although retaining biotite) favoured the partial preservation of peak mineral assemblages during Alpine metamorphism.

  16. Effects of Ultra-High Pressure Homogenization and Hydrocolloids on Physicochemical and Storage Properties of Soymilk.

    Science.gov (United States)

    Mukherjee, Dipaloke; Chang, Sam K C; Zhang, Yin; Mukherjee, Soma

    2017-10-01

    This study investigated the efficacy of ultra-high pressure homogenization (UHPH) in the presence or absence of added hydrocolloids for enhancing a range of physic-chemical properties of soymilk-which are important for extending shelf-life. Soymilk preparations containing different concentrations (0.01%, 0.02%, and 0.05%, w/v) of 2 different hydrocolloids (κ-carrageenan, κ-C, and gum Arabic, GA) were subjected to 3 different levels of UHPH (70, 140, and 210 MPa) and stored in sterilized containers at 4 °C. Emulsion properties of the soymilk preparations were analyzed over a period of 5 weeks. The results showed that soymilk with 0.05% κ-C had markedly improved storage properties, evident by significantly (P storage. This trend continued throughout the entire period of study. The soymilk containing 0.05% κ-C also exhibited significantly (P size at the initial week compared to the latter ones and maintained the trend throughout the 3rd week of storage. The study can potentially lead to a considerable economic benefit to the soymilk industry by providing valuable information to extend shelf-life of soymilk. Soymilk is one of the most important soy products, and as a beverage, it is rapidly gaining popularity in the Western markets. However, it tends to form precipitates during storage to affect quality of the product. This study used a 2-prong approach of ultra-high pressure homogenization and addition of hydrocolloids to prevent aggregation of soymilk particles and the retention of antioxidant capacity. The results showed enhancement of the quality of soymilk during storage. The techniques developed can be adopted by the food industry. © 2017 Institute of Food Technologists®.

  17. Improving distillation method and device of tritiated water analysis for ultra high decontamination efficiency.

    Science.gov (United States)

    Fang, Hsin-Fa; Wang, Chu-Fang; Lin, Chien-Kung

    2015-12-01

    It is important that monitoring environmental tritiated water for understanding the contamination dispersion of the nuclear facilities. Tritium is a pure beta radionuclide which is usually measured by Liquid Scintillation Counting (LSC). The average energy of tritum beta is only 5.658 keV that makes the LSC counting of tritium easily be interfered by the beta emitted by other radionuclides. Environmental tritiated water samples usually need to be decontaminated by distillation for reducing the interference. After Fukushima Nucleaer Accident, the highest gross beta concentration of groundwater samples obtained around Fukushima Daiichi Nuclear Power Station is over 1,000,000 Bq/l. There is a need for a distillation with ultra-high decontamination efficiency for environmental tritiated water analysis. This study is intended to improve the heating temperature control for better sub-boiling distillation control and modify the height of the container of the air cooling distillation device for better fractional distillation effect. The DF of Cs-137 of the distillation may reach 450,000 which is far better than the prior study. The average loss rate of the improved method and device is about 2.6% which is better than the bias value listed in the ASTM D4107-08. It is proven that the modified air cooling distillation device can provide an easy-handling, water-saving, low cost and effective way of purifying water samples for higher beta radionuclides contaminated water samples which need ultra-high decontamination treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Experimental Demonstration of the Optimized Electrical Probe Memory for Ultra-High Density Recording.

    Science.gov (United States)

    Wang, Lei; Gong, Sidi; Yang, Cihui; Wen, Jing

    2017-01-01

    A theoretical model has been previously proposed to optimize the structure of the electrical probe memory system, whereby the optimal thickness and resistivity of DLC capping layer and TiN under layer are predicted to be 2 nm, 0.01 Ωm, and 40 nm, 2×10-7 Ωm,respectively However, there is no experimental evidence to show that such a media stack can be fabricated in reality by the time of writing and few patents regarding this intriguing topic have been reviewed and cited. In order to realize this optimized design experimentally, the thickness dependent resistivity for both DLC and TiN film are assessed, from which it is not possible to obtain a media stack with exactly the same properties as the optimized design. Therefore, the previously proposed architecture is re-optimized using the measured properties values, and the capability of using the modified memory architecture to provide ultra-high density, high data rate, and low energy consumption is demonstrated. The results show that it is difficult to experimentally attain an electrical probe memory with exactly the same properties values as the optimized counterpart. An optimized electrical probe memory structure that includes a DLC capping layer and TiN under layer was previously proposed according to a parametric approach, while the practicality of realizing such a media stack experimentally has not bee investigated. In order to assess its practical feasibility, we first measured the electrical resistivities of DLC and TiN films for different thicknesses. In this case, for the purpose of optimizing the memory system with appropriate, but more physically realistic properties values, we re-designed the architecture using the measured properties, and the modified system is able to provide ultra-high density, large data rate, and low energy consumption. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Local damage to Ultra High Performance Concrete structures caused by an impact of aircraft engine missiles

    International Nuclear Information System (INIS)

    Riedel, Werner; Noeldgen, Markus; Strassburger, Elmar; Thoma, Klaus; Fehling, Ekkehard

    2010-01-01

    Research highlights: → Experimental series on UHPC panels subjected to aircraft engine impact. → Improved ballistic limit of fiber reinforced UHPC in comparison to conventional R/C. → Detailed investigation of failure mechanisms of fiber reinforced UHPC panel. - Abstract: The impact of an aircraft engine missile causes high stresses, deformations and a severe local damage to conventional reinforced concrete. As a consequence the design of R/C protective structural elements results in components with rather large dimensions. Fiber reinforced Ultra High Performance Concrete (UHPC) is a concrete based material which combines ultra high strength, high packing density and an improved ductility with a significantly increased energy dissipation capacity due to the addition of fiber reinforcement. With those attributes the material is potentially suitable for improved protective structural elements with a reduced need for material resources. The presented paper reports on an experimental series of scaled aircraft engine impact tests with reinforced UHPC panels. The investigations are focused on the material behavior and the damage intensity in comparison to conventional concrete. The fundamental work of is taken as reference for the evaluation of the results. The impactor model of a Phantom F4 GE-J79 engine developed and validated by Sugano et al. is used as defined in the original work. In order to achieve best comparability, the experimental configuration and method are adapted for the UHPC experiments. With 'penetration', 'scabbing' and 'perforation' all relevant damage modes defined in are investigated so that a full set of results are provided for a representative UHPC structural configuration.

  20. Efficient Ultra-High Speed Communication with Simultaneous Phase and Amplitude Regenerative Sampling (SPARS)

    Science.gov (United States)

    Carlowitz, Christian; Girg, Thomas; Ghaleb, Hatem; Du, Xuan-Quang

    2017-09-01

    For ultra-high speed communication systems at high center frequencies above 100 GHz, we propose a disruptive change in system architecture to address major issues regarding amplifier chains with a large number of amplifier stages. They cause a high noise figure and high power consumption when operating close to the frequency limits of the underlying semiconductor technologies. Instead of scaling a classic homodyne transceiver system, we employ repeated amplification in single-stage amplifiers through positive feedback as well as synthesizer-free self-mixing demodulation at the receiver to simplify the system architecture notably. Since the amplitude and phase information for the emerging oscillation is defined by the input signal and the oscillator is only turned on for a very short time, it can be left unstabilized and thus come without a PLL. As soon as gain is no longer the most prominent issue, relaxed requirements for all the other major components allow reconsidering their implementation concepts to achieve further improvements compared to classic systems. This paper provides the first comprehensive overview of all major design aspects that need to be addressed upon realizing a SPARS-based transceiver. At system level, we show how to achieve high data rates and a noise performance comparable to classic systems, backed by scaled demonstrator experiments. Regarding the transmitter, design considerations for efficient quadrature modulation are discussed. For the frontend components that replace PA and LNA amplifier chains, implementation techniques for regenerative sampling circuits based on super-regenerative oscillators are presented. Finally, an analog-to-digital converter with outstanding performance and complete interfaces both to the analog baseband as well as to the digital side completes the set of building blocks for efficient ultra-high speed communication.

  1. Optical design of a 4-off-axis-unit Cassegrain ultra-high concentrator photovoltaics module with a central receiver.

    Science.gov (United States)

    Ferrer-Rodríguez, Juan P; Fernández, Eduardo F; Almonacid, Florencia; Pérez-Higueras, Pedro

    2016-05-01

    Ultra-high concentrator photovoltaics (UHCPV), with concentrations higher than 1000 suns, have been pointed out by different authors as having great potential for being a cost-effective PV technology. This Letter presents a UHCPV Cassegrain-based optical design in which the sunrays are concentrated and sent from four different and independent paraboloid-hyperboloid pairs optical units onto a single central receiver. The optical design proposed has the main advantage of the achievement of ultra-high concentration ratios using relative small mirrors with similar performance values of efficiency, acceptance angle, and irradiance uniformity to other designs.

  2. Rapid and Deep Proteomes by Faster Sequencing on a Benchtop Quadrupole Ultra-High-Field Orbitrap Mass Spectrometer

    DEFF Research Database (Denmark)

    Kelstrup, Christian D; Jersie-Christensen, Rosa R; Batth, Tanveer Singh

    2014-01-01

    Shotgun proteomics is a powerful technology for global analysis of proteins and their post-translational modifications. Here, we investigate faster sequencing speed of the latest Q Exactive HF mass spectrometer, which features an ultra-high-field Orbitrap mass analyzer. Proteome coverage is evalu......Shotgun proteomics is a powerful technology for global analysis of proteins and their post-translational modifications. Here, we investigate faster sequencing speed of the latest Q Exactive HF mass spectrometer, which features an ultra-high-field Orbitrap mass analyzer. Proteome coverage...

  3. Ultra high risk of psychosis on committal to a young offender prison: an unrecognised opportunity for early intervention.

    LENUS (Irish Health Repository)

    Flynn, Darran

    2012-08-01

    The ultra high risk state for psychosis has not been studied in young offender populations. Prison populations have higher rates of psychiatric morbidity and substance use disorders. Due to the age profile of young offenders one would expect to find a high prevalence of individuals with pre-psychotic or ultra-high risk mental states for psychosis (UHR). Accordingly young offender institutions offer an opportunity for early interventions which could result in improved long term mental health, social and legal outcomes. In the course of establishing a mental health in-reach service into Ireland\\'s only young offender prison, we sought to estimate unmet mental health needs.

  4. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    -fluid interactions in these high-speed flows special high performance techniques are required. The present work is an investigation into the applicability of magnified digital in-line holography with ultra-high-speed recording for the study of three-dimensional supersonic particle-laden flows. An optical setup...... for magnified digital in-line holography is created, using an ultra-high-speed camera capable of frame rates of up to 1.0MHz. To test the new technique an axisymmetric supersonic underexpanded particle-laden jet is investigated. The results show that the new technique allows for the acquisition of time resolved...

  5. Pulmonary leukemic involvement: high-resolution computed tomography evaluation; Comprometimento pulmonar nas leucemias: avaliacao por tomografia computadorizada de alta resolucao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ana Paola de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Medicina. Programa de Pos-graduacao em Radiologia; Marchiori, Edson [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Radiologia]. E-mail: edmarchiori@bol.com.br; Souza Junior, Arthur Soares [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Radiologia

    2004-12-01

    Objective: To evaluate the role of high-resolution computed tomography (HRCT) in patients with leukemia and pulmonary symptoms, to establish the main patterns and to correlate them with the etiology. Materials and Methods: This is a retrospective study of the HRCT of 15 patients with leukemia and pulmonary symptoms. The examinations were performed using a spatial high-resolution protocol and were analyzed by two independent radiologists. Results: The main HRCT patterns found were ground-glass opacity (n=11), consolidation (n=9), airspace nodules (n=3), septal thickening (n=3), tree-in-bud pattern (n=3), and pleural effusion (n=3). Pulmonary infection was the most common finding seen in 12 patients: bacterial pneumonia (n=6), fungal infection (n = 4), pulmonary tuberculosis (n=1) and viral infection (n=1). Leukemic pleural infiltration (n=1), lymphoma (n=1) and pulmonary hemorrhage (n=1) were detected in the other three patients. Conclusion: HRCT is an important tool that may suggest the cause of lung involvement, its extension and in some cases to guide invasive procedures in patients with leukemia. (author)

  6. Assessment of independent risk factors of conversion into psychosis in the ultra-high risk state group of patients

    Directory of Open Access Journals (Sweden)

    Marta Gawłowska

    2010-12-01

    Full Text Available Background: The aim of this study was the independent psychosis risk factors assessment in a group of subjects fulfilling the criteria of at risk mental state, under specialist outpatient psychiatric care. Participants: Seventy-one patients – 33 women and 38 men, were involved into this study, aged on average 17.34, all under psychiatric care. The patients were recruited into the study in the sequence of their outpatient clinic admission. The criterion to be included into the study was the diagnosis of ultra-high risk state (UHRS – defined according to the Australian research group principles. Subsequently, the patients were divided into subgroups according to the clinical features of their mental state. Method: The author’s demographic questionnaire was applied in the study. Information regarding the family history of psychosis was obtained from patients and/or their relatives or carers. The patients’ mental state was assessed monthly – according to the presence of psychotic symptoms, change of their incidence and duration, presence of depressive symptoms or aggressive behaviour (measured by a three-level scale. On the basis of the obtained information, we evaluated: 1 conversion into psychosis time – measured from diagnosing of UHRS to the development of full-symptom psychosis, 2 therapeutic methods used (psychotherapy, pharmacotherapy or both, 3 use of psychoactive substances after being diagnosed with UHRS, 4 presence of serious life stressors (the patients’ subjective estimation – during the six-month period preceding the conversion into psychosis. Results: 1 In the UHRS group of patients, staying under professional outpatient psychiatric care, the use of marijuana was an independent risk factor of conversion into psychosis. 2 In the investigated group of patients with at risk mental state we did not find any correlation between modulating factors (including: therapeutic methods used, depressive symptoms, aggression or

  7. Electrophoretic characterization of protein interactions suggesting limited feasibility of accelerated shelf-life testing of ultra-high temperature milk.

    Science.gov (United States)

    Grewal, Manpreet Kaur; Chandrapala, Jayani; Donkor, Osaana; Apostolopoulos, Vasso; Vasiljevic, Todor

    2017-01-01

    Accelerated shelf-life testing is applied to a variety of products to estimate keeping quality over a short period of time. The industry has not been successful in applying this approach to ultra-high temperature (UHT) milk because of chemical and physical changes in the milk proteins that take place during processing and storage. We investigated these protein changes, applying accelerated shelf-life principles to UHT milk samples with different fat levels and using native- and sodium dodecyl sulfate-PAGE. Samples of UHT skim and whole milk were stored at 20, 30, 40, and 50°C for 28d. Irrespective of fat content, UHT treatment had a similar effect on the electrophoretic patterns of milk proteins. At the start of testing, proteins were bonded mainly through disulfide and noncovalent interactions. However, storage at and above 30°C enhanced protein aggregation via covalent interactions. The extent of aggregation appeared to be influenced by fat content; whole milk contained more fat than skim milk, implying aggregation via melted or oxidized fat, or both. Based on reduction in loss in absolute quantity of individual proteins, covalent crosslinking in whole milk was facilitated mainly by products of lipid oxidation and increased access to caseins for crosslinking reactions. Maillard and dehydroalanine products were the main contributors involved in protein changes in skim milk. Protein crosslinking appeared to follow a different pathway at higher temperatures (≥40°C) than at lower temperatures, making it very difficult to extrapolate these changes to protein interactions at lower temperatures. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Wideband spectrum analysis of ultra-high frequency radio-wave signals due to advanced one-phonon non-collinear anomalous light scattering.

    Science.gov (United States)

    Shcherbakov, Alexandre S; Arellanes, Adan Omar

    2017-04-20

    We present a principally new acousto-optical cell providing an advanced wideband spectrum analysis of ultra-high frequency radio-wave signals. For the first time, we apply a recently developed approach with the tilt angle to a one-phonon non-collinear anomalous light scattering. In contrast to earlier cases, now one can exploit a regime with the fixed optical wavelength for processing a great number of acoustic frequencies simultaneously in the linear regime. The chosen rutile-crystal combines a moderate acoustic velocity with low acoustic attenuation and allows us wide-band data processing within GHz-frequency acoustic waves. We have created and experimentally tested a 6-cm aperture rutile-made acousto-optical cell providing the central frequency 2.0 GHz, frequency bandwidth ∼0.52  GHz with the frequency resolution about 68.3 kHz, and ∼7620 resolvable spots. A similar cell permits designing an advanced ultra-high-frequency arm within a recently developed multi-band radio-wave acousto-optical spectrometer for astrophysical studies. This spectrometer is intended to operate with a few parallel optical arms for processing the multi-frequency data flows within astrophysical observations. Keeping all the instrument's advantages of the previous schematic arrangement, now one can create the highest-frequency arm using the developed rutile-based acousto-optical cell. It permits optimizing the performances inherent in that arm via regulation of both the central frequency and the frequency bandwidth for spectrum analysis.

  9. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers.

    Directory of Open Access Journals (Sweden)

    Huihui Yu

    Full Text Available Huge efforts have been invested in the last two decades to dissect the genetic bases of complex traits including yields of many crop plants, through quantitative trait locus (QTL analyses. However, almost all the studies were based on linkage maps constructed using low-throughput molecular markers, e.g. restriction fragment length polymorphisms (RFLPs and simple sequence repeats (SSRs, thus are mostly of low density and not able to provide precise and complete information about the numbers and locations of the genes or QTLs controlling the traits. In this study, we constructed an ultra-high density genetic map based on high quality single nucleotide polymorphisms (SNPs from low-coverage sequences of a recombinant inbred line (RIL population of rice, generated using new sequencing technology. The quality of the map was assessed by validating the positions of several cloned genes including GS3 and GW5/qSW5, two major QTLs for grain length and grain width respectively, and OsC1, a qualitative trait locus for pigmentation. In all the cases the loci could be precisely resolved to the bins where the genes are located, indicating high quality and accuracy of the map. The SNP map was used to perform QTL analysis for yield and three yield-component traits, number of tillers per plant, number of grains per panicle and grain weight, using data from field trials conducted over years, in comparison to QTL mapping based on RFLPs/SSRs. The SNP map detected more QTLs especially for grain weight, with precise map locations, demonstrating advantages in detecting power and resolution relative to the RFLP/SSR map. Thus this study provided an example for ultra-high density map construction using sequencing technology. Moreover, the results obtained are helpful for understanding the genetic bases of the yield traits and for fine mapping and cloning of QTLs.

  10. A fast and sensitive method for the separation of carotenoids using ultra-high performance supercritical fluid chromatography-mass spectrometry.

    Science.gov (United States)

    Jumaah, Firas; Plaza, Merichel; Abrahamsson, Victor; Turner, Charlotta; Sandahl, Margareta

    2016-08-01

    In this study, a rapid and sensitive ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC-MS) method has been developed and partially validated for the separation of carotenoids within less than 6 min. Six columns of orthogonal selectivity were examined, and the best separation was obtained by using a 1-aminoanthracene (1-AA) column. The length of polyene chain as well as the number of hydroxyl groups in the structure of the studied carotenoids determines their differences in the physiochemical properties and thus the separation that is achieved on this column. All of the investigated carotenoids were baseline separated with resolution values greater than 1.5. The effects of gradient program, back pressure, and column temperature were studied with respect to chromatographic properties such as retention and selectivity. Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) were compared in both positive and negative mode, using both direct infusion and hyphenated with UHPSFC. The ESI in positive mode provided the highest response. The coefficient of determination (R (2)) for all calibration curves were greater than 0.998. Limit of detection (LOD) was in the range of 2.6 and 25.2 ng/mL for α-carotene and astaxanthin, respectively, whereas limit of quantification (LOQ) was in the range of 7.8 and 58.0 ng/mL for α-carotene and astaxanthin, respectively. Repeatability and intermediate precision of the developed UHPSFC-MS method were determined and found to be RSD carotenoids in supercritical fluid extracts of microalgae and rosehip. Graphical Abstract Ultra-high performance supercritical fluid chromatography-a rapid separation method for the analysis of carotenoids in rosehip and microalgae samples.

  11. Cogema experience on decontamination and underwater automatically remote cutting using ultra high pressure water during nuclear decommissioning operations. The Aquarad robot

    International Nuclear Information System (INIS)

    Bodin, F.; Fournier, Ph.; Martin, L.

    2002-01-01

    Reprocessing operations on gas cooled French reactor spent fuel included a mechanical operation called decladding, (i.e., stripping the fuel rod from its magnesium metal cladding). After this operation shut down, COGEMA started a D and D project on the decladding building where specific equipment was stored under water. COGEMA then developed and operated a process to decontaminate and cut metallic structures remotely, using ultra-high-pressure water mixed with sand (3600 bar). This paper describes the experience gained, since the start up of this operation in 1994, discusses resulting dosimetry and waste produced, during decontamination and underwater cutting of high active large metallic structures including some with 200 mm thick steel plates. This process results in significantly lower exposures to workers involved in the D and D operations. In addition, the work was carried out in an environmentally safe manner with reasonable financial costs. (author)

  12. History of trauma and the association with baseline symptoms in an Ultra-High Risk for psychosis cohort

    NARCIS (Netherlands)

    Velthorst, Eva; Nelson, Barnaby; O'Connor, Karen; Mossaheb, Nilufar; de Haan, Lieuwe; Bruxner, Annie; Simmons, Magenta B.; Yung, Alison R.; Thompson, Andrew

    2013-01-01

    Few studies have addressed the correlates of trauma in young people at Ultra-High Risk (UHR) of developing a psychotic disorder. We aimed to examine baseline differences in intensity, form and content of attenuated positive psychotic symptoms, other clinical symptomatology and comorbidity between

  13. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antici'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Baecker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Baeuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Diaz, J. Chirinos; Chudoba, J.; Cilmo, M.; Clay, R. W.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De la Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Rio, M.; Deligny, O.; Dembinski, H.; Dhita, N.; Di Giulio, C.; Diaz Castro, M. L.; Diep, Rn.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadana, J.; Etchegoyen, A.; Luis, P. Facal San; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenke, E. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovsky, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kaper, P.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D. -H.; Kotera, K.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempe, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maure, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechcio, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Nyklicek, M.; Oehlschlaeger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Hotta, J. Pa; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruehle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tascau, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tome, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cardenas, B.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weind, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Martin, L.

    Observations of cosmic rays arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the

  14. Antena Kupu - Kupu sebagai Sensor Ultra High Frequency (UHF) untuk Mendeteksi Partial Discharge pada Gas Insulation Substation

    OpenAIRE

    Andre, Hanalde; Khayam, Umar

    2013-01-01

    Penggunaan antena sebagai penerima gelombang elektromagnetik dapat digunakan sebagai alat untuk mendeteksi kegiatan partial discharge (PD) yang terjadi pada paralatan tegangan tinggi. Khususnya pada gas insulation substation (GIS), karakteristik gelombang elektromagnetik yang dihasilkan terletak pada rentang ultra high frequency (UHF) dalam rentang 300 MHz – 3 GHz. Karakteristik antena ultra wide band (UWB) diperlukan untuk mendeteksi PD pada rentang yang lebar. Perancangan antena dilakukan...

  15. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    International Nuclear Information System (INIS)

    Duan, Zhe; Bai, Mei; Barber, Desmond P.; Qin, Qing

    2015-04-01

    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) (Schmidt et al., 2002) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1978) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called ''correlated'' crossing of spin resonances during synchrotron oscillations at current energies, evolves into ''uncorrelated'' crossing of spin resonances at ultra-high energies.

  16. ASBESTOS EXPOSURES DURING ROUTINE FLOOR TILE MAINTENANCE. PART 2: ULTRA HIGH SPEED BURNISHING AND WET-STRIPPING

    Science.gov (United States)

    This study was conducted to evaluate airborne asbestos concentrations during ultra high speed (UHS) burnishing and wet-stripping of asbestos-containing resilient floor tile under two levels of floor care condition (poor and good). Airborne asbestos concentrations were measured by...

  17. Effects of cannabis use on event related potentials in subjects at ultra high risk for psychosis and healthy controls

    NARCIS (Netherlands)

    van Tricht, Mirjam J.; Harmsen, Emma C.; Koelman, Johannes H. T. M.; Bour, Lo J.; van Amelsvoort, Thérèse A.; Linszen, Don H.; de Haan, Lieuwe; Nieman, Dorien H.

    2013-01-01

    Cannabis use has consistently been associated with psychotic symptoms as well as cognitive impairments. Moreover, its use may provoke subclinical psychotic symptoms and is associated with neuropsychological dysfunctions in subjects at ultra high risk (UHR) for developing psychosis. However, to our

  18. Pulse shaping for all-optical signal processing of ultra-high bit rate serial data signals

    DEFF Research Database (Denmark)

    Palushani, Evarist

    The following thesis concerns pulse shaping and optical waveform manipulation for all-optical signal processing of ultra-high bit rate serial data signals, including generation of optical pulses in the femtosecond regime, serial-to-parallel conversion and terabaud coherent optical time division...

  19. Support effects in the adsorption of water on CVD graphene: an ultra-high vacuum adsorption study.

    Science.gov (United States)

    Chakradhar, A; Sivapragasam, N; Nayakasinghe, M T; Burghaus, U

    2015-07-21

    Experimental data for water adsorption on CVD (chemical vapor deposition) graphene/SiO2 and graphene/Cu studied under ultra-high vacuum (UHV) conditions are discussed, focusing on support effects and hydrophobicity. Under UHV, it seems that graphene wettability is inversely related to wetting properties of the support. Graphene is not transparent to water wetting on the supports studied here.

  20. Cannabis use and transition to psychosis in individuals at ultra-high risk: review and meta-analysis

    NARCIS (Netherlands)

    Kraan, T.; Velthorst, E.; Koenders, L.; Zwaart, K.; Ising, H. K.; van den Berg, D.; de Haan, L.; van der Gaag, M.

    2016-01-01

    Previous research has established the relationship between cannabis use and psychotic disorders. Whether cannabis use is related to transition to psychosis in patients at ultra-high risk (UHR) for psychosis remains unclear. The present study aimed to review the existing evidence on the association

  1. Symptomatology and neuropsychological functioning in cannabis using subjects at ultra-high risk for developing psychosis and healthy controls

    NARCIS (Netherlands)

    Korver, Nikie; Nieman, Dorien H.; Becker, Hiske E.; van de Fliert, J. Reinaud; Dingemans, Peter H.; de Haan, Lieuwe; Spiering, Mark; Schmitz, Nicole; Linszen, Don H.

    2010-01-01

    Objective: The relationship between cannabis use and psychosis has been studied intensively. Few data, however, are available on the relationship between cannabis use, ultra-high risk for developing psychosis and neurocognition. The aim of the present cross-sectional study was therefore to

  2. Quantification of antidepressants and antipsychotics in human serum by precipitation and ultra high pressure liquid chromatography-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Hasselstrøm, Jørgen Bo

    2011-01-01

    precipitated with zinc sulphate and methanol containing a stable isotope labelled analog for each analyte. Quantitative analysis was performed by ultra high pressure liquid chromatography combined with a tandem mass spectrometer using a Zorbax SB-C8 column (2.0×50mm; 1.8m) with a mobile phase consisting of 0...

  3. Opening the Black Box of Cognitive-Behavioural Case Management in Clients with Ultra-High Risk for Psychosis

    NARCIS (Netherlands)

    Hartmann, Jessica A.; McGorry, Patrick D.; Schmidt, Stefanie J.; Amminger, G. Paul; Yuen, Hok Pan; Markulev, Connie; Berger, Gregor E.; Chen, Eric Y. H.; de Haan, Lieuwe; Hickie, Ian B.; Lavoie, Suzie; McHugh, Meredith J.; Mossaheb, Nilufar; Nieman, Dorien H.; Nordentoft, Merete; Riecher-Rössler, Anita; Schäfer, Miriam R.; Schlögelhofer, Monika; Smesny, Stefan; Thompson, Andrew; Verma, Swapna Kamal; Yung, Alison R.; Nelson, Barnaby

    2017-01-01

    Background: Cognitive-behavioural therapy (CBT) is the first-choice treatment in clients with ultra-high risk (UHR) for psychosis. However, CBT is an umbrella term for a plethora of different strategies, and little is known about the association between the intensity and content of CBT and the

  4. Environmental factors and social adjustment as predictors of a first psychosis in subjects at ultra high risk

    NARCIS (Netherlands)

    Dragt, Sara; Nieman, Dorien H.; Veltman, Doede; Becker, Hiske E.; van de Fliert, Reinaud; de Haan, Lieuwe; Linszen, Don H.

    2011-01-01

    BACKGROUND: The onset of schizophrenia is associated with genetic, symptomatic, social and environmental risk factors. The aim of the present study was to determine which environmental factors may contribute to a prediction of a first psychotic episode in subjects at Ultra High Risk (UHR) for

  5. Presurgical brain mapping in epilepsy using simultaneous EEG and functional MRI at ultra-high field : feasibility and first results

    NARCIS (Netherlands)

    Grouiller, Frédéric; Jorge, João; Pittau, Francesca; Van der Zwaag, W.; Iannotti, Giannina Rita; Michel, Christoph Martin; Vulliémoz, Serge; Vargas, Maria Isabel; Lazeyras, François

    OBJECTIVES: The aim of this study was to demonstrate that eloquent cortex and epileptic-related hemodynamic changes can be safely and reliably detected using simultaneous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) recordings at ultra-high field (UHF) for clinical

  6. Optical Method for Detecting Displacements and Strains at Ultra-High Temperatures During Thermo-Mechanical Testing

    Science.gov (United States)

    Smith, Russell W. (Inventor); Rivers, H. Kevin (Inventor); Sikora, Joseph G. (Inventor); Roth, Mark C. (Inventor); Johnston, William M. (Inventor)

    2016-01-01

    An ultra-high temperature optical method incorporates speckle optics for sensing displacement and strain measurements well above conventional measurement techniques. High temperature pattern materials are used which can endure experimental high temperature environments while simultaneously having a minimum optical aberration. A purge medium is used to reduce or eliminate optical distortions and to reduce, and/or eliminate oxidation of the target specimen.

  7. Increased Saccadic Rate during Smooth Pursuit Eye Movements in Patients at Ultra High Risk for Developing a Psychosis

    Science.gov (United States)

    van Tricht, M. J.; Nieman, D. H.; Bour, L. J.; Boeree, T.; Koelman, J. H. T. M.; de Haan, L.; Linszen, D. H.

    2010-01-01

    Abnormalities in eye tracking are consistently observed in schizophrenia patients and their relatives and have been proposed as an endophenotype of the disease. The aim of this study was to investigate the performance of patients at Ultra High Risk (UHR) for developing psychosis on a task of smooth pursuit eye movement (SPEM). Forty-six UHR…

  8. Accuracy of High-Resolution MRI with Lumen Distention in Rectal Cancer Staging and Circumferential Margin Involvement Prediction

    International Nuclear Information System (INIS)

    Iannicelli, Elsa; Di Renzo, Sara; Ferri, Mario; Pilozzi, Emanuela; Di Girolamo, Marco; Sapori, Alessandra; Ziparo, Vincenzo; David, Vincenzo

    2014-01-01

    To evaluate the accuracy of magnetic resonance imaging (MRI) with lumen distention for rectal cancer staging and circumferential resection margin (CRM) involvement prediction. Seventy-three patients with primary rectal cancer underwent high-resolution MRI with a phased-array coil performed using 60-80 mL room air rectal distention, 1-3 weeks before surgery. MRI results were compared to postoperative histopathological findings. The overall MRI T staging accuracy was calculated. CRM involvement prediction and the N staging, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were assessed for each T stage. The agreement between MRI and histological results was assessed using weighted-kappa statistics. The overall MRI accuracy for T staging was 93.6% (k = 0.85). The accuracy, sensitivity, specificity, PPV and NPV for each T stage were as follows: 91.8%, 86.2%, 95.5%, 92.6% and 91.3% for the group ≤ T2; 90.4%, 94.6%, 86.1%, 87.5% and 94% for T3; 98,6%, 85.7%, 100%, 100% and 98.5% for T4, respectively. The predictive CRM accuracy was 94.5% (k = 0.86); the sensitivity, specificity, PPV and NPV were 89.5%, 96.3%, 89.5%, and 96.3% respectively. The N staging accuracy was 68.49% (k = 0.4). MRI performed with rectal lumen distention has proved to be an effective technique both for rectal cancer staging and involved CRM predicting

  9. Accuracy of High-Resolution MRI with Lumen Distention in Rectal Cancer Staging and Circumferential Margin Involvement Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Iannicelli, Elsa; Di Renzo, Sara [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ferri, Mario [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Pilozzi, Emanuela [Department of Clinical and Molecular Sciences, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Di Girolamo, Marco; Sapori, Alessandra [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ziparo, Vincenzo [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); David, Vincenzo [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy)

    2014-07-01

    To evaluate the accuracy of magnetic resonance imaging (MRI) with lumen distention for rectal cancer staging and circumferential resection margin (CRM) involvement prediction. Seventy-three patients with primary rectal cancer underwent high-resolution MRI with a phased-array coil performed using 60-80 mL room air rectal distention, 1-3 weeks before surgery. MRI results were compared to postoperative histopathological findings. The overall MRI T staging accuracy was calculated. CRM involvement prediction and the N staging, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were assessed for each T stage. The agreement between MRI and histological results was assessed using weighted-kappa statistics. The overall MRI accuracy for T staging was 93.6% (k = 0.85). The accuracy, sensitivity, specificity, PPV and NPV for each T stage were as follows: 91.8%, 86.2%, 95.5%, 92.6% and 91.3% for the group ≤ T2; 90.4%, 94.6%, 86.1%, 87.5% and 94% for T3; 98,6%, 85.7%, 100%, 100% and 98.5% for T4, respectively. The predictive CRM accuracy was 94.5% (k = 0.86); the sensitivity, specificity, PPV and NPV were 89.5%, 96.3%, 89.5%, and 96.3% respectively. The N staging accuracy was 68.49% (k = 0.4). MRI performed with rectal lumen distention has proved to be an effective technique both for rectal cancer staging and involved CRM predicting.

  10. Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage

    Science.gov (United States)

    Chen, Meng; Yu, Chang; Liu, Shaohong; Fan, Xiaoming; Zhao, Changtai; Zhang, Xu; Qiu, Jieshan

    2015-01-01

    Biomass-derived carbon materials, as one type of promising anode material for lithium ion batteries (LIBs), have demonstrated intrinsic potential and superiority. Here, we report a facile and efficient approach to fabricate micro-sized porous carbon spheres (PCSs) by an integrated procedure of enzymolysis, pre-oxidation, and carbonization. Benefiting from the uniquely abundant pore accessiblity, the PCSs exhibit an ultra-high rate capability with a value of 150 mA h g-1 at an ultrafast charge/discharge current density of 20 A g-1, and they take only ca. 27 s to be fully charged. It is believed that the uniquely porous structure can shorten the transport paths and further enhance the rapid transport of the electrolytes and Li ions on the surface and within the electrode materials. The low cost and easy large-scale preparation of the PCS electrodes, as well as the superior high rate capability would open up an opportunity to develop high rate lithium ion batteries.Biomass-derived carbon materials, as one type of promising anode material for lithium ion batteries (LIBs), have demonstrated intrinsic potential and superiority. Here, we report a facile and efficient approach to fabricate micro-sized porous carbon spheres (PCSs) by an integrated procedure of enzymolysis, pre-oxidation, and carbonization. Benefiting from the uniquely abundant pore accessiblity, the PCSs exhibit an ultra-high rate capability with a value of 150 mA h g-1 at an ultrafast charge/discharge current density of 20 A g-1, and they take only ca. 27 s to be fully charged. It is believed that the uniquely porous structure can shorten the transport paths and further enhance the rapid transport of the electrolytes and Li ions on the surface and within the electrode materials. The low cost and easy large-scale preparation of the PCS electrodes, as well as the superior high rate capability would open up an opportunity to develop high rate lithium ion batteries. Electronic supplementary information (ESI

  11. Modeling seismic performance of high-strength steel–ultra-high-performance concrete piers with modified Kent–Park model using fiber elements

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2016-02-01

    Full Text Available The seismic performance of ultra-high-performance concrete–high-strength steel pier was studied using fiber elements, which are capable to model accurately elastic–plastic behavior of members with fibers of different material constitutive relations. For high-strength steel–ultra-high-performance concrete piers, the modified Kent–Park model was utilized to describe the compressive stress–strain relations of ultra-high-performance concrete and high-strength steel-confined ultra-high-performance concrete, respectively, by determining four key parameters. A finite element model was established to simulate the hysteretic response; conduct parameter analysis including axial load ratio, longitudinal reinforcement ratio, and transverse reinforcement ratio; and assess the maximum ground acceleration capacity based on inelastic response spectra for high-strength steel–ultra-high-performance concrete piers. The conclusions are summarized that modified Kent–Park model is proved to be effective due to experimental data. The calculated hysteretic curves of high-strength steel–ultra-high-performance concrete piers show good agreement with the experimental results. Three parameters have evident effects on seismic performance of high-strength steel–ultra-high-performance concrete piers, which indicates that various seismic demands can be achieved by reasonable parameter settings. Compared to nonlinear dynamic analysis based on finite element model, the results provided by inelastic response spectra are less conservative for short high-strength steel–ultra-high-performance concrete piers under high axial load ratio.

  12. Niacin Skin Sensitivity Is Increased in Adolescents at Ultra-High Risk for Psychosis.

    Directory of Open Access Journals (Sweden)

    Gregor E Berger

    Full Text Available Most studies provide evidence that the skin flush response to nicotinic acid (niacin stimulation is impaired in schizophrenia. However, only little is known about niacin sensitivity in the ultra-high risk (UHR phase of psychotic disorders.We compared visual ratings of niacin sensitivity between adolescents at UHR for psychosis according to the one year transition outcome (UHR-T n = 11; UHR-NT n = 55 with healthy controls (HC n = 25 and first episode schizophrenia patients (FEP n = 25 treated with atypical antipsychotics.Contrary to our hypothesis niacin sensitivity of the entire UHR group was not attenuated, but significantly increased compared to the HC group, whereas no difference could be found between the UHR-T and UHR-NT groups. As expected, niacin sensitivity of FEP was attenuated compared to HC group. In UHR individuals niacin sensitivity was inversely correlated with omega-6 and -9 fatty acids (FA, but positively correlated with phospholipase A2 (inPLA2 activity, a marker of membrane lipid repair/remodelling.Increased niacin sensitivity in UHR states likely indicates an impaired balance of eicosanoids and omega-6/-9 FA at a membrane level. Our findings suggest that the emergence of psychosis is associated with an increased mobilisation of eicosanoids prior to the transition to psychosis possibly reflecting a "pro-inflammatory state", whereas thereafter eicosanoid mobilisation seems to be attenuated. Potential treatment implications for the UHR state should be further investigated.

  13. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  14. Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter.

    Science.gov (United States)

    Hameed, Mohamed Farhat O; Heikal, A M; Younis, B M; Abdelrazzak, Maher; Obayya, S S A

    2015-03-23

    A novel ultra-high tunable photonic crystal fiber (PCF) polarization filter is proposed and analyzed using finite element method. The suggested design has a central hole infiltrated with a nematic liquid crystal (NLC) that offers high tunability with temperature and external electric field. Moreover, the PCF is selectively filled with metal wires into cladding air holes. Results show that the resonance losses and wavelengths are different in x and y polarized directions depending on the rotation angle φ of the NLC. The reported filter of compact device length 0.5 mm can achieve 600 dB / cm resonance losses at φ = 90° for x-polarized mode at communication wavelength of 1300 mm with low losses of 0.00751 dB / cm for y-polarized mode. However, resonance losses of 157.71 dB / cm at φ = 0° can be achieved for y-polarized mode at the same wavelength with low losses of 0.092 dB / cm for x-polarized mode.

  15. Manufacture of ultra high precision aerostatic bearings based on glass guide

    Science.gov (United States)

    Guo, Meng; Dai, Yifan; Peng, Xiaoqiang; Tie, Guipeng; Lai, Tao

    2017-10-01

    The aerostatic guide in the traditional three-coordinate measuring machine and profilometer generally use metal or ceramics material. Limited by the guide processing precision, the measurement accuracy of these traditional instruments is around micro-meter level. By selection of optical materials as guide material, optical processing method and laser interference measurement can be introduced to the traditional aerostatic bearings manufacturing field. By using the large aperture wave-front interference measuring equipment , the shape and position error of the glass guide can be obtained in high accuracy and then it can be processed to 0.1μm or even better with the aid of Magnetorheological Finishing(MRF) and Computer Controlled Optical Surfacing (CCOS) process and other modern optical processing method, so the accuracy of aerostatic bearings can be fundamentally improved and ultra high precision coordinate measuring can be achieved. This paper introduces the fabrication and measurement process of the glass guide by K9 with 300mm measuring range, and its working surface accuracy is up to 0.1μm PV, the verticality and parallelism error between the two guide rail face is better than 2μm, and the straightness of the aerostatic bearings by this K9 glass guide is up to 40nm after error compensation.

  16. Ultra High Fluence Radiation Monitoring Technology for the Future Circular Collider at CERN

    CERN Document Server

    Gorine, Georgi; Mandic, Igor; Jazbec, Anže; Snoj, Luka; Capeans, Mar; Moll, Michael; Bouvet, Didier; Ravotti, Federico; Sallese, Jean-Michel

    2018-01-01

    The Future Circular Collider (FCC) is foreseen as the next generation ~100 km long synchrotron to be built in the Geneva area starting 2050. This machine is expected to reach an energy level of 100 TeV generating unprecedented radiation levels >100 times higher than in today`s Large Hadron Collider (LHC). Current Radiation Monitoring system, like the RADMONs employed in the LHC, will not be capable to function and withstand this harsh environment. The development of a new Ultra High Fluence and Dose Radiation Sensor is a key element to allow irradiation tests of FCC equipment and, at a later stage, to monitor radiation levels in the FCC itself. In this paper, we present an innovative dosimetry solution based on thin layers of metals, which resistivity is shown to increase significantly due to the accumulated displacement damage. After describing the fabrication techniques used to manufacture these Radiation Dependent Resistors (RDR), we show and discuss the results of the irradiation experiments carried out ...

  17. Dual-Frequency Impedance Transformer Using Coupled-Line For Ultra-High Transforming Ratio

    Directory of Open Access Journals (Sweden)

    R. K. Barik

    2017-12-01

    Full Text Available In this paper, a new type of dual-frequency impedance transformer is presented for ultra-high transforming ratio. The proposed configuration consists of parallel coupled-line, series transmission lines and short-ended stubs. The even and odd-mode analysis is applied to obtain the design equations and hence to provide an accurate solution. Three examples of the dual-frequency transformer with load impedance of 500, 1000 and 1500 Ω are designed to study the matching capability and bandwidth property. To prove the frequency agility of the proposed network, three prototypes of dual-frequency impedance transformer with transforming ratio of 10, 20 and 30 are fabricated and tested. The measured return loss is greater than 15 dB at two operating frequencies for all the prototypes. Also, the bandwidth is more than 60 MHz at each frequency band for all the prototypes. The measured return loss is found in good agreement with the circuit and full-wave simulations.

  18. Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk.

    Science.gov (United States)

    Toro-Funes, N; Bosch-Fusté, J; Veciana-Nogués, M T; Vidal-Carou, M C

    2014-01-01

    Ultra high pressure homogenization (UHPH) is a useful novel technology to obtain safe and high-quality liquid foods. The effect of UHPH at 200 and 300 MPa in combination with different inlet temperatures (Tin) (55, 65 and 75 °C) on the bioactive compounds of soya milk was studied. Total phytosterols increased with the higher combination of pressure and temperature. The main phytosterol was β-sitosterol, followed by stigmasterol and campesterol. Total tocopherols in UHPH-treated soya milks decreased as the temperature and pressure increased. UHPH treatment also affected the different chemical forms of tocopherols. No biogenic amines were detected in any of the analyzed soya milks. Meanwhile, the polyamines SPD and SPM were found in all soya milks, being stable to the UHPH treatment. Total isoflavones increased with the higher combination of pressure and temperature. No differences in the isoflavone profile were found, with β-glucoside conjugates being the predominant form. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Long term bending behavior of ultra-high performance concrete (UHPC beams

    Directory of Open Access Journals (Sweden)

    Gheorghe-Alexandru BARBOS

    2015-12-01

    Full Text Available Unlike normal concrete (NC the behavior of ultra-high performance concrete (UHPC is different under long-term efforts, if we refer to creep, shrinkage or long-term deflections. It is well known that UHPC has special properties, like compressive strength higher than 150 MPa and tensile strength higher than 20 MPa - in case of UHPC reinforced with steel-fibers. Nevertheless, UHPC behavior is not completely elucidated in what concerns creep straining or serviceability behavior in case of structural elements. Some studies made on UHPC samples shown that creep is significantly reduced if the concrete is subjected to heat treatment and if it contains steel-fiber reinforcement. Relating thereto, it is important to know how does structural elements made of this type of concrete works in service life under long-term loadings. The results obtained on UHPC samples, regarding creep straining from tension or compression efforts may not be generalized in case of structural elements (e.g. beams, slabs, columns subjected to bending. By performing this study, it was aimed to understand the influence of heat treatment and steel-fiber addition on the rheological phenomena of UHPC bended beams.

  20. Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties

    Directory of Open Access Journals (Sweden)

    Renato Ambrósio Jr

    2013-04-01

    Full Text Available OBJECTIVE: To describe a novel technique for clinical characterization of corneal biomechanics using non-invasive dynamic imaging. METHODS: Corneal deformation response during non contact tonometry (NCT is monitored by ultra-high-speed (UHS photography. The Oculus Corvis ST (Scheimpflug Technology; Wetzlar, Germany has a UHS Scheimpflug camera, taking over 4,300 frames per second and of a single 8mm horizontal slit, for monitoring corneal deformation response to NCT. The metered collimated air pulse or puff has a symmetrical configuration and fixed maximal internal pump pressure of 25 kPa. The bidirectional movement of the cornea in response to the air puff is monitored. RESULTS: Measurement time is 30ms, with 140 frames acquired. Advanced algorithms for edge detection of the front and back corneal contours are applied for every frame. IOP is calculated based on the first applanation moment. Deformation amplitude (DA is determined as the highest displacement of the apex in the highest concavity (HC moment. Applanation length (AL and corneal velocity (CVel are recorded during ingoing and outgoing phases. CONCLUSION: Corneal deformation can be monitored during non contact tonometry. The parameters generated provide clinical in vivo characterization of corneal biomechanical properties in two dimensions, which is relevant for different applications in Ophthalmology.

  1. Perceived ethnic discrimination and persecutory paranoia in individuals at ultra-high risk for psychosis.

    Science.gov (United States)

    Shaikh, Madiha; Ellett, Lyn; Dutt, Anirban; Day, Fern; Laing, Jennifer; Kroll, Jasmine; Petrella, Sabrina; McGuire, Philip; Valmaggia, Lucia R

    2016-07-30

    Despite a consensus that psychosocial adversity plays a role in the onset of psychosis, the nature of this role in relation to persecutory paranoia remains unclear. This study examined the complex relationship between perceived ethnic discrimination and paranoid ideation in individuals at Ultra High Risk (UHR) for psychosis using a virtual reality paradigm to objectively measure paranoia. Data from 64 UHR participants and 43 healthy volunteers were analysed to investigate the relationship between perceived ethnic discrimination and persecutory ideation in a virtual reality environment. Perceived ethnic discrimination was higher in young adults at UHR in comparison to healthy controls. A positive correlation was observed between perceived ethnic discrimination and paranoid persecutory ideation in the whole sample. Perceived ethnic discrimination was not a significant predictor of paranoid persecutory ideation in the VR environment. Elevated levels of perceived ethnic discrimination are present in individuals at UHR and are consistent with current biopsychosocial models in which psychosocial adversity plays a key role in the development of psychosis and attenuated symptomatology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna

    Science.gov (United States)

    Liu, Dingxin; Niu, Jiebin; Zhu, Haolin; Zhang, Jianyong

    2018-02-01

    Flexible transparent materials are a hot spot in current research but also a key technical difficulty in industry. They are playing an increasingly important role in flexible transparent display applications such as organic light-emitting diodes, transparent electrodes, and so on. On the other hand, the present research on nanopatterned antennas is mainly concentrated on the optical frequency but rarely on the microwave (such as 3G, 4G, and 5G) and terahertz frequency band communications, where nanopatterned antennas can have many novel applications. To the authors’ knowledge, this is the first paper that presents a method for preparing a flexible transparent Au electromagnetic metamaterial nanopatterned antenna. We study its free-space performance at ultra-high frequency and its application in electronic products such as smartphones, tablets, personal computers, and wearable devices (such as smart watches) which have the function of mobile communication. The experimental results showed that the transparency of the antenna designed and fabricated in this work can be as high as 94%, and its efficiency can reach 74.5%-91.9% of antennas commonly seen at present in academia and industry. By adjusting the capacitive and inductive reactance of the nanopatterned antenna’s matching circuit, combined with its measured efficiency and 3D electromagnetic simulation results, we speculate on the mechanism of the Au electromagnetic metamaterial nanopatterned antenna with good performance.

  3. Ground Glass Pozzolan in Conventional, High, and Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Tagnit-Hamou Arezki

    2018-01-01

    Full Text Available Ground-glass pozzolan (G obtained by grinding the mixed-waste glass to same fineness of cement can act as a supplementary-cementitious material (SCM, given that it is an amorphous and a pozzolanic material. The G showed promising performances in different concrete types such as conventional concrete (CC, high-performance concrete (HPC, and ultra-high performance concrete (UHPC. The current paper reports on the characteristics and performance of G in these concrete types. The use of G provides several advantages (technological, economical, and environmental. It reduces the production cost of concrete and decrease the carbon footprint of a traditional concrete structures. The rheology of fresh concrete can be improved due to the replacement of cement by non-absorptive glass particles. Strength and rigidity improvements in the concrete containing G are due to the fact that glass particles act as inclusions having a very high strength and elastic modulus that have a strengthening effect on the overall hardened matrix.

  4. Recent Results on Ultra-High Energy Cosmic Rays from the Telescope Array

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    TA's recent results on Ultra-High Energy Cosmic Rays (UHECRs) are reported. The energy spectrum based on 20k events above 10^18.2 eV demonstrates a clear dip at 10^18.7 eV and a cutoff at 10^19.7 eV , the shape and the energies of which are well described by the GZK process: energy loss of extra-galactic protons by the interaction with the CMB and IR background. The primary composition obtained from the shower maximum analysis using the hybrid technique is consistent with 100% proton or light nuclei, and inconsistent with 100% iron up to 10^19.3 eV. Above the GZK cutoff energy, a large flux enhancement of medium size (radius=20deg) is observed in the direction of Ursa-Major. The chance probability of this hotspot appearing from the isotropic flux is 4.0sigma. The center of the hotspot is 19 deg off from the Super-Galactic Plane, and no obvious candidate of UHECRs is known in this direction.

  5. Reflecting and Polarizing Properties of Conductive Fabrics in Ultra-High Frequency Range

    Directory of Open Access Journals (Sweden)

    Oleg Kiprijanovič

    2015-09-01

    Full Text Available The system based on ultra-wide band (UWB signals was employed for qualitative estimation of attenuating, reflecting and polarizing properties of conductive fabrics, capable to prevent local static charge accumulation. Pulsed excitation of triangle monopole antenna of 6.5 cm height by rectangular electric pulses induced radiation of UWB signals with spectral density of power having maximum in ultra-high frequency (UHF range. The same antenna was used for the radiated signal receiving. Filters and amplifiers of different passband were employed to divide UHF range into subranges of 0.3-0.55 GHz, 0.55-1 GHz, 1-2 GHz and 2-4 GHz bands. The free space method, when conductive fabric samples of 50x50 cm2 were placed between transmitting and receiving antennas, was used to imitate a practical application. Received wideband signals corresponding to the defined range were detected by unbiased detectors. The fabrics made of two types of warps, containing different threads with conductive yarns, were investigated. It was estimated attenuation and reflective properties of the fabrics when electric field is collinear or perpendicular to thread direction. In the UHF range it was revealed good reflecting properties of the fabrics containing metallic component in the threads. The system has advantages but not without a certain shortcoming. Adapting it for specific tasks should lead to more effective usage, including yet unused properties of the UWB signals.

  6. Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure.

    Science.gov (United States)

    Guo, Zebin; Zeng, Shaoxiao; Lu, Xu; Zhou, Meiling; Zheng, Mingjing; Zheng, Baodong

    2015-11-01

    Aqueous lotus seed starch suspensions (15%, w/w) were subjected to ultra-high pressure treatment (UHP, 100-600 MPa) for 30 min. The effects of UHP treatment on the structural and physicochemical properties of starch were investigated. The SEM and laser diffraction particle size analysis revealed that UHP treatment affected the shape and size distribution of starch granules. The morphological structure of starch was completely destroyed at 600 MPa, indicating complete gelatinization. Analysis of HPSEC-MALLS-RI suggested that the dispersity index of UHP-treated starch were decreased from 1.28 to 1.11. According to XRD analyses, UHP treatment converted native starch (C-type) into a B-type pattern. The swelling power and solubility presented a significant decrease at 85 and 95 °C, but opposite trends were found at 55-75 °C. The DSC results indicated a reduction in gelatinization temperatures and enthalpy with increasing pressure treatment. The RVA viscograms revealed that UHP-treated starch showed a decreased breakdown and setback viscosity, reflecting lower retrogradation tendency compared to native starch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Macroradical reaction in ultra-high molecular weight polyethylene in the presence of vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, M.S., E-mail: mjahan@memphis.ed [Department of Physics, Biomaterials Research Laboratory, University of Memphis, 216 Manning Hall, Memphis, TN 38152 (United States); Walters, B.M. [Department of Physics, Biomaterials Research Laboratory, University of Memphis, 216 Manning Hall, Memphis, TN 38152 (United States)

    2011-02-15

    Free radical measurements in compression molded ultra-high molecular weight polyethylene (UHMWPE), which contained vitamin E ({alpha}-tocopherol ({alpha}-T)), was performed using electron spin resonance (ESR) technique in air at room temperature following gamma irradiation (25-32 kGy) in N{sub 2}. The vitamin E was incorporated into one set of samples by blending UHMWPE resin with vitamin E (1 and 10 wt%), then compression molded into a solid and then irradiated. Another set of samples had vitamin E incorporated into them by diffusing vitamin E at 100 {sup o}C for 2 h after irradiation. Compared to a control (with no vitamin E), the vitamin E-containing UHMWPE ({alpha}-TPE) samples suffered a partial loss of PE radicals, but this loss only occurred during or immediately after irradiation (before exposure to air). Subsequently, when all blended samples were exposed to air, the remaining radicals in each sample decayed to the well-known OIR, R1 (-{sup {center_dot}C}H-[CH=CH-]{sub m}-) and R2 ({sup {center_dot}O}CH-[CH=CH-]{sub m}-) radicals. However, because of the initial loss or partial quenching, {alpha}-TPE produced a lower concentration of OIR (measured over a four-year period), but no difference was found between 1% and 10% {alpha}-TPEs. In the diffused {alpha}-TPE, similar OIR was also found when tested after four months of post-treatment exposure to air.

  8. Effect of consolidation on adhesive and abrasive wear of ultra high molecular weight polyethylene.

    Science.gov (United States)

    Gul, Rizwan M; McGarry, Frederick J; Bragdon, Charles R; Muratoglu, Orhun K; Harris, William H

    2003-08-01

    Total hip replacement (THR) is widely performed to recover hip joint functions lost by trauma or disease and to relieve pain. The major cause of failure in THR is the wear of the ultra high molecular weight polyethylene (UHMWPE) component. The dominant wear mechanism in THR occurs through adhesion and abrasion. While poor consolidation of UHMWPE is known to increase the incidence of a different damage mode, delamination, which is the dominant wear mechanism in tibial inserts but uncommon in THR, the effect of consolidation on adhesive and abrasive wear of UHMWPE is not clear. In this study UHMWPE resin was subjected to hot isostatic pressing under a pressure of 138MPa at different temperatures (210 degrees C, 250 degrees C, and 300 degrees C) to achieve varying degrees of consolidation. The extent of consolidation was determined by optical microscopy using thin sections, and by scanning electron microscopy using cryofractured and solvent etched specimens. Wear behavior of the samples with varying degree of consolidation was determined using a bi-directional pin-on-disc machine simulating conditions in a hip joint. Increasing the processing temperature decreased the incidence of fusion defects and particle boundaries reflecting the powder flakes of the virgin resin, improving the consolidation. However, the bi-directional pin-on-disc wear rate did not change with the processing temperature, indicating that adhesive and abrasive wear is independent of the extent of consolidation in the range of parameters studied here.

  9. Borderline personality pathology in young people at ultra high risk of developing a psychotic disorder.

    Science.gov (United States)

    Ryan, Jaymee; Graham, Anne; Nelson, Barnaby; Yung, Alison

    2017-06-01

    The association between borderline personality disorder and the ultra high risk (UHR) for psychosis state is unclear. The following study aimed to investigate the type of attenuated psychotic symptoms and prevalence of borderline personality pathology in a sample of UHR young people. Additionally, the study aimed to explore whether borderline personality pathology influenced the transition rate to psychosis. Medical records from Orygen Youth Health between 2007 and 2009 were examined. There were 180 patients who met UHR criteria and were included for analysis. Most patients were females (62.8%) and age ranged from 15 to 24 years. A quarter (25.2%) of UHR patients endorsed items consistent with borderline personality pathology. UHR patients with borderline personality pathology experienced a range of attenuated psychotic symptoms and could not be statistically differentiated from UHR patients with less significant or without borderline personality pathology. Borderline personality pathology did not increase or decrease the risk of developing a psychotic disorder. The absence of depression was the only predictor of psychosis. Many UHR patients present with concurrent borderline personality features. The psychotic experiences reported by UHR patients with borderline personality features were not limited to paranoid ideation, supporting the idea that borderline personality disorder may include a wider range of psychotic symptoms than previously thought. It is further possible that the psychotic symptoms experienced in this group could also be indicative of an emerging psychotic disorder. © 2015 Wiley Publishing Asia Pty Ltd.

  10. Search for ultra-high energy photons with AMIGA muon counters

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Nicolas Martin [Instituto de Tecnologias en Deteccion y Astroparticulas, Buenos Aires (Argentina); Institut fuer Kernphysik, Karlsruher Institut fuer Technologie. (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The study of the composition of ultra-high energy (UHE) cosmic rays (CR) is one of the topical problems of astroparticle physics. The discovery of UHE photons, i.e. photons with energies around 1 EeV, in primary cosmic rays could be of particular interest for the field of astroparticle physics, and also for fundamental physics, since they are tracers of the highest-energy processes in the Universe. For the search for UHE photons at the Pierre Auger Observatory (PAO), several parameters have been proposed to distinguish between primary hadrons and photons. One of the most promising approaches to search for primary gamma rays is the study of the muon component in extensive air showers (EAS) produced in the interaction between the CR and the nuclei in the atmosphere. The number of muons in showers induced by gamma primaries is an order of magnitude lower than the hadronic primaries counterpart. The AMIGA extension of the PAO, consisting of an array of buried scintillators counters, allows the study of the muons produced during the EAS development. In this talk, the sensitivity of the muon counters to photon-initiated EAS and the possible discrimination procedures are discussed using dedicated EAS simulations with software package CORSIKA, including the detector response using the Offline package developed by the Pierre Auger Collaboration.

  11. Development of Ultra High Gradient and High Q0 Superconducting Radio Frequency Cavities

    International Nuclear Information System (INIS)

    We report on the recent progress at Jefferson Lab in developing ultra high gradient and high Q 0 superconducting radio frequency (SRF) cavities for future SRF based machines. A new 1300 MHz 9-cell prototype cavity is being fabricated. This cavity has an optimized shape in terms of the ratio of the peak surface field (both magnetic and electric) to the acceleration gradient, hence the name low surface field (LSF) shape. The goal of the effort is to demonstrate an acceleration gradient of 50 MV/m with Q 0 of 10 10 at 2 K in a 9-cell SRF cavity. Fine-grain niobium material is used. Conventional forming, machining and electron beam welding method are used for cavity fabrication. New techniques are adopted to ensure repeatable, accurate and inexpensive fabrication of components and the full assembly. The completed cavity is to be first mechanically polished to a mirror-finish, a newly acquired in-house capability at JLab, followed by the proven ILC-style processing recipe established already at JLab. In parallel, new single-cell cavities made from large-grain niobium material are made to further advance the cavity treatment and processing procedures, aiming for the demonstration of an acceleration gradient of 50 MV/m with Q 0 of 2пїЅ10 10 at 2K

  12. Lorentz invariance violation and chemical composition of ultra high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Saveliev, Andrey; Sigl, Guenter [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2010-12-15

    Motivated by experimental indications of a significant presence of heavy nuclei in the cosmic ray flux at ultra high energies (>or similar 10{sup 19} eV), we consider the effects of Planck scale suppressed Lorentz Invariance Violation (LIV) on the propagation of cosmic ray nuclei. In particular we focus on LIV effects on the photodisintegration of nuclei onto the background radiation fields. After a general discussion of the behavior of the relevant quantities, we apply our formalism to a simplified model where the LIV parameters of the various nuclei are assumed to kinematically result from a single LIV parameter for the constituent nucleons, {eta}, and we derive constraints on {eta}. Assuming a nucleus of a particular species to be actually present at 10{sup 20} eV the following constraints can be placed: -3 x 10{sup -2}

  13. Planck-scale Lorentz violation constrained by ultra-high-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Maccione, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. Hamburg, II. Inst. fuer Theoretische Physik (Germany); Taylor, A.M. [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany); Mattingly, D.M.; Liberati, S. [Scuola Internazionale Superiore di Studi Avanzati SISSA, Trieste (Italy); Istituto Nazionale di Fisica Nucleare INFN, Sezione di Trieste (Italy)

    2009-09-15

    We investigate the consequences of higher dimension Lorentz violating, CPT even kinetic operators that couple standard model fields to a non-zero vector field in an Effective Field Theory framework. Comparing the ultra-high energy cosmic ray spectrum reconstructed in the presence of such terms with data from the Pierre Auger observatory allows us to establish two sided bounds on the coefficients of the mass dimension five and six operators for the proton and pion. Our bounds imply that for both protons and pions, the energy scale of Lorentz symmetry breaking must be well above the Planck scale. In particular, the dimension five operators are constrained at the level of 10{sup -3}M{sup -1}{sub Planck}. The magnitude of the dimension six proton coefficient is bounded at the level of 10{sup -6}M{sup -2}{sub Planck} except in a narrow range where the pion and proton coefficients are both negative and nearly equal. In this small area, the magnitude of the dimension six proton coefficient must only be below 10{sup -3}M{sup -2}{sub Planck}. Constraints on the dimension six pion coefficient are found to be much weaker, but still below M{sup -2}{sub Planck}. (orig.)

  14. Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations

    Energy Technology Data Exchange (ETDEWEB)

    Scholten, O; Bacelar, J; Braun, R; de Bruyn, A G; Falcke, H; Singh, K; Stappers, B; Strom, R G; al Yahyaoui, R

    2010-04-02

    Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath the Moon's surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency window for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHEneutrino flux. Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a sampling frequency of 40 MHz. The narrow band radio interference is digitally filtered out and the dispersive effect of the Earth?s ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, the detection efficiency for pulses of various strength is calculated. Results. With 47.6 hours of observation time, we are able to set a limit on the UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

  15. Search for ultra-high energy neutrinos at the pierre auger observatory

    Directory of Open Access Journals (Sweden)

    Navas S.

    2013-06-01

    Full Text Available The observation of ultra-high energy neutrinos (UHEνs has become a priority in experimental astroparticle physics. UHEνs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν or in the Earth's crust (Earth-skimming ν, producing air showers that can be observed with arrays of detectors at the ground. With the Surface Detector Array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground.In this paper we review the procedure and criteria established to search for UHEνs in the data collected with the surface array of the Pierre Auger Observatory. No neutrino candidates have so far been found, which allows us to place competitive limits to the diffuse flux of UHEνs with energies between ∼1017eV and ∼1020eV. Moreover, upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. We show that with the Surface Detector of the Pierre Auger Observatory we are sensitive to a large fraction of the sky spanning ∼100∘ in declination.

  16. Neutrinos and Ultra-high-energy Cosmic-ray Nuclei from Blazars

    Science.gov (United States)

    Rodrigues, Xavier; Fedynitch, Anatoli; Gao, Shan; Boncioli, Denise; Winter, Walter

    2018-02-01

    We discuss the production of ultra-high-energy cosmic-ray (UHECR) nuclei and neutrinos from blazars. We compute the nuclear cascade in the jet for both BL Lac objects and flat-spectrum radio quasars (FSRQs), and in the ambient radiation zones for FSRQs as well. By modeling representative spectral energy distributions along the blazar sequence, two distinct regimes are identified, which we call “nuclear survival” (typically found in low-luminosity BL Lacs) and “nuclear cascade” (typically found in high-luminosity FSRQs). We quantify how the neutrino and cosmic-ray (CR) emission efficiencies evolve over the blazar sequence, and we demonstrate that neutrinos and CRs come from very different object classes. For example, high-frequency-peaked BL Lacs (HBLs) tend to produce CRs, and high-luminosity FSRQs are the more efficient neutrino emitters. This conclusion does not depend on the CR escape mechanism, for which we discuss two alternatives (diffusive and advective escape). Finally, the neutrino spectrum from blazars is shown to significantly depend on the injection composition into the jet, especially in the nuclear cascade case: Injection compositions heavier than protons lead to reduced neutrino production at the peak, which moves at the same time to lower energies. Thus, these sources will exhibit better compatibility with the observed IceCube and UHECR data.

  17. Ultra-high green light transparency coating on 1D photonic crystal structure

    Science.gov (United States)

    Chantakit, Teanchai; Chiangga, Surasak

    2017-09-01

    The anti-reflective (AR) coatings were regarded as one of the promising options to improving the efficiency of light transmission in optical-based devices. In this work, we designed an ultra-high anti-reflective layer based on a 1D photonic crystal structure. By using the specific properties of the 1D photonic crystal on a particular filtering wavelength, a high transmission enhancement was achieved. The periodic stack of tantalum pentoxide (Ta2O5) and molybdenum disulfide (MoS2) in borosilicate glass (BK7) layers was modified with a graphene as a defect layer to investigate the effect of the modification on the optical transmission factor. The FDTD simulations showed an extremely 99.8255% transparency at the wavelength of 505.263 nm. The result was consistent with the analytical results obtained from a transfer matrix calculation. The proposed design can be applied to the coated narrow linewidth thin film as used for example in integrated optical systems.

  18. Use of alternative waste materials in producing ultra-high performance concrete

    Directory of Open Access Journals (Sweden)

    Ahmad Shamsad

    2017-01-01

    Full Text Available In a corrosive environment similar to that of the Arabian Gulf, use of high-performance concrete is one of the options to ensure a target service life of concrete structures. However, in absence of good quality coarse aggregates, it is a challenging task to produce high-performance concrete. Recently, the possibility of producing ultra-high-performance concrete (UHPC has been widely reported in the literature. UHPC is produced without coarse aggregates at very low water to cementitious materials ratio, high amounts of cement, mineral admixtures, and superplasticizer along with fine quartz sand as aggregate, quartz powder as micro-filler, a nd steel fibres for fracture toughness. In the present work, an effort was made to utilize local waste materials as alternative mineral admixtures and local dune sand as aggregate in producing different UHPC mixtures without addition of quartz powder. The mechanical properties, shrinkage, and durability characteristics of the UHPC mixtures were studied. Test results indicate that it is possible to produce UHPC mixtures using alternative waste materials, which would have targeted flow, strength, toughness, and resistance against reinforcement corrosion. The information presented in the paper would help in optimum selection of a mixture of UHPC considering the availability of local materials, exposure conditions and structural requirements.

  19. Ballistic penetration test results for Ductal and ultra-high performance concrete samples.

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, William Dodd; Thornhill, Tom Finley, III (KTech)

    2010-03-01

    This document provides detailed test results of ballistic impact experiments performed on several types of high performance concrete. These tests were performed at the Sandia National Laboratories Shock Thermodynamic Applied Research Facility using a 50 caliber powder gun to study penetration resistance of concrete samples. This document provides test results for ballistic impact experiments performed on two types of concrete samples, (1) Ductal{reg_sign} concrete is a fiber reinforced high performance concrete patented by Lafarge Group and (2) ultra-high performance concrete (UHPC) produced in-house by DoD. These tests were performed as part of a research demonstration project overseen by USACE and ERDC, at the Sandia National Laboratories Shock Thermodynamic Applied Research (STAR) facility. Ballistic penetration tests were performed on a single stage research powder gun of 50 caliber bore using a full metal jacket M33 ball projectile with a nominal velocity of 914 m/s (3000 ft/s). Testing was observed by Beverly DiPaolo from ERDC-GSL. In all, 31 tests were performed to achieve the test objectives which were: (1) recovery of concrete test specimens for post mortem analysis and characterization at outside labs, (2) measurement of projectile impact velocity and post-penetration residual velocity from electronic and radiographic techniques and, (3) high-speed photography of the projectile prior to impact, impact and exit of the rear surface of the concrete construct, and (4) summarize the results.

  20. Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets.

    Science.gov (United States)

    Lu, Liulei; Ouyang, Dong

    2017-07-20

    In this work, the effect of graphene oxide nanosheet (GONS) additives on the properties of cement mortar and ultra-high strength concrete (UHSC) is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0-0.03% by weight of cement). Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM) was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study.

  1. Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets

    Directory of Open Access Journals (Sweden)

    Liulei Lu

    2017-07-01

    Full Text Available In this work, the effect of graphene oxide nanosheet (GONS additives on the properties of cement mortar and ultra-high strength concrete (UHSC is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0–0.03% by weight of cement. Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study.

  2. Survival of tumor cells after proton irradiation with ultra-high dose rates

    International Nuclear Information System (INIS)

    Auer, Susanne; Hable, Volker; Greubel, Christoph; Drexler, Guido A; Schmid, Thomas E; Belka, Claus; Dollinger, Günther; Friedl, Anna A

    2011-01-01

    Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >10 9 Gy s -1 may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly

  3. Radiation resistance of ultra high molecular weight polyethylene and polyetheretherketone as materials for gasket and sealing

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Nakagiri, Naotaka; Koike, Michihiro.

    1990-11-01

    Radiation resistance of ultra high molecular weight polyethylene (NL-W) and polyetheretherketone (PEEK-450G) was tested to select the gasket and sealing materials used in the piping and valve for high level radioactive liquid in reprocessing of nuclear fuel. The tensile, bending, hardness, and seal tests were carried out after 60 Co-γ-ray irradiation in air, in oxygen under pressure, and in nitric acid of 3N and 10N at room temperature. For NL-W, the degradation was small until 3.2 MGy by the irradiation in air and in nitric acid, then the sealing was maintained. However, the degradation was observed by the irradiation in oxygen under pressure, then, the physical properties and sealing would be loosed gradually with dose in air at very low dose rate irradiation. For PEEK-450G, the radiation degradation was very small in the these irradiation conditions, but it was observed to degrade in the case of high temperature in high concentration of nitric acid. (author)

  4. Reactive Burn Model Calibration for PETN Using Ultra-High-Speed Phase Contrast Imaging

    Science.gov (United States)

    Johnson, Carl; Ramos, Kyle; Bolme, Cindy; Sanchez, Nathaniel; Barber, John; Montgomery, David

    2017-06-01

    A 1D reactive burn model (RBM) calibration for a plastic bonded high explosive (HE) requires run-to-detonation data. In PETN (pentaerythritol tetranitrate, 1.65 g/cc) the shock to detonation transition (SDT) is on the order of a few millimeters. This rapid SDT imposes experimental length scales that preclude application of traditional calibration methods such as embedded electromagnetic gauge methods (EEGM) which are very effective when used to study 10 - 20 mm thick HE specimens. In recent work at Argonne National Laboratory's Advanced Photon Source we have obtained run-to-detonation data in PETN using ultra-high-speed dynamic phase contrast imaging (PCI). A reactive burn model calibration valid for 1D shock waves is obtained using density profiles spanning the transition to detonation as opposed to particle velocity profiles from EEGM. Particle swarm optimization (PSO) methods were used to operate the LANL hydrocode FLAG iteratively to refine SURF RBM parameters until a suitable parameter set attained. These methods will be presented along with model validation simulations. The novel method described is generally applicable to `sensitive' energetic materials particularly those with areal densities amenable to radiography.

  5. Ultra-high vacuum target assembly for charged particle irradiations in the materials research field

    International Nuclear Information System (INIS)

    Bressers, J.; Cassanelli, G.; Cat, R. de; Kohnen, H.; Gherardi, G.

    1978-01-01

    A target assembly designed for ion irradiation and ion implantation experiments on different particle accelerators is described. It consists of a target chamber separated from the beam line by a thin metal window, thus allowing implantations to be carried out under ultra-high vacuum conditions. Homogeneous in-depth distribution of the implanted ion species is realized by rotating the target about an axis perpendicular to the ion beam (rocking). The target holder is driven by means of a stepping motor with a constant step angle and a rocking device controller containing the required rocking angle-dwell time relation. Ion beam homogeneity over a sufficiently large target area is arrived at by transforming the Gaussian beam intensity profile into a flat beam intensity distribution by means of an electrostatic ring lens. The beam intensity profile is monitored by means of a specially designed ion beam monitor based on the Nipkov disc principle. A toroidal beam current monitoring transformer continuously measures the total beam current. Beam scanners and current measuring collimators complete the beam analysing equipment

  6. Ultra high dilution of triiodothyronine modifies cellular apoptosis in Rana catesbeiana tadpole tail in vitro.

    Science.gov (United States)

    Guedes, J R P; Carrasco, S; Ferreira, C M; Bonamin, L V; Souza, W; Goldenstein-Schainberg, C; Parra, E R; Capelozzi, V L

    2011-10-01

    Ultra High Dilutions (UHD) are diluted beyond the Avogadro limit with dynamization (dilution with succussion). The process of anuran amphibian metamorphosis is controlled by thyroid hormones, including the resorption of the tadpole tail. A randomized and blinded study was performed to investigate the influence of triiodothyronine (T3) 5·10(-24)M (10cH) on apoptosis induced by T3 100 nM in Rana catesbeiana tadpoles' tail tips, in vitro. Explants were randomized to three groups: control: no T3 in pharmacological or UHD dose; test: T3 100 nM and challenged with T3 10cH (UHD); positive control: T3 100 nM, treated with unsuccussed ethanol. The apoptotic index and the area of explants of test and control groups at the first and final day of the experiment were compared by t-test. There was no difference in tail tip area between test and control groups, but a significantly higher (p<0.01) index of apoptosis in explants of the test group. This data suggest that T3 10cH modifies the effect of T3 at pharmacological dose, opening new perspectives for further studies and investigation of the dose-effect curve. Copyright © 2011 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  7. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review.

    Science.gov (United States)

    Macuvele, Domingos Lusitâneo Pier; Nones, Janaína; Matsinhe, Jonas V; Lima, Marla M; Soares, Cíntia; Fiori, Márcio A; Riella, Humberto G

    2017-07-01

    Ultra high molecular weight polyethylene (UHMWPE) is a semicrystalline polymer that has been applied, as a bearing surface in total human joint replacements and artificial bones. UHMWPE has a superior wear resistance, low-friction surface, biological inertness, high levels of strength, creep resistance and low friction coefficient. However, the wear debris generated during the joint motions could cause problem in human implant, such as osteolysis and loosening. For this, several attempts was been made to improve UHMWPE properties and increases safety and biocompatibility in human implants. One of them, include the use of hydroxyapatite (HA), as reinforcement agent to modify the UHMWPE properties and facilitate biological fixation between the implant and the human cells. Recent studies showed that the addition of HA in polymer matrix result in enhancement of mechanical and tribological properties. In addition, it also improves the formation of the actual bond between the material and the living organism since the hydroxyapatite is the major component of the mineral part of the human bone. In this brief review the some properties and characteristic of UHMWPE and HA are described and main processing methods of UHMWPE/HA composites and biocompatibility studies were also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Chain length and temperature dependence of alkanedithiol molecular conductance under ultra high vacuum.

    Science.gov (United States)

    Pires, Ellis; Macdonald, J Emyr; Elliott, Martin

    2013-10-07

    We report scanning tunnelling microscope (STM) measurements of the single molecule conductance of α,ω-alkanedithiols for a large range of molecular chain lengths (N = 3-10) and temperatures (180-390 K) under ultra high vacuum. Two STM-based measurement techniques were employed on molecules trapped between tip and substrate: (i) the well established current-distance or I(z) technique and (ii) a new I(V,z) technique in which the current-voltage characteristics are determined as the tip-substrate distance z is varied. Low, medium, and high conductance groups were observed for each molecular length, which were temperature independent over the range examined, consistent with off-resonance tunnelling. For N > 4 the current-voltage characteristics and conductance trend with chain length is well described using a simple rectangular tunnel barrier model with parameters in excellent agreement with previously reported values. However, both 1,3-propanedithiol (N = 3) and 1,4-butanedithiol (N = 4) show an anomalous behaviour which is qualitatively similar to, but much less pronounced than, that reported by Haiss et al. (Phys. Chem. Chem. Phys., 2009, 11, 10831) for measurements performed under air and nitrogen gas.

  9. Development of fast heating electron beam annealing setup for ultra high vacuum chamber.

    Science.gov (United States)

    Das, Sadhan Chandra; Majumdar, Abhijit; Katiyal, Sumant; Shripathi, T; Hippler, R

    2014-02-01

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 ºC with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (∼10(-6) mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 ºC of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  10. Concept for support and heating of plate-like samples in the ultra-high vacuum.

    Science.gov (United States)

    Tröger, L; Pieper, H H; Reichling, M

    2013-01-01

    We present the concept for a sample holder designed for mounting and heating of plate-like samples that is based on a clamping mechanism for easy handling. The clamping mechanism consists of a U-shaped bracket encompassing the sample support plate from the rear. Two spring wires are fixed in the walls of the bracket spanning the sample to secure it with only two point contacts. This enables the sample to freely expand or contract during heating and cooling. To accommodate for a large variety in sample size, shape, and quality, we introduce two designs differing in the generation of the clamping force: One pressing the sample against the spring wires, the other one pulling the spring wires onto the sample. Both designs yield an automatically even alignment of the sample during the mounting process to achieve an even load distribution and reliable fixation specifically for brittle samples. For high temperature treatment, the sample holders are enhanced by a resistive heating plate. As only the sample and a small fraction of the sample holder are heated, temperatures of 1300 °C are reached with only 8 W heating power. The sample support and heating components are mounted on a 11 mm × 13 mm base plate with a handle that can be transferred between the sample entry stage, the preparation stage, and surface science experiments in the ultra-high vacuum system.

  11. Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition.

    Science.gov (United States)

    English, Chris D; Shine, Gautam; Dorgan, Vincent E; Saraswat, Krishna C; Pop, Eric

    2016-06-08

    The scaling of transistors to sub-10 nm dimensions is strongly limited by their contact resistance (RC). Here we present a systematic study of scaling MoS2 devices and contacts with varying electrode metals and controlled deposition conditions, over a wide range of temperatures (80 to 500 K), carrier densities (10(12) to 10(13) cm(-2)), and contact dimensions (20 to 500 nm). We uncover that Au deposited in ultra-high vacuum (∼10(-9) Torr) yields three times lower RC than under normal conditions, reaching 740 Ω·μm and specific contact resistivity 3 × 10(-7) Ω·cm(2), stable for over four months. Modeling reveals separate RC contributions from the Schottky barrier and the series access resistance, providing key insights on how to further improve scaling of MoS2 contacts and transistor dimensions. The contact transfer length is ∼35 nm at 300 K, which is verified experimentally using devices with 20 nm contacts and 70 nm contact pitch (CP), equivalent to the "14 nm" technology node.

  12. A Novel Ultra High Speed and Configurable Discrete Wavelet Packet Transform Architecture

    Directory of Open Access Journals (Sweden)

    Mouhamad Chehaitly

    2017-07-01

    Full Text Available This work is dedicated to present a new pipeline-parallel architecture of Discrete Wavelet Packet Transform (DWPT for all wavelet family implemented in FPGA technology. The main target of our architecture is to provide an effective performance trade-off, where it significantly increases the throughput with a restricted amount of hardware. In this article, we propose two kinds of configurable architecture: first architecture with a very strict amount of hardware base of pipeline and sharing resource, and the second architecture provide an ultra-high speed by propose P-parallel DWPT and a parallel direct FIR filter under the strategy of pipeline-parallel and sharing resource. The pipeline and the clever sharing of the hardware resources are smartly connect based on low-pass and high-pass filters in the Mallat-tree algorithm. These architectures are fully configurable in synthesis according to parallel degree, the tree depth (number of tree levels, the order of the filters and the filter quantization coefficient. Consequently, the simulation results accelerated to an approximate value of P*(Frequency. Furthermore, the tree depth and filters order has little impact (only due to place and route variations on throughput. This architecture was synthesized using Altera Quartus prime lite edition targeting an Altera Cyclone IV – (FPGA and it was developed in VHDL at RTL level modeling.

  13. Project Overview of HTS Magnet for Ultra-high-field MRI System

    Science.gov (United States)

    Tosaka, Taizo; Miyazaki, Hiroshi; Iwai, Sadanori; Otani, Yasumi; Takahashi, Masahiko; Tasaki, Kenji; Nomura, Shunji; Kurusu, Tsutomu; Ueda, Hiroshi; Noguchi, So; Ishiyama, Atsushi; Urayama, Shinichi; Fukuyama, Hidenao

    A project to develop an ultra-high-field magnetic resonance imaging (MRI) system based on HTS magnets using (RE)Ba2Cu3O7 (REBCO; RE=rear earth) coils is underway. The project is supported by the Japanese Ministry of Economy, Trade and Industry and aims to establish magnet technologies for a whole-body 9.4 T MRI system. REBCO wires have high critical current density in high magnetic fields and high strength against hoop stresses, and therefore, MRI magnets using REBCO coils are expected to have cryogenic systems that are smaller, lighter, and simpler than the conventional ones. A major problem in using REBCO coils for MRI magnets is the huge irregular magnetic field generated by the screening current in REBCO tapes. Thus, the main purpose of this project is to make the influence of this screening current predictable and controllable. Fundamental technologies, including treatment of the screening currents, were studied via experiments and numerical simulations using small coils. Two types of model magnets are planned to be manufactured, and the knowledge gained in the development of the model magnets will be reflected in the magnet design of a whole-body 9.4 T MRI system.

  14. Ultra-high specific strength and deformation behavior of nanostructured Ti/Al multilayers

    International Nuclear Information System (INIS)

    Fu, Kunkun; An, Xianghai; Chang, Li; Wang, Hongjian; Ye, Lin; Sheppard, Leigh; Yang, Chunhui

    2017-01-01

    Nanostructured Ti/Al multilayers with individual layer thicknesses of 10 nm and 100 nm were fabricated using a direct current magnetron sputtering system. The results showed that the Ti/Al multilayer with λ   =  10 nm exhibited ultra-high specific strength of 658.9 kN · m kg −1 , greater than that with λ   =  100 nm and other existing multilayers. Such high specific strength of the Ti/Al multilayers endows them with strong potential for aerospace application. Moreover, depending on the stress concentration and barrier strength of the interface, layers of multilayer with λ   =  10 nm buckled severely, accompanied by the occurrence of pop-in, while a localized shear band formed in the multilayer with λ   =  100 nm. We also found that the occurrence of layer buckling had an effect on the hardness trend. (paper)

  15. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    International Nuclear Information System (INIS)

    Baerwald, Philipp

    2014-07-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space - unless the baryonic loading is much larger than previously anticipated.

  16. Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes.

    Science.gov (United States)

    Lu, Liulei; Ouyang, Dong; Xu, Weiting

    2016-05-27

    In this work, the effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties and durability of ultra high strength concrete (UHSC) is reported. First, the MWCNTs were dispersed by a nano sand-mill in the presence of a surfactant in water. The UHSC specimens were prepared with various amounts of MWCNTs, ranging from 0% to 0.15% by weight of cement (bwoc). Results indicated that use of an optimal percentage of MWCNTs (0.05% bwoc) caused a 4.63% increase in compressive strength and a 24.0% decrease in chloride diffusion coefficient of UHSC at 28 days curing. Moreover, the addition of MWCNTs also improved the flexural strength and deformation ability. Furthermore, a field-emission scanning electron microscopy (FE-SEM) was used to observe the dispersion of MWCNTs in the cement matrix and morphology of the hardened cement paste containing MWCNTs. FE-SEM observation revealed that MWCNTs were well dispersed in the matrix and no agglomerate was found and the reinforcing effect of MWCNTs on UHSC was thought to be pulling out and microcrack bridging of MWCNTs, which transferred the load in tension.

  17. Effects of nano-silica on mechanical performance and microstructure of ultra-high performance concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, T. M., E-mail: thiagomendes@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Londrina, PR (Brazil). Departamento de Engenharia Ambiental; Repette, W.L., E-mail: wellington.repette@gmail.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Civil; Reis, P.J., E-mail: pjlondrina@yahoo.com.br [Univeridade Estadual de Londrina (UEL), PR (Brazil). Lab. de Fisica Nuclear Aplicada

    2017-07-15

    The use of nanoparticles in ultra-high strength concretes can result in a positive effect on mechanical performance of these cementitious materials. This study evaluated mixtures containing 10 and 20 wt% of silica fume, for which the optimum nano-silica content was determined, i.e. the quantity of nano-silica that resulted on the higher gain of strength. The physical characterization of raw materials was done in terms of particle size distribution, density and specific surface area. Chemical and mineralogical compositions of materials were obtained through fluorescence and X-ray diffraction. The mechanical performance was evaluated by compressive strength, flexural strength and dynamic elastic modulus measurements. The microstructural analysis of mixtures containing nano-silica was performed by X-ray diffraction, thermogravimetry, mercury intrusion porosimetry and scanning electron microscopy. Obtained results indicate an optimum content of nano-silica of 0.62 wt%, considering compressive and flexural strengths. This performance improvement was directly related to two important microstructural aspects: the packing effect and pozzolanic reaction of nano-silica. (author)

  18. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  19. Surface functionalization of solid state ultra-high molecular weight polyethylene through chemical grafting

    Science.gov (United States)

    Sherazi, Tauqir A.; Rehman, Tayyiba; Naqvi, Syed Ali Raza; Shaikh, Ahson Jabbar; Shahzad, Sohail Anjum; Abbas, Ghazanfar; Raza, Rizwan; Waseem, Amir

    2015-12-01

    The surface of ultra-high molecular weight polyethylene (UHMWPE) powder was functionalized with styrene using chemical grafting technique. The grafting process was initiated through radical generation on base polymer matrix in the solid state by sodium thiosulfate, while peroxides formed at radical sites during this process were dissociated by ceric ammonium nitrate. Various factors were optimized and reasonably high level of monomer grafting was achieved, i.e., 15.6%. The effect of different acids as additive and divinyl benzene (DVB) as a cross-linking agent was also studied. Post-grafting sulfonation was conducted to introduce the ionic moieties to the grafted polymer. Ion-exchange capacity (IEC) was measured experimentally and is found to be 1.04 meq g-1, which is in close agreement with the theoretical IEC values. The chemical structure of grafted and functionalized polymer was characterized by attenuated total reflection infrared spectroscopy (ATR-FTIR) and thermal properties were investigated by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Thermal analysis depicts that the presence of radicals on the polymer chain accelerates the thermal decomposition process. The results signify that the chemical grafting is an effective tool for substantial surface modification and subsequent functionalization of polyethylene.

  20. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    International Nuclear Information System (INIS)

    Meng, L; Zhang, S P; Zhou, L J; Wang, Z W

    2014-01-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency