WorldWideScience

Sample records for involving hypothalamic-pituitary-gonadal axis

  1. Adaptive Response in Female Modeling of the Hypothalamic-pituitary-gonadal Axis

    Science.gov (United States)

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course ...

  2. Predicting Adaptive Response to Fadrozole Exposure:Computational Model of the Fathead MinnowsHypothalamic-Pituitary-Gonadal Axis

    Science.gov (United States)

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict doseresponse and time-course (...

  3. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity.

    Science.gov (United States)

    Oyola, Mario G; Handa, Robert J

    2017-09-01

    Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism's response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic-pituitary-gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life.

  4. Predicting Adaptive Response to Fadrozole Exposure: Computational Model of the Fathead Minnow Hypothalamic-Pituitary-Gonadal Axis

    Science.gov (United States)

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course (...

  5. Adaptive Response in Female Fathead Minnows Exposed to an Aromatase Inhibitor: Computational Modeling of the Hypothalamic-Pituitary-Gonadal Axis

    Science.gov (United States)

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course ...

  6. Computational Modeling of Hypothalamic-Pituitary-Gonadal Axis to Predict Adaptive Responses in Female Fathead Minnows Exposed to an Aromatase Inhibitor

    Science.gov (United States)

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose response and time-course...

  7. Electrotonic Coupling in the Pituitary Supports the Hypothalamic-Pituitary-Gonadal Axis in a Sex Specific Manner

    Directory of Open Access Journals (Sweden)

    Christina Göngrich

    2016-08-01

    Full Text Available Gap junctions are present in many cell types throughout the animal kingdom and allow fast intercellular electrical and chemical communication between neighboring cells. Connexin-36 (Cx36, the major neuronal gap junction protein, synchronizes cellular activity in the brain, but also in other organs. Here we identify a sex-specific role for Cx36 within the hypothalamic-pituitary-gonadal (HPG axis at the level of the anterior pituitary gland (AP. We show that Cx36 is expressed in gonadotropes of the AP sustaining their synchronous activity. Cx36 ablation affects the entire downstream HPG axis in females, but not in males. We demonstrate that Cx36-mediated coupling between gonadotropes in the AP supports gonadotropin-releasing hormone-induced secretion of luteinizing hormone. Furthermore, we provide evidence for negative feedback regulation of Cx36 expression in the AP by estradiol. We thus conclude that hormonally-controlled plasticity of gap junction communication at the level of the AP constitutes an additional mechanism affecting female reproduction.

  8. A study of temporal effects of the model anti-androgen flutamide on components of the hypothalamic-pituitary-gonadal axis in adult fathead minnows

    Data.gov (United States)

    U.S. Environmental Protection Agency — The aim of this study was to investigate temporal changes in the hypothalamic-pituitary-gonadal axis of fathead minnow treated with the model androgen receptor (AR)...

  9. A Time-course Analysis of Effects of the Steroidogenesis Inhibitor Ketoconazole on Components of the Hypothalamic-pituitary-gonadal Axis of Fathead Minnows

    Science.gov (United States)

    The objective of this study was to evaluate temporal effects of the model steroidogenesis inhibitor ketoconazole (KTC) on aspects of reproductive endocrine function controlled by the hypothalamic-pituitary-gonadal (HPG) axis in the fathead minnow (Pimephales promelas). Ketoconazo...

  10. Effect of cyanotoxins on the hypothalamic-pituitary-gonadal axis in male adult mouse.

    Science.gov (United States)

    Xiong, Xiaolu; Zhong, Anyuan; Xu, Huajun

    2014-01-01

    Microcystins LR (MC-LR) are hepatotoxic cyanotoxins that have been shown to induce reproductive toxicity, and Hypothalamic-Pituitary-Gonadal Axis (HPG) is responsible for the control of reproductive functions. However, few studies have been performed to evaluate the effects of MC-LR on HPG axis. This study aimed to investigate the MC-LR-induced toxicity in the reproductive system of mouse and focus on the HPG axis. Adult male C57BL/6 mice were exposed to various concentrations of MC-LR (0, 3.75, 7.50, 15.00 and 30.00 µg/kg body weight per day) for 1 to 14 days, and it was found that exposure to different concentrations of MC-LR significantly disturbed sperm production in the mice testes in a dose- and time-dependent manner. To elucidate the associated possible mechanisms, the serum levels of testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were assessed. Meanwhile, PCR assays were employed to detect alterations in a series of genes involved in HPG axis, such as FSH, LH, gonadotropin-releasing hormone (GnRH) and their complement receptors. Furthermore, the effect of MC-LR on the viability and testosterone production of Leydig cells were tested in vitro. MC-LR significantly impaired the spermatogenesis of mice possibly through the direct or indirect inhibition of GnRH synthesis at the hypothalamic level, which resulted in reduction of serum levels of LH that lead to suppression of testosterone production in the testis of mice. MC-LR may be a GnRH toxin that would disrupt the reproductive system of mice.

  11. Effect of cyanotoxins on the hypothalamic-pituitary-gonadal axis in male adult mouse.

    Directory of Open Access Journals (Sweden)

    Xiaolu Xiong

    Full Text Available Microcystins LR (MC-LR are hepatotoxic cyanotoxins that have been shown to induce reproductive toxicity, and Hypothalamic-Pituitary-Gonadal Axis (HPG is responsible for the control of reproductive functions. However, few studies have been performed to evaluate the effects of MC-LR on HPG axis. This study aimed to investigate the MC-LR-induced toxicity in the reproductive system of mouse and focus on the HPG axis.Adult male C57BL/6 mice were exposed to various concentrations of MC-LR (0, 3.75, 7.50, 15.00 and 30.00 µg/kg body weight per day for 1 to 14 days, and it was found that exposure to different concentrations of MC-LR significantly disturbed sperm production in the mice testes in a dose- and time-dependent manner. To elucidate the associated possible mechanisms, the serum levels of testosterone, follicle-stimulating hormone (FSH and luteinizing hormone (LH were assessed. Meanwhile, PCR assays were employed to detect alterations in a series of genes involved in HPG axis, such as FSH, LH, gonadotropin-releasing hormone (GnRH and their complement receptors. Furthermore, the effect of MC-LR on the viability and testosterone production of Leydig cells were tested in vitro.MC-LR significantly impaired the spermatogenesis of mice possibly through the direct or indirect inhibition of GnRH synthesis at the hypothalamic level, which resulted in reduction of serum levels of LH that lead to suppression of testosterone production in the testis of mice.MC-LR may be a GnRH toxin that would disrupt the reproductive system of mice.

  12. Computational Model of the Fathead Minnow Hypothalamic-Pituitary-Gonadal Axis: Incorporating Protein Synthesis in Improving Predictability of Responses to Endocrine Active Chemicals

    Science.gov (United States)

    There is international concern about chemicals that alter endocrine system function in humans and/or wildlife and subsequently cause adverse effects. We previously developed a mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minno...

  13. Defining global gene expression changes of the hypothalamic-pituitary-gonadal axis in female sGnRH-antisense transgenic common carp (Cyprinus carpio.

    Directory of Open Access Journals (Sweden)

    Jing Xu

    Full Text Available BACKGROUND: The hypothalamic-pituitary-gonadal (HPG axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus, 16 and 12 (pituitary, 119 and 93 (ovary, respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. CONCLUSIONS/SIGNIFICANCE: This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the

  14. Defining Global Gene Expression Changes of the Hypothalamic-Pituitary-Gonadal Axis in Female sGnRH-Antisense Transgenic Common Carp (Cyprinus carpio)

    Science.gov (United States)

    Xu, Jing; Huang, Wei; Zhong, Chengrong; Luo, Daji; Li, Shuangfei; Zhu, Zuoyan; Hu, Wei

    2011-01-01

    Background The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. Methodology/Principal Findings In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. Conclusions/Significance This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of

  15. A time-course analysis of effects of the steroidogenesis inhibitor ketoconazole on components of the hypothalamic-pituitary-gonadal axis of fathead minnows (Presentation)

    Science.gov (United States)

    The objective of this study was to evaluate temporal effects of the model steroidogenesis inhibitor ketoconazole (KTC) on aspects of reproductive endocrine function controlled by the hypothalamic-pituitary-gonadal (HPG) axis in the fathead minnow (Pimephales promelas). Ketoconazo...

  16. Transcriptional regulatory dynamics of the hypothalamic-pituitary-gonadal axis and its peripheral pathways as impacted by the 3-beta HSD inhibitor Trilostane in zebrafish (Danio rerio)

    Science.gov (United States)

    To identify transcription factors (TFs), members of hypothalamic-pituitary- gonadal axis (HPG-axis), TF networks and signaling pathways underlying generalized effects of 3-beta hydroxysteroid dehydrogenase (HSD3B) inhibition, reproductively mature zebrafish (Danio rerio) were exp...

  17. Alteration of the hypothalamic-pituitary-gonadal axis in estrogen- and androgen-treated adult male leopard frog, Rana pipiens

    Directory of Open Access Journals (Sweden)

    Jones Jeremy T

    2005-01-01

    Full Text Available Abstract Background Gonadal steroids, in particular 5 alpha-dihydrotestosterone (DHT and 17 beta-estradiol (E2, have been shown to feed back on the hypothalamic-pituitary-gonadal (HPG axis of the ranid frog. However, questions still remain on how DHT and E2 impact two of the less-studied components of the ranid HPG axis, the hypothalamus and the gonad, and if the feedback effects are consistently negative. Thus, the goal of the study was to examine the effects of DHT and E2 upon the HPG axis of the gonadally-intact, sexually mature male leopard frogs, Rana pipiens. Methods R. pipiens were implanted with silastic capsules containing either cholesterol (Ch, a control, DHT, or E2 for 10 or 30 days. At each time point, steroid-induced changes in hypothalamic GnRH and pituitary LH concentrations, circulating luteinizing hormone (LH, and testicular histology were examined. Results Frogs implanted with DHT or E2 for 10 days did not show significant alterations in the HPG axis. In contrast, frogs implanted with hormones for 30 days had significantly lower circulating LH (for both DHT and E2, decreased pituitary LH concentration (for E2 only, and disrupted spermatogenesis (for both DHT and E2. The disruption of spermatogenesis was qualitatively similar between DHT and E2, although the effects of E2 were consistently more potent. In both DHT and E2-treated animals, a marked loss of all pre-meiotic germ cells was observed, although the loss of secondary spermatogonia appeared to be the primary cause of disrupted spermatogenesis. Unexpectedly, the presence of post-meiotic germ cells was either unaffected or enhanced by DHT or E2 treatment. Conclusions Overall, these results showed that both DHT and E2 inhibited circulating LH and disrupted spermatogenesis progressively in a time-dependent manner, with the longer duration of treatment producing the more pronounced effects. Further, the feedback effects exerted by both steroid hormones upon the HPG axis were

  18. A study of temporal effects of the model anti-androgen flutamide on components of the hypothalamic-pituitary-gonadal axis in adult fathead minnows

    Science.gov (United States)

    The aim of this study was to investigate temporal changes in the hypothalamic-pituitary-gonadal (HPG) axis of fathead minnow (Pimephales promelas) treated with the model androgen receptor (AR) antagonist, flutamide. Reproductively-mature fish were exposed in a flow-through, meas...

  19. HPG-axis hormones during puberty : A study on the association with hypothalamic and pituitary volumes

    NARCIS (Netherlands)

    Peper, Jiska S.; Brouwer, Rachel M.; van Leeuwen, Marieke; Schnack, Hugo G.; Boomsma, Dorret I.; Kahn, Rene S.; Pol, Hilleke E. Hulshoff

    Objective: During puberty, the hypothalamus-pituitary-gonadal (HPG) axis is activated, leading to increases in luteinizing hormone (LH), follicle stimulating hormone (FSH) and sex steroids (testosterone and estradiol) levels. We aimed to study the association between hypothalamic and pituitary

  20. Pituitary-Gonadal Axis Hormone and Semen Analysis in Narcotic Dependency

    Directory of Open Access Journals (Sweden)

    Raheleh Assaei

    2013-04-01

    Full Text Available Background: Drug abuse is associated with numerous complications including hormonal disorders of hypothalamic-pituitary-gonadal axis and spermatogenic disorders. We have compared the hormone concentration of pituitary-gonadal axis and the semen analysis in opioid-dependent and non-opioid-dependent men.Materials and Methods: In this case-control study, serum concentration of pituitary- gonadal axis hormones and semen analysis in 48 opioid-dependent men as eligible to participate in the study were compared with those in 12 non-dependent men.Results: Free testosterone concentration in all test groups was significantly less than that in control group. Furthermore, the concentration of Dihydrotestosterone (DHT and Dehydroepiandrosterone Sulfate (DHEAS in all test groups except those addicted to heroin was less than in those in control group. Concentrations of LH, FSH, prolactin, SHBG, progesterone and estradiol, normal and abnormal sperm count in test groups were significantly different from control group. However, in all test groups, sperm motility rate was less than control group. No significant relationship was found between the concentration of sex hormones and the status of sperms motility. Conclusion: Chronic use of opioids will affect testosterone hormone and sperm, and it will cause hypogonadism and impairment of sperm motility.

  1. Transcriptome analysis revealed the possible regulatory pathways initiating female geese broodiness within the hypothalamic-pituitary-gonadal axis.

    Directory of Open Access Journals (Sweden)

    Hehe Liu

    Full Text Available Geese have the strongest tendency toward broodiness among all poultry. The mechanisms initiating broodiness within the goose hypothalamic-pituitary-gonadal axis (HPGA are still unclear. Here, we reported the transcriptome differences between laying and initial nesting within the HPGA tissues of geese. We constructed a unigene database based on HPGA tissues and identified 128,148 unigenes, 100% of which have been annotated. By using Digital Gene Expression (DGE sequencing, we screened 19, 110, 289, and 211 differentially expressed genes (DEGs in the hypothalamus, pituitary gland, stroma ovarii, and follicles, respectively, between laying and nesting geese. Expression changes of hypocretin (HCRT and pro-opiomelanocortin (POMC in the hypothalamus of nesting geese may cause appetite reduction, which is possibly the first step and a prerequisite to initiate broodiness. In addition to prolactin (PRL, follicle-stimulating hormone (FSH and luteinizing hormone (LH, genes including oxytocin-neurophysin (OXT, chordin-like protein 1 (CHRDL1 and growth hormone (GH, expressed in the pituitary gland, are new candidate molecules that may be involved in broodiness in geese. Heme oxygenase 1 (HMOX1 in the pituitary gland, the proto-oncogene c-Fos (FOS, heat shock protein 90-alpha (HSP90AA, and cyclin-dependent kinase 1 (CDK1 in the ovary that may consolidate and transduce signals regulating the HPGA during broodiness in geese.

  2. Transcriptome analysis revealed the possible regulatory pathways initiating female geese broodiness within the hypothalamic-pituitary-gonadal axis

    Science.gov (United States)

    Wang, Jiwen; Li, Liang; Han, Chunchun; He, Hua; Xu, Hengyong

    2018-01-01

    Geese have the strongest tendency toward broodiness among all poultry. The mechanisms initiating broodiness within the goose hypothalamic-pituitary-gonadal axis (HPGA) are still unclear. Here, we reported the transcriptome differences between laying and initial nesting within the HPGA tissues of geese. We constructed a unigene database based on HPGA tissues and identified 128,148 unigenes, 100% of which have been annotated. By using Digital Gene Expression (DGE) sequencing, we screened 19, 110, 289, and 211 differentially expressed genes (DEGs) in the hypothalamus, pituitary gland, stroma ovarii, and follicles, respectively, between laying and nesting geese. Expression changes of hypocretin (HCRT) and pro-opiomelanocortin (POMC) in the hypothalamus of nesting geese may cause appetite reduction, which is possibly the first step and a prerequisite to initiate broodiness. In addition to prolactin (PRL), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), genes including oxytocin-neurophysin (OXT), chordin-like protein 1 (CHRDL1) and growth hormone (GH), expressed in the pituitary gland, are new candidate molecules that may be involved in broodiness in geese. Heme oxygenase 1 (HMOX1) in the pituitary gland, the proto-oncogene c-Fos (FOS), heat shock protein 90-alpha (HSP90AA), and cyclin-dependent kinase 1 (CDK1) in the ovary that may consolidate and transduce signals regulating the HPGA during broodiness in geese. PMID:29408859

  3. Effects of aqueous extract from Asparagus officinalis L. roots on hypothalamic-pituitary-gonadal axis hormone levels and the number of ovarian follicles in adult rats

    Directory of Open Access Journals (Sweden)

    Hojatollah Karimi Jashni

    2016-02-01

    Full Text Available Background: Asparagus is a plant with high nutritional, pharmaceutical, and industrial values. Objective: The present study aimed to evaluate the effect of aqueous extract of asparagus roots on the hypothalamic-pituitary-gonadal axis hormones and oogenesis in female rats. Materials and Methods: In this experimental study, 40 adult female Wistar rats were divided into five groups, which consist 8 rats. Groups included control, sham and three experimental groups receiving different doses (100, 200, 400 mg/kg/bw of aqueous extract of asparagus roots. All dosages were administered orally for 28 days. Blood samples were taken from rats to evaluate serum levels of Gonadotropin releasing hormone (GnRH, follicular stimulating hormone (FSH, Luteinal hormone (LH, estrogen, and progesterone hormones. The ovaries were removed, weighted, sectioned, and studied by light microscope. Results: Dose-dependent aqueous extract of asparagus roots significantly increased serum levels of GnRH, FSH, LH, estrogen, and progestin hormones compared to control and sham groups. Increase in number of ovarian follicles and corpus luteum in groups treated with asparagus root extract was also observed (p<0.05. Conclusion: Asparagus roots extract stimulates secretion of hypothalamic- pituitary- gonadal axis hormones. This also positively affects oogenesis in female rats.

  4. Multiscale mathematical modeling of the hypothalamo-pituitary-gonadal axis.

    Science.gov (United States)

    Clément, Frédérique

    2016-07-01

    Although the fields of systems and integrative biology are in full expansion, few teams are involved worldwide into the study of reproductive function from the mathematical modeling viewpoint. This may be due to the fact that the reproductive function is not compulsory for individual organism survival, even if it is for species survival. Alternatively, the complexity of reproductive physiology may be discouraging. Indeed, the hypothalamo-pituitary-gonadal (HPG) axis involves not only several organs and tissues but also intricate time (from the neuronal millisecond timescale to circannual rhythmicity) and space (from molecules to organs) scales. Yet, mathematical modeling, and especially multiscale modeling, can renew our approaches of the molecular, cellular, and physiological processes underlying the control of reproductive functions. In turn, the remarkable dynamic features exhibited by the HPG axis raise intriguing and challenging questions to modelers and applied mathematicians. In this article, we draw a panoramic review of some mathematical models designed in the framework of the female HPG, with a special focus on the gonadal and central control of follicular development. On the gonadal side, the modeling of follicular development calls to the generic formalism of structured cell populations, that allows one to make mechanistic links between the control of cell fate (proliferation, differentiation, or apoptosis) and that of the follicle fate (ovulation or degeneration) or to investigate how the functional interactions between the oocyte and its surrounding cells shape the follicle morphogenesis. On the central, mainly hypothalamic side, models based on dynamical systems with multiple timescales allow one to represent within a single framework both the pulsatile and surge patterns of the neurohormone GnRH. Beyond their interest in basic research investigations, mathematical models can also be at the source of useful tools to study the encoding and decoding of

  5. Opposite influence of light and blindness on pituitary-gonadal function

    Directory of Open Access Journals (Sweden)

    Antonio eBellastella

    2014-01-01

    Full Text Available Some environmental factors may influence the pituitary-gonadal function. Among these, light plays an important role in animal and in humans. The effect of light on the endocrine system is mediated by the pineal gland, through the modulation of melatonin secretion. In fact, melatonin secretion is stimulated by darkness and suppressed by light, thus its circadian rhythm peaks at night. Light plays a favourable action on the hypothalamic-pituitary axis likely inhibiting melatonin secretion, even if the exogenous melatonin administration does not seem to impair the hormonal secretions of this axis. The basal and rhythmic pituitary-gonadal hormone secretions is regulated by a central clock gene and some independent clock genes present in the peripheral tissues. Light is able to induce the expression of some of these genes, thus playing an important role in regulating the hormonal secretions of pituitary -gonadal axis and the sexual and reproductive function in animals and humans. The lack of light stimulus in blind subjects induces increased plasma melatonin concentrations with a free-running rhythm of secretion, which impairs the hormonal secretions of pituitary-gonadal axis, causing disorders of reproductive processes in both sexes.

  6. Involvement of Endogenous Brain-Derived Neurotrophic Factor in Hypothalamic-Pituitary-Adrenal Axis Activity.

    Science.gov (United States)

    Naert, G; Zussy, C; Tran Van Ba, C; Chevallier, N; Tang, Y-P; Maurice, T; Givalois, L

    2015-11-01

    Brain-derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic-pituitary-adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF-specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (-31%) and hypothalamus (-35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild-type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress. © 2015 British Society for Neuroendocrinology.

  7. Sex-dependent effects of microcystin-LR on hypothalamic-pituitary-gonad axis and gametogenesis of adult zebrafish

    Science.gov (United States)

    Liu, Wanjing; Chen, Chuanyue; Chen, Liang; Wang, Li; Li, Jian; Chen, Yuanyuan; Jin, Jienan; Kawan, Atufa; Zhang, Xuezhen

    2016-03-01

    While microcystins (MCs) have been reported to exert reproductive toxicity on fish with a sex-dependent effect, the underlying mechanism has been rarely investigated. In the present study, zebrafish were exposed to 1, 5 and 20 μg/L MC-LR for 30 d. The gonad-somatic index declined in all treated males. 17β-estradiol (E2), testosterone (T), 11-keto testosterone (11-KT) and follicle-stimulating hormone (FSH) levels increased in serum from all treated females, while T, FSH and luteinizing hormone (LH) levels changed in all treated males. Histomorphological observation showed that MC-LR exposure evidently retarded oogenesis and spermatogenesis. Transcriptional changes of 22 genes of the hypothalamic-pituitary-gonad (HPG) axis exhibited sex-specific responses, and the relationship between gene transcriptions and gametogenesis was evaluated by principle component analysis (PCA). Major contributors to PC1 (gnrh2, gnrhr3, ar, lhr, hmgra, hmgrb and cyp19a) were positively correlated with the number of post-vitellogenic oocytes, while PC1 (gnrh2, lhβ, erβ, fshr, cyp11a and 17βhsd) were positively correlated with the number of spermatozoa. The protein levels of 17βHSD and CYP19a were affected in both females and males. In conclusion, this study first investigated the sex-dependent effects of microcystins on fish reproduction and revealed some important molecular biomarkers related to gametogenesis in zebrafish suffered from MC-LR.

  8. Hypothalamic-pituitary-adrenal axis activity is not elevated in a songbird (Junco hyemalis) preparing for migration.

    Science.gov (United States)

    Bauer, Carolyn M; Needham, Katie B; Le, Chuong N; Stewart, Emily C; Graham, Jessica L; Ketterson, Ellen D; Greives, Timothy J

    2016-06-01

    During spring, increasing daylengths stimulate gonadal development in migratory birds. However, late-stage reproductive development is typically postponed until migration has been completed. The hypothalamic-pituitary-adrenal (HPA) axis regulates the secretion of glucocorticoids, which have been associated with pre-migratory hyperphagia and fattening. The HPA-axis is also known to suppress the hypothalamic-pituitary-gonadal (HPG) axis, suggesting the possibility that final transition into the breeding life history stage may be slowed by glucocorticoids. We hypothesized that greater HPA-axis activity in individuals preparing for migration may foster preparation for migration while simultaneously acting as a "brake" on the development of the HPG-axis. To test this hypothesis, we sampled baseline corticosterone (CORT), stress-induced CORT, and negative feedback efficacy of Dark-eyed Juncos (Junco hyemalis) in an overwintering population that included both migratory (J.h. hyemalis) and resident (J.h. carolinensis) individuals. We predicted that compared to residents, migrants would have higher baseline CORT, higher stress-induced CORT, and weaker negative feedback. Juncos were sampled in western Virginia in early March, which was about 2-4wk before migratory departure for migrants and 4-5wk before first clutch initiation for residents. Contrary to our predictions, we found that migrants had lower baseline and stress-induced CORT and similar negative feedback efficacy compared with residents, which suggests that delayed breeding in migrants is influenced by other physiological mechanisms. Our findings also suggest that baseline CORT is not elevated during pre-migratory fattening, as migrants had lower baseline CORT and were fatter than residents. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Urinary gonadotrophins: a useful non-invasive marker of activation of the hypothalamic pituitary-gonadal axis

    Directory of Open Access Journals (Sweden)

    McNeilly Jane D

    2012-05-01

    Full Text Available Abstract Background Non-invasive screening investigations are rarely used for assessing the activation and progression of the hypothalamic-pituitary gonadal axis through puberty. This study aimed to establish a normal range for urinary gonadotrophins in children progressing through puberty. Methods Urine samples were collected from 161 healthy school children (76 boys, 85 girls aged 4–19 yrs. Height and weight were converted to standard deviation score. Pubertal status, classified by Tanner staging, was determined by self-assessment. Urinary gonadotrophins were measured by chemiluminescent microparticle immunoassay. Results were grouped according to pubertal status (pre-pubertal or pubertal. Results Of the 161 children, 50 were pre-pubertal (28 boys; 22 girls and 111 were pubertal (48 boys; 63 girls. Overall, urinary gonadotrophins concentrations increased with pubertal maturation. All pre-pubertal children had a low urinary LH:Creatinine ratio. LH:Creatinine ratios were significantly higher in pubertal compared to pre-pubertal boys (pp = 0.006. However, LH:FSH ratios were a more consistent discriminant between pre-pubertal and pubertal states in both sexes (Boys 0.45 pubertal vs 0.1 pre-pubertal; girls 0.23 pubertal vs 0.06 pre-pubertal. Conclusion Urinary gonadotrophins analyses could be used as non-invasive integrated measurement of pubertal status which reflects clinical/physical status.

  10. Evaluation of basal sex hormone levels for activation of the hypothalamic-pituitary-gonadal axis.

    Science.gov (United States)

    Ding, Yu; Li, Juan; Yu, Yongguo; Yang, Peirong; Li, Huaiyuan; Shen, Yongnian; Huang, Xiaodong; Liu, Shijian

    2018-03-28

    This study aimed to identify the predictive value of basal sex hormone levels for activation of the hypothalamic-pituitary-gonadal (HPG) axis in girls. Gonadotropin-releasing hormone (GnRH) stimulation tests were performed and evaluated in a total of 1750 girls with development of secondary sex characteristics. Correlation analyses were conducted between basal sex hormones and peak luteinizing hormone (LH) levels ≥5 IU/L during the GnRH stimulation test. Receiver operating characteristic (ROC) curves for basal levels of LH, follicle-stimulating hormone (FSH), LH/FSH, and estradiol (E2) before the GnRH stimulation test were plotted. The area under the curve (AUC) and 95% confidence intervals (CIs) were measured for each curve. The maximum AUC value was observed for basal LH levels (0.77, 95% CI: 0.74-0.79), followed by basal FSH levels (0.73, 95% CI: 0.70-0.75), the basal LH/FSH ratio (0.68, 95% CI: 0.65-0.71), and basal E2 levels (0.61, 95% CI: 0.59-0.64). The appropriate cutoff value of basal LH levels associated with a positive response of the GnRH stimulation test was 0.35 IU/L, with a sensitivity of 63.96% and specificity of 76.3% from the ROC curves when Youden's index showed the maximum value. When 100% of patients had peak LH levels ≥5 IU/L, basal LH values were >2.72 IU/L, but the specificity was only 5.45%. Increased basal LH levels are a significant predictor of a positive response during the GnRH stimulation test for assessing activation of the HPG axis in most girls with early pubertal signs.

  11. The role of hypothalamic inflammation, the hypothalamic-pituitary-adrenal axis and serotonin in the cancer anorexia-cachexia syndrome.

    Science.gov (United States)

    van Norren, Klaske; Dwarkasing, Jvalini T; Witkamp, Renger F

    2017-09-01

    In cancer patients, the development of cachexia (muscle wasting) is frequently aggravated by anorexia (loss of appetite). Their concurrence is often referred to as anorexia-cachexia syndrome. This review focusses on the recent evidence underlining hypothalamic inflammation as key driver of these processes. Special attention is given to the involvement of hypothalamic serotonin. The anorexia-cachexia syndrome is directly associated with higher mortality in cancer patients. Recent reports confirm its severe impact on the quality of life of patients and their families.Hypothalamic inflammation has been shown to contribute to muscle and adipose tissue loss in cancer via central hypothalamic interleukine (IL)1β-induced activation of the hypothalamic-pituitary-adrenal axis. The resulting release of glucocorticoids directly stimulates catabolic processes in these tissues via activation of the ubiquitin-proteosome pathway. Next to this, hypothalamic inflammation has been shown to reduce food intake in cancer by triggering changes in orexigenic and anorexigenic responses via upregulation of serotonin availability and stimulation of its signalling pathways in hypothalamic tissues. This combination of reduced food intake and stimulation of tissue catabolism represents a dual mechanism by which hypothalamic inflammation contributes to the development and maintenance of anorexia and cachexia in cancer. Hypothalamic inflammation is a driving force in the development of the anorexia-cachexia syndrome via hypothalamic-pituitary-adrenal axis and serotonin pathway activation.

  12. Adversity-driven changes in hypothalamic-pituitary-adrenal axis functioning during adolescence

    NARCIS (Netherlands)

    Laceulle, O.M.; Nederhof, Esther; van Aken, M.A.G.; Ormel, Johan

    2017-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis has been proposed to be a key mechanism underlying the link between adversity and mental health, but longitudinal studies on adversity and HPA-axis functioning are scarce. Here, we studied adversity-driven changes in HPA-axis functioning during

  13. Tissue explant coculture model of the hypothalamic-pituitary-gonadal-liver axis of the fathead minnow (Pimephales promelas) as a predictive tool for endocrine disruption.

    Science.gov (United States)

    Johnston, Theresa K; Perkins, Edward; Ferguson, Duncan C; Cropek, Donald M

    2016-10-01

    Endocrine-disrupting compounds (EDCs) can impact the reproductive system by interfering with the hypothalamic-pituitary-gonadal (HPG) axis. Although in vitro testing methods have been developed to screen chemicals for endocrine disruption, extrapolation of in vitro responses to in vivo action shows inconsistent accuracy. The authors describe a tissue coculture of the fathead minnow (Pimephales promelas) HPG axis and liver (HPG-L) as a tissue explant model that mimics in vivo results. Brain (hypothalamus), pituitary, gonad, and liver tissue explants from adult fish were examined for function both individually and in coculture to determine combinations and conditions that could replicate in vivo behavior. Only cocultures had the ability to respond to an EDC, trenbolone, similarly to in vivo studies, based on estradiol, testosterone, and vitellogenin production trends, where lower exposure doses suppressed hormone production but higher doses increased production, resulting in distinctive U-shaped curves. These data suggest that a coculture system with all components of the HPG-L axis can be used as a link between in vitro and in vivo studies to predict endocrine system disruption in whole organisms. This tissue-based HPG-L system acts as a flexible deconstructed version of the in vivo system for better control and examination of the minute changes in system operation and response on EDC exposure with options to isolate, interrogate, and recombine desired components. Environ Toxicol Chem 2016;35:2530-2541. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  14. Effect of cancer treatment on hypothalamic-pituitary function.

    Science.gov (United States)

    Crowne, Elizabeth; Gleeson, Helena; Benghiat, Helen; Sanghera, Paul; Toogood, Andrew

    2015-07-01

    The past 30 years have seen a great improvement in survival of children and young adults treated for cancer. Cancer treatment can put patients at risk of health problems that can develop many years later, most commonly affecting the endocrine system. Patients treated with cranial radiotherapy often develop dysfunction of the hypothalamic-pituitary axis. A characteristic pattern of hormone deficiencies develops over several years. Growth hormone is disrupted most often, followed by gonadal, adrenal, and thyroid hormones, leading to abnormal growth and puberty in children, and affecting general wellbeing and fertility in adults. The severity and rate of development of hypopituitarism is determined by the dose of radiotherapy delivered to the hypothalamic-pituitary axis. Individual growth hormone deficiencies can develop after a dose as low as 10 Gy, whereas multiple hormone deficiencies are common after 60 Gy. New techniques in radiotherapy aim to reduce the effect on the hypothalamic-pituitary axis by minimising the dose received. Patients taking cytotoxic drugs do not often develop overt hypopituitarism, although the effect of radiotherapy might be enhanced. The exception is adrenal insufficiency caused by glucocorticosteroids which, although transient, can be life-threatening. New biological drugs to treat cancer can cause autoimmune hypophysitis and hypopituitarism; therefore, oncologists and endocrinologists should be vigilant and work together to optimise patient outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The effects of stress on hypothalamic-pituitary-adrenal (HPA) axis function in subjects with schizophrenia

    NARCIS (Netherlands)

    P.C. Guest (Paul); D. Martins-de-Souza (Daniel); H. Rahmoune (Hassan); S. Bahn (Sabine); P.C. Guest (Paul)

    2013-01-01

    textabstractOver the last few decades, evidence has been emerging that the pathogenesis of psychiatric disorders such as schizophrenia can involve perturbations of the hypothalamic-pituitary-adrenal (HPA) axis. Variations in the manifestation of these effects could be related to the differences in

  16. Environmental stressors and epigenetic control of the hypothalamic-pituitary-adrenal-axis (HPA-axis)

    OpenAIRE

    Lee, Richard; Sawa, Akira

    2014-01-01

    In this review, we provide a brief summary of several key studies that broaden our understanding of stress and its epigenetic control of the hypothalamic-pituitary-adrenal axis (HPA)-axis function and behavior. Clinical and animal studies suggest a link among exposure to stress, dysregulation of the HPA-axis, and susceptibility to neuropsychiatric illnesses. Recent studies have supported the notion that exposure to glucocorticoids and stress in various forms, duration, and intensity during di...

  17. MRI of the hypothalamic-pituitary axis in children

    International Nuclear Information System (INIS)

    Argyropoulou, Maria I.; Kiortsis, Dimitrios Nikiforos

    2005-01-01

    In childhood, the MR characteristics of the normal pituitary gland are well established. During the first 2 months of life the adenohypophysis demonstrates high signal. Pituitary gland height (PGH) decreases during the 1st year of life and then increases, reaching a plateau after puberty. The magnetization transfer ratio (MTR) increases in both sexes up to the age of 20 years. On dynamic contrast-enhanced studies, the posterior pituitary lobe enhances simultaneously with the straight sinus, and the adenohypophysis later, but within 30 s. In genetically determined dysfunctional states, the adenohypophysis may be normal, hypoplastic, or enlarged. Pituitary enlargement, observed in Prop 1 gene mutations, is characterized by a mass interposed between the anterior and posterior lobes. An ectopic posterior lobe (EPP), associated with a hypoplastic or absent pituitary stalk, may be observed in patients with hypopituitarism. Tumors of the hypothalamic-pituitary (HP) axis may be the origin of adenohypophyseal deficiencies. A small hypointense adenohypophysis is found in iron overload states and is often associated with hypogonadotrophic hypogonadism. Absence of the posterior lobe bright signal, with or without a thick pituitary stalk or a mass at any site from the median eminence to the posterior pituitary lobe, may be found in diabetes insipidus. Hydrocephalus, suprasellar arachnoid cysts, hypothalamic hamartomas and craniopharyngiomas may result in central precocious puberty (CPP). Increased PGH in girls with idiopathic CPP is useful for its differential diagnosis from premature thelarche (PT). Pituitary adenomas, observed mainly in adolescents, present the same MR characteristics as those in adults. (orig.)

  18. MRI of the hypothalamic-pituitary axis in children

    Energy Technology Data Exchange (ETDEWEB)

    Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Kiortsis, Dimitrios Nikiforos [University of Ioannina, Department of Physiology, Medical School, Ioannina (Greece)

    2005-11-01

    In childhood, the MR characteristics of the normal pituitary gland are well established. During the first 2 months of life the adenohypophysis demonstrates high signal. Pituitary gland height (PGH) decreases during the 1st year of life and then increases, reaching a plateau after puberty. The magnetization transfer ratio (MTR) increases in both sexes up to the age of 20 years. On dynamic contrast-enhanced studies, the posterior pituitary lobe enhances simultaneously with the straight sinus, and the adenohypophysis later, but within 30 s. In genetically determined dysfunctional states, the adenohypophysis may be normal, hypoplastic, or enlarged. Pituitary enlargement, observed in Prop 1 gene mutations, is characterized by a mass interposed between the anterior and posterior lobes. An ectopic posterior lobe (EPP), associated with a hypoplastic or absent pituitary stalk, may be observed in patients with hypopituitarism. Tumors of the hypothalamic-pituitary (HP) axis may be the origin of adenohypophyseal deficiencies. A small hypointense adenohypophysis is found in iron overload states and is often associated with hypogonadotrophic hypogonadism. Absence of the posterior lobe bright signal, with or without a thick pituitary stalk or a mass at any site from the median eminence to the posterior pituitary lobe, may be found in diabetes insipidus. Hydrocephalus, suprasellar arachnoid cysts, hypothalamic hamartomas and craniopharyngiomas may result in central precocious puberty (CPP). Increased PGH in girls with idiopathic CPP is useful for its differential diagnosis from premature thelarche (PT). Pituitary adenomas, observed mainly in adolescents, present the same MR characteristics as those in adults. (orig.)

  19. Effects of Microcystis on Hypothalamic-Pituitary-Gonadal-Liver Axis in Nile Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Chen, Jiazhang; Meng, Shunlong; Xu, Hai; Zhang, Zhen; Wu, Xiangyang

    2017-04-01

    In the present study, Nile tilapia (Oreochromis niloticus) were used to assess the endocrine disruption potential of Microcytis aeruginosa. Male Nile tilapia were exposed to lyophilized M. aeruginosa or purified microcystin-LR (8.3 μg/L) for 28 days. The levels of serum hormones (17β-estradiol and testosterone) and transcripts of selected genes in the hypothalamus-pituitary-gonadal-liver axis were analyzed. The results showed that serum hormones were significantly up-regulated, and transcripts of 13 genes (GHRH, PACAP, GH, GHR1, GHR2, IGF1, IGF2, CYP19a, CYP19b, 3β-HSD1, 20β-HSD, 17β-HSD1 and 17β-HSD8) were significantly altered after Microcytis exposure. These results indicate that fish reproduction can be altered in a Microcystis bloom-contaminated aquatic environment.

  20. Hypothalamic Pituitary Adrenal Axis Functioning in Reactive and Proactive Aggression in Children

    Science.gov (United States)

    Lopez-Duran, Nestor L.; Olson, Sheryl L.; Hajal, Nastassia J.; Felt, Barbara T.; Vazquez, Delia M.

    2009-01-01

    The purpose of this study was to examine the association between hypothalamic-pituitary-adrenal axis (HPA-axis) reactivity and proactive and reactive aggression in pre-pubertal children. After a 30-min controlled base line period, 73 7-year-old children (40 males and 33 females) were randomly assigned to one of two experimental tasks designed to…

  1. Adolescent Survivors of Hurricane Katrina: A Pilot Study of Hypothalamic-Pituitary-Adrenal Axis Functioning

    Science.gov (United States)

    Pfefferbaum, Betty; Tucker, Phebe; Nitiéma, Pascal

    2015-01-01

    Background: The hypothalamic-pituitary-adrenal (HPA) axis constitutes an important biological component of the stress response commonly studied through the measurement of cortisol. Limited research has examined HPA axis dysregulation in youth exposed to disasters. Objective: This study examined HPA axis activation in adolescent Hurricane Katrina…

  2. Hypothalamic-pituitary-adrenal axis activity and early onset of cannabis use

    NARCIS (Netherlands)

    Huizink, Anja C.; Ferdinand, Robert F.; Ormel, Johan; Verhulst, Frank C.

    Aims To identify early onset cannabis users by measuring basal hypothalamic-pituitary-adrenal (HPA) axis activity, which may be a risk factor for early onset substance use when showing low activity. Design In a prospective cohort study, adolescents who initiated cannabis use at an early age (9-12

  3. Hypothalamic-pituitary-adrenal axis activity and early onset of cannabis use

    NARCIS (Netherlands)

    Huizink, Anja C.; Ferdinand, Robert F.; Ormel, Johan; Verhulst, Frank C.

    2006-01-01

    Aims To identify early onset cannabis users by measuring basal hypothalamic-pituitary-adrenal (HPA) axis activity, which may be a risk factor for early onset substance use when showing low activity. Design In a prospective cohort study, adolescents who initiated cannabis use at an early age (9-12

  4. Radiation and the hypothalamic-pituitary axis

    International Nuclear Information System (INIS)

    Littley, M.D.; Shalet, S.M.; Beardwell, C.G.

    1991-01-01

    This paper reports on radiation therapy which is an essential treatment in the management of many conditions. It is important to appreciate the high incidence of subsequent endocrine morbidity, however, if the hypothalamic pituitary region is within the radiation fields. This is very much more common with external radiation therapy than with other forms of radiation treatment. The dose and fractional of administered radiation are important determinants of the endocrine deficits, their time on onset, and severity. Irradiation of large volumes of brain and hypothalamus may increase the risk of hormonal abnormalities as may preceding surgery in the treatment of pituitary disease. The phenomena observed in children and adults illustrate that there may be damage to pituitary, hypothalamus, and higher centers. In patients who have received a significant radiation dose to the hypothalamic-pituitary region, regular follow-up is mandatory. In adults, surveillance will include pituitary function testing on an annual basis for at least 10 years. In children careful monitoring of growth and pubertal development and early treatment of radiation-induced GH deficiency are vital

  5. Hypothalamic-pituitary thyroid axis alterations in female mice with deletion of the neuromedin B receptor gene.

    Science.gov (United States)

    Oliveira, Karen J; Paula, Gabriela S M; Império, Guinever E; Bressane, Nina O; Magalhães, Carolina M A; Miranda-Alves, Leandro; Ortiga-Carvalho, Tania M; Pazos-Moura, Carmen C

    2014-11-01

    Neuromedin B, a peptide highly expressed at the pituitary, has been shown to act as autocrine/paracrine inhibitor of thyrotropin (TSH) release. Here we studied the thyroid axis of adult female mice lacking neuromedin B receptor (NBR-KO), compared to wild type (WT) littermates. They exhibited slight increase in serum TSH (18%), with normal pituitary expression of mRNA coding for α-glycoprotein subunit (Cga), but reduced TSH β-subunit mRNA (Tshb, 41%), lower intra-pituitary TSH content (24%) and increased thyroid hormone transporter MCT-8 (Slc16a2, 44%) and thyroid hormone receptor β mRNA expression (Thrb, 39%). NBR-KO mice exhibited normal thyroxine (T4) and reduced triiodothyronine (T3) (30%), with no alterations in the intra-thyroidal content of T4 and T3 or thyroid morphological changes. Hypothalamic thyrotropin-releasing hormone (TRH) mRNA (Trh) was increased (68%), concomitant with a reduction in type 2 deiodinase mRNA (Dio2, 30%) and no changes in MCT-8 and thyroid hormone receptor mRNA expression. NBR-KO mice exhibited a 56% higher increase in serum TSH in response to an acute single intraperitoneal injection of TRH concomitant with a non-significant increase in pituitary TRH receptor (Trhr) mRNA at basal state. The phenotype of female NBR-KO mice at the hypothalamus-pituitary axis revealed alterations in pituitary and hypothalamic gene expression, associated with reduced serum T3, and higher TSH response to TRH, with apparently normal thyroid morphology and hormonal production. Thus, results confirm that neuromedin B pathways are importantly involved in secretory pathways of TSH and revealed its participation in the in vivo regulation of gene expression of TSH β-subunit and pituitary MCT8 and Thrb and hypothalamic TRH and type 2 deiodinase. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Assessment of endocrine disorders of the hypothalamic-pituitary axis by nuclear medicine techniques

    International Nuclear Information System (INIS)

    Schmidt, M.; Theissen, P.; Dietlein, M.; Schicha, H.; Jackenhoevel, F.; Krone, W.

    2002-01-01

    The following article reviews nuclear medicine techniques which can be used for assessment of endocrine disorders of the hypothalamic-pituitary axis. For planar and SPECT imaging somatostatin-receptor- and dopamine-D2-receptor-scintigraphy are the most widely distributed techniques. These nuclear medicine techniques may be indicated in selected cases to answer differential diagnostic problems. They can be helpful to search for presence and localization of receptor positive tissue. Furthermore they can detect metastasis in the rare cases of a pituitary carcinoma. Scintigraphy with Gallium-67 is suitable for further diagnostic evaluation in suspected hypophysitis. Other SPECT radiopharmaca do not have relevant clinical significance. F-18-FDG as PET radiopharmacon is not ideal because obvious pituitary adenomas could not be visualized. Other PET radiopharmaca including C-11-methionine, C-11-tyrosine, F-18-fluoroethylspiperone, C-11-methylspiperone, and C-11-raclopride are available in specialized centers only. Overall indications for nuclear medicine in studies for the assessment of endocrine disorders of the hypothalamic-pituitary-axis are rare. Original studies often report only about a small number of patients. According to the authors' opinion the relevance of nuclear medicine in studies of clinically important endocrinologic fields, e. g. localization of small ACTH-producing pituitary adenomas, tumor localization in ectopic ACTH syndrome, localization of recurrent pituitary tissue, assessment of small incidentalomas, can not be definitely given yet. (orig.) [de

  7. The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: molecular and cellular mechanisms involved.

    Science.gov (United States)

    Bonfiglio, Juan José; Inda, Carolina; Refojo, Damián; Holsboer, Florian; Arzt, Eduardo; Silberstein, Susana

    2011-01-01

    Corticotropin-releasing hormone (CRH) plays a key role in adjusting the basal and stress-activated hypothalamic-pituitary-adrenal axis (HPA). CRH is also widely distributed in extrahypothalamic circuits, where it acts as a neuroregulator to integrate the complex neuroendocrine, autonomic, and behavioral adaptive response to stress. Hyperactive and/or dysregulated CRH circuits are involved in neuroendocrinological disturbances and stress-related mood disorders such as anxiety and depression. This review describes the main physiological features of the CRH network and summarizes recent relevant information concerning the molecular mechanism of CRH action obtained from signal transduction studies using cells and wild-type and transgenic mice lines. Special focus is placed on the MAPK signaling pathways triggered by CRH through the CRH receptor 1 that plays an essential role in CRH action in pituitary corticotrophs and in specific brain structures. Recent findings underpin the concept of specific CRH-signaling pathways restricted to specific anatomical areas. Understanding CRH action at molecular levels will not only provide insight into the precise CRH mechanism of action, but will also be instrumental in identifying novel targets for pharmacological intervention in neuroendocrine tissues and specific brain areas involved in CRH-related disorders. Copyright © 2011 S. Karger AG, Basel.

  8. Use of cognitive behavior therapy for functional hypothalamic amenorrhea.

    Science.gov (United States)

    Berga, Sarah L; Loucks, Tammy L

    2006-12-01

    Behaviors that chronically activate the hypothalamic-pituitary-adrenal (HPA) axis and/or suppress the hypothalamic-pituitary-thyroidal (HPT) axis disrupt the hypothalamic-pituitary-gonadal axis in women and men. Individuals with functional hypothalamic hypogonadism typically engage in a combination of behaviors that concomitantly heighten psychogenic stress and increase energy demand. Although it is not widely recognized clinically, functional forms of hypothalamic hypogonadism are more than an isolated disruption of gonadotropin-releasing hormone (GnRH) drive and reproductive compromise. Indeed, women with functional hypothalamic amenorrhea display a constellation of neuroendocrine aberrations that reflect allostatic adjustments to chronic stress. Given these considerations, we have suggested that complete neuroendocrine recovery would involve more than reproductive recovery. Hormone replacement strategies have limited benefit because they do not ameliorate allostatic endocrine adjustments, particularly the activation of the adrenal and the suppression of the thyroidal axes. Indeed, the rationale for the use of sex steroid replacement is based on the erroneous assumption that functional forms of hypothalamic hypogonadism represent only or primarily an alteration in the hypothalamic-pituitary-gonadal axis. Potential health consequences of functional hypothalamic amenorrhea, often termed stress-induced anovulation, may include an increased risk of cardiovascular disease, osteoporosis, depression, other psychiatric conditions, and dementia. Although fertility can be restored with exogenous administration of gonadotropins or pulsatile GnRH, fertility management alone will not permit recovery of the adrenal and thyroidal axes. Initiating pregnancy with exogenous means without reversing the hormonal milieu induced by chronic stress may increase the likelihood of poor obstetrical, fetal, or neonatal outcomes. In contrast, behavioral and psychological interventions that

  9. Experimentally challenged reactivity of the hypothalamic pituitary adrenal axis in patients with recently diagnosed rheumatoid arthritis

    NARCIS (Netherlands)

    Dekkers, J. C.; Geenen, R.; Godaert, G. L.; Glaudemans, K. A.; Lafeber, F. P.; van Doornen, L. J.; Bijlsma, J. W.

    2001-01-01

    There is evidence that the hypothalamic pituitary adrenal (HPA) axis is subresponsive in patients with rheumatoid arthritis (RA). We assessed HPA axis responses to experimental stressors mimicking daily life challenges in patients with RA to determine whether HPA axis activity is associated with Th1

  10. Anatomy of melancholia: focus on hypothalamic-pituitary-adrenal axis overactivity and the role of vasopressin.

    LENUS (Irish Health Repository)

    Dinan, Timothy G

    2012-02-03

    Overactivity of the hypothalamic-pituitary-adrenal (HPA) axis characterized by hypercortisolism, adrenal hyperplasia and abnormalities in negative feedback is the most consistently described biological abnormality in melancholic depression. Corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) are the main secretagogues of the HPA\\/stress system. Produced in the parvicellular division of the hypothalamic paraventricular nucleus the release of these peptides is influenced by inputs from monoaminergic neurones. In depression, anterior pituitary CRH1 receptors are down-regulated and response to CRH infusion is blunted. By contrast, vasopressin V3 receptors on the anterior pituitary show enhanced response to AVP stimulation and this enhancement plays a key role in maintaining HPA overactivity.

  11. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    Gordijn, Maartje S.; Gemke, Reinoud J. B. J.; van Dalen, Elvira C.; Rotteveel, Joost; Kaspers, Gertjan J. L.

    2012-01-01

    Background Glucocorticoids play a major role in the treatment of acute lymphoblastic leukaemia (ALL). However, supraphysiological doses may cause suppression of the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis suppression resulting in reduced cortisol response may cause an impaired stress

  12. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    Gordijn, Maartje S.; Rensen, Niki; Gemke, Reinoud J. B. J.; van Dalen, Elvira C.; Rotteveel, Joost; Kaspers, Gertjan J. L.

    2015-01-01

    Glucocorticoids play a major role in the treatment of acute lymphoblastic leukaemia (ALL). However, supraphysiological doses can suppress the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis suppression resulting in reduced cortisol response may cause an impaired stress response and an inadequate

  13. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    Rensen, Niki; Gemke, Reinoud J. B. J.; van Dalen, Elvira C.; Rotteveel, Joost; Kaspers, Gertjan J. L.

    2017-01-01

    Glucocorticoids play a major role in the treatment of acute lymphoblastic leukaemia (ALL). However, supraphysiological doses can suppress the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis suppression resulting in reduced cortisol response may cause an impaired stress response and an inadequate

  14. Orexin receptor expression in the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes of free-living European beavers (Castor fiber L.) in different periods of the reproductive cycle.

    Science.gov (United States)

    Czerwinska, Joanna; Chojnowska, Katarzyna; Kaminski, Tadeusz; Bogacka, Iwona; Smolinska, Nina; Kaminska, Barbara

    2017-01-01

    Orexins are hypothalamic neuropeptides acting via two G protein-coupled receptors in mammals: orexin receptor 1 (OX1R) and orexin receptor 2 (OX2R). In European beavers, which are seasonally breeding animals, the presence and functions of orexins and their receptors remain unknown. Our study aimed to determine the expression of OXR mRNAs and the localization of OXR proteins in hypothalamic-pituitary-adrenal/gonadal (HPA/HPG) axes in free-living beavers. The expression of OXR genes (OX1R, OX2R) and proteins was found in all analysed tissues during three periods of beavers' reproductive cycle (April, July, November). The expression of OXR mRNAs in the beaver HPA axis varied seasonally (Ppituitary and adrenals, OX1R mRNA levels were relatively constant in females and peaked in July in males (P<0.05), whereas the OX2R was most highly expressed in males in November and in females in April (P<0.05). In gonads, OX1R expression did not fluctuate between seasons or sexes, but transcript levels were elevated in the testes in November and in the ovaries in July (P<0.05). In turn, OX2R mRNA levels varied between the sexes (P<0.05) and were higher in females (July and November) than in males (P<0.05). The circannual variations in OXR mRNA levels in HPA and HPG axes suggest that the expression of these receptors is associated with sex-specific changes in beavers' reproductive activity and their environmental adaptations. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice

    DEFF Research Database (Denmark)

    McNeilly, Alison D; Macfarlane, David P; O'Flaherty, Emmett

    2010-01-01

    Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5bet...

  16. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats.

    Science.gov (United States)

    Sena, Gabriela C; Freitas-Lima, Leandro C; Merlo, Eduardo; Podratz, Priscila L; de Araújo, Julia F P; Brandão, Poliane A A; Carneiro, Maria T W D; Zicker, Marina C; Ferreira, Adaliene V M; Takiya, Christina M; de Lemos Barbosa, Carolina M; Morales, Marcelo M; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B

    2017-03-15

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100ng/kg/day) for 15days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be

  17. A role for glucocorticoids in stress-impaired reproduction: beyond the hypothalamus and pituitary.

    Science.gov (United States)

    Whirledge, Shannon; Cidlowski, John A

    2013-12-01

    In addition to the well-characterized role of the sex steroid receptors in regulating fertility and reproduction, reproductive events are also mediated by the hypothalamic-pituitary-adrenal axis in response to an individual's environment. Glucocorticoid secretion in response to stress contributes to the well-characterized suppression of the hypothalamic-pituitary-gonadal axis through central actions in the hypothalamus and pituitary. However, both animal and in vitro studies indicate that other components of the reproductive system are also regulated by glucocorticoids. Furthermore, in the absence of stress, it appears that homeostatic glucocorticoid signaling plays a significant role in reproduction and fertility in all tissues comprising the hypothalamic-pituitary-gonadal axis. Indeed, as central regulators of the immune response, glucocorticoids are uniquely poised to integrate an individual's infectious, inflammatory, stress, nutritional, and metabolic status through glucocorticoid receptor signaling in target tissues. Endocrine signaling between tissues regulating the immune and stress response and those determining reproductive status provides an evolutionary advantage, facilitating the trade-off between reproductive investment and offspring fitness. This review focuses on the actions of glucocorticoids in tissues important for fertility and reproduction, highlighting recent studies that show glucocorticoid signaling plays a significant role throughout the hypothalamic-pituitary-gonadal axis and characterizing these effects as permissive or inhibitory in terms of facilitating reproductive success.

  18. Effects of Crocin on The Pituitary-Gonadal Axis and Hypothalamic Kiss-1 Gene Expression in Female Wistar Rats

    Directory of Open Access Journals (Sweden)

    Dina Zohrabi

    2018-01-01

    Full Text Available Background Saffron (Crocus sativus L. has been traditionally used as a spice for coloring and flavoring in some countries cuisine. One of the main components of saffron is Crocin. Recent research have shown that crocin has various pharmacological effects. The aim of this study was to assess the effects of crocin on the Pituitary-Gonadal axis and Kiss-1 gene expression in hypothalamus and ovarian tissue organization in female Wistar rats. Materials and Methods In this experimental study, 18 adult female Wistar rats were randomly divided into three groups. Control group received normal saline and experimental groups received two different doses of crocin (100 and 200 mg/kg every two days for 30 days. After the treatment period, blood samples were obtained from the heart and centrifuged. Next, the serum levels of follicle-stimulating hormone (FSH and luteinizing hormone (LH, estrogen and progesterone hormones were measured by ELISA assay. The ovarian tissues were removed and fixed for histological investigation. The hypothalamic Kiss-1 gene expression was measured using real-time polymerase chain reaction (PCR. All data were analyzed using one-way ANOVA. Results A significant reduction (P=0.038 in the number of atretic graafian follicles (0.5 ± 0.31 was observed in rats treated with 200 mg/kg crocin. In addition, estrogen concentration in experimental groups (35.04 ± 0.85 and 36.18 ± 0.69 in crocin 100 and 200 mg/kg groups, respectively compared to control group (38.35 ± 0.64 and progesterone concentration in rats treated with crocin 200 mg/kg (2.06 ± 0.07 compared to control group (2.16 ± 0.04, significantly decreased. Interestingly, relative expressions of Kiss-1 mRNA significantly decreased in experimental groups (0.00053 ± 0.00051 and 0.0011 ± 0.00066 in crocin 100 and 200 mg/kg groups, respectively (P=0.000 compared to control group (1 ± 0. Conclusion Crocin, at hypothalamic level, reduces Kiss-1 gene expression and it can prevent

  19. Androgen receptor CAG repeat polymorphism and hypothalamic-pituitary-gonadal function in Filipino young adult males

    Science.gov (United States)

    Ryan, Calen P.; McDade, Thomas W; Gettler, Lee T.; Eisenberg, Dan T.A.; Rzhetskaya, Margarita; Hayes, M. Geoffey; Kuzawa, Christopher W.

    2016-01-01

    Objectives Testosterone (T), the primary androgenic hormone in males, is stimulated through pulsatile secretion of LH and regulated through negative feedback inhibition at the hypothalamus and pituitary. The hypothalamic-pituitary-gonadal (HPG) axis also controls sperm production through the secretion of follicle-stimulating hormone (FSH). Negative feedback in the HPG axis is achieved in part through the binding of T to the androgen receptor (AR), which contains a highly variable trinucleotide repeat polymorphism (AR-CAGn). The number of repeats in the AR-CAGn inversely correlates with transcriptional activity of the AR. Thus, we predicted longer AR-CAGn to be associated with higher T, LH, and FSH levels. Methods We examined the relationship between AR-CAGn and total plasma T, LH, and FSH, as well as 'bioavailable' morning (AM-T) and evening (PM-T) testosterone in 722 young (21.5 ± 0.5 years) Filipino males. Results There was no relationship between AR-CAGn and total T, AM-T, or LH (P > 0.25 for all). We did observe a marginally non-significant (P = 0.066) correlation between AR-CAGn and PM-T in the predicted direction, and a negative correlation between AR-CAGn and FSH (P = 0.005). Conclusions Our results both support and differ from previous findings in this area, and study parameters that differ between our study and others, such as participant age, sample time, and the role of other hormones should be considered when interpreting our findings. While our data point to a modest effect of AR-CAGn on HPG regulation at best, the AR-CAGn may still affect somatic traits by regulating androgenic activity at peripheral tissues. PMID:27417274

  20. Disrupted-in-Schizophrenia-1 is essential for normal hypothalamic-pituitary-interrenal (HPI) axis function.

    Science.gov (United States)

    Eachus, Helen; Bright, Charlotte; Cunliffe, Vincent T; Placzek, Marysia; Wood, Jonathan D; Watt, Penelope J

    2017-06-01

    Psychiatric disorders arise due to an interplay of genetic and environmental factors, including stress. Studies in rodents have shown that mutants for Disrupted-In-Schizophrenia-1 (DISC1), a well-accepted genetic risk factor for mental illness, display abnormal behaviours in response to stress, but the mechanisms through which DISC1 affects stress responses remain poorly understood. Using two lines of zebrafish homozygous mutant for disc1, we investigated behaviour and functioning of the hypothalamic-pituitary-interrenal (HPI) axis, the fish equivalent of the hypothalamic-pituitary-adrenal (HPA) axis. Here, we show that the role of DISC1 in stress responses is evolutionarily conserved and that DISC1 is essential for normal functioning of the HPI axis. Adult zebrafish homozygous mutant for disc1 show aberrant behavioural responses to stress. Our studies reveal that in the embryo, disc1 is expressed in neural progenitor cells of the hypothalamus, a conserved region of the vertebrate brain that centrally controls responses to environmental stressors. In disc1 mutant embryos, proliferating rx3+ hypothalamic progenitors are not maintained normally and neuronal differentiation is compromised: rx3-derived ff1b+ neurons, implicated in anxiety-related behaviours, and corticotrophin releasing hormone (crh) neurons, key regulators of the stress axis, develop abnormally, and rx3-derived pomc+ neurons are disorganised. Abnormal hypothalamic development is associated with dysfunctional behavioural and neuroendocrine stress responses. In contrast to wild type siblings, disc1 mutant larvae show altered crh levels, fail to upregulate cortisol levels when under stress and do not modulate shoal cohesion, indicative of abnormal social behaviour. These data indicate that disc1 is essential for normal development of the hypothalamus and for the correct functioning of the HPA/HPI axis. © The Author 2017. Published by Oxford University Press.

  1. Essence of "Shen (Kidney) Controlling Bones": Conceptual Analysis Based on Hypothalamic-Pituitary-Adrenal-Osteo-Related Cells Axis.

    Science.gov (United States)

    Xu, Tao-Tao; Jin, Hong-Ting; Tong, Pei-Jian

    2018-04-12

    As a traditional concept of Chinese medicine (CM), the theory of "Shen (Kidney) controlling bones" has been gradually proven. And in modern allopathic medicine, the multiple mechanisms of bone growth, development and regeneration align with the theory. Shen defifi ciency as a pathological condition has a negative effect on the skeleton of body, specififi cally the disorder of bone homeostasis. Present studies indicate that Shen defifi ciency shares a common disorder characterized by dysfunction of hypothalamic-pituitary-adrenal (HPA) axis. HPA axis may be an important regulator of bone diseases with abnormal homeostasis. Therefore, we posit the existence of hypothalamic-pituitary-adrenal-osteo-related cells axis: cells that comprise bone tissue (osteo-related cells) are targets under the regulation of HPA axis in disorder of bone homeostasis. Chinese herbs for nourishing Shen have potential in the development of treatments for disorder of bone homeostasis.

  2. Stress responsiveness of the hypothalamic-pituitary-adrenal axis: age-related features of the vasopressinergic regulation

    Directory of Open Access Journals (Sweden)

    Nadezhda Dmitrievna Goncharova

    2013-03-01

    Full Text Available The hypothalamic-pituitary-adrenal (HPA axis plays a key role in adaptation to environmental stresses. Parvicellular neurons of the hypothalamic paraventricular nucleus secrete corticotrophin releasing hormone (CRH and arginine vasopressin (AVP into pituitary portal system; CRH and AVP stimulate ACTH release through specific G protein-coupled membrane receptors on pituitary corticotrophs, CRH1 for CRH and V1b for AVP; the adrenal gland cortex secretes glucocorticoids in response ACTH. The glucocorticoids activate specific receptors in brain and peripheral tissues thereby triggering the necessary metabolic, immune, neuromodulatory and behavioral changes to resist stress. While importance of CRH, as a key hypothalamic factor of HPA axis regulation in basal and stress conditions in most species, is generally recognized, role of AVP remains to be clarified. This review focuses on the role of AVP in the regulation of stress responsiveness of the HPA axis with emphasis on the effects of aging on vasopressinergic regulation of HPA axis stress responsiveness. Under most of the known stressors, AVP is necessary for acute ACTH secretion but in a context-specific manner. The current data on the AVP role in regulation of HPA responsiveness to chronic stress in adulthood are rather contradictory. The importance of the vasopressinergic regulation of the HPA stress responsiveness is greatest during fetal development, in neonatal period, and in the lactating adult. Aging associated with increased variability in several parameters of HPA function including basal state, responsiveness to stressors, and special testing. Reports on the possible role of the AVP/V1b receptor system in the increase of HPA axis hyperactivity with aging are contradictory and requires further research. Many contradictory results may be due to age and species differences in the HPA function of rodents and primates.

  3. Perioperative management of the hypothalamic-pituitary-adrenal axis in patients with pituitary adenomas: an Australasian survey.

    Science.gov (United States)

    Joseph, S P; Ho, J T; Doogue, M P; Burt, M G

    2012-10-01

    There is limited consensus regarding optimal glucocorticoid administration for pituitary surgery to prevent a potential adrenal crisis. To assess the investigation and management of the hypothalamic-pituitary-adrenal (HPA) axis in patients undergoing trans-sphenoidal hypophysectomy in Australasia. A questionnaire was sent to one endocrinologist at each of 18 centres performing pituitary surgery in Australasia. Using hypothetical case vignettes, respondents were asked to describe their investigation and management of the HPA axis for a patient with a: non-functioning macroadenoma and intact HPA axis, non-functioning macroadenoma and HPA deficiency and growth hormone secreting microadenoma undergoing trans-sphenoidal hypophysectomy. Responses were received from all 18 centres. Seventeen centres assess the HPA axis preoperatively by measuring early morning cortisol or a short synacthen test. Preoperative evaluation of the HPA status influenced glucocorticoid prescription by 10 centres, including 2/18 who would not prescribe perioperative glucocorticoids for a patient with a macroadenoma and an intact HPA axis. Tumour size influenced glucocorticoid prescribing patterns at 7/18 centres who prescribe a lower dose or no glucocorticoids for a patient with a microadenoma. Choice of investigations for definitive postoperative assessment of the HPA axis varied with eight centres requesting an insulin tolerance test, four centres a 250 µg short synacthen test and six centres requesting other tests. There is wide variability in the investigation and management of perioperative glucocorticoid requirements for patients undergoing pituitary surgery in Australasia. This may reflect limited evidence to define optimal management and that further well-designed studies are needed. © 2011 The Authors; Internal Medicine Journal © 2011 Royal Australasian College of Physicians.

  4. Food and the circadian activity of the hypothalamic-pituitary-adrenal axis

    Directory of Open Access Journals (Sweden)

    A.M.O. Leal

    1997-12-01

    Full Text Available Temporal organization is an important feature of biological systems and its main function is to facilitate adaptation of the organism to the environment. The daily variation of biological variables arises from an internal time-keeping system. The major action of the environment is to synchronize the internal clock to a period of exactly 24 h. The light-dark cycle, food ingestion, barometric pressure, acoustic stimuli, scents and social cues have been mentioned as synchronizers or" zeitgebers". The circadian rhythmicity of plasma corticosteroids has been well characterized in man and in rats and evidence has been accumulated showing daily rhythmicity at every level of the hypothalamic-pituitary-adrenal (HPA axis. Studies of restricted feeding in rats are of considerable importance because they reveal feeding as a major synchronizer of rhythms in HPA axis activity. The daily variation of the HPA axis stress response appears to be closely related to food intake as well as to basal activity. In humans, the association of feeding and HPA axis activity has been studied under physiological and pathological conditions such as anorexia nervosa, bulimia, malnutrition, obesity, diabetes mellitus and Cushing's syndrome. Complex neuroanatomical pathways and neurochemical circuitry are involved in feeding-associated HPA axis modulation. In the present review we focus on the interaction among HPA axis rhythmicity, food ingestion, and different nutritional and endocrine states

  5. Hypothalamic-pituitary-adrenal axis reactivity to social stress and adolescent cannabis use: the TRAILS study

    NARCIS (Netherlands)

    Prince van Leeuwen, A.; Creemers, H.E.; Greaves-Lord, K.; Verhulst, F.C.; Ormel, J.; Huizink, A.C.

    2011-01-01

    Aims: To investigate the relationship of life-time and repeated cannabis use with hypothalamic-pituitary-adrenal (HPA) axis reactivity to social stress in a general population sample of adolescents. Design: Adolescents who reported life-time or repeated cannabis use, life-time or repeated tobacco

  6. Hypothalamic-pituitary-adrenal axis reactivity to social stress and adolescent cannabis use : the TRAILS study

    NARCIS (Netherlands)

    van Leeuwen, Andrea Prince; Creemers, Hanneke E.; Greaves-Lord, Kirstin; Verhulst, Frank C.; Ormel, Johan; Huizink, Anja C.

    Aims To investigate the relationship of life-time and repeated cannabis use with hypothalamic-pituitary-adrenal (HPA) axis reactivity to social stress in a general population sample of adolescents. Design Adolescents who reported life-time or repeated cannabis use, life-time or repeated tobacco use

  7. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2015-01-01

    Full Text Available Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA axis induce activity in the cellular reduction-oxidation (redox system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure.

  8. A Role for Glucocorticoids in Stress-Impaired Reproduction: Beyond the Hypothalamus and Pituitary

    OpenAIRE

    Whirledge, Shannon; Cidlowski, John A.

    2013-01-01

    In addition to the well-characterized role of the sex steroid receptors in regulating fertility and reproduction, reproductive events are also mediated by the hypothalamic-pituitary-adrenal axis in response to an individual's environment. Glucocorticoid secretion in response to stress contributes to the well-characterized suppression of the hypothalamic-pituitary-gonadal axis through central actions in the hypothalamus and pituitary. However, both animal and in vitro studies indicate that oth...

  9. Role of the Hypothalamic-Pituitary-Adrenal Axis in Developmental Programming of Health and Disease

    Science.gov (United States)

    Xiong, Fuxia; Zhang, Lubo

    2012-01-01

    Adverse environments during the fetal and neonatal development period may permanently program physiology and metabolism, and lead to increased risk of diseases in later life. Programming of the hypothalamic-pituitary-adrenal (HPA) axis is one of the key mechanisms that contribute to altered metabolism and response to stress. Programming of the HPA axis often involves epigenetic modification of the glucocorticoid receptor (GR) gene promoter, which influences tissue-specific GR expression patterns and response to stimuli. This review summarizes the current state of research on the HPA axis and programming of health and disease in the adult, focusing on the epigenetic regulation of GR gene expression patterns in response to fetal and neonatal stress. Aberrant GR gene expression patterns in the developing brain may have a significant negative impact on protection of the immature brain against hypoxic-ischemic encephalopathy in the critical period of development during and immediately after birth. PMID:23200813

  10. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo, Eduardo; Podratz, Priscila L.; Araújo, Julia F.P. de [Department of Morphology, Federal University of Espírito Santo (Brazil); Brandão, Poliane A.A.; Carneiro, Maria T.W.D. [Department of Chemistry, Federal University of Espírito Santo (Brazil); Zicker, Marina C. [Department of Food Science, Faculty of Pharmacy, Federal University of Minas Gerais (Brazil); Ferreira, Adaliene V.M. [Department of Basic Nursing, Nursing School, Federal University of Minas Gerais (Brazil); Takiya, Christina M.; Lemos Barbosa, Carolina M. de; Morales, Marcelo M. [Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (Brazil); Santos-Silva, Ana Paula [Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (Brazil); Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (Brazil); Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro (Brazil); Miranda-Alves, Leandro [Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (Brazil); Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro (Brazil); Silva, Ian V. [Department of Morphology, Federal University of Espírito Santo (Brazil); Graceli, Jones B., E-mail: jbgraceli@gmail.com [Department of Morphology, Federal University of Espírito Santo (Brazil)

    2017-03-15

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may

  11. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats

    International Nuclear Information System (INIS)

    Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo, Eduardo; Podratz, Priscila L.; Araújo, Julia F.P. de; Brandão, Poliane A.A.; Carneiro, Maria T.W.D.; Zicker, Marina C.; Ferreira, Adaliene V.M.; Takiya, Christina M.; Lemos Barbosa, Carolina M. de; Morales, Marcelo M.; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V.; Graceli, Jones B.

    2017-01-01

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may

  12. Influence of ERβ selective agonism during the neonatal period on the sexual differentiation of the rat hypothalamic-pituitary-gonadal (HPG axis

    Directory of Open Access Journals (Sweden)

    Patisaul Heather B

    2012-01-01

    Full Text Available Abstract Background It is well established that sexual differentiation of the rodent hypothalamic-pituitary-gonadal (HPG axis is principally orchestrated by estrogen during the perinatal period. Here we sought to better characterize the mechanistic role the beta form of the estrogen receptor (ERβ plays in this process. Methods To achieve this, we exposed neonatal female rats to three doses (0.5, 1 and 2 mg/kg of the ERβ selective agonist diarylpropionitrile (DPN using estradiol benzoate (EB as a positive control. Measures included day of vaginal opening, estrous cycle quality, GnRH and Fos co-localization following ovariectomy and hormone priming, circulating luteinizing hormone (LH levels and quantification of hypothalamic kisspeptin immunoreactivity. A second set of females was then neonatally exposed to DPN, the ERα agonist propyl-pyrazole-triol (PPT, DPN+PPT, or EB to compare the impact of ERα and ERβ selective agonism on kisspeptin gene expression in pre- and post-pubescent females. Results All three DPN doses significantly advanced the day of vaginal opening and induced premature anestrus. GnRH and Fos co-labeling, a marker of GnRH activation, following ovariectomy and hormone priming was reduced by approximately half at all doses; the magnitude of which was not as large as with EB or what we have previously observed with the ERα agonist PPT. LH levels were also correspondingly lower, compared to control females. No impact of DPN was observed on the density of kisspeptin immunoreactive (-ir fibers or cell bodies in the arcuate (ARC nucleus, and kisspeptin-ir was only significantly reduced by the middle (1 mg/kg DPN dose in the preoptic region. The second experiment revealed that EB, PPT and the combination of DPN+PPT significantly abrogated preoptic Kiss1 expression at both ages but ARC expression was only reduced by EB. Conclusion Our results indicate that selective agonism of ERβ is not sufficient to completely achieve male

  13. Effects of BPA and E2 on expression profiles of genes related to hypothalamic-pituitary-gonadal axis of half-smooth tongue sole Cynoglossus semilaevis

    Science.gov (United States)

    Li, Fengling; Li, Zhaoxin; Wang, Qingyin; Zhai, Yuxiu

    2013-05-01

    Endocrine disrupting chemicals (EDCs) are increasingly viewed as persistent pollutants, similar to natural hormones in function. This paper describes the expression profiles of 7 genes ( DMRT, VTG GnRHR FSHR CYP17A CYP19A, and CYP19B) involved in sex steroid synthesis and action as well as sexual development in adult male and female Cynoglossus semilaevis, after exposure to different concentrations of Bisphenol A (BPA) and 17β-estradiol (E2). Both BPA (1, 10, 50, 125, and 250 mg/kg) and E2 (0.5, 5, and 10 mg/kg) induced changes in target gene expression, although the estrogenic effects of E2 as a model estrogen were stronger. Among the 7 genes, VTG CYP17A and CYP19 responded strongly to BPA or E2 exposure and can thus serve as reference biomarkers for estrogenic EDCs exposure in marine teleosts. These data will provide a window to establish a hypothalamic-pituitary-gonadal model in C. semilaevis to better understand the effect pathways of EDCs.

  14. [The hypothalamic-pituitary-adrenal axis and depressive disorder: recent progress].

    Science.gov (United States)

    Kunugi, Hiroshi; Hori, Hiroaki; Numakawa, Tadahiro; Ota, Miho

    2012-08-01

    Depression is a stress-induced disorder and there is compelling evidence for the involvement of hypothalamic-pituitary-adrenal (HPA) axis abnormalities in the disease. Chronic hyperactivity of the HPA axis and resultant excessive glucocorticoid (hypercortisolism) may be causal to depression. We demonstrated that the dexamethasone (DEX)/CRH test is a sensitive state-dependent marker to monitor HPA axis abnormalities. Restoration from HPA axis abnormalities occurs with clinical responses to treatment. Brain-derived neurotrophic factor (BDNF) has also been implicated in depression. We found that glucocorticoid (DEX) suppresses BDNF-induced dendrite outgrowth and synaptic formation via blocking the MAPK pathway in early-developing cultured hippocampal neurons. Furthermore, we demonstrated that glucocorticoid receptor (GR) and TrkB (a specific receptor of BDNF) interact and that DEX acutely suppresses BDNF-induced glutamate release by affecting the PLC-gamma pathway in cultured cortical neurons, indicating a mechanism underlying the effect of excessive glucocorticoid on BDNF function and resultant damage in cortical neurons. In a macroscopic view using magnetic resonance imaging (MRI), we found that individuals with hypercortisolism detected by the DEX/CRH test demonstrated volume loss in gray matter and reduced neural network assessed with diffusion tensor imaging in several brain regions. Finally, we observed that individuals with hypocortisolism detected by the DEX/CRH test tend to present more distress symptoms, maladaptive coping styles, and schizotypal personality traits than their counterparts, which points to the important role of hypocortisolism as well as hypercortisolism in depression spectrum disorders.

  15. The relation between hypothalamic-pituitary-adrenal (HPA) axis activity and age of onset of alcohol use

    NARCIS (Netherlands)

    Evans, B.E.; Greaves-Lord, K.; Euser, A.S.; Franken, I.H.A.; Huizink, A.C.

    2012-01-01

    Aims: Hypothalamic-pituitary-adrenal (HPA) axis activity may prove a viable biomarker for identifying those susceptible to alcohol use disorders. The purpose of this study was to examine the relation of the age at which adolescents begin drinking with diurnal and stress cortisol. Design:

  16. The hypothalamic- pituitary -adrenal -leptin axis and metabolic health: A systems approach to resilience, robustness and control

    NARCIS (Netherlands)

    Aschbacher, K.; Rodriguez-Fernandez, M.; Wietmarschen, H. van; Tomiyama, A.; Jain, S.; Epel, E.; Doyle III, F.J.; Greef, J. van der

    2014-01-01

    Glucocorticoids contribute to obesity and metabolic syndrome; however, the mechanisms are unclear, and prognostic measures are unavailable. A systems level understanding of the hypothalamic-pituitary-adrenal (HPA) -leptin axis may reveal novel insights. Eighteen obese premenopausal women provided

  17. Stability analysis of a hypothalamic-pituitary-adrenal axis model with inclusion of glucocorticoid receptor and memory

    Science.gov (United States)

    Kaslik, Eva; Navolan, Dan Bogdan; Neamţu, Mihaela

    2017-01-01

    This paper analyzes a four-dimensional model of the hypothalamic-pituitary-adrenal (HPA) axis that includes the influence of the glucocorticoid receptor in the pituitary. Due to the spatial separation between the hypothalamus, pituitary and adrenal glands, distributed time delays are introduced in the mathematical model. The existence of the positive equilibrium point is proved and a local stability and bifurcation analysis is provided, considering several types of delay kernels. The fractional-order model with discrete time delays is also taken into account. Numerical simulations are provided to illustrate the effectiveness of the theoretical findings.

  18. Feeding prepubescent gilts a high-fat diet induces molecular changes in the hypothalamus-pituitary-gonadal axis and predicts early timing of puberty.

    Science.gov (United States)

    Zhuo, Yong; Zhou, Dongsheng; Che, Lianqiang; Fang, Zhengfeng; Lin, Yan; Wu, De

    2014-01-01

    The onset of puberty in females has been occurring earlier over the past decades, presumably as a result of improved nutrition in developed countries. However, the underlying molecular mechanisms responsible for the early attainment of puberty as a result of nutrition fortification remain largely unknown. The aim of this study was to evaluate the hormone and gene expression changes in prepubescent gilts fed a high-fat diet to investigate whether these changes could predict the early timing of puberty. Forty gilts were fed a daily basal diet (LE) or a basal diet with an additional 270 g/d or 340 g/d of fat (HE) during the prepubescent phase. Blood samples were collected during the prepubescent phase to detect hormone secretion changes in insulin-like growth factor-1, kisspeptin, estradiol, progesterone, and leptin. The gene expressions at the hypothalamus-pituitary-gonadal axis were examined on day 73 of the experiment (average age on day 177) during the prepubescent phase. An HE diet resulted in accelerated body weight gain and back-fat thickness at the P2 point compared with LE gilts during the prepubescent phase. Gilts that were fed HE diets attained puberty 12 d earlier than LE gilts, and a larger proportion of HE gilts reached puberty at day 180 or 190 of age. A postmortem analysis revealed a promoted development of the uterus and ovary tissue that was characterized by a 53.7% and 29.5% increase in the uterine and ovary weight, respectively, and an increased length of the uterine horn and oviduct tissue in HE gilts. Real-time quantitative polymerase chain reaction revealed that HE gilts had higher Kiss-1, G protein-coupled receptor 54, gonadotropin-releasing hormone and estrogen receptor α mRNA expression levels in the hypothalamic anteroventral periventricular nucleus; the leptin receptor mRNA expression level was higher in the hypothalamic arcuate nucleus and ovary tissue; the insulin-like growth factor-1 receptor expression was higher in the pituitary and

  19. The Hypothalamic-Pituitary-Adrenal Axis, Obesity, and Chronic Stress Exposure: Sleep and the HPA Axis in Obesity

    OpenAIRE

    Lucassen, Eliane A.; Cizza, Giovanni

    2012-01-01

    Obesity, exposure to stress and inadequate sleep are prevalent phenomena in modern society. In this review we focus on their relationships and critically evaluate causality. In obese individuals, one of the main stress systems, the hypothalamic-pituitary-adrenal axis, is altered, and concentrations of cortisol are elevated in adipose tissue due to elevated local activity of 11β-hydroxysteroid dehydrogenase (HSD) type 1. Short sleep and decreased sleep quality are also associated with obesity....

  20. Dysregulation of the hypothalamic pituitary adrenal (HPA) axis and physical performance at older ages: An individual participant meta-analysis

    NARCIS (Netherlands)

    Gardner, M.P.; Lightman, S.; Sayer, A.A.; Cooper, C.; Cooper, R.; Deeg, D.J.H.; Ebrahim, S.; Gallacher, J.; Kivimaki, M.; Kumari, M.; Kuh, D; Martin, R.M.; Peeters, G.; Ben-Shlomoa, Y.

    2013-01-01

    The association between functioning of the hypothalamic pituitary adrenal (HPA) axis and physical performance at older ages remains poorly understood. We carried out meta-analyses to test the hypothesis that dysregulation of the HPA axis, as indexed by patterns of diurnal cortisol release, is

  1. Hypothalamic-pituitary-adrenal axis abnormalities in response to deletion of 11beta-HSD1 is strain-dependent

    NARCIS (Netherlands)

    Carter, R. N.; Paterson, J. M.; Tworowska, U.; Stenvers, D. J.; Mullins, J. J.; Seckl, J. R.; Holmes, M. C.

    2009-01-01

    Inter-individual differences in hypothalamic-pituitary-adrenal (HPA) axis activity underlie differential vulnerability to neuropsychiatric and metabolic disorders, although the basis of this variation is poorly understood. 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) has previously been

  2. Activation of the hypothalamic-pituitary-adrenal axis by addictive drugs: different pathways, common outcome.

    Science.gov (United States)

    Armario, Antonio

    2010-07-01

    Addictive drugs (opiates, ethanol, cannabinoids (CBs), nicotine, cocaine, amphetamines) induce activation of the hypothalamic-pituitary-adrenal (HPA) axis, with the subsequent release of adrenocorticotropic hormone and glucocorticoids. The sequence of events leading to HPA activation appears to start within the brain, suggesting that activation is not secondary to peripheral homeostatic alterations. The precise neurochemical mechanisms and brain pathways involved are markedly dependent on the particular drug, although it is assumed that information eventually converges into the hypothalamic paraventricular nucleus (PVN). Whereas some drugs may act on the hypothalamus or directly within PVN neurons (i.e. ethanol), others exert their primary action outside the PVN (i.e. CBs, nicotine, cocaine). Corticotropin-releasing hormone (CRH) has a critical role in most cases, but the changes in c-fos and CRH gene expression in the PVN also reveal differences among drugs. More studies are needed to understand how addictive drugs act on this important neuroendocrine system and their functional consequences. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Hypothalamic pituitary abnormalities in tubercular meningitis at the time of diagnosis.

    Science.gov (United States)

    Dhanwal, Dinesh Kumar; Vyas, Anirudh; Sharma, Ashok; Saxena, Alpana

    2010-12-01

    Tubercular meningitis (TBM) is the most dreaded form of extra pulmonary tuberculosis associated with high morbidity and mortality. Various hypothalamic pituitary hormonal abnormalities have been reported to occur years after recovery from disease but there are no systematic studies in the literature to evaluate the pituitary hypothalamic dysfunction in patients with TBM at the time of presentation. Therefore, the present study was designed to evaluate hypothalamic pituitary abnormalities in newly diagnosed patients with TBM. Patient case series. This prospective study included 75 untreated adult patients with TBM diagnosed as "definite", "highly probable" and "probable" TBM by Ahuja's criteria and in clinical stage 1, 2 or 3 at the time of presentation to hospital. Basal hormonal profile was measured by electrochemilumniscence technique for serum cortisol, luetinizing hormone (LH), follicular stimulating hormone (FSH), prolactin (PRL), thyrotropin (TSH), free tri-iodothyronine (fT3), and free thyroxine (fT4). All patients were subjected to MRI to image brain and hypothalamic pituitary axis and CT for adrenal glands. Thirty-two (42.7%) cases showed relative or absolute cortisol insufficiency. Twenty-three (30.7%) cases showed central hypothyroidism and 37 (49.3%) cases had hyperprolactinemia. No patient had evidence of diabetes insipidus. Multiple hormone deficiency was seen in 22 (29.3%) cases. MRI of hypothalamic pituitary axis using dynamic scanning and thin cuts revealed abnormalities in 10 (13.3%) of the cases. CT adrenal gland was normal in all the patients. Tubercular meningitis is associated with both hormonal and structural abnormalities in the hypothalamic pituitary axis at the time of diagnosis.

  4. Suppression of the hypothalamic-pituitary-gonadal axis by TAK-385 (relugolix), a novel, investigational, orally active, small molecule gonadotropin-releasing hormone (GnRH) antagonist: studies in human GnRH receptor knock-in mice.

    Science.gov (United States)

    Nakata, Daisuke; Masaki, Tsuneo; Tanaka, Akira; Yoshimatsu, Mie; Akinaga, Yumiko; Asada, Mari; Sasada, Reiko; Takeyama, Michiyasu; Miwa, Kazuhiro; Watanabe, Tatsuya; Kusaka, Masami

    2014-01-15

    TAK-385 (relugolix) is a novel, non-peptide, orally active gonadotropin-releasing hormone (GnRH) antagonist, which builds on previous work with non-peptide GnRH antagonist TAK-013. TAK-385 possesses higher affinity and more potent antagonistic activity for human and monkey GnRH receptors compared with TAK-013. Both TAK-385 and TAK-013 have low affinity for the rat GnRH receptor, making them difficult to evaluate in rodent models. Here we report the human GnRH receptor knock-in mouse as a humanized model to investigate pharmacological properties of these compounds on gonadal function. Twice-daily oral administration of TAK-013 (10mg/kg) for 4 weeks decreased the weights of testes and ventral prostate in male knock-in mice but not in male wild-type mice, demonstrating the validity of this model to evaluate antagonists for the human GnRH receptor. The same dose of TAK-385 also reduced the prostate weight to castrate levels in male knock-in mice. In female knock-in mice, twice-daily oral administration of TAK-385 (100mg/kg) induced constant diestrous phases within the first week, decreased the uterus weight to ovariectomized levels and downregulated GnRH receptor mRNA in the pituitary after 4 weeks. Gonadal function of TAK-385-treated knock-in mice began to recover after 5 days and almost completely recovered within 14 days after drug withdrawal in both sexes. Our findings demonstrate that TAK-385 acts as an antagonist for human GnRH receptor in vivo and daily oral administration potently, continuously and reversibly suppresses the hypothalamic-pituitary-gonadal axis. TAK-385 may provide useful therapeutic interventions in hormone-dependent diseases including endometriosis, uterine fibroids and prostate cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Characterization of the Hypothalamic-Pituitary-Adrenal-Axis in Familial Longevity under Resting Conditions

    DEFF Research Database (Denmark)

    Jansen, Steffy W; Roelfsema, Ferdinand; Akintola, Abimbola A

    2015-01-01

    OBJECTIVE: The hypothalamic-pituitary-adrenal (HPA)-axis is the most important neuro-endocrine stress response system of our body which is of critical importance for survival. Disturbances in HPA-axis activity have been associated with adverse metabolic and cognitive changes. Humans enriched...... for longevity have less metabolic and cognitive disturbances and therefore diminished activity of the HPA axis may be a potential candidate mechanism underlying healthy familial longevity. Here, we compared 24-h plasma ACTH and serum cortisol concentration profiles and different aspects of the regulation...... of the HPA-axis in offspring from long-lived siblings, who are enriched for familial longevity and age-matched controls. DESIGN: Case-control study within the Leiden Longevity study cohort consisting of 20 middle-aged offspring of nonagenarian siblings (offspring) together with 18 partners (controls...

  6. Hypothalamic demyelination causing panhypopituitarism.

    Science.gov (United States)

    Dixon-Douglas, Julia; Burgess, John; Dreyer, Michael

    2018-05-01

    Hypothalamic involvement in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) is rare and endocrinopathies involving the hypothalamic-pituitary axis in patients with demyelinating conditions have rarely been reported. We present two cases of MS/NMOSD with associated hypothalamic-pituitary involvement and subsequent hypopituitarism, including the first report of a patient with hypothalamic demyelination causing panhypopituitarism. Differential diagnoses, including alemtuzumab-related and primary pituitary pathology are discussed. © 2018 Royal Australasian College of Physicians.

  7. Effects of endocrine disrupting heavy metals on pituitary and ...

    African Journals Online (AJOL)

    Association of hypogonadism and visceral obesity (VO) was recently demonstrated in male auto-mechanics occupationally exposed to endocrine disruptors (ED)-lead, cadmium, mercury and arsenic, known to alter the hypothalamic-pituitary-testicular axis. The effects of exposure to these EDs on pituitary and gonadal ...

  8. Mechanisms of Imidacloprid-Induced Alteration of Hypothalamic-Pituitary-Adrenal (HPA Axis after Subchronic Exposure in Male Rats

    Directory of Open Access Journals (Sweden)

    Alya Annabi

    2015-11-01

    Full Text Available Imidacloprid (IMI is known to target the nicotinic acetylcholine receptors (nAChRs in insects, and potentially in mammals. However, IMI toxicity on mammalian tissues has not been adequately evaluated. The aim of the present study was to examine whether IMI induced functional impairment in hypthalamic-pituitary-adrenal (HPA axis tissues. An oral exposure of 40 mg IMI/kg for 28 days in male rats caused a significant increase in malondialdehyde (MDA level. The antioxidant catalase, superoxide dismutase, and glutathione S-transferase showed various alterations following administration, but a significantly depleted thiol (SH groups was only recorded in hypothalamic tissues. The increase in the relative weight of adrenal glands and the increased adrenal cholesterol and plasma adrenocorticotropic hormone (ACTH levels are indicative of general adaptation syndrome. The hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased, highlighting the alteration of cholinergic transmission. In conclusion, the findings obtained show that chronic exposure to IMI may alter biochemical processes of HPA axis.

  9. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System.

    Science.gov (United States)

    Burford, Natalie G; Webster, Natalia A; Cruz-Topete, Diana

    2017-10-16

    The collective of endocrine organs acting in homeostatic regulation-known as the hypothalamic-pituitary-adrenal (HPA) axis-comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  10. Model-based therapeutic correction of hypothalamic-pituitary-adrenal axis dysfunction.

    Directory of Open Access Journals (Sweden)

    Amos Ben-Zvi

    2009-01-01

    Full Text Available The hypothalamic-pituitary-adrenal (HPA axis is a major system maintaining body homeostasis by regulating the neuroendocrine and sympathetic nervous systems as well modulating immune function. Recent work has shown that the complex dynamics of this system accommodate several stable steady states, one of which corresponds to the hypocortisol state observed in patients with chronic fatigue syndrome (CFS. At present these dynamics are not formally considered in the development of treatment strategies. Here we use model-based predictive control (MPC methodology to estimate robust treatment courses for displacing the HPA axis from an abnormal hypocortisol steady state back to a healthy cortisol level. This approach was applied to a recent model of HPA axis dynamics incorporating glucocorticoid receptor kinetics. A candidate treatment that displays robust properties in the face of significant biological variability and measurement uncertainty requires that cortisol be further suppressed for a short period until adrenocorticotropic hormone levels exceed 30% of baseline. Treatment may then be discontinued, and the HPA axis will naturally progress to a stable attractor defined by normal hormone levels. Suppression of biologically available cortisol may be achieved through the use of binding proteins such as CBG and certain metabolizing enzymes, thus offering possible avenues for deployment in a clinical setting. Treatment strategies can therefore be designed that maximally exploit system dynamics to provide a robust response to treatment and ensure a positive outcome over a wide range of conditions. Perhaps most importantly, a treatment course involving further reduction in cortisol, even transient, is quite counterintuitive and challenges the conventional strategy of supplementing cortisol levels, an approach based on steady-state reasoning.

  11. Beyond the HPA-axis: The role of the gonadal steroid hormone receptors in modulating stress-related responses in an animal model of PTSD.

    Science.gov (United States)

    Fenchel, Daphna; Levkovitz, Yechiel; Vainer, Ella; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2015-06-01

    The hypothalamic-pituitary-adrenal (HPA) axis, which plays a major role in the response to stress, and the hypothalamic-pituitary-gonadal (HPG) axis are closely linked with the ability to inhibit the other. Testosterone, a product of the HPG, has many beneficial effects beyond its functions as a sex hormone including anti-anxiety properties. In this study we examined the effect of stress exposure on gonadal hormones, and their efficacy in modulating anxiety-like response in an animal model of PTSD. Male rats were exposed to predator scent stress, followed by analysis of brain expression of androgen receptor (AR) receptor and estrogen receptor α (ERα). The behavioral effects of immediate treatment with testosterone, testosterone receptor antagonist (flutamide) or vehicle were evaluated using the elevated plus-maze, acoustic startle response and trauma-cue response. Levels of circulating corticosterone and testosterone were also measured after treatment. The behavioral effects of delayed testosterone treatment were explored in the same manner. We report that animals whose behavior was extremely disrupted (EBR) selectively displayed significant down-regulation of AR and ERα in the hippocampus. Immediate treatment with flutamide or delayed treatment with testosterone significantly increased prevalence rates of minimal behavioral response (MBR) and decreased prevalence of EBR with favorable behavioral results. Testosterone levels were higher in control un-exposed animals, while corticosterone was higher in control exposed animals. This study suggests that gonadal steroid hormones are involved in the neurobiological response to predator scent stress and thus warrant further study as a potential therapeutic avenue for the treatment of anxiety-related disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  12. Neonatal exposure to bisphenol A alters the hypothalamic-pituitary-thyroid axis in female rats.

    Science.gov (United States)

    Fernandez, Marina O; Bourguignon, Nadia S; Arocena, Paula; Rosa, Matías; Libertun, Carlos; Lux-Lantos, Victoria

    2018-03-15

    Bisphenol A (BPA) is a component of polycarbonate plastics, epoxy resins and polystyrene found in many common products. Several reports revealed potent in vivo and in vitro effects. In this study we analyzed the effects of the exposure to BPA in the hypothalamic-pituitary-thyroid axis in female rats, both in vivo and in vitro. Female Sprague-Dawley rats were injected sc from postnatal day 1 (PND1) to PND10 with BPA: 500 μg 50 μl -1 oil (B500), or 50 μg 50 μl -1 (B50), or 5 μg 50 μl -1 (B5). Controls were injected with 50 μl vehicle during the same period. Neonatal exposure to BPA did not modify TSH levels in PND13 females, but it increased them in adults in estrus. Serum T4 was lower in B5 and B500 with regards to Control, whereas no difference was seen in T3. No significant differences were observed in TRH, TSHβ and TRH receptor expression between groups. TSH release from PPC obtained from adults in estrus was also higher in B50 with regard to Control. In vitro 24 h pre-treatment with BPA or E 2 increased basal TSH as well as prolactin release. On the other hand, both BPA and E 2 lowered the response to TRH. The results presented here show that the neonatal exposure to BPA alters the hypothalamic pituitary-thyroid axis in adult rats in estrus, possibly with effects on the pituitary and thyroid. They also show that BPA alters TSH release from rat PPC through direct actions on the pituitary. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Nutrient restriction induces failure of reproductive function and molecular changes in hypothalamus-pituitary-gonadal axis in postpubertal gilts.

    Science.gov (United States)

    Zhou, Dongsheng; Zhuo, Yong; Che, Lianqiang; Lin, Yan; Fang, Zhengfeng; Wu, De

    2014-07-01

    People on a diet to lose weight may be at risk of reproductive failure. To investigate the effects of nutrient restriction on reproductive function and the underlying mechanism, changes of reproductive traits, hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis were examined in postpubertal gilts at anestrus induced by nutrient restriction. Gilts having experienced two estrus cycles were fed a normal (CON, 2.86 kg/d) or nutrient restricted (NR, 1 kg/d) food regimens to expect anestrus. NR gilts experienced another three estrus cycles, but did not express estrus symptoms at the anticipated fourth estrus. Blood samples were collected at 5 days' interval for consecutive three times for measurement of hormone concentrations at the 23th day of the fourth estrus cycle. Individual progesterone concentrations of NR gilts from three consecutive blood samples were below 1.0 ng/mL versus 2.0 ng/mL in CON gilts, which was considered anestrus. NR gilts had impaired development of reproductive tract characterized by absence of large follicles (diameter ≥ 6 mm), decreased number of corepus lutea and atrophy of uterus and ovary tissues. Circulating concentrations of IGF-I, kisspeptin, estradiol, progesterone and leptin were significantly lower in NR gilts than that in CON gilts. Nutrient restriction down-regulated gene expressions of kiss-1, G-protein coupled protein 54, gonadotropin-releasing hormone, estrogen receptor α, progesterone receptor, leptin receptor, follicle-stimulating hormone and luteinizing hormone and insulin-like growth factor I in hypothalamus-pituitary-gonadal axis of gilts. Collectively, nutrient restriction resulted in impairment of reproductive function and changes of hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis, which shed light on the underlying mechanism by which nutrient restriction influenced reproductive function.

  14. Update on stress and depression: the role of the hypothalamic-pituitary-adrenal (HPA axis

    Directory of Open Access Journals (Sweden)

    Mello Andrea de Abreu Feijó de

    2003-01-01

    Full Text Available Over the past 50 years, relationships between stress and the neurobiological changes seen in psychiatric disorders have been well-documented. A major focus of investigations in this area has been the role of the hypothalamic-pituitary-adrenal (HPA axis, both as a marker of stress response and as a mediator of additional downstream pathophysiologic changes. This review examines the emerging literature concerning the relationship between stress, HPA axis function, and depression, as well as the role of early life stress as an important risk factor for HPA axis dysregulation. The more recent studies reviewed suggest that the prominence of HPA axis hyperactivity in adults with depressive and anxiety disorders may constitute a link between the occurrence of adversity in childhood and the development of adult psychopathology

  15. If It Goes up, Must It Come Down? Chronic Stress and the Hypothalamic-Pituitary Adrenocortical Axis in Humans

    Science.gov (United States)

    Miller, Gregory E.; Chen, Edith; Zhou, Eric S.

    2007-01-01

    The notion that chronic stress fosters disease by activating the hypothalamic-pituitary adrenocortical (HPA) axis is featured prominently in many theories. The research linking chronic stress and HPA function is contradictory, however, with some studies reporting increased activation, and others reporting the opposite. This meta-analysis showed…

  16. An investigation on body weights, blood glucose levels and pituitary-gonadal axis hormones in diabetic and metformin-treated diabetic female rats

    Directory of Open Access Journals (Sweden)

    Pouya Pournaghi

    2012-06-01

    Full Text Available Diabetes is a metabolic disorder which affects whole body systems including reproductive system. Diabetes is also a contributing factor to infertility. Metformin is one of the most common drugs to control hyperglycemia. In this study, 36 adult Sprague-Dawley female rats (170-210 g were divided into 3 groups (control, diabetic and diabetic-treated by metformin. In second and third groups, diabetes was induced by streptozotocin injection (45 mg kg-1, IP and the third group was treated by metformin hydrochloride (100 mg kg-1 day-1, PO for 8 weeks. Body weights were compared and blood glucose, gonadotropins and sexual hormones were measured. In diabetic group the blood glucose level significantly (P < 0.05 increased in comparison with that of control and metformin-treated diabetic rats. The results also revealed that, in the untreated diabetic rats, the mean body weights and pituitary-gonadal axis hormones were significantly (P < 0.05 reduced in comparison with the control. Although there were significant (P < 0.05 reduction in mean body weights in metformin-treated diabetic rats, reduction in pituitary-gonadal axis hormones was not as sharp as in untreated diabetic rats and only level of progesterone was significantly (P < 0.05 reduced in comparison with the control. The results of this investigation revealed that there was a clear relationship between experimental diabetes with body weight and pituitary-gonadal axis hormones, and treatment with metformin relatively restored diabetic complications.

  17. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Natalie G. Burford

    2017-10-01

    Full Text Available The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  18. Multi-level risk factors for suicidal ideation among at-risk adolescent females : The role of hypothalamic-pituitary-adrenal axis responses to stress

    NARCIS (Netherlands)

    Giletta, M.; Calhoun, C.D.; Hastings, P.D.; Rudolph, K.D.; Nock, M.K.; Prinstein, M.J.

    2015-01-01

    Adopting a multi-level approach, this study examined risk factors for adolescent suicidal ideation, with specific attention to (a) hypothalamic-pituitary-adrenal (HPA) axis stress responses and (b) the interplay between HPA-axis and other risk factors from multiple domains (i.e., psychological,

  19. Dynamic transitions in a model of the hypothalamic-pituitary-adrenal axis

    Science.gov (United States)

    Čupić, Željko; Marković, Vladimir M.; Maćešić, Stevan; Stanojević, Ana; Damjanović, Svetozar; Vukojević, Vladana; Kolar-Anić, Ljiljana

    2016-03-01

    Dynamic properties of a nonlinear five-dimensional stoichiometric model of the hypothalamic-pituitary-adrenal (HPA) axis were systematically investigated. Conditions under which qualitative transitions between dynamic states occur are determined by independently varying the rate constants of all reactions that constitute the model. Bifurcation types were further characterized using continuation algorithms and scale factor methods. Regions of bistability and transitions through supercritical Andronov-Hopf and saddle loop bifurcations were identified. Dynamic state analysis predicts that the HPA axis operates under basal (healthy) physiological conditions close to an Andronov-Hopf bifurcation. Dynamic properties of the stress-control axis have not been characterized experimentally, but modelling suggests that the proximity to a supercritical Andronov-Hopf bifurcation can give the HPA axis both, flexibility to respond to external stimuli and adjust to new conditions and stability, i.e., the capacity to return to the original dynamic state afterwards, which is essential for maintaining homeostasis. The analysis presented here reflects the properties of a low-dimensional model that succinctly describes neurochemical transformations underlying the HPA axis. However, the model accounts correctly for a number of experimentally observed properties of the stress-response axis. We therefore regard that the presented analysis is meaningful, showing how in silico investigations can be used to guide the experimentalists in understanding how the HPA axis activity changes under chronic disease and/or specific pharmacological manipulations.

  20. Differential flatness properties and adaptive control of the hypothalamic-pituitary-adrenal axis model

    Science.gov (United States)

    Rigatos, Gerasimos

    2016-12-01

    It is shown that the model of the hypothalamic-pituitary-adrenal gland axis is a differentially flat one and this permits to transform it to the so-called linear canonical form. For the new description of the system's dynamics the transformed control inputs contain unknown terms which depend on the system's parameters. To identify these terms an adaptive fuzzy approximator is used in the control loop. Thus an adaptive fuzzy control scheme is implemented in which the unknown or unmodeled system dynamics is approximated by neurofuzzy networks and next this information is used by a feedback controller that makes the state variables (CRH - corticotropin releasing hormone, adenocortocotropic hormone - ACTH, cortisol) of the hypothalamic-pituitary-adrenal gland axis model converge to the desirable levels (setpoints). This adaptive control scheme is exclusively implemented with the use of output feedback, while the state vector elements which are not directly measured are estimated with the use of a state observer that operates in the control loop. The learning rate of the adaptive fuzzy system is suitably computed from Lyapunov analysis, so as to assure that both the learning procedure for the unknown system's parameters, the dynamics of the observer and the dynamics of the control loop will remain stable. The performed Lyapunov stability analysis depends on two Riccati equations, one associated with the feedback controller and one associated with the state observer. Finally, it is proven that for the control scheme that comprises the feedback controller, the state observer and the neurofuzzy approximator, an H-infinity tracking performance can be succeeded.

  1. Effects of experimentally induced hyperthyroidism on central hypothalamic-pituitary-adrenal axis function in rats: in vitro and in situ studies.

    Science.gov (United States)

    Johnson, Elizabeth O; Calogero, Aldo E; Konstandi, Maria; Kamilaris, Themis C; La Vignera, Sandro; Vignera, Sandro La; Chrousos, George P

    2013-06-01

    Hyperthyroidism is associated with hypercorticosteronemia, although the locus that is principally responsible for the hypercorticosteronism remains unclear. The purpose of this study was to assess the effects of hyperthyroidism on the functional integrity of the hypothalamic-pituitary-adrenal (HPA) axis, to identify the locus in the HPA axis that is principally affected, and address the time-dependent effects of alterations in thyroid status. The functional integrity of each component of the HPA axis was examined in vitro and in situ in sham-thyroidectomized male Sprague-Dawley rats given placebo or in thyroidectomized rats given pharmacological dose (50 μg) of thyroxin for 7 or 60 days. Basal plasma corticosterone and corticosterone binding globulin (CBG) concentrations were significantly increased in short- and long-term hyperthyroid rats, and by 60 days. Basal plasma ACTH levels were similar to controls. Both hypothalamic CRH content and the magnitude of KCL- and arginine vasopressin (AVP)-induced CRH release from hypothalamic culture were increased in long-term hyperthyroid rats. There was a significant increase in the content of both ACTH and β-endorphin in the anterior pituitaries of both short- and long-term hyperthyroid animals. Short-term hyperthyroid rats showed a significant increase in basal POMC mRNA expression in the anterior pituitary, and chronically hyperthyroid animals showed increased stress-induced POMC mRNA expression. Adrenal cultures taken from short-term hyperthyroid rats responded to exogenous ACTH with an exaggerated corticosterone response, while those taken from 60-day hyperthyroid animals showed responses similar to controls. The findings show that hyperthyroidism is associated with hypercorticosteronemia and HPA axis dysfunction that becomes more pronounced as the duration of hyperthyroidism increases. The evidence suggests that experimentally induced hyperthyroidism is associated with central hyperactivity of the HPA axis.

  2. Pituitary-gonadal and pituitary-thyroid axis hormone concentrations before and during a hypoglycemic clamp after sleep deprivation in healthy men.

    Directory of Open Access Journals (Sweden)

    Kamila Jauch-Chara

    Full Text Available Total sleep deprivation (TSD exerts strong modulatory effects on the secretory activity of endocrine systems that might be related to TSD-induced challenges of cerebral glucose metabolism. Here, we investigate whether TSD affects the course of male pituitary-gonadal and pituitary-thyroid axis related hormones during a subsequent 240-min hypoglycemic clamp. Ten healthy men were tested on 2 different conditions, TSD and 7-hour regular sleep. Circulating concentrations of total testosterone, prolactin (PRL, thyroid stimulating hormone (TSH, free triiodothyronine (fT3, and free thyroxin (fT4 were measured during baseline and a subsequent hypoglycemic clamp taking place in the morning. Basal, i.e. at 07:00 am measured, concentrations of total testosterone (P = 0.05 and PRL (P<0.01 were lower while the values of TSH (P = 0.02, fT3 (P = 0.08, and fT4 (P = 0.04 were higher after TSD as compared to regular sleep. During the subsequent hypoglycemic clamp (all measurements from baseline to the end of the clamp analyzed total testosterone concentrations in the regular sleep (P<0.01 but not in the TSD condition (P = 0.61 decreased, while PRL levels increased (P = 0.05 irrespectively of the experimental condition (P = 0.31. TSH concentrations decreased during hypoglycemia (P<0.01, with this decrease being more pronounced after TSD (P = 0.04. However, at the end of the hypoglycemic clamp concentrations all of the above mentioned hormones did not differ between the two sleep conditions. Our data indicate a profound influence of TSD on male pituitary-gonadal and pituitary-thyroid axis hormones characterized by reduced basal testosterone and PRL levels and increased TSH levels. However, since concentrations of these hormones measured at the end of the 240-min hypoglycemic clamp were not affected by TSD it can be speculated that the influence of TSD on the two endocrine axes is rather short lived or does not interact in an additive

  3. Recovery by N-acetylcysteine from subchronic exposure to Imidacloprid-induced hypothalamic-pituitary-adrenal (HPA) axis tissues injury in male rats.

    Science.gov (United States)

    Annabi, Alya; Dhouib, Ines Bini; Lamine, Aicha Jrad; El Golli, Nargès; Gharbi, Najoua; El Fazâa, Saloua; Lasram, Mohamed Montassar

    2015-01-01

    Imidacloprid is the most important example of the neonicotinoid insecticides known to target the nicotinic acetylcholine receptor in insects, and potentially in mammals. N-Acetyl-l-cysteine (NAC) has been shown to possess curative effects in experimental and clinical investigations. The present study was designed to evaluate the recovery effect of NAC against Imidacloprid-induced oxidative stress and cholinergic transmission alteration in hypothalamic-pituitary-adrenal (HPA) axis of male rats following subchronic exposure. About 40 mg/kg of Imidacloprid was administered daily by intragastric intubation and 28 days later, the rats were sacrificed and HPA axis tissues were removed for different analyses. Imidacloprid increased adrenal relative weight and cholesterol level indicating an adaptive stage of the general alarm reaction to stress. Moreover, Imidacloprid caused a significant increase in malondialdehyde level, the antioxidants catalase, superoxide dismutase and glutathione-S-transferase showed various alterations following administration and significant depleted thiols content was only recorded in hypothalamic tissue. Furthermore, the hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased highlighting the alteration of cholinergic activity. The present findings revealed that HPA axis is a sensitive target to Imidacloprid (IMI). Interestingly, the use of NAC for only 7 days post-exposure to IMI showed a partial therapeutic effect against Imidacloprid toxicity.

  4. Role of changes in functional status of hypothalamic-pituitary-adrenocortical axis in immunoenhancement after low dose radiation

    International Nuclear Information System (INIS)

    Liu Shuzheng; Zhao Yong; Han Zhenbo

    1994-01-01

    Whole-body irradiation (WBI) of mice with 75 mGy X-rays caused increase in 5-hydroxytryptamine (5HT) content of hypothalamus and decrease in serum adrenocorticotropic hormone (ACTH) and corticosterone (CS) level, accompanied with potentiation of immune functions, expressed as increased spontaneous incorporation of 3 H-TdR into thymocytes, augmented proliferative reaction of the splenocytes to Con A and increased production of interleukin-2 by the splenocytes. After intra hypothalamic injection of 5HT there occurred a lowering of serum ACTH level and enhancement of immune reactivity of the splenic and thymic lymphocytes. It is assumed that low dose radiation could influence the central 5-hydroxytryptaminergic neurons causing increase in hypothalamic 5HT content and this, in turn, decreases pituitary secretion of ACTH with a down-regulation of the adrenocortical function. This would partially release the tonic suppression normally exerted on the immune organs by the hypothalamic-pituitary-adrenocortical axis, thus leading to potentiation of immune functions. These neuroendocrine changes should be considered as an important factor in the analysis of the mechanism of immunoenhancement after WBI with low doses

  5. The association between the hypothalamic pituitary adrenal axis and tryptophan metabolism in persons with recurrent major depressive disorder and healthy controls

    NARCIS (Netherlands)

    Sorgdrager, F. J. H.; Doornbos, B.; Penninx, B. W. J. H.; de Jonge, P.; Kema, I. P.

    2017-01-01

    Objectives: Persistent changes in serotonergic and hypothalamic pituitary adrenal (HPA) axis functioning are implicated in recurrent types of major depressive disorder (MDD). Systemic tryptophan levels, which influence the rate of serotonin synthesis, are regulated by glucocorticoids produced along

  6. A longitudinal study of disturbances of the hypothalamic-pituitary-adrenal axis in women with progestin-negative functional hypothalamic amenorrhea.

    Science.gov (United States)

    Kondoh, Y; Uemura, T; Murase, M; Yokoi, N; Ishikawa, M; Hirahara, F

    2001-10-01

    To longitudinally evaluate disturbances of the hypothalamic-pituitary-adrenal (HPA) axis in women with secondary progestin-negative hypothalamic amenorrhea. Retrospective cohort study. Yokohama City University, Yokohama, Japan. Twenty-four women with progestin-negative hypothalamic amenorrhea. Administration of human corticotropin-releasing hormone (hCRH) and treatment with a combination of estrogen and progesterone. Plasma cortisol and ACTH concentrations and period required for recovery from amenorrhea. Plasma ACTH concentrations 30 and 60 minutes after injection of hCRH and the percent maximum increment (%Cmax) of ACTH were significantly lower in the amenorrheic patients compared with the control group patients. The basal cortisol was significantly higher, and the %Cmax of cortisol was significantly lower. In the 16 patients who recovered from amenorrhea, there was a significant positive correlation (Y = 1.93X-10.8, r = 0.629) between the basal cortisol concentrations (X) and the period for recovery (Y). The serum E2 gradually increased before recovery, and this E2 increase was preceded by changes in the plasma cortisol concentration and the %Cmax values of cortisol and ACTH. The CRH test might be useful for evaluating the roles of stress and for estimating the period required for recovery in hypothalamic amenorrhea.

  7. Obesity and the hypothalamic-pituitary-adrenal axis in adolescent girls.

    Science.gov (United States)

    Hillman, Jennifer B; Dorn, Lorah D; Loucks, Tammy L; Berga, Sarah L

    2012-03-01

    Stress and stress-related concomitants, including hypothalamic-pituitary-adrenal (HPA) axis activation, are implicated in obesity and its attendant comorbidities. Little is known about this relationship in adolescents. To begin to address this important knowledge gap, we studied HPA axis activity in 262 healthy adolescent girls aged 11, 13, 15, and 17 years. We hypothesized that obesity would be correlated with increased HPA axis activity and reactivity. Measures of HPA axis activity included 3 blood samples obtained midday (between 1:00 and 2:00 pm) over the course of 40 minutes; overnight urine free cortisol; and cortisol levels 0, 20, and 40 minutes after venipuncture (cortisol reactivity). Measures of adiposity included body mass index (BMI), BMI z score (BMI-Z), percentage body fat, and fat distribution (central adiposity) assessed by dual-energy x-ray absorptiometry. Daytime levels of serum cortisol were inversely associated with BMI-Z and central adiposity (P cortisol excretion rate was positively correlated with BMI, BMI-Z, and central adiposity. There was blunting of cortisol response to venipuncture with increasing adiposity. Our results suggest that there may be reduced cortisol levels during the day and increased levels at night with increasing degree of adiposity. This study provides preliminary findings indicating an alteration of the circadian rhythm of cortisol with obesity. We conclude that obesity is associated with altered HPA activity in adolescent girls. The clinical implications of our findings require further investigation. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression.

    Science.gov (United States)

    Kunugi, Hiroshi; Hori, Hiroaki; Adachi, Naoki; Numakawa, Tadahiro

    2010-10-01

    Although the pathophysiology of depressive disorder remains elusive, two hypothetical frameworks seem to be promising: the involvement of hypothalamic pituitary-adrenal (HPA) axis abnormalities and brain-derived neurotrophic factor (BDNF) in the pathogenesis and in the mechanism of action of antidepressant treatments. In this review, we focused on research based on these two frameworks in relation to depression and related conditions and tried to formulate an integrated theory of the disorder. Hormonal challenge tests, such as the dexamethasone/corticotropin-releasing hormone test, have revealed elevated HPA activity (hypercortisolism) in at least a portion of patients with depression, although growing evidence has suggested that abnormally low HPA axis (hypocortisolism) has also been implicated in a variety of stress-related conditions. Several lines of evidence from postmortem studies, animal studies, blood levels, and genetic studies have suggested that BDNF is involved in the pathogenesis of depression and in the mechanism of action of biological treatments for depression. Considerable evidence has suggested that stress reduces the expression of BDNF and that antidepressant treatments increase it. Moreover, the glucocorticoid receptor interacts with the specific receptor of BDNF, TrkB, and excessive glucocorticoid interferes with BDNF signaling. Altered BDNF function is involved in the structural changes and possibly impaired neurogenesis in the brain of depressed patients. Based on these findings, an integrated schema of the pathological and recovery processes of depression is illustrated. © 2010 The Authors. Psychiatry and Clinical Neurosciences © 2010 Japanese Society of Psychiatry and Neurology.

  9. A computational model of the hypothalamic - pituitary - gonadal axis in female fathead minnows (Pimephales promelas exposed to 17α-ethynylestradiol and 17β-trenbolone

    Directory of Open Access Journals (Sweden)

    Lazorchak James M

    2011-05-01

    Full Text Available Abstract Background Endocrine disrupting chemicals (e.g., estrogens, androgens and their mimics are known to affect reproduction in fish. 17α-ethynylestradiol is a synthetic estrogen used in birth control pills. 17β-trenbolone is a relatively stable metabolite of trenbolone acetate, a synthetic androgen used as a growth promoter in livestock. Both 17α-ethynylestradiol and 17β-trenbolone have been found in the aquatic environment and affect fish reproduction. In this study, we developed a physiologically-based computational model for female fathead minnows (FHM, Pimephales promelas, a small fish species used in ecotoxicology, to simulate how estrogens (i.e., 17α-ethynylestradiol or androgens (i.e., 17β-trenbolone affect reproductive endpoints such as plasma concentrations of steroid hormones (e.g., 17β-estradiol and testosterone and vitellogenin (a precursor to egg yolk proteins. Results Using Markov Chain Monte Carlo simulations, the model was calibrated with data from unexposed, 17α-ethynylestradiol-exposed, and 17β-trenbolone-exposed FHMs. Four Markov chains were simulated, and the chains for each calibrated model parameter (26 in total converged within 20,000 iterations. With the converged parameter values, we evaluated the model's predictive ability by simulating a variety of independent experimental data. The model predictions agreed with the experimental data well. Conclusions The physiologically-based computational model represents the hypothalamic-pituitary-gonadal axis in adult female FHM robustly. The model is useful to estimate how estrogens (e.g., 17α-ethynylestradiol or androgens (e.g., 17β-trenbolone affect plasma concentrations of 17β-estradiol, testosterone and vitellogenin, which are important determinants of fecundity in fish.

  10. The Hypothalamic-Pituitary-Thyroid Axis in Infants and Children: Protection from Radioiodines

    Directory of Open Access Journals (Sweden)

    Jeffrey Fisher

    2014-01-01

    Full Text Available Potassium iodide (KI is recommended as an emergency treatment for exposure to radioiodines, most commonly associated with nuclear detonation or mishaps at nuclear power plants. Protecting the thyroid gland of infants and children remains a priority because of increased incidence of thyroid cancer in the young exposed to radioiodines (such as 131I and 133I. There is a lack of clinical studies for KI and radioiodines in children or infants to draw definitive conclusions about the effectiveness and safety of KI administration in the young. In this paper, we compare functional aspects of the hypothalamic-pituitary-thyroid (HPT axis in the young and adults and review the limited studies of KI in children. The HPT axis in the infant and child is hyperactive and therefore will respond less effectively to KI treatment compared to adults. Research on the safety and efficacy of KI in infants and children is needed.

  11. Brain-derived neurotrophic factor and hypothalamic-pituitary-adrenal axis adaptation processes in a depressive-like state induced by chronic restraint stress.

    Science.gov (United States)

    Naert, Gaelle; Ixart, Guy; Maurice, Tangui; Tapia-Arancibia, Lucia; Givalois, Laurent

    2011-01-01

    Depression is potentially life-threatening. The most important neuroendocrine abnormality in this disorder is hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity. Recent findings suggest that all depression treatments may boost the neurotrophin production especially brain-derived neurotrophic factor (BDNF). Moreover, BDNF is highly involved in the regulation of HPA axis activity. The aim of this study was to determine the impact of chronic stress (restraint 3h/day for 3 weeks) on animal behavior and HPA axis activity in parallel with hippocampus, hypothalamus and pituitary BDNF levels. Chronic stress induced changes in anxiety (light/dark box test) and anhedonic states (sucrose preference test) and in depressive-like behavior (forced swimming test); general locomotor activity and body temperature were modified and animal body weight gain was reduced by 17%. HPA axis activity was highly modified by chronic stress, since basal levels of mRNA and peptide hypothalamic contents in CRH and AVP and plasma concentrations in ACTH and corticosterone were significantly increased. The HPA axis response to novel acute stress was also modified in chronically stressed rats, suggesting adaptive mechanisms. Basal BDNF contents were increased in the hippocampus, hypothalamus and pituitary in chronically stressed rats and the BDNF response to novel acute stress was also modified. This multiparametric study showed that chronic restraint stress induced a depressive-like state that was sustained by mechanisms associated with BDNF regulation. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. The stability of the extended model of hypothalamic-pituitary-adrenal axis examined by stoichiometric network analysis

    Science.gov (United States)

    Marković, V. M.; Čupić, Ž.; Ivanović, A.; Kolar-Anić, Lj.

    2011-12-01

    Stoichiometric network analysis (SNA) represents a powerful mathematical tool for stability analysis of complex stoichiometric networks. Recently, the important improvement of the method has been made, according to which instability relations can be entirely expressed via reaction rates, instead of thus far used, in general case undefined, current rates. Such an improved SNA methodology was applied to the determination of exact instability conditions of the extended model of the hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrinological system, whose hormone concentrations exert complex oscillatory evolution. For emergence of oscillations, the Hopf bifurcation condition was utilized. Instability relations predicted by SNA showed good correlation with numerical simulation data of the HPA axis model.

  13. Identification of Gender-specific Transcripts by Microarray in Gonad Tissue of Larval and Juvenile Xenopus tropicalis

    Science.gov (United States)

    Amphibian model species Xenopus tropicalis is currently being utilized by EPA in the development of a standardized in vivo reproductive toxicity assay. Perturbations to the hypothalamic-pituitary-gonadal axis from exposure to endocrine disrupting compounds during larval develop...

  14. Hypopituitarism after external irradiation. Evidence for both hypothalamic and pituitary origin

    International Nuclear Information System (INIS)

    Samaan, N.A.; Bakdash, M.M.; Caderao, J.B.; Cangir, A.; Jesse, R.H. Jr.; Ballantyne, A.J.

    1975-01-01

    Endocrine complications after radiotherapy for tumors of the head and neck are thought to be relatively rare. The availability of synthetic hypothalamic hormones for clinical investigations and the radioimmunoassay of hormones have enabled us to study function of the hypothalamic pituitary axis in 15 patients who had radiotherapy for nasopharyngeal cancer. Fourteen had evidence of endocrine deficiency. Twelve patients had evidence of hypothalamic dysfunction, 7 developed primary pituitary hormone deficiencies, and 3 developed primary hypothyroidism. These results indicate that (1) secondary hypopituitarism due to a hypothalamic lesion after radiotherapy for nasopharyngeal cancer may be more common than suspected in the past; (2) primary hypopituitarism after irradiation of extracranial tumors can occur; and (3) primary hypothyroidism may result from irradiation of regional neck nodes

  15. Effects of methomyl on steroidogenic gene transcription of the hypothalamic-pituitary-gonad-liver axis in male tilapia.

    Science.gov (United States)

    Meng, ShunLong; Qiu, LiPing; Hu, GengDong; Fan, LiMin; Song, Chao; Zheng, Yao; Wu, Wei; Qu, JianHong; Li, DanDan; Chen, JiaZhang; Xu, Pao

    2016-12-01

    Male tilapia were exposed to sub-lethal methomyl concentrations of 0, 0.2, 2, 20 or 200 μg/L for 30 d, and were subsequently cultured in methomyl-free water for 18 d. Relative transcript abundance of steroidogenic genes involved in the HPGL axis of male tilapia was examined at 30 d in the exposure test and at 18 d in the recovery test. The results revealed that low concentrations of methomyl (0.2 and 2 μg/L) did not cause significant changes in gene mRNA levels in the HPGL axis of male tilapia; thus, we considered 2 μg/L concentrations as the level that showed no apparent adverse endocrine disruption effects. However, higher concentrations of methomyl (20 and 200 μg/L) disrupted the endocrine system and caused significant increase in the levels of GnRH2, GnRH3, ERα, and ERβ genes in the hypothalamus, GnRHR and FSHβ genes in the pituitary, CYP19a, FSHR, and ERα genes in the testis, and VTG and ERα genes in the liver, and significantly decreased the levels of LHR, StAR, 3β-HSD, and ARα genes in the testis and LHβ gene in the pituitary, leading to changes in sex steroid hormone and vitellogenin levels in the serum and ultimately resulting in reproductive dysfunction in male tilapia. The recovery tests showed that the toxicity effect caused by 20 μg/L methomyl was reversible; however, the toxicity effect at 200 μg/L of methomyl was irreversible after 18 d. Therefore, we concluded that 200 μg/L was the threshold concentration for methomyl-induced irreversible endocrine disruption in male tilapia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A journey through the pituitary gland: Development, structure and function, with emphasis on embryo-foetal and later development.

    Science.gov (United States)

    Musumeci, Giuseppe; Castorina, Sergio; Castrogiovanni, Paola; Loreto, Carla; Leonardi, Rosi; Aiello, Flavia Concetta; Magro, Gaetano; Imbesi, Rosa

    2015-01-01

    The pituitary gland and the hypothalamus are morphologically and functionally associated in the endocrine and neuroendocrine control of other endocrine glands. They therefore play a key role in a number of regulatory feedback processes that co-ordinate the whole endocrine system. Here we review the neuroendocrine system, from the discoveries that led to its identification to some recently clarified embryological, functional, and morphological aspects. In particular we review the pituitary gland and the main notions related to its development, organization, cell differentiation, and vascularization. Given the crucial importance of the factors controlling neuroendocrine system development to understand parvocellular neuron function and the aetiology of the congenital disorders related to hypothalamic-pituitary axis dysfunction, we also provide an overview of the molecular and genetic studies that have advanced our knowledge in the field. Through the action of the hypothalamus, the pituitary gland is involved in the control of a broad range of key aspects of our lives: the review focuses on the hypothalamic-pituitary-gonadal axis, particularly GnRH, whose abnormal secretion is associated with clinical conditions involving delayed or absent puberty and reproductive dysfunction. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Heavy alcohol use, rather than alcohol dependence, is associated with dysregulation of the hypothalamic-pituitary-adrenal axis and the autonomic nervous system

    NARCIS (Netherlands)

    Boschloo, Lynn; Vogelzangs, Nicole; Licht, Carmilla M. M.; Vreeburg, Sophie A.; Smit, Johannes H.; van den Brink, Wim; Veltman, Dick J.; de Geus, Eco J. C.; Beekman, Aartjan T. F.; Penninx, Brenda W. J. H.

    2011-01-01

    Heavy alcohol use as well as alcohol dependence (AD) have been associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA)-axis and the autonomic nervous system (ANS). However, the relative contribution of alcohol use and AD is unclear. Baseline data were derived from 2947 persons of

  18. Adversity-driven changes in hypothalamic-pituitary-adrenal axis functioning during adolescence. The trails study.

    Science.gov (United States)

    Laceulle, Odilia M; Nederhof, Esther; van Aken, Marcel A G; Ormel, Johan

    2017-11-01

    The hypothalamic-pituitary-adrenal (HPA) axis has been proposed to be a key mechanism underlying the link between adversity and mental health, but longitudinal studies on adversity and HPA-axis functioning are scarce. Here, we studied adversity-driven changes in HPA-axis functioning during adolescence (N=141). HPA-axis functioning (basal cortisol, cortisol awakening response, anticipation of, reaction to and recovery after a stress task) was measured twice, at age 16 and 19. Adversity (i.e., social defeat and loss/illness) since age 16 was measured extensively with the Life Stress Interview at age 19. Adolescents who reported being exposed to social defeat showed increases in basal cortisol (ɳ 2 =0.029) and decreases in reaction to the stress task (ɳ 2 =0.030) from age 16-19, compared to their peers in the loss/illness and no stress group. The current study provides unique longitudinal data on the role of adversity in HPA-axis functioning. Evidence is provided that adversity can affect the body's neuroendocrine response to stress, dependent on the nature of both the HPA-measures and adverse events under study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hair cortisol levels as a retrospective marker of hypothalamic-pituitary axis activity throughout pregnancy: Comparison to salivary cortisol

    OpenAIRE

    D’Anna-Hernandez, Kimberly L.; Ross, Randal G.; Natvig, Crystal L.; Laudenslager, Mark L.

    2011-01-01

    Maternal stress during pregnancy is associated with negative maternal/child outcomes. One potential biomarker of the maternal stress response is cortisol, a product of activity of the hypothalamic-pituitary-adrenal axis. This study evaluated cortisol levels in hair throughout pregnancy as a marker of total cortisol release. Cortisol levels in hair have been shown to be easily quantifiable and may be representative of total cortisol release more than single saliva or serum measures. Hair corti...

  20. The effect of metformin on the hypothalamic-pituitary-thyroid axis in patients with type 2 diabetes and subclinical hyperthyroidism.

    Science.gov (United States)

    Krysiak, R; Szkrobka, W; Okopien, B

    2015-04-01

    In hypothyroid patients, metformin was found to reduce serum levels of TSH. No previous study investigated metformin action on hypothalamic-pituitary-thyroid axis in patients with hyperthyroidism. The aim of our study was to assess the effect of metformin treatment on thyroid function tests in patients with untreated subclinical hyperthyroidism. We studied 15 patients with low but detectable TSH levels (0.1-0.4 mIU/L) (group 1), 12 patients with suppressed TSH levels (less than 0.1 mIU/L) (group 2) and 15 euthyroid patients with a history of hyperthyroidism, who because of coexisting 2 diabetes were treated with metformin (2.55-3 g daily). Glucose homeostasis markers, as well as serum levels of TSH and total and free thyroxine and triiodothyronine levels were assessed at baseline and after 3 and 6 months of therapy. As expected, metformin reduced plasma glucose, insulin resistance and glycated hemoglobin. However, with the exception of an insignificant decrease in TSH levels after 3-month therapy in group 2, metformin therapy did not affect thyroid function tests. Our results indicate that metformin has a negligible effect on hypothalamic-pituitary-thyroid axis activity in type 2 diabetic patients with subclinical hyperthyroidism. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Adaptation to chemical perturbation in the HPG axis: Implications for assessment and monitoring

    Science.gov (United States)

    Over the past 15 years chemicals that impact the vertebrate hypothalamic-pituitary-gonadal (HPG) axis have arguably received more attention relative to research and regulation than any other class of environmental contaminants. Testing and monitoring programs to identify and ass...

  2. Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure

    Science.gov (United States)

    van Bodegom, Miranda; Homberg, Judith R.; Henckens, Marloes J. A. G.

    2017-01-01

    Exposure to stress during critical periods in development can have severe long-term consequences, increasing overall risk on psychopathology. One of the key stress response systems mediating these long-term effects of stress is the hypothalamic-pituitary-adrenal (HPA) axis; a cascade of central and peripheral events resulting in the release of corticosteroids from the adrenal glands. Activation of the HPA-axis affects brain functioning to ensure a proper behavioral response to the stressor, but stress-induced (mal)adaptation of the HPA-axis' functional maturation may provide a mechanistic basis for the altered stress susceptibility later in life. Development of the HPA-axis and the brain regions involved in its regulation starts prenatally and continues after birth, and is protected by several mechanisms preventing corticosteroid over-exposure to the maturing brain. Nevertheless, early life stress (ELS) exposure has been reported to have numerous consequences on HPA-axis function in adulthood, affecting both its basal and stress-induced activity. According to the match/mismatch theory, encountering ELS prepares an organism for similar (“matching”) adversities during adulthood, while a mismatching environment results in an increased susceptibility to psychopathology, indicating that ELS can exert either beneficial or disadvantageous effects depending on the environmental context. Here, we review studies investigating the mechanistic underpinnings of the ELS-induced alterations in the structural and functional development of the HPA-axis and its key external regulators (amygdala, hippocampus, and prefrontal cortex). The effects of ELS appear highly dependent on the developmental time window affected, the sex of the offspring, and the developmental stage at which effects are assessed. Albeit by distinct mechanisms, ELS induced by prenatal stressors, maternal separation, or the limited nesting model inducing fragmented maternal care, typically results in HPA-axis

  3. Effect of treatment modality on the hypothalamic-pituitary function of patients treated with radiation therapy for pituitary adenomas: Hypothalamic dose and endocrine outcomes.

    Directory of Open Access Journals (Sweden)

    Andrew eElson

    2014-04-01

    Full Text Available Background: Both fractionated external beam radiotherapy and single fraction radiosurgery for pituitary adenomas are associated with the risk of hypothalamic-pituitary (HP axis dysfunction.Objective: To analyze the effect of treatment modality (Linac, TomoTherapy, or Gamma Knife on hypothalamic dose and correlate these with HP-Axis deficits after radiotherapy.Methods:Radiation plans of patients treated postoperatively for pituitary adenomas using Linac-based 3D Conformal Radiotherapy (CRT (n=11, TomoTherapy-based Intensity Modulated Radiation Therapy (IMRT (n=10, or Gamma Knife Stereotactic Radiosurgery (SRS(n=12 were retrospectively reviewed. Dose to the hypothalamus was analyzed and postradiotherapy hormone function including growth hormone (GH, thyroid (TSH, adrenal (ACTH, prolactin (PRL, and gonadotropins (FSH/LH were assessed. Results:Post-radiation, 13 of 27 (48% patients eligible for analysis developed at least one new hormone deficit, of which 8 of 11 (72% occurred in the Linac group, 4 of 8 (50% occurred in the TomoTherapy group, and 1 of 8 (12.5% occurred in the Gamma Knife group. Compared with fractionated techniques, Gamma Knife showed improved hypothalamic sparing for DMax Hypo, and V12Gy. For fractionated modalities, TomoTherapy showed improved dosimetric characteristics over Linac-based treatment with hypothalamic DMean (44.8 Gy vs. 26.8 Gy p=0.02, DMax (49.8 Gy vs. 39.1 Gy p=0.04, and V12Gy (100% vs. 76% p=0.004.Conclusion:Maximal dosimetric avoidance of the hypothalamus was achieved using Gamma Knife-based radiosurgery followed by TomoTherapy-based IMRT, and Linac-based 3D conformal radiation therapy, respectively.

  4. Gonadal status in male survivors following childhood brain tumors

    DEFF Research Database (Denmark)

    Schmiegelow, M; Lassen, S; Poulsen, H S

    2001-01-01

    The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males......The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males...

  5. Participation of hypothalamic CB1 receptors in reproductive axis disruption during immune challenge.

    Science.gov (United States)

    Surkin, P N; Di Rosso, M E; Correa, F; Elverdin, J C; Genaro, A M; De Laurentiis, A; Fernández-Solari, J

    2017-08-01

    Immune challenge inhibits reproductive function and endocannabinoids (eCB) modulate sexual hormones. However, no studies have been performed to assess whether the eCB system mediates the inhibition of hormones that control reproduction as a result of immune system activation during systemic infections. For that reason, we evaluated the participation of the hypothalamic cannabinoid receptor CB1 on the hypothalamic-pituitary-gonadal (HPG) axis activity in rats submitted to immune challenge. Male adult rats were treated i.c.v. administration with a CB1 antagonist/inverse agonist (AM251) (500 ng/5 μL), followed by an i.p. injection of lipopolysaccharide (LPS) (5 mg/kg) 15 minutes later. Plasmatic, hypothalamic and adenohypophyseal pro-inflammatory cytokines, hormones and neuropeptides were assessed 90 or 180 minutes post-LPS. The plasma concentration of tumour necrosis factor α and adenohypophyseal mRNA expression of Tnfα and Il1β increased 90 and 180 minutes post i.p. administration of LPS. However, cytokine mRNA expression in the hypothalamus increased only 180 minutes post-LPS, suggesting an inflammatory delay in this organ. CB1 receptor blockade with AM251 increased LPS inflammatory effects, particularly in the hypothalamus. LPS also inhibited the HPG axis by decreasing gonadotrophin-releasing hormone hypothalamic content and plasma levels of luteinising hormone and testosterone. These disruptor effects were accompanied by decreased hypothalamic Kiss1 mRNA expression and prostaglandin E2 content, as well as by increased gonadotrophin-inhibitory hormone (Rfrp3) mRNA expression. All these disruptive effects were prevented by the presence of AM251. In summary, our results suggest that, in male rats, eCB mediate immune challenge-inhibitory effects on reproductive axis at least partially via hypothalamic CB1 activation. In addition, this receptor also participates in homeostasis recovery by modulating the inflammatory process taking place after LPS

  6. Cushing's Syndrome and Hypothalamic-Pituitary-Adrenal Axis Hyperactivity in Chronic Central Serous Chorioretinopathy.

    Science.gov (United States)

    van Haalen, Femke M; van Dijk, Elon H C; Dekkers, Olaf M; Bizino, Maurice B; Dijkman, Greet; Biermasz, Nienke R; Boon, Camiel J F; Pereira, Alberto M

    2018-01-01

    Central serous chorioretinopathy (CSC), a specific form of macular degeneration, has been reported as presenting manifestation of Cushing's syndrome. Furthermore, CSC has been associated with both exogenous hypercortisolism and endogenous Cushing's syndrome. It is important to know whether CSC patients should be screened for Cushing's syndrome. Although hypothalamic-pituitary-adrenal (HPA) axis hyperactivity in CSC has been suggested, no detailed evaluation of the HPA axis has been performed in a large cohort of CSC patients. This study aimed to investigate whether Cushing's syndrome prevalence is increased among chronic CSC (cCSC) patients and whether detailed endocrinological phenotyping indicates hyperactivity of the HPA axis. Cross-sectional study. 86 cCSC patients and 24 controls. Prevalence of Cushing's syndrome, HPA axis activity. None of the cCSC patients met the clinical or biochemical criteria of Cushing's syndrome. However, compared to controls, HPA axis activity was increased in cCSC patients, reflected by higher 24 h urinary free cortisol, and accompanying higher waist circumference and diastolic blood pressure, whereas circadian cortisol rhythm and feedback were not different. Chronic CSC patients did not report more stress or stress-related problems on questionnaires. No case of Cushing's syndrome was revealed in a large cohort of cCSC patients. Therefore, we advise against screening for Cushing's syndrome in CSC patients, unless additional clinical features are present. However, our results indicate that cCSC is associated with hyperactivity of the HPA axis, albeit not accompanied with perception of more psychosocial stress.

  7. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress

    NARCIS (Netherlands)

    Meerlo, P; Koehl, M; van der Borght, K; Turek, FW

    2002-01-01

    Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine

  8. Hypothalamic-pituitary-adrenal axis genetic variation and early stress moderates amygdala function.

    Science.gov (United States)

    Di Iorio, Christina R; Carey, Caitlin E; Michalski, Lindsay J; Corral-Frias, Nadia S; Conley, Emily Drabant; Hariri, Ahmad R; Bogdan, Ryan

    2017-06-01

    Early life stress may precipitate psychopathology, at least in part, by influencing amygdala function. Converging evidence across species suggests that links between childhood stress and amygdala function may be dependent upon hypothalamic-pituitary-adrenal (HPA) axis function. Using data from college-attending non-Hispanic European-Americans (n=308) who completed the Duke Neurogenetics Study, we examined whether early life stress (ELS) and HPA axis genetic variation interact to predict threat-related amygdala function as well as psychopathology symptoms. A biologically-informed multilocus profile score (BIMPS) captured HPA axis genetic variation (FKBP5 rs1360780, CRHR1 rs110402; NR3C2 rs5522/rs4635799) previously associated with its function (higher BIMPS are reflective of higher HPA axis activity). BOLD fMRI data were acquired while participants completed an emotional face matching task. ELS and depression and anxiety symptoms were measured using the childhood trauma questionnaire and the mood and anxiety symptom questionnaire, respectively. The interaction between HPA axis BIMPS and ELS was associated with right amygdala reactivity to threat-related stimuli, after accounting for multiple testing (empirical-p=0.016). Among individuals with higher BIMPS (i.e., the upper 21.4%), ELS was positively coupled with threat-related amygdala reactivity, which was absent among those with average or low BIMPS. Further, higher BIMPS were associated with greater self-reported anxious arousal, though there was no evidence that amygdala function mediated this relationship. Polygenic variation linked to HPA axis function may moderate the effects of early life stress on threat-related amygdala function and confer risk for anxiety symptomatology. However, what, if any, neural mechanisms may mediate the relationship between HPA axis BIMPS and anxiety symptomatology remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition II: Computational Modeling

    Science.gov (United States)

    ABSTRACT Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We developed a mechanistic mathematical model of the hypothalamic­ pituitary-gonadal (HPG) axis in female fathead minnows to predic...

  10. Hyperresponsiveness of hypothalamic-pituitary-adrenal axis to combined dexamethasone/corticotropin-releasing hormone challenge in female borderline personality disorder subjects with a history of sustained childhood abuse

    NARCIS (Netherlands)

    Rinne, Thomas; de Kloet, E. Ronald; Wouters, Luuk; Goekoop, Jaap G.; DeRijk, Roel H.; van den Brink, Wim

    2002-01-01

    Background: High coincidence of childhood abuse, major depressive disorder (MDD), and posttraumatic stress disorder (PTSD) has been reported in patients with borderline personality disorder (BPD). Animals exposed to early trauma show increased stress-induced hypothalamic-pituitary-adrenal (HPA) axis

  11. The hypothalamic-pituitary-adrenal axis: what can it tell us about stressors?

    Science.gov (United States)

    Armario, Antonio

    2006-10-01

    The hypothalamic-pituitary-adrenal (HPA) axis is an extremely sensitive physiological system whose activation, with the consequent release of ACTH and glucocorticoids, is triggered by a wide range of psychological experiences and physiological perturbations (stressors). The HPA axis is also activated by a high number of pharmacological agents that markedly differ in structure and function, although the precise mechanisms remain in most cases unknown. Activation of the HPA axis is the consequence of the convergence of stimulatory inputs from different brain regions into the paraventricular nucleus of the hypothalamus (PVN), where the most important ACTH secretagogues (corticotrophin releasing factor, CRF, and arginin-vasopressin, AVP) are formed. Plasma levels of ACTH and corticosterone (the latter under more restricted conditions), are considered as good markers of stress for three main reasons: (a) their plasma levels are proportional to the intensity of emotional and systemic stressors, (b) daily repeated exposure to a stressor usually resulted in reduced ACTH response to the same stressor, that is termed adaptation or habituation; and (c) chronic exposure to stressful situations results in tonic changes in the HPA axis that can be used as indices of the accumulative impact of these situations. These changes can be evaluated under resting conditions (i.e. adrenal weight, CRF and AVP gene expression in the PVN) or after some challenges (administration of CRF, ACTH or dexamethasone) that are classical endocrinological tests. There is also evidence that the activation of the HPA axis may also reflect subtle changes in the characteristics of the stressful situations (unpredictability, lack of control, omission of expected rewards, presence of conspecifics), although this is a topic that requires further studies.

  12. Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition: Computational Modeling

    Science.gov (United States)

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We developed a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course (DRTC)...

  13. Role of Hypothalamic-Pituitary-Adrenal axis and corticotropin-releasing factor stress system on cue-induced relapse to alcohol seeking.

    Science.gov (United States)

    Galesi, Fernanda L; Ayanwuyi, Lydia O; Mijares, Miriam Garcia; Cippitelli, Andrea; Cannella, Nazzareno; Ciccocioppo, Roberto; Ubaldi, Massimo

    2016-10-05

    A large body of evidence has shown that the Corticotropin Releasing Factor (CRF) system, which plays a key role in stress modulation, is deeply involved in relapse to alcohol seeking induced by exposure to stressful events such as foot shock or yohimbine injections. Exposure to environmental cues is also known to be a trigger for alcohol relapse, nevertheless, the relationship between the relapse evoked by the cue-induced model and the CRF stress systems remains unclear. The purpose of this study was to evaluate, in male Wistar rats, the involvement of the CRF system and Hypothalamic-Pituitary-Adrenal (HPA) axis in relapse induced by environmental cues. Antalarmin, a selective CRF1 receptor antagonist, Metyrapone, a corticosterone (CORT) synthesis inhibitor and CORT were evaluated for their effects on the reinstatement test in a cue-induced relapse model. Antalarmin (20mg/kg) blocked relapse to alcohol seeking induced by environmental cues. Metyrapone (50 and 100mg/kg) also blocked relapse in Wistar rats but only at the highest dose (100mg/kg). Corticosterone had no effect on relapse at the doses tested. The results obtained from this study suggest that the CRF stress system and the HPA axis are involved in cue-induced alcohol relapse. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Hypothalamic-Pituitary-Adrenal Axis Dysfunction and Illness Progression in Bipolar Disorder

    Science.gov (United States)

    Vasconcelos-Moreno, Mirela Paiva; Gubert, Carolina; dos Santos, Bárbara Tietböhl Martins Quadros; Sartori, Juliana; Eisele, Bárbara; Ferrari, Pamela; Fijtman, Adam; Rüegg, Joëlle; Gassen, Nils Christian; Kapczinski, Flávio; Rein, Theo; Kauer-Sant’Anna, Márcia

    2015-01-01

    Background: Impaired stress resilience and a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis are suggested to play key roles in the pathophysiology of illness progression in bipolar disorder (BD), but the mechanisms leading to this dysfunction have never been elucidated. This study aimed to examine HPA axis activity and underlying molecular mechanisms in patients with BD and unaffected siblings of BD patients. Methods: Twenty-four euthymic patients with BD, 18 siblings of BD patients, and 26 healthy controls were recruited for this study. All subjects underwent a dexamethasone suppression test followed by analyses associated with the HPA axis and the glucocorticoid receptor (GR). Results: Patients with BD, particularly those at a late stage of illness, presented increased salivary post-dexamethasone cortisol levels when compared to controls (p = 0.015). Accordingly, these patients presented reduced ex vivo GR responsiveness (p = 0.008) and increased basal protein levels of FK506-binding protein 51 (FKBP51, p = 0.012), a co-chaperone known to desensitize GR, in peripheral blood mononuclear cells. Moreover, BD patients presented increased methylation at the FK506-binding protein 5 (FKBP5) gene. BD siblings presented significantly lower FKBP51 protein levels than BD patients, even though no differences were found in FKBP5 basal mRNA levels. Conclusions: Our data suggest that the epigenetic modulation of the FKBP5 gene, along with increased FKBP51 levels, is associated with the GR hyporesponsiveness seen in BD patients. Our findings are consistent with the notion that unaffected first-degree relatives of BD patients share biological factors that influence the disorder, and that such changes are more pronounced in the late stages of the illness. PMID:25522387

  15. The hypothalamic-pituitary-thyroid axis and biological rhythms: The discovery of TSH's unexpected role using animal models.

    Science.gov (United States)

    Ikegami, Keisuke; Yoshimura, Takashi

    2017-10-01

    Thyroid hormones (TH) are important for development, growth, and metabolism. It is also clear that the synthesis and secretion of TH are regulated by the hypothalamic-pituitary-thyroid (HPT) axis. Animal models have helped advance our understanding of the roles and regulatory mechanisms of TH. The animals' bodies develop through coordinated timing of cell division and differentiation. Studies of frog metamorphosis led to the discovery of TH and their role in development. However, to adapt to rhythmic environmental changes, animals also developed various endocrine rhythms. Studies of rodents clarified the neural and molecular mechanisms underlying the circadian regulation of the HPT axis. Moreover, birds have a sophisticated seasonal adaptation mechanism, and recent studies of quail revealed unexpected roles for thyroid-stimulating hormone (TSH) and TH in the seasonal regulation of reproduction. Interestingly, this mechanism is conserved in mammals. Thus, we review how animal studies have shaped our general understanding of the HPT axis in relation to biological rhythms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of cetrorelix, a GnRH-receptor antagonist, on gonadal axis in women with functional hypothalamic amenorrhea.

    Science.gov (United States)

    Berardelli, Rita; Gianotti, Laura; Karamouzis, Ioannis; Picu, Andreea; Giordano, Roberta; D'Angelo, Valentina; Zinnà, Domenico; Lanfranco, Fabio; Ghigo, Ezio; Arvat, Emanuela

    2011-10-01

    Gonadotropin Releasing Hormone (GnRH) antagonists (GnRHa) suppress gonadotropin and sex-steroid secretion. In normal women, acute GnRHa administration induces inhibitory effect on pituitary-gonadal axis, followed by Luteinizing Hormone (LH) rebound. Functional hypothalamic amenorrhea (HA) is characterised by impaired gonadotropin secretion and hypogonadism secondary to blunted GnRH pulsatility. We studied the effects of a GnRHa, cetrorelix (CTX 3.0 mg), in six women with HA (age 30.7 ± 3.2 years; BMI 21.5 ± 1.7 kg/m(2)) and six control subjects (CS, 28.2 ± 0.6 years; 22.6 ± 0.9 kg/m(2)) on LH, Follicle-Stimulating Hormone (FSH) and oestradiol levels over 4 h (08.00-12.00 am) before, +24 h and +96 h after CTX; LH, FSH, and oestradiol were also evaluated at +6, +8, +12, +48, +72 h after CTX. CS: CTX reduced (p < 0.05) LH, FSH, and oestradiol (nadir at +12 h, +24 h, and +24 h); LH rebounded at +96 h, FSH and oestradiol recovered at +48 h and +72 h. The 4-h evaluation showed LH and FSH reduction (p < 0.05) at +24 h, with LH rebound at +96 h. HA: CTX reduced (p < 0.05) LH, FSH, and oestradiol, (nadir at +24 h, +48 h, and +48 h, recovery at +48 h, +72 h, and +96 h). The 4-h evaluation showed gonadotropin reduction (p < 0.05) 24 h after CTX, without any rebound effect. One single CTX dose still modulates gonadotropin secretion in HA. Its 'paradoxical' stimulatory effect on gonadotropins needs to be verified after prolonged administration.

  17. [Correlations between the hypothalamo-pituitary-adrenal axis and the metabolic syndrome].

    Science.gov (United States)

    Góth, Miklós; Hubina, Erika; Korbonits, Márta

    2005-01-09

    The metabolic syndrome has several similarities with Cushing's syndrome (impaired glucose tolerance, hypertension, dyslipidemia, central obesity) suggesting that abnormalities in the regulation of the hypothalamic-pituitary-adrenal axis may have a link with the metabolic syndrome. Several studies suggested an association between the clinical signs of the metabolic syndrome and the increased hypothalamic-pituitary-adrenal axis activity based on increased cortisol concentration at 09.00 a.m. and increased cortisol response to corticotropin. According to the Barker hypothesis the fetal malnutrition could determine adult cardiovascular diseases (coronary heart disease, hypertension), some endocrine and metabolic disorders (obesity, type 2 diabetes and hyperlipidemia). The suggested mechanism of the phenomenon is that the suboptimal fetal nutrition results in glucocorticoid overproduction. The 11beta-hydroxysteroid dehydrogenase (converts biological inactive cortisone to cortisol and vice versa) is an important enzyme in cortisol metabolism. The increased expression of 11beta-hydroxysteroid dehydrogenase type 1 in fat tissue could lead to central obesity and impaired glucose tolerance. The hypothesis that increased corticotropin-releasing hormone production drives the overactive hypothalamo-pituitary-adrenal axis was not proven. Further investigations are needed to identify additional pathogenetic factors and to find new therapeutic possibilities.

  18. Hyperactivity of Hypothalamic-Pituitary-Adrenal Axis Due to Dysfunction of the Hypothalamic Glucocorticoid Receptor in Sigma-1 Receptor Knockout Mice

    Directory of Open Access Journals (Sweden)

    Tingting Di

    2017-09-01

    Full Text Available Sigma-1 receptor knockout (σ1R-KO mice exhibit a depressive-like phenotype. Because σ1R is highly expressed in the neuronal cells of hypothalamic paraventricular nuclei (PVN, this study investigated the influence of σ1R deficiency on the regulation of the hypothalamic-pituitary-adrenocortical (HPA axis. Here, we show that the levels of basal serum corticosterone (CORT, adrenocorticotropic hormone (ACTH and corticotrophin releasing factor (CRF as well as the level of CRF mRNA in PVN did not significantly differ between adult male σ1R-KO mice and wild-type (WT mice. Acute mild restraint stress (AMRS induced a higher and more sustainable increase in activity of HPA axis and CRF expression in σ1R-KO mice. Percentage of dexamethasone (Dex-induced reduction in level of CORT was markedly attenuated in σ1R−/− mice. The levels of glucocorticoid receptor (GR and protein kinase C (PKC phosphorylation were reduced in the PVN of σ1R-KO mice and σ1R antagonist NE100-treated WT mice. The exposure to AMRS in σ1R-KO mice induced a stronger phosphorylation of cAMP-response element binding protein (CREB in PVN than that in WT mice. Intracerebroventricular (i.c.v. injection of PKC activator PMA for 3 days in σ1R-KO mice not only recovered the GR phosphorylation and the percentage of Dex-reduced CORT but also corrected the AMRS-induced hyperactivity of HPA axis and enhancement of CRF mRNA and CREB phosphorylation. Furthermore, the injection (i.c.v. of PMA in σ1R-KO mice corrected the prolongation of immobility time in forced swim test (FST and tail suspension test (TST. These results indicate that σ1R deficiency causes down-regulation of GR by reducing PKC phosphorylation, which attenuates GR-mediated feedback inhibition of HPA axis and facilitates the stress response of HPA axis leading to the production of depressive-like behaviors.

  19. Gonadal Steroid Hormones and the Hypothalamo-Pituitary-Adrenal Axis

    OpenAIRE

    Handa, Robert J.; Weiser, Michael J.

    2013-01-01

    The hypothalamo-pituitary-adrenal (HPA) axis represents a complex neuroendocrine feedback loop controlling the secretion of adrenal glucocorticoid hormones. Central to its function is the paraventricular nucleus of the hypothalamus (PVN) where neurons expressing corticotropin releasing factor reside. These HPA motor neurons are a primary site of integration leading to graded endocrine responses to physical and psychological stressors. An important regulatory factor that must be considered, pr...

  20. Imaging of pediatric pituitary endocrinopathies

    Science.gov (United States)

    Chaudhary, Vikas; Bano, Shahina

    2012-01-01

    Accurate investigation of the hypothalamic-pituitary area is required in pediatric patients for diagnosis of endocrine-related disorders. These disorders include hypopituitarism, growth failure, diencephalic syndrome, delayed puberty, precocious puberty, diabetes insipidus, syndrome of inappropriate antidiuretic hormone (SIADH) secretion, and hyperpituitarism. Magnetic resonance imaging (MRI) is the modality of choice to visualize hypothalamic-pituitary axis and associated endocrinopathies. Neuroimaging can be normal or disclose abnormalities related to pituitary-hypothalamic axis like (i) congenital and developmental malformations; (ii) tumors; (iii) cystic lesions; and (iv) infectious and inflammatory conditions. Classical midline anomalies like septo-optic dysplasias or corpus callosum agenesis are commonly associated with pituitary endocrinopathies and also need careful evaluation. In this radiological review, we will discuss neuroendocrine disorders related to hypothalamic pituitary-axis. PMID:23087850

  1. Role of the Orexin System on the Hypothalamus-Pituitary-Thyroid Axis

    Science.gov (United States)

    Messina, Antonietta; De Fusco, Carolina; Monda, Vincenzo; Esposito, Maria; Moscatelli, Fiorenzo; Valenzano, Anna; Carotenuto, Marco; Viggiano, Emanuela; Chieffi, Sergio; De Luca, Vincenzo; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2016-01-01

    Hypocretin/orexin (ORX) are two hypothalamic neuropeptides discovered in 1998. Since their discovery, they have been one of the most studied neuropeptide systems because of their projecting fields innervating various brain areas. The orexinergic system is tied to sleep-wakefulness cycle, and narcolepsy is a consequence of their system hypofunction. Orexinergic system is also involved in many other autonomic functions such as feeding, thermoregulation, cardiovascular and neuroendocrine regulation. The main aim of this mini review article is to investigate the relationship between ORX and thyroid system regulation. Although knowledge about the ORX system is evolving, its putative effects on hypothalamic-pituitary-thyroid (HPT) axis still appear unclear. We analyzed some studies about ORX control of HPT axis to know better the relationship between them. The studies that were analyzed suggest Hypocretin/ORX to modulate the thyroid regulation, but the nature (excitatory or inhibitory) of this possible interaction remains actually unclear and needs to be confirmed. PMID:27610076

  2. Developing predictive approaches to characterize adaptive responses of the reproductive endocrine axis to aromatase inhibition: I. Data generation in a small fish model

    Science.gov (United States)

    Adaptive or compensatory responses to chemical exposure can significantly influence in vivo concentration-duration-response relationships. The aim of this study was to provide data to support development of a computational dynamic model of the hypothalamic-pituitary-gonadal axis ...

  3. Administration of L-thyroxine does not improve the response of the hypothalamo-pituitary-ovarian axis to clomiphene citrate in functional hypothalamic amenorrhea.

    Science.gov (United States)

    De Leo, V; la Marca, A; Lanzetta, D; Morgante, G

    2000-05-01

    To investigate the hypothalamo-pituitary-ovarian axis in women with functional hypothalamic amenorrhea to determine whether the combination of L-thyroxine and clomiphene citrate produces a qualitative and quantitative increase in induced ovulatory cycles. Gynecological Endocrinology Research Center, University of Siena (Italy). 16 young women with functional hypothalamic amenorrhea and 15 women with normal cycles in early follicular phase. Administration of 50 microgram GnRH and 200 microgram TRH. The women with functional hypothalamic amenorrhea were divided into groups A (n=8) and B (n=8). Both groups were given 100 mg/day clomiphene for 5 days/month for 3 months. Women in group A were also given 75 mcg/day thyroid hormone (L-thyroxine) for 3 months. Comparison of basal and stimulated levels of gonadotropins, TSH and Prl, in groups A and B. Qualitative and quantitative comparison of ovulatory cycles induced in the groups. Administration of clomiphene and clomiphene plus L-thyroxine was evaluated in the second and third months of treatment and was followed by a total of 11 ovulatory cycles, six in group A and five in group B. No significant difference was found between groups. Mean progesterone concentrations measured 16 days after the last clomiphene tablet were 5.5+/-1.2 ng/ml in group A and 5.1+/-1.3 ngl/ml in group B. Administration of L-thyroxine with clomiphene does not improve the response of the hypothalamo-pituitary-ovarian axis to clomiphene citrate or the number of ovulatory cycles and does not reduce luteal phase defects.

  4. Early experience and sex interact to influence limbic-hypothalamic-pituitary-adrenal-axis function after acute alcohol administration in rhesus macaques (Macaca mulatta).

    Science.gov (United States)

    Barr, C S; Newman, T K; Lindell, S; Becker, M L; Shannon, C; Champoux, M; Suomi, S J; Higley, J D

    2004-07-01

    Studies in rodents demonstrate sex differences in neuroendocrine stress axis activity after treatment with alcohol. In abstinent alcoholics, atypical depressives, and individuals with posttraumatic stress disorder, limbic-hypothalamic-pituitary-adrenal (LHPA)-axis activity is often blunted; among females in these patient populations, however, resistance to glucocorticoid feedback and increased pituitary reactivity is observed. Early parental loss is a major life stressor and is a risk factor for both affective disturbances and LHPA-axis abnormalities later in life. We wanted to determine whether sex and early life parental absence would interact to influence alcohol-induced alterations in LHPA-axis activity after exposure to ethanol in macaques. Animals were reared with their mothers in social groups (MR, n = 94) or without adults in peer-only groups (PR, n = 79). At 5 years of age, they received an intravenous infusion of alcohol (2-2.2 g/kg), and the effects of alcohol, sex, and rearing condition on ACTH and cortisol levels were analyzed by ANOVA. Peer-reared females had higher ACTH levels than did PR males, MR females, and MR males after alcohol infusion. Alcohol-induced cortisol levels were not affected by sex and rearing condition. These findings suggest that there are sex differences in glucocorticoid negative feedback, pituitary responsivity, or release of ACTH secretagogues among individuals exposed to early life stress and emphasize the importance of considering sex effects when studying LHPA-axis dysregulation in alcoholism and other stress-related neuropsychiatric disorders.

  5. Hypothalamic-pituitary-adrenal axis hyperactivity is associated with decreased brain-derived neurotrophic factor in female suicide attempters.

    Science.gov (United States)

    Ambrus, Livia; Lindqvist, Daniel; Träskman-Bendz, Lil; Westrin, Åsa

    2016-11-01

    Both decreased levels of brain-derived neurotrophic factor (BDNF) and hypothalamic-pituitary-adrenal (HPA) axis dysregulation may be involved in the pathophysiology of suicidal behaviour, as well as cognitive symptoms of depression. Pre-clinical and clinical studies have shown interactions between HPA-axis activity and BDNF, but this has not been studied in a clinical cohort of suicidal subjects. The purpose of this study was, therefore, to investigate associations between HPA-axis activity and BDNF in suicide attempters. Furthermore, this study examined the relationship between the HPA-axis, BDNF, and cognitive symptoms in suicidal patients. Since previous data indicate gender-related differences in BDNF and the HPA axis, males and females were examined separately. Seventy-five recent suicide attempters (n = 41 females; n = 34 males) were enrolled in the study. The Dexamethasone Suppression Test (DST) was performed and BDNF in plasma were analysed. Patients were evaluated with the Comprehensive Psychopathological Rating Scale (CPRS) from which items 'Concentration difficulties' and 'Failing memory' were extracted. Only among females, DST non-suppressors had significantly lower BDNF compared to DST suppressors (p = 0.022), and there was a significant correlation between post-DST serum cortisol at 8 a.m. and BDNF (rs = -0.437, p = 0.003). Concentration difficulties correlated significantly with post-DST cortisol in all patients (rs = 0.256, p = 0.035), in females (rs = 0.396, p = 0.015), and with BDNF in females (rs = -0.372, p = 0.020). The findings suggest an inverse relationship between the HPA-axis and BDNF in female suicide attempters. Moreover, concentration difficulties may be associated with low BDNF and DST non-suppression in female suicide attempters.

  6. Developmental and contextual considerations for adrenal and gonadal hormone functioning during adolescence: Implications for adolescent mental health.

    Science.gov (United States)

    Marceau, Kristine; Ruttle, Paula L; Shirtcliff, Elizabeth A; Essex, Marilyn J; Susman, Elizabeth J

    2015-09-01

    Substantial research has implicated the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes independently in adolescent mental health problems, though this literature remains largely inconclusive. Given the cross-talk between the HPA and HPG axes and their increased activation in adolescence, a dual-axis approach that examines both axes simultaneously is proposed to predict the emergence and persistence of adolescent mental health problems. After briefly orienting readers to HPA and HPG axis functioning, we review the literature examining associations between hormone levels and changes with behavior during adolescence. Then, we provide a review of the literature supporting examination of both axes simultaneously and present the limited research that has taken a dual-axis approach. We propose future directions including consideration of between-person and within-person approaches to address questions of correlated changes in HPA and HPG hormones. Potential moderators are considered to increase understanding of the nuanced hormone-behavior associations during key developmental transitions. © 2014 Wiley Periodicals, Inc.

  7. A review of the incidence and survival of childhood and adolescent ...

    African Journals Online (AJOL)

    Cancer is not uncommon in children. The reproductive system is an important site for late effects of cancer treatment, and normal pubertal development depends on an undamaged hypothalamic-pituitary-gonadal axis. Fertility compromise can occur due to chemotherapy, radiotherapy to the hypothalamic-pituitary-gonadal ...

  8. Dysregulated estrogen receptor signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis in mice.

    Directory of Open Access Journals (Sweden)

    Mary J Laws

    2014-03-01

    Full Text Available The etiology of ovarian epithelial cancer is poorly understood, mainly due to the lack of an appropriate experimental model for studying the onset and progression of this disease. We have created a mutant mouse model in which aberrant estrogen receptor alpha (ERα signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis. In these mice, termed ERαd/d, the ERα gene was conditionally deleted in the anterior pituitary, but remained intact in the hypothalamus and the ovary. The loss of negative-feedback regulation by estrogen (E at the level of the pituitary led to increased production of luteinizing hormone (LH by this tissue. Hyperstimulation of the ovarian cells by LH resulted in elevated steroidogenesis, producing high circulating levels of steroid hormones, including E. The ERαd/d mice exhibited formation of palpable ovarian epithelial tumors starting at 5 months of age with 100% penetrance. By 15 months of age, 80% of ERαd/d mice die. Besides proliferating epithelial cells, these tumors also contained an expanded population of luteinized stromal cells, which acquire the ability to express P450 aromatase and synthesize E locally. In response to the elevated levels of E, the ERα signaling was accentuated in the ovarian epithelial cells of ERαd/d mice, triggering increased ERα-dependent gene expression, abnormal cell proliferation, and tumorigenesis. Consistent with these findings, treatment of ERαd/d mice with letrozole, an aromatase inhibitor, markedly reduced circulating E and ovarian tumor volume. We have, therefore, developed a unique animal model, which serves as a useful tool for exploring the involvement of E-dependent signaling pathways in ovarian epithelial tumorigenesis.

  9. Hypothalamic and pituitary clusterin modulates neurohormonal responses to stress.

    Science.gov (United States)

    Shin, Mi-Seon; Chang, Hyukki; Namkoong, Churl; Kang, Gil Myoung; Kim, Hyun-Kyong; Gil, So Young; Yu, Ji Hee; Park, Kyeong Han; Kim, Min-Seon

    2013-01-01

    Clusterin is a sulfated glycoprotein abundantly expressed in the pituitary gland and hypothalamus of mammals. However, its physiological role in neuroendocrine function is largely unknown. In the present study, we investigated the effects of intracerebroventricular (ICV) administration of clusterin on plasma pituitary hormone levels in normal rats. Single ICV injection of clusterin provoked neurohormonal changes seen under acute stress condition: increased plasma adrenocorticotropic hormone (ACTH), corticosterone, GH and prolactin levels and decreased LH and FSH levels. Consistently, hypothalamic and pituitary clusterin expression levels were upregulated following a restraint stress, suggesting an involvement of endogenous clusterin in stress-induced neurohormonal changes. In the pituitary intermediate lobe, clusterin was coexpressed with proopiomelanocortin (POMC), a precursor of ACTH. Treatment of clusterin in POMC expressing AtT-20 pituitary cells increased basal and corticotropin-releasing hormone (CRH)-stimulated POMC promoter activities and intracellular cAMP levels. Furthermore, clusterin treatment triggered ACTH secretion from AtT-20 cells in a CRH-dependent manner, indicating that increased clusterin under stressful conditions may augment CRH-stimulated ACTH production and release. In summary, hypothalamic and pituitary clusterin may function as a modulator of neurohormonal responses under stressful conditions. © 2013 S. Karger AG, Basel.

  10. Hypothalamic-pituitary, ovarian and adrenal contributions to polycystic ovary syndrome.

    Science.gov (United States)

    Baskind, N Ellissa; Balen, Adam H

    2016-11-01

    Polycystic ovary syndrome (PCOS) is a prevalent heterogeneous disorder linked with disturbances of reproductive, endocrine and metabolic function. The definition and aetiological hypotheses of PCOS are continually developing to incorporate evolving evidence of the syndrome, which appears to be both multifactorial and polygenic. The pathophysiology of PCOS encompasses inherent ovarian dysfunction that is strongly influenced by external factors including the hypothalamic-pituitary axis and hyperinsulinaemia. Neuroendocrine abnormalities including increased gonadotrophin-releasing hormone (GnRH) pulse frequency with consequent hypersecretion of luteinising hormone (LH) affects ovarian androgen synthesis, folliculogenesis and oocyte development. Disturbed ovarian-pituitary and hypothalamic feedback accentuates the gonadotrophin abnormalities, and there is emerging evidence putatively implicating dysfunction of the Kiss 1 system. Within the follicle subunit itself, there are intra-ovarian paracrine modulators, cytokines and growth factors, which appear to play a role. Adrenally derived androgens may also contribute to the pathogenesis of PCOS, but their role is less defined. Copyright © 2016. Published by Elsevier Ltd.

  11. Toxic stress history and hypothalamic-pituitary-adrenal axis function in a social stress task: Genetic and epigenetic factors.

    Science.gov (United States)

    Lapp, Hannah E; Ahmed, Sarah; Moore, Celia L; Hunter, Richard G

    2018-02-21

    Histories of early life stress (ELS) or social discrimination can reach levels of severity characterized as toxic to mental and physical health. Such toxic social stress during development has been linked to altered acute hypothalamic-pituitary-adrenal (HPA) response to social stress in adulthood. However, there are important individual differences in the size and direction of these effects. We explored developmental, genetic, epigenetic, and contextual sources of individual differences in the relationship between ELS, discrimination, and adult responses to acute social stress in a standard laboratory test. Additional measures included perceived status, social support, background activity of HPA axis, and genetic variants in aspects of the stress response system. Participants (n = 90) answered questions about historical and ongoing stress, provided a DNA sample to examine genetic polymorphisms and epigenetic marks, and underwent the Trier Social Stress Test (TSST) during which three saliva samples were collected to assess HPA function. Individuals who reported high levels of childhood adversity had a blunted salivary cortisol response to the TSST. Childhood adversity, discrimination experiences, and FKBP5 genotype were found to predict pretest cortisol levels. Following up on recent observations that the glucocorticoid receptor directly interacts with the mitochondrial genome, particularly the NADH dehydrogenase 6 (MT-ND6) gene, individuals who reported high childhood adversity were also found to have higher percent methylation across six CpG sites upstream of MT-ND6. These findings suggest multiple contributions across psychological, genetic, epigenetic, and social domains to vulnerability and resilience in hypothalamic-pituitary-adrenal axis regulation. Further study to examine how these multiple contributors affect developmental endpoints through integrated or independent pathways will be of use. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Modelling of the Hypothalamic-Pituitary-Adrenal Axis Perturbations by Externally Induced Cholesterol Pulses of Finite Duration and with Asymmetrically Distributed Concentration Profile

    Science.gov (United States)

    Stanojević, A.; Marković, V. M.; Čupić, Ž.; Vukojević, V.; Kolar-Anić, L.

    2017-12-01

    A model was developed that can be used to study the effect of gradual cholesterol intake by food on the HPA axis dynamics. Namely, well defined oscillatory dynamics of vital neuroendocrine hypothalamic-pituitary-adrenal (HPA) axis has proven to be necessary for maintaining regular basal physiology and formulating appropriate stress response to various types of perturbations. Cholesterol, as a precursor of all steroid HPA axis hormones, can alter the dynamics of HPA axis. To analyse its particular influence on the HPA axis dynamics we used stoichiometric model of HPA axis activity, and simulate cholesterol perturbations in the form of finite duration pulses, with asymmetrically distributed concentration profile. Our numerical simulations showed that there is a complex, nonlinear dependence between the HPA axis responsiveness and different forms of applied cholesterol concentration pulses, indicating the significance of kinetic modelling, and dynamical systems theory for the understanding of large-scale self-regulatory, and homeostatic processes within this neuroendocrine system.

  13. Diurnal Hypothalamic-Pituitary-Adrenal Axis Measures and Inflammatory Marker Correlates in Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Kelly Doolin

    2017-10-01

    Full Text Available Dysregulation of the hypothalamic-pituitary-adrenal (HPA axis and inflammatory systems is a consistent finding in patients with Major Depressive Disorder (MDD. Cortisol is often assessed by measurement of the cortisol awakening response (CAR and/or diurnal cortisol levels. Some methods of cortisol measurement overestimate cortisol concentration due to detection of other glucocorticoids including the relatively inert cortisone, therefore this study aimed to assess the presence of both cortisol and cortisone, and the cortisol-cortisone catalyzing enzyme 11β-hydroxysteroiddehydrogenase type 1 (11β-HSD1, in depressed patients and controls. Because the HPA axis is known to regulate the body’s immune system, relationships between measures of cytokines and cortisol were also assessed. Saliva samples were collected from 57 MDD patients and 40 healthy controls at five post-wakening time points (0, +30, +60, +720 and +750 min. Glucocorticoid concentrations were measured by liquid chromatography mass spectrometry. Whole blood mRNA expression of several inflammatory markers was measured by quantitative polymerase chain reaction. This study replicated the common finding of elevated morning cortisol and reduced CAR reactivity in MDD and found no differences in cortisone or 11β-HSD1 mRNA measures. There was a negative association between interleukin 1-β (IL-1β mRNA and morning cortisol reactivity within the depressed group, indicating that dysregulation of the HPA axis and immune system may be interconnected.

  14. Possible Involvement of Photoperiodic Regulation in Reproductive Endocrine System of Female Olive Flounder Paralichthys olivaceus.

    Science.gov (United States)

    Kim, Hyun Chul; Lee, Chi Hoon; Hur, Sung Pyu; Kim, Byeong Hoon; Park, Jun Young; Lee, Young Don

    2015-03-01

    This study investigated possible involvement of photoperiodic regulation in reproductive endocrine system of female olive flounder. To investigate the influence on brain-pituitary axis in endocrine system by regulating photoperiod, compared expression level of Kisspeptin and sbGnRH mRNA in brain and FSH-β, LH-β and GH mRNA in pituitary before and after spawning. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from Aug. 2013 to Jun. 2014. Continuous long photoperiod treatment from Aug. (post-spawning phase) was inhibited gonadal development of female olive flounder. In natural photoperiod group, the Kiss2 expression level a significant declined in Mar. (spawning period). And also, FSH-β, LH-β and GH mRNA expression levels were increasing at this period. However, in long photoperiod group, hypothalamic Kiss2, FSH-β, LH-β and GH mRNA expression levels did not show any significant fluctuation. These results suggest that expression of hypothalamic Kiss2, GtH and GH in the pituitary would change in response to photoperiod and their possible involvement of photoperiodic regulation in reproductive endocrine system of the BPG axis.

  15. Pituitary Androgen Receptor Signalling Regulates Prolactin but Not Gonadotrophins in the Male Mouse

    Science.gov (United States)

    O’Hara, Laura; Curley, Michael; Tedim Ferreira, Maria; Cruickshanks, Lyndsey; Milne, Laura; Smith, Lee B.

    2015-01-01

    Production of the androgen testosterone is controlled by a negative feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. Stimulation of testicular Leydig cells by pituitary luteinising hormone (LH) is under the control of hypothalamic gonadotrophin releasing hormone (GnRH), while suppression of LH secretion by the pituitary is controlled by circulating testosterone. Exactly how androgens exert their feedback control of gonadotrophin secretion (and whether this is at the level of the pituitary), as well as the role of AR in other pituitary cell types remains unclear. To investigate these questions, we exploited a transgenic mouse line (Foxg1Cre/+; ARfl/y) which lacks androgen receptor in the pituitary gland. Both circulating testosterone and gonadotrophins are unchanged in adulthood, demonstrating that AR signalling is dispensable in the male mouse pituitary for testosterone-dependent regulation of LH secretion. In contrast, Foxg1Cre/+; ARfl/y males have a significant increase in circulating prolactin, suggesting that, rather than controlling gonadotrophins, AR-signalling in the pituitary acts to suppress aberrant prolactin production in males. PMID:25799562

  16. Central regulation of the hypothalamo-pituitary-thyroid (HPT) axis: focus on clinical aspects.

    Science.gov (United States)

    Fliers, E; Boelen, A; van Trotsenburg, A S P

    2014-01-01

    The hypothalamus is the most prominent brain region involved in setpoint regulation of the thyroid axis. It generates the diurnal thyroid-stimulating hormone (TSH) rhythm, and it plays a central role in the adaptation of the thyroid axis to environmental factors such as caloric deprivation or infection. Many studies, including studies in human post-mortem tissue samples, have confirmed a key role for the thyrotropin-releasing hormone (TRH) neuron in the hypothalamic paraventricular nucleus (PVN) in thyroid axis regulation. In addition to their negative feedback action on TRH neurons in the hypothalamus, intrahypothalamic thyroid hormones can also modulate metabolism in adipose tissue and the liver via the autonomic nervous system. Congenital or acquired dysfunction of the hypothalamus or pituitary gland may result in central hypothyroidism (CeH). In the Netherlands, the prevalence of permanent congenital CeH as detected by neonatal screening is approximately 1 in 18000. In most neonates congenital CeH is accompanied by additional anterior pituitary hormone deficiencies, and many show clear morphological abnormalities such as a small anterior gland, a thin or absent pituitary stalk, or an ectopic posterior pituitary gland. Recently, a mutation in the immunoglobulin superfamily member 1 (IGSF1) gene was reported as a novel cause of X-linked, apparently isolated CeH occurring in neonates, children and adults. In adults, the most frequent cause of acquired CeH is a pituitary macroadenoma, usually accompanied by other pituitary hormone deficiencies. Central hyperthyroidism is a rare disorder, especially in children. In adults, it is mostly caused by a TSH-secreting pituitary adenoma. © 2014 Elsevier B.V. All rights reserved.

  17. Mindful Parenting Predicts Mothers' and Infants' Hypothalamic-Pituitary-Adrenal Activity during a Dyadic Stressor

    Science.gov (United States)

    Laurent, Heidemarie K.; Duncan, Larissa G.; Lightcap, April; Khan, Faaiza

    2017-01-01

    Mindfulness in the parenting relationship has been proposed to help both parents and children better regulate stress, though this has not yet been shown at the physiological level. In this study, we tested relations between maternal mindfulness in parenting and both mothers' and their infants' hypothalamic-pituitary-adrenal (HPA) axis activity…

  18. Hypothalamic-pituitary-adrenal axis activity in patients with pathological gambling and internet use disorder.

    Science.gov (United States)

    Geisel, Olga; Panneck, Patricia; Hellweg, Rainer; Wiedemann, Klaus; Müller, Christian A

    2015-03-30

    Alterations in secretion of stress hormones within the hypothalamic-pituitary-adrenal (HPA) axis have repeatedly been found in substance-related addictive disorders. It has been suggested that glucocorticoids might contribute to the development and maintenance of substance use disorders by facilitatory effects on behavioral responses to substances of abuse. The objective of this pilot study was to investigate HPA axis activity in patients with non-substance-related addictive disorders, i.e. pathological gambling and internet use disorder. We measured plasma levels of copeptin, a vasopressin surrogate marker, adrenocorticotropic hormone (ACTH) and cortisol in male patients with pathological gambling (n=14), internet use disorder (n=11) and matched healthy controls for pathological gambling (n=13) and internet use disorder (n=10). Plasma levels of copeptin, ACTH and cortisol in patients with pathological gambling or internet use disorder did not differ among groups. However, cortisol plasma levels correlated negatively with the severity of pathological gambling as measured by the PG-YBOCS. Together with our findings of increased serum levels of brain-derived neurotrophic factor (BDNF) in pathological gambling but not internet use disorder, these results suggest that the pathophysiology of pathological gambling shares some characteristics with substance-related addictive disorders on a neuroendocrinological level, whereas those similarities could not be observed in internet use disorder. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Hypothalamic pituitary dysfunction in acute nonmycobacterial infections of central nervous system

    Directory of Open Access Journals (Sweden)

    Dinesh K Dhanwal

    2011-01-01

    Full Text Available Background and Objective: Acute and chronic central nervous system (CNS infections are not uncommon in tropical countries and are associated with high morbidity and mortality if specific targeted therapy is not instituted in time. Effects of tubercular meningitis, a form of chronic meningitis on hypothalamic pituitary axis, are well known both at the time of diagnosis and after few months to years of illness. However, there are few reports of pituitary dysfunction in subjects with acute CNS infections. Therefore, this study was aimed at evaluating the pituitary hormonal profile in patients with nonmycobacterial acute meningitis at the time of presentation. Materials and Methods: This prospective case series study included 30 untreated adult patients with acute meningitis, meningoencephalitis, or encephalitis, due to various nonmycobacterial agents, admitted and registered with Lok Nayak Hospital, Maulana Aazd Medical College, New Delhi, between September 2007 and March 2009. Patients with preexisting endocrine diseases, tubercular meningitis and patients on steroids were carefully excluded from the study. The basal pituitary hormonal profile was measured by the electrochemilumniscence technique for serum cortisol, luetinizing hormone (LH, follicular stimulating hormone (FSH, prolactin (PRL, thyrotropin (TSH, free tri-iodothyronine (fT3, and free thyroxine (fT4. Results: The cases (n = 30 comprised of patients with acute pyogenic meningitis (n = 23, viral meningoencephalitis (n = 4, brain abscess (n = 2, and cryptococcal meningitis (n = 1. The mean age of patients was 28.97 ± 11.306 years. Out of 30 patients, 14 (46.7% were males and 16 (58.1% were females. Adrenal insufficiency both absolute and relative was seen in seven (23.3% and hyperprolactinemia was seen in nine (30.0% of the patients. One study subject had central hypothyroidism and seven (23.3 showed low levels of LH and/or FSH. None of patients showed clinical features suggestive of

  20. Lithium-induced malaise does not interfere with adaptation of the hypothalamic-pituitary-adrenal axis to stress.

    Science.gov (United States)

    Sanchís-Ollé, Maria; Ortega-Sánchez, Juan A; Belda, Xavier; Gagliano, Humberto; Nadal, Roser; Armario, Antonio

    2017-04-03

    We have recently demonstrated that adaptation of the hypothalamic-pituitary-adrenal (HPA) axis to repeated exposure to a stressor does not follow the rules of habituation and can be fully expressed after a single experience with severe stressors. In the present work we tested the hypothesis that adaptation could be impaired if animals experience malaise during initial exposure to the stressor. To this end, animals were allowed to drink saccharin for 30min before being exposed for 3h to immobilization on boards (IMO), a severe stressor; then they were given either saline or lithium ip after the first hour of IMO. Stress-naïve rats followed exactly the same procedure except IMO. Exposure to IMO caused a strong activation of the HPA axis whereas the effect of lithium was modest. Both IMO and lithium administration resulted in conditioned taste aversion to saccharin when evaluated 4days later. When all animals were exposed to IMO 6days later, reduced HPA response and less impact on body weight was observed in the two groups previously exposed to IMO as compared with stress-naïve rats. Therefore, lithium administration during the first IMO exposure did not affect adaptation of the HPA axis and weight gain. These results indicate that malaise per se only weakly activated the HPA axis and argue against the hypothesis that signs of physical malaise during exposure to the stressor could impair HPA adaptation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Neuropsychological and hypothalamic-pituitary-axis function in female patients with melancholic and non-melancholic depression.

    Science.gov (United States)

    Michopoulos, Ioannis; Zervas, Iannis M; Pantelis, Chris; Tsaltas, Eleftheria; Papakosta, Vassiliki-Maria; Boufidou, Fotini; Nikolaou, Chrissoula; Papageorgiou, Charalambos; Soldatos, Costas R; Lykouras, Lefteris

    2008-06-01

    Executive function deficits in depression implicate involvement of frontal-striatal circuits. However, studies of hypothalamic-pituitary-axis (HPA) function suggest that stress-related brain changes of hippocampus may also implicate prefrontal-hippocampal circuits, which may explain the profile of both executive dysfunction and memory deficits. In this study we examined the performance of patients with major depressive disorder (MDD) on tasks of memory and executive function in relation to melancholic features and to cortisol levels. Our hypothesis was that raised cortisol levels in melancholic patients would correlate with these deficits. Forty female MDD patients, 20 having melancholic features (MEL vs. Non-MEL), and 20 sex-age- and education-matched normal controls were investigated using the Cambridge neuropsychological test automated battery (CANTAB), to assess memory (paired associative learning, PAL; short-term recognition memory, SRM) and executive (intradimensional/extradimensional set-shifting, ID/ED; Stockings of Cambridge, SOC) functions. Plasma and salivary cortisol levels were measured. The MDD patients performed worse than controls on PAL and both executive tasks. The MEL group differed from controls on all tests, and differed from the non-MEL only at the ED stage of the ID/ED task. Patient cortisol levels were within the normal range and did not correlate with neuropsychological performance for any group. MDD patients showed neuropsychological deficits on tasks of executive function and memory, supporting the model of frontal-temporal dysfunction. MEL vs. non-MEL performed worse overall and demonstrated a qualitative difference in set shifting, perhaps implicating more extensive prefrontal involvement. Cortisol levels did not correlate with depression severity or the observed deficits.

  2. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo–larvae following waterborne exposure to BDE-47, TBBPA and BPA

    International Nuclear Information System (INIS)

    Chan, Winson K.; Chan, King Ming

    2012-01-01

    We performed waterborne exposures of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47), tetrabromobisphenol A (TBBPA) or bisphenol A (BPA) on zebrafish (Danio rerio) embryo–larvae and quantitatively measured the expression of genes belonging to the hypothalamic-pituitary-thyroid (HPT) axis to assess for adverse thyroid function. For analysis on the effects of BDE-47, TBBPA and BPA on the hypothalamic-pituitary-thyroid genes, zebrafish embryo–larvae were acutely exposed to lethal concentrations of the chemical agents in order to determine the 96 h-LC50 (96 h lethal median concentration) and 96 h-EC50 (96 h effective median concentration) values. Further exposures at sub-lethal concentrations were then carried out and total RNA samples were extracted to quantify the mRNA expression levels of the genes of interest. In larvae, BDE-47 was found to have significantly induced many genes of interest, namely thyroglobulin, thyroid peroxidase, thyroid receptors α and β, thyroid stimulating hormone, and transthyretin. TBBPA only significantly induced three genes of interest (thyroid receptor α, thyroid stimulating hormone, and transthyretin) while BPA only induced thyroid stimulating hormone. In embryos, BDE-47 significantly induced the sodium iodide symporter and thyroid stimulating hormone. TBBPA significantly induced thyroid receptor α and thyroid stimulating hormone, while BPA did not significantly induce any of the genes. Most genes were only induced at the 75% 96 h-LC50 or 96 h-EC50 value; however, thyroid peroxidase and thyroid stimulating hormone demonstrated upregulation in a level as little as the 10% 96 h-LC50 value. The present study provides a new set of data on zebrafish mRNA induction of hypothalamic-pituitary-thyroid genes from exposure to BDE-47, TBBPA, or BPA. This information would serve useful for elucidating the toxicological mechanism of brominated flame retardants, assessing appropriate safety levels in the environment for these compounds, as well

  3. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Winson K. [Biochemistry Program, School of Life Sciences, Chinese University of Hong Kong, Sha Tin, Hong Kong (Hong Kong); Chan, King Ming, E-mail: kingchan@cuhk.edu.hk [Biochemistry Program, School of Life Sciences, Chinese University of Hong Kong, Sha Tin, Hong Kong (Hong Kong); Environmental Science Program, School of Life Sciences, Chinese University of Hong Kong, Sha Tin, Hong Kong (Hong Kong)

    2012-02-15

    We performed waterborne exposures of 2,2 Prime ,4,4 Prime -tetrabromodiphenyl ether (BDE-47), tetrabromobisphenol A (TBBPA) or bisphenol A (BPA) on zebrafish (Danio rerio) embryo-larvae and quantitatively measured the expression of genes belonging to the hypothalamic-pituitary-thyroid (HPT) axis to assess for adverse thyroid function. For analysis on the effects of BDE-47, TBBPA and BPA on the hypothalamic-pituitary-thyroid genes, zebrafish embryo-larvae were acutely exposed to lethal concentrations of the chemical agents in order to determine the 96 h-LC50 (96 h lethal median concentration) and 96 h-EC50 (96 h effective median concentration) values. Further exposures at sub-lethal concentrations were then carried out and total RNA samples were extracted to quantify the mRNA expression levels of the genes of interest. In larvae, BDE-47 was found to have significantly induced many genes of interest, namely thyroglobulin, thyroid peroxidase, thyroid receptors {alpha} and {beta}, thyroid stimulating hormone, and transthyretin. TBBPA only significantly induced three genes of interest (thyroid receptor {alpha}, thyroid stimulating hormone, and transthyretin) while BPA only induced thyroid stimulating hormone. In embryos, BDE-47 significantly induced the sodium iodide symporter and thyroid stimulating hormone. TBBPA significantly induced thyroid receptor {alpha} and thyroid stimulating hormone, while BPA did not significantly induce any of the genes. Most genes were only induced at the 75% 96 h-LC50 or 96 h-EC50 value; however, thyroid peroxidase and thyroid stimulating hormone demonstrated upregulation in a level as little as the 10% 96 h-LC50 value. The present study provides a new set of data on zebrafish mRNA induction of hypothalamic-pituitary-thyroid genes from exposure to BDE-47, TBBPA, or BPA. This information would serve useful for elucidating the toxicological mechanism of brominated flame retardants, assessing appropriate safety levels in the environment for

  4. Microbiota Modulate Anxiety-Like Behavior and Endocrine Abnormalities in Hypothalamic-Pituitary-Adrenal Axis

    Directory of Open Access Journals (Sweden)

    Ran Huo

    2017-11-01

    Full Text Available Intestinal microbes are an important system in the human body, with significant effects on behavior. An increasing body of research indicates that intestinal microbes affect brain function and neurogenesis, including sensitivity to stress. To investigate the effects of microbial colonization on behavior, we examined behavioral changes associated with hormones and hormone receptors in the hypothalamic-pituitary-adrenal (HPA axis under stress. We tested germ-free (GF mice and specific pathogen-free (SPF mice, divided into four groups. A chronic restraint stress (CRS protocol was utilized to induce external pressure in two stress groups by restraining mice in a conical centrifuge tube for 4 h per day for 21 days. After CRS, Initially, GF restraint-stressed mice explored more time than SPF restraint-stressed mice in the center and total distance of the OFT. Moreover, the CRH, ACTH, CORT, and ALD levels in HPA axis of GF restraint-stressed mice exhibited a significantly greater increase than those of SPF restraint-stressed mice. Finally, the Crhr1 mRNA levels of GF CRS mice were increased compared with SPF CRS mice. However, the Nr3c2 mRNA levels of GF CRS mice were decreased compared with SPF CRS mice. All results revealed that SPF mice exhibited more anxiety-like behavior than GF mice under the same external stress. Moreover, we also found that GF mice exhibited significant differences in, hormones, and hormone receptors compared with SPF mice. In conclusion, Imbalances of the HPA axis caused by intestinal microbes could affect the neuroendocrine system in the brain, resulting in an anxiety-like behavioral phenotype. This study suggested that intervention into intestinal microflora may provide a new approach for treating stress-related diseases.

  5. Hypothalamic functions in patients with pituitary insufficiency

    NARCIS (Netherlands)

    Borgers, A.J.F.

    2013-01-01

    The main objective of this thesis is to increase our understanding of hypothalamic (dys)function in patients with pituitary insufficiency. This goal is driven by the clinical experience of persisting symptoms in patients adequately treated for pituitary insufficiency. We focus primarily on patients

  6. Clinical correlates of hypothalamic-pituitary-adrenal axis measures in individuals at risk for psychosis and with first-episode psychosis.

    Science.gov (United States)

    Labad, Javier; Armario, Antonio; Nadal, Roser; Solé, Montse; Gutiérrez-Zotes, Alfonso; Montalvo, Itziar; Moreno-Samaniego, Lorena; Martorell, Lourdes; Sánchez-Gistau, Vanessa; Vilella, Elisabet

    2018-07-01

    Hypothalamic-pituitary-adrenal (HPA) axis alterations in at-risk mental states (ARMS) resemble those observed in established psychosis but are less consistent. We aimed to explore HPA axis abnormalities in both first-episode psychosis (FEP) and ARMS patients, while controlling for psychopathological symptoms. We studied 21 ARMS, 34 FEP patients and 34 healthy subjects. Clinical assessment included psychopathological symptoms (positive, negative, disorganized, excited and depressive symptoms) and stress measures. Saliva cortisol levels were determined at awakening, 30' and 60' post-awakening, 10:00 h, 23:00 h and 10:00 h on the day after the administration of 0.25 mg of dexamethasone, which occurred at 23:00 h. Three HPA axis measures were calculated: cortisol awakening response (CAR), cortisol diurnal slope and cortisol suppression ratio of the dexamethasone suppression test (DST). There were no significant differences between groups in HPA axis measures. However, when exploring the relationship between HPA axis measures and psychopathological symptoms, in ARMS subjects (but not FEP patients), a flatter cortisol slope was associated with more prominent negative symptoms, whereas a blunted CAR was associated with excited symptoms. Although no significant differences in HPA axis measures were found between diagnostic groups, subtle abnormalities in the CAR or circadian cortisol rhythmicity might be important for the phenotype of ARMS individuals. Copyright © 2018. Published by Elsevier B.V.

  7. Can variation in hypothalamic-pituitary-adrenal (HPA-axis activity explain the relationship between depression and cognition in bipolar patients?

    Directory of Open Access Journals (Sweden)

    Marieke J van der Werf-Eldering

    Full Text Available Dysregulation of the hypothalamic-pituitary-adrenal (HPA axis is thought to be associated with more mood symptoms and worse cognitive functioning. This study examined whether variation in HPA axis activity underlies the association between mood symptoms and cognitive functioning.In 65 bipolar patients cognitive functioning was measured in domains of psychomotor speed, speed of information processing, attentional switching, verbal memory, visual memory, executive functioning and an overall mean score. Severity of depression was assessed by the Inventory of Depressive Symptomatology-self rating version. Saliva cortisol measurements were performed to calculate HPA axis indicators: cortisol awakening response, diurnal slope, the evening cortisol level and the cortisol suppression on the dexamethasone suppression test. Regression analyses of depressive symptoms and cognitive functioning on each HPA axis indicator were performed. In addition we calculated percentages explanation of the association between depressive symptoms and cognition by HPA axis indicators. Depressive symptoms were associated with dysfunction in psychomotor speed, attentional switching and the mean score, as well as with attenuation in diurnal slope value. No association was found between HPA axis activity and cognitive functioning and HPA axis activity did not explain the associations between depressive symptoms and cognition.As our study is the first one in this field specific for bipolar patients and changes in HPA-axis activity did not seem to explain the association between severity of depressive symptoms and cognitive functioning in bipolar patients, future studies are needed to evaluate other factors that might explain this relationship.

  8. Assessment of endocrine disorders of the hypothalamic-pituitary axis by nuclear medicine techniques; Nuklearmedizinische Verfahren zur Abklaerung endokrinologischer Erkrankungen der Hypothalamus-Hypophysen-Achse

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M.; Theissen, P.; Dietlein, M.; Schicha, H. [Koeln Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Jackenhoevel, F.; Krone, W. [Koeln Univ. (Germany). Klinik II fuer Innere Medizin

    2002-04-01

    The following article reviews nuclear medicine techniques which can be used for assessment of endocrine disorders of the hypothalamic-pituitary axis. For planar and SPECT imaging somatostatin-receptor- and dopamine-D2-receptor-scintigraphy are the most widely distributed techniques. These nuclear medicine techniques may be indicated in selected cases to answer differential diagnostic problems. They can be helpful to search for presence and localization of receptor positive tissue. Furthermore they can detect metastasis in the rare cases of a pituitary carcinoma. Scintigraphy with Gallium-67 is suitable for further diagnostic evaluation in suspected hypophysitis. Other SPECT radiopharmaca do not have relevant clinical significance. F-18-FDG as PET radiopharmacon is not ideal because obvious pituitary adenomas could not be visualized. Other PET radiopharmaca including C-11-methionine, C-11-tyrosine, F-18-fluoroethylspiperone, C-11-methylspiperone, and C-11-raclopride are available in specialized centers only. Overall indications for nuclear medicine in studies for the assessment of endocrine disorders of the hypothalamic-pituitary-axis are rare. Original studies often report only about a small number of patients. According to the authors' opinion the relevance of nuclear medicine in studies of clinically important endocrinologic fields, e. g. localization of small ACTH-producing pituitary adenomas, tumor localization in ectopic ACTH syndrome, localization of recurrent pituitary tissue, assessment of small incidentalomas, can not be definitely given yet. (orig.) [German] Diese Uebersichtsarbeit fasst die nuklearmedizinischen Untersuchungsverfahren zur Abklaerung endokrinologischer Erkrankungen der Hypothalamus-Hypophysen-Achse zusammen. Bei den planaren und SPECT-Unter suchungen sind Somatostatin-Rezeptor- und Dopamin-D2-Rezeptor-Szintigraphie die verbreitetsten Untersuchungstechniken. Im Einzelfall sind sie zur Differenzialdiagnostik, zum Nachweis und zur

  9. A sustained hypothalamic-pituitary-adrenal axis response to acute psychosocial stress in irritable bowel syndrome.

    Science.gov (United States)

    Kennedy, P J; Cryan, J F; Quigley, E M M; Dinan, T G; Clarke, G

    2014-10-01

    Despite stress being considered a key factor in the pathophysiology of the functional gastrointestinal (GI) disorder irritable bowel syndrome (IBS), there is a paucity of information regarding the ability of IBS patients to respond to acute experimental stress. Insights into the stress response in IBS could open the way to novel therapeutic interventions. To this end, we assessed the response of a range of physiological and psychological parameters to the Trier Social Stress Test (TSST) in IBS. Thirteen female patients with IBS and 15 healthy female age-matched control participants underwent a single exposure to the TSST. Salivary cortisol, salivary C-reactive protein (CRP), skin conductance level (SCL), GI symptoms, mood and self-reported stress were measured pre- and post-exposure to the TSST. The hypothalamic-pituitary-adrenal (HPA) axis response to the TSST was sustained in IBS, as shown by a greater total cortisol output throughout (p = 0.035) and higher cortisol levels measured by an area under the curve with respect to ground (AUCG) analysis (p = 0.044). In IBS patients, GI symptoms increased significantly during the recovery period following exposure to the TSST (p = 0.045). Salivary CRP and SCL activity showed significant changes in relation to stress but with no differential effect between experimental groups. Patients with IBS exhibit sustained HPA axis activity, and an increase in problematic GI symptoms in response to acute experimental psychosocial stress. These data pave the way for future interventional studies aimed at identifying novel therapeutic approaches to modulate the HPA axis and GI symptom response to acute psychosocial stress in IBS.

  10. Early effects of cranial irradiation on hypothalamic-pituitary function

    International Nuclear Information System (INIS)

    Lam, K.S.; Tse, V.K.; Wang, C.; Yeung, R.T.; Ma, J.T.; Ho, J.H.

    1987-01-01

    Hypothalamic-pituitary function was studied in 31 patients before and after cranial irradiation for nasopharyngeal carcinoma. The estimated radiotherapy (RT) doses to the hypothalamus and pituitary were 3979 +/- 78 (+/- SD) and 6167 +/- 122 centiGrays, respectively. All patients had normal pituitary function before RT. One year after RT, there was a significant decrease in the integrated serum GH response to insulin-induced hypoglycemia. In the male patients, basal serum FSH significantly increased, while basal serum LH and testosterone did not change. Moreover, in response to LHRH, the integrated FSH response was increased while that of LH was decreased. Such discordant changes in FSH and LH may be explained by a defect in LHRH pulsatile release involving predominantly a decrease in pulse frequency. The peak serum TSH response to TRH became delayed in 28 patients, suggesting a defect in TRH release. Twenty-one patients were reassessed 2 yr after RT. Their mean basal serum T4 and plasma cortisol levels had significantly decreased. Hyperprolactinemia associated with oligomenorrhoea was found in 3 women. Further impairment in the secretion of GH, FSH, LH, TSH, and ACTH had occurred, and 4 patients had hypopituitarism. Thus, progressive impairment in hypothalamic-pituitary function occurs after cranial irradiation and can be demonstrated as early as 1 yr after RT

  11. Download this PDF file

    African Journals Online (AJOL)

    Dr Olaleye

    causes downregulation of hypothalamic-pituitary-gonadal axis, endocrine disruption, and ..... pituitary gland. Because the secretion of gonadotropins by pituitary gland is under ... hypothalamus of the brain, gonadotropes in the anterior pituitary ...

  12. Expression of genes related to the hypothalamic-pituitary-adrenal axis in murine fetal lungs in late gestation

    Directory of Open Access Journals (Sweden)

    Côté Mélissa

    2010-11-01

    Full Text Available Abstract Background Lung maturation is modulated by several factors, including glucocorticoids. Expression of hypothalamic-pituitary-adrenal (HPA axis-related components, with proposed or described local regulatory systems analogous to the HPA axis, was reported in peripheral tissues. Here, HPA axis-related genes were studied in the mouse developing lung during a period overlapping the surge of surfactant production. Methods Expression of genes encoding for corticotropin-releasing hormone (CRH, CRH receptors (CRHR 1 and 2beta, CRH-binding protein, proopiomelanocortin (POMC, melanocortin receptor 2 (MC2R, and glucocorticoid receptor was quantified by real-time PCR and localized by in situ hydridization in fetal lungs at gestational days (GD 15.5, 16.5, and 17.5, and was also quantified in primary mesenchymal- and epithelial cell-enriched cultures. In addition, the capability of CRH and adrenocorticotropic hormone (ACTH to stimulate pulmonary expression of enzymes involved in the adrenal pathway of glucocorticoid synthesis was addressed, as well as the glucocorticoid production by fetal lung explants. Results We report that all the studied genes are expressed in fetal lungs according to different patterns. On GD 15.5, Mc2r showed peaks in expression in samples that have previously presented high mRNA levels for glucocorticoid synthesizing enzymes, including 11beta-hydroxylase (Cyp11b1. Crhr1 mRNA co-localized with Pomc mRNA in cells surrounding the proximal epithelium on GD 15.5 and 16.5. A transition in expression sites toward distal epithelial cells was observed between GD 15.5 and 17.5 for all the studied genes. CRH or ACTH stimulation of genes involved in the adrenal pathway of glucocorticoid synthesis was not observed in lung explants on GD 15.5, whereas CRH significantly increased expression of 21-hydroxylase (Cyp21a1 on GD 17.5. A deoxycorticosterone production by fetal lung explants was observed. Conclusions Temporal and spatial

  13. Investigating the effect of acute sleep deprivation on hypothalamic-pituitary-adrenal-axis response to a psychosocial stressor.

    Science.gov (United States)

    Vargas, Ivan; Lopez-Duran, Nestor

    2017-05-01

    The hypothalamic-pituitary-adrenal (HPA) axis has been previously identified as one potential mechanism that may explain the link between sleep deprivation and negative health outcomes. However, few studies have examined the direct association between sleep deprivation and HPA-axis functioning, particularly in the context of stress. Therefore, the aim of the current study was to investigate the relationship between acute sleep deprivation and HPA-axis reactivity to a psychosocial stressor. Participants included 40 healthy, young adults between the ages of 18-29. The current protocol included spending two nights in the laboratory. After an adaptation night (night 1), participants were randomized into either a sleep deprivation condition (29 consecutive hours awake) or a control condition (night 2). Following the second night, all participants completed the Trier Social Stress Test (TSST). Salivary cortisol was collected before, during, and after the TSST. Results indicated that there were significant group differences in cortisol stress reactivity. Specifically, compared to participants in the control condition, participants in the sleep deprivation condition had greater baseline (i.e., pre-stress) cortisol, yet a blunted cortisol response to the TSST. Taken together, a combination of elevated baseline cortisol (and its subsequent effect on HPA-axis regulatory processes) and a relative 'ceiling' on the amount of cortisol a laboratory stressor can produce may explain why participants in the sleep deprivation condition demonstrated blunted cortisol responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Inhibition of pituitary-gonadal axis in mice by long-term administration of D-Trp-6-LHRH microcapsules.

    Science.gov (United States)

    Bokser, L; Zalatnai, A; Schally, A V

    1989-03-01

    Female mice were injected, every 30 days for 5 months, with a long-acting formulation of microcapsules liberating 2.5 micrograms D-Trp-6-LHRH/day. The control group was injected with vehicle only. At 30 days after the last injection mice were killed, ovaries, uteri and adrenals were weighed and fixed in formalin for histological studies. LH and oestradiol concentrations were measured by RIA. In the D-Trp-6-LHRH-treated group, the weights of the ovaries and uterus (P less than 0.01 and P less than 0.05, respectively), and LH and oestradiol values (P less than 0.02 and P less than 0.01, respectively) were reduced compared to controls. Histologically, the ovaries contained a large number of degenerated, atretic follicles, and corpora lutea had almost completely disappeared. These results indicate, contrary to the prevailing opinion, that mice are sensitive to inhibitory effects of LHRH agonists and that a suppression of the pituitary-gonadal axis can be obtained with long-term administration of D-Trp-6-LHRH microcapsules.

  15. Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: A systematic review.

    Science.gov (United States)

    Incollingo Rodriguez, Angela C; Epel, Elissa S; White, Megan L; Standen, Erin C; Seckl, Jonathan R; Tomiyama, A Janet

    2015-12-01

    Although there is substantial evidence of differential hypothalamic-pituitary-adrenal (HPA) axis activity in both generalized and abdominal obesity, consistent trends in obesity-related HPA axis perturbations have yet to be identified. To systematically review the existing literature on HPA activity in obesity, identify possible explanations for inconsistencies in the literature, and suggest methodological improvements for future study. Included papers used Pubmed, Google Scholar, and the University of California Library search engines with search terms body mass index (BMI), waist-to-hip ratio (WHR), waist circumference, sagittal diameter, abdominal versus peripheral body fat distribution, body fat percentage, DEXA, abdominal obesity, and cortisol with terms awakening response, slope, total daily output, reactivity, feedback sensitivity, long-term output, and 11β-HSD expression. Empirical research papers were eligible provided that they included at least one type of obesity (general or abdominal), measured at least one relevant cortisol parameter, and a priori tested for a relationship between obesity and cortisol. A general pattern of findings emerged where greater abdominal fat is associated with greater responsivity of the HPA axis, reflected in morning awakening and acute stress reactivity, but some studies did show underresponsiveness. When examined in adipocytes, there is a clear upregulation of cortisol output (due to greater expression of 11β-HSD1), but in hepatic tissue this cortisol is downregulated. Overall obesity (BMI) appears to also be related to a hyperresponsive HPA axis in many but not all studies, such as when acute reactivity is examined. The reviewed literature contains numerous inconsistencies and contradictions in research methodologies, sample characteristics, and results, which partially precluded the development of clear and reliable patterns of dysregulation in each investigated cortisol parameter. The literature to date is

  16. Modifications of glucocorticoid receptors mRNA expression in the hypothalamic-pituitary-adrenal axis in response to early-life stress in female Japanese quail.

    Science.gov (United States)

    Zimmer, C; Spencer, K A

    2014-12-01

    Stress exposure during early-life development can programme individual brain and physiology. The hypothalamic-pituitary-adrenal (HPA) axis is one of the primary targets of this programming, which is generally associated with a hyperactive HPA axis, indicative of a reduced negative-feedback. This reduced feedback efficiency usually results from a reduced level of the glucocorticoid receptor (GR) and/or the mineralocorticoid receptor (MR) within the HPA axis. However, a few studies have shown that early-life stress exposure results in an attenuated physiological stress response, suggesting an enhance feedback efficiency. In the present study, we aimed to determine whether early-life stress had long-term consequences on GR and MR levels in quail and whether the effects on the physiological response to acute stress observed in prenatally stressed individuals were underpinned by changes in GR and/or MR levels in one or more HPA axis components. We determined GR and MR mRNA expression in the hippocampus, hypothalamus and pituitary gland in quail exposed to elevated corticosterone during prenatal development, postnatal development, or both, and in control individuals exposed to none of the stressors. We showed that prenatal stress increased the GR:MR ratio in the hippocampus, GR and MR expression in the hypothalamus and GR expression in the pituitary gland. Postnatal stress resulted in a reduced MR expression in the hippocampus. Both early-life treatments permanently affected the expression of both receptor types in HPA axis regions. The effects of prenatal stress are in accordance with a more efficient negative-feedback within the HPA axis and thus can explain the attenuated stress response observed in these birds. Therefore, these changes in receptor density or number as a consequence of early-life stress exposure might be the mechanism that allows an adaptive response to later-life stressful conditions. © 2014 The Authors. Journal of Neuroendocrinology published by

  17. The effect of dermal benzophenone-2 administration on immune system activity, hypothalamic-pituitary-thyroid axis activity and hematological parameters in male Wistar rats.

    Science.gov (United States)

    Broniowska, Żaneta; Ślusarczyk, Joanna; Starek-Świechowicz, Beata; Trojan, Ewa; Pomierny, Bartosz; Krzyżanowska, Weronika; Basta-Kaim, Agnieszka; Budziszewska, Bogusława

    2018-04-13

    Benzophenones used as UV filters, in addition to the effects on the skin, can be absorbed into the blood and affect the function of certain organs. So far, their effects on the sex hormone receptors and gonadal function have been studied, but not much is known about their potential action on other systems. The aim of the present study was to determine the effect of benzophenone-2 (BP-2) on immune system activity, hypothalamic-pituitary-thyroid (HPT) axis activity and hematological parameters. BP-2 was administered dermally, twice daily at a dose of 100 mg/kg for 4-weeks to male Wistar rats. Immunological and hematological parameters and HPT axis activity were assayed 24 h after the last administration. It was found that BP-2 did not change relative weights of the thymus and spleen and did not exert toxic effect on tymocytes and splenocytes. However, this compound increased proliferative activity of splenocytes, enhanced metabolic activity of splenocytes and thymocytes and nitric oxide production of these cells. In animals exposed to BP-2, the HPT axis activity was increased, as evidenced by reduction in the thyroid stimulating hormone (TRH) level and increase in free fraction of triiodothyronine (fT3) and thyroxin (fT4) in blood. BP-2 had no effect on leukocyte, erythrocyte and platelet counts or on morphology and hemoglobin content in erythrocytes. The conducted research showed that dermal, sub-chronic BP-2 administration evoked hyperthyroidism, increased activity or function of the immune cells but did not affect hematological parameters. We suggest that topical administration of BP-2 leading to a prolonged elevated BP-2 level in blood causes hyperthyroidism, which in turn may be responsible for the increased immune cell activity or function. However, only future research can explain the mechanism and functional importance of the changes in thyroid hormones and immunological parameters observed after exposure to BP-2. Copyright © 2018 Elsevier B.V. All

  18. The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: A randomized, double-blind, placebo-controlled trial in petrochemical workers.

    Science.gov (United States)

    Mohammadi, Ali Akbar; Jazayeri, Shima; Khosravi-Darani, Kianoush; Solati, Zahra; Mohammadpour, Nakisa; Asemi, Zatollah; Adab, Zohre; Djalali, Mahmoud; Tehrani-Doost, Mehdi; Hosseini, Mostafa; Eghtesadi, Shahryar

    2016-11-01

    The aim of this study was to determine effects of probiotic yogurt and multispecies probiotic capsule supplementation on mental health and hypothalamic-pituitary-adrenal axis in petrochemical workers. The present randomized double-blind, placebo-controlled trial was conducted on 70 petrochemical workers. Subjects were randomly divided into three groups to receive 100 g/day probiotic yogurt + one placebo capsule (n = 25) or one probiotic capsule daily + 100 g/day conventional yogurt (n = 25) or 100 g/day conventional yogurt + one placebo capsule (n = 20) for 6 weeks. Mental health parameters including general health questionnaire (GHQ) and depression anxiety and stress scale (DASS) scores were measured. Fasting blood samples were obtained at the beginning and 6 weeks after the intervention to quantify hypothalamic-pituitary-adrenal axis. After 6 weeks of intervention, a significant improvement of GHQ was observed in the probiotic yogurt (18.0 ± 1.5 vs. 13.5 ± 1.9, P = 0.007) and in the probiotic capsule group (16.9 ± 1.8 vs. 9.8 ± 1.9, P = 0.001), as well as a significant improvement in DASS scores in the probiotic yogurt (23.3 ± 3.7 vs. 13.0 ± 3.7, P = 0.02) and the probiotic capsule group (18.9 ± 3.2 vs. 9.4 ± 4.0, P = 0.006). However, there was no significant improvement in the conventional yogurt group (P = 0.05 for GHQ and P = 0.08 for DASS). The consumption of probiotic yogurt or a multispecies probiotic capsule had beneficial effects on mental health parameters in petrochemical workers.

  19. Hypothalamic-pituitary-adrenal axis response to acute psychosocial stress: Effects of biological sex and circulating sex hormones.

    Science.gov (United States)

    Stephens, Mary Ann C; Mahon, Pamela B; McCaul, Mary E; Wand, Gary S

    2016-04-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis influences the risk for developing stress-related disorders. Sex-dependent differences in the HPA axis stress response are believed to contribute to the different prevalence rates of stress-related disorders found in men and women. However, studies examining the HPA axis stress response have shown mixed support for sex differences, and the role of endogenous sex hormones on HPA axis response has not been adequately examined in humans. This study utilized the largest sample size to date to analyze the effects of biological sex and sex hormones on HPA axis social stress responses. Healthy, 18- to 30- year-old community volunteers (N=282) completed the Trier Social Stress Test (TSST), a widely used and well-validated stress-induction laboratory procedure. All women (n=135) were tested during the follicular phase of their menstrual cycle (when progesterone levels are most similar to men). Adrenocorticotropic hormone (ACTH) and cortisol measures were collected at multiple points throughout pre- and post-TSST. Testosterone and progesterone (in men) and progesterone and estradiol (in women) were determined pre-TSST. Following the TSST, men had greater ACTH and cortisol levels than women. Men had steeper baseline-to-peak and peak-to-end ACTH and cortisol response slopes than women; there was a trend for more cortisol responders among men than women. Testosterone negatively correlated with salivary cortisol response in men, while progesterone negatively correlated with ACTH and cortisol responses in women. These data confirm that men show more robust activation of the HPA axis response to the TSST than do women in the follicular phase of the menstrual cycle. Testosterone results suggest an inhibitory effect on HPA axis reactivity in men. Progesterone results suggest an inhibitory effect on HPA axis reactivity in women. Future work is needed to explain why men mount a greater ACTH and cortisol response to the

  20. Regulation of hypothalamic-pituitary-interrenal axis function in male smallmouth bass (Micropterus dolomieu) during parental care.

    Science.gov (United States)

    Jeffrey, J D; Cooke, S J; Gilmour, K M

    2014-08-01

    Male smallmouth bass (Micropterus dolomieu) provide sole parental care until offspring reach independence, a period of several weeks. During the early parental care period when males are guarding fresh eggs (MG-FE), cortisol responsiveness is attenuated; the response is re-established when males reach the end of the parental care period and are guarding free-swimming fry (MG-FSF). It was hypothesized that attenuation of the cortisol response in male smallmouth bass during early parental care reflected modulation of hypothalamic-pituitary-interrenal (HPI) axis function. Male smallmouth bass were sampled at the beginning (MG-FE) and end of the parental care period (MG-FSF), before and/or 25 min after exposure to a standardized stressor consisting of 3 min of air exposure. Repeated sampling of stressed fish for analysis of plasma cortisol and adrenocorticotropic hormone (ACTH) levels was carried out. Males significantly elevated both plasma cortisol and ACTH levels when guarding free-swimming fry but not during early parental care. Control and stressed fish were terminally sampled for tissue mRNA abundance of preoptic area (POA) and hypothalamic corticotropin-releasing factor (CRF) as well as head kidney melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc). No significant differences in either hypothalamus CRF or head kidney P450scc mRNA abundance were found across parental care stages or in response to stress. However, POA CRF mRNA abundance and interrenal cell MC2R and StAR mRNA abundances failed to increase in response to stress in MG-FE. Thus, the attenuated cortisol response in males guarding fresh eggs may be explained by hypoactive HPI axis function in response to stress. The present is one of few studies, and the first teleost study, to address the mechanisms underlying resistance to stress during the reproductive/parental care period. Copyright © 2014 Elsevier Inc. All rights

  1. Metabolic syndrome, activity of the hypothalamic-pituitary-adrenal axis and inflammatory mediators in depressive disorder.

    Science.gov (United States)

    Martinac, Marko; Pehar, Davor; Karlović, Dalibor; Babić, Dragan; Marcinko, Darko; Jakovljević, Miro

    2014-03-01

    Depression has been associated with various cardiovascular risk factors such as hypertension, obesity, atherogenic dyslipidemia and hyperglycemia. In depressive disorder, hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and changes in the immune system have been observed. On the other hand, somatic diseases such as obesity, hyperlipidemia, hypertension and diabetes mellitus type 2 are now perceived as important comorbid conditions in patients with depression. The pathogenesis of the metabolic syndrome and depression is complex and poorly researched; however, it is considered that the interaction of chronic stress, psychotrauma, hypercotisolism and disturbed immune functions contribute to the development of these disorders. The aim of the study was to investigate the relationship between depression and metabolic syndrome regarding the HPA axis dysfunction and altered inflammatory processes. Literature search in Medline and other databases included articles written in English published between 1985 and 2012. Analysis of the literature was conducted using a systematic approach with the search terms such as depression, metabolic syndrome, inflammation, cytokines, glucocorticoids, cortisol, and HPA axis. In conclusion, the relationship between depression and metabolic syndrome is still a subject of controversy. Further prospective studies are required to clarify the possible causal relationship between depression and metabolic syndrome and its components. Furthermore, it is important to explore the possibility of a common biologic mechanism in the pathogenesis of these two disorders, in which special attention should be paid to the immune system function, especially the possible specific mechanisms by which cytokines can induce and maintain depressive symptoms and metabolic disorders. The data presented here emphasize the importance of recognition and treatment of depressive disorders with consequent reduction in the incidence of metabolic syndrome, but

  2. An updated view of hypothalamic-vascular-pituitary unit function and plasticity.

    Science.gov (United States)

    Le Tissier, Paul; Campos, Pauline; Lafont, Chrystel; Romanò, Nicola; Hodson, David J; Mollard, Patrice

    2017-05-01

    The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic-pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment.

  3. Prenatal Maternal Stress Predicts Methylation of Genes Regulating the Hypothalamic-Pituitary-Adrenocortical System in Mothers and Newborns in the Democratic Republic of Congo

    Science.gov (United States)

    Kertes, Darlene A.; Kamin, Hayley S.; Hughes, David A.; Rodney, Nicole C.; Bhatt, Samarth; Mulligan, Connie J.

    2016-01-01

    Exposure to stress early in life permanently shapes activity of the hypothalamic-pituitary-adrenocortical (HPA) axis and the brain. Prenatally, glucocorticoids pass through the placenta to the fetus with postnatal impacts on brain development, birth weight (BW), and HPA axis functioning. Little is known about the biological mechanisms by which…

  4. D-aspartic acid supplementation combined with 28 days of heavy resistance training has no effect on body composition, muscle strength, and serum hormones associated with the hypothalamo-pituitary-gonadal axis in resistance-trained men.

    Science.gov (United States)

    Willoughby, Darryn S; Leutholtz, Brian

    2013-10-01

    It was hypothesized that D-aspartic acid (D-ASP) supplementation would not increase endogenous testosterone levels or improve muscular performance associated with resistance training. Therefore, body composition, muscle strength, and serum hormone levels associated with the hypothalamo-pituitary-gonadal axis were studied after 28 days of resistance training and D-ASP supplementation. Resistance-trained men resistance trained 4 times/wk for 28 days while orally ingesting either 3 g of placebo or 3 g of D-ASP. Data were analyzed with 2 × 2 analysis of variance (P aspartate oxidase (DDO) were determined. Body composition and muscle strength were significantly increased in both groups in response to resistance training (P .05). Total and free testosterone, luteinizing hormone, gonadotropin-releasing hormone, and estradiol were unchanged with resistance training and D-ASP supplementation (P > .05). For serum D-ASP and DDO, D-ASP resulted in a slight increase compared with baseline levels (P > .05). For the D-ASP group, the levels of serum DDO were significantly increased compared with placebo (P < .05). The gonadal hormones were unaffected by 28 days of D-ASP supplementation and not associated with the observed increases in muscle strength and mass. Therefore, at the dose provided, D-ASP supplementation is ineffective in up-regulating the activity of the hypothalamo-pituitary-gonadal axis and has no anabolic or ergogenic effects in skeletal muscle. © 2013 Elsevier Inc. All rights reserved.

  5. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System.

    Science.gov (United States)

    Rachdaoui, Nadia; Sarkar, Dipak K

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body's most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-growth hormone/insulin-like growth factor-1 axis, and the hypothalamic-posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol's effects on various components of the endocrine system and their consequences.

  6. Endocannabinoids and the Endocrine System in Health and Disease.

    Science.gov (United States)

    Hillard, Cecilia J

    2015-01-01

    Some of the earliest reports of the effects of cannabis consumption on humans were related to endocrine system changes. In this review, the effects of cannabinoids and the role of the CB1 cannabinoid receptor in the regulation of the following endocrine systems are discussed: the hypothalamic-pituitary-gonadal axis, prolactin and oxytocin, thyroid hormone and growth hormone, and the hypothalamic-pituitary-adrenal axis. Preclinical and human study results are presented.

  7. Adolescent development, hypothalamic-pituitary-adrenal function, and programming of adult learning and memory.

    Science.gov (United States)

    McCormick, Cheryl M; Mathews, Iva Z

    2010-06-30

    Chronic exposure to stress is known to affect learning and memory in adults through the release of glucocorticoid hormones by the hypothalamic-pituitary-adrenal (HPA) axis. In adults, glucocorticoids alter synaptic structure and function in brain regions that express high levels of glucocorticoid receptors and that mediate goal-directed behaviour and learning and memory. In contrast to relatively transient effects of stress on cognitive function in adulthood, exposure to high levels of glucocorticoids in early life can produce enduring changes through substantial remodeling of the developing nervous system. Adolescence is another time of significant brain development and maturation of the HPA axis, thereby providing another opportunity for glucocorticoids to exert programming effects on neurocircuitry involved in learning and memory. These topics are reviewed, as is the emerging research evidence in rodent models highlighting that adolescence may be a period of increased vulnerability compared to adulthood in which exposure to high levels of glucocorticoids results in enduring changes in adult cognitive function. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Impact of maternal undernutrition on the hypothalamic-pituitary-adrenal axis responsiveness in sheep at different ages postnatal.

    Science.gov (United States)

    Chadio, S E; Kotsampasi, B; Papadomichelakis, G; Deligeorgis, S; Kalogiannis, D; Menegatos, I; Zervas, G

    2007-03-01

    Epidemiological and experimental data support the hypothesis of 'fetal programming', which proposes that alterations in fetal nutrition and endocrine status lead to permanent adaptations in fetal homeostatic mechanisms, producing long-term changes in physiology and determine susceptibility to later disease. Altered hypothalamic-pituitary-adrenal (HPA) axis function has been proposed to play an important role in programming of disease risk. The aim of the present study was to examine the effects of maternal nutrient restriction imposed during different periods of gestation on the HPA axis function in sheep, at different ages postnatal. Pregnant ewes were fed a 50% nutrient-restricted diet from days 0-30 (group R1, n = 7), or from days 31-100 of gestation (group R2, n = 7) or a control 100% diet throughout pregnancy, (Control, n = 8). Blood samples were collected at 10-day intervals from day 40 of gestation to term. Lambs were born naturally and fed to appetite throughout the study period. At 2, 5.5, and 10 months of age lambs were given an i.v. injection of corticotrophin-releasing hormone (CRH) and blood samples were collected at -15, 0, 15, 30, 60, 120, and 180 min postinjection. Maternal cortisol levels were significantly higher (P < 0.05) in group R1 compared with the other two groups, whereas maternal insulin levels were lower (P < 0.05) in group R2 compared with control. Birth weight of lambs was not affected by the maternal nutritional manipulation. The area under the curve for ACTH and cortisol response to CRH challenge was greater (P < 0.05) in lambs of group R1 at two months of age, whereas no difference was detected at the ages of 5.5 and 10 months. However, significantly higher (P < 0.01) basal cortisol levels were observed in lambs of R1 group at 5.5 months of age. There was no interaction between treatment and sex for both pituitary and adrenal responses to the challenge. A significant sex effect was evident with females responding with higher ACTH and

  9. Exposure to severe stressors causes long-lasting dysregulation of resting and stress-induced activation of the hypothalamic-pituitary-adrenal axis.

    Science.gov (United States)

    Belda, Xavier; Rotllant, David; Fuentes, Silvia; Delgado, Raúl; Nadal, Roser; Armario, Antonio

    2008-12-01

    Exposure to some predominantly emotional (electric shock) and systemic (interleukin-1beta) stressors has been found to induce long-term sensitization of the hypothalamic-pituitary-adrenal (HPA) responsiveness to further superimposed stressors. Since exposure to immobilization on wooden boards (IMO) is a severe stressor and may have interest regarding putative animal models of post-traumatic stress disorders (PTSD), we have characterized long-lasting effects of a single exposure to IMO and other stressors on the HPA response to the same (homotypic) and to novel (heterotypic) stressors and the putative mechanisms involved. A single exposure to IMO caused a long-lasting reduction of peripheral and central responses of the HPA axis, likely to be mediated by some brain areas, such as the lateral septum and the medial amygdala. This desensitization is not explained by changes in negative glucocorticoid feedback, and, surprisingly, it is positively related to the intensity of the stressors. In contrast, the HPA response to heterotypic stressors (novel environments) was enhanced, with maximal sensitization on the day after IMO. Sensitization progressively vanished over the course of 1-2 weeks and was not modulated by IMO-induced corticosterone release. Moreover, it could not be explained by changes in the sensitivity of the HPA axis to fast or intermediate/delayed negative feedback, as evaluated 1 week after exposure to IMO, using shock as the heterotypic stressor. Long-lasting stress-induced behavioral changes reminiscent of enhanced anxiety and HPA sensitization are likely to be parallel but partially independent phenomena, the former being apparently not related to the intensity of stressors.

  10. Hair cortisol as a hypothalamic-pituitary-adrenal axis biomarker in pregnant women with asthma: a retrospective observational study.

    Science.gov (United States)

    Smy, Laura; Shaw, Kaitlyn; Amstutz, Ursula; Smith, Anne; Berger, Howard; Carleton, Bruce; Koren, Gideon

    2016-07-20

    Cortisol is a hormone involved in many physiological functions including fetal maturation and epigenetic programming during pregnancy. This study aimed to use hair cortisol as a biomarker of chronic inhaled corticosteroid (ICS) exposure and assess the potential effects of asthma on the hypothalamic-pituitary-adrenal (HPA) axis in pregnant women. We hypothesized that pregnant women with asthma treated with ICS would exhibit lower hair cortisol concentrations, indicative of adrenal suppression, compared to women with asthma not using ICS and women who do not have asthma. We performed an observational retrospective cohort study. Hair samples were analyzed from pregnant women with asthma, with (n = 56) and without (n = 31) ICS treatment, and pregnant women without asthma (n = 31). Hair samples were segmented based on the growth rate of 1 cm/month and analyzed by enzyme immunoassay to provide cortisol concentrations corresponding to preconception, trimesters 1-3, and postpartum. Hair cortisol concentrations were compared within and among the groups using non-parametric statistical tests. Hair cortisol concentrations increased across trimesters for all three groups, but this increase was dampened in women with asthma (P = 0.03 for Controls vs. ICS Treated and Controls vs. No ICS). ICS Treated women taking more than five doses per week had hair cortisol concentrations 47 % lower in third trimester than Controls. Linear regression of the third trimester hair cortisol results identified asthma as a significant factor when comparing consistent ICS use or asthma as the predictor (F(1, 25) = 9.7, P = 0.005, R(2) adj = 0.257). Hair cortisol successfully showed the expected change in cortisol over the course of pregnancy and may be a useful biomarker of HPA axis function in pregnant women with asthma. The potential impact of decreased maternal cortisol in women with asthma on perinatal outcomes remains to be determined.

  11. Repeated exposure to immobilization or two different footshock intensities reveals differential adaptation of the hypothalamic-pituitary-adrenal axis.

    Science.gov (United States)

    Rabasa, Cristina; Muñoz-Abellán, Cristina; Daviu, Núria; Nadal, Roser; Armario, Antonio

    2011-05-03

    Factors involved in adaptation to repeated stress are not well-characterized. For instance, acute footshock (FS) of high intensity appears to be less severe than immobilization (IMO) in light of the speed of post-stress recovery of the hypothalamic-pituitary-adrenal (HPA) axis and other physiological variables. However, repeated exposure to IMO consistently resulted in reduction of the HPA response to the same stressor (adaptation), whereas failure to adapt has been usually reported after FS. Thus, in the present work we directly compared the activation of HPA axis and other physiological changes in response to both acute and repeated exposure to IMO and two intensities of FS (medium and high) in adult male rats. Control rats were exposed to the FS boxes but they did not receive shocks. Daily repeated exposure to IMO resulted in significant adaptation of the overall ACTH and corticosterone responses to the stressor. Such a reduction was also observed with repeated exposure to FS boxes and FS-medium, whereas repeated exposure to FS-high only resulted in a small reduction of the corticosterone response during the post-stress period. This suggests that some properties of FS-high make adaptation to it difficult. Interestingly, overall changes in food intake and body weight gain throughout the week of exposure to the stressors reveal a greater impact of IMO than FS-high, indicating that factors other than the intensity of a stressor, at least when evaluated in function of the above physiological variables, can influence HPA adaptation. Since FS exposure is likely to cause more pain than IMO, activation of nociceptive signals above a certain level may negatively affect HPA adaptation to repeated stressors. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Alteration of Neurokinin B Gene Expression and Hypothalamic-Pituitary- Gonadal Axis in Response to One-month Regular Moderate Physical Activity

    Directory of Open Access Journals (Sweden)

    Nazli Khajehnasiri

    2017-08-01

    Full Text Available Abstract Background: The advantageous effects of the regular moderate physical activity (Exercise on reproduction is widely accepted, but until now, the alterations of the expression of hypothalamic arcuate nuclei gene affecting on reproduction axis in response to this type of physical activity are not clear. Therefore, the goal of the present investigation was to study the effect of one –month regular moderate physical activity on neurokinin B gene expression and reproductive axis hormonal changes. Materials and Methods: In the experimental study, fourteen adult male Wistar rats were randomly divided into control and one- month regular moderate exercise groups. After one - month physical activity (20m/min, the arcuate nucleus was isolated from brain and stored in -80 refrigerators for neurokinin B gene expression assay by Real-time PCR method. In addition, serum samples were taken to assess the corticosterone, luteinizing hormone and testosterone levels by ELISA method. Data were analyzed by Independent t-test in SPSS. Results: Neurokinin-B gene expression level was lower in the group which received physical activity than the control group(p<0.05. Also, corticosterone serum concentration was decreased in the physical activity group(p<0.05. By contrast, the physical activity induced luteinizing hormone and Testosterone serum levels evaluation in exersice group compared with control group (p<0.05. Conclusion: Regular moderate physical activity may improve male reproductive performance by reducing the corticosterone hormone level and decreasing neurokinin B expression.

  13. Serum inhibin A and inhibin B in central precocious puberty before and during treatment with GnRH agonists

    DEFF Research Database (Denmark)

    Sehested, A; Andersson, A M; Müller, J

    2000-01-01

    both gonadotropins and estradiol levels become suppressed. We therefore investigated serum levels of inhibin A and inhibin B in girls with CPP at diagnosis and during treatment in order to test the hypothesis that inhibin secretion would increase and decrease in parallel with the activation......Serum levels of the gonadal hormones inhibin A and inhibin B are undetectable or low in prepubertal girls, and rise during puberty. In girls with central precocious puberty (CPP) the hypothalamic-pituitary-gonadal axis is prematurely activated, if the girl is thereafter treated with GnRH agonists...... and suppression of the hypothalamic-pituitary-gonadal axis. Serum levels of inhibin A and inhibin B were significantly (p 0.0005) elevated in 42 girls at diagnosis of CPP (inhibin A: 7 pg/ml (...

  14. Hypothalamic-Pituitary Autoimmunity and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Federica Guaraldi

    2015-05-01

    Full Text Available Background: Traumatic brain injury (TBI is a leading cause of secondary hypopituitarism in children and adults, and is responsible for impaired quality of life, disabilities and compromised development. Alterations of pituitary function can occur at any time after the traumatic event, presenting in various ways and evolving during time, so they require appropriate screening for early detection and treatment. Although the exact pathophysiology is unknown, several mechanisms have been hypothesized, including hypothalamic-pituitary autoimmunity (HP-A. The aim of this study was to systematically review literature on the association between HP-A and TBI-induced hypopituitarism. Major pitfalls related to the HP-A investigation were also discussed. Methods: The PubMed database was searched with a string developed for this purpose, without temporal or language limits, for original articles assessing the association of HP-A and TBI-induced hypopituitarism. Results: Three articles from the same group met the inclusion criteria. Anti-pituitary and anti-hypothalamic antibodies were detected using indirect immunofluorescence in a significant number of patients with acute and chronic TBI. Elevated antibody titer was associated with an increased risk of persistent hypopituitarism, especially somatotroph and gonadotroph deficiency, while no correlations were found with clinical parameters. Conclusion: HPA seems to contribute to TBI-induced pituitary damage, although major methodological issues need to be overcome and larger studies are warranted to confirm these preliminary data.

  15. Biological indicators of illness risk in offspring of bipolar parents: targeting the hypothalamic-pituitary-adrenal axis and immune system.

    Science.gov (United States)

    Duffy, Anne; Lewitzka, Ute; Doucette, Sarah; Andreazza, Ana; Grof, Paul

    2012-05-01

    The study aims to provide a selective review of the literature pertaining to the hypothalamic-pituitary-adrenal (HPA) axis and immune abnormalities as informative biological indicators of vulnerability in bipolar disorder (BD). We summarize key findings relating to HPA axis and immunological abnormalities in bipolar patients and their high-risk offspring. Findings derive from a review of selected original papers published in the literature, and supplemented by papers identified through bibliography review. Neurobiological findings are discussed in the context of emergent BD in those at genetic risk and synthesized into a neurodevelopmental model of illness onset and progression. BD is associated with a number of genetic and possibly epigenetic abnormalities associated with neurotransmitter, hormonal and immunologically mediated neurobiological pathways. Data from clinical and high-risk studies implicate HPA axis and immune system abnormalities, which may represent inherited vulnerabilities important for the transition to illness onset. Post-mortem and clinical studies implicate intracellular signal transduction processes and disturbance in energy metabolism associated with established BD. Specifically, long-standing maladaptive alterations such as changes in neuronal systems may be mediated through changes in intracellular signalling pathways, oxidative stress, cellular energy metabolism and apoptosis associated with substantial burden of illness. Prospective longitudinal studies of endophenotypes and biomarkers such as HPA axis and immune abnormalities in high-risk offspring will be helpful to understand genetically mediated biological pathways associated with illness onset and progression. A clinical staging model describing emergent illness in those at genetic risk should facilitate this line of investigation. © 2011 Blackwell Publishing Asia Pty Ltd.

  16. Neurofibromin regulates somatic growth through the hypothalamic–pituitary axis

    Science.gov (United States)

    Hegedus, Balazs; Yeh, Tu-Hsueh; Lee, Da Yong; Emnett, Ryan J.; Li, Jia; Gutmann, David H.

    2008-01-01

    To study the role of the neurofibromatosis-1 (NF1) gene in mammalian brain development, we recently generated mice in which Nf1 gene inactivation occurs in neuroglial progenitor cells using the brain lipid binding protein (BLBP) promoter. We found that Nf1BLBPCKO mice exhibit significantly reduced body weights and anterior pituitary gland sizes. We further demonstrate that the small anterior pituitary size reflects loss of neurofibromin expression in the hypothalamus, leading to reduced growth hormone releasing hormone, pituitary growth hormone (GH) and liver insulin-like growth factor-1 (IGF1) production. Since neurofibromin both negatively regulates Ras activity and positively modulates cAMP levels, we examined the signaling pathway responsible for these abnormalities. While BLBP-mediated expression of an activated Ras molecule did not recapitulate the body weight and hypothalamic/pituitary defects, treatment of Nf1BLBPCKO mice with rolipram to increase cAMP levels resulted in a partial restoration of the body weight phenotype. Furthermore, conditional expression of the Ras regulatory GAP domain of neurofibromin also did not rescue the body weight or Igf1 mRNA defects in Nf1BLBPCKO mice. Collectively, these data demonstrate a critical role for neurofibromin in hypothalamic–pituitary axis function and provide further insights into the short stature and GH deficits seen in children with NF1. PMID:18614544

  17. Taurine and pioglitazone attenuate diabetes-induced testicular damage by abrogation of oxidative stress and up-regulation of the pituitary-gonadal axis.

    Science.gov (United States)

    Abd El-Twab, Sanaa M; Mohamed, Hanaa M; Mahmoud, Ayman M

    2016-06-01

    Chronic hyperglycemia is associated with impairment of testicular function. The current study aimed to investigate the protective effects and the possible mechanisms of taurine and pioglitazone against diabetes-induced testicular dysfunction in rats. Diabetes was induced by streptozotocin injection. Both normal and diabetic rats received taurine (100 mg/kg) or pioglitazone (10 mg/kg) orally and daily for 6 weeks. Diabetic rats showed a significant (P Taurine and pioglitazone alleviated hyperglycemia, decreased pro-inflammatory cytokines, and increased circulating levels of insulin, testosterone, LH, and FSH. Gene and protein expression of LH and FSH receptors and cytochrome P450 17α-hydroxylase (CYP17) was significantly (P taurine and pioglitazone. In addition, taurine and pioglitazone significantly decreased lipid peroxidation and DNA damage, and enhanced activity of the antioxidant enzymes in testes of diabetic rats. In conclusion, taurine and pioglitazone exerted protective effects against diabetes-induced testicular damage through attenuation of hyperglycemia, inflammation, oxidative stress and DNA damage, and up-regulation of the pituitary/gonadal axis.

  18. Flatfish metamorphosis: a hypothalamic independent process?

    Science.gov (United States)

    Campinho, Marco A; Silva, Nadia; Roman-Padilla, Javier; Ponce, Marian; Manchado, Manuel; Power, Deborah M

    2015-03-15

    Anuran and flatfish metamorphosis are tightly regulated by thyroid hormones that are the necessary and sufficient factors that drive this developmental event. In the present study whole mount in situ hybridization (WISH) and quantitative PCR in sole are used to explore the central regulation of flatfish metamorphosis. Central regulation of the thyroid in vertebrates is mediated by the hypothalamus-pituitary-thyroid (HPT) axis. Teleosts diverge from other vertebrates as hypothalamic regulation in the HPT axis is proposed to be through hypothalamic inhibition although the regulatory factor remains enigmatic. The dynamics of the HPT axis during sole metamorphosis revealed integration between the activity of the thyrotrophes in the pituitary and the thyroid follicles. No evidence was found supporting a role for thyroid releasing hormone (trh) or corticotrophin releasing hormone (crh) in hypothalamic control of TH production during sole metamorphosis. Intriguingly the results of the present study suggest that neither hypothalamic trh nor crh expression changes during sole metamorphosis and raises questions about the role of these factors and the hypothalamus in regulation of thyrotrophs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output.

    Science.gov (United States)

    Belda, Xavier; Nadal, Roser; Armario, Antonio

    2016-08-11

    Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors.

  20. Fish oil alleviates activation of the hypothalamic-pituitary-adrenal axis associated with inhibition of TLR4 and NOD signaling pathways in weaned piglets after a lipopolysaccharide challenge.

    Science.gov (United States)

    Liu, Yulan; Chen, Feng; Li, Quan; Odle, Jack; Lin, Xi; Zhu, Huiling; Pi, Dingan; Hou, Yongqing; Hong, Yu; Shi, Haifeng

    2013-11-01

    Long-chain n-3 (ω-3) polyunsaturated fatty acids exert beneficial effects in neuroendocrine dysfunctions in animal models and clinical trials. However, the mechanism(s) underlying the beneficial effects remains to be elucidated. We hypothesized that dietary treatment with fish oil (FO) could mitigate LPS-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis through inhibition of Toll-like receptor 4 and nucleotide-binding oligomerization domain protein signaling pathways. Twenty-four weaned pigs were used in a 2 × 2 factorial design, and the main factors consisted of diet (5% corn oil vs. 5% FO) and immunological challenge (saline vs. LPS). After 21 d of dietary treatment with 5% corn oil or FO diets, pigs were treated with saline or LPS. Blood samples were collected at 0 (preinjection), 2, and 4 h postinjection, and then pigs were humanely killed by intravenous injection of 40 mg/kg body weight sodium pentobarbital for tissue sample collection. FO led to enrichment of eicosapentaenoic acid and docosahexaenoic acid and total n-3 polyunsaturated fatty acids in hypothalamus, pituitary gland, adrenal gland, spleen, and thymus. FO decreased plasma adrenocorticotrophin and cortisol concentrations as well as mRNA expressions of hypothalamic corticotropin releasing hormone and pituitary proopiomelanocortin. FO also reduced mRNA expression of tumor necrosis factor-α in hypothalamus, adrenal gland, spleen, and thymus, and of cyclooxygenase 2 in hypothalamus. Moreover, FO downregulated the mRNA expressions of Toll-like receptor 4 (TLR4) and its downstream molecules, including cluster differentiation factor 14, myeloid differentiation factor 2, myeloid differentiation factor 88, interleukin-1 receptor-associated kinase 1, tumor necrosis factor-α receptor-associated factor 6, and nuclear factor kappa-light-chain-enhancer of activated B cells p65, and also decreased the mRNA expressions of nucleotide-binding oligomerization domain 1, nucleotide

  1. Preliminary Study of Quercetin Affecting the Hypothalamic-Pituitary-Gonadal Axis on Rat Endometriosis Model

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2014-01-01

    Full Text Available In this study, the endometriosis rats model was randomly divided into 6 groups: model control group, ovariectomized group, Gestrinone group, and quercetin high/medium/low dose group. Rats were killed after 3 weeks of administration. The expression levels of serum FSH and LH were detected by ELISA. The localizations and quantities of ERα, ERβ, and PR were detected by immunohistochemistry and western blot. The results showed that the mechanism of quercetin inhibiting the growth of ectopic endometrium on rat endometriosis model may be through the decreasing of serum FSH and LH levels and then reducing local estrogen content to make the ectopic endometrium atrophy. Quercetin can decrease the expression of ERα, ERβ, and PR in hypothalamus, pituitary, and endometrium, thereby inhibiting estrogen and progesterone binding to their receptors to play the role of antiestrogen and progesterone.

  2. Spreading the clinical window for diagnosing fetal-onset hypogonadism in boys

    Directory of Open Access Journals (Sweden)

    Rodolfo eRey

    2014-05-01

    Full Text Available In early fetal development, the testis secretes –independently of pituitary gonadotropins– androgens and anti-Müllerian hormone (AMH which are essential for male sex differentiation. In the second half of fetal life, the hypothalamic-pituitary axis gains control of testicular hormone secretion. FSH controls Sertoli cell proliferation, responsible for testis volume increase and AMH and inhibin B secretion, whereas LH regulates Leydig cell androgen and INSL3 secretion, involved in the growth and trophism of male external genitalia and in testis descent. This differential regulation of testicular function between early and late fetal periods underlies the distinct clinical presentations of fetal-onset hypogonadism in the newborn male: primary hypogonadism results in ambiguous or female genitalia when early fetal-onset whereas it becomes clinically undistinguishable from central hypogonadism when established later in fetal life. The assessment of the hypothalamic-pituitary-gonadal axis in the male has classically relied on the measurement of gonadotropin and testosterone levels in serum. These hormone levels normally decline 3-6 months after birth, thus constraining the clinical evaluation window for diagnosing male hypogonadism. The advent of new markers of gonadal function has spread this clinical window beyond the first 6 months of life. In this review, we discuss the advantages and limitations of old and new markers used for the functional assessment of the hypothalamic-pituitary-testicular axis in boys suspected of fetal-onset hypogonadism.

  3. The Environmental Pollutant Tributyltin Chloride Disrupts the Hypothalamic-Pituitary-Adrenal Axis at Different Levels in Female Rats.

    Science.gov (United States)

    Merlo, Eduardo; Podratz, Priscila L; Sena, Gabriela C; de Araújo, Julia F P; Lima, Leandro C F; Alves, Izabela S S; Gama-de-Souza, Letícia N; Pelição, Renan; Rodrigues, Lívia C M; Brandão, Poliane A A; Carneiro, Maria T W D; Pires, Rita G W; Martins-Silva, Cristina; Alarcon, Tamara A; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B

    2016-08-01

    Tributyltin chloride (TBT) is an environmental contaminant that is used as a biocide in antifouling paints. TBT has been shown to induce endocrine-disrupting effects. However, studies evaluating the effects of TBT on the hypothalamus-pituitary-adrenal (HPA) axis are especially rare. The current study demonstrates that exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands. Female rats were treated with TBT, and their HPA axis morphophysiology was assessed. High CRH and low ACTH expression and high plasma corticosterone levels were detected in TBT rats. In addition, TBT leads to an increased in the inducible nitric oxide synthase protein expression in the hypothalamus of TBT rats. Morphophysiological abnormalities, including increases in inflammation, a disrupted cellular redox balance, apoptosis, and collagen deposition in the pituitary and adrenal glands, were observed in TBT rats. Increases in adiposity and peroxisome proliferator-activated receptor-γ protein expression in the adrenal gland were observed in TBT rats. Together, these data provide in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone, which could be associated an inflammation and increased of inducible nitric oxide synthase expression in hypothalamus. Thus, TBT exerts toxic effects at different levels on the HPA axis function.

  4. Hypothalamic-pituitary-adrenal axis, childhood adversity and adolescent nonsuicidal self-injury.

    Science.gov (United States)

    Reichl, Corinna; Heyer, Anne; Brunner, Romuald; Parzer, Peter; Völker, Julia Madeleine; Resch, Franz; Kaess, Michael

    2016-12-01

    Whereas childhood adversity (CA) and the hypothalamus-pituitary-adrenal (HPA) axis have been suggested to play a major role in the etiology of non-suicidal self-injury (NSSI), no study has thus far investigated both its associations and interactions with adolescent NSSI. We investigated CA (antipathy, neglect, physical, psychological, and sexual abuse) and indices of HPA axis activity (salivary and hair cortisol) in a clinical sample of 26 adolescents engaging in NSSI and 26 age- and gender-matched healthy controls (HC). We used standardized interviews for the assessment of CA (CECA), NSSI (SITBI-G), and axis I diagnoses (MINI-KID). Salivary cortisol sampling was surveyed using a monitoring system and instructed via telephone calls. Adolescents engaging in NSSI exhibited significantly higher cortisol awakening responses compared to HC. No differences were found with respect to the diurnal slope or hair cortisol. In the presence of CA, healthy adolescents showed flatted diurnal cortisol slopes while those engaging in NSSI exhibited significantly steeper ones. Our findings indicate that adolescents engaging in NSSI may exhibit a stronger cortisol awakening response, potentially in expectation of strain. However, elevated cortisol levels may not be maintained throughout the day, especially among adolescents with a history of CA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of Local Vibration and Passive Exercise on the Hormones and Neurotransmitters of Hypothalamic-Pituitary-Adrenal Axis in Hindlimb Unloading Rats

    Science.gov (United States)

    Luan, Huiqin; Huang, Yunfei; Li, Jian; Sun, Lianwen; Fan, Yubo

    2018-04-01

    Astronauts are severely affected by spaceflight-induced bone loss. Mechanical stimulation through exercise inhibits bone resorption and improves bone formation. Exercise and vibration can prevent the degeneration of the musculoskeletal system in tail-suspended rats, and long-term exercise stress will affect endocrine and immune systems that are prone to fatigue. However, the mechanisms through which exercise and vibration affect the endocrine system remain unknown. This study mainly aimed to investigate the changes in the contents of endocrine axis-related hormones and the effects of local vibration and passive exercise on hypothalamic-pituitary-adrenal (HPA) axis-related hormones in tail-suspended rats. A total of 32 Sprague-Dawley rats were randomly distributed into four groups (n = 8 per group): tail suspension (TS), TS + 35Hz vibration, TS + passive exercise, and control. The rats were placed on a passive exercise and local vibration regimen for 21 days. On day 22 of the experiment, the contents of corticotrophin-releasing hormone, adrenocorticotropic hormone, cortisol, and 5-hydroxytryptamine in the rats were quantified with kits in accordance with the manufacturer's instructions. Histomorphometry was applied to evaluate histological changes in the hypothalamus. Results showed that 35Hz local vibration cannot cause rats to remain in a stressed state and that it might not inhibit the function of the HPA axis. Therefore, we speculate that this local vibration intensity can protect the function of the HPA axis and helps tail-suspended rats to transition from stressed to adaptive state.

  6. Hypopituitarism in the elderly: a narrative review on clinical management of hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal axes dysfunction.

    Science.gov (United States)

    Curtò, L; Trimarchi, F

    2016-10-01

    Hypopituitarism is an uncommon and under-investigated endocrine disorder in old age since signs and symptoms are unspecific and, at least in part, can be attributed to the physiological effects of aging and related co-morbidities. Clinical presentation is often insidious being characterized by non-specific manifestations, such as weight gain, fatigue, low muscle strength, bradipsychism, hypotension or intolerance to cold. In these circumstances, hypopituitarism is a rarely life-threatening condition, but evolution may be more dramatic as a result of pituitary apoplexy, or when a serious condition of adrenal insufficiency suddenly occurs. Clinical presentation depends on the effects that each pituitary deficit can cause, and on their mutual relationship, but also, inevitably, it depends on the severity and duration of the deficit itself, as well as on the general condition of the patient. Indeed, indications and methods of hormone replacement therapy must include the need to normalize the endocrine profile without contributing to the worsening of intercurrent diseases, such as those of glucose and bone metabolism, and the cardiovascular system, or to the increasing cancer risk. Hormonal requirements of elderly patients are reduced compared to young adults, but a prompt diagnosis and appropriate treatment of pituitary deficiencies are strongly recommended, also in this age range.

  7. A FEEDBACK MODEL FOR TESTICULAR-PITUITARY AXIS HORMONE KINETICS AND THEIR EFFECTS ON THE REGULATION OF THE PROSTATE IN ADULT MALE RATS

    Science.gov (United States)

    The testicular-hypothalamic-pituitary axis regulates male reproductive system functions. A model describing the kinetics and dynamics of testosterone (T), dihydrotestosterone (DHT) and luteinizing hormone (LH) was developed based on a model by Barton and Anderson (1997). The mode...

  8. Distress calls of the greater short-nosed fruit bat Cynopterus sphinx activate hypothalamic-pituitary-adrenal (HPA) axis in conspecifics.

    Science.gov (United States)

    Mariappan, Subramanian; Bogdanowicz, Wieslaw; Marimuthu, Ganapathy; Rajan, Koilmani Emmanuvel

    2013-09-01

    In a stressful situation, greater short-nosed fruit bats (Cynopterus sphinx) emit audible vocalization either to warn or to inform conspecifics. We examined the effect of distress calls on bats emitting the call as well as the bats receiving the distress signal through analysis of the hypothalamic-pituitary-adrenal axis and catacholaminargic systems. We measured the levels of neurotransmitters [serotonin (5-HT), dopamine (DA), norepinephrine (NE)] and stress hormones [(adrenocorticotropic hormone (ACTH) and corticosterone (CORT)]. Our results showed that distress call emission elevated the level of ACTH and CORT, as well as 5-HT, DA and NE in the amygdala, for both the call emitting bat and the responding bat. Subsequently, we observed increased activity of glucocorticoid receptor and its steroid receptor co-activator (SRC-1). An expression of SRC-1 was up-regulated in the distress call emitter only, whereas it was at a similar level in both the call responder and silent bats. These findings suggest that bats emitting distress calls and also bats responding to such calls have similar neurotransmitter expression patterns, and may react similarly in response to stress.

  9. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond.

    Science.gov (United States)

    Belda, Xavier; Fuentes, Silvia; Daviu, Nuria; Nadal, Roser; Armario, Antonio

    2015-01-01

    Exposure to certain acute and chronic stressors results in an immediate behavioral and physiological response to the situation followed by a period of days when cross-sensitization to further novel stressors is observed. Cross-sensitization affects to different behavioral and physiological systems, more particularly to the hypothalamus-pituitary-adrenal (HPA) axis. It appears that the nature of the initial (triggering) stressor plays a major role, HPA cross-sensitization being more widely observed with systemic or high-intensity emotional stressors. Less important appears to be the nature of the novel (challenging) stressor, although HPA cross-sensitization is better observed with short duration (5-15 min) challenging stressors. In some studies with acute immune stressors, HPA sensitization appears to develop over time (incubation), but most results indicate a strong initial sensitization that progressively declines over the days. Sensitization can affect other physiological system (i.e. plasma catecholamines, brain monoamines), but it is not a general phenomenon. When studied concurrently, behavioral sensitization appears to persist longer than that of the HPA axis, a finding of interest regarding long-term consequences of traumatic stress. In many cases, behavioral and physiological consequences of prior stress can only be observed following imposition of a new stressor, suggesting long-term latent effects of the initial exposure.

  10. Differences among doses for neuro-axis radiotherapy planning in the gonadal region

    International Nuclear Information System (INIS)

    Lima, F.F de; Vilela, E.C.; Oliveira, F.L.; Filho, J.A.

    2015-01-01

    Radiotherapy can disrupt the functioning of the hypothalamic-pituitary axis, directly causing ovarian deficiencies, such as the decrease in fertility or damage that renders the uterus incapable of accommodating the growth of a fetus. However, these issues have become increasingly important to a growing number of pediatric and adolescent cancer survivors. The whole-body, cranial-spinal axis, as well as abdomen and pelvic region irradiations may expose the ovaries to radiation and may cause premature ovarian failure, whereas doses above 35 Gy cranial can affect the hypothalamic-pituitary functions. This study performed a comparison of four doses of radiotherapy planning techniques for the neural axis. For this analysis, technical simulations were performed for the treatment of medulloblastoma in four different planning, applied in a RANDO anthropomorphic phantom and dosimeters (TLD-100). The radiation fields in the 1”st and 2”nd planning were 40 x 5 cm”2 and 17 x 5 cm”2 with 4.0 cm depth, in which doses were 0.03 and 0.05 Gy / day and 0.11 and 0.09 Gy / days, on the right and left sides, respectively. The 3”rd and 4”th measured planning 32 x 7 cm”2 and 18 x 7 cm”2, with a 2 cm gap and a 4.0 and 5.0 cm depth, in which doses were 1.08 and 0.2 Gy/day and 1.14 and 0.14 Gy/day, on the left and right sides, respectively. It could be observed that the doses in the ovaries in the 3”rd and 4”th schedules proved to be larger than the doses in the 1 s t and 2 n d planning. This is caused by the spinal field width and the depth of the second spinal field, which is 1.0 cm more than the field of the 1”st and 2”nd planning. These differences should be observed in image planning, as incorrect measures can cause damage in the treatment finish. (authors)

  11. Rapid-onset obesity, hypoventilation, hypothalamic dysfunction, autonomic dysregulation and neuroendocrine tumor syndrome with a homogenous enlargement of the pituitary gland: a case report.

    Science.gov (United States)

    Aljabban, Lama; Kassab, Lina; Bakoura, Nour Alhuda; Alsalka, Mohammad Fayez; Maksoud, Ismaeil

    2016-11-22

    Rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome is a rare pediatric disorder with a variable sequence of clinical presentations, undefined etiology, and high risk of mortality. Our patient presented an unusual course of the disease accompanied by a homogenous mild enlargement of her pituitary gland with an intact pituitary-endocrine axis which, to the best of our knowledge, represents a new finding in rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome. We present a documented case of a 4 years and 8-month-old Syrian Arabic girl with a distinctive course of signs and symptoms of rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome accompanied by mature ganglioneuroma in her chest, a homogenous mild enlargement of her pituitary gland, generalized cortical brain atrophy, and seizures. Three months after her first marked symptoms were noted she had a sudden progression of severe respiratory distress that ended with her death. The findings of this case could increase our understanding of the pathogenetic mechanisms of rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation, and place more emphases on pediatricians to consider rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome whenever early rapid onset of obesity, associated with any malfunction, is observed in children. This knowledge could be lifesaving for children with rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome.

  12. Estimating volumes of the pituitary gland from T1-weighted magnetic-resonance images: effects of age, puberty, testosterone, and estradiol.

    Science.gov (United States)

    Wong, Angelita Pui-Yee; Pipitone, Jon; Park, Min Tae M; Dickie, Erin W; Leonard, Gabriel; Perron, Michel; Pike, Bruce G; Richer, Louis; Veillette, Suzanne; Chakravarty, M Mallar; Pausova, Zdenka; Paus, Tomáš

    2014-07-01

    The pituitary gland is a key structure in the hypothalamic-pituitary-gonadal (HPG) axis--it plays an important role in sexual maturation during puberty. Despite its small size, its volume can be quantified using magnetic resonance imaging (MRI). Here, we study a cohort of 962 typically developing adolescents from the Saguenay Youth Study and estimate pituitary volumes using a newly developed multi-atlas segmentation method known as the MAGeT Brain algorithm. We found that age and puberty stage (controlled for age) each predicts adjusted pituitary volumes (controlled for total brain volume) in both males and females. Controlling for the effects of age and puberty stage, total testosterone and estradiol levels also predict adjusted pituitary volumes in males and pre-menarche females, respectively. These findings demonstrate that the pituitary gland grows during adolescence, and its volume relates to circulating plasma-levels of sex steroids in both males and females. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Seasoning ingredients in a medium-fat diet regulate lipid metabolism in peripheral tissues via the hypothalamic-pituitary axis in growing rats.

    Science.gov (United States)

    Tanaka, Mitsuru; Yasuoka, Akihito; Yoshinuma, Haruka; Saito, Yoshikazu; Asakura, Tomiko; Tanabe, Soichi

    2018-03-01

    We fed rats noodle (N) -diet containing 30 wt.% instant noodle with a 26% fat-to-energy ratio for 30 days (N-group). Compared with rats that were fed the same amount of nutrients (C-group), the N-group showed lower liver triacylglycerol levels and higher fecal cholesterol levels. We then analyzed transcriptome of the hypothalamic-pituitary (HP), the liver and the white adipose tissue (WAT). Thyroid stimulating hormone (Tshb), and its partner, glycoprotein hormone genes were up-regulated in the HP of N-group. Sterol regulatory element binding transcription factors were activated in the liver of N-group, while an up-regulation of the angiogenic signal occurred in the WAT of N-group. N-group showed higher urine noradrenaline (NA) level suggesting that these tissue signals are regulated by NA and Tshb. The N-diet contains 0.326 wt.% glutamate, 0.00236 wt.% 6-shogaol and Maillard reaction products. Our results suggest that these ingredients may affect lipid homeostasis via the HP axis.

  14. Impact of opioid therapy on gonadal hormones: focus on buprenorphine.

    Science.gov (United States)

    Varma, Anjali; Sapra, Mamta; Iranmanesh, Ali

    2018-02-17

    Objective The USA is in the midst of an opioid crisis. Understanding the impact of opioids and commonly used treatments for opioid dependence is essential for clinicians and researchers in order to educate and treat the nation's growing population with opioid use disorders. As a relatively new treatment for opioid dependence, buprenorphine is gaining popularity to the extent of becoming not only a preferred approach to the maintenance of opiate addiction, but also an option for chronic pain management. The purpose of this report is to review the available evidence on the endocrine effects of buprenorphine, particularly as it relates to the hypothalamic-pituitary-gonadal (HPG) axis, which is controversial and not fully defined. Method We conducted a Pubmed search (2000-2017) for human studies in the English language for articles that were available as full length regarding buprenorphine, endocrinopathy, hypogonadism, bone density, opioids. Case reports were also reviewed, although prospective studies and randomized controlled trials received more weight. Results Opioid induced hypogonadism is well established. Most studies report that buprenorphine being a partial agonist/antagonist may not be impacting the pituitary trophic hormones as much. There are reports of sexual dysfunction in subjects maintained on buprenorphine, some without hormonal correlation. Thus with the understanding that pertinent clinical studies are limited in number, varied in methodology, mostly cross sectional, predominantly in men and small number of participants, more research in this area is warranted. Conclusion Based on a comprehensive review of the available literature, we conclude that despite its increasing popularity, buprenorphine has not been adequately studied in respect to its long-term effects on the hypothalamic-pituitary-adrenal (HPA) axis. There is a great need for longitudinal systematic trials to define the potential buprenorphine-induced endocrine consequences.

  15. Association analyses of depression and genes in the hypothalamus-pituitary-adrenal axis

    DEFF Research Database (Denmark)

    Buttenschøn, Henriette Nørmølle; Krogh, Jesper; Nielsen, Marit Nyholm

    2017-01-01

    OBJECTIVE: Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been reported in depression. The aim was to investigate the potential association between depression and seven genes regulating or interfering with the HPA axis, including the gene encoding angiotensin converting enzyme......) was investigated. RESULTS: After quality control, 68 genetic variants were left for analyses. Four of nine variants within ACE were nominally associated with depression and a gene-wise association was likewise observed. However, none of the SNPs located within AVP, CRH, CRHR1, CRHR2, FKBP5 or NC3C1 were associated...... with depression. One nominally significant interaction, most likely due to chance, was identified. CONCLUSION: The results indicate that ACE could be a potential candidate gene for depression....

  16. Neurobiology of Maternal Stress: Role of Social Rank and Central Oxytocin in Hypothalamic-Pituitary Adrenal Axis Modulation

    Directory of Open Access Journals (Sweden)

    Jeremy D Coplan

    2015-07-01

    Full Text Available Background: Chronic stress may conceivably require plasticity of maternal physiology and behavior to cope with the conflicting primary demands of infant rearing and foraging for food. In addition, social rank may play a pivotal role in mandating divergent homeostatic adaptations in cohesive social groups. We examined cerebrospinal fluid (CSF oxytocin (OT levels and hypothalamic pituitary adrenal (HPA axis regulation in the context of maternal social stress and assessed the contribution of social rank to dyadic-distance as reflective of distraction from normative maternal-infant interaction. Methods: Twelve socially-housed mother-infant bonnet macaque dyads were studied after variable foraging demand (VFD exposure compared to 11 unstressed dyads. Dyadic-distance was determined by behavioral observation. Social ranking was performed blindly by two observers. Post-VFD maternal plasma cortisol and CSF OT were compared to corresponding measures in non-VFD exposed mothers. Results: High social rank was associated with increased dyadic-distance only in VFD-exposed dyads and not in control dyads. In mothers unexposed to VFD, social rank was not related to maternal cortisol levels whereas VFD-exposed dominant versus subordinate mothers exhibited increased plasma cortisol. Maternal CSF OT directly predicted maternal cortisol only in VFD-exposed mothers. CSF OT was higher in dominant versus subordinate mothers. VFD-exposed mothers with high cortisol specifically exhibited CSF OT elevations in comparison to control groups. Conclusions: Pairing of maternal social rank to dyadic-distance in VFD presumably reduces maternal contingent responsivity, with ensuing long-term sequelae. VFD-exposure dichotomizes maternal HPA axis response as a function of social rank with relatively reduced cortisol in subordinates. OT may serve as a homeostatic buffer during maternal stress exposure.

  17. Activation in the hypothalamic-pituitary-adrenocortical axis and sympathetic nervous system in women with carpal tunnel syndrome.

    Science.gov (United States)

    Fernández-de-Las-Peñas, César; Díaz-Rodríguez, Lourdes; Salom-Moreno, Jaime; Galiano-Castillo, Noelia; Valverde-Herreros, Lis; Martínez-Martín, Javier; Pareja, Juan A

    2014-08-01

    The aim of this study is to investigate the differences in salivary cortisol (hypothalamic-pituitary-adrenocortical [HPA] axis), α-amylase activity (sympathetic nervous system [SNS]), and immunoglobulin A (IgA; immune system) concentrations between women with carpal tunnel syndrome (CTS) and healthy women. A cross-sectional study. Activation of HPA, SNS, and immune system in CTS has not been clearly determined. One hundred two women (age: 45 ± 7 years) with electrodiagnostic and clinical diagnosis of CTS and 102 matched healthy women. The intensity of the pain was assessed with a Numerical Pain Rating Scale (0-10), and disability was determined with Boston Carpal Tunnel Questionnaire. Salivary cortisol concentration, α-amylase activity, salivary flow rate, and IgA concentration were collected from nonstimulated saliva. Women with CTS exhibited lower salivary flow rate (P  0.2) were found between groups as a total. Women with severe CTS exhibited lower salivary flow rate (P < 0.001), higher α-amylase activity (P = 0.002), and higher cortisol concentration (P = 0.03) than healthy women and than those with minimal/moderate CTS (P < 0.05). Within women with CTS, significant positive associations between α-amylase activity and the intensity of pain were found: the highest the level of pain, the higher the α-amylase activity, i.e., higher SNS activation. These results suggest that women with severe CTS exhibit changes in activation in the HPA axis and SNS but not in the humoral immune system. Activation of the SNS was associated with the intensity of pain. Future studies are needed to elucidate the direction of this relationship. Wiley Periodicals, Inc.

  18. Featured Article: Community Crime Exposure and Risk for Obesity in Preschool Children: Moderation by the Hypothalamic-Pituitary-Adrenal-Axis Response.

    Science.gov (United States)

    Gartstein, Maria A; Seamon, Erich; Thompson, Stephanie F; Lengua, Liliana J

    2018-05-01

    Identification of early risk factors related to obesity is critical to preventative public health efforts. In this study, we investigated links between the Hypothalamic-Pituitary-Adrenal (HPA)-axis activity (diurnal cortisol pattern), geospatially operationalized exposure to neighborhood crime, and body mass index (BMI) for a sample of 5-year-old children. Greater community crime exposure and lower HPA-axis activity were hypothesized to contribute to higher BMI, with child HPA-axis moderating the association between crime exposure and BMI. Families residing within the boundaries of the City of Seattle (N = 114) provided information concerning demographic/psychosocial risk factors, used to calculate a Cumulative Risk Index, indicating the number of contextual adversities present. Child BMI and diurnal cortisol pattern (derived from assays of saliva samples) were examined, along with neighborhood crime indices computed with publically available information, based on participants' locations. Hierarchical multiple regression analyses, adjusted for covariates (cumulative risk, age, and sex), indicated that crime proximity made a unique contribution to child BMI, in the direction signaling an increase in the risk for obesity. Consistent with our hypothesis, a significant interaction was observed, indicative of moderation by diurnal cortisol pattern. Follow-up simple slope analyses demonstrated that crime exposure was significantly related to higher BMI for children with low-flat (blunted) diurnal cortisol patterns, where community crime and BMI were not significantly associated at higher levels of cortisol. Community crime exposure contributes to higher BMI as early as the preschool period, and blunted diurnal cortisol patterns may place children experiencing neighborhood adversity at greater risk for obesity.

  19. Cranial electrotherapy stimulation affects mood state but not levels of peripheral neurotrophic factors or hypothalamic- pituitary-adrenal axis regulation.

    Science.gov (United States)

    Roh, Hee-Tae; So, Wi-Young

    2017-01-01

    Cranial electrotherapy stimulation (CES) is reported to aid in relieving symptoms of depression and anxiety, though the mechanism underlying this effect remains unclear. Therefore, the present study aimed to evaluate changes in the hypothalamic-pituitary-adrenal (HPA) axis response and levels of neurotrophic factors, as well as changes in mood state, in patients undergoing CES therapy. Fifty healthy postmenopausal women were randomly assigned to either a Sham CES group (n = 25) or an Active CES group (n = 25). CES treatment was conducted in 20-minute sessions, three times per week for 8 weeks, using a micro current cranial electrotherapy stimulator. Blood samples were collected prior to and following the 8-week treatment period for measurement of cortisol, adrenocorticotropic hormone (ACTH), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) levels. Changes in mood state were also examined at the time of blood collection using the Profile of Mood States (POMS). No significant differences in cortisol, ACTH, BDNF, or NGF were observed between the two participant groups (p > 0.05) following the treatment period. However, those in the Active CES group exhibited significantly decreased Tension-Anxiety and Depression-Dejection scores on the POMS relative to pre-treatment scores (p 0.05). These results suggest that 8 weeks of CES treatment does not induce changes in blood levels of neurotrophic factors or HPA-axis-related hormones, though such treatment may be effective in treating symptoms of anxiety and depression.

  20. Comparing the Effects of Combined Oral Contraceptives Containing Progestins With Low Androgenic and Antiandrogenic Activities on the Hypothalamic-Pituitary-Gonadal Axis in Patients With Polycystic Ovary Syndrome: Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Amiri, Mina; Ramezani Tehrani, Fahimeh; Nahidi, Fatemeh; Kabir, Ali; Azizi, Fereidoun

    2018-04-25

    Different products of combined oral contraceptives (COCs) can improve clinical and biochemical findings in patients with polycystic ovary syndrome (PCOS) through suppression of the hypothalamic-pituitary-gonadal (HPG) axis. This systematic review and meta-analysis aimed to compare the effects of COCs containing progestins with low androgenic and antiandrogenic activities on the HPG axis in patients with PCOS. We searched PubMed, Scopus, Google Scholar, ScienceDirect, and Web of Science databases (1980-2017) to identify randomized controlled trials or nonrandomized studies investigating the effect of COCs containing progestins with low androgenic and antiandrogenic activities, including the products containing desogestrel, cyproterone acetate, and drospirenone, on the HPG axis in patients with PCOS. In this meta-analysis, fixed and random effect models were used. Outcomes of interest were weighted mean differences (WMD) of hormonal parameters, including the follicle-stimulating hormone (FSH), luteinizing hormone (LH), LH-to-FSH ratio, estradiol, total testosterone, and sex hormone-binding globulin. Potential sources of heterogeneity were investigated using meta-regression and subgroup analyses. Subgroup analyses were performed based on the used progestin compound and treatment duration. We assessed quality of included studies and their risk of bias using Cochrane guidelines. Publication bias was assessed using Egger test and funnel plot. COC use was significantly associated with a decrease in gonadotropin levels, including FSH and LH. Use of products containing cyproterone acetate was associated with a decrease in FSH levels after 3 months (WMD=-0.48; 95% CI -0.81 to -0.15), 6 months (WMD=-2.33; 95% CI -3.48 to -1.18), and 12 months (WMD=-4.70; 95% CI -4.98 to -4.42) and a decrease in LH levels after 3 months (WMD=-3.57; 95% CI -5.14 to -1.99), 6 months (WMD=-5.68; 95% CI -9.57 to -1.80), and 12 months (WMD=-11.60; 95% CI -17.60 to -5.60). Use of COCs containing

  1. Relational victimization, friendship, and adolescents' hypothalamic-pituitary-adrenal axis responses to an in vivo social stressor.

    Science.gov (United States)

    Calhoun, Casey D; Helms, Sarah W; Heilbron, Nicole; Rudolph, Karen D; Hastings, Paul D; Prinstein, Mitchell J

    2014-08-01

    Adolescents' peer experiences may have significant associations with biological stress-response systems, adding to or reducing allostatic load. This study examined relational victimization as a unique contributor to reactive hypothalamic-pituitary-adrenal (HPA) axis responses as well as friendship quality and behavior as factors that may promote HPA recovery following a stressor. A total of 62 adolescents (ages 12-16; 73% female) presenting with a wide range of life stressors and adjustment difficulties completed survey measures of peer victimization and friendship quality. Cortisol samples were collected before and after a lab-based interpersonally themed social stressor task to provide measures of HPA baseline, reactivity, and recovery. Following the stressor task, adolescents discussed their performance with a close friend; observational coding yielded measures of friends' responsiveness. Adolescents also reported positive and negative friendship qualities. Results suggested that higher levels of adolescents' relational victimization were associated with blunted cortisol reactivity, even after controlling for physical forms of victimization and other known predictors of HPA functioning (i.e., life stress or depressive symptoms). Friendship qualities (i.e., low negative qualities) and specific friendship behaviors (i.e., high levels of responsiveness) contributed to greater HPA regulation; however, consistent with theories of rumination, high friend responsiveness in the context of high levels of positive friendship quality contributed to less cortisol recovery. Findings extend prior work on the importance of relational victimization and dyadic peer relations as unique and salient correlates of adaptation in adolescence.

  2. Symptomatic hypothalamic-pituitary dysfunction in nasopharyngeal carcinoma patients following radiation therapy: a retrospective study

    International Nuclear Information System (INIS)

    Lam, K.S.; Ho, J.H.; Lee, A.W.; Tse, V.K.; Chan, P.K.; Wang, C.; Ma, J.T.; Yeung, R.T.

    1987-01-01

    Endocrine assessment was performed in 32 relapse-free southern Chinese patients 5-17 years following radiation therapy (RT) alone for early nasopharyngeal carcinoma (NPC). Initial screening was done using questionnaires emphasizing impaired sexual function and menstrual disturbance plus measurement of serum levels of thyroxine, free thyroxine index, thyrotropic hormone, prolactin, and additionally testosterone for males only. Those showing abnormalities were subjected to detailed pituitary function tests. Hypothalamic-pituitary dysfunction was found in 7 female patients and only 1 male patient. A delayed TSH response to thyrotropin releasing hormone suggesting a hypothalamic disorder was seen in 6 of the affected female patients, and hyperprolactinaemia in also 6. None of the patients had evidence of diabetes insipidus. Hypopituitarism became symptomatic 2-5 years after RT with a mean latent interval of 3.8 years. A practical protocol for regular endocrine assessment for NPC patients after RT has been proposed. Multiple linear regression analysis of the radiotherapeutic data from the 11 female patients indicates that the likelihood of late occurrence of symptomatic hypothalamic-pituitary dysfunction following RT is dependent on the TDF of the target dose to the nasopharyngeal region and the height of the upper margin of the opposed lateral facial fields above the diaphragma sellae (coefficient of multiple correlation = 0.9025). Except when the sphenoid sinus or the middle cranial fossa is involved, it is advisable to set the height of the upper margin of the lateral facial field at a level no higher than the diaphragma sellae. The hypothalamus and possibly the pituitary stalk as well may sustain permanent damage by doses of radiation within the conventional radiotherapeutic range for carcinomas

  3. Combined receptor antagonist stimulation of the hypothalamic-pituitary-adrenal axis test identifies impaired negative feedback sensitivity to cortisol in obese men.

    Science.gov (United States)

    Mattsson, Cecilia; Reynolds, Rebecca M; Simonyte, Kotryna; Olsson, Tommy; Walker, Brian R

    2009-04-01

    Hypothalamic-pituitary-adrenal (HPA) axis dysregulation may underlie disorders including obesity, depression, cognitive decline, and the metabolic syndrome. Conventional tests of HPA axis negative feedback rely on glucocorticoid receptor (GR) agonists such as dexamethasone but do not test feedback by endogenous cortisol, potentially mediated by both GR and mineralocorticoid receptors (MR). The objective of the study was to use a combination of GR (RU38486, mifepristone) and MR (spironolactone) antagonists to explore the poorly understood activation of the HPA axis that occurs in obesity. This was a double-blind, placebo-controlled, randomized, crossover study. The study was conducted at a clinical research facility. Participants included 15 lean (body mass index 22.0 +/- 1.6 kg/m(2)) and 16 overweight/obese (body mass index 30.1 +/- 3.5 kg/m(2)) men. Subjects attended on four occasions for blood and saliva sampling every 30 min between 1800 and 2200 h. At 1100 and 1600 h before visits, subjects took 200 mg spironolactone, 400 mg RU38486, 200 mg spironolactone + 400 mg RU38486, or placebo orally. Serum cortisol levels after drug or placebo were measured. Cortisol levels did not differ between lean and obese after placebo. Spironolactone and RU38486 alone had modest effects, increasing cortisol by less than 50% in both groups. However, combined spironolactone plus RU38486 elevated cortisol concentrations substantially, more so in lean than obese men [2.9- (0.3) vs. 2.2 (0.3)-fold elevation, P = 0.002]. Combined receptor antagonist stimulation of the HPA axis reveals redundancy of MR and GR in negative feedback in humans. Obese men have impaired responses to combined receptor antagonist stimulation, suggesting impaired negative feedback by endogenous cortisol. Such an approach may be useful to dissect abnormal HPA axis control in neuropsychiatric and other disorders.

  4. Age-related differences in stress responsiveness of the hypothalamic-pituitary-adrenal axis of nonhuman primates with various types of adaptive behavior.

    Science.gov (United States)

    Goncharova, Nadezhda D; Oganyan, Tamara E

    2018-03-01

    Aging is characterized by disturbances in the functioning of the hypothalamic-pituitary-adrenal (HPA) axis, associated with disturbances in the adaptation processes and increase of the probability of the onset of post-stress syndrome. However, the individual features of age-related disorders stress reactivity of HPA axis have not been studied. The purpose was to study individual characteristics of the HPA axis responsiveness to acute psycho-emotional stress exposure (restraint, ASE) at different age periods on the model of the young adult and old physically healthy female rhesus monkeys that differ in their behavioral responses to stress, i.e., with depression-like and anxiety-like behavior (DAB) on the one hand and healthy standard (control) adaptive behavior (SB) on the other hand. No significant intergroup differences were observed in HPA axis responses to ASE in young animals. During aging the monkeys with SB showed reduced ACTH response to the ASE, whereas the monkeys with DAB demonstrated its increase. The old animals with DAB in response to ASE demonstrated the most pronounced HPA axis disorders, such as the highest levels of corticotrophin (ACTH), the lowest levels of dehydroepiandrosterone sulfate (DHEAS), reduced cortisol (F) levels and the highest values of the F/DHEAS molar ratio. The ratio F/DHEAS positively correlates with the malondialdehyde concentration in erythrocytes that is considered as the biomarker of oxidative stress. Thus, these data allow us to consider the old monkeys with DAB as individuals with higher vulnerability to the adverse effects of ASE. In addition, depression-like and anxiety-like behavior of aged primates under mild/moderate stress along with reduced DHEAS plasma concentration and increased values of F/DHEAS ratio can be used to identify individuals with increased vulnerability to ASE and accelerated aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Multi-Level Risk Factors for Suicidal Ideation Among at-Risk Adolescent Females: The Role of Hypothalamic-Pituitary-Adrenal Axis Responses to Stress

    Science.gov (United States)

    Calhoun, Casey D.; Hastings, Paul D.; Rudolph, Karen D.; Nock, Matthew K.; Prinstein, Mitchell J.

    2014-01-01

    Adopting a multi-level approach, this study examined risk factors for adolescent suicidal ideation, with specific attention to (a) hypothalamic-pituitary-adrenal (HPA) axis stress responses and (b) the interplay between HPA-axis and other risk factors from multiple domains (i.e., psychological, interpersonal and biological). Participants were 138 adolescent females (Mage=14.13 years, SD=1.40) at risk for suicidal behaviors. At baseline, lifetime suicidal ideation and a number of risk factors were assessed (i.e., depressive symptoms, impulsiveness, pubertal status and peer stress). Participants were exposed to a psychosocial stress task and HPA-axis responses were assessed by measuring cortisol levels pre- and post-stressor. At 3 months post-baseline, suicidal ideation again was assessed. Using group-based trajectory modeling, three groups of cortisol stress-response patterns were identified (i.e., hyporesponsive, normative, and hyperresponsive). As compared to females in the normative and hyporesponsive group, females in the hyperresponsive group were more likely to report a lifetime history of suicidal ideation at baseline, above and beyond the effects of the other predictors. Moreover, as compared to females in the normative group, females in the hyperresponsive group were at increased risk for reporting suicidal ideation 3 months later, after controlling for prior ideation. No interactions between cortisol group and the other risk factors were significant, with the exception of a non-significant trend between impulsiveness and cortisol group on lifetime suicidal ideation. Findings highlight the importance of HPA-axis responses to acute stressors as a risk factor for suicidal ideation among adolescents. PMID:24958308

  6. Exploration of the Hypothalamic-Pituitary-Adrenal Axis to Improve Animal Welfare by Means of Genetic Selection: Lessons from the South African Merino

    Directory of Open Access Journals (Sweden)

    Schalk Cloete

    2013-05-01

    Full Text Available It is a difficult task to improve animal production by means of genetic selection, if the environment does not allow full expression of the animal’s genetic potential. This concept may well be the future for animal welfare, because it highlights the need to incorporate traits related to production and robustness, simultaneously, to reach sustainable breeding goals. This review explores the identification of potential genetic markers for robustness within the hypothalamic-pituitary-adrenal axis (HPAA, since this axis plays a vital role in the stress response. If genetic selection for superior HPAA responses to stress is possible, then it ought to be possible to breed robust and easily managed genotypes that might be able to adapt to a wide range of environmental conditions whilst expressing a high production potential. This approach is explored in this review by means of lessons learnt from research on Merino sheep, which were divergently selected for their multiple rearing ability. These two selection lines have shown marked differences in reproduction, production and welfare, which makes this breeding programme ideal to investigate potential genetic markers of robustness. The HPAA function is explored in detail to elucidate where such genetic markers are likely to be found.

  7. Heavy Resistance Training and Supplementation With the Alleged Testosterone Booster Nmda has No Effect on Body Composition, Muscle Performance, and Serum Hormones Associated With the Hypothalamo-Pituitary-Gonadal Axis in Resistance-Trained Males

    Directory of Open Access Journals (Sweden)

    Darryn S. Willoughby

    2014-03-01

    Full Text Available The effects of 28 days of heavy resistance training while ingesting the alleged testosterone-boosting supplement, NMDA, were determined on body composition, muscle strength, serum cortisol, prolactin, and hormones associated with the hypothalamo-pituitary- gonadal (HPG axis. Twenty resistance-trained males engaged in 28 days of resistance training 4 times/wk while orally ingesting daily either 1.78 g of placebo (PLAC or NMDA. Data were analyzed with separate 2 x 2 ANOVA (p 0.05 or supplementation (p > 0.05. In regard to total body mass and fat-free mass, however, each was significantly increased in both groups in response to resistance training (p 0.05. In both groups, lower-body muscle strength was significantly increased in response to resistance training (p 0.05. All serum hormones (total and free testosterone, LH, GnRH, estradiol, cortisol, prolactin were unaffected by resistance training (p > 0.05 or supplementation (p > 0.05. The gonadal hormones and cortisol and prolactin were unaffected by 28 days of NMDA supplementation and not associated with the observed increases in muscle strength and mass. At the dose provided, NMDA had no effect on HPG axis activity or ergogenic effects in skeletal muscle.

  8. The Effect of Ecstasy (MDMA on the Number of Ovary Follicles and Hormonal Axis of Pituitary-Gonadal in Immature Rats

    Directory of Open Access Journals (Sweden)

    Zahra Allaeian

    2013-03-01

    Full Text Available Background & Objective: The widespread use of the pills of ecstasy has opened the floodgates to social damage. Severe kidney and liver damage as well amnesia and imbalance are some of ecstasy pills complications. This study evaluated the effect of these pills on the ovary and hormonal axis of pituitary-gonadal axis in rats.   Materials & Methods: Thirty-five female immature Wistar rats were divided into 5 groups of 7 rats, comprising control, sham, experimental 1, experimental 2, and experimental 3 groups. The control group did not receive any solvent or medication; the sham group received physiologic serum (0.2 cc once daily for 14 days; and the experimental groups of 1, 2, and 3 received a solution (0.2 cc once daily containing 0.5, 1, and 2 mg of medication for 14 days via intraperitoneal injection. Hormone measurement was done with the ELISA method. Ovaries were excised to prepare tissue sections and to investigate the number of ovarian follicles. The number of follicles was calculated via the physical dissector technique.   Results: There was a statistically significant difference in body and ovary weight between the control group and the experimental group 3. Also, the number of primary and Graafian follicles decreased significantly. The results did not show a statistically significant difference between the three experimental groups and the control group in terms of FSH and LH hormones, but the rate of progesterone hormone had a meaningful increase.   Conclusion: Use of ecstasy pills exerted a destructive impact on the ovary and progesterone hormone.

  9. The effects of subchronic acrylamide exposure on gene expression, neurochemistry, hormones, and histopathology in the hypothalamus-pituitary-thyroid axis of male Fischer 344 rats

    International Nuclear Information System (INIS)

    Bowyer, J.F.; Latendresse, J.R.; Delongchamp, R.R.; Muskhelishvili, L.; Warbritton, A.R.; Thomas, M.; Tareke, E.; McDaniel, L.P.; Doerge, D.R.

    2008-01-01

    Acrylamide (AA) is an important industrial chemical that is neurotoxic in rodents and humans and carcinogenic in rodents. The observation of cancer in endocrine-responsive tissues in Fischer 344 rats has prompted hypotheses of hormonal dysregulation, as opposed to DNA damage, as the mechanism for tumor induction by AA. The current investigation examines possible evidence for disruption of the hypothalamic-pituitary-thyroid axis from 14 days of repeated exposure of male Fischer 344 rats to doses of AA that range from one that is carcinogenic after lifetime exposure (2.5 mg/kg/d), an intermediate dose (10 mg/kg/d), and a high dose (50 mg/kg/d) that is neurotoxic for this exposure time. The endpoints selected include: serum levels of thyroid and pituitary hormones; target tissue expression of genes involved in hormone synthesis, release, and receptors; neurotransmitters in the CNS that affect hormone homeostasis; and histopathological evaluation of target tissues. These studies showed virtually no evidence for systematic alteration of the hypothalamic-pituitary-thyroid axis and do not support hormone dysregulation as a plausible mechanism for AA-induced thyroid cancer in the Fischer 344 rat. Specifically, there were no significant changes in: 1) mRNA levels in hypothalamus or pituitary for TRH, TSH, thyroid hormone receptor α and β, as well 10 other hormones or releasing factors; 2) mRNA levels in thyroid for thyroglobulin, thyroid peroxidase, sodium iodide symporter, or type I deiodinases; 3) serum TSH or T3 levels (T4 was decreased at high dose only); 4) dopaminergic tone in the hypothalamus and pituitary or importantly 5) increased cell proliferation (Mki67 mRNA and Ki-67 protein levels were not increased) in thyroid or pituitary. These negative findings are consistent with a genotoxic mechanism of AA carcinogenicity based on metabolism to glycidamide and DNA adduct formation. Clarification of this mechanistic dichotomy may be useful in human cancer risk

  10. Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic-pituitary-adrenal axis and other consequences of daily repeated stress.

    Science.gov (United States)

    Rabasa, Cristina; Pastor-Ciurana, Jordi; Delgado-Morales, Raúl; Gómez-Román, Almudena; Carrasco, Javier; Gagliano, Humberto; García-Gutiérrez, María S; Manzanares, Jorge; Armario, Antonio

    2015-08-01

    There is evidence that endogenous cannabinoids (eCBs) play a role in the control of the hypothalamic-pituitary-adrenal (HPA) axis, although they appear to have dual, stimulatory and inhibitory, effects. Recent data in rats suggest that eCBs, acting through CB1 receptors (CB1R), may be involved in adaptation of the HPA axis to daily repeated stress. In the present study we analyze this issue in male mice and rats. Using a knock-out mice for the CB1 receptor (CB1-/-) we showed that mutant mice presented similar adrenocorticotropic hormone (ACTH) response to the first IMO as wild-type mice. Daily repeated exposure to 1h of immobilization reduced the ACTH response to the stressor, regardless of the genotype, demonstrating that adaptation occurred to the same extent in absence of CB1R. Prototypical changes observed after repeated stress such as enhanced corticotropin releasing factor (CRH) gene expression in the paraventricular nucleus of the hypothalamus, impaired body weight gain and reduced thymus weight were similarly observed in both genotypes. The lack of effect of CB1R in the expression of HPA adaptation to another similar stressor (restraint) was confirmed in wild-type CD1 mice by the lack of effect of the CB1R antagonist AM251 just before the last exposure to stress. Finally, the latter drug did not blunt the HPA, glucose and behavioral adaptation to daily repeated forced swim in rats. Thus, the present results indicate that CB1R is not critical for overall effects of daily repeated stress or proper adaptation of the HPA axis in mice and rats. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  11. The pituitary gland of the European eel reveals massive expression of genes involved in the melanocortin system.

    Directory of Open Access Journals (Sweden)

    Eirill Ager-Wick

    Full Text Available Hormones secreted from the pituitary gland regulate important processes such as development, growth and metabolism, reproduction, water balance, and body pigmentation. Synthesis and secretion of pituitary hormones are regulated by different factors from the hypothalamus, but also through feedback mechanisms from peripheral organs, and from the pituitary itself. In the European eel extensive attention has been directed towards understanding the different components of the brain-pituitary-gonad axis, but little is known about the regulation of upstream processes in the pituitary gland. In order to gain a broader mechanistic understanding of the eel pituitary gland, we have performed RNA-seq transcriptome profiling of the pituitary of prepubertal female silver eels. RNA-seq reads generated on the Illumina platform were mapped to the recently assembled European eel genome. The most abundant transcript in the eel pituitary codes for pro-opiomelanocortin, the precursor for hormones of the melanocortin system. Several genes putatively involved in downstream processing of pro-opiomelanocortin were manually annotated, and were found to be highly expressed, both by RNA-seq and by qPCR. The melanocortin system, which affects skin color, energy homeostasis and in other teleosts interacts with the reproductive system, has so far received limited attention in eels. However, since up to one third of the silver eel pituitary's mRNA pool encodes pro-opiomelanocortin, our results indicate that control of the melanocortin system is a major function of the eel pituitary.

  12. In vivo and in vitro effects of chromium VI on anterior pituitary hormone release and cell viability

    International Nuclear Information System (INIS)

    Quinteros, Fernanda A.; Poliandri, Ariel H.B.; Machiavelli, Leticia I.; Cabilla, Jimena P.; Duvilanski, Beatriz H.

    2007-01-01

    Hexavalent chromium (Cr VI) is a highly toxic metal and an environmental pollutant. Different studies indicate that Cr VI exposure adversely affects reproductive functions. This metal has been shown to affect several tissues and organs but Cr VI effects on pituitary gland have not been reported. Anterior pituitary hormones are central for the body homeostasis and have a fundamental role in reproductive physiology. The aim of this study was to evaluate the effect of Cr VI at the pituitary level both in vivo and in vitro. We showed that Cr VI accumulates in the pituitary and hypothalamus, and decreases serum prolactin levels in vivo but observed no effects on LH levels. In anterior pituitary cells in culture, the effect of Cr VI on hormone secretion followed the same differential pattern. Besides, lactotrophs were more sensitive to the toxicity of the metal. As a result of oxidative stress generation, Cr VI induced apoptosis evidenced by nuclear fragmentation and caspase 3 activation. Our results indicate that the anterior pituitary gland can be a target of Cr VI toxicity in vivo and in vitro, thus producing a negative impact on the hypothalamic-pituitary-gonadal axis and affecting the normal endocrine function

  13. In vivo and in vitro effects of chromium VI on anterior pituitary hormone release and cell viability.

    Science.gov (United States)

    Quinteros, Fernanda A; Poliandri, Ariel H B; Machiavelli, Leticia I; Cabilla, Jimena P; Duvilanski, Beatriz H

    2007-01-01

    Hexavalent chromium (Cr VI) is a highly toxic metal and an environmental pollutant. Different studies indicate that Cr VI exposure adversely affects reproductive functions. This metal has been shown to affect several tissues and organs but Cr VI effects on pituitary gland have not been reported. Anterior pituitary hormones are central for the body homeostasis and have a fundamental role in reproductive physiology. The aim of this study was to evaluate the effect of Cr VI at the pituitary level both in vivo and in vitro. We showed that Cr VI accumulates in the pituitary and hypothalamus, and decreases serum prolactin levels in vivo but observed no effects on LH levels. In anterior pituitary cells in culture, the effect of Cr VI on hormone secretion followed the same differential pattern. Besides, lactotrophs were more sensitive to the toxicity of the metal. As a result of oxidative stress generation, Cr VI induced apoptosis evidenced by nuclear fragmentation and caspase 3 activation. Our results indicate that the anterior pituitary gland can be a target of Cr VI toxicity in vivo and in vitro, thus producing a negative impact on the hypothalamic-pituitary-gonadal axis and affecting the normal endocrine function.

  14. Age Dependent Hypothalamic and Pituitary Responses to Novel Environment Stress or Lipopolysaccharide in Rats

    Directory of Open Access Journals (Sweden)

    Sandy Koenig

    2018-03-01

    Full Text Available Previously, we have shown that the transcription factor nuclear factor interleukin (NF-IL6 can be used as an activation marker for inflammatory lipopolysaccharide (LPS-induced and psychological novel environment stress (NES in the rat brain. Here, we aimed to investigate age dependent changes of hypothalamic and pituitary responses to NES (cage switch or LPS (100 μg/kg in 2 and 24 months old rats. Animals were sacrificed at specific time points, blood and brains withdrawn and analyzed using immunohistochemistry, RT-PCR and bioassays. In the old rats, telemetric recording revealed that NES-induced hyperthermia was enhanced and prolonged compared to the young group. Plasma IL-6 levels remained unchanged and hypothalamic IL-6 mRNA expression was increased in the old rats. Interestingly, this response was accompanied by a significant upregulation of corticotropin-releasing hormone mRNA expression only in young rats after NES and overall higher plasma corticosterone levels in all aged animals. Immunohistochemical analysis revealed a significant upregulation of NF-IL6-positive cells in the pituitary after NES or LPS-injection. In another important brain structure implicated in immune-to-brain communication, namely, in the median eminence (ME, NF-IL6-immunoreactivity was increased in aged animals, while the young group showed just minor activation after LPS-stimulation. Interestingly, we found a higher amount of NF-IL6-CD68-positive cells in the posterior pituitary of old rats compared to the young counterparts. Moreover, aging affected the regulation of cytokine interaction in the anterior pituitary lobe. LPS-treatment significantly enhanced the secretion of the cytokines IL-6 and TNFα into supernatants of primary cell cultures of the anterior pituitary. Furthermore, in the young rats, incubation with IL-6 and IL-10 antibodies before LPS-stimulation led to a robust decrease of IL-6 production and an increase of TNFα production by the pituitary

  15. Transcription of key genes regulating gonadal steroidogenesis in control and ketoconazole- or vinclozolin-exposed fathead minnows

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, Daniel L.; Blake, Lindsey S.; Brodin, Jeffrey; Greene, Katie J.; Knoebl, Iris; Miracle, Ann L.; Martinovic, Dalma; Ankley, Gerald T.

    2007-08-01

    This study evaluated changes in the expression of steroidogenesis-related genes in male fathead minnows exposed to ketoconazole (KTC) or vinclozolin (VZ) for 21 days. The aim was to evaluate links between molecular changes and higher level outcomes after exposure to endocrine-active chemicals (EACs) with different modes of action. To aid our analysis and interpretation of EAC-related effects, we first examined variation in the relative abundance of steroidogenesis-related gene transcripts in the gonads of male and female fathead minnows as a function of age, gonad development, and spawning status, independent of EAC exposure. Gonadal expression of several genes varied with age and/or gonadal somatic index in either males or females. However, with the exception of aromatase, steroidogenesis-related gene expression did not vary with spawning status. Following the baseline experiments, expression of the selected genes in male fathead minnows exposed to KTC or VZ was evaluated in the context of effects observed at higher levels of organization. Exposure to KTC elicited changes in gene transcription that were consistent with an apparent compensatory response to the chemical's anticipated direct inhibition of steroidogenic enzyme activity. Exposure to VZ, an antiandrogen expected to indirectly impact steroidogenesis, increased pituitary expression of follicle-stimulating hormone beta-subunit as well as testis expression of 20beta-hydroxysteroid dehydrogenase and luteinizing hormone receptor transcripts. Results of this study contribute to ongoing research aimed at understanding responses of the teleost hypothalamic-pituitary-gonadal axis to different types of EACs and how changes in molecular endpoints translate into apical outcomes reflective of either adverse effect or compensation.

  16. Volume of the adrenal and pituitary glands in depression

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Willer, Inge Stoel; Knorr, Ulla

    2011-01-01

    Numerous studies have shown that the hypothalamic-pituitary-adrenal (HPA) axis is hyperactive in some depressed patients. It is unclear whether such hyperactivity results in changed volumes of the adrenal glands, pituitary gland and hypothalamus. We systematically reviewed all controlled studies ...

  17. Paternal preconception ethanol exposure blunts hypothalamic-pituitary-adrenal axis responsivity and stress-induced excessive fluid intake in male mice.

    Science.gov (United States)

    Rompala, Gregory R; Finegersh, Andrey; Homanics, Gregg E

    2016-06-01

    A growing number of environmental insults have been shown to induce epigenetic effects that persist across generations. For instance, paternal preconception exposures to ethanol or stress have independently been shown to exert such intergenerational effects. Since ethanol exposure is a physiological stressor that activates the hypothalamic-pituitary-adrenal (HPA) axis, we hypothesized that paternal ethanol exposure would impact stress responsivity of offspring. Adult male mice were exposed to chronic intermittent vapor ethanol or control conditions for 5 weeks before being mated with ethanol-naïve females to produce ethanol (E)- and control (C)-sired offspring. Adult male and female offspring were tested for plasma corticosterone (CORT) levels following acute restraint stress and the male offspring were further examined for stress-evoked 2-bottle choice ethanol-drinking. Paternal ethanol exposure blunted plasma CORT levels following acute restraint stress selectively in male offspring; females were unaffected. In a stress-evoked ethanol-drinking assay, there was no effect of stress on ethanol consumption. However, C-sired males exhibited increased total fluid intake (polydipsia) in response to stress while E-sired males were resistant to this stress-induced phenotype. Taken together, these data suggest that paternal ethanol exposure imparts stress hyporesponsivity to male offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Sox21 deletion in mice causes postnatal growth deficiency without physiological disruption of hypothalamic-pituitary endocrine axes.

    Science.gov (United States)

    Cheung, Leonard Y M; Okano, Hideyuki; Camper, Sally A

    2017-01-05

    The hypothalamic-pituitary axes are the coordinating centers for multiple endocrine gland functions and physiological processes. Defects in the hypothalamus or pituitary gland can cause reduced growth and severe short stature, affecting approximately 1 in 4000 children, and a large percentage of cases of pituitary hormone deficiencies do not have an identified genetic cause. SOX21 is a protein that regulates hair, neural, and trophoblast stem cell differentiation. Mice lacking Sox21 have reduced growth, but the etiology of this growth defect has not been described. We studied the expression of Sox21 in hypothalamic-pituitary development and examined multiple endocrine axes in these mice. We find no evidence of reduced intrauterine growth, food intake, or physical activity, but there is evidence for increased energy expenditure in mutants. In addition, despite changes in pituitary hormone expression, hypothalamic-pituitary axes appear to be functional. Therefore, SOX21 variants may be a cause of non-endocrine short stature in humans. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Chlorella vulgaris reduces the impact of stress on hypothalamic-pituitary-adrenal axis and brain c-fos expression.

    Science.gov (United States)

    Souza Queiroz, Julia; Marín Blasco, Ignacio; Gagliano, Humberto; Daviu, Nuria; Gómez Román, Almudena; Belda, Xavier; Carrasco, Javier; Rocha, Michelle C; Palermo Neto, João; Armario, Antonio

    2016-03-01

    Predominantly emotional stressors activate a wide range of brain areas, as revealed by the expression of immediate early genes, such as c-fos. Chlorella vulgaris (CV) is considered a biological response modifier, as demonstrated by its protective activities against infections, tumors and stress. We evaluated the effect of acute pretreatment with CV on the peripheral and central responses to forced swimming stress in adult male rats. Pretreatment with CV produced a significant reduction of stress-related hypothalamic-pituitary-adrenal activation, demonstrated by decreased corticotrophin releasing factor gene expression in the hypothalamic paraventricular nucleus (PVN) and lower ACTH response. Hyperglycemia induced by the stressor was similarly reduced. This attenuated neuroendocrine response to stress occurred in parallel with a diminished c-fos expression in most evaluated areas, including the PVN. The data presented in this study reinforce the usefulness of CV to diminish the impact of stressors, by reducing the HPA response. Although our results suggest a central effect of CV, further studies are necessary to understand the precise mechanisms underpinning this effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Simultaneous analysis of thirteen endogenous steroid hormones by liquid chromatography tandem mass spectrometry with atmospheric pressure photoionization

    Science.gov (United States)

    Exposure to endocrine active chemicals can lead to perturbations of the hypothalamic-pituitary-gonadal (HPG) axis, ultimately leading to adverse reproductive effects. To evaluate potential reproductive effects, many aquatic toxicity assessments still rely on radioimmunoassay (RIA...

  1. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat

    Science.gov (United States)

    Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relationships to gonadal alterations are unknown. We characterized hormone profiles and adrenal (intact and castrate) and te...

  2. Investigation of adaptive responses in fathead minnows (Pimephales promelas) exposed to the model aromatase inhibitor fadrozole

    Science.gov (United States)

    The vertebrate hypothalamic-pituitary-gonadal (HPG) axis is a highly dynamic system, which, through various feedback mechanisms, strives to maintain physiological conditions conducive to reproduction even in potentially stressful situations. The development of useful predictive m...

  3. Hair cortisol as a marker of hypothalamic-pituitary-adrenal Axis activity in female patients with major depressive disorder.

    Science.gov (United States)

    Pochigaeva, Ksenia; Druzhkova, Tatiana; Yakovlev, Alexander; Onufriev, Mikhail; Grishkina, Maria; Chepelev, Aleksey; Guekht, Alla; Gulyaeva, Natalia

    2017-04-01

    Hair cortisol is regarded as a promising marker of hypothalamic-pituitary-adrenal axis (HPAA) activity alterations due to stress, somatic and mental health conditions. Hair cortisol was previously reported to be elevated in patients with depression, however the data related to remission and recurrent depressive episodes are different. In this study, levels of hair cortisol were assessed in female patients with major depressive disorder (MDD) and the validity of hair cortisol as a marker of HPAA activity in this condition was evaluated. Hair cortisol was measured in 1 cm hair segments of 21 female patients with MDD and 22 female age-matched controls using enzyme-immunoassay analysis. Concurrently, serum cortisol was assessed and psychological status was evaluated using 17-item Hamilton Depression Rating Scale (HAMD-17), Beck Depression Inventory (BDI) and the Spielberger state trait anxiety inventory (STAI). The levels of hair cortisol were significantly lower in the MDD group, while serum cortisol levels were significantly higher in patients, as compared with controls. A significant negative correlation was found between HAMD-17 scores and hair cortisol. Decreased hair cortisol found in female patients with MDD as compared to controls suggests downregulation of HPAA activity during the preceding month. Further studies are needed to investigate the profiles of hair cortisol at different stages of depressive disorder to establish this parameter as a handy clinical tool.

  4. Use of the Dexamethasone-Corticotrophin Releasing Hormone Test to Assess Hypothalamic-Pituitary-Adrenal Axis Function in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Eman A. Hasan

    2009-01-01

    Full Text Available Objectives. Hypothalamic-Pituitary-Adrenal axis function may be abnormal in rheumatoid arthritis (RA. A pilot study in 7 patients suggested impaired glucocorticoid feedback in some patients after the dexamethasone-corticotrophin releasing hormone (CRH test. This study aimed to investigate the dexamethasone-corticotrophin releasing factor test in a larger group of patients and relate the results to characteristics of the disease. Methods. Outpatients with active RA (≥3 swollen and tender joints and C-reactive protein > 10 mg/L took dexamethasone (1.5 mg at 23:00 hour in the evening. Next day, baseline saliva and plasma samples were collected, CRH was infused at 11:00 hour, and 4 serial blood and saliva samples were collected. Plasma samples were stored at −80∘C and a radioimmunoassay performed for saliva and plasma cortisol. Results. All 20 participants showed normal dexamethasone suppression and mounted no response to the CRH challenge. In samples with measurable cortisol, there was a strong correlation between saliva and plasma values (r = 0.876, n = 26, P<.01. Conclusion. No abnormalities were found in the Dexamethasone-CRH test in RA patients in contrast to a previous pilot study. Salivary cortisol measurement may offer an alternative noninvasive technique to plasma cortisol in RA patients in future studies.

  5. The Complex Biology of the Aryl Hydrocarbon Receptor and Its Role in the Pituitary Gland.

    Science.gov (United States)

    Formosa, Robert; Vassallo, Josanne

    2017-08-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor best known for its ability to mediate the effects of environmental toxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin), polycyclic aromatic hydrocarbons (PAHs), benzene, and polychlorinated biphenyls (PCBs) through the initiation of transcription of a number of metabolically active enzymes. Therefore, the AHR has been studied mostly in the context of xenobiotic signaling. However, several studies have shown that the AHR is constitutively active and plays an important role in general cell physiology, independently of its activity as a xenobiotic receptor and in the absence of exogenous ligands. Within the pituitary, activation of the AHR by environmental toxins has been implicated in disruption of gonadal development and fertility. Studies carried out predominantly in mouse models have revealed the detrimental influence of several environmental toxins on specific cell lineages of the pituitary tissue mediated by activation of AHR and its downstream effectors. Activation of AHR during fetal development adversely affected pituitary development while adult models exposed to AHR ligands demonstrated varying degrees of pituitary dysfunction. Such dysfunction may arise as a result of direct effects on pituitary cells or indirect effects on the hypothalamic-pituitary-gonadal axis. This review offers in-depth analysis of all aspects of AHR biology, with a particular focus on its role and activity within the adenohypophysis and specifically in pituitary tumorigenesis. A novel mechanism by which the AHR may play a direct role in pituitary cell proliferation and tumor formation is postulated. This review therefore attempts to cover all aspects of the AHR's role in the pituitary tissue, from fetal development to adult physiology and the pathophysiology underlying endocrine disruption and pituitary tumorigenesis.

  6. Pituitary Volume Prospectively Predicts Internalizing Symptoms in Adolescence

    Science.gov (United States)

    Zipursky, Amy R.; Whittle, Sarah; Yucel, Murat; Lorenzetti, Valentina; Wood, Stephen J.; Lubman, Dan I.; Simmons, Julian G.; Allen, Nicholas B.

    2011-01-01

    Background: Early adolescence is a critical time for the development of both internalizing and externalizing disorders. We aimed to investigate whether pituitary volume, an index of hypothalamic-pituitary-adrenal (HPA) axis function, represents a vulnerability factor for the emergence of internalizing and externalizing symptoms during adolescence…

  7. High normal testosterone levels in infants with non-mosaic Klinefelter's syndrome

    DEFF Research Database (Denmark)

    Aksglaede, Lise; Petersen, Jørgen H; Main, Katharina M

    2007-01-01

    Klinefelter's syndrome (KS) is associated with hypergonadotrophic hypogonadism in adulthood. However, limited information exists about the age at which hypogonadism occurs. The hypothalamic-pituitary-gonadal (HPG) axis is transiently activated during the first months of life, offering...

  8. Assessment of wastewater treatment plant effluent effects on fish reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  9. Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The presen...

  10. The Use of MS-based Metabolomics to Determine Markers Associated with Endocrine Disruption in Small Fish Species

    Science.gov (United States)

    Endocrine disrupting chemicals (EDCs) are exogenous substances that disrupt the physiological function of endogenous hormones. In fish, these xenobiotics are capable of interfering with the dynamic equilibrium of the hypothalamic-pituitary-gonadal (HPG) axis resulting in adverse ...

  11. Functional hypothalamic amenorrhea due to increased CRH tone in melanocortin receptor 2-deficient mice.

    Science.gov (United States)

    Matsuwaki, Takashi; Nishihara, Masugi; Sato, Tsuyoshi; Yoda, Tetsuya; Iwakura, Yoichiro; Chida, Dai

    2010-11-01

    Exposure to chronic stressors results in dysregulation of the hypothalamic-pituitary-adrenal axis and a disruption in reproduction. CRH, the principal regulator of the hypothalamic-pituitary-adrenal axis induces the secretion of ACTH from the pituitary, which stimulates adrenal steroidogenesis via the specific cell-surface melanocortin 2 receptor (MC2R). Previously, we demonstrated that MC2R(-/-) mice had undetectable levels of corticosterone despite high ACTH levels. Here, we evaluated the reproductive functions of female MC2R(-/-) mice and analyzed the mechanism of the disrupted cyclicity of these mice. The expression of CRH in the paraventricular nucleus was significantly increased in MC2R(-/-) mice under nonstressed conditions. Although MC2R(-/-) females were fertile, they showed a prolonged estrous cycle. After hormonal stimulation, MC2R(-/-) females produced nearly-normal numbers of eggs, but slightly less than MC2R(+/-) females, and showed near-normal ovarian histology. During diestrus, the number of GnRH-positive cells in the medial preoptic area was significantly reduced in MC2R(-/-) females. CRH type 1 receptor antagonist restored estrous cyclicity in MC2R(-/-) females. Kisspeptin-positive areas in the arcuate nucleus were comparable, whereas kisspeptin-positive areas in the anteroventral periventricular nucleus in MC2R(-/-) females were significantly reduced compared with MC2R(+/-) females, suggesting that arcuate nucleus kisspeptin is not involved, but anteroventral periventricular nucleus kisspeptin may be involved, in the maintenance of estrous cyclicity. Our findings show that high levels of hypothalamic CRH disturb estrous cyclicity in the female animals and that the MC2R(-/-) female is a unique animal model of functional hypothalamic amenorrhea.

  12. Effects of early childhood trauma on hypothalamic-pituitary-adrenal (HPA) axis function in patients with Chronic Fatigue Syndrome.

    Science.gov (United States)

    Kempke, Stefan; Luyten, Patrick; De Coninck, Sarah; Van Houdenhove, Boudewijn; Mayes, Linda C; Claes, Stephan

    2015-02-01

    There is a paucity of studies that have investigated the assumption that early childhood trauma is associated with hypothalamic-pituitary-adrenal (HPA) axis dysfunction in Chronic Fatigue Syndrome (CFS). The current study is the first to simultaneously investigate relationships among early childhood trauma, cortisol activity, and cortisol stress reactivity to psychosocial stress in a sample of well-screened CFS patients. We also examined whether self-critical perfectionism (SCP) plays a mediating role in the potential relationship between early trauma and neurobiological stress responses. A total of 40 female patients diagnosed with CFS were asked to provide morning saliva cortisol samples (after awakening, 30min later, and 1h later) for seven consecutive days as a measure of cortisol activity. In addition, patients were exposed to the Trier Social Stress Test, a well-validated stress test, to investigate the relationship between early childhood trauma and cortisol stress reactivity. Before the start of the study, patients completed the Childhood Trauma Questionnaire-Short form (CTQ-SF) as a measure of early childhood trauma (i.e. sexual, physical and emotional traumatic experiences). SCP was measured with the Depressive Experiences Questionnaire (DEQ). Data were analyzed by calculating several indices of cortisol secretion (i.e. Cortisol Awakening Response and Area Under the Curve). There was no association between early childhood trauma and cortisol as measured over the 7-day period. However, emotional neglect was significantly negatively related to cortisol reactivity in the TSST. SCP did not significantly mediate this association. Findings of this study suggest that emotional neglect is associated with blunted HPA axis reactivity, congruent with the assumption that CFS may reflect loss of adaptability of the neuroendocrine stress response system in at least a subgroup of patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Association of IL-6, hypothalamus-pituitary-adrenal axis function, and depression in patients with cancer.

    Science.gov (United States)

    Jehn, Christian Friedrich; Kühnhardt, Dagmar; Bartholomae, Andrea; Pfeiffer, Sebastian; Schmid, Peter; Possinger, Kurt; Flath, Bernd Christian; Lüftner, Diana

    2010-09-01

    Evidence suggests that cytokines (IL-6) and alteration of the hypothalamic-pituitary-adrenal (HPA) axis play a crucial role in the etiology of depression. Patients with cancer show elevated prevalence rates for depression. The objective of this cross-sectional study was to investigate the associations between these abnormalities and depression. Plasma concentrations of IL-6 and cortisol were measured in cancer patients with (N = 31) and without depression (N = 83). The relative diurnal variation of cortisol (cortisol VAR), expressed in percentage, was calculated. There was a significant difference in median plasma concentration of IL-6 between the patients with depression and those without (18.7 vs 2.7 pg/mL; P cancer is associated with increased plasma IL-6 concentrations and dysfunction of the HPA axis.

  14. A hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion.

    Science.gov (United States)

    Xu, D; Wu, Y; Liu, F; Liu, Y S; Shen, L; Lei, Y Y; Liu, J; Ping, J; Qin, J; Zhang, C; Chen, L B; Magdalou, J; Wang, H

    2012-11-01

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic-pituitary-adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Kisspeptin stimulates growth hormone release by utilizing Neuropeptide Y pathways and is dependent on the presence of ghrelin

    Science.gov (United States)

    Although kisspeptin is the primary stimulator of gonadotropin releasing hormone secretion and therefore the hypothalamic-pituitary gonadal axis, new findings suggest kisspeptin can also regulate additional neuroendocrine processes including release of growth hormone (GH). Central delivery of kisspep...

  16. Ameliorative effect of combined melatonin and vitamin C on ...

    African Journals Online (AJOL)

    Conclusion: Cannabis causes downregulation of hypothalamic-pituitary-gonadal axis, endocrine disruption, and hyperprolactinemia. These effects (except hyperprolactinemia) could be reversed by melatonin and vitamin C only when combined but not when administered separately. Keywords: Cannabis sativa; Endocrine ...

  17. Prenatal bisphenol a exposure and dysregulation of infant hypothalamic-pituitary-adrenal axis function: findings from the APrON cohort study.

    Science.gov (United States)

    Giesbrecht, Gerald F; Ejaredar, Maede; Liu, Jiaying; Thomas, Jenna; Letourneau, Nicole; Campbell, Tavis; Martin, Jonathan W; Dewey, Deborah

    2017-05-19

    Animal models show that prenatal bisphenol A (BPA) exposure leads to sexually dimorphic disruption of the neuroendocrine system in offspring, including the hypothalamic-pituitary-adrenal (HPA) neuroendocrine system, but human data are lacking. In humans, prenatal BPA exposure is associated with sex-specific behavioural problems in children, and HPA axis dysregulation may be a biological mechanism. The objective of the current study was to examine sex differences in associations between prenatal maternal urinary BPA concentration and HPA axis function in 3 month old infants. Mother-infant pairs (n = 132) were part of the Alberta Pregnancy Outcomes and Nutrition study, a longitudinal birth cohort recruited (2010-2012) during pregnancy. Maternal spot urine samples collected during the 2nd trimester were analyzed for total BPA and creatinine. Infant saliva samples collected prior to and after a blood draw were analyzed for cortisol. Linear growth curve models were used to characterize changes in infant cortisol as a function of prenatal BPA exposure. Higher maternal BPA was associated with increases in baseline cortisol among females (β = 0.13 log μg/dL; 95% CI: 0.01, 0.26), but decreases among males (β = -0.22 log μg/dL; 95% CI: -0.39, -0.05). In contrast, higher BPA was associated with increased reactivity in males (β = .30 log μg/dL; 95% CI: 0.04, 0.56) but decreased reactivity in females (β = -0.15 log μg/dL; 95% CI: -0.35, 0.05). Models adjusting for creatinine yielded similar results. Prenatal BPA exposure is associated with sex-specific changes in infant HPA axis function. The biological plausibility of these findings is supported by their consistency with evidence in rodent models. Furthermore, these data support the hypotheses that sexually dimorphic changes in children's behaviour following prenatal BPA exposure are mediated by sexually dimorphic changes in HPA axis function.

  18. Timing of prenatal exposure to trauma and altered placental expressions of hypothalamic-pituitary-adrenal axis genes and genes driving neurodevelopment.

    Science.gov (United States)

    Zhang, W; Li, Q; Deyssenroth, M; Lambertini, L; Finik, J; Ham, J; Huang, Y; Tsuchiya, K J; Pehme, P; Buthmann, J; Yoshida, S; Chen, J; Nomura, Y

    2018-04-01

    Prenatal maternal stress increases the risk for negative developmental outcomes in offspring; however, the underlying biological mechanisms remain largely unexplored. In the present study, alterations in placental gene expression associated with maternal stress were examined to clarify the potential underlying epi/genetic mechanisms. Expression levels of 40 selected genes involved in regulating foetal hypothalamic-pituitary-adrenal axis and neurodevelopment were profiled in placental tissues collected from a birth cohort established around the time of Superstorm Sandy. Objective prenatal traumatic stress was defined as whether mothers were exposed to Superstorm Sandy during pregnancy. Among the 275 mother-infant dyads, 181 dyads were delivered before Superstorm Sandy (ie, Control), 66 dyads were exposed to Superstorm Sandy during the first trimester (ie, Early Exposure) and 28 were exposed to Superstorm Sandy during the second or third trimester (ie, Mid-Late Exposure). Across all trimesters, expression of HSD11B2, MAOA, ZNF507 and DYRK1A was down-regulated among those exposed to Superstorm Sandy during pregnancy. Furthermore, trimester-specific differences were also observed: exposure during early gestation was associated with down-regulation of HSD11B1 and MAOB and up-regulation of CRHBP; exposure during mid-late gestation was associated with up-regulation of SRD5A3. The findings of the present study suggest that placental gene expression may be altered in response to traumatic stress exposure during pregnancy, and the susceptibility of these genes is dependent on the time of the exposure during pregnancy. Further studies should aim to clarify the biological mechanisms that underlie trimester-specific exposure by evaluating the differential impact on offspring neurodevelopment later in childhood. © 2018 British Society for Neuroendocrinology.

  19. Effects of the insecticide fipronil on reproductive endocrinology in the fathead minnow

    Science.gov (United States)

    Gamma aminobutyric acid (GABA) and GABA receptors play an important role in neuroendocrine regulation in fish. Disruption of the GABAergic system by environmental contaminants could interfere with normal regulation of the hypothalamic pituitary gonadal (HPG) axis, leading to imp...

  20. Cross-species Extrapolation of EDC Toxicity: Consequences for Screening Programs

    Science.gov (United States)

    Many structural and functional aspects of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis are known to be highly conserved, but the full significance of this from a toxicological perspective has received comparatively little attention. High-quality data generated through...

  1. Cross-Species Conservation of Endocrine Pathways: A Critical Analysis of Tier 1 Fish and Rat Screening Assays with 12 Model Chemicals

    Science.gov (United States)

    Many structural and functional aspects of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis are known to be highly conserved, but the full significance of this from a toxicological perspective has received comparatively little attention. High-quality data generated throug...

  2. Cross-species conservation of endocrine pathways provides a basis for reevaluation of EDSP tiered testing paradigm

    Science.gov (United States)

    Many structural and functional aspects of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis are known to be highly conserved, but the relative significance of this from a regulatory toxicology perspective has received comparatively little attention. High-quality data gene...

  3. High normal testosterone levels in infants with non-mosaic Klinefelter's syndrome

    DEFF Research Database (Denmark)

    Aksglaede, Lise; Petersen, Jørgen H; Main, Katharina M

    2007-01-01

    Klinefelter's syndrome (KS) is associated with hypergonadotrophic hypogonadism in adulthood. However, limited information exists about the age at which hypogonadism occurs. The hypothalamic-pituitary-gonadal (HPG) axis is transiently activated during the first months of life, offering the opportu...

  4. Assessment of the role of intracranial hypertension and stress on hippocampal cell apoptosis and hypothalamic-pituitary dysfunction after TBI.

    Science.gov (United States)

    Tan, Huajun; Yang, Weijian; Wu, Chenggang; Liu, Baolong; Lu, Hao; Wang, Hong; Yan, Hua

    2017-06-19

    In recent years, hypopituitarism caused by traumatic brain injury (TBI) has been explored in many clinical studies; however, few studies have focused on intracranial hypertension and stress caused by TBI. In this study, an intracranial hypertension model, with epidural hematoma as the cause, was used to explore the physiopathological and neuroendocrine changes in the hypothalamic-pituitary axis and hippocampus. The results demonstrated that intracranial hypertension increased the apoptosis rate, caspase-3 levels and proliferating cell nuclear antigen (PCNA) in the hippocampus, hypothalamus, pituitary gland and showed a consistent rate of apoptosis within each group. The apoptosis rates of hippocampus, hypothalamus and pituitary gland were further increased when intracranial pressure (ICP) at 24 hour (h) were still increased. The change rates of apoptosis in hypothalamus and pituitary gland were significantly higher than hippocampus. Moreover, the stress caused by surgery may be a crucial factor in apoptosis. To confirm stress leads to apoptosis in the hypothalamus and pituitary gland, we used rabbits to establish a standard stress model. The results confirmed that stress leads to apoptosis of neuroendocrine cells in the hypothalamus and pituitary gland, moreover, the higher the stress intensity, the higher the apoptosis rate in the hypothalamus and pituitary gland.

  5. Intermittent fasting dietary restriction regimen negatively influences reproduction in young rats: a study of hypothalamo-hypophysial-gonadal axis.

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    Full Text Available Nutritional infertility is very common in societies where women fail to eat enough to match their energy expenditure and such females often present as clinical cases of anorexia nervosa. The cellular and molecular mechanisms that link energy balance and central regulation of reproduction are still not well understood. Peripheral hormones such as estradiol, testosterone and leptin, as well as neuropeptides like kisspeptin and neuropeptides Y (NPY play a potential role in regulation of reproduction and energy balance with their primary target converging on the hypothalamic median eminence-arcuate region. The present study was aimed to explore the effects of negative energy state resulting from intermittent fasting dietary restriction (IF-DR regimen on complete hypothalamo-hypophysial-gonadal axis in Wistar strain young female and male rats. Significant changes in body weight, blood glucose, estrous cyclicity and serum estradiol, testosterone and LH level indicated the negative role of IF-DR regimen on reproduction in these young animals. Further, it was elucidated whether serum level of metabolic hormone, leptin plays a mechanistic role in suppressing hypothalamo-hypophysial-gonadal (HPG axis via energy regulators, kisspeptin and NPY in rats on IF-DR regimen. We also studied the effect of IF-DR regimen on structural remodeling of GnRH axon terminals in median eminence region of hypothalamus along with the glial cell marker, GFAP and neuronal plasticity marker, PSA-NCAM using immunostaining, Western blotting and RT-PCR. Together these data suggest that IF-DR regimen negatively influences reproduction in young animals due to its adverse effects on complete hypothalamus-hypophysial-gonadal axis and may explain underlying mechanism(s to understand the clinical basis of nutritional infertility.

  6. Intermittent fasting dietary restriction regimen negatively influences reproduction in young rats: a study of hypothalamo-hypophysial-gonadal axis.

    Science.gov (United States)

    Kumar, Sushil; Kaur, Gurcharan

    2013-01-01

    Nutritional infertility is very common in societies where women fail to eat enough to match their energy expenditure and such females often present as clinical cases of anorexia nervosa. The cellular and molecular mechanisms that link energy balance and central regulation of reproduction are still not well understood. Peripheral hormones such as estradiol, testosterone and leptin, as well as neuropeptides like kisspeptin and neuropeptides Y (NPY) play a potential role in regulation of reproduction and energy balance with their primary target converging on the hypothalamic median eminence-arcuate region. The present study was aimed to explore the effects of negative energy state resulting from intermittent fasting dietary restriction (IF-DR) regimen on complete hypothalamo-hypophysial-gonadal axis in Wistar strain young female and male rats. Significant changes in body weight, blood glucose, estrous cyclicity and serum estradiol, testosterone and LH level indicated the negative role of IF-DR regimen on reproduction in these young animals. Further, it was elucidated whether serum level of metabolic hormone, leptin plays a mechanistic role in suppressing hypothalamo-hypophysial-gonadal (HPG) axis via energy regulators, kisspeptin and NPY in rats on IF-DR regimen. We also studied the effect of IF-DR regimen on structural remodeling of GnRH axon terminals in median eminence region of hypothalamus along with the glial cell marker, GFAP and neuronal plasticity marker, PSA-NCAM using immunostaining, Western blotting and RT-PCR. Together these data suggest that IF-DR regimen negatively influences reproduction in young animals due to its adverse effects on complete hypothalamus-hypophysial-gonadal axis and may explain underlying mechanism(s) to understand the clinical basis of nutritional infertility.

  7. Lithium attenuated the depressant and anxiogenic effect of juvenile social stress through mitigating the negative impact of interlukin-1β and nitric oxide on hypothalamic-pituitary-adrenal axis function.

    Science.gov (United States)

    Haj-Mirzaian, A; Amiri, S; Kordjazy, N; Momeny, M; Razmi, A; Rahimi-Balaei, M; Amini-Khoei, H; Haj-Mirzaian, A; Marzban, H; Mehr, S E; Ghaffari, S H; Dehpour, A R

    2016-02-19

    The neuroimmune-endocrine dysfunction has been accepted as one of fundamental mechanisms contributing to the pathophysiology of psychiatric disorders including depression and anxiety. In this study, we aimed to evaluate the involvement of hypothalamic-pituitary-adrenal (HPA) axis, interleukin-1β, and nitrergic system in mediating the negative behavioral impacts of juvenile social isolation stress (SIS) in male mice. We also investigated the possible protective effects of lithium on behavioral and neurochemical changes in socially isolated animals. Results showed that experiencing 4-weeks of juvenile SIS provoked depressive and anxiety-like behaviors that were associated with hyper responsiveness of HPA axis, upregulation of interleukin-1β, and nitric oxide (NO) overproduction in the pre-frontal cortex and hippocampus. Administration of lithium (10 mg/kg) significantly attenuated the depressant and anxiogenic effects of SIS in behavioral tests. Lithium also restored the negative effects of SIS on cortical and hippocampal interleukin-1β and NO as well as HPA axis deregulation. Unlike the neutralizing effects of l-arginine (NO precursor), administration of l-NAME (3 mg/kg) and aminoguanidine (20 mg/kg) potentiated the positive effects of lithium on the behavioral and neurochemical profile of isolated mice. In conclusion, our results revealed that juvenile SIS-induced behavioral deficits are associated with abnormalities in HPA-immune function. Also, we suggest that alleviating effects of lithium on behavioral profile of isolated mice may be partly mediated by mitigating the negative impact of NO on HPA-immune function. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Social hierarchy modulates responses of fish exposed to contaminants of emerging concern

    Science.gov (United States)

    Many organisms, including the fathead minnow (Pimephales promelas), a toxicological model organism, establish social hierarchies. The social rank of each male in a population is under the control of the hypothalamic-pituitary-gonadal (HPG) axis mainly through regulation of circul...

  9. Effects of Environmentally Relevant Concentrations of Bisphenol A on the Fathead Minnow

    Science.gov (United States)

    Bisphenol A (BPA) is a wide-spread environmental contaminant of concern due, in part, to possible effects on the vertebrate hypothalamic-pituitary-gonadal (HPG) axis, including activation of the estrogen receptor (ER). There is a reasonable amount of toxicological information fo...

  10. Use of Chemical Mixtures to Differentiate Mechanisms of Endocrine Action in a Small Fish Model

    Science.gov (United States)

    Various assays with adult fish have been developed to identify potential endocrine-disrupting chemicals (EDCs) which may cause toxicity via alterations in the hypothalamic-pituitary-gonadal (HPG) axis via different mechanisms/modes of action (MOA). These assays can be sensitive ...

  11. Effects of a Short-term Exposure to the Fungicide Prochloraz on Endocrine Function and Gene Expression in Female Fathead Minnows (Pimephales promelas)

    Science.gov (United States)

    Prochloraz is a fungicide known to cause endocrine disruption through effects on the hypothalamic-pituitary-gonadal (HPG) axis. To determine the short-term impacts of prochloraz on gene expression and steroid production, adult female fathead minnows (Pimephales promelas) were exp...

  12. Effects of oral megestrol acetate administration on the hypothalamic-pituitary-adrenal axis of male bottlenose dolphins (Tursiops truncatus).

    Science.gov (United States)

    Houser, Dorian S; Champagne, Cory D; Jensen, Eric D; Smith, Cynthia R; Cotte, Lara S; Meegan, Jenny M; Booth, Rebecca K; Wasser, Samuel K

    2017-07-15

    OBJECTIVE To evaluate the impact of oral megestrol acetate (MA) administration on adrenal function in male bottlenose dolphins (Tursiops truncatus). DESIGN Serial cross-sectional study. ANIMALS 8 adult male dolphins, all of which were receiving MA at various daily doses (range, 0 to 60 mg, PO) for the control of reproductive behavior. PROCEDURES Blood samples were collected every 2 weeks for 1 year from dolphins trained to voluntarily provide them. Cortisol, ACTH, and other hormone concentrations were measured in serum or plasma via radioimmunoassay or ELISA. Fecal samples, also provided by dolphins voluntarily, were assayed for glucocorticoid metabolite concentrations. Effects of daily MA dose on hormone concentrations were evaluated. RESULTS Daily MA doses as low as 10 mg strongly suppressed cortisol secretion in nearly all dolphins, and except for a single measurement, no dolphin had measurable serum concentrations at doses ≥ 20 mg. Variations in serum cortisol concentration were unrelated to season but were directly related to ACTH concentrations, suggesting primary effects upstream of the adrenal gland. Cessation of MA administration resulted in almost immediate restoration of measurable serum cortisol concentrations, although concentrations continued to rise in a few dolphins over the following weeks to months. CONCLUSIONS AND CLINICAL RELEVANCE Caution should be exercised when administering MA to control reproductive behavior in male dolphins. Because the hypothalamic-pituitary-adrenal axis appeared to be sensitive to even small doses of MA in dolphins, duration of treatment may be the most critical consideration.

  13. Predicting mental disorders from hypothalamic-pituitary-adrenal axis functioning: a 3-year follow-up in the TRAILS study.

    Science.gov (United States)

    Nederhof, E; van Oort, F V A; Bouma, E M C; Laceulle, O M; Oldehinkel, A J; Ormel, J

    2015-08-01

    Hypothalamic-pituitary-adrenal axis functioning, with cortisol as its major output hormone, has been presumed to play a key role in the development of psychopathology. Predicting affective disorders from diurnal cortisol levels has been inconclusive, whereas the predictive value of stress-induced cortisol concentrations has not been studied before. The aim of this study was to predict mental disorders over a 3-year follow-up from awakening and stress-induced cortisol concentrations. Data were used from 561 TRAILS (TRacking Adolescents' Individual Lives Survey) participants, a prospective cohort study of Dutch adolescents. Saliva samples were collected at awakening and half an hour later and during a social stress test at age 16. Mental disorders were assessed 3 years later with the Composite International Diagnostic Interview (CIDI). A lower cortisol awakening response (CAR) marginally significantly predicted new disorders [odds ratio (OR) 0.77, p = 0.06]. A flat recovery slope predicted disorders with a first onset after the experimental session (OR 1.27, p = 0.04). Recovery revealed smaller, non-significant ORs when predicting new onset affective or anxiety disorders, major depressive disorder, or dependence disorders in three separate models, corrected for all other new onsets. Our results suggest that delayed recovery and possibly reduced CAR are indicators of a more general risk status and may be part of a common pathway to psychopathology. Delayed recovery suggests that individuals at risk for mental disorders perceived the social stress test as less controllable and less predictable.

  14. Atrazine triggers developmental abnormality of ovary and oviduct in quails (Coturnix Coturnix coturnix) via disruption of hypothalamo-pituitary-ovarian axis

    International Nuclear Information System (INIS)

    Qin, Lei; Du, Zheng-Hai; Zhu, Shi-Yong; Li, Xue-Nan; Li, Nan; Guo, Jing-Ao; Li, Jin-Long; Zhang, Ying

    2015-01-01

    There has been a gradual increase in production and consumption of atrazine (ATR) in agriculture to meet the population rising demands. Female reproduction is necessary for growth and maintenance of population. However, ATR impact on females and particularly ovarian developmental toxicity is less clear. The aim of this study was to define the pathways by which ATR exerted toxic effects on ovarian development of ovary and hypothalamo-pituitary-ovarian (HPO) axis. Female quails were dosed by oral gavage from sexual immaturity to maturity with 0, 50, 250 and 500 mg ATR/kg/d for 45 days. ATR had no effect on mortality but depressed feed intake and growth and influenced the biochemical parameters. Notably, the arrested development of ovaries and oviducts were observed in ATR-exposed quails. The circulating concentrations of E2, P, LH and PRL were unregulated and FSH and T was downregulated in ATR-treated quails. The mRNA expression of GnRH in hypothalamo and LH in pituitary and FSH in ovary was downregulated significantly by ATR exposure and FSH and PRL in pituitary were upregulated. ATR exposure upregulated the level of P450scc, P450arom, 3β-HSD and 17β-HSD in ovary and downregulated ERβ expression in female quails. However, ATR did not change ERα expression in ovary. This study provides new insights regarding female productive toxicology of ATR exposure. Ovary and oviduct in sexually maturing females were target organs of ATR-induced developmental toxicity. We propose that ATR-induced developmental abnormality of ovary and oviduct is associated with disruption of gonadal hormone balance and HPO axis in female quails. - Highlights: • ATR triggers arrested development of ovarian and oviduct. • Ovary and oviduct are target organs of ATR-induced developmental toxicity. • Atrazine causes hormone adjustment disorder in female quails. • Atrazine upregulates steroidogenic factor and downregulates ERβ factor in ovary. • Atrazine disrupted the hypothalamo-pituitary

  15. Comparison of the effects of single and daily repeated immobilization stress on resting activity and heterotypic sensitization of the hypothalamic-pituitary-adrenal axis.

    Science.gov (United States)

    Daviu, Núria; Rabasa, Cristina; Nadal, Roser; Armario, Antonio

    2014-03-01

    Acute exposure to severe stressors causes marked activation of the hypothalamic-pituitary-adrenal (HPA) axis that is reflected on the day after higher resting levels of HPA hormones and sensitization of the HPA response to novel (heterotypic) stressors. However, whether a single exposure to a severe stressor or daily repeated exposure to the same (homotypic) stressor modifies these responses to the same extent has not been studied. In this experiment, we studied this issue in adult male Sprague-Dawley rats daily exposed for seven days to a severe stressor such as immobilization on boards (IMO). A first exposure to 1 h IMO resulted in a marked activation of the HPA axis as reflected in plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone, and such activation was significantly reduced after the seventh IMO. On the day after the first IMO, higher resting levels of ACTH and corticosterone and sensitization of their responses to a short exposure to an open-field (OF) were observed, together with a marked hypoactivity in this environment. Repeated exposure to IMO partially reduced hypoactivity, the increase in resting levels of HPA hormones and the ACTH responsiveness to the OF on the day after the last exposure to IMO. In contrast, corticosterone response was gradually increased, suggesting partial dissociation from ACTH. These results indicate that daily repeated exposure to the same stressor partially reduced the HPA response to the homotypic stressor as well as the sensitization of HPA axis activity observed the day after chronic stress cessation.

  16. Effect of Heat Stress on the Expression of GABA Receptor mRNA in the HPG Axis of Wenchang Chickens

    Directory of Open Access Journals (Sweden)

    LJ Xie

    Full Text Available ABSTRACT We investigated the effect of heat stress (HS on the expression of the GABA receptor in the hypothalamic-pituitary-gonadal (HPG axis of Wenchang chickens. Real-time quantitative RT-PCR (qRT-PCR was used to quantify the GABA receptor mRNA levels along the HPG axis of chickens under HS (40±0.5 °C for 1-6 weeks. Our results showed that the expression of GABAA and GABAB receptor at the mRNAs levels in the tissues of HPG axis exhibited fluctuation and variability. After HS, the mRNA level of GABAA receptor was significantly reduced in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but significantly increased in the pituitary of 1-, 4-, and 5-week-old chickens. The GABAB receptor mRNA level significantly declined in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but was significantly upregulated in the pituitary and testis of 1- and 2-week-old chickens. At other time points, the expressions of GABAA receptor and GABAB receptor showed no significant differences compared with control group. These results indicated that the levels of GABAA receptor and GABAB receptor mRNAs varied in different tissues of the HPG axis in chickens of different ages, displaying temporal and spatial variations. GABA receptor behaved as a positively-regulated gene by HS, i.e., its mRNA was increased by HS; similarly, it was a negatively-regulated gene by HS, when its expression was reduced by HS.

  17. Gonadotropin-Releasing Hormone Regulates Expression of the DNA Damage Repair Gene, Fanconi anemia A, in Pituitary Gonadotroph Cells1

    OpenAIRE

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2004-01-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse LβT2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regu...

  18. The hypothalamo-pituitary-adrenal axis in major affective disorder

    DEFF Research Database (Denmark)

    Christensen, M V; Kessing, L V

    2001-01-01

    disorder. The HPA axis is a complex neuroendocrine network with multiple integrated levels of control, and it is likely that the dysregulation involves abnormalities at several sites within the axis. At present, it is not clear whether the abnormalities are related to the affective episodes only......This paper reviews studies of the hypothalamo-pituitary-adrenal (HPA)-axis activity in patients with affective disorders. It is concluded that, despite methodological drawbacks in most studies, dysregulation of the HPA axis seems to be a consistent finding in a proportion of patients with affective...... or to the disorder itself. There is a need for prospective studies of larger samples of patients to be followed during successive affective episodes with a combination of measurements of the HPA-axis activity and brain imaging....

  19. Variation in the ovine cortisol response to systemic bacterial endotoxin challenge is predominantly determined by signalling within the hypothalamic-pituitary-adrenal axis

    International Nuclear Information System (INIS)

    You Qiumei; Karrow, Niel A.; Cao Honghe; Rodriguez, Alexander; Mallard, Bonnie A.; Boermans, Herman J.

    2008-01-01

    Bi-directional communication between the neuroendocrine and immune systems is designed, in part, to maintain or restore homeostasis during physiological stress. Exposure to endotoxin during Gram-negative bacterial infection for example, elicits the release of pro-inflammatory cytokines that activate the hypothalamic-pituitary-adrenal axis (HPAA). The secretion of adrenal glucocorticoids subsequently down regulates the host inflammatory response, minimizing potential tissue damage. Sequence and epigenetic variants in genes involved in regulating the neuroendocrine and immune systems are likely to contribute to individual differences in the HPAA response, and this may influence the host anti-inflammatory response to toxin exposure and susceptibility to inflammatory disease. In this study, high (HCR) and low (LCR) cortisol responders were selected from a normal population of 110 female sheep challenged iv with Escherichia coli endotoxin (400 ng/kg) to identify potential determinants that contribute to variation in the cortisol response phenotype. This phenotype was stable over several years in the HCR and LCR animals, and did not appear to be attributed to differences in expression of hepatic immune-related genes or systemic pro-inflammatory cytokine concentrations. Mechanistic studies using corticotrophin-releasing factor (0.5 μg/kg body weight), arginine vasopressin (0.5 μg/kg), and adrenocorticotropic hormone (0.5 μg/kg) administered iv demonstrated that variation in this phenotype is largely determined by signalling within the HPAA. Future studies will use this ovine HCR/LCR model to investigate potential genetic and epigenetic variants that may contribute to variation in cortisol responsiveness to bacterial endotoxin

  20. Disease: H00937 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available sexual characteristics in girls younger than 8 years old and in boys younger than 9 and a half years old. Ce...results from premature activation of the hypothalamic-pituitary-gonadal axis (HPG). CEPREPU is much more frequent in girls

  1. Effects of Fadrozole, Ketoconazole, and 17β-trenbolone on Ex Vivo Steroidogenesis in the Fathead Minnow

    Science.gov (United States)

    A variety of endocrine-disrupting chemicals have the ability to disrupt steroidogenesis through interaction with the hypothalamic-pituitary-gonadal (HPG) axis. We examined the effects of the competitive aromatase inhibitor fadrozole (0, 3, and 30 g/L), the cytochrome P450 enzyme...

  2. A Time-course Study with the Androgen Receptor Antagonist Flutamide in Fish

    Science.gov (United States)

    Flutamide, a drug registered to treat some types of prostate cancer in humans, has been used for many years as a model androgen receptor (AR) antagonist in studies aimed at characterizing disruption of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis. Various studies hav...

  3. Progressive pituitary hormone deficiency following radiation therapy in adults

    International Nuclear Information System (INIS)

    Loureiro, Rafaela A.; Vaisman, Mario

    2004-01-01

    Hypopituitarism can be caused by radiation therapy, even when it is not directly applied on the hypothalamic-pituitary axis, and can lead to anterior pituitary deficiency mainly due to hypothalamic damage. The progressive loss of the anterior pituitary hormones usually occurs in the following order: growth hormone, gonadotropin hormones, adrenocorticotropic hormone and thyroid-stimulating hormone. Although there are several different tests available to confirm anterior pituitary deficiency, this paper will focus on the gold standard tests for patients submitted to radiation therapy. We emphasize that the decline of anterior pituitary function is time- and dose-dependent with some variability among the different axes. Therefore, awareness of the need of a joint management by endocrinologists and oncologists is essential to improve treatment and quality of life of the patients. (author)

  4. Childhood Parental Loss and Adult Hypothalamic-Pituitary-Adrenal Function

    Science.gov (United States)

    Tyrka, Audrey R.; Wier, Lauren; Price, Lawrence H.; Ross, Nicole; Anderson, George M.; Wilkinson, Charles W.; Carpenter, Linda L.

    2009-01-01

    Background Several decades of research link childhood parental loss with risk for major depression and other forms of psychopathology. A large body of preclinical work on maternal separation and some recent studies of humans with childhood parental loss have demonstrated alterations of hypothalamic-pituitary-adrenal (HPA) axis function which could predispose to the development of psychiatric disorders. Methods Eighty-eight healthy adults with no current Axis I psychiatric disorder participated in this study. Forty-four participants experienced parental loss during childhood, including 19 with a history of parental death and 25 with a history of prolonged parental separation. The loss group was compared to a matched group of individuals who reported no history of childhood parental separation or childhood maltreatment. Participants completed diagnostic interviews and questionnaires and the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Repeated measures general linear models were used to test the effects of parental loss, a measure of parental care, sex, and age on the hormone responses to the Dex/CRH test. Results Parental loss was associated with increased cortisol responses to the test, particularly in males. The effect of loss was moderated by levels of parental care; participants with parental desertion and very low levels of care had attenuated cortisol responses. ACTH responses to the Dex/CRH test did not differ significantly as a function of parental loss. Conclusions These findings are consistent with the hypothesis that early parental loss induces enduring changes in neuroendocrine function. PMID:18339361

  5. The body has a brake: micrin is a postulated new gonadal hormone curbing tissue overgrowth and restricting reproduction.

    Science.gov (United States)

    Hart, John E

    2014-12-01

    There is evidence for an unrecognised classical hormone secreted by the mammalian gonad. This postulated hormone--'micrin' (pronounced 'my-crin')--represents the body's brake against tissue overgrowth. When oestrogens are administered in high doses to female rats there is a considerable (non-artefactual) increase in the relative size and weight of organs such as the pituitary, adrenals, uterus and liver--suggesting an organotrophic (organ-building) role for endogenous oestrogens. This effect is exaggerated if the animals are first ovariectomized, indicating the removal of a negative ovarian factor, micrin. These organ enlargements can be reduced by pretreating the rats with large doses of antioestrogens such as clomiphene and tamoxifen. This antiestrogenic blockade of exogenous oestrogens is itself blunted by prior removal of the ovaries. It is proposed that antioestrogens (e.g. tamoxifen in breast cancer treatment) antagonize the organotrophic effects of oestrogens by competing for the oestrogen receptor peripherally and centrally and via an increase in the secretion of ovarian micrin. It is deduced that micrin is the testicular 'inhibin' proposed in the 1930s, not the molecule that now bears that name, which acts at the pituitary tier as a downregulator of follicle-stimulating hormone. The hallmark of micrin deficiency in the male rat is a pituitary hypertrophy that follows castration. This is reversible with a steroid-depleted aqueous bovine testicular extract, the micrin within which suppresses the hypothalamus, normalizing the pituitary. Micrin probably acts as a brake on peripheral tissues directly but also indirectly at the meta-level via the hypothalamic-pituitary axis, resetting a hypothalamic 'organostat' controlling organ and tissue masses, part of the 'organotrophic system' of internal size regulation. Besides endocrine (circulating) micrin from the gonads there is probably paracrine (locally acting) micrin produced in the brain. This is involved in a

  6. Neonatal overfeeding disrupts pituitary ghrelin signalling in female rats long-term; Implications for the stress response.

    Science.gov (United States)

    Sominsky, Luba; Ziko, Ilvana; Spencer, Sarah J

    2017-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis responses to psychological stress are exacerbated in adult female but not male rats made obese due to overfeeding in early life. Ghrelin, traditionally known for its role in energy homeostasis, has been recently recognised for its role in coordinating the HPA responses to stress, particularly by acting directly at the anterior pituitary where the growth hormone secretagogue receptor (GHSR), the receptor for acyl ghrelin, is abundantly expressed. We therefore hypothesised that neonatal overfeeding in female rats would compromise pituitary responsiveness to ghrelin, contributing to a hyperactive central stress responsiveness. Unlike in males where hypothalamic ghrelin signalling is compromised by neonatal overfeeding, there was no effect of early life diet on circulating ghrelin or hypothalamic ghrelin signalling in females, indicating hypothalamic feeding and metabolic ghrelin circuitry remains intact. However, neonatal overfeeding did lead to long-term alterations in the pituitary ghrelin system. The neonatally overfed females had increased neonatal and reduced adult expression of GHSR and ghrelin-O-acyl transferase (GOAT) in the pituitary as well as reduced pituitary responsiveness to exogenous acyl ghrelin-induced adrenocorticotropic hormone (ACTH) release in vitro. These data suggest that neonatal overfeeding dysregulates pituitary ghrelin signalling long-term in females, potentially accounting for the hyper-responsive HPA axis in these animals. These findings have implications for how females may respond to stress throughout life, suggesting the way ghrelin modifies the stress response at the level of the pituitary may be less efficient in the neonatally overfed.

  7. Effects of cytokines on the pituitary-adrenal axis in cancer patients.

    Science.gov (United States)

    Nolten, W E; Goldstein, D; Lindstrom, M; McKenna, M V; Carlson, I H; Trump, D L; Schiller, J; Borden, E C; Ehrlich, E N

    1993-10-01

    Cytokines, which include interferons (IFNs), interleukins (ILs), and tumor necrosis factor (TNF), are immunoregulatory proteins produced by lymphocytes and inflammatory cells. Several cytokines, most noteworthy IFNs and ILs, stimulate glucocorticoid secretion. In this study, the effects of variable doses and repetitive administration of IFNs and TNF on secretion of pituitary hormones and cortisol were measured. Patients were given for a period of 15 days on alternating days injections of IFN-beta (IFN-beta ser), 90 or 450 x 10(6) IU, IFN-gamma, 0.1-100 x 10(6) IU, or TNF 125-275 micrograms/m2. Sixty to 120 min after IFN-beta ser injection median levels of cortisol, adrenocorticotropin (ACTH), prolactin (PRL), and growth hormone (GH) rose two-fold. Urinary free cortisol excretion increased significantly during the day following IFN-beta ser administration. IFN-gamma > or = 30 x 10(6) IU caused a comparable rise in plasma cortisol. TNF induced two- to four-fold increases in ACTH and cortisol. The fact that increased cortisol secretion was associated with a rise in the level of ACTH as well as PRL and GH suggests that the cytokines increased cortisol by stimulating the anterior pituitary. The hormonal response induced by cytokines was unrelated to their pyrogenic effect, undiminished with repetitive treatment, and not dose-dependent above a threshold level. These observations reinforce the concept of a physiologic link between the immune system and the hypothalamic-pituitary-adrenal (HPA) axis.

  8. Androgenic anabolic steroid use and severe hypothalamic-pituitary dysfunction : a case study

    NARCIS (Netherlands)

    van Breda, E.; Keizer, H.A.; Kuipers, H.; Wolffenbuttel, B.H.R.

    The data of the present case demonstrate that the abuse of androgenic anabolic steroids (AAS) may lead to serious health effects. Although most clinical attention is usually directed towards peripheral side effects, the most serious central side effect, hypothalamic-pituitary-dysfunction, is often

  9. Imidazoline2 (I2) receptor- and alpha2-adrenoceptor-mediated modulation of hypothalamic-pituitary-adrenal axis activity in control and acute restraint stressed rats.

    Science.gov (United States)

    Finn, David P; Hudson, Alan L; Kinoshita, Hiroshi; Coventry, Toni L; Jessop, David S; Nutt, David J; Harbuz, Michael S

    2004-03-01

    Central noradrenaline regulates the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the neuroendocrine response to stress. alpha2-adrenoceptors and imidazoline2 (I2) receptors modulate the activity of the central noradrenergic system. The present set of experiments investigated the role of alpha2-adrenoceptors and I2 receptors in the regulation of HPA axis activity under basal conditions and during exposure to the acute psychological stress of restraint. Three separate experiments were carried out in which rats were given an i.p. injection of either saline vehicle, the combined alpha2-adrenoceptor antagonist and I2 receptor ligand idazoxan (10 mg/kg), the selective I2 receptor ligand BU224 (2.5 or 10 mg/kg) or the selective alpha2-adrenoceptor antagonist RX821002 (2.5 mg/kg) with or without restraint stress. Drugs were administered immediately prior to restraint of 60 min duration. Blood was sampled pre-injection, 30, 60 and 240 min post-injection and plasma corticosterone was measured by radioimmunoassay. In experiment 1, idazoxan increased plasma corticosterone levels in naive animals and potentiated the corticosterone response to acute restraint stress. In experiment 2, BU224 administration increased plasma corticosterone levels in a dose-related manner in naive rats. The results of experiment 3 indicated that RX821002 also elevated plasma corticosterone levels in naive rats, however, only BU224 potentiated the corticosterone response to restraint stress. These studies suggest that both alpha2-adrenoceptors and I2 receptors play a role in modulating basal HPA axis activity and that I2 receptors may play a more important role than alpha2-adrenoceptors in modulating the HPA axis response to the acute psychological stress of restraint.

  10. Bone metabolism in anorexia nervosa and hypothalamic amenorrhea.

    Science.gov (United States)

    Chou, Sharon H; Mantzoros, Christos

    2018-03-01

    Anorexia nervosa (AN) and hypothalamic amenorrhea (HA) are states of chronic energy deprivation associated with severely compromised bone health. Poor bone accrual during adolescence followed by increased bone loss results in lifelong low bone density, degraded bone architecture, and higher risk of fractures, despite recovery from AN/HA. Amenorrhea is only one of several compensatory responses to the negative energy balance. Other hypothalamic-pituitary hormones are affected and contribute to bone deficits, including activation of hypothalamic-pituitary-adrenal axis and growth hormone resistance. Adipokines, particularly leptin, provide information on fat/energy stores, and gut hormones play a role in the regulation of appetite and food intake. Alterations in all these hormones influence bone metabolism. Restricted in scope, current pharmacologic approaches to improve bone health have had overall limited success. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Central precocious puberty: from physiopathological mechanisms to treatment.

    Science.gov (United States)

    Chirico, V; Lacquaniti, A; Salpietro, V; Buemi, M; Salpietro, C; Arrigo, T

    2014-01-01

    Puberty is a complex, coordinated biological process with multiple levels of regulations. The timing of puberty varies greatly in children and it is influenced by environmental, endocrine and genetic factors. Precocious puberty (PP) is an important issue, affecting between 1 in 5.000-10.000 children. The physiopathological mechanism is still unknown. From an etiological point of view, PP may be subdivided into gonadotropin-releasing hormone (GnRH) -dependent and independent causes. GnRH-dependent PP, often called central precocious puberty (CPP), is based on hypothalamic-pituitary-gonadal axis activation associated with progressive pubertal development, accelerated growth rate and advancement of skeletal age. Conversely, peripheral precocious puberty (PPP) is related to sex steroid exposure, independently of hypothalamic-–pituitary-–gonadal (HPG) axis activation. Kisspeptins play a central role in the modulation of GnRH secretion with peripheral factors that influence the timing of puberty, such as adipokines and endocrine disrupting chemicals. Moreover, PP could be related to genetic disorders, involving pivotal genes of the HPG axis. The standard test used to verify HPG activity is the gonadotropin response to administered GnRH analogs. We describe the physiopathological mechanisms of PP and its clinical implications, analysing diagnostic flow-chart and new potential biomarkers that could reveal PP. An update of the current literature was also carried out regarding the recent novelty for treatment.

  12. Hypothalamic pathogenesis of type 2 diabetes.

    Science.gov (United States)

    Koshiyama, Hiroyuki; Hamamoto, Yoshiyuki; Honjo, Sachiko; Wada, Yoshiharu; Lkeda, Hiroki

    2006-01-01

    There have recently been increasing experimental and clinical evidences suggesting that hypothalamic dysregulation may be one of the underlying mechanisms of abnormal glucose metabolism. First, increased hypothalamic-pituitary-adrenal axis activity induced by uncontrollable excess stress may cause diabetes mellitus as well as dyslipidemia, visceral obesity, and osteoporosis with some resemblance to Cushing's disease. Second, several molecules are known to be expressed both in pancreas and hypothalamus; adenosine triphosphate-sensitive potassium channels, malonyl-CoA, glucokinase, and AMP-activated protein kinase. Those molecules appear to form an integrated hypothalamic system, which may sense hypothalamic fuel status, especially glucose level, and inhibit action of insulin on hepatic gluconeogenesis, thereby forming a brain-liver circuit. Third, hypothalamic resistance to insulin as an adiposity signal may be involved in pathogenesis of peripheral insulin resistance. The results with mice with a neuron-specific disruption of the insulin receptor gene or those lacking insulin receptor substrate 2 in hypothalamus supported this possibility. Finally, it has very recently been suggested that dysregulation of clock genes in hypothalamus may cause abnormal glucose metabolism. Taken together, it is plausible that some hypothalamic abnormality may underlie at least some portion of type 2 diabetes or insulin resistance in humans, and this viewpoint of hypothalamic pathogenesis of type 2 diabetes may lead to the development of new drugs for type 2 diabetes.

  13. Inhibin : its role in the regulation of the pituitary-testis axis.

    NARCIS (Netherlands)

    A.M. Ultee-van Gessel (Annemarie)

    1988-01-01

    textabstractThe endocrine and exocrine functions of the male gonads, the testes, are regulated by gonadotrophic hormones which are secreted by the pituitary gland. Two separate gonadotrophic hormones have been recognized: luteinizing hormone (LH) which influences Leydig cell function, and

  14. Population pharmacokinetic/pharmacodynamic modelling of the hypothalamic-pituitary-gonadal axis

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel

    2005-01-01

    model mis-specification feasible by quantifying the model uncertainty, which subsequently provides the basis for systematic population PK/PD model development. To support the model building process, the SDE approach was applied to clinical PK/PD data and used as a tool for tracking unexplained...... was stimulated and inhibited by the plasma triptorelin and degarelix concentrations, respec-tively. Circulating LH stimulated the testosterone secretion while the delayed testosterone feedback on the non-basal LH synthesis and release was modelled through a receptor compartment where testosterone stimulates...

  15. Genetic aspects of hypothalamic and pituitary gland development.

    Science.gov (United States)

    McCabe, Mark J; Dattani, Mehul T

    2014-01-01

    Hypothalamo-pituitary development during embryogenesis is a highly complex process involving the interaction of a network of spatiotemporally regulated signaling molecules and transcription factors. Mutations in any of the genes encoding these components can lead to congenital hypopituitarism, which is often associated with a wide spectrum of defects affecting craniofacial/midline development. In turn, these defects can be incompatible with life, or lead to disorders encompassing holoprosencephaly (HPE) and cleft palate, and septo-optic dysplasia (SOD). In recent years, there has been increasing evidence of an overlapping genotype between this spectrum of disorders and Kallmann syndrome (KS), defined as the association of hypogonadotropic hypogonadism (HH) and anosmia. This is consistent with the known phenotypic overlap between these disorders and opens a new avenue of identifying novel genetic causes of the hypopituitarism spectrum. This chapter reviews the genetic and molecular events leading to the successful development of the hypothalamo-pituitary axis during embryogenesis, and focuses on genes in which variations/mutations occur, leading to congenital hypopituitarism and associated defects. © 2014 Elsevier B.V. All rights reserved.

  16. Unusual location of central nervous system langerhans cell histiocytosis: case report

    International Nuclear Information System (INIS)

    Kim, E. Yup; Lee, Jae Kyu; Kim, Chan Kyo; Lee, Chang Hyun; Kang, Chang Ho; Chung, Phil Wook

    2003-01-01

    Langerhans cell histiocytosis of the central nervous system (CNS) usually involves the hypothalamic-pituitary axis, and T1-weighted MR images normally demonstrate infundibular thickening and/or a mass lesion in the hypothalamus and the absence of a posterior pituitary 'bright spot'. We recently encountered a case of CNS langerhans cell histiocytosis with no posterior pituitary 'bright spot' and with lesions involving the cerebellum and basal ganglia but not the hypothalamic-pituitary axis

  17. The aryl hydrocarbon receptor is indispensable for dioxin-induced defects in sexually-dimorphic behaviors due to the reduction in fetal steroidogenesis of the pituitary-gonadal axis in rats.

    Science.gov (United States)

    Hattori, Yukiko; Takeda, Tomoki; Nakamura, Arisa; Nishida, Kyoko; Shioji, Yuko; Fukumitsu, Haruki; Yamada, Hideyuki; Ishii, Yuji

    2018-05-16

    Many forms of the toxic effects produced by dioxins and related chemicals take place following activation of the aryl hydrocarbon receptor (AHR). Our previous studies have demonstrated that treating pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic dioxin, attenuates the pituitary expression of gonadotropins to reduce testicular steroidogenesis during the fetal stage, resulting in the impairment of sexually-dimorphic behaviors after the offspring reach maturity. To investigate the contribution of AHR to these disorders, we examined the effects of TCDD on AHR-knockout (AHR-KO) Wistar rats. When pregnant AHR-heterozygous rats were given an oral dose of 1 µg/kg TCDD at gestational day (GD) 15, TCDD reduced the expression of pituitary gonadotropins and testicular steroidogenic proteins in male wild-type fetuses at GD20 without affecting body weight, sex ratio and litter size. However, the same defect did not occur in AHR-KO fetuses. Further, fetal exposure to TCDD impaired the activity of masculine sexual behavior after reaching adulthood only in the wild-type offspring. Also, in female offspring, not only the fetal gonadotropins production but also sexual dimorphism, such as saccharin preference, after growing up were suppressed by TCDD only in the wild-type. Interestingly, in the absence of TCDD, deleting AHR reduced masculine sexual behavior, as well as fetal steroidogenesis of the pituitary-gonadal axis. These results provide novel evidence that 1) AHR is required for TCDD-produced defects in sexually-dimorphic behaviors of the offspring, and 2) AHR signaling plays a role in gonadotropin synthesis during the developmental stage to acquire sexual dimorphism after reaching adulthood. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress

    Science.gov (United States)

    Meerlo, P.; Koehl, M.; van der Borght, K.; Turek, F. W.

    2002-01-01

    Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine stress systems. However, few attempts have been made to examine how sleep loss affects the HPA axis response to subsequent stressors. Furthermore, most studies applied short-lasting total sleep deprivation and not restriction of sleep over a longer period of time, as often occurs in human society. Using the rat as our model species, we investigated: (i) the HPA axis activity during and after sleep deprivation and (ii) the effect of sleep loss on the subsequent HPA response to a novel stressor. In one experiment, rats were subjected to 48 h of sleep deprivation by placing them in slowly rotating wheels. Control rats were placed in nonrotating wheels. In a second experiment, rats were subjected to an 8-day sleep restriction protocol allowing 4 h of sleep each day. To test the effects of sleep loss on subsequent stress reactivity, rats were subjected to a 30-min restraint stress. Blood samples were taken at several time points and analysed for adrenocorticotropic hormone (ACTH) and corticosterone. The results show that ACTH and corticosterone concentrations were elevated during sleep deprivation but returned to baseline within 4 h of recovery. After 1 day of sleep restriction, the ACTH and corticosterone response to restraint stress did not differ between control and sleep deprived rats. However, after 48 h of total sleep deprivation and after 8 days of restricted sleep, the ACTH response to restraint was significantly reduced whereas the corticosterone response was unaffected. These results show that sleep loss not only is a mild activator of the HPA axis itself, but also affects the subsequent response to stress. Alterations in HPA axis regulation may gradually appear under

  19. Positive environmental modification of depressive phenotype and abnormal hypothalamic-pituitary-adrenal axis activity in female C57BL/6J mice during abstinence from chronic ethanol consumption

    Directory of Open Access Journals (Sweden)

    Terence Y Pang

    2013-07-01

    Full Text Available Depression is a commonly reported co-morbidity during rehabilitation from alcohol use disorders and its presence is associated with an increased likelihood of relapse. Interventions which impede the development of depression could be of potential benefit if incorporated into treatment programs. We previously demonstrated an ameliorative effect of physical exercise on depressive behaviours in a mouse model of alcohol abstinence. Here, we show that environmental enrichment (cognitive and social stimulation has a similar beneficial effect. The hypothalamic-pituitary-adrenal (HPA axis is a key physiological system regulating stress responses and its dysregulation has been separably implicated in the pathophysiology of depression and addiction disorders. We performed a series of dexamethasone challenges and found that mice undergoing 2 weeks of alcohol abstinence had significantly greater corticosterone and ACTH levels following a DEX-CRH challenge compared to water controls. Environmental enrichment during alcohol abstinence corrected the abnormal DEX-CRH corticosterone response despite a further elevation of ACTH levels. Examination of gene expression revealed abstinence-associated alterations in glucocorticoid receptor (Gr, corticotrophin releasing hormone (Crh and pro-opiomelanocortin (Pomc1 mRNA levels which were differentially modulated by environmental enrichment. Overall, our study demonstrates a benefit of environmental enrichment on alcohol abstinence-associated depressive behaviours and HPA axis dysregulation.

  20. Unusual location of central nervous system langerhans cell histiocytosis: case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. Yup; Lee, Jae Kyu; Kim, Chan Kyo; Lee, Chang Hyun; Kang, Chang Ho; Chung, Phil Wook [Armed Forces Capital Hospital, Seongnam (Korea, Republic of)

    2003-03-01

    Langerhans cell histiocytosis of the central nervous system (CNS) usually involves the hypothalamic-pituitary axis, and T1-weighted MR images normally demonstrate infundibular thickening and/or a mass lesion in the hypothalamus and the absence of a posterior pituitary 'bright spot'. We recently encountered a case of CNS langerhans cell histiocytosis with no posterior pituitary 'bright spot' and with lesions involving the cerebellum and basal ganglia but not the hypothalamic-pituitary axis.

  1. Expression of 3β-hydroxysteroid dehydrogenase (3β- HSD) in ...

    African Journals Online (AJOL)

    Jane

    2011-07-04

    Jul 4, 2011 ... is the disorder of the hypothalamic- pituitary- gonadal axis (Bosu et al., 1987; Garverick et al., 1997; Ribadu et al., 2000), which suggests that hormones have important roles in the formation and persistence of cystic follicles. 3β-HSD catalyzes the conversion of pregnenolone to. *Corresponding authors.

  2. Altered functional resting-state hypothalamic connectivity and abnormal pituitary morphology in children with Prader-Willi syndrome.

    Science.gov (United States)

    Lukoshe, Akvile; van Dijk, Suzanne E; van den Bosch, Gerbrich E; van der Lugt, Aad; White, Tonya; Hokken-Koelega, Anita C

    2017-01-01

    Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder, characterized by endocrine problems and hyperphagia, indicating hypothalamic-pituitary dysfunction. However, few studies have explored the underlying neurobiology of the hypothalamus and its functional connectivity with other brain regions. Thus, the aim of this study was to examine the anatomical differences of the hypothalamus, mammillary bodies, and pituitary gland as well as resting state functional connectivity of the hypothalamus in children with PWS. Twenty-seven children with PWS (13 DEL, 14 mUPD) and 28 typically developing children were included. Manual segmentations by a blinded investigator were performed to determine the volumes of the hypothalamus, mammillary bodies, and pituitary gland. In addition, brain-wide functional connectivity analysis was performed using the obtained masks of the hypothalamus. Children with PWS showed altered resting state functional connectivity between hypothalamus and right and left lateral occipital complex, compared to healthy controls. In addition, children with PWS had on average a 50% smaller pituitary volume, an irregular shape of the pituitary, and a longer pituitary stalk. Pituitary volume did not increase in volume during puberty in PWS. No volumetric differences in the hypothalamus and mammillary bodies were found. In all subjects, the posterior pituitary bright spot was observed. We report altered functional hypothalamic connectivity with lateral occipital complexes in both hemispheres, which are implicated in response to food and reward system, and absence of connectivity might therefore at least partially contribute to the preoccupation with food in PWS.

  3. Hair-Normalized Cortisol Waking Response as a Novel Biomarker of Hypothalamic-Pituitary-Adrenal Axis Activity following Acute Trauma: A Proof-of-Concept Study with Pilot Results

    Directory of Open Access Journals (Sweden)

    David M. Walton

    2013-01-01

    Full Text Available The mechanisms underlying the development of persistent posttraumatic pain and disability remain elusive. Recent evidence suggests that disordered stress-system pathway (hypothalamic-pituitary-adrenal axis activity may be responsible for the genesis and maintenance of long-term sensory and emotional problems. However, confidence in current evidence is limited by the necessarily retrospective collection of data. Hair cortisol can serve as a calendar of HPA axis activity going back several months prior to injury. The purposes of this pilot study were to determine the feasibility of using hair cortisol and hair-normalized salivary cortisol as biomarkers of distress following traumatic injuries of whiplash or distal radius fracture. Ten subjects provided complete data within 3 weeks of injury. Hair cortisol, cortisol waking response (CWR, and mean daily cortisol (MDC were captured at inception, as were self-report indicators of pain, disability, and pain catastrophizing. Pain and disability were also captured 3 months after injury. Results indicate that cortisol waking response may be a useful biomarker of current distress as measured using the pain catastrophizing scale, especially when normalized to 3-month hair cortisol (r=0.77 raw, 0.93 normalized. Hair-normalized CWR may also have predictive capacity, correlating with 3-month self-reported disability at r=0.70. While promising, the results must be viewed in light of the small sample.

  4. HPA AXIS RELATED GENES AND RESPONSE TO PSYCHOLOGICAL THERAPIES: GENETICS AND EPIGENETICS

    NARCIS (Netherlands)

    Roberts, Susanna; Keers, Robert; Lester, Kathryn J.; Coleman, Jonathan R. I.; Breen, Gerome; Arendt, Kristian; Blatter-Meunier, Judith; Cooper, Peter; Creswell, Cathy; Fjermestad, Krister; Havik, Odd E.; Herren, Chantal; Hogendoorn, Sanne M.; Hudson, Jennifer L.; Krause, Karen; Lyneham, Heidi J.; Morris, Talia; Nauta, Maaike; Rapee, Ronald M.; Rey, Yasmin; Schneider, Silvia; Schneider, Sophie C.; Silverman, Wendy K.; Thastum, Mikael; Thirlwall, Kerstin; Waite, Polly; Eley, Thalia C.; Wong, Chloe C. Y.

    2015-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning has been implicated in the development of stress-related psychiatric diagnoses and response to adverse life experiences. This study aimed to investigate the association between genetic and epigenetics in HPA axis and response to cognitive

  5. The Petroselinum crispum L. hydroalcoholic extract effects on pituitary- gonad axis in adult Rats

    Directory of Open Access Journals (Sweden)

    F Bastampoor

    2014-07-01

    Full Text Available Background & aim: Infertility is one of the major issues in medical science which various chemical and herbal medicines have been used for its treatment from ancient times. Due to the side effects of chemical drugs and with regard to the cause of infertility in men is a hormonal disorder, thus, the study aimed to investigate the effect of ethanol extracts of parsley leaves performed on serum levels of pituitary - gonadal hormones. Methods: The present experimental study was conducted on fifty adult male rats. The animals were divided into 5 groups of 10 specimens, including controls, and three sets of empirical receiving doses 1000, 1500 and 2000 mg/kg ethanol extract of parsley leaves respectively. Prescriptions were done as gavage for 28 days. At the end of the test, the hearts of the animal and the serum hormones levels of testosterone, FSH and LH were measured. The Data were analyzed with t-test and Duncan and significant differences of data was considered at p = 0.05. Results: The findings revealed that the leaf extract of parsley caused a significant increase in FSH and LH and testosterone significantly increased at minimum and medium doses and decreased significantly in maximum dose. Conclusion: Parsley leaf , having antioxidant compounds, led to the increasing of FSH and LH hormones at three doses and increasing testosterone at minimum and medium doses and decreasing at maximum dose.

  6. Taurine reverses sodium fluoride-mediated increase in inflammation, caspase-3 activity, and oxidative damage along the brain-pituitary-gonadal axis in male rats.

    Science.gov (United States)

    Adedara, Isaac A; Olabiyi, Bolanle F; Ojuade, TeminiJesu D; Idris, Umar F; Onibiyo, Esther M; Farombi, Ebenezer O

    2017-09-01

    Excessive exposure to fluoride is associated with male reproductive dysfunction in humans and animals. Taurine (2-aminoethane sulfonic acid) is a free intracellular β-amino acid with antioxidant, anti-inflammatory, and neuroprotective properties. However, the effect of taurine on fluoride-induced reproductive toxicity has not been reported. The present study investigated the influence of taurine on sodium fluoride (NaF)-induced functional changes along the brain-pituitary-gonadal axis in male rats. NaF was administered singly in drinking water at 15 mg·L -1 alone or orally co-administered by gavage with taurine at 100 and 200 mg·(kg body mass) -1 for 45 consecutive days. Results showed that taurine significantly prevented NaF-induced increase in oxidative stress indices as well as augmented antioxidant enzymes activities and glutathione level in the brain, testes, and epididymis of the treated rats. Moreover, taurine reversed NaF-induced elevation in inflammatory biomarkers and caspase-3 activity as well as histological damage in the brain, testes, and epididymis of the treated rats. The significant reversal of NaF-induced decreases in testosterone level and testicular activities of acid phosphatase, alkaline phosphatase, and lactate dehydrogenase by taurine was accompanied by enhancement of sperm functional characteristics in the treated rats. Taurine may be a possible chemopreventive candidate against reproductive dysfunction resulting from fluoride exposure.

  7. Pituitary gland volume in patients with schizophrenia, subjects at ultra high-risk of developing psychosis and healthy controls

    DEFF Research Database (Denmark)

    Nordholm, Dorte; Krogh, Jesper; Mondelli, Valeria

    2013-01-01

    A larger pituitary size is thought to reflect a greater activation of the hypothalamic-pituitary-adrenal (HPA) axis, which may be related to an increase in the number and size of corticotroph cells. Some studies, but not all, indicate that pituitary volume increases before or at the onset...

  8. [Endocrine consequences in young adult survivors of childhood cancer treatment].

    Science.gov (United States)

    Leroy, C; Cortet-Rudelli, C; Desailloud, R

    2015-10-01

    Endocrine complications (particularly gonadal, hypothalamic-pituitary and metabolic) of childhood cancer treatments are common in young adults. Gonadal damage may be the result of chemotherapy or radiotherapy. Fertility preservation must be systematically proposed before initiation of gonadotoxic treatment if only the child is eligible. Hypothalamic-pituitary deficiency is common after brain or total-body irradiation, the somatotropic axis is the most sensitive to irradiation. Pituitary deficiency screening must be repeated since this endocrine consequence can occur many years after treatment. Hormone replacement must be prudent particularly in case of treatment with growth hormone or steroids. Metabolic syndrome, diabetes and cardiovascular damage resulting from cancer treatments contribute to the increase of morbidity and mortality in this population and should be screened routinely even if the patient is asymptomatic. The multidisciplinary management of these adults must be organized and the role of the endocrinologist is now well established. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Morphological changes in the pituitary-adrenocortical axis in natives of La Paz

    Science.gov (United States)

    Gosney, John; Heath, Donald; Williams, David; Rios-Dalenz, Jaime

    1991-03-01

    Increased activity of the hypothalamic-pituitary-adrenocortical axis is part of the response to the stress of initial exposure to hypoxia, but there is evidence to suggest that it persists after homeostatic stability has been regained and acclimatization achieved. The adrenal glands of five lifelong residents of La Paz, Bolivia, who had lived at altitudes in the range 3600 3800 m, were significantly larger than those in age-matched controls from sea level (15.3g vs 10.4g; Ppituitary glands of the highlanders were not significantly different in size from those of the controls (0.67 g vs 0.51 g), but contained larger populations of corticotrophs expressed in terms of the total cell population of their anterior lobes (25.6% vs 19.4%; P<0.001). In conjunction with other studies of this endocrine axis in man and animals exposed to a hypoxic environment, these data suggest that greater amounts of adrenocorticotrophic hormone (ACTH) are required to maintain normal adrenocortical function under such circumstances, probably as a result of hypoxic inhibition of adrenocortical sensitivity to stimulation. Physiological hyperplasia of the adrenal cortex may be common in people living at high altitude.

  10. The Forkhead Transcription Factor, FOXP3, Is Required for Normal Pituitary Gonadotropin Expression in Mice1

    Science.gov (United States)

    Jung, Deborah O.; Jasurda, Jake S.; Egashira, Noboru; Ellsworth, Buffy S.

    2012-01-01

    ABSTRACT The hypothalamic-pituitary-gonadal axis is central to normal reproductive function. This pathway begins with the release of gonadotropin-releasing hormone in systematic pulses by the hypothalamus. Gonadotropin-releasing hormone is bound by receptors on gonadotroph cells in the anterior pituitary gland and stimulates the synthesis and secretion of luteinizing hormone and, to some extent, follicle-stimulating hormone. Once stimulated by these glycoprotein hormones, the gonads begin gametogenesis and the synthesis of sex hormones. In humans, mutations of the forkhead transcription factor, FOXP3, lead to an autoimmune disorder known as immunodysregulation, polyendocrinopathy, and enteropathy, X-linked syndrome. Mice with a mutation in the Foxp3 gene have a similar autoimmune syndrome and are infertile. To understand why FOXP3 is required for reproductive function, we are investigating the reproductive phenotype of Foxp3 mutant mice (Foxp3sf/Y). Although the gonadotroph cells appear to be intact in Foxp3sf/Y mice, luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) expression are significantly decreased, demonstrating that these mice exhibit a hypogonadotropic hypogonadism. Hypothalamic expression of gonadotropin-releasing hormone is not significantly decreased in Foxp3sf/Y males. Treatment of Foxp3sf/Y males with a gonadotropin-releasing hormone receptor agonist does not rescue expression of Lhb or Fshb. Interestingly, we do not detect Foxp3 expression in the pituitary or hypothalamus, suggesting that the infertility seen in Foxp3sf/Y males is a secondary effect, possibly due to loss of FOXP3 in immune cells. Pituitary expression of glycoprotein hormone alpha (Cga) and prolactin (Prl) are significantly reduced in Foxp3sf/Y males, whereas the precursor for adrenocorticotropic hormone, pro-opiomelanocortin (Pomc), is increased. Human patients diagnosed with IPEX often exhibit thyroiditis due to destruction of the thyroid gland by

  11. Case report

    African Journals Online (AJOL)

    ebutamanya

    2016-04-27

    Apr 27, 2016 ... present a 36 year old gravida 5 para 4 at 27 weeks gestation with hepatocellular carcinoma and main complaint of abdominal pain. She had ... 2. Introduction. Hepatocellular cancer(HCC) is the commonest cause of all primary .... the hypothalamic-pituitary-gonadal axis, this may lead to a reduction in ...

  12. Psychostimulants and forced swim stress interaction: how activation of the hypothalamic-pituitary-adrenal axis and stress-induced hyperglycemia are affected.

    Science.gov (United States)

    Gagliano, Humberto; Ortega-Sanchez, Juan Antonio; Nadal, Roser; Armario, Antonio

    2017-10-01

    We recently reported that simultaneous exposure to amphetamine and various stressors resulted in reduced hypothalamic-pituitary-adrenal (HPA) and glycemic responses to the stressors. Since this is a new and relevant phenomenon, we wanted to further explore this interaction. This study aims (i) to characterize the effect of various doses of amphetamine on the physiological response to a predominantly emotional stressor (forced swim) when the drug was given immediately before stress; (ii) to study if an interaction appears when the drug was given 30 min or 7 days before swim; and (iii) to know whether cocaine causes similar effects when given just before stress. Adult male rats were used and plasma levels of ACTH, corticosterone, and glucose were the outcomes. Amphetamine caused a dose-dependent activation of the HPA axis, but all doses reduced HPA and glycemic responses to swim when given just before the stressor. Importantly, during the post-swim period, the stressor potently inhibited the ACTH response to amphetamine, demonstrating mutual inhibition between the two stimuli. The highest dose of amphetamine also reduced the response to swim when given 30 min before stress, whereas it caused HPA sensitization when given 7 days before. Cocaine also reduced stress-induced HPA activation when given just before swim. The present results demonstrate a negative synergy between psychostimulants (amphetamine and cocaine) and stress regarding HPA and glucose responses when rats were exposed simultaneously to both stimuli. The inhibitory effect of amphetamine is also observed when given shortly before stress, but not some days before.

  13. Thyroid and male reproduction

    Directory of Open Access Journals (Sweden)

    Anand Kumar

    2014-01-01

    Full Text Available Male reproduction is governed by the classical hypothalamo-hypophyseal testicular axis: Hypothalamic gonadotropin releasing hormone (GnRH, pituitary luteinizing hormone (LH and follicle stimulating hormone (FSH and the gonadal steroid, principally, testosterone. Thyroid hormones have been shown to exert a modulatory influence on this axis and consequently the sexual and spermatogenic function of man. This review will examine the modulatory influence of thyroid hormones on male reproduction.

  14. Peculiarities of hypothalamic-pituitary thyroid function in children born from the Chornobyl NPP accident survivors

    International Nuclear Information System (INIS)

    Kopylova, O.V.; Stepanenko, O.A.

    2015-01-01

    The 168 children born to parents exposed after the Chernobyl accident were examined to study the hypothalamic-pituitary-thyroid system function in descendants of the Chernobyl survivors. Clinical, hormonal, ultrasound examinations and challenge test with tyroliberynum were conducted. Some abnormalities that might explain the functional strain of the hypothalamic-pituitary system were identified being of a great role in origination and progress of thyroid disease. The prolonged strain leads to decreased production of thyroid hormone, which causes an increased secretion of thyroid stimulating hormone. Under the influence of TSH the thyroid gland in the first stage becomes increased in its mass, which leads to the formation of endemic goiter. Stable and permanent thyroid gland enlargement often leads to formation of the nodular goiter and other proliferative processes, namely to carcinogenesis

  15. Influence of the hypothalamic-pituitary-adrenal axis dysregulation on the metabolic profile of patients affected by diabetes mellitus-associated late onset hypogonadism.

    Science.gov (United States)

    Tirabassi, G; Chelli, F M; Ciommi, M; Lenzi, A; Balercia, G

    2016-01-01

    Functional hypercortisolism (FH) is generated by clinical states able to chronically activate the hypothalamic-pituitary-adrenal (HPA) axis [e.g. diabetes mellitus (DM)]. No study has evaluated FH influence in worsening the metabolic profile of male patients affected by DM-associated hypogonadism. In this retrospective work, we assess the possible association between HPA axis-dysregulation and cardiovascular risk factors in men simultaneously affected by DM and late-onset hypogonadism (LOH). Fourteen DM and LOH subjects affected by FH (Hypercort-DM-LOH) and fourteen DM and LOH subjects who were not suffering from FH (Normocort-DM-LOH) were retrospectively considered. Clinical, hormonal and metabolic parameters were retrieved. All metabolic parameters, except for systolic blood pressure, were significantly worse in Hypercort-DM-LOH than in Normocort-DM-LOH. After adjustment for body mass index, waist and total testosterone, Hypercort-DM-LOH subjects showed significantly worse metabolic parameters than Normocort-DM-LOH ones. In Normocort-DM-LOH, no significant correlation between general/hormonal parameters and metabolic variables was present. In Hypercort-DM-LOH, positive and significant correlations of cortisol area under the curve (AUC) after corticotropin releasing hormone with glycemia, triglycerides and blood pressure were evident; on the other hand, negative and significant correlation was present between cortisol AUC and high density lipoprotein (HDL) cholesterol. The associations of AUC cortisol with glycemia, HDL cholesterol and diastolic blood pressure (DBP) were further confirmed at quantile regression after adjustment for therapy. FH may determine a worsening of the metabolic profile in DM-associated hypogonadism. Copyright © 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by

  16. Influence of early life stress on later hypothalamic-pituitary-adrenal axis functioning and its covariation with mental health symptoms: a study of the allostatic process from childhood into adolescence.

    Science.gov (United States)

    Essex, Marilyn J; Shirtcliff, Elizabeth A; Burk, Linnea R; Ruttle, Paula L; Klein, Marjorie H; Slattery, Marcia J; Kalin, Ned H; Armstrong, Jeffrey M

    2011-11-01

    The hypothalamic-pituitary-adrenal (HPA) axis is a primary mechanism in the allostatic process through which early life stress (ELS) contributes to disease. Studies of the influence of ELS on children's HPA axis functioning have yielded inconsistent findings. To address this issue, the present study considers multiple types of ELS (maternal depression, paternal depression, and family expressed anger), mental health symptoms, and two components of HPA functioning (traitlike and epoch-specific activity) in a long-term prospective community study of 357 children. ELS was assessed during the infancy and preschool periods; mental health symptoms and cortisol were assessed at child ages 9, 11, 13, and 15 years. A three-level hierarchical linear model addressed questions regarding the influences of ELS on HPA functioning and its covariation with mental health symptoms. ELS influenced traitlike cortisol level and slope, with both hyper- and hypoarousal evident depending on type of ELS. Further, type(s) of ELS influenced covariation of epoch-specific HPA functioning and mental health symptoms, with a tighter coupling of HPA alterations with symptom severity among children exposed previously to ELS. Results highlight the importance of examining multiple types of ELS and dynamic HPA functioning in order to capture the allostatic process unfolding across the transition into adolescence.

  17. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation.

    Science.gov (United States)

    Petra, Anastasia I; Panagiotidou, Smaro; Hatziagelaki, Erifili; Stewart, Julia M; Conti, Pio; Theoharides, Theoharis C

    2015-05-01

    Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  18. Income inequality, gene expression, and brain maturation during adolescence

    OpenAIRE

    Parker, Nadine; Wong, Angelita Pui-Yee; Leonard, Gabriel; Perron, Michel; Pike, Bruce; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomas

    2017-01-01

    Income inequality is associated with poor health and social outcomes. Negative social comparisons and competition may involve the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes in underlying some of these complex inter-relationships. Here we investigate brain maturation, indexed by age-related decreases in cortical thickness, in adolescents living in neighborhoods with differing levels of income inequality and household income. We examine whether inter-regi...

  19. Gonadal steroids modulate Fas-induced apoptosis of lactotropes and somatotropes.

    Science.gov (United States)

    Jaita, Gabriela; Zárate, Sandra; Ferrari, Luciana; Radl, Daniela; Ferraris, Jimena; Eijo, Guadalupe; Zaldivar, Verónica; Pisera, Daniel; Seilicovich, Adriana

    2011-02-01

    We have previously reported that Fas activation induces apoptosis of anterior pituitary cells from rats at proestrus but not at diestrus and in an estrogen-dependent manner. In this study, we evaluated the effect of Fas activation on apoptosis of lactotropes and somatotropes during the estrous cycle and explored the action of gonadal steroids on Fas-induced apoptosis. Also, we studied whether changes in Fas expression are involved in the apoptotic response of anterior pituitary cells. Fas activation increased the percentage of TUNEL-positive lactotropes and somatotropes at proestrus but not at diestrus. FasL triggered apoptosis of somatotropes only when cells from ovariectomized rats were cultured in the presence of 17 β-estradiol (E2). Progesterone (P4) blocked the apoptotic action of the Fas/FasL system in lactotropes and somatotropes incubated with E2. Both E2 and P4 increased the percentage of cells expressing Fas at the cell membrane. Our results show that Fas activation induces apoptosis of lactotropes and somatotropes at proestrus but not at diestrus. Gonadal steroids may be involved in the apoptotic response of lactotropes and somatotropes, suggesting that Fas activation is implicated in the renewal of these pituitary subpopulations during the estrous cycle. The effect of gonadal steroids on Fas expression may be only partially involved in regulation of the Fas/FasL apoptotic pathway in the anterior pituitary gland.

  20. Etude du rôle de l’expression du récepteur Neuropiline-1 et de l’exocytose Calcium-dépendante dans le neurone à GnRH sur le développement et la maturation du système à GnRH et la physiologie de la reproduction

    OpenAIRE

    Vanacker , Charlotte

    2015-01-01

    Fertility in mammals is the result of a long development and maturation process of the hypothalamic-pituitary-gonadal axis. The reproductive function is orchestrated by a small population of neurons, located in preoptic area of hypothalamus in rodents, and releasing in a pulsatile manner Gonadotropin-releasing hormon (GnRH) in the portal blood vessels, where it is transported to the anterior pituitary gland. GnRH neuropeptide triggers synthesis and release of the gonadotropins LH and FSH, whi...

  1. Chronic stress and pituitary-adrenal function in female pigs

    NARCIS (Netherlands)

    Janssens, C.J.J.G.

    1994-01-01

    Introduction

    The main purpose of the studies described in this thesis was to gain more insight in the regulation of the hypothalamic-pituitary-adrenocorticaI (HPA) system and the mechanisms underlying adaptation to chronic stress in female pigs. The function of the HPA axis, which

  2. Testosterone Suppression of CRH-stimulated Cortisol in Men

    OpenAIRE

    Rubinow, David R.; Roca, Catherine A.; Schmidt, Peter J.; Danaceau, Merry A.; Putnam, Karen; Cizza, Giovanni; Chrousos, George; Nieman, Lynnette

    2005-01-01

    Despite observations of age-dependent sexual dimorphisms in hypothalamic-pituitary-adrenal (HPA) axis activity, the role of androgens in the regulation of HPA axis activity in men has not been examined. We assessed this role by performing CRH stimulation tests in ten men (ages 18–45) during gonadal suppression with leuprolide acetate and during testosterone addition to leuprolide. CRH-stimulated cortisol levels as well as peak cortisol and greatest cortisol excursion were significantly lower ...

  3. Effects of high fat diet on the Basal activity of the hypothalamus-pituitary-adrenal axis in mice: a systematic review.

    Science.gov (United States)

    Auvinen, H E; Romijn, J A; Biermasz, N R; Havekes, L M; Smit, J W A; Rensen, P C N; Pereira, A M

    2011-12-01

    Hypothalamus-pituitary-adrenal-axis activity is suggested to be involved in the pathophysiology of the metabolic syndrome. In diet-induced obesity mouse models, features of the metabolic syndrome are induced by feeding high fat diet. However, the models reveal conflicting results with respect to the hypothalamus-pituitary-adrenal-axis activation. The aim of this review was to assess the effects of high fat feeding on the activity of the hypothalamus-pituitary-adrenal-axis in mice. PubMed, EMBASE, Web of Science, the Cochrane database, and Science Direct were electronically searched and reviewed by 2 individual researchers. We included only original mouse studies reporting parameters of the hypothalamus-pituitary-adrenal-axis after high fat feeding, and at least 1 basal corticosterone level with a proper control group. Studies with adrenalectomized mice, transgenic animals only, high fat diet for less than 2 weeks, or other interventions besides high fat diet, were excluded. 20 studies were included. The hypothalamus-pituitary-adrenal-axis evaluation was the primary research question in only 5 studies. Plasma corticosterone levels were unchanged in 40%, elevated in 30%, and decreased in 20% of the studies. The effects in the peripheral tissues and the central nervous system were also inconsistent. However, major differences were found between mouse strains, experimental conditions, and the content and duration of the diets. This systematic review demonstrates that the effects of high fat feeding on the basal activity of the hypothalamus-pituitary-adrenal-axis in mice are limited and inconclusive. Differences in experimental conditions hamper comparisons and accentuate the need for standardized evaluations to discern the effects of diet-induced obesity on the hypothalamus-pituitary-adrenal-axis. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Altered functional resting-state hypothalamic connectivity and abnormal pituitary morphology in children with Prader-Willi syndrome

    NARCIS (Netherlands)

    A. Lukoshe (Akvile); Van Dijk, S.E. (Suzanne E.); G.E. van den Bosch (Gerbrich); A. van der Lugt (Aad); T.J.H. White (Tonya); A.C.S. Hokken-Koelega (Anita)

    2017-01-01

    textabstractBackground: Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder, characterized by endocrine problems and hyperphagia, indicating hypothalamic-pituitary dysfunction. However, few studies have explored the underlying neurobiology of the hypothalamus and its functional

  5. Dexamethasone PONV prophylaxis alters the hypothalamic-pituitary-adrenal axis after transsphenoidal pituitary surgery.

    Science.gov (United States)

    Burkhardt, Till; Rotermund, Roman; Schmidt, Nils-Ole; Kiefmann, Rainer; Flitsch, Jörg

    2014-07-01

    Postoperative nausea and vomiting (PONV) is common after general anesthesia and are reported by approximately 20% to 25% of all patients and up to 39% of patients undergoing neurosurgical procedures. The most common standard prophylaxis is a single application of 4 mg of dexamethasone before initiating anesthesia. Dexamethasone is known to suppress adreno-corticotroph hormone and cortisol levels. The objective was to find out whether this prophylaxis has an effect on the postoperative levels of cortisol in patients undergoing transsphenoidal pituitary surgery, and therefore simulates pituitary deficiency. A retrospective analysis of the files of 136 consecutive patients who were operated during a course of 6 months were included. Nineteen patients with a known history of PONV received a standard dose of 4 mg of dexamethasone perioperatively. Blood tests were drawn at the first postoperative day and were compared with blood tests of patients who had no history of PONV and therefore received no prophylaxis. Patients who were treated with a dexamethasone PONV prophylaxis showed no significant changes in cortisol levels; preoperative median of 93 μg/L (range, 39 to 427) and a postoperative median of 87 μg/L (range, 10 to 733; P=0.798) opposed to patients who did not receive such treatment; preoperative cortisol 114 μg/L (range, 10 to 387) and postoperative levels of 273 μg/L (range, 10 to 1352; Ptranssphenoidal surgery, the probability that dexamethasone PONV prophylaxis suppresses postoperative cortisol levels should be considered.

  6. Sex, stress, and mood disorders: at the intersection of adrenal and gonadal hormones.

    Science.gov (United States)

    Fernández-Guasti, A; Fiedler, J L; Herrera, L; Handa, R J

    2012-07-01

    The risk for neuropsychiatric illnesses has a strong sex bias, and for major depressive disorder (MDD), females show a more than 2-fold greater risk compared to males. Such mood disorders are commonly associated with a dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis. Thus, sex differences in the incidence of MDD may be related with the levels of gonadal steroid hormone in adulthood or during early development as well as with the sex differences in HPA axis function. In rodents, organizational and activational effects of gonadal steroid hormones have been described for the regulation of HPA axis function and, if consistent with humans, this may underlie the increased risk of mood disorders in women. Other developmental factors, such as prenatal stress and prenatal overexposure to glucocorticoids can also impact behaviors and neuroendocrine responses to stress in adulthood and these effects are also reported to occur with sex differences. Similarly, in humans, the clinical benefits of antidepressants are associated with the normalization of the dysregulated HPA axis, and genetic polymorphisms have been found in some genes involved in controlling the stress response. This review examines some potential factors contributing to the sex difference in the risk of affective disorders with a focus on adrenal and gonadal hormones as potential modulators. Genetic and environmental factors that contribute to individual risk for affective disorders are also described. Ultimately, future treatment strategies for depression should consider all of these biological elements in their design. © Georg Thieme Verlag KG Stuttgart · New York.

  7. The Functional Status of Hypophysis — ​Gonad Axis in Patients with Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Yu.M. Urmanova

    2016-09-01

    Full Text Available Background. The polycystic ovary syndrome (PCOS is the most frequent form of endocrine pathology and occurs in 5–10 % women of reproductive age and makes up 80 %, and according to some data, even 90 % of all forms of hyperandrogenism. The information about pathogenesis of PCOS is contradictory. The main step of the SPCO pathogenesis is hyperproduction of LH of by the hypophysis, revealed in 40–80 % patients. According to one of numerous theories, an increase secretion results in the increase of LH by the hypothalamus of the gonadotropin-releasing hormone (GRH, secreted in the discrete mode under control sexual steroid hormones, monoamines and opioid peptides. The aim of the investigation is to study the functional status of hypophysis — gonads axis for women with SPCO. Material and methods. In the department of neuroendocrinology of the Center of Endocrinology of Health Ministry of the Republic of Uzbekistan in a period from September 2015 till July 2016 120 outpatients of fertile age with PCOS were inspected. Mean age of patients was 25.5 ± 4.3 years. The duration of the disease hesitated from 7 months to 9 years. 20 healthy women of corresponding age made a control group. The complex of researches, including clinical, biochemical (glycemia, glucose tolerance test, hormonal (LH, FSH, prolactin, estradiol, progesterone, dehydroepiandrostendion (ДGEA, 17-oxyprogesterone, аntimuller hormone (АМH, insulin was performed in all patients, ultrasonic examination of uterus and ovaries (transabdominal and transvaginal on the 14th day of cycle with folliculometria in dynamics, and also magnetically-resonant tomography of hypophysis and questionnaire of patients were carried out. Results. Patients were divided into two groups: with primary sterility (94 cases and with secondary sterility (26 cases. In the first group of patients with primary sterility the reliable decline of both pituitary and ovarian hormones was determined on a background of

  8. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    Science.gov (United States)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  9. Frequent cellular phone use modifies hypothalamic-pituitary-adrenal axis response to a cellular phone call after mental stress in healthy children and adolescents: A pilot study.

    Science.gov (United States)

    Geronikolou, Styliani A; Chamakou, Aikaterini; Mantzou, Aimilia; Chrousos, George; KanakaGantenbein, Christina

    2015-12-01

    The hypothalamic-pituitary-adrenal (HPA) axis is the main "gate-keeper" of the organism's response to every somatic or mental stress. This prospective study aims to investigate the HPA-axis response to a cellular phone call exposure after mental stress in healthy children and adolescents and to assess the possible predictive role of baseline endocrine markers to this response. Two groups of healthy school-age children aged 11-14 (12.5±1.5) years were included in the study, the one comprising those who are occasional users of a cellular phone (Group A) while the second those who do regularly use one (Group B). Blood samples were obtained from all participants at 8.00 am after a 12-hour overnight fasting for thyroid hormone, glucose, insulin, and cortisol levels determination. The participants performed the Trier Social Stress Test for Children (TSST-C) (5 minoral task followed by 5 min arithmetic task). Salivary cortisol samples were obtained at baseline, 10' and 20' min after the TSST-C and 10' and 20' after a 5 minute cellular phone call. Significant changes in the salivary cortisol levels were noted between 10' and 20' mins after the cellular phone call with different responses between the two groups. Baseline thyroid hormone levels seem to predict the cortisol response to mental stress mainly in group A, while HOMA had no impact on salivary cortisol response at any phase of the test, in either group. HPA axis response to cellular phone after mental stress in children and adolescents follow a different pattern in frequent users than in occasional users that seems to be influenced by the baseline thyroid hormone levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The effects of chronic food restriction on hypothalamic-pituitary-adrenal activity depend on morning versus evening availability of food.

    Science.gov (United States)

    Belda, Xavier; Ons, Sheila; Carrasco, Javier; Armario, Antonio

    2005-05-01

    Partial food restriction (FR) protocols have been used not only to study behavioral and physiological consequences of decrease food intake, but as a necessary treatment of the animals in some operant learning tasks. It is well-established in rodents that restricting food availability to a few hours in the morning causes an alteration of the daily rhythm of corticosterone, thus making it difficult to evaluate whether or not such treatments are stressful. In the present experiment adult male Sprague-Dawley rats were subjected to two different FR schedules: food availability after 1100 h (LFR) or after 1900 h (DFR). After 14 days, animals from both groups, together with corresponding controls, were killed under resting conditions, either in the morning or in the evening, just before daily access to food in FR rats. Both FR schedules reduced body weight gain to the same extent, but their impact on the hypothalamic-pituitary-adrenal (HPA) axis was different: DFR increased relative, but not absolute, adrenal weight and morning and evening levels of corticosterone, whereas LFR increased both absolute and relative adrenal weights and increased morning corticosterone levels to a greater extent than DFR rats. Neither serum ACTH nor corticotropin-releasing factor (CRF) mRNA levels in the paraventricular nucleus of the hypothalamus were altered by DFR or LFR protocols, suggesting that factors other than CRF and ACTH are involved in the control of adrenocortical secretion under FR. It appears that LFR caused more alterations in the HPA axis than DFR and, therefore, the latter FR schedule should be used in those protocols necessarily involving partial FR.

  11. Proteomic Profiling of the Pituitary Gland in Studies of Psychiatric Disorders.

    Science.gov (United States)

    Krishnamurthy, Divya; Rahmoune, Hassan; Guest, Paul C

    2017-01-01

    Psychiatric disorders have been associated with perturbations of the hypothalamic-pituitary-adrenal axis. Therefore, proteomic studies of the pituitary gland have the potential to provide new insights into the underlying pathways affected in these conditions as well as identify new biomarkers or targets for use in developing improved medications. This chapter describes a protocol for preparation of pituitary protein extracts followed by characterization of the pituitary proteome by label-free liquid chromatography-tandem mass spectrometry in expression mode (LC-MS E ). The main focus was on establishing a method for identifying the major pituitary hormones and accessory proteins as many of these have already been implicated in psychiatric diseases.

  12. Endocrinopathies in Survivors of Childhood Neoplasia

    Directory of Open Access Journals (Sweden)

    NICOLE S BARNES

    2014-09-01

    Full Text Available Advancements in cancer treatments have increased the number of childhood cancer survivors. Endocrinopathies are common complications following cancer therapy and may occur decades later. The objective of the review is to address the main endocrine abnormalities detected in childhood cancer survivors including disorders of the hypothalamic-pituitary axis, thyroid, puberty, gonads, bone, body composition, and glucose metabolism.

  13. Adaptation of the hypothalamic-pituitary-adrenal axis and glucose to repeated immobilization or restraint stress is not influenced by associative signals.

    Science.gov (United States)

    Rabasa, Cristina; Delgado-Morales, Raúl; Muñoz-Abellán, Cristina; Nadal, Roser; Armario, Antonio

    2011-02-02

    Repeated exposure to the same stressor very often results in a reduction of some prototypical stress responses, namely those related to the hypothalamic-pituitary-adrenal (HPA) and sympatho-medullo-adrenal (SMA) axes. This reduced response to repeated exposure to the same (homotypic) stressor (adaptation) is usually considered as a habituation-like process, and therefore, a non-associative type of learning. However, there is some evidence that contextual cues and therefore associative processes could contribute to adaptation. In the present study we demonstrated in two experiments using adult male rats that repeated daily exposure to restraint (REST) or immobilization on boards (IMO) reduced the HPA (plasma levels of ACTH and corticosterone) and glucose responses to the homotypic stressor and such reduced responses remained intact when all putative cues associated to the procedure (experimenter, way of transporting to the stress room, stress boxes, stress room and colour of the restrainer in the case of REST) were modified on the next day. Therefore, the present results do not favour the view that adaptation after repeated exposure to a stressor may involve associative processes related to signals predicting the imminence of the stressors, but more studies are needed on this issue. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Highly Palatable Food during Adolescence Improves Anxiety-Like Behaviors and Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Rats that Experienced Neonatal Maternal Separation

    Directory of Open Access Journals (Sweden)

    Jong-Ho Lee

    2014-06-01

    Full Text Available BackgroundThis study was conducted to examine the effects of ad libitum consumption of highly palatable food (HPF during adolescence on the adverse behavioral outcome of neonatal maternal separation.MethodsMale Sprague-Dawley pups were separated from dam for 3 hours daily during the first 2 weeks of birth (maternal separation, MS or left undisturbed (nonhandled, NH. Half of MS pups received free access to chocolate cookies in addition to ad libitum chow from postnatal day 28 (MS+HPF. Pups were subjected to behavioral tests during young adulthood. The plasma corticosterone response to stress challenge was analyzed by radioimmunoassay.ResultsDaily caloric intake and body weight gain did not differ among the experimental groups. Ambulatory activities were decreased defecation activity and rostral grooming were increased in MS controls (fed with chow only compared with NH rats. MS controls spent less time in open arms, and more time in closed arms during the elevated plus maze test, than NH rats. Immobility duration during the forced swim test was increased in MS controls compared with NH rats. Cookie access normalized the behavioral scores of ambulatory and defecation activities and grooming, but not the scores during the elevated plus maze and swim tests in MS rats. Stress-induced corticosterone increase was blunted in MS rats fed with chow only, and cookie access normalized it.ConclusionProlonged access to HPF during adolescence and youth partly improves anxiety-related, but not depressive, symptoms in rats that experienced neonatal maternal separation, possibly in relation with improved function of the hypothalamic-pituitary-adrenal (HPA axis.

  15. Progressive pituitary hormone deficiency following radiation therapy in adults; Deficiencia progressiva dos hormonios adeno-hipofisarios apos radioterapia em adultos

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Rafaela A.; Vaisman, Mario [Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil). Servico de Endocrinologia]. E-mail: rafaela_loureiro@hotmail.com

    2004-10-01

    Hypopituitarism can be caused by radiation therapy, even when it is not directly applied on the hypothalamic-pituitary axis, and can lead to anterior pituitary deficiency mainly due to hypothalamic damage. The progressive loss of the anterior pituitary hormones usually occurs in the following order: growth hormone, gonadotropin hormones, adrenocorticotropic hormone and thyroid-stimulating hormone. Although there are several different tests available to confirm anterior pituitary deficiency, this paper will focus on the gold standard tests for patients submitted to radiation therapy. We emphasize that the decline of anterior pituitary function is time- and dose-dependent with some variability among the different axes. Therefore, awareness of the need of a joint management by endocrinologists and oncologists is essential to improve treatment and quality of life of the patients. (author)

  16. Prenatal Stress Induces Long-Term Effects in Cell Turnover in the Hippocampus-Hypothalamus-Pituitary Axis in Adult Male Rats

    Science.gov (United States)

    Baquedano, Eva; García-Cáceres, Cristina; Diz-Chaves, Yolanda; Lagunas, Natalia; Calmarza-Font, Isabel; Azcoitia, Iñigo; Garcia-Segura, Luis M.; Argente, Jesús; Chowen, Julie A.; Frago, Laura M.

    2011-01-01

    Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations. PMID:22096592

  17. Hypothalamic-Pituitary Function in Brain Death: A Review.

    Science.gov (United States)

    Nair-Collins, Michael; Northrup, Jesse; Olcese, James

    2016-01-01

    The Uniform Determination of Death Act (UDDA) states that an individual is dead when "all functions of the entire brain" have ceased irreversibly. However, it has been questioned whether some functions of the hypothalamus, particularly osmoregulation, can continue after the clinical diagnosis of brain death (BD). In order to learn whether parts of the hypothalamus can continue to function after the diagnosis of BD, we performed 2 separate systematic searches of the MEDLINE database, corresponding to the functions of the posterior and anterior pituitary. No meta-analysis is possible due to nonuniformity in the clinical literature. However, some modest generalizations can reasonably be drawn from a narrative review and from anatomic considerations that explain why these findings should be expected. We found evidence suggesting the preservation of hypothalamic function, including secretion of hypophysiotropic hormones, responsiveness to anterior pituitary stimulation, and osmoregulation, in a substantial proportion of patients declared dead by neurological criteria. We discuss several possible explanations for these findings. We conclude by suggesting that additional clinical research with strict inclusion criteria is necessary and further that a more nuanced and forthright public dialogue is needed, particularly since standard diagnostic practices and the UDDA may not be entirely in accord. © The Author(s) 2014.

  18. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  19. The role of the kisspeptin system in regulation of the reproductive endocrine axis and territorial behavior in male side-blotched lizards (Uta stansburiana).

    Science.gov (United States)

    Neuman-Lee, Lorin; Greives, Timothy; Hopkins, Gareth R; French, Susannah S

    2017-03-01

    The neuropeptide kisspeptin and its receptor are essential for activation of the hypothalamic-pituitary-gonadal (HPG) axis and regulating reproduction. While the role of kisspeptin in regulating the HPG axis in mammals has been well established, little is known about the functional ability of kisspeptins to activate the HPG axis and associated behavior in non-mammalian species. Here we experimentally examined the effects of kisspeptin on downstream release of testosterone and associated aggression and display behaviors in the side-blotched lizard (Uta stansburiana). We found that exogenous treatment with kisspeptin resulted in an increase in circulating testosterone levels, castration blocked the kisspeptin-induced increase in testosterone, and testosterone levels in kisspeptin-treated animals were positively related to frequency of aggressive behaviors. This evidence provides a clear link between kisspeptin, testosterone, and aggressive behavior in lizards. Thus, it is likely that kisspeptin plays an important role more broadly in non-mammalian systems in the regulation of reproductive physiology and related behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. effect of continous light and darkness exposures on the pituitary

    African Journals Online (AJOL)

    Dr Olaleye

    The effects of constant light and dark exposure of pubertal male rats on the pituitary-gonadal axis and thyroid activity were studied. ... In the rats exposed to continuous light, the weight of the thyroid gland increased significantly (P<0.02) and the serum level of T4 also ... 3minutes) per day when food in the cages was being.

  1. Conditioned taste aversion: modulation by 5-HT receptor activity and corticosterone

    DEFF Research Database (Denmark)

    Boris, Gorzalka; Hanson, Laura; Harrington, J

    2003-01-01

    Two experiments were designed to elucidate the involvement of the hypothalamic-pituitary-adrenal axis and the 5-hydroxytryptamine (5-HT) system in the acquisition of lithium chloride-conditioned taste aversion. In Experiment 1, rats were administered either vehicle or 50 mg/kg nefazodone daily fo......, corticosterone-treated animals required more trials to reach extinction. These results suggest the involvement of both the 5-HT system and the hypothalamic-pituitary-adrenal axis in lithium chloride-conditioned taste aversion....

  2. Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit.

    Science.gov (United States)

    Larsen, P J; Seier, V; Fink-Jensen, A; Holst, J J; Warberg, J; Vrang, N

    2003-03-01

    Cocaine- and amphetamine-regulated transcript (CART) is present in a number of hypothalamic nuclei. Besides actions in circuits regulating feeding behaviour and stress responses, the hypothalamic functions of CART are largely unknown. We report that CART immunoreactivity is present in hypothalamic neuroendocrine neurones. Adult male rats received a systemic injection of the neuronal tracer Fluorogold (FG) 2 days before fixation, and subsequent double- and triple-labelling immunoflourescence analysis demonstrated that neuroendocrine CART-containing neurones were present in the anteroventral periventricular, supraoptic, paraventricular (PVN) and periventricular nuclei of the hypothalamus. In the PVN, CART-positive neuroendocrine neurones were found in all of cytoarchitectonically identified nuclei. In the periventricular nucleus, approximately one-third of somatostatin cells were also CART-immunoreactive. In the medial parvicellular subnucleus of the PVN, CART and FG coexisted with thyrotrophin-releasing hormone, whereas very few of the corticotrophin-releasing hormone containing cells were CART-immunoreactive. In the arcuate nucleus, CART was extensively colocalized with pro-opiomelanocortin in the ventrolateral part, but completely absent from neuroendocrine neurones of the dorsomedial part. To assess the possible role of CART as a hypothalamic-releasing factor, immunoreactive CART was measured in blood samples from the long portal vessels connecting the median eminence with the anterior pituitary gland. Adult male rats were anaesthetized and the infundibular stalk exposed via a transpharyngeal approach. The long portal vessels were transected and blood collected in 30-min periods (one prestimulatory and three poststimulatory periods). Compared to systemic venous plasma samples, baseline concentrations of immunoreactive CART were elevated in portal plasma. Exposure to sodium nitroprusside hypotension triggered a two-fold elevation of portal CART42

  3. Regulation of the activins-follistatins-inhibins axis by energy status: Impact on reproductive function.

    Science.gov (United States)

    Perakakis, Nikolaos; Upadhyay, Jagriti; Ghaly, Wael; Chen, Joyce; Chrysafi, Pavlina; Anastasilakis, Athanasios D; Mantzoros, Christos S

    2018-05-09

    We have previously demonstrated that the adipose tissue derived hormone leptin controls reproductive function by regulating the hypothalamic-pituitary-gonadal axis in response to energy deficiency. Here, we evaluate the activins-follistatins-inhibins (AFI) axis during acute (short-term fasting in healthy people) and chronic energy deficiency (women with hypothalamic amenorrhea due to strenuous exercise [HA]) and investigate their relation to leptin and reproductive function in healthy subjects and subjects with HA. The AFI axis was investigated in: a) A double-blinded study in healthy subjects having three randomly assigned admissions, each time for four days: in the isocaloric fed state, complete fasting with placebo treatment, complete fasting with leptin replacement, b) A case-control study comparing women with HA vs healthy controls, c) An open-label interventional study investigating leptin treatment in women with HA over a period of up to three months, d) A randomized interventional trial investigating leptin treatment vs placebo in women with HA for nine months. The circulating levels of activin A, activin B, follistatin and follistatin-like 3 change robustly in response to acute and chronic energy deficiency. Leptin replacement in acute energy deprivation does not affect the levels of these hormones suggesting an independent regulation by these two hormonal pathways. In chronic energy deficiency, leptin replacement restores only activin B levels, which are in turn associated with an increase in the number of dominant follicles. We demonstrate for the first time that the AFI axis is affected both by acute and chronic energy deficiency. Partial restoration of a component of the axis, i.e. activin B only, through leptin replacement is associated with improved reproductive function in women with HA. Copyright © 2018. Published by Elsevier Inc.

  4. Increased basal and pulsatile secretion of FSH and LH in young men with 47,XXY or 46,XX karyotypes

    DEFF Research Database (Denmark)

    Aksglaede, L.; Jensen, Rikke Bodin Beck; Carlsen, E.

    2008-01-01

    testicular failure due to supernumerary X chromosomes. DESIGN: Cross-sectional study. METHODS: In this study, 7 untreated patients with primary gonadal insufficiency due to SRY-positive 46,XX (n=4) and 46,XXY karyotypes (n=3) aged 18.8 years and 25 age-matched healthy controls participated. Reproductive...... basal, pulsatile, and total LH and FSH secretion were associated with significantly more LH peaks per 24 h in comparison with healthy controls. Thus, our data indicate that in patients with Klinefelter syndrome and XX male karyotypes the entire hypothalamic-pituitary-gonadal axis has undergone...

  5. Cognition and HPA axis reactivity in mildly to moderately depressed outpatients

    DEFF Research Database (Denmark)

    Krogh, Jesper; Videbech, Poul; Renvillard, Signe Groth

    2012-01-01

    Background: Patients with depression display neurobiological changes of the hypothalamic-pituitary axis as well as cognitive disturbances. Aims: To assess any association between hypothalamus-pituitary-adrenal (HPA) axis reactivity and memory-related cognitive functions. Methods: Depressed...... the following day at the same times. Results: Patients and controls did not differ on any memory-related cognitive skills. After dexamethasone the cortisol level was 1.7 nmol/l higher (95% CI 0.0-2.8, P =¿0.05) in depressed patients compared with controls. In the control group, but not in the patients...... after dexamethasone and visuo-spatial memory primarily driven by the healthy controls. Otherwise, no association were found between HPA axis reactivity and memory-related cognitive function....

  6. Volume of the adrenal and pituitary glands in depression

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Willer, Inge Stoel; Knorr, Ulla

    2011-01-01

    Numerous studies have shown that the hypothalamic-pituitary-adrenal (HPA) axis is hyperactive in some depressed patients. It is unclear whether such hyperactivity results in changed volumes of the adrenal glands, pituitary gland and hypothalamus. We systematically reviewed all controlled studies...... on the adrenal or pituitary glands or hypothalamus volume in unipolar depressive disorder published in PubMed 1966 to December 2009. We identified three studies that investigated the volume of the adrenal glands and eight studies that examined the volume of the pituitary gland, but no studies on hypothalamus...... were found. Two out of three studies found a statistically significant increase in adrenal volume in patients compared to controls. Four out of eight studies found a statistically significant increase in pituitary volume in patients compared to controls. Different methodological problems were...

  7. 2,3,4,7,8-Pentachlorodibenzofuran is far less potent than 2,3,7,8-tetrachlorodibenzo-p-dioxin in disrupting the pituitary–gonad axis of the rat fetus

    Energy Technology Data Exchange (ETDEWEB)

    Taura, Junki; Takeda, Tomoki; Fujii, Misaki; Hattori, Yukiko; Ishii, Yuji [Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan); Kuroki, Hiroaki [Daiichi University of Pharmacy, Fukuoka (Japan); Tsukimori, Kiyomi [Department of Obstetrics, Fukuoka Children' s Hospital, Fukuoka (Japan); Uchi, Hiroshi [Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka (Japan); Furue, Masutaka [Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka (Japan); Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Yamada, Hideyuki, E-mail: hyamada@phar.kyushu-u.ac.jp [Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka (Japan)

    2014-11-15

    The effect of 2,3,4,7,8-pentachlorodibenzofuran (PnCDF) on the fetal pituitary–gonad axis was compared with that produced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in Wistar rats. Maternal treatment at gestational day (GD) 15 with PnCDF and TCDD reduced the fetal expression at GD20 of pituitary luteinizing hormone (LH) and the testicular proteins necessary for steroidogenesis. The relative potencies of PnCDF ranged from 1/42nd to 1/63rd of the TCDD effect. While PnCDF, at a dose sufficient to cause a reduction in fetal LH, provoked defects in sexual behavior at adulthood, a dose less than the ED{sub 50} failed to produce any abnormality. There was a loss of fetal body weight following in utero exposure to PnCDF, and the effect of PnCDF was also much less than that of TCDD. The disturbance in fetal growth was suggested to be due to a reduction in the level of fetal growth hormone (GH) by dioxins. The disorder caused by PnCDF/TCDD in the fetal pituitary–gonad axis occurred at doses less than those needed to cause wasting syndrome in pubertal rats. The harmful effect of PnCDF relative to TCDD was more pronounced in fetal rats than in pubertal rats. These lines of evidence suggest that: 1) PnCDF as well as TCDD imprints defects in sexual behavior by disrupting the fetal pituitary–gonad axis; 2) these dioxins hinder fetal growth by reducing the expression of fetal GH; and 3) the fetal effects of PnCDF/TCDD are more sensitive than sub-acute toxicity during puberty, and the relative effect of PnCDF varies markedly depending on the indices used. - Highlights: • 2,3,4,7,8-Pentachlorodibenzofuran (PnCDF) lowers gonadal steroidogenesis in fetuses. • PnCDF exerts the above effect through an initial attenuation in gonadotropin level. • PnCDF imprints sexual immaturity by transiently disrupting the pituitary–gonad axis. • PnCDF also disturbs pup growth probably due to a reduction in growth hormone level. • The above effects are far lesser in PnCDF than 2

  8. 2,3,4,7,8-Pentachlorodibenzofuran is far less potent than 2,3,7,8-tetrachlorodibenzo-p-dioxin in disrupting the pituitary–gonad axis of the rat fetus

    International Nuclear Information System (INIS)

    Taura, Junki; Takeda, Tomoki; Fujii, Misaki; Hattori, Yukiko; Ishii, Yuji; Kuroki, Hiroaki; Tsukimori, Kiyomi; Uchi, Hiroshi; Furue, Masutaka; Yamada, Hideyuki

    2014-01-01

    The effect of 2,3,4,7,8-pentachlorodibenzofuran (PnCDF) on the fetal pituitary–gonad axis was compared with that produced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in Wistar rats. Maternal treatment at gestational day (GD) 15 with PnCDF and TCDD reduced the fetal expression at GD20 of pituitary luteinizing hormone (LH) and the testicular proteins necessary for steroidogenesis. The relative potencies of PnCDF ranged from 1/42nd to 1/63rd of the TCDD effect. While PnCDF, at a dose sufficient to cause a reduction in fetal LH, provoked defects in sexual behavior at adulthood, a dose less than the ED 50 failed to produce any abnormality. There was a loss of fetal body weight following in utero exposure to PnCDF, and the effect of PnCDF was also much less than that of TCDD. The disturbance in fetal growth was suggested to be due to a reduction in the level of fetal growth hormone (GH) by dioxins. The disorder caused by PnCDF/TCDD in the fetal pituitary–gonad axis occurred at doses less than those needed to cause wasting syndrome in pubertal rats. The harmful effect of PnCDF relative to TCDD was more pronounced in fetal rats than in pubertal rats. These lines of evidence suggest that: 1) PnCDF as well as TCDD imprints defects in sexual behavior by disrupting the fetal pituitary–gonad axis; 2) these dioxins hinder fetal growth by reducing the expression of fetal GH; and 3) the fetal effects of PnCDF/TCDD are more sensitive than sub-acute toxicity during puberty, and the relative effect of PnCDF varies markedly depending on the indices used. - Highlights: • 2,3,4,7,8-Pentachlorodibenzofuran (PnCDF) lowers gonadal steroidogenesis in fetuses. • PnCDF exerts the above effect through an initial attenuation in gonadotropin level. • PnCDF imprints sexual immaturity by transiently disrupting the pituitary–gonad axis. • PnCDF also disturbs pup growth probably due to a reduction in growth hormone level. • The above effects are far lesser in PnCDF than 2

  9. Hypothalamus-pituitary-thyroid axis disruption in rats with breast cancer is related to an altered endogenous oxytocin/insulin-regulated aminopeptidase (IRAP) system.

    Science.gov (United States)

    Carrera-González, María Pilar; Ramírez-Expósito, María Jesús; de Saavedra, Jose Manuel Arias; Sánchez-Agesta, Rafael; Mayas, María Dolores; Martínez-Martos, Jose Manuel

    2011-06-01

    Associations of breast cancer with diseases of the thyroid have been repeatedly reported, but the mechanism underlying this association remains to be elucidated. It has been reported that oxytocin (OXT) attenuates the thyroid-stimulating hormone (TSH) release in response to thyrotrophin-releasing hormone (TRH) and decreased plasma levels of TSH as well as the thyroid hormones by an effect mediated by the central nervous system. Oxytocinase (IRAP) is the regulatory proteolytic enzyme reported to hydrolyze OXT. Changes in IRAP activity have been reported in both human breast cancer and N-methyl-nitrosourea (NMU)-induced rat mammary tumours. Here, we measure IRAP activity fluorometrically using cystyl-β-naphthylamide as the substrate, in the hypothalamus-pituitary-thyroid axis together with the circulating levels of OXT, and its relationship with circulating levels of TSH and free thyroxine (fT4), as markers of thyroid function in control rats and rats with breast cancer induced by NMU. We found decreased thyroid function in rats with breast cancer induced by NMU, supported by the existence of lower serum circulating levels of both TSH and fT4 than their corresponding controls. Concomitantly, we found a decrease of hypothalamic IRAP activity and an increase in circulating levels of OXT. We propose that breast cancer increases OXT pituitary release by decreasing its hypothalamic catabolism through IRAP activity, probably due to the alteration of the estrogenic endocrine status. Thus, high circulating levels of OXT decreased TSH release from the pituitary, and therefore, of thyroid hormones from the thyroid, supporting the association between breast cancer and thyroid function disruption.

  10. Influence of physical factors on sexual function and pituitary gland-gonads system. Chapter 3

    International Nuclear Information System (INIS)

    2000-01-01

    In the Chapter 3 it is noted, that different physical factors even with low intensity (vibration, noise, electromagnetic oscillations of s.h.f. and u.h.f range, laser radiation, temperature changes) predictably lead to spermatogenesis dysfunctions and functional shift in hypothalamus-pituitary gland-gonads system with examined animals and man. The sexual function of men changing in the result of contact with unfavourable physical factors arise early and quite often they preceding the manifestation of occupational diseases pattern

  11. Activation of the baboon fetal hypothalamic-pituitary-adrenocortical axis at midgestation by estrogen-induced changes in placental corticosteroid metabolism

    International Nuclear Information System (INIS)

    Pepe, G.J.; Waddell, B.J.; Albrecht, E.D.

    1990-01-01

    We have hypothesized that the change in placental cortisol (F)-cortisone (E) metabolism induced by estrogen late in gestation is important to activation of the baboon fetal hypothalamic-pituitary-adrenocortical axis, culminating in the ontogenesis of de novo F secretion by the fetal adrenal. The present study tested this hypothesis in vivo by comparing the proportion of F in the fetus derived via maternal and fetal production on day 100 (n = 7; term = day 184) and day 165 (n = 4) in untreated baboons and on day 100 in baboons (n = 9) in which 50-mg pellets of androstenedione were implanted sc in the mother in increasing numbers (i.e. two on day 70, four on day 78, six on day 86, and eight on day 94) to increase placental estrogen production. Maternal, uterine, and umbilical venous samples were collected during constant maternal infusion (120 min) of [3H]F/[14C]E, endogenous and radiolabeled F/E content was determined, and corticosteroid dynamics were quantified. The MCR and peripheral interconversion of F and E as well as the production rate of F were unaltered in the mother. However, at midgestation, androstenedione increased (P less than 0.05) estrogen by 62% and altered transuterofeto placental F-E metabolism from preferential reduction of E to preferential oxidation of F, a pattern similar to that at term. In untreated baboons, on day 100 none of the F in the fetus was due to fetal production, whereas by day 165, 49 +/- 6% was of fetal origin. In animals treated with androstenedione at midgestation, 22 +/- 4% of fetal F was derived de novo within the fetus. Thus, production of F by the fetus was negligible on day 100, increased near term in association with an increase in transplacental oxidation of F to E, and was induced at midgestation in baboons in which placental F-E metabolism was altered by an increase in estrogen production

  12. Seasonal and sex-related variations in serum steroid hormone levels in wild and farmed brown trout Salmo trutta L. in the north-west of Spain.

    Science.gov (United States)

    Fregeneda-Grandes, Juan M; Hernández-Navarro, Salvador; Fernandez-Coppel, Ignacio A; Correa-Guimaraes, Adriana; Ruíz-Potosme, Norlan; Navas-Gracia, Luis M; Aller-Gancedo, J Miguel; Martín-Gil, Francisco J; Martín-Gil, Jesús

    2013-12-01

    Serum steroid profiles were investigated in order to evaluate the potential use of circulating sex steroid levels as a tool for sex identification in brown trout. Changes in the serum concentrations of testosterone (T), progesterone (P), 17-β-estradiol (E2), and cortisol (F) in wild and farmed mature female and male brown trout, Salmo trutta L., were measured in each season (January, May, July, and October) in six rivers and four hatcheries located in the north-west of Spain. Serum cortisol levels in farmed brown trout were significantly higher and showed a seasonal pattern opposite to that found in wild trout. Because levels of the hormones under study can be affected by disruptive factors such as exposure to phytoestrogens (which alters the hypothalamic-pituitary-gonadal axis) and infection with Saprolegnia parasitica (which alters the hypothalamic-pituitary-adrenal axis), both factors are taken into account.

  13. Polymorphisms of genes related to the hypothalamic-pituitary-adrenal axis influence the cortisol awakening response as well as self-perceived stress.

    Science.gov (United States)

    Li-Tempel, Ting; Larra, Mauro F; Winnikes, Ulrike; Tempel, Tobias; DeRijk, Roel H; Schulz, André; Schächinger, Hartmut; Meyer, Jobst; Schote, Andrea B

    2016-09-01

    The hypothalamus-pituitary-adrenal (HPA) axis is a crucial endocrine system for coping with stress. A reliable and stable marker for the basal state of that system is the cortisol awakening response (CAR). We examined the influence of variants of four relevant candidate genes; the mineralocorticoid receptor gene (MR), the glucocorticoid receptor gene (GR), the serotonin transporter gene (5-HTT) and the gene encoding the brain-derived neurotrophic factor (BDNF) on CAR and self-perceived stress in 217 healthy subjects. We found that polymorphisms of GR influenced both, the basal state of the HPA axis as well as self-perceived stress. MR only associated with self-perceived stress and 5-HTT only with CAR. BDNF did not affected any of the investigated indices. In summary, we suggest that GR variants together with the CAR and supplemented with self reports on perceived stress might be useful indicators for the basal HPA axis activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Possible role of vitamins A and/or α-tocopheryl acetate in modulating -radiation-induced disorders on the pituitary-gonadal-adrenal axis hormones and some related minerals in female rats

    International Nuclear Information System (INIS)

    Abou-Safi, H.M.; Hussien, A.H.; El-Sayed, N.M.

    2006-01-01

    The present study aimed to evaluate the role of vitamins A (15000 IU/kg body wt) and α -tocopheryl acetate (100 mg/kg body wt) on repairing the disorders induced by γ -radiation on the pituitary-gonadal adrenal axis hormones in female rats during the estrus phase of estrus cycle. The investigation included the determination of follicle-stimulating hormone (FSH) estradiol (E2) progesterone (P) aldosterone (Ald), Na + , K + and Ca 2+ , levels in serum. Animals were divided into 5 groups: control, whole body -irradiated (6 Gy), injected with vitamin A 2 h before irradiation, subjected to γ -radiation then injected with α-tocopheryl acetate 1 h later and injected with vitamin A pre-irradiation, then injected with α -tocopheryl acetate post-irradiation. Animals were treated at the pro-estrus stage then, serum samples were taken at the estrus stage. Results showed that irradiation induced significant decreases in serum levels of FSH, E2, aldosterone and potassium, whereas, it elevated significantly the serum levels of P4 and sodium but there was in serum calcium levels. Both vitamins A and / orα-tocopheryl acetate succeeded to confront γ -radiation disorders on the estimated hormones and related minerals. The combination of vitamins A and α -tocopheryl acetate was more effective than either one alone

  15. Effects of denial of reward through maternal contact in the neonatal period on adult hypothalamic-pituitary-adrenal axis function in the rat.

    Science.gov (United States)

    Diamantopoulou, Anastasia; Raftogianni, Androniki; Stamatakis, Antonios; Oitzl, Melly S; Stylianopoulou, Fotini

    2013-06-01

    Emotional behavioral traits associated with stress response are well documented to be affected by early life events. In the present work, we used a novel paradigm of neonatal experience, in which pups were trained in a T-maze and either received (RER rats) or were denied (DER) the reward of maternal contact, during postnatal days 10-13. We then evaluated stress coping and key factors controlling the function of the hypothalamic-pituitary-adrenal axis in adulthood. Adult male DER rats exposed to a single session of forced swim stress (FSS) showed increased immobility, while RER rats exhibited increased escape attempts. The corticosterone response following this stressor was higher although not prolonged in the DER rats. Their CRH mRNA levels in the PVN were increased up to 2h after the forced swim. However, basal levels of these hormones did not differ among groups. In addition, the DER neonatal experience induced an increase in hippocampal GR but a decrease in CRH-R1 immunopositive cells in the CA1 area of the hippocampus and the central amygdala. Overall, these data show a distinct stress response profile in the DER male rats, characterized by passive coping during the forced swim, increased hormonal response following stress, increased inhibitory control through GR and an indirect contribution of CRH-R1, the latter two factors resulting in a modified regulation of the response termination. It thus appears that DER rats have an enhanced potential for appropriate reactivity upon an incoming challenge, while maintaining in parallel an adequate control of the duration of their stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Responsiveness of the hypothalamic-pituitary-adrenal axis to different novel environments is a consistent individual trait in adult male outbred rats.

    Science.gov (United States)

    Márquez, Cristina; Nadal, Roser; Armario, Antonio

    2005-02-01

    Susceptibility to some stress-induced pathologies may be strongly related to individual differences in the responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis to stressors. However, there have been few attempts in rodents to study the reliability of the individual differences in the responsiveness of the HPA to stressors and the relationship to resting corticosterone levels. In the present work, we used a normal population of Sprague-Dawley rats, with a within-subject design. Our objectives were to study: (a) the reliability of the ACTH and corticosterone response to three different novel environments widely used in psychopharmacology and (b) the relationship between stress levels of HPA hormones and the daily pattern of corticosterone secretion (six samples over a 24-h-period). Animals were repeatedly sampled using tail-nick procedure. The novel environments were the elevated plus-maze, the hole-board and the circular corridor. Animals were sampled just after 15 min exposure to the tests and again at 15 and 30 min after the termination of exposure to them (post-tests). The hormonal levels just after the tests indicate that the hole-board seems to be more stressful than the circular corridor and the elevated plus-maze, the latter being characterized by the lowest defecation rate. Correlational analysis revealed that daily pattern of resting plasma corticosterone levels did not correlate to HPA responsiveness to the tests, suggesting no relationship between resting and stress levels of HPA hormones. In contrast, the present study demonstrates, for the first time, a good within-subject reliability of the ACTH and corticosterone responses to the three environments, suggesting that HPA responsiveness to these kind of stressors is a consistent individual trait in adult rats, despite differences in the physical characteristics of the novel environments.

  17. The effects of Δ9-Tetrahydrocannabinole treatment on gonadal micro-vascularization and affected fertility examined by SEM and 3D-morphometry

    International Nuclear Information System (INIS)

    Erlbacher, K M T; Minnich, B

    2015-01-01

    The present study focuses on the effects of Δ 9 -tetrahydrocannabinol (THC) on the reproductive system in nude rats with special emphasis on how Δ 9 -THC impacts the vascularization of testes which in turn indirectly influences fertility. Basically, Δ 9 -tetrahydrocannabinol (THC) causes not only negative (psychoactive) effects in the human body as cannabinole administration in medical use (dose-dependent) offers multiple new treatment opportunities such as pain relief or containment of various cancers. Concerning the reproductive system it strongly influences CB-receptors along the hypothalamic-pituitary-gonadal axis resulting in reduced plasma testosterone levels. There is also altered sperm quality parameters reported such as sperm motility or sperm count. On the other hand Δ 9 -THC effects endothelial growth factors (VEGF, Ang-1 etc.) respectively acts on their specific receptors which in turn modify angiogenesis and vascularization of tissues and organs (e.g. tumorous tissues). This leads to new therapeutical strategies in the suppression of various cancers by inhibiting (neo-)vascularization and in turn famishment of tumorous tissues (lack of nutrition supply). Here we studied the micro-vascularization of gonads in a long-term THC-treated nude rat model by vascular corrosion casting, SEM and 3D-morphometry. (paper)

  18. The effects of Δ9-Tetrahydrocannabinole treatment on gonadal micro-vascularization and affected fertility examined by SEM and 3D-morphometry

    Science.gov (United States)

    Erlbacher, K. M. T.; Minnich, B.

    2015-10-01

    The present study focuses on the effects of Δ9-tetrahydrocannabinol (THC) on the reproductive system in nude rats with special emphasis on how Δ9-THC impacts the vascularization of testes which in turn indirectly influences fertility. Basically, Δ9-tetrahydrocannabinol (THC) causes not only negative (psychoactive) effects in the human body as cannabinole administration in medical use (dose-dependent) offers multiple new treatment opportunities such as pain relief or containment of various cancers. Concerning the reproductive system it strongly influences CB-receptors along the hypothalamic-pituitary-gonadal axis resulting in reduced plasma testosterone levels. There is also altered sperm quality parameters reported such as sperm motility or sperm count. On the other hand Δ9-THC effects endothelial growth factors (VEGF, Ang-1 etc.) respectively acts on their specific receptors which in turn modify angiogenesis and vascularization of tissues and organs (e.g. tumorous tissues). This leads to new therapeutical strategies in the suppression of various cancers by inhibiting (neo-)vascularization and in turn famishment of tumorous tissues (lack of nutrition supply). Here we studied the micro-vascularization of gonads in a long-term THC-treated nude rat model by vascular corrosion casting, SEM and 3D-morphometry.

  19. JMJD3 Is Crucial for the Female AVPV RIP-Cre Neuron-Controlled Kisspeptin-Estrogen Feedback Loop and Reproductive Function.

    Science.gov (United States)

    Song, Anying; Jiang, Shujun; Wang, Qinghua; Zou, Jianghuan; Lin, Zhaoyu; Gao, Xiang

    2017-06-01

    The hypothalamic-pituitary-gonadal axis controls development, reproduction, and metabolism. Although most studies have focused on the hierarchy from the brain to the gonad, many questions remain unresolved concerning the feedback from the gonad to the central nervous system, especially regarding the potential epigenetic modifications in hypothalamic neurons. In the present report, we generated genetically modified mice lacking histone H3 lysine 27 (H3K27) demethylase Jumonji domain-containing 3 (JMJD3) in hypothalamic rat-insulin-promoter-expressing neurons (RIP-Cre neurons). The female mutant mice displayed late-onset obesity owing to reduced locomotor activity and decreased energy expenditure. JMJD3 deficiency in RIP-Cre neurons also results in delayed pubertal onset, an irregular estrous cycle, impaired fertility, and accelerated ovarian failure in female mice owing to the dysregulation of the hypothalamic-ovarian axis. We found that JMJD3 directly regulates Kiss1 gene expression by binding to the Kiss1 promoter and triggering H3K27me3 demethylation in the anteroventral periventricular (AVPV) nucleus. Further study confirmed that the aberrations arose from impaired kisspeptin signaling in the hypothalamic AVPV nucleus and subsequent estrogen deficiency. Estrogen replacement therapy can reverse obesity in mutant mice. Moreover, we demonstrated that Jmjd3 is an estrogen target gene in the hypothalamus. These results provide direct genetic and molecular evidence that JMJD3 is a key mediator for the kisspeptin-estrogen feedback loop. Copyright © 2017 Endocrine Society.

  20. Disorders of sexual development and associated changes in the pituitary-gonadal axis in dogs.

    NARCIS (Netherlands)

    Buijtels, J.J.C.W.M.; de Gier, J.; Kooistra, H.S.; Grinwis, G.C.M.; Naan, E.C.; Zijlstra, C.; Okkens, A.C.

    2012-01-01

    Normal sexual differentiation depends on completion of chromosomal sex determination, gonadal differentiation, and development of the phenotypic sex. An irregularity in any of these three steps can lead to a disorder in sexual development (DSD). We examined nine dogs with DSD by abdominal

  1. Involvement of hypothalamus autoimmunity in patients with autoimmune hypopituitarism: role of antibodies to hypothalamic cells.

    Science.gov (United States)

    De Bellis, A; Sinisi, A A; Pane, E; Dello Iacovo, A; Bellastella, G; Di Scala, G; Falorni, A; Giavoli, C; Gasco, V; Giordano, R; Ambrosio, M R; Colao, A; Bizzarro, A; Bellastella, A

    2012-10-01

    Antipituitary antibodies (APA) but not antihypothalamus antibodies (AHA) are usually searched for in autoimmune hypopituitarism. Our objective was to search for AHA and characterize their hypothalamic target in patients with autoimmune hypopituitarism to clarify, on the basis of the cells stained by these antibodies, the occurrence of autoimmune subclinical/clinical central diabetes insipidus (CDI) and/or possible joint hypothalamic contribution to their hypopituitarism. We conducted a cross-sectional cohort study. Ninety-five APA-positive patients with autoimmune hypopituitarism, 60 without (group 1) and 35 with (group 2) lymphocytic hypophysitis, were studied in comparison with 20 patients with postsurgical hypopituitarism and 50 normal subjects. AHA by immunofluorescence and posterior pituitary function were evaluated; then AHA-positive sera were retested by double immunofluorescence to identify the hypothalamic cells targeted by AHA. AHA were detected at high titer in 12 patients in group 1 and in eight patients in group 2. They immunostained arginine vasopressin (AVP)-secreting cells in nine of 12 in group 1 and in four of eight in group 2. All AVP cell antibody-positive patients presented with subclinical/clinical CDI; in contrast, four patients with GH/ACTH deficiency but with APA staining only GH-secreting cells showed AHA targeting CRH- secreting cells. The occurrence of CDI in patients with lymphocytic hypophysitis seems due to an autoimmune hypothalamic involvement rather than an expansion of the pituitary inflammatory process. To search for AVP antibody in these patients may help to identify those of them prone to develop an autoimmune CDI. The detection of AHA targeting CRH-secreting cells in some patients with GH/ACTH deficiency but with APA targeting only GH-secreting cells indicates that an autoimmune aggression to hypothalamus is jointly responsible for their hypopituitarism.

  2. Effects of global warming on fish reproductive endocrine axis, with special emphasis in pejerrey Odontesthes bonariensis.

    Science.gov (United States)

    Miranda, Leandro Andrés; Chalde, Tomás; Elisio, Mariano; Strüssmann, Carlos Augusto

    2013-10-01

    The ongoing of global warming trend has led to an increase in temperature of several water bodies. Reproduction in fish, compared with other physiological processes, only occurs in a bounded temperature range; therefore, small changes in water temperature could significantly affect this process. This review provides evidence that fish reproduction may be directly affected by further global warming and that abnormal high water temperature impairs the expression of important genes throughout the brain-pituitary-gonad axis. In all fishes studied, gonads seem to be the organ more readily damaged by heat treatments through the inhibition of the gene expression and subsequent synthesis of different gonadal steroidogenic enzymes. In view of the feedback role of sex steroids upon the synthesis and release of GnRH and GtHs in fish, it is possible that the inhibition observed at brain and pituitary levels in treated fish is consequence of the sharp decrease in plasma steroids levels. Results of in vitro studies on the inhibition of pejerrey gonad aromatase expression by high temperature corroborate that ovary functions are directly disrupted by high temperature independently of the brain-pituitary axis. For the reproductive responses obtained in laboratory fish studies, it is plausible to predict changes in the timing and magnitude of reproductive activity or even the total failure of spawning season may occur in warm years, reducing annual reproductive output and affecting future populations. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Acute oral administration of the novel, competitive and selective glucocorticoid receptor antagonist ORG 34517 reduces the severity of ethanol withdrawal and related hypothalamic-pituitary-adrenal axis activation.

    Science.gov (United States)

    Reynolds, Anna R; Saunders, Meredith A; Brewton, Honoree' W; Winchester, Sydney R; Elgumati, Ibrahim S; Prendergast, Mark A

    2015-09-01

    The development of ethanol dependence is associated with alterations in hypothalamic-pituitary-adrenal (HPA) axis and activation of type II glucocorticoid receptors (GR). These effects may contribute to withdrawal-associated anxiety, craving and relapse to drinking. The present studies examined acute and oral administration of the novel, selective and competitive GR antagonist ORG 34517 on the severity of ethanol withdrawal. Adult, male Sprague-Dawley rats were administered ethanol (4g/kg/i.g.) twice daily for 5 days followed by 2 days of withdrawal for 1, 2 or 3 consecutive cycles. Blood ethanol levels (BELs) were determined at 0930 on Day 4 of each week, while blood corticosterone levels (BCLs) were obtained at 11:00hours on the first day of each ethanol withdrawal. During early withdrawal, subjects received oral administration of ORG 345617 (60mg/kg/i.g.) or a placebo and withdrawal was monitored. Peak BELs of 225.52mg/dl were observed during the third week. Withdrawal from three cycles of the regimen produced marked behavioral abnormalities (e.g., aggression, rigidity, and hypoactivity) and significant increases in BCLs of ethanol-dependent subjects. Acute, oral administration of ORG 34517 during early withdrawal significantly reduced both the severity of ethanol withdrawal, as reflected in reduced rigidity, aggression, and hypoactivity, and elevations in BCL without producing any sedative-like effects. The present findings demonstrate that repeated ethanol exposure and withdrawal is associated with significant behavioral abnormalities and dysregulation of HPA axis activation. Further these data suggest that selective GR antagonists should be further considered as putative pharmacotherapies for treatment of ethanol dependence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Activity of the hypothalamo-pituitary ovarian axis in hypothyroid rats with or without triiodothyronine replacement

    International Nuclear Information System (INIS)

    Ortega, E.; Rodriguez, E.; Ruiz, E.; Osorio, C.

    1990-01-01

    The hypothalamic pituitary ovarian axis in adult female rats with 131-I induced hypothyroidism was studied before and after triiodothyronine (T3) replacement. Forty days after 131-I, hypothyroid (H) rats showed irregular cycles with predominantly diestrous vaginal smears, atrophied and underweight ovaries, and decreased serum T3, T4, LH and estradiol (E 2 ). T3 replacement restored normal cycles and ovary weight and increased serum E 2 levels above control values, while LH levels remained below the limit of detection of the RIA. The GnRH stimulation test performed on the day that the rats exhibited diestrous vaginal smears elicited a greater increase in FSH than in LH in H rats and a greater increase in LH than in FSH in both H-T3 treated and control rats. The data suggest that the lack of thyroid hormones in adult female rats seems to produce a reversion of sexual hormones to a prepubertal pattern, while T3 treatment restored normal estrous cycles and ovarian function

  5. The pituitary-gonadal axis in healthy female dogs and bitches with gynecological disorders

    NARCIS (Netherlands)

    Buijtels, J.J.C.W.M.

    2011-01-01

    The pituitary gland produces and secretes follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in a pulsatile fashion, induced by pulses of gonadotropin-releasing hormone (GnRH) from the hypothalamus. Different cells in the ovary are capable of secreting estradiol, testosterone and

  6. Association between Mastication, the Hippocampus, and the HPA Axis: A Comprehensive Review.

    Science.gov (United States)

    Azuma, Kagaku; Zhou, Qian; Niwa, Masami; Kubo, Kin-Ya

    2017-08-03

    Mastication is mainly involved in food intake and nutrient digestion with the aid of teeth. Mastication is also important for preserving and promoting general health, including hippocampus-dependent cognition. Both animal and human studies indicate that mastication influences hippocampal functions through the end product of the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoid (GC). Epidemiologic studies suggest that masticatory dysfunction in aged individuals, such as that resulting from tooth loss and periodontitis, acting as a source of chronic stress, activates the HPA axis, leading to increases in circulating GCs and eventually inducing various physical and psychological diseases, such as cognitive impairment, cardiovascular disorders, and osteoporosis. Recent studies demonstrated that masticatory stimulation or chewing during stressful conditions suppresses the hyperactivity of the HPA axis via GCs and GC receptors within the hippocampus, and ameliorates chronic stress-induced hippocampus-dependent cognitive deficits. Here, we provide a comprehensive overview of current research regarding the association between mastication, the hippocampus, and HPA axis activity. We also discuss several potential molecular mechanisms involved in the interactions between mastication, hippocampal function, and HPA axis activity.

  7. Hypothalamic, pituitary and thyroid dysfunction after radiotherapy to the head and neck

    International Nuclear Information System (INIS)

    Samaan, N.A.; Vieto, R.; Schultz, P.N.; Maor, M.; Meoz, R.T.; Sampiere, V.A.; Cangir, A.; Ried, H.L.; Jesse, R.H. Jr.

    1982-01-01

    One hundred-ten patients who had nasopharyngeal cancer and paranasal sinus tumors and were free of the primary disease were studied one to 26 years following radiotherapy. There were 70 males and 40 females ranging in age from 4 to 75 years, with a mean age of 36.5 years. During therapy both the hypothalamus and the anterior pituitary gland was estimated to be 400 to 7500 rad with a median dose of 5618 rad to the anterior pituitary gland and a median dose of 5000 rad to the hypothalamus. Seventy-six patients showed evidence of one or more hypothalamic lesions and 43 patients showed evidence of primary pituitary deficiency. Forty of the 66 patients who received radiotherapy to the neck for treatment or prevention of lymph node metastasis showed evidence of primary hypothyroidism. The range of the dose to the thyroid area was 3000 to 8800 rad with a median of 5000 rad. These results indicate that endocrine deficiencies after radiotherapy for tumors of the head and neck are common and should be detected early and treated. Long-term follow-up of these patients is indicated since complications may appear after the completion of radiotherapy

  8. Optic nerve size evaluated by magnetic resonance imaging in children with optic nerve hypoplasia, multiple pituitary hormone deficiency, isolated growth hormone deficiency, and idiopathic short stature.

    Science.gov (United States)

    Birkebaek, Niels Holtum; Patel, Leena; Wright, Neville Bryce; Grigg, John Russell; Sinha, Smeeta; Hall, Catherine Margaret; Price, David Anthony; Lloyd, Ian Christopher; Clayton, Peter Ellis

    2004-10-01

    To objectively define criteria for intracranial optic nerve (ON) size in ON hypoplasia (ONH) on magnetic resonance imaging (MRI) scans. Intracranial ON sizes from MRI were compared between 46 children with ONH diagnosed by ophthalmoscopy (group 1, isolated ONH, 8 children; and group 2, ONH associated with abnormalities of the hypothalamic-pituitary axis and septum pellucidum, 38 children) and children with multiple pituitary hormone deficiency (group 3, multiple pituitary hormone deficiency, 14 children), isolated growth hormone deficiency (group 4, isolated growth hormone deficiency, 15 children), and idiopathic short stature (group 5, idiopathic short stature, 10 children). Intracranial ON size was determined by the cross-sectional area, calculated as [pi x (1/2) height x (1/2) width]. Groups 1 and 2 had lower intracranial ON size than did groups 3, 4, and 5 (P imaging of the ONs with cross-sectional area short child more than 12 months of age, with or without hypothalamic-pituitary axis abnormalities, confirms the clinical diagnosis of ONH.

  9. Serotonergic stimulation of the rat hypothalamo-pituitary-adrenal axis

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Hay-Schmidt, Anders; Kiss, Alexander

    2004-01-01

    Acute stimulation of the hypothalamo-pituitary-adrenal (HPA) axis by selective serotonin reuptake inhibitors (SSRIs) is mediated by several postsynaptic 5-HT receptor subtypes. Activation of 5-HT(1A) and 5-HT(2A) receptors increases plasma corticosterone levels, and it is likely that these recept...

  10. In Search of HPA Axis Dysregulation in Child and Adolescent Depression

    Science.gov (United States)

    Guerry, John D.; Hastings, Paul D.

    2011-01-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in adults with major depressive disorder is among the most consistent and robust biological findings in psychiatry. Given the importance of the adolescent transition to the development and recurrence of depressive phenomena over the lifespan, it is important to have an integrative…

  11. Effects of low-dose cranial radiation on growth hormone secretory dynamics and hypothalamic-pituitary function

    International Nuclear Information System (INIS)

    Costin, G.

    1988-01-01

    Spontaneous growth hormone (GH) secretory dynamics and hypothalamic-pituitary function were studied in 16 long-term survivors of acute lymphoblastic leukemia who were aged 9 to 15 1/2 years and had been treated with prophylactic central nervous system radiation and combined chemotherapy. At the time of study, the mean height was -1.5 SD score below the mean, less than genetic potential, and significantly less than the mean pretreatment height of -0.25 SD score. Height velocity was subnormal for age and sexual stage in all patients. Two patients had compensated hypothyroidism, and four had evidence of gonadal failure. In 11 patients, the peak GH level after two provocative tests was below 10 micrograms/L, which was consistent with GH deficiency. In ten of 13 patients tested, spontaneous GH secretion determined by a 24-hour GH concentration (GHC), GH pulse amplitude, frequency of GH pulses greater than or equal to 5 micrograms/L, and GH peak during wake and sleep hours was significantly less than in normal height controls. Although in three pubertal patients the 24-hour GHC was within normal limits, the GHC during sleep hours, GH pulse amplitude during 24 hours and sleep hours, and peak GH during wake hours were significantly less than in normal height controls. In all pubertal and in two of the prepubertal patients, the somatomedin C (SmC) level was significantly less than in controls. The 24-hour GHC correlated well with the GHC during sleep, peak-stimulated GH level, gonadal steroid level, and the SmC level, but not with height velocity, dose of radiation, or age at radiation. A significant increase in height velocity and the SmC level was noted in all patients treated with GH. These results indicate that GH deficiency occurs after 18 to 24 Gy of cranial radiation and that the puberty-associated growth spurt may mask the decline in height velocity owing to GH deficiency

  12. Pituitary disorders and their extra-pituitary implications : observations in patients with nonfunctioning pituitary macroadenoma and the IGSF1 deficiency syndrome

    NARCIS (Netherlands)

    Joustra, S.D.

    2016-01-01

    In this thesis, we explored pituitary functioning and extra-pituitary implications of two pituitary disorders in humans. In part A, we focused on the long-term consequences of the diagnosis and treatment of nonfunctioning pituitary macroadenoma (NFMA) on hypothalamic regulation of circadian

  13. Sex differences in the behavioural and hypothalamic-pituitary-adrenal response to contextual fear conditioning in rats.

    Science.gov (United States)

    Daviu, Núria; Andero, Raül; Armario, Antonio; Nadal, Roser

    2014-11-01

    In recent years, special attention is being paid to sex differences in susceptibility to disease. In this regard, there is evidence that male rats present higher levels of both cued and contextual fear conditioning than females. However, little is known about the concomitant hypothalamic-pituitary-adrenal (HPA) axis response to those situations which are critical in emotional memories. Here, we studied the behavioural and HPA responses of male and female Wistar rats to context fear conditioning using electric footshock as the aversive stimulus. Fear-conditioned rats showed a much greater ACTH and corticosterone response than those merely exposed to the fear conditioning chamber without receiving shocks. Moreover, males presented higher levels of freezing whereas HPA axis response was greater in females. Accordingly, during the fear extinction tests, female rats consistently showed less freezing and higher extinction rate, but greater HPA activation than males. Exposure to an open-field resulted in lower activity/exploration in fear-conditioned males, but not in females, suggesting greater conditioned cognitive generalization in males than females. It can be concluded that important sex differences in fear conditioning are observed in both freezing and HPA activation, but the two sets of variables are affected in the opposite direction: enhanced behavioural impact in males, but enhanced HPA responsiveness in females. Thus, the role of sex differences on fear-related stimuli may depend on the variables chosen to evaluate it, the greater responsiveness of the HPA axis in females perhaps being an important factor to be further explored. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Hypothalamic-pituitary-adrenal axis tonus is associated with hippocampal microstructural asymmetry

    DEFF Research Database (Denmark)

    Madsen, Kathrine Skak; Jernigan, Terry L; Iversen, Pernille

    2012-01-01

    It is well-established that prolonged high levels of cortisol have adverse effects on hippocampal neurons and glial cells. Morphometric studies linking hippocampus volume to basal HPA-axis activity, however, have yielded less consistent results. Asymmetry may also be considered, since there is gr......It is well-established that prolonged high levels of cortisol have adverse effects on hippocampal neurons and glial cells. Morphometric studies linking hippocampus volume to basal HPA-axis activity, however, have yielded less consistent results. Asymmetry may also be considered, since....... Observed associations raise a number of possibilities, among them an asymmetric role of the hippocampus on HPA-axis regulation, or conversely, that individual variations in secreted cortisol, perhaps associated with stress, may have lateralized effects on hippocampal microstructure. Our results point...

  15. STRESS AS PREDISPOSING FACTOR OF SOME CHRONIC DISEASES INCLUDING PERIODONTAL DISEASE

    Directory of Open Access Journals (Sweden)

    Dewi-Nurul M Dewi-Nurul

    2006-04-01

    Full Text Available Stress is hypothesized as a common pathway for several related chronic diseases of man. Psychosocial stress as modified by perceptions and coping by patients can lead to physical processes. Psychoneuroimmunologic (PNI studies have suggested that psychosocial stress can alter immune function and increase vulnerability to illnesses. The patients also have high sensitivity to periodontal disease (PD. This article describes the association of stress as a physiological response to diseases such as PD, rheumatoid arthritis (RA, and inflammatory bowel disease. The psychosocial stress can lead to physiological processes through 1 the hypothalamic-pituitary-adrenal (HPA axis leading to glucocortico-steroid secretion; 2 the autonomic nervous system, resulting in the release of catecholamine; or 3 the hypothalamic-pituitary-gonadal axis, resulting in the release of sex hormones. These processes may affect chronic diseases. It can be concluded that psychosocial stress in periodontal disease patients must be considered and social support must be provided in order to achieve an optimum periodontal therapy result.

  16. Maternal separation as a model of brain-gut axis dysfunction.

    LENUS (Irish Health Repository)

    O'Mahony, Siobhain M

    2011-03-01

    Early life stress has been implicated in many psychiatric disorders ranging from depression to anxiety. Maternal separation in rodents is a well-studied model of early life stress. However, stress during this critical period also induces alterations in many systems throughout the body. Thus, a variety of other disorders that are associated with adverse early life events are often comorbid with psychiatric illnesses, suggesting a common underlying aetiology. Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is thought to involve a dysfunctional interaction between the brain and the gut. Essential aspects of the brain-gut axis include spinal pathways, the hypothalamic pituitary adrenal axis, the immune system, as well as the enteric microbiota. Accumulating evidence suggest that stress, especially in early life, is a predisposing factor to IBS.

  17. A model for evaluating steroids acting at the hypothalamus-pituitary axis using radioimmunoassay and related procedures

    International Nuclear Information System (INIS)

    Spona, J.; Bieglmayer, C.; Schroeder, R.; Poeckl, E.

    1977-01-01

    Relative affinity constants for binding of estrone (E 1 ), estriol (E 3 ), 17β-estradiol (E 2 ) and 17α-ethinyl-17β-estradiol (EE 2 ) to cytosol estrogen-receptor of rat hypothalamus and pituitary were estimated by radioligand-receptor assays. Relative affinity constants in the hypothalamic system were 6.5 x 10 -1 M for E 2 , 1 x 10 -9 M for EE 2 and 2 x 10 -8 M for E 1 and E 3 , respectively. The affinity constants were 1 x 10 -9 M for E 2 and E 3 and 7 x 10 -9 M for E 1 and E 3 , resp., when pituitary cytosol samples were used. Some discrepancies between biological activity and affinity for the estrogen-receptor was noted, which may be due to differences in the metabolisms and cellular uptake of the estrogens. The present system may be also a useful procedure to help to provide a good definition of estrogen and anti-estroegn acting at the hypothalamic and pituitary level. Sedimentation patterns of cytosol samples labeled with estrogens used in this study revealed protein moieties sedimenting upon ultracentrifugation in the 8 S region. (orig.) [de

  18. Prostate specific antigen in boys with precocious puberty before and during gonadal suppression by GnRH agonist treatment

    DEFF Research Database (Denmark)

    Juul, A; Müller, J; Skakkebaek, N E

    1997-01-01

    antigen (PSA) is a marker of the androgen-dependent prostatic epithelial cell activity and it is used in the diagnosis and surveillance of adult patients with prostatic cancer. We have measured PSA concentrations in serum from boys with precocious puberty before and during gonadal suppression with Gn......In healthy boys, the pituitary-gonadal axis exhibits diurnal variation in early puberty. Serum testosterone levels are higher during the night and low or immeasurable during the day. These fluctuating levels of circulating androgens in early pubertal boys are difficult to monitor. Prostate specific...

  19. Ginseng and the hypothalamic-pituitary control of stress.

    Science.gov (United States)

    Fulder, S J

    1981-01-01

    There are a group of so-called tonic remedies in Far Eastern medicine which are traditionally viewed as harmonizing or adjustive. Ginseng and eleutherococcus are the best known, and there is evidence that they increase arousal, stamina and stress resistance. We have attempted to explore the relationship between the behavioral and the stress effects, and to relate this to traditional concepts. In one series of experiments mice were given ginseng throughout their lifespan. At intervals their behavior response to mild stress was examined and found to be exaggerated compared to controls without ginseng. However, normal ambulatory behavior in the absence of stress was unaffected. A second series of experiments indicated that the binding of corticosteroid to certain brain regions was increased in adrenalectomized rats given ginseng saponin, compared to saline treated controls. This can be interpreted as a result of an increase in hypothalamic-pituitary-adrenal sensitivity caused by ginseng saponin. This is in accord with traditional concepts of the use of these remedies.

  20. Hypothalamic-pituitary-testicular system following testicular X-irradiation

    International Nuclear Information System (INIS)

    Verjans, H.L.; Eik-Nes, K.B.

    1976-01-01

    Testes of adult, male rats were exposed to a total dose of 1500 R of X-irradiation. Testicular weight decreased from day 8 after X-ray treatment. This decrease was, however, precded by an increment of the testis weight on day 4 following treatment. X-ray treatment of testes was associated with significant increase in serum FSH. Testicular irradiation had, however, no effect on ventral prostate and seminal vesicles weights. Serum testosterone increased only on day 1, 2 and 4 after irradiation, while serum LH levels tended to increase from day 8 post-irradiation. These changes were not significant, however, when compared with non-irradiated controls. At 7, 13 and 20 days following 1500 R of bilateral, testicular X-irradiation, the hypothalamic-pituitary unit was still capable of responding to exogenous gonadotrophin releasing factor. Serum FSH may in male rats be regulated at least partly by circulating steroids of testicular origin and partly by an unknown factor of non-interstitial cell nature. (author)

  1. Fatigue in Multiple Sclerosis: Is it related to cytokines and hypothalamic-pituitary-adrenal axis?

    Science.gov (United States)

    Akcali, Aylin; Zengin, Fatma; Aksoy, Sefika Nur; Zengin, Orhan

    2017-07-01

    Fatigue is a common symptom of Multiple Sclerosis (MS) that diminishes the quality of life of patients, but its exact mechanism remains poorly understood. There is not a generally adopted scale to determine MS fatigue. Studies that investigated physiopathology of fatigue symptom have shown dysregulation of hypothalamic-pituitaryadrenal (HPA) axis. In the current study, we aimed to compare the results obtained with two separate scales, namely the Fatigue Severity Scale (FSS) and the Neurological Fatigue Index-Multiple Sclerosis (NFI-MS), and assess the relationship between fatigue and serum IL-1β, TNF-α, IL-35, IL-2, IL-10, ACTH, cortisol, α-MSH, β-MSH, γ-MSH and CLIP (Corticotropinlike intermediate lobe peptide) in MS patients categorized as fatigued and non-fatigued on the basis of FSS scores. For the study, a total of 54 (29 females, 25 males) patients diagnosed with RRMS including 26 with fatigue symptom (48.1%), and 26 healthy controls (13 females, 13 males) were enrolled. A FSS score ≥36 was considered as cut-off score to separate fatigued patients from nonfatigued patients. A significant positive correlation was determined between FSS score and NFI-MS scale, NFI-MS 1, NFI-MS 2, NFI-MS 3 and NFI-MS 4 scores. IL-1β, IL-10 and TNF-α levels did not differ between patient and control groups. IL-35 and IL-2 levels were significantly higher among MS patients (pfatigued and nonfatigued patients in the cytokines and HPA parameters studied. ACTH, cortisol and α-MSH were significantly higher in MS group (p=0.02, pfatigue; thus, it may also be widely used to evaluate that symptom. Generally HPA axis is hyperactive in MS patients, but it is not correlated with fatigue in our study. For the first time, levels of CLIP (a type of melanocortin) are studied, and determined to be lower among MS patients. Elevated levels of IL-35 and IL-2 suggest that these cytokines may have a prominent role in MS pathophysiology and can be investigated as potential targets for

  2. Relation among HPA and HPG neuroendocrine systems, transmissible risk and neighborhood quality on development of substance use disorder: results of a 10-year prospective study.

    Science.gov (United States)

    Tarter, Ralph E; Kirisci, Levent; Kirillova, Galina; Reynolds, Maureen; Gavaler, Judy; Ridenour, Ty; Horner, Michelle; Clark, Duncan; Vanyukov, Michael

    2013-01-01

    Research has shown involvement of hormones of the hypothalamic pituitary adrenal (HPA) axis and hypothalamic pituitary gonadal (HPG) axis in the regulation of behaviors that contribute to SUD risk and its intergenerational transmission. Neighborhood environment has also been shown to relate to hormones of these two neuroendocrine systems and behaviors associated with SUD liability. Accordingly, it was hypothesized that (1) parental SUD severity and neighborhood quality correlate with activity of the HPG axis (testosterone level) and HPA axis (cortisol stability), and (2) transmissible risk during childhood mediates these hormone variables on development of SUD measured in adulthood. Transmissible risk for SUD measured by the transmissible liability index (TLI; Vanyukov et al., 2009) along with saliva cortisol and plasma testosterone were prospectively measured in boys at ages 10-12 and 16. Neighborhood quality was measured using a composite score encompassing indicators of residential instability and economic disadvantage. SUD was assessed at age 22. Neither hormone variable cross-sectionally correlated with transmissible risk measured at ages 10-12 and 16. However, the TLI at age 10-12 predicted testosterone level and cortisol stability at age 16. Moreover, testosterone level, correlated with cortisol stability at age 16, predicted SUD at age 22. HPA and HPG axes activity do not underlie variation in TLI, however, high transmissible risk in childhood predicts neuroendocrine system activity presaging development of SUD. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Negative Feedback Control of Pituitary Thyroid-stimulating Hormone Synthesis and Secretion by Thyroid Hormones during Metamorphosis in Xenopus laevis

    Science.gov (United States)

    A basic understanding of the endocrinology of the hypothalamic-pituitary-thyroid (HPT) axis of anuran larvae is necessary for predicting the consequences of HPT perturbation by thyroid-disrupting chemicals (TDCs) on the whole organism. This project examined negative feedback con...

  4. Characterization of central and peripheral components of the hypothalamus-pituitary-adrenal axis in the inbred Roman rat strains.

    Science.gov (United States)

    Carrasco, Javier; Márquez, Cristina; Nadal, Roser; Tobeña, Adolfo; Fernández-Teruel, Albert; Armario, Antonio

    2008-05-01

    Several studies performed in outbred Roman high- and low-avoidance lines (RHA and RLA, respectively) have demonstrated that the more anxious line (RLA) is characterized by a higher hypothalamic-pituitary-adrenal (HPA) response to certain stressors than the less anxious one (RHA). However, inconsistent results have also been reported. Taking advantage of the generation of an inbred colony of RLA and RHA rats (RHA-I and RLA-I, respectively), we have characterized in the two strains not only resting and stress levels of peripheral HPA hormones but also central components of the HPA axis, including CRF gene expression in extra-hypothalamic areas. Whereas resting levels of ACTH and corticosterone did not differ between the strains, a greater response to a novel environment was found in RLA-I as compared to RHA-I rats. RLA-I rats showed enhanced CRF gene expression in the paraventricular nucleus (PVN) of the hypothalamus, with normal arginin-vasopressin gene expression in both parvocellular and magnocellular regions of the PVN. This enhanced CRF gene expression is not apparently related to altered negative corticosteroid feedback as similar levels of expression of brain glucorticoid and mineralocorticoid receptors were found in the two rat strains. CRF gene expression tended to be higher in the central amygdala and it was significantly higher in the dorsal region of the bed nucleus of stria terminalis (BNST) of RLA-I rats, while no differences appeared in the ventral region of BNST. Considering the involvement of CRF and the BNST in anxiety and stress-related behavioral alterations, the present data suggest that the CRF system may be a critical neurobiological substrate underlying differences between the two rat strains.

  5. Hypothalamic, pituitary and thyroid dysfunction after radiotherapy to the head and neck

    Energy Technology Data Exchange (ETDEWEB)

    Samaan, N.A.; Vieto, R.; Schultz, P.N.; Maor, M.; Meoz, R.T.; Sampiere, V.A.; Cangir, A.; Ried, H.L.; Jesse, R.H. Jr.

    1982-11-01

    One hundred-ten patients who had nasopharyngeal cancer and paranasal sinus tumors and were free of the primary disease were studied one to 26 years following radiotherapy. There were 70 males and 40 females ranging in age from 4 to 75 years, with a mean age of 36.5 years. During therapy both the hypothalamus and the anterior pituitary gland were in the field of irradiation. The radiation dose to the hypothalamus and the anterior pituitary gland was estimated to be 400 to 7500 rad with a median dose of 5618 rad to the anterior pituitary gland and a median dose of 5000 rad to the hypothalamus. We found evidence of endocrine deficiencies in 91 of the 110 patients studied. Seventy-six patients showed evidence of one or more hypothalamic lesions and 43 patients showed evidence of primary pituitary deficiency. Forty of the 66 patients who received radiotherapy to the neck for treatment or prevention of lymph node metastasis showed evidence of primary hypothyroidism. The range of the dose to the thyroid area was 3000 to 8800 rad with a median of 5000 rad. One young adult woman who developed galactorrhea and amenorrhea 2 years following radiotherapy showed a high serum prolactin level, but had normal anterior pituitary function and sella turcica. She regained her menses and had a normal pregnancy and delivery following bromocriptine therapy. These results indicate that endocrine deficiencies after radiotherapy for tumors of the head and neck are common and should be detected early and treated. Long-term follow-up of these patients is indicated since complications may appear after the completion of radiotherapy.

  6. Hypothalamic, pituitary and thyroid dysfunction after radiotherapy to the head and neck

    International Nuclear Information System (INIS)

    Samaan, N.A.; Vieto, R.; Schultz, P.N.; Maor, M.; Meoz, R.T.; Sampiere, V.A.; Cangir, A.; Ried, H.L.; Jesse, R.H. Jr.

    1982-01-01

    One hundred-ten patients who had nasopharyngeal cancer and paranasal sinus tumors and were free of the primary disease were studied one to 26 years following radiotherapy. There were 70 males and 40 females ranging in age from 4 to 75 years, with a mean age of 36.5 years. During therapy both the hypothalamus and the anterior pituitary gland were in the field of irradiation. The radiation dose to the hypothalamus and the anterior pituitary gland was estimated to be 400 to 7500 rad with a median dose of 5618 rad to the anterior pituitary gland and a median dose of 5000 rad to the hypothalamus. We found evidence of endocrine deficiencies in 91 of the 110 patients studied. Seventy-six patients showed evidence of one or more hypothalamic lesions and 43 patients showed evidence of primary pituitary deficiency. Forty of the 66 patients who received radiotherapy to the neck for treatment or prevention of lymph node metastasis showed evidence of primary hypothyroidism. The range of the dose to the thyroid area was 3000 to 8800 rad with a median of 5000 rad. One young adult woman who developed galactorrhea and amenorrhea 2 years following radiotherapy showed a high serum prolactin level, but had normal anterior pituitary function and sella turcica. She regained her menses and had a normal pregnancy and delivery following bromocriptine therapy. These results indicate that endocrine deficiencies after radiotherapy for tumors of the head and neck are common and should be detected early and treated. Long-term follow-up of these patients is indicated since complications may appear after the completion of radiotherapy

  7. Chronic Stress and Limbic-Hypothalamopituitary-Adrenal Axis (LHPA Response in Female Reproductive system

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2009-12-01

    Full Text Available The hypothalamo-pituitary-adrenocortical (HPA axis is a critical adaptive system that maximizes survival potential in the face of physical or psychological challenge. The principal end products of the HPA axis, glucocorticoid hormones, act on multiple organ systems, including the brain, to maintain homeostatic balance. The brain is a target of stress, and the hippocampus is the first brain region, besides the hypothalamus, to be recognized as a target of glucocorticoids. These anatomical areas in brain are limbic system, and in particular the hippocampus, medial prefrontal cortex (mPFC and amigdal that have multiple control points in regulation of the hypothalamic–pituitary–adrenal (HPA axis. The studies show the prefrontal cortex (PFC plays an important role in the regulation of stress-induced hypothalamic–pituitary–adrenal (HPA activity and regulation of gonadal function in men and women is under the control of the HPA. This regulation is complex and sex steroids are important regulators of GnRH and gonadotropin release through classic feedback mechanisms in the hypothalamus and pituitary gland. Chronic stress can have a deleterious effect on the reproductive axis that, for females, is manifested in reduced pulsatile gonadotropin secretion and increased incidence of ovulatory abnormalities and infertility. The limbic–hypothalamic–pituitary–adrenal (LHPA axis suggests a functional role for gonadal steroids in the regulation of a female’s response to stress.

  8. Pituitary, gonadal and adrenal hormones after prolonged residence at extreme altitude in man.

    Science.gov (United States)

    Basu, M; Pal, K; Prasad, R; Malhotra, A S; Rao, K S; Sawhney, R C

    1997-06-01

    High altitude-induced alterations in pituitary, gonadal and adrenal hormones were studied in (i) eugonadal men from the armed forces who were resident at sea level (SL), (ii) SL residents staying at an altitude of 3542 m for periods ranging from 3 to 12 months (acclimatized lowlanders, ALL), (iii) ALL who stayed at 6300 m for 6 months, (iv) ALL who trekked from 3542 to 5080 m and stayed at an altitude of more than 6300 m in the glacier region for 6 months, and (v) high-altitude natives (HAN) resident at an altitude of 3300-3700 m. Circulating levels of LH, FSH, prolactin, cortisol, testosterone, dihydrotestosterone (DHT) and progesterone in ALL at 3542 m and in HAN were not significantly different (p > 0.05) from the SL control values. When the ALL living at 3542 m trekked to an extreme altitude of 5080 m, their testosterone levels showed a significant decrease (p 0.05) from the SL values. The LH levels after trekking to 5080 m were significantly higher (p 0.05) from the SL values. Plasma progesterone levels tended to increase on arrival at 5080 m but a significant increase (p < 0.001) was evident only after a 6-month stay at extreme altitude. These observations suggest that prolonged residence at lower as well as at extreme altitude does not appreciably alter blood levels of pituitary, gonadal or adrenal hormones except for plasma levels of progesterone. The exact mechanism and significance of this increase remains unknown, but may be important in increasing the sensitivity of the hypoxic ventilatory response and activation of haemoglobin synthesis.

  9. Etazolate rescues behavioral deficits in chronic unpredictable mild stress model: modulation of hypothalamic-pituitary-adrenal axis activity and brain-derived neurotrophic factor level.

    Science.gov (United States)

    Jindal, Ankur; Mahesh, Radhakrishnan; Bhatt, Shvetank

    2013-11-01

    Preliminary study in our laboratory showed that etazolate produced antidepressant- and anxiolytic-like effects in rodent models, however, the ability of etazolate to produce antidepressant- and anxiolytic-like effects and underlying mechanism(s) in chronic unpredictable mild stress (CUMS) model have not been adequately addressed. This study was aimed to investigate the beneficial effects of etazolate on CUMS-induced behavioral deficits (depression- and anxiety-like behaviors). In addition, the possible underlying mechanism(s) of etazolate in CUMS model was also investigated by measuring serum corticosterone (CORT) and brain-derived neurotrophic factor (BDNF) levels. Mice were subjected to a battery of stressors for 28 days. Etazolate (0.5 and 1 mg/kg, p.o.) and fluoxetine (20mg/kg, p.o.) were administered during the last 21 days (8-28th) of the CUMS paradigm. The results showed that 4-weeks CUMS produces significant depression-like behavior in tail suspension test (TST) and partial anxiety-like behavior in elevated plus maze (EPM) and open field test (OFT). Stressed mice have also shown a significant high serum CORT and low BDNF level. Chronic treatment with etazolate (0.5 and 1mg/kg., p.o.) and fluoxetine (20mg/kg., p.o.) produced significant antidepressant-like behavior in TST (decreased duration of immobility), whereas, partial anxiolytic-like behavior in EPM (increased percentage of open arm entries) and OFT (increased % central ambulation score, total ambulation score and time spent in center zone). In addition, etazolate and fluoxetine treatment significantly (pBDNF level and inhibited the hypothalamic-pituitary-adrenocortical (HPA) axis hyperactivity, as evidenced by low serum CORT level in stressed mice. In addition, etazolate and fluoxetine also showed significant antidepressant- and anxiolytic-like effects in normal control mice. In this study no significant changes were observed in locomotor activity in actophotometer test. Moreover, we did not find any

  10. Posttransplantation lymphoproliferative disease involving the pituitary gland.

    Science.gov (United States)

    Meriden, Zina; Bullock, Grant C; Bagg, Adam; Bonatti, Hugo; Cousar, John B; Lopes, M Beatriz; Robbins, Mark K; Cathro, Helen P

    2010-11-01

    Posttransplantation lymphoproliferative disorders (PTLD) are heterogeneous lesions with variable morphology, immunophenotype, and molecular characteristics. Multiple distinct primary lesions can occur in PTLD, rarely with both B-cell and T-cell characteristics. Lesions can involve both grafted organs and other sites; however, PTLD involving the pituitary gland has not been previously reported. We describe a patient who developed Epstein-Barr virus-negative PTLD 13 years posttransplantation involving the terminal ileum and pituitary, which was simultaneously involved by a pituitary adenoma. Immunohistochemistry of the pituitary lesion showed expression of CD79a, CD3, and CD7 with clonal rearrangements of both T-cell receptor gamma chain (TRG@) and immunoglobulin heavy chain (IGH@) genes. The terminal ileal lesion was immunophenotypically and molecularly distinct. This is the first report of pituitary PTLD and illustrates the potentially complex nature of PTLD. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. DMPD: The role of macrophages in the hypothalamic-pituitary-adrenal activation inresponse to endotoxin (LPS). [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available response to endotoxin (LPS). Derijk RH, van Rooijen N, Berkenbosch F. Res Immunol. 1992 Feb;143(2):224-9. (....e hypothalamic-pituitary-adrenal activation inresponse to endotoxin (LPS). Authors Derijk RH, van Rooijen N, Berk

  12. Transcriptome-wide identification of preferentially expressed genes in the hypothalamus and pituitary gland

    Directory of Open Access Journals (Sweden)

    Jonny eSt-Amand

    2012-01-01

    Full Text Available To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the mouse hypothalamus, pituitary gland and parietal cortex using serial analysis of gene expression (SAGE. Total counts of SAGE tags for the hypothalamus, pituitary gland and parietal cortex were 165824, 126688 and 161045 tags, respectively. This represented 59244, 45151 and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis and turnover, cell differentiation, the cell cycle and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland.

  13. Transcriptome-wide identification of preferentially expressed genes in the hypothalamus and pituitary gland.

    Science.gov (United States)

    St-Amand, Jonny; Yoshioka, Mayumi; Tanaka, Keitaro; Nishida, Yuichiro

    2011-01-01

    To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12-15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland.

  14. Puberty and Perimenopause: Reproductive Transitions and their Implications for Women's Health

    Science.gov (United States)

    Hoyt, Lindsay T.; Falconi, April

    2015-01-01

    This scoping review synthesizes existing research on two major transitions in females’ lives: puberty and perimenopause. These two periods of vast physiological change demarcate the beginning and the end of the reproductive life cycle and are associated with major neuroendocrine reorganization across two key systems, the hypothalamic-pituitary-gonadal (HPG) axis the hypothalamus-pituitary-adrenal (HPA) axis. Despite growing evidence suggesting that the timing and experience of puberty and perimenopause are related to various physical and mental health outcomes (e.g., mood disorders, metabolism, cardiovascular health, autoimmune conditions and cancer), these two processes are rarely examined together. In this paper, we bridge these disparate literatures to highlight similarities, isolate inconsistencies, and identify important areas for future research in women’s health. PMID:25797100

  15. Enhancement of BDNF Concentration and Restoration of the Hypothalamic-Pituitary-Adrenal Axis Accompany Reduced Depressive-Like Behaviour in Stressed Ovariectomised Rats Treated with Either Tualang Honey or Estrogen

    Directory of Open Access Journals (Sweden)

    Badriya Al-Rahbi

    2014-01-01

    Full Text Available A possible interaction between glucocorticoids and estrogen-induced increases in brain-derived-neurotrophic factor (BDNF expression in enhancing depressive-like behaviour has been documented. Here we evaluated the effects of Tualang honey, a phytoestrogen, and 17β-estradiol (E2 on the depressive-like behaviour, stress hormones, and BDNF concentration in stressed ovariectomised (OVX rats. The animals were divided into six groups: (i nonstressed sham-operated control, (ii stressed sham-operated control, (iii nonstressed OVX, (iv stressed OVX, (v stressed OVX treated with E2 (20 μg daily, sc, and (vi stressed OVX treated with Tualang honey (0.2 g/kg body weight daily, orally. Two months after surgery, the animals were subjected to social instability stress procedure followed by forced swimming test. Struggling time, immobility time, and swimming time were scored. Serum adrenocorticotropic hormone (ACTH and corticosterone levels, and the BDNF concentration were determined using commercially available ELISA kits. Stressed OVX rats displayed increased depressive-like behaviour with significantly increased serum ACTH and corticosterone levels, while the BDNF concentration was significantly decreased compared to other experimental groups. These changes were notably reversed by both E2 and Tualang honey. In conclusion, both Tualang honey and E2 mediate antidepressive-like effects in stressed OVX rats, possibly acting via restoration of hypothalamic-pituitary-adrenal axis and enhancement of the BDNF concentration.

  16. Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System

    Directory of Open Access Journals (Sweden)

    Federica Barbieri

    2014-01-01

    Full Text Available Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas.

  17. Lipopolysaccharide (LPS) stimulates adipokine and socs3 gene expression in mouse brain and pituitary gland in vivo, and in N-1 hypothalamic neurons in vitro.

    Science.gov (United States)

    Brown, Russell; Imran, Syed A; Wilkinson, Michael

    2009-04-30

    Adipokines that modulate metabolic and inflammatory responses, such as resistin (rstn) and fasting-induced adipose factor (fiaf), are also expressed in mouse brain and pituitary gland. Since lipopolysaccharide (LPS)-induced endotoxinemia provokes an anorectic response via a hypothalamic-dependent mechanism we hypothesized that LPS would also modify hypothalamic adipokine expression. Challenging male CD-1 mice with LPS (5 mg/kg; s.c.) significantly reduced bodyweight (24 h) and realtime RT-PCR revealed time- and tissue-dependent increases in rstn, fiaf and suppressor of cytokine signaling-3 (socs-3) mRNA in hypothalamic, pituitary, cortical and adipose tissues. Gene expression was rapidly increased (3-6 h) in the hypothalamus and pituitary, but returned to normal within 24 h. In contrast, with the exception of rstn in fat, the expression of target genes remained elevated in cortex and visceral fat at 24 h post-injection. In order to more specifically examine the hypothalamic response to LPS we investigated its effects directly on N-1 hypothalamic neurons in vitro. LPS (25 microg/mL; 3 h) had no effect on rstn mRNA, but significantly stimulated fiaf and socs-3 expression. Although various toll-like receptor 4 (TLR4) antagonists (parthenolide, PD098059, and SB202190) did not prevent the LPS-induced increases in fiaf and socs-3, they did partially attenuate its stimulatory effects. We conclude that LPS treatment increases the expression of central, and possibly neuronal, adipokine genes which may influence local tissue repair and function, but could also have downstream consequences on the hypothalamic control of appetite and energy metabolism following an inflammatory insult.

  18. A PHYSIOLOGICALLY BASED COMPUTATIONAL MODEL OF THE BPG AXIS IN FATHEAD MINNOWS: PREDICTING EFFECTS OF ENDOCRINE DISRUPTING CHEMICAL EXPOSURE ON REPRODUCTIVE ENDPOINTS

    Science.gov (United States)

    This presentation describes development and application of a physiologically-based computational model that simulates the brain-pituitary-gonadal (BPG) axis and other endpoints important in reproduction such as concentrations of sex steroid hormones, 17-estradiol, testosterone, a...

  19. Responsiveness of pituitary to galanin throughout the reproductive cycle of male European sea bass (Dicentrarchus labrax).

    Science.gov (United States)

    Pinto, P; Velez, Z; Sousa, C; Santos, S; Andrade, A; Alvarado, M V; Felip, A; Zanuy, S; Canário, A V M

    2017-09-01

    The neuropeptide galanin (Gal) is a putative factor regulating puberty onset and reproduction through its actions on the pituitary. The present study investigated the pituitary responsiveness to galanin and the patterns of galanin receptors (Galrs) expression throughout the reproductive cycle of two years old male European sea bass (Dicentrarchus labrax), an important aquaculture species. Quantitative analysis of pituitary and hypothalamus transcript expression of four galr subtypes revealed differential regulation according to the testicular developmental stage, with an overall decrease in expression from the immature stage to the mid-recrudescence stage. Incubation of pituitary cells with mammalian 1-29Gal peptide induced significant changes in cAMP concentration, with sensitivities that varied according to the testicular development stages. Furthermore 1-29Gal was able to stimulate both follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) release from pituitary cell suspensions. The magnitude of the effects and effective concentrations varied according to reproductive stage, with generalized induction of Fsh and Lh release in animals sampled in January (full spermiation). The differential expression of galrs in pituitary and hypothalamus across the reproductive season, together with the differential effects of Gal on gonadotropins release in vitro strongly suggests the involvement of the galaninergic system in the regulation the hypothalamus-pituitary-gonad axis of male sea bass. This is to our knowledge the first clear evidence for the involvement of galanin in the regulation of reproduction in non-mammalian vertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effects of high fat diet on the basal activity of the hypothalamus- pituitary-adrenal axis in mice: A systematic review

    NARCIS (Netherlands)

    Auvinen, H.E.; Romijn, J.A.; Biermasz, N.R.; Havekes, L.M.; Smit, J.W.A.; Rensen, P.C.N.; Pereira, A.M.

    2011-01-01

    Hypothalamus-pituitary-adrenal-axis activity is suggested to be involved in the pathophysiology of the metabolic syndrome. In diet-induced obesity mouse models, features of the metabolic syndrome are induced by feeding high fat diet. However, the models reveal conflicting results with respect to the

  1. The Role of Kiss1 Neurons As Integrators of Endocrine, Metabolic, and Environmental Factors in the Hypothalamic–Pituitary–Gonadal Axis

    Directory of Open Access Journals (Sweden)

    Shel-Hwa Yeo

    2018-04-01

    Full Text Available Kisspeptin–GPR54 signaling in the hypothalamus is required for reproduction and fertility in mammals. Kiss1 neurons are key regulators of gonadotropin-releasing hormone (GnRH release and modulation of the hypothalamic–pituitary–gonadal (HPG axis. Arcuate Kiss1 neurons project to GnRH nerve terminals in the median eminence, orchestrating the pulsatile secretion of luteinizing hormone (LH through the intricate interaction between GnRH pulse frequency and the pituitary gonadotrophs. Arcuate Kiss1 neurons, also known as KNDy neurons in rodents and ruminants because of their co-expression of neurokinin B and dynorphin represent an ideal hub to receive afferent inputs from other brain regions in response to physiological and environmental changes, which can regulate the HPG axis. This review will focus on studies performed primarily in rodent and ruminant species to explore potential afferent inputs to Kiss1 neurons with emphasis on the arcuate region but also considering the rostral periventricular region of the third ventricle (RP3V. Specifically, we will discuss how these inputs can be modulated by hormonal, metabolic, and environmental factors to control gonadotropin secretion and fertility. We also summarize the methods and techniques that can be used to study functional inputs into Kiss1 neurons.

  2. Malignant tumors of the nasal cavity and paranasal sinuses: long-term outcome and morbidity with emphasis on hypothalamic-pituitary deficiency

    NARCIS (Netherlands)

    Snyers, An; Janssens, Geert O. R. J.; Twickler, Marcel B.; Hermus, Ad R.; Takes, Robert P.; Kappelle, Arnoud C.; Merkx, Matthias A. W.; Dirix, Piet; Kaanders, Johannes H. A. M.

    2009-01-01

    PURPOSE: To evaluate the long-term outcome after surgery and radiotherapy for patients with sinonasal cancer and assess late toxicity, with special emphasis on hypothalamic-pituitary dysfunction. METHODS AND MATERIALS: A retrospective analysis of 168 patients treated for sinonasal cancer in a single

  3. Thyroid stimulating hormone and serum, plasma, and platelet brain-derived neurotrophic factor during a 3-month follow-up in patients with major depressive disorder.

    Science.gov (United States)

    Baek, Ji Hyun; Kang, Eun-Suk; Fava, Maurizio; Mischoulon, David; Nierenberg, Andrew A; Lee, Dongsoo; Heo, Jung-Yoon; Jeon, Hong Jin

    2014-12-01

    Thyroid dysfunction and elevated thyroid stimulating hormone (TSH) are common in patients with depression. TSH might exert its function in the brain through blood levels of brain-derived neurotrophic factor (BDNF). BDNF decreases during depressed states and normalize after treatment. The gap is that the association between TSH and BDNF in patients with major depressive disorder (MDD) is unknown. We studied 105 subjects ≥18 years of age with MDD and measured serum, plasma, and platelet BDNF at baseline, 1 month and 3 months during antidepressant treatment. Other baseline measurements included hypothalamic-pituitary-thyroid axis hormones such as TSH, triiodothyronine (T3) and thyroxine (T4); hypothalamic-pituitary-adrenal (HPA) axis hormones and hypothalamic-pituitary-gonadal (HPG) axis hormones and prolactin. Linear mixed model effect analyses revealed that baseline TSH level was negatively associated with changes of serum BDNF from baseline to 3 months (F=7.58, p=0.007) after adjusting for age, sex, and body mass index, but was not associated with plasma and platelet BDNF. In contrast, T3 and T4, HPA axis hormones, HPG axis hormones, and prolactin were not associated with serum, plasma, or platelet BDNF levels. Patients in the highest quartile of TSH showed significantly lower serum BDNF than in the other quartiles (F=4.54, p=0.038), but no significant differences were found based on T3 and T4 levels. TSH was only measured at baseline. Higher TSH is associated with lower baseline and reduced the increase of serum BDNF levels during antidepressant treatment in patients with MDD. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The pituitary-Leydig cell axis before and after orchiectomy in patients with stage I testicular cancer

    DEFF Research Database (Denmark)

    Bandak, Mikkel; Aksglaede, Lise; Juul, Anders

    2011-01-01

    This study investigates the pituitary-Leydig cell axis in patients with stage I testicular germ cell cancer (TGCC) followed with surveillance only, in order to evaluate the risk of Leydig cell dysfunction one year after orchiectomy.......This study investigates the pituitary-Leydig cell axis in patients with stage I testicular germ cell cancer (TGCC) followed with surveillance only, in order to evaluate the risk of Leydig cell dysfunction one year after orchiectomy....

  5. Alterations in HPA-axis and autonomic nervous system functioning in childhood anxiety disorders point to a chronic stress hypothesis

    NARCIS (Netherlands)

    Dieleman, G.C.; Huizink, A.C.; Tulen, J.H.M.; Utens, E.M.W.J.; Creemers, H.E.; van der Ende, J.; Verhulst, F.C.

    2015-01-01

    Background: It is of debate whether or not childhood anxiety disorders (AD) can be captured by one taxonomic construct. This study examined whether perceived arousal (PA), autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis measures can distinguish children with different

  6. Alterations in HPA-axis and autonomic nervous system functioning in childhood anxiety disorders point to a chronic stress hypothesis

    NARCIS (Netherlands)

    Dieleman, Gwendolyn C.; Huizink, Anja C.; Tulen, Joke H. M.; Utens, Elisabeth M. W. J.; Creemers, Hanneke E.; van der Ende, Jan; Verhulst, Frank C.

    2015-01-01

    It is of debate whether or not childhood anxiety disorders (AD) can be captured by one taxonomic construct. This study examined whether perceived arousal (PA), autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis measures can distinguish children with different primary

  7. Medical therapy of hypothalamic diseases

    International Nuclear Information System (INIS)

    Werder, K. von; Mueller, O.A.

    1985-01-01

    Hormonal disturbances caused by hypothalamic pathology can be treated effectively by target hormone replacement in the case of failure of glandotropic hormone secretion. Hyposomatotropism in children has to be substituted by parenteral administration of growth hormone. In addition gonadotropins respectively gonadotropin releasing factor have to be given in order to restore fertility in hypothalamic hypogonadism. Posterior pituitary failure can be adequately replaced by administration of analogues of antidiuretic hormone. Hypothalamic pathology causing hypersecretion of anterior pituitary hormones may also be accessable to medical treatment. This pertains particularly to hyperprolactinemia and precocious puberty. However, there is no medical therapy so far for hypothalamic disturbances leading to veterative dysfunction like disturbances of temperature regulation and control of thirst and polyphagia. In this situation symptomatic correction of the abnormality represents the only possibility to keep these patients alive. (Author)

  8. Radiotherapy-induced hypopituitarism: a review.

    Science.gov (United States)

    Sathyapalan, Thozhukat; Dixit, Sanjay

    2012-05-01

    Hypopituitarism is a disorder caused by impaired hormonal secretions from the hypothalamic-pituitary axis. Radiotherapy is the most common cause of iatrogenic hypopituitarism. The hypothalamic-pituitary axis inadvertently gets irradiated in patients receiving prophylactic cranial radiotherapy for leukemia, total body irradiation and radiotherapy for intracranial, base skull, sinonasal and nasopharyngeal tumors. Radiation-induced hypopituitarism (RIH) is insidious, progressive and largely nonreversible. Mostly, RIH involves one hypothalamic-pituitary axis; however, multiple hormonal axes deficiency starts developing at higher doses. Although the clinical effects of the hypopituitarism are more profound in children and young adults, its implications in older adults are being increasingly recognized. The risk continues to persist or increase up to 10 years following radiation exposure. The clinical management of hypopituitarism is challenging both for the patients and healthcare providers. Here we have reviewed the scale of the problem, the risk factors and the management of RIH.

  9. Gonadotrophin-inhibitory hormone receptor expression in the chicken pituitary gland: potential influence of sexual maturation and ovarian steroids.

    Science.gov (United States)

    Maddineni, S; Ocón-Grove, O M; Krzysik-Walker, S M; Hendricks, G L; Proudman, J A; Ramachandran, R

    2008-09-01

    Gonadotrophin-inhibitory hormone (GnIH), a hypothalamic RFamide, has been found to inhibit gonadotrophin secretion from the anterior pituitary gland originally in birds and, subsequently, in mammalian species. The gene encoding a transmembrane receptor for GnIH (GnIHR) was recently identified in the brain, pituitary gland and gonads of song bird, chicken and Japanese quail. The objectives of the present study are to characterise the expression of GnIHR mRNA and protein in the chicken pituitary gland, and to determine whether sexual maturation and gonadal steroids influence pituitary GnIHR mRNA abundance. GnIHR mRNA quantity was found to be significantly higher in diencephalon compared to either anterior pituitary gland or ovaries. GnIHR mRNA quantity was significantly higher in the pituitaries of sexually immature chickens relative to sexually mature chickens. Oestradiol or a combination of oestradiol and progesterone treatment caused a significant decrease in pituitary GnIHR mRNA quantity relative to vehicle controls. GnIHR-immunoreactive (ir) cells were identified in the chicken pituitary gland cephalic and caudal lobes. Furthermore, GnIHR-ir cells were found to be colocalised with luteinising hormone (LH)beta mRNA-, or follicle-stimulating hormone (FSH)beta mRNA-containing cells. GnIH treatment significantly decreased LH release from anterior pituitary gland slices collected from sexually immature, but not from sexually mature chickens. Taken together, GnIHR gene expression is possibly down regulated in response to a surge in circulating oestradiol and progesterone levels as the chicken undergoes sexual maturation to allow gonadotrophin secretion. Furthermore, GnIHR protein expressed in FSHbeta or LHbeta mRNA-containing cells is likely to mediate the inhibitory effect of GnIH on LH and FSH secretion.

  10. Effects of Parental Depressive Symptoms on Child Adjustment Moderated by Hypothalamic Pituitary Adrenal Activity: Within- and between-Family Risk

    Science.gov (United States)

    Laurent, Heidemarie K.; Leve, Leslie D.; Neiderhiser, Jenae M.; Natsuaki, Misaki N.; Shaw, Daniel S.; Fisher, Philip A.; Marceau, Kristine; Harold, Gordon T.; Reiss, David

    2013-01-01

    Child hypothalamic pituitary adrenal (HPA) activity was investigated as a moderator of parental depressive symptom effects on child behavior in an adoption sample ("n" = 210 families). Adoptive parents' depressive symptoms and child internalizing and externalizing were assessed at 18, 27, and 54 months, and child morning and evening HPA…

  11. Purinergic signaling pathways in endocrine system.

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. Published by Elsevier B.V.

  12. Purinergic Signaling Pathways in Endocrine System

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  13. Increased cortisol in the cerebrospinal fluid of women with functional hypothalamic amenorrhea.

    Science.gov (United States)

    Brundu, Benedetta; Loucks, Tammy L; Adler, Lauri J; Cameron, Judy L; Berga, Sarah L

    2006-04-01

    The proximate cause of functional hypothalamic amenorrhea (FHA) is reduced GnRH drive. The concomitant increase in circulating cortisol suggests that psychogenic stress plays an etiologic role, but others have argued for a strictly metabolic cause, such as undernutrition or excessive exercise. Indeed, our finding that the cerebrospinal fluid (CSF) concentration of CRH was not elevated in FHA cast doubt about the extent of hypothalamic-pituitary-adrenal activation in FHA and, therefore, we wondered whether central cortisol levels were elevated. We tested the null hypothesis that CSF cortisol levels would be comparable in FHA and eumenorrheic women (EW). The study is a cross-sectional comparison. The study was set in a general clinical research center at an academic medical center. Fifteen women with FHA who were of normal body weight and 14 EW participated. Blood samples were collected at 15-min intervals for 24 h, followed by procurement of 25 ml CSF. Cortisol, cortisol-binding globulin (CBG), and SHBG levels in blood and CSF were the main outcome measures. CSF cortisol concentrations were 30% greater when serum cortisol was 16% higher in FHA compared with EW. Circulating CBG, but not SHBG, was increased in FHA and, thus, the circulating free cortisol index was similar in FHA and EW. Because CBG and SHBG were nil in CSF, the increase in CSF cortisol in FHA was unbound. The hypothalamic-pituitary-adrenal axis is activated in FHA. The maintenance of CRH drive despite increased CSF cortisol indicates resistance to cortisol feedback inhibition. The mechanisms mediating feedback resistance likely involve altered hippocampal corticosteroid reception and serotonergic and GABAergic neuromodulation.

  14. Impact of Sleep and Its Disturbances on Hypothalamo-Pituitary-Adrenal Axis Activity

    Directory of Open Access Journals (Sweden)

    Marcella Balbo

    2010-01-01

    Full Text Available The daily rhythm of cortisol secretion is relatively stable and primarily under the influence of the circadian clock. Nevertheless, several other factors affect hypothalamo-pituitary-adrenal (HPA axis activity. Sleep has modest but clearly detectable modulatory effects on HPA axis activity. Sleep onset exerts an inhibitory effect on cortisol secretion while awakenings and sleep offset are accompanied by cortisol stimulation. During waking, an association between cortisol secretory bursts and indices of central arousal has also been detected. Abrupt shifts of the sleep period induce a profound disruption in the daily cortisol rhythm, while sleep deprivation and/or reduced sleep quality seem to result in a modest but functionally important activation of the axis. HPA hyperactivity is clearly associated with metabolic, cognitive and psychiatric disorders and could be involved in the well-documented associations between sleep disturbances and the risk of obesity, diabetes and cognitive dysfunction. Several clinical syndromes, such as insomnia, depression, Cushing's syndrome, sleep disordered breathing (SDB display HPA hyperactivity, disturbed sleep, psychiatric and metabolic impairments. Further research to delineate the functional links between sleep and HPA axis activity is needed to fully understand the pathophysiology of these syndromes and to develop adequate strategies of prevention and treatment.

  15. Metabolic Impact on the Hypothalamic Kisspeptin-Kiss1r Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Fazal Wahab

    2018-03-01

    Full Text Available A large body of data has established the hypothalamic kisspeptin (KP and its receptor, KISS1R, as major players in the activation of the neuroendocrine reproductive axis at the time of puberty and maintenance of reproductive capacity in the adult. Due to its strategic location, this ligand-receptor pair acts as an integrator of cues from gonadal steroids as well as of circadian and seasonal variation-related information on the reproductive axis. Besides these cues, the activity of the hypothalamic KP signaling is very sensitive to the current metabolic status of the body. In conditions of energy imbalance, either positive or negative, a number of alterations in the hypothalamic KP signaling pathway have been documented in different mammalian models including nonhuman primates and human. Deficiency of metabolic fuels during fasting causes a marked reduction of Kiss1 gene transcript levels in the hypothalamus and, hence, decreases the output of KP-containing neurons. Food intake or exogenous supply of metabolic cues, such as leptin, reverses metabolic insufficiency-related changes in the hypothalamic KP signaling. Likewise, alterations in Kiss1 expression have also been reported in other situations of energy imbalance like diabetes and obesity. Information related to the body’s current metabolic status reaches to KP neurons both directly as well as indirectly via a complex network of other neurons. In this review article, we have provided an updated summary of the available literature on the regulation of the hypothalamic KP-Kiss1r signaling by metabolic cues. In particular, the potential mechanisms of metabolic impact on the hypothalamic KP-Kiss1r signaling, in light of available evidence, are discussed.

  16. Surgical therapy of lesions within the hypothalamic region

    International Nuclear Information System (INIS)

    Fahlbusch, R.; Schrell, U.

    1985-01-01

    On one hand pituitary microadenomas with autonomous character and those, which had been influenced by hypothalamic disorders, are summarized and discussed. On the other hand, the neurosurgical management of tumours, adjacent to our involved with the hypothalamus, are described. Endocrinologically active pituitary adenomas are characterized by their hormone excess of ACTH, GH, and prolactin. In Cushing's disease endocrine and clinical remission occurred in 74%. 3 patients out of this group showed a reincrease of ACTH after a period of remission, indicating a possible hypothalamic influence. In acromegaly the hypothalamic influence is also discussed. One patient with an ectopic GRF-producing tumour showing a reincrease of GH levels after successful transsphenoidal adenomectomy has been described. In microprolactinomas, 7 patients out of 45 showed a reincrease of prolactin-levels after a period of normalization, we also discussed hypothalamic disorders. Tumours with suprasellar extension such as macroadenomas without endocrine activity and meningiomas are removed nowadays with minimal risk for the life of the patients. In craniopharyngiomas radical excision is accompanied by a high risk of hypothalamic defects caused by mechanical lesions and possible secondary vasospasm. Finally the excision of a hamartoma growing from the floor of the third ventricle into the interpeduncular cistern is discussed. Up to now the successful excision could be documented by endocrinological data, which give no sign of further growth of the hamartoma. (Author)

  17. Surgical therapy of lesions within the hypothalamic region

    Energy Technology Data Exchange (ETDEWEB)

    Fahlbusch, R.; Schrell, U. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.))

    1985-01-01

    On one hand pituitary microadenomas with autonomous character and those, which had been influenced by hypothalamic disorders, are summarized and discussed. On the other hand, the neurosurgical management of tumours, adjacent to or involved with the hypothalamus, are described. Endocrinologically active pituitary adenomas are characterized by their hormone excess of ACTH, GH, and prolactin. In Cushing's disease endocrine and clinical remission occurred in 74%. 3 patients out of this group showed a reincrease of ACTH after a period of remission, indicating a possible hypothalamic influence. In acromegaly the hypothalamic influence is also discussed. One patient with an ectopic GRF-producing tumour showing a reincrease of GH levels after successful transsphenoidal adenomectomy has been described. In microprolactinomas, 7 patients out of 45 showed a reincrease of prolactin-levels after a period of normalization, we also discussed hypothalamic disorders. Tumours with suprasellar extension such as macroadenomas without endocrine activity and meningiomas are removed nowadays with minimal risk for the life of the patients. In craniopharyngiomas radical excision is accompanied by a high risk of hypothalamic defects caused by mechanical lesions and possible secondary vasospasm. Finally the excision of a hamartoma growing from the floor of the third ventricle into the interpeduncular cistern is discussed. Up to now the successful excision could be documented by endocrinological data, which give no sign of further growth of the hamartoma.

  18. Reproductive performance of male mice after hypothalamic ghrelin administration.

    Science.gov (United States)

    Poretti, Maria Belen; Frautschi, Camila; Luque, Eugenia Mercedes; Bianconi, Santiago; Martini, Ana Carolina; Stutz, Graciela; Vincenti, Laura Maria; Santillán, María Emilia; Ponzio, Marina Flavia; Schiöth, Helgi; Fiol De Cuneo, Marta Haydee; Carlini, Valeria Paola

    2018-05-23

    It has been demonstrated that food intake and reproductive physiology are both simultaneously modulated to optimize reproductive success under fluctuating metabolic conditions. Ghrelin (Ghr) is an orexigenic peptide identified as the endogenous ligand of the growth hormone secretagogue receptor that is being investigated for its potential role on reproduction. Considering that data available so far are still limited and characterization of Ghr action mechanism on the reproductive system has not been fully elucidated, we studied the hypothalamus participation in Ghr effects on sperm functional activity, plasma levels of gonodotropins and histological morphology in mice testes after hypothalamic infusion of 0.3 or 3.0 nmol/day Ghr or artificial cerebrospinal fluid (ACSF) at different treatment periods. We found that Ghr 3.0 nmol/day administration for 42 days significantly reduced sperm concentration (Ghr 3.0 nmol/day=14.05±2.44 x106/ml vs. ACSF=20.33±1.35 x106/ml, p< 0.05) and motility (Ghr 3.0 nmol/day=59.40±4.20% vs. ACSF=75.80±1.40%, p< 0.05). In addition, histological studies showed a significant decrease percentage of spermatogonia (Ghr 3.0 nmol/day=6,76±0,68% vs. ACSF=9,56±0,41%, p< 0.05) and sperm (Ghr 3.0 nmol/day=24,24±1,92% vs. ACSF=31,20±3,06%, p< 0.05). These results were associated with a significant reduction in luteinizing hormone and testosterone plasma levels (p<0.05). As Ghr is an orexigenic peptide, body weight and food intake were measured. Results showed that Ghr increases both parameters; however, the effect did not last beyond the first week of treatment. Results presented in this work confirm that central Ghr administration impairs spermatogenesis and suggest that this effect is mediated by inhibition of hypothalamic-pituitary-gonadal axis.

  19. Leptin is an effective treatment for hypothalamic amenorrhea.

    Science.gov (United States)

    Chou, Sharon H; Chamberland, John P; Liu, Xiaowen; Matarese, Giuseppe; Gao, Chuanyun; Stefanakis, Rianna; Brinkoetter, Mary T; Gong, Huizhi; Arampatzi, Kalliopi; Mantzoros, Christos S

    2011-04-19

    Hypothalamic amenorrhea (HA) is associated with dysfunction of the hypothalamic-pituitary-peripheral endocrine axes, leading to infertility and bone loss, and usually is caused by chronic energy deficiency secondary to strenuous exercise and/or decreased food intake. Energy deficiency also leads to hypoleptinemia, which has been proposed, on the basis of observational studies as well as an open-label study, to mediate the neuroendocrine abnormalities associated with this condition. To prove definitively a causal role of leptin in the pathogenesis of HA, we performed a randomized, double-blinded, placebo-controlled trial of human recombinant leptin (metreleptin) in replacement doses over 36 wk in women with HA. We assessed its effects on reproductive outcomes, neuroendocrine function, and bone metabolism. Leptin replacement resulted in recovery of menstruation and corrected the abnormalities in the gonadal, thyroid, growth hormone, and adrenal axes. We also demonstrated changes in markers of bone metabolism suggestive of bone formation, but no changes in bone mineral density were detected over the short duration of this study. If these data are confirmed, metreleptin administration in replacement doses to normalize circulating leptin levels may prove to be a safe and effective therapy for women with HA.

  20. Effects of HPM irradiation on expression of GR in hypothalamus and pituitary gland of rats

    International Nuclear Information System (INIS)

    Meng Li; Peng Ruiyun; Gao Yabing; Ma Junjie; Wang Shuiming; Hu Wenhua; Wang Dewen; Su Zhentao

    2005-01-01

    Objective: To explore the expression and significance of glucocorticoid receptor (GR) in hypothalamus and pituitary gland of rats after high power microwave (HPM) exposure. Methods: A total of 130 male Wistar rats were sacrificed at 6 h, 1 d, 3 d, 7 d, 14 d, 28 d and 3 m after whole body irradiation by 2-90 mW/cm 2 HPM and their hypothalamus and pituitary gland were collected. The changes of GR in the two tissues after HPM exposure were investigated by means of immunohistochemical staining and image analysis. Results: The expression of GR in hypothalamus was decreased after HPM exposure. The level of GR in the group of 10 mW/cm 2 was significantly lower (P 2 group was significantly lower (P 2 group was significantly higher (P 2 group was significantly higher (P<0.01) on 1 d and 3 d after HPM exposure. Conclusion: The expression of GR in hypothalamus was decreased while that in the anterior pituitary was increased after HPM exposure. The refore, the negative feedback of hypothalamic-pituitary-adrenal (HPA) axis was upset and the changes of GR is involved in the pathophysiological course of HPA. (authors)

  1. Dual Actions of Mammalian and Piscine Gonadotropin-Inhibitory Hormones, RFamide-Related Peptides and LPXRFamide Peptides, in the Hypothalamic–Pituitary–Gonadal Axis

    Directory of Open Access Journals (Sweden)

    Takayoshi Ubuka

    2018-01-01

    Full Text Available Gonadotropin-inhibitory hormone (GnIH is a hypothalamic neuropeptide that decreases gonadotropin synthesis and release by directly acting on the gonadotrope or by decreasing the activity of gonadotropin-releasing hormone (GnRH neurons. GnIH is also called RFamide-related peptide in mammals or LPXRFamide peptide in fishes due to its characteristic C-terminal structure. The primary receptor for GnIH is GPR147 that inhibits cAMP production in target cells. Although most of the studies in mammals, birds, and fish have shown the inhibitory action of GnIH in the hypothalamic–pituitary–gonadal (HPG axis, several in vivo studies in mammals and many in vivo and in vitro studies in fish have shown its stimulatory action. In mouse, although the firing rate of the majority of GnRH neurons is decreased, a small population of GnRH neurons is stimulated by GnIH. In hamsters, GnIH inhibits luteinizing hormone (LH release in the breeding season when their endogenous LH level is high but stimulates LH release in non-breeding season when their LH level is basal. Besides different effects of GnIH on the HPG axis depending on the reproductive stages in fish, higher concentration or longer duration of GnIH administration can stimulate their HPG axis. These results suggest that GnIH action in the HPG axis is modulated by sex-steroid concentration, the action of neuroestrogen synthesized by the activity of aromatase stimulated by GnIH, estrogen membrane receptor, heteromerization and internalization of GnIH, GnRH, and estrogen membrane receptors. The inhibitory and stimulatory action of GnIH in the HPG axis may have a physiological role to maintain reproductive homeostasis according to developmental and reproductive stages.

  2. Apoplexy of a pituitary macroadenoma with reversible third, fourth and sixth cranial nerve palsies following administration of hypothalamic releasing hormones: MR features

    International Nuclear Information System (INIS)

    Riedl, Michaela; Clodi, Martin; Kotzmann, Harald; Hainfellner, Johann A.; Schima, Wolfgang; Reitner, Andreas; Czech, Thomas; Luger, Anton

    2000-01-01

    Pituitary apoplexy in patients with pituitary macroadenomas can occur either spontaneously or following various interventions. We present a case of a 71-year-old woman who developed third, fourth, and sixth cranial nerve palsies following administration of the four hypothalamic releasing hormones for routine preoperative testing of pituitary function. The MR examination showed interval tumor growth with impression of the floor of the third ventricle. There were also changes in signal intensity characteristics of the mass, suggestive of intratumoral bleeding. A transsphenoidal surgery with subtotal resection of the pituitary adenoma was performed. Microscopical examination revealed large areas of necrosis and blood surrounded by adenomatous tissue. Third, fourth, and sixth cranial nerve palsies completely resolved within 4 months. We conclude that MR imaging is useful in the demonstration of pituitary apoplexy following preoperative stimulation tests, but we suggest that these tests should be abandoned in patients with pituitary macroadenomas

  3. Apoplexy of a pituitary macroadenoma with reversible third, fourth and sixth cranial nerve palsies following administration of hypothalamic releasing hormones: MR features

    Energy Technology Data Exchange (ETDEWEB)

    Riedl, Michaela E-mail: michaela.riedl@akh-wien.ac.at; Clodi, Martin; Kotzmann, Harald; Hainfellner, Johann A.; Schima, Wolfgang; Reitner, Andreas; Czech, Thomas; Luger, Anton

    2000-10-01

    Pituitary apoplexy in patients with pituitary macroadenomas can occur either spontaneously or following various interventions. We present a case of a 71-year-old woman who developed third, fourth, and sixth cranial nerve palsies following administration of the four hypothalamic releasing hormones for routine preoperative testing of pituitary function. The MR examination showed interval tumor growth with impression of the floor of the third ventricle. There were also changes in signal intensity characteristics of the mass, suggestive of intratumoral bleeding. A transsphenoidal surgery with subtotal resection of the pituitary adenoma was performed. Microscopical examination revealed large areas of necrosis and blood surrounded by adenomatous tissue. Third, fourth, and sixth cranial nerve palsies completely resolved within 4 months. We conclude that MR imaging is useful in the demonstration of pituitary apoplexy following preoperative stimulation tests, but we suggest that these tests should be abandoned in patients with pituitary macroadenomas.

  4. Hypothalamic-pituitary vascularization in pituitary stalk transection syndrome: is the pituitary stalk really transected? The role of gadolinium-DTPA with spin-echo T1 imaging and turbo-FLASH technique

    International Nuclear Information System (INIS)

    Genovese, E.; Maghnie, M.; Beluffi, G.; Villa, A.; Sammarchi, L.; Severi, F.; Campani, R.

    1997-01-01

    We examined 14 patients, aged 10-25 years, with idiopathic hypopituitarism. All presented an ectopic posterior pituitary at the median eminence with a hypoplastic anterior pituitary on magnetic resonance imaging (MRI). Eight patients had isolated growth hormone deficit (IGHD) and six had multiple hormone deficits (MPHD). Unenhanced MRI showed the pituitary stalk, which was extremely thin, in only three patients, while T1-weighted images obtained after intravenous injection of gadopentetate dimeglumine (Gd-DTPA) showed a thin pituitary stalk in seven patients (six with IGHD and one with MPHD), demonstrating a preserved vascular component of the stalk. MRI with Gd-DTPA was more sensitive than unenhanced MRI in detecting the pituitary stalk in patients with hypopituitarism with an ectopic posterior pituitary: the stalk was demonstrated in 50 % of the cases (seven patients), versus 21.4 % (three patients) by unenhanced MRI. The dynamic study of the hypothalamo-hypophyseal axis performed with turbo-FLASH sequences after bolus injection of Gd-DTPA showed the residual anterior pituitary to have arterial enhancement times, which suggests that an arterial system compensates for the absent or diminished blood supply from the portal system, independent of stalk detection. (orig.). With 5 figs., 1 tab

  5. Hypothalamic-pituitary vascularization in pituitary stalk transection syndrome: is the pituitary stalk really transected? The role of gadolinium-DTPA with spin-echo T1 imaging and turbo-FLASH technique

    Energy Technology Data Exchange (ETDEWEB)

    Genovese, E. [Dept. of Radiology, IRCCS Policlinico S. Matteo, Pavia (Italy); Maghnie, M. [Dept. of Pediatrics, Univ. of Pavia (Italy); Beluffi, G. [Dept. of Radiodiagnosis, Section of Pediatric Radiology, IRCCS Policlinico S. Matteo, Pavia (Italy); Villa, A. [Dept. of Radiology, IRCCS Policlinico S. Matteo, Pavia (Italy); Sammarchi, L. [Dept. of Radiology, IRCCS Policlinico S. Matteo, Pavia (Italy); Severi, F. [Dept. of Pediatrics, Univ. of Pavia (Italy); Campani, R. [Dept. of Radiology, IRCCS Policlinico S. Matteo, Pavia (Italy)

    1997-01-01

    We examined 14 patients, aged 10-25 years, with idiopathic hypopituitarism. All presented an ectopic posterior pituitary at the median eminence with a hypoplastic anterior pituitary on magnetic resonance imaging (MRI). Eight patients had isolated growth hormone deficit (IGHD) and six had multiple hormone deficits (MPHD). Unenhanced MRI showed the pituitary stalk, which was extremely thin, in only three patients, while T1-weighted images obtained after intravenous injection of gadopentetate dimeglumine (Gd-DTPA) showed a thin pituitary stalk in seven patients (six with IGHD and one with MPHD), demonstrating a preserved vascular component of the stalk. MRI with Gd-DTPA was more sensitive than unenhanced MRI in detecting the pituitary stalk in patients with hypopituitarism with an ectopic posterior pituitary: the stalk was demonstrated in 50 % of the cases (seven patients), versus 21.4 % (three patients) by unenhanced MRI. The dynamic study of the hypothalamo-hypophyseal axis performed with turbo-FLASH sequences after bolus injection of Gd-DTPA showed the residual anterior pituitary to have arterial enhancement times, which suggests that an arterial system compensates for the absent or diminished blood supply from the portal system, independent of stalk detection. (orig.). With 5 figs., 1 tab.

  6. Stress and serial adult metamorphosis: Multiple roles for the stress axis in socially regulated sex change

    OpenAIRE

    Tessa K Solomon-Lane; Erica J Crespi; Erica J Crespi; Matthew Scott Grober; Matthew Scott Grober

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has ...

  7. Stress and serial adult metamorphosis: multiple roles for the stress axis in socially regulated sex change

    OpenAIRE

    Solomon-Lane, Tessa K.; Crespi, Erica J.; Grober, Matthew S.

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has be...

  8. The Minimal Model of the Hypothalamic-Pituitary-Adrenal Axis

    DEFF Research Database (Denmark)

    Vinther, Frank; Andersen, Morten; Ottesen, Johnny T.

    2011-01-01

    -physiological values of the parameters are needed in order to achieve local instability of the fixed point. Small changes inphysiologically relevant parameters cause the system to be globally stable using the analytical criteria. All simulations show a globally stable fixed point, ruling out periodic solutions even...... are modeled as a system of three coupled, nonlinear differential equations. Experimental data shows the circadian as well as the ultradian rhythm. This paper focuses on the ultradian rhythm. The ultradian rhythm can mathematically be explained by oscillating solutions. Oscillating solutions to an ODE emerges...... from an unstable fixed point with complex eigenvalues with a positive real parts and a non-zero imaginary parts. The first part of the paper describes the general considerations to be obeyed for a mathematical model of the HPA axis. In this paper we only include the most widely accepted mechanisms...

  9. Hypothalamic amenorrhea with normal body weight: ACTH, allopregnanolone and cortisol responses to corticotropin-releasing hormone test.

    Science.gov (United States)

    Meczekalski, B; Tonetti, A; Monteleone, P; Bernardi, F; Luisi, S; Stomati, M; Luisi, M; Petraglia, F; Genazzani, A R

    2000-03-01

    Hypothalamic amenorrhea (HA) is a functional disorder caused by disturbances in gonadotropin-releasing hormone (GnRH) pulsatility. The mechanism by which stress alters GnRH release is not well known. Recently, the role of corticotropin-releasing hormone (CRH) and neurosteroids in the pathophysiology of HA has been considered. The aim of the present study was to explore further the role of the hypothalamic-pituitary-adrenal axis in HA. We included 8 patients (aged 23.16+/-1.72 years) suffering from hypothalamic stress-related amenorrhea with normal body weight and 8 age-matched healthy controls in the follicular phase of the menstrual cycle. We measured basal serum levels of FSH, LH, and estradiol and evaluated ACTH, allopregnanolone and cortisol responses to CRH test in both HA patients and healthy women. Serum basal levels of FSH, LH, and estradiol as well as basal levels of allopregnanolone were significantly lower in HA patients than in controls (P<0.001) while basal ACTH and cortisol levels were significantly higher in amenorrheic patients with respect to controls (P<0.001). The response (area under the curve) of ACTH, allopregnanolone and cortisol to CRH was significantly lower in amenorrheic women compared with controls (P<0.001, P<0.05, P<0.05 respectively). In conclusion, women with HA, despite the high ACTH and cortisol levels and, therefore, hypothalamus-pituitary-adrenal axis hyperactivity, are characterized by low allopregnanolone basal levels, deriving from an impairment of both adrenal and ovarian synthesis. The blunted ACTH, allopregnanolone and cortisol responses to CRH indicate that, in hypothalamic amenorrhea, there is a reduced sensitivity and expression of CRH receptor. These results open new perspectives on the role of neurosteroids in the pathogenesis of hypothalamic amenorrhea.

  10. Translational relevance of rodent models of hypothalamic-pituitary-adrenal function and stressors in adolescence

    Directory of Open Access Journals (Sweden)

    Cheryl M. McCormick

    2017-02-01

    Full Text Available Elevations in glucocorticoids that result from environmental stressors can have programming effects on brain structure and function when the exposure occurs during sensitive periods that involve heightened neural development. In recent years, adolescence has gained increasing attention as another sensitive period of development, a period in which pubertal transitions may increase the vulnerability to stressors. There are similarities in physical and behavioural development between humans and rats, and rats have been used effectively as an animal model of adolescence and the unique plasticity of this period of ontogeny. This review focuses on benefits and challenges of rats as a model for translational research on hypothalamic-pituitary-adrenal (HPA function and stressors in adolescence, highlighting important parallels and contrasts between adolescent rats and humans, and we review the main stress procedures that are used in investigating HPA stress responses and their consequences in adolescence in rats. We conclude that a greater focus on timing of puberty as a factor in research in adolescent rats may increase the translational relevance of the findings.

  11. MRI study of pituitary in girls with central precocious puberty

    International Nuclear Information System (INIS)

    Ye Zhiqiu; Guo Qinglu; Feng Changzheng; Wei Beiyang; Liu Yongxi; Zhang Yan

    2008-01-01

    Objective: To study the shape, size and signal intensity of pituitary gland in girls aged 3-10 year old with central precocious puberty. Methods: MRI data of pituitary glands in 40 girls aged 3-10 years old with central precocious puberty were selected. The shape, height and the appearances of pituitary glands were measured and observed on sagittal T 1 WI. Results: Quantitative data about size, shape and single intensity changes of pituitary glands in central precocious puberty were obtained in two groups, including girls aged from 3-5 and 5-10. The convex pituitary gland were 85.0% in former group. The height of pituitary gland were 6.1±0.2mm (former group) and 6.4± 0.4mm (latter one) respectively. The width of pituitary stalk was 1.93±0.50mm. The posterior pituitary gland demonstrated high signal intensity in all cases. Conclusion: Obvious changes of the size and shape of pituitary glands were found in central precocious puberty of girls aged from 3-10. The pituitary glands manifested physiologic hypertrophy with more convex in central precocious puberty girls than in normal ones. The changes on MRI could reflect the function of hypothalamus-pituitary-gonadal axis. It is of important value and significance in the diagnosis of central precocious puberty. (authors)

  12. Growth hormone deficiency and pituitary malformation in a recurrent Cat-Eye syndrome: a family report.

    Science.gov (United States)

    Jedraszak, Guillaume; Braun, Karine; Receveur, Aline; Decamp, Matthieu; Andrieux, Joris; Rabbind Singh, Amrathlal; Copin, Henri; Bremond-Gignac, Dominique; Mathieu, Michèle; Rochette, Jacques; Morin, Gilles

    2015-10-01

    Growth hormone deficiency affects roughly between one in 3000 and one in 4000 children with most instances of growth hormone deficiency being idiopathic. Growth hormone deficiency can also be associated with genetic diseases or chromosome abnormalities. Association of growth hormone deficiency together with hypothalamic-pituitary axis malformation and Cat-Eye syndrome is a very rare condition. We report a family with two brothers presenting with growth delay due to a growth hormone deficiency associated with a polymalformation syndrome. They both displayed pre-auricular pits and tags, imperforate anus and Duane retraction syndrome. Both parents and a third unaffected son displayed normal growth pattern. Cerebral MRI showed a hypothalamic-pituitary axis malformation in the two affected brothers. Cytogenetic studies revealed a type I small supernumerary marker chromosome derived from chromosome 22 resulting in a tetrasomy 22pter-22q11.21 characteristic of the Cat-Eye syndrome. The small supernumerary marker chromosome was present in the two affected sons and the mother in a mosaic state. Patients with short stature due to growth hormone deficiency should be evaluated for chromosomal abnormality. Family study should not be underestimated. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Neuropeptidome of the Hypothalamus and Pituitary Gland of Indicine × Taurine Heifers: Evidence of Differential Neuropeptide Processing in the Pituitary Gland before and after Puberty.

    Science.gov (United States)

    DeAtley, Kasey L; Colgrave, Michelle L; Cánovas, Angela; Wijffels, Gene; Ashley, Ryan L; Silver, Gail A; Rincon, Gonzalo; Medrano, Juan F; Islas-Trejo, Alma; Fortes, Marina R S; Reverter, Antonio; Porto-Neto, Laercio; Lehnert, Sigrid A; Thomas, Milton G

    2018-05-04

    Puberty in cattle is regulated by an endocrine axis, which includes a complex milieu of neuropeptides in the hypothalamus and pituitary gland. The neuropeptidome of hypothalamic-pituitary gland tissue of pre- (PRE) and postpubertal (POST) Bos indicus-influenced heifers was characterized, followed by quantitative analysis of 51 fertility-related neuropeptides in these tissues. Comparison of peptide abundances with gene expression levels allowed assessment of post-transcriptional peptide processing. On the basis of classical cleavage, 124 mature neuropeptides from 35 precursor proteins were detected in hypothalamus and pituitary gland tissues of three PRE and three POST Brangus heifers. An additional 19 peptides (cerebellins, PEN peptides) previously reported as neuropeptides that did not follow classical cleavage were also identified. In the pre-pubertal hypothalamus, a greater diversity of neuropeptides (25.8%) was identified relative to post-pubertal heifers, while in the pituitary gland, 38.6% more neuropeptides were detected in the post-pubertal heifers. Neuro-tissues of PRE and POST heifers revealed abundance differences ( p pituitary before and after puberty.

  14. Hypothalamic-pituitary sarcoidosis with vision loss and hypopituitarism: case series and literature review.

    Science.gov (United States)

    Anthony, Jeremy; Esper, Gregory J; Ioachimescu, Adriana

    2016-02-01

    Hypothalamic-pituitary (HP) neurosarcoidosis (NS) accounts for 0.5 % cases of sarcoidosis and 1 % of HP masses. Correlative data on endocrine and neurological outcomes is lacking. Retrospective case series and literature review of presentation, treatment and outcome of HP NS. Our series includes 4 men, ages 34-59, followed for a median of 7.3 years (range 1.5-17). All had optic neuropathy, multiple pituitary hormone abnormalities (PHAs) and other organ involvement by sarcoidosis (lung, sino-nasal, brain/spine and facial nerve). Two patients had central diabetes insipidus and one impaired thirst with polydipsia. After treatment with high-dose glucocorticoids, optic neuropathy improved in one case and stabilized in the others. After treatment, HP lesions improved radiologically, but PHAs persisted in all cases. Review of four published series on HP NS in addition to ours yielded 46 patients, age 37 ± 11.8 years, 65 % male. PHAs consisted of anterior hypopituitarism (LH/FSH 88.8 %, TSH 67.4 %, GH 50.0 %, ACTH 48.8 %), hyperprolactinemia (48.8 %) and diabetes insipidus (65.2 %). PHAs were the first sign of disease in 54.3 % patients. Vision problems occurred in 28.3 % patients, but optic neuropathy was not well documented in previous series. Most patients (93.5 %) received high-dose glucocorticoids followed by taper; 50 % also received other immunomodulators, including methotrexate, mycophenolate mofetil, cyclosporine, azathioprine, infliximab and hydrochloroquine. Only 13 % patients showed improvement in PHAs. All-cause mortality was 8.7 %. HP NS is a serious disease requiring multidisciplinary treatment and lifelong follow-up. Prospective multicentric studies are needed to determine a more standardized approach to HP NS and outline predictors of disease outcome.

  15. Evaluation of hypothalamic-pituitary function in children following acute bacterial meningitis.

    Science.gov (United States)

    Karadag-Oncel, Eda; Cakir, Meltem; Kara, Ates; Gonc, Nazli; Cengiz, Ali Bulent; Ozon, Alev; Ciftci, Ergin; Alikasifoglu, Ayfer; Ceyhan, Mehmet; Kandemir, Nurgun

    2015-02-01

    Previous studies in adults and case reports in children have shown increased frequency of hypothalamo-pituitary dysfunction after infectious diseases of the central nervous system. The aim of this study was to evaluate the function of hypothalamo-pituitary axis in children with a history of bacterial meningitis. Patients diagnosed with bacterial meningitis between April 2000 and June 2011 was included. Baseline and stimulated hormonal tests were performed as required for hormonal evaluations following a diagnosis of meningitis. Pituitary function was assessed following a period of 8-135 months (mean 53 months) after bacterial meningitis. Thirty-seven cases (27 male, 15 pubertal) with mean age of 11.1 ± 4.4 years were included. Mean height SDS was 0.01 ± 1.07 and mean BMI SDS was 0.54 ± 1.15 all patients had a SDS above -2 SD. Baseline cortisol and low dose ACTH stimulation revealed normal adrenal functions in all patients. Gonadotropin deficiency was not detected in any of the pubertal cases. Four cases (10.8%) had low IGF1 and IGFBP3 z-scores (10 ng/ml in three of them suggesting neurosecretary dysfunction of GH in these cases. The fourth case has died before the test. No one had TSH deficiency and diabetes insipidus, only one case had mild hyperprolactinemia. Our findings suggest that hypothalamo-pituitary dysfunction is not as common in childhood as in adulthood. The most remarkable finding was neurosecretary dysfunction of GH in some cases.

  16. Effects of Vitex agnus-castus fruit on sex hormones and antioxidant indices in a d-galactose-induced aging female mouse model

    OpenAIRE

    Akram Ahangarpour; Seyedeh Asma Najimi; Yaghoob Farbood

    2016-01-01

    Background: Aging is associated with the loss of endocrine function. In this study, Vitex agnus-castus (Vitex), which has antioxidant effects and high levels of phytoestrogen, was investigated with regard to the hypothalamic-pituitary-gonadal axis and antioxidant indices in natural aging and in a d-galactose induced aging model in female mice. Methods: The mice were subcutaneously injected with d-galactose (500 mg/kg/d for 45 days). Extract of Vitex (600 mg/kg/bid for 7 days by gavage) was...

  17. Os efeitos do estresse na função do eixo hipotalâmico-pituitário-adrenal em indivíduos com esquizofrenia The effects of stress on hypothalamic-pituitary-adrenal (HPA axis function in subjects with schizophrenia

    Directory of Open Access Journals (Sweden)

    Francesca L. Guest

    2013-01-01

    Full Text Available Nas últimas décadas, têm surgido evidências sugerindo que a patogênese de desordens psiquiátricas, tais como a esquizofrenia, pode envolver perturbações no eixo hipotalâmico-pituitário-adrenal (HPA. Variações na manifestação desses efeitos poderiam estar relacionadas a diferenças em sintomas clínicos entre os indivíduos afetados, assim como a diferenças na resposta ao tratamento. Tais efeitos podem também ser originados de complexas interações entre genes e fatores ambientais. Aqui, revisamos os efeitos do estresse maternal em anormalidades na regulação do eixo HPA e desenvolvimento de desordens psiquiátricas, incluindo a esquizofrenia. Estudos nessa área podem gerar o aumento do nosso entendimento da natureza multidimensional da esquizofrenia. Posterior pesquisa nesse campo poderia, em última instância, levar ao desenvolvimento de melhores diagnósticos e novas abordagens terapêuticas para essa debilitante condição psiquiátrica.Over the last few decades, evidence has been emerging that the pathogenesis of psychiatric disorders such as schizophrenia can involve perturbations of the hypothalamic-pituitary-adrenal (HPA axis. Variations in the manifestation of these effects could be related to the differences in clinical symptoms between affected individuals as well as to differences in treatment response. Such effects can also arise from the complex interaction between genes and environmental factors. Here, we review the effects of maternal stress on abnormalities in HPA axis regulation and the development of psychiatric disorders including schizophrenia. Studies in this area may prove critical for increasing our understanding of the multi-dimensional nature of schizophrenia. Further research in this area could ultimately lead to the development of improved diagnostics and novel therapeutic approaches for treating this debilitating psychiatric condition.

  18. Resveratrol ameliorates the anxiety- and depression-like behavior of subclinical hypothyroidism rat: possible involvement of the HPT axis, HPA axis, and Wnt/β-catenin pathway

    Directory of Open Access Journals (Sweden)

    Jinfang eGe

    2016-05-01

    Full Text Available Metabolic disease subclinical hypothyroidism (SCH is closely associated with depression-like behavior both in human and animal studies, and our previous studies have identified the antidepressant effect of resveratrol (RES in stressed rat model. The aim of this study was to investigate whether RES would manifest an antidepressant effect in SCH rat model and explore the possible mechanism. A SCH rat model was induced by hemi-thyroid electrocauterization, after which the model rats in the RES and LT4 groups received a daily intragastric injection of RES at the dose of 15 mg/kg or LT4 at the dose of 60 μg/kg for 16 days, respectively. The rats’ plasma concentrations of thyroid hormones were measured. Behavioral performance and hypothalamic-pituitary-adrenal (HPA activity were evaluated. The protein expression levels of the Wnt/β-catenin in the hippocampus were detected by western blot. The results showed that RES treatment down-regulated the elevated plasma thyroid stimulating hormone (TSH concentration and the hypothalamic mRNA expression of thyrotropin releasing hormone (TRH in the SCH rats. RES-treated rats showed increased rearing frequency and distance in the OFT, increased sucrose preference in the SPT, and decreased immobility in the FST compared with SCH rats. The ratio of the adrenal gland weight to body weight, the plasma corticosterone levels and the hypothalamic CRH mRNA expression were reduced in the RES-treated rats. Moreover, RES treatment up-regulated the relative ratio of phosphorylated-GSK3β (p-GSK3β/GSK3β and protein levels of p-GSK3β, cyclinD1 and c-myc, while down-regulating the relative ratio of phosphorylated-β-catenin (p-β-catenin/β-catenin and expression of GSK3β in the hippocampus. These findings suggest that RES exerts anxiolytic- and antidepressant-like effect in SCH rats by down-regulating hyperactivity of the HPA axis and regulating both the HPT axis and the Wnt/β-catenin pathway.

  19. A genetic basis for functional hypothalamic amenorrhea.

    OpenAIRE

    Caronia, L.M.; Martin, C.; Welt, C.K.; Sykiotis, G.P.; Quinton, R.; Thambundit, A.; Avbelj, M.; Dhruvakumar, S.; Plummer, L.; Hughes, V.A.; Seminara, S.B.; Boepple, P.A.; Sidis, Y.; Crowley, W.F.; Martin, K.A.

    2011-01-01

    Background: Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogon...

  20. Hypothalamic–Pituitary Alterations in Patients With Neurosarcoidosis

    Directory of Open Access Journals (Sweden)

    ulie Martin-Grace

    2015-08-01

    Full Text Available Sarcoidosis is a non-caseating, granulomatous inflammatory disorder that can affect the central nervous system (CNS, including the hypothalamic–pituitary region, although rarely. The clinical manifestations of hypothalamic–pituitary neurosarcoidosis are heterogeneous and require a prompt diagnosis to ensure the most appropriate treatment. We have reviewed the cases of neurosarcoidosis affecting the hypothalamic–pituitary axis published since 2002 and compared them with the cases reported in the literature up to 2002, which were previously meta-analysed by our research group. Since 2002, 64 cases were identified in the literature: 37 cases presented with diabetes insipidus, 36 were found to have secondary amenorrhoea, 30 with hypogonadotropic hypogonadism, 17 with hyperprolactinaemia, 15 with thyroid-stimulating hormone deficiency, and 8 cases of panhypopituitarism. Uncommon manifestations included hyperphagia, sudden death, and thermodysregulation. We confirm that neurosarcoidosis affecting the hypothalamic–pituitary axis is an uncommon manifestation of sarcoidosis. Neither changes in the clinical manifestations and diagnosis nor significantly novel management options have appeared in the last decade. While it is a rare disorder, the involvement of the CNS is an indication to treat sarcoidosis and as the symptoms of CNS involvement, including hypothalamic–pituitary alterations, may precede the diagnosis of sarcoidosis, it is important to include neurosarcoidosis in the differential diagnosis of hypothalamic–pituitary axis dysfunction in order to facilitate prompt and appropriate treatment.

  1. Intraperitoneal injection of neuropeptide Y (NPY) alters neurotrophin rat hypothalamic levels: Implications for NPY potential role in stress-related disorders.

    Science.gov (United States)

    Gelfo, Francesca; De Bartolo, Paola; Tirassa, Paola; Croce, Nicoletta; Caltagirone, Carlo; Petrosini, Laura; Angelucci, Francesco

    2011-06-01

    Neuropeptide Y (NPY) is a 36-amino acid peptide which exerts several regulatory actions within peripheral and central nervous systems. Among NPY actions preclinical and clinical data have suggested that the anxiolytic and antidepressant actions of NPY may be related to its antagonist action on the hypothalamic-pituitary-adrenal (HPA) axis. The neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are proteins involved in the growth, survival and function of neurons. In addition to this, a possible role of neurotrophins, particularly BDNF, in HPA axis hyperactivation has been proposed. To characterize the effect of NPY on the production of neurotrophins in the hypothalamus we exposed young adult rats to NPY intraperitoneal administration for three consecutive days and then evaluated BDNF and NGF synthesis in this brain region. We found that NPY treatment decreased BDNF and increased NGF production in the hypothalamus. Given the role of neurotrophins in the hypothalamus, these findings, although preliminary, provide evidence for a role of NPY as inhibitor of HPA axis and support the idea that NPY might be involved in pathologies characterized by HPA axis dysfunctions. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Short-term estriol administration modulates hypothalamo-pituitary function in patients with functional hypothalamic amenorrhea (FHA).

    Science.gov (United States)

    Genazzani, Alessandro D; Podfigurna-Stopa, Agnieszka; Czyzyk, Adam; Katulski, Krzysztof; Prati, Alessia; Despini, Giulia; Angioni, Stefano; Simoncini, Tommaso; Meczekalski, Blazej

    2016-01-01

    To evaluate the influence of short-term estriol administration (10 d) on the hypothalamus-pituitary function and gonadotropins secretion in patients affected by functional hypothalamic amenorrhea (FHA). Controlled clinical study on patients with FHA (n = 12) in a clinical research environment. Hormonal determinations and gonadotropin (luteinizing hormone [LH] and FSH) response to a gonadotropin-releasing hormone (GnRH) bolus (10 μg) at baseline condition and after 10 d of therapy with 2 mg/d of estriol per os. Measurements of plasma LH, FSH, prolactin, estradiol, androstenedione, 17α-hydroxyprogesterone, insulin, cortisol, thyroid-stimulating hormone, free triiodothyronine, and free thyroxine. After treatment, the FHA patients showed a statistically significant increase of both LH and FSH plasma levels and the significant increase of their responses to the GnRH bolus. Estriol short-term therapy modulates within 10 d of administration the neuroendocrine control of the hypothalamus-pituitary unit and induces the recovery of both gonadotropins synthesis and secretion in hypogonadotropic patients with FHA.

  3. Hypothalamic-pituitary-gonadal function in men with liver cirrhosis before and after liver transplantation

    Directory of Open Access Journals (Sweden)

    Bruno T. Zacharias

    2014-12-01

    Full Text Available Objective: To evaluate the influence of end-stage liver disease and orthotopic liver transplantation in the pituitary function and hormone metabolism before and after liver transplantation.Methods: In a prospective study, serum levels of follicle stimulating hormone (FSH, luteinizing hormone (LH, estradiol (E2 and prolactin (PRL of 30 male patients with cirrhosis were determined two to four hours before and six months after liver transplantation. The results were compared according to the Model for End-stage Liver Disease (MELD.Results: male patients with liver cirrhosis have hypogonadism. FSH was normal, but inappropriately low due to androgen failure; E2 and PRL, on their turn, were high. After liver transplantation, FSH and LH levels increased (p 18. The severity of cirrhosis had no influence on FSH, PRL and LH.

  4. Effects of Carbenoxolone on the Canine Pituitary-Adrenal Axis.

    Science.gov (United States)

    Teshima, Takahiro; Matsumoto, Hirotaka; Okusa, Tomoko; Nakamura, Yumi; Koyama, Hidekazu

    2015-01-01

    Cushing's disease caused by pituitary corticotroph adenoma is a common endocrine disease in dogs. A characteristic biochemical feature of corticotroph adenomas is their relative resistance to suppressive negative feedback by glucocorticoids. The abnormal expression of 11beta-hydroxysteroid dehydrogenase (11HSD), which is a cortisol metabolic enzyme, is found in human and murine corticotroph adenomas. Our recent studies demonstrated that canine corticotroph adenomas also have abnormal expression of 11HSD. 11HSD has two isoforms in dogs, 11HSD type1 (HSD11B1), which converts cortisone into active cortisol, and 11HSD type2 (HSD11B2), which converts cortisol into inactive cortisone. It has been suggested that glucocorticoid resistance in corticotroph tumors is related to the overexpression of HSD11B2. Therefore it was our aim to investigate the effects of carbenoxolone (CBX), an 11HSD inhibitor, on the healthy dog's pituitary-adrenal axis. Dogs were administered 50 mg/kg of CBX twice each day for 15 days. During CBX administration, no adverse effects were observed in any dogs. The plasma adrenocorticotropic hormone (ACTH), and serum cortisol and cortisone concentrations were significantly lower at day 7 and 15 following corticotropin releasing hormone stimulation. After completion of CBX administration, the HSD11B1 mRNA expression was higher, and HSD11B2 mRNA expression was significantly lower in the pituitaries. Moreover, proopiomelanocortin mRNA expression was lower, and the ratio of ACTH-positive cells in the anterior pituitary was also significantly lower after CBX treatment. In adrenal glands treated with CBX, HSD11B1 and HSD11B2 mRNA expression were both lower compared to normal canine adrenal glands. The results of this study suggested that CBX inhibits ACTH secretion from pituitary due to altered 11HSD expressions, and is potentially useful for the treatment of canine Cushing's disease.

  5. Development of the adrenal axis in the neonatal rat

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, Ronnie [Univ. of Rochester, NY (United States)

    1977-01-01

    Plasma corticosterone and ACTH concentrations were determined in neonatal rats 1, 7, 14, and 21 days old, under a variety of experimental conditions, to obtain more information on the postnatal development of the rat hypothalamo-adrenal (HHA) axis. The results indicate that: (1) there is a diminution followed by an increase in responsiveness of the adrenal gland, but the pituitary response to direct hormonal stimulation is unchanged during the first three postnatal weeks; (2) continued stimulation of the adrenal by ACTH or of the central nervous system (CNS) or hypothalamus by corticosterone is necessary during early postnatal development to allow normal maturation of the HHA axis; and (3) feedback inhibition is operative by birth, at least to a moderate degree. Taken together, the studies suggest that both the adrenal and pituitary glands are potentially functional at birth, but that the hypothalamic and CNS mediators of the stress response are not mature until at least the second or third postnatal week. (ERB)

  6. Shilajit attenuates behavioral symptoms of chronic fatigue syndrome by modulating the hypothalamic-pituitary-adrenal axis and mitochondrial bioenergetics in rats.

    Science.gov (United States)

    Surapaneni, Dinesh Kumar; Adapa, Sree Rama Shiva Shanker; Preeti, Kumari; Teja, Gangineni Ravi; Veeraragavan, Muruganandam; Krishnamurthy, Sairam

    2012-08-30

    Shilajit has been used as a rejuvenator for ages in Indian ancient traditional medicine and has been validated for a number of pharmacological activities. The effect of processed shilajit which was standardized to dibenzo-α-pyrones (DBPs;0.43% w/w), DBP-chromoproteins (DCPs; 20.45% w/w) and fulvic acids (56.75% w/w) was evaluated in a rat model of chronic fatigue syndrome (CFS). The mitochondrial bioenergetics and the activity of hypothalamus-pituitary-adrenal (HPA) axis were evaluated for the plausible mechanism of action of shilajit. CFS was induced by forcing the rats to swim for 15mins for 21 consecutive days. The rats were treated with shilajit (25, 50 and 100mg/kg) for 21 days before exposure to stress procedure. The behavioral consequence of CFS was measured in terms of immobility and the climbing period. The post-CFS anxiety level was assessed by elevated plus maze (EPM) test. Plasma corticosterone and adrenal gland weight were estimated as indices of HPA axis activity. Analysis of mitochondrial complex chain enzymes (Complex I, II, IV and V) and mitochondrial membrane potential (MMP) in prefrontal cortex (PFC) were performed to evaluate the mitochondrial bioenergetics and integrity respectively. Shilajit reversed the CFS-induced increase in immobility period and decrease in climbing behavior as well as attenuated anxiety in the EPM test. Shilajit reversed CFS-induced decrease in plasma corticosterone level and loss of adrenal gland weight indicating modulation of HPA axis. Shilajit prevented CFS-induced mitochondrial dysfunction by stabilizing the complex enzyme activities and the loss of MMP. Shilajit reversed CFS-induced mitochondrial oxidative stress in terms of NO concentration and, LPO, SOD and catalase activities. The results indicate that shilajit mitigates the effects of CFS in this model possibly through the modulation of HPA axis and preservation of mitochondrial function and integrity. The reversal of CFS-induced behavioral symptoms and

  7. Effects of dietary selenium and moisture on the physical activity and thyroid axis of cats

    Science.gov (United States)

    S. E. Hooper; R. Backus; S. Amelon

    2018-01-01

    Consumption of canned cat food is considered a risk factor for the development of feline hyperthyroidism. Because selenium and water are substantially higher in canned diets compared to dry diets, objectives of this study were to determine whether increased dietary selenium or water alters the function of the hypothalamic–pituitary– thyroid axis and leads to an...

  8. Nitric oxide in the stress axis.

    Science.gov (United States)

    López-Figueroa, M O; Day, H E; Akil, H; Watson, S J

    1998-10-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbic-hypothalamic-pituitary-adrenal (LHPA) or stress axis, activation of which is one of the defining features of a stress response. Evidence suggests that NO may modulate the release of the stress hormones ACTH and corticosterone, and NOS activity and transcription is increased in the LHPA axis following various stressful stimuli. Furthermore, following activation of the stress axis, glucocorticoids are thought to down-regulate the transcription and activity of NOS via a feedback mechanism. Taken together, current data indicate a role for NO in the regulation of the LHPA axis, although at present this role is not well defined. It has been suggested that NO may act as a cellular communicator in plasticity and development, to facilitate the activation or the release of other neurotransmitters, to mediate immune responses, and/or as a vasodilator in the regulation of blood flow. In the following review we summarize some of the latest insights into the function of NO, with special attention to its relationship with the LHPA axis.

  9. Sustained alterations of hypothalamic tanycytes during posttraumatic hypopituitarism in male mice.

    Science.gov (United States)

    Osterstock, Guillaume; El Yandouzi, Taoufik; Romanò, Nicola; Carmignac, Danielle; Langlet, Fanny; Coutry, Nathalie; Guillou, Anne; Schaeffer, Marie; Chauvet, Norbert; Vanacker, Charlotte; Galibert, Evelyne; Dehouck, Bénédicte; Robinson, Iain C A F; Prévot, Vincent; Mollard, Patrice; Plesnila, Nikolaus; Méry, Pierre-François

    2014-05-01

    Traumatic brain injury is a leading cause of hypopituitarism, which compromises patients' recovery, quality of life, and life span. To date, there are no means other than standardized animal studies to provide insights into the mechanisms of posttraumatic hypopituitarism. We have found that GH levels were impaired after inducing a controlled cortical impact (CCI) in mice. Furthermore, GHRH stimulation enhanced GH to lower level in injured than in control or sham mice. Because many characteristics were unchanged in the pituitary glands of CCI mice, we looked for changes at the hypothalamic level. Hypertrophied astrocytes were seen both within the arcuate nucleus and the median eminence, two pivotal structures of the GH axis, spatially remote to the injury site. In the arcuate nucleus, GHRH neurons were unaltered. In the median eminence, injured mice exhibited unexpected alterations. First, the distributions of claudin-1 and zonula occludens-1 between tanycytes were disorganized, suggesting tight junction disruptions. Second, endogenous IgG was increased in the vicinity of the third ventricle, suggesting abnormal barrier properties after CCI. Third, intracerebroventricular injection of a fluorescent-dextran derivative highly stained the hypothalamic parenchyma only after CCI, demonstrating an increased permeability of the third ventricle edges. This alteration of the third ventricle might jeopardize the communication between the hypothalamus and the pituitary gland. In conclusion, the phenotype of CCI mice had similarities to the posttraumatic hypopituitarism seen in humans with intact pituitary gland and pituitary stalk. It is the first report of a pathological status in which tanycyte dysfunctions appear as a major acquired syndrome.

  10. Reproductive neuroendocrine pathways of social behavior

    Directory of Open Access Journals (Sweden)

    Ishwar eParhar

    2016-03-01

    Full Text Available Social behaviors are key components of reproduction because they are essential for successful fertilization. Social behaviors such as courtship, mating, and aggression are strongly associated with sex steroids, such as testosterone, estradiol and progesterone. Secretion of sex steroids from the gonads is regulated by the hypothalamus-pituitary-gonadal (HPG axis in vertebrates. Gonadotropin-releasing hormone (GnRH is a pivotal hypothalamic neuropeptide that stimulates gonadotropin release from the pituitary. In recent years, the role of neuropeptides containing the C-terminal Arg-Phe-NH2 (RFamide peptides has been emphasized in vertebrate reproduction. In particular, two key RFamide peptides, kisspeptin and gonadotropin-inhibitory hormone (GnIH, emerged as critical accelerator and suppressor of gonadotropin secretion. Kisspeptin stimulates GnRH release by directly acting on GnRH neurons, whereas GnIH inhibits gonadotropin release by inhibiting kisspeptin or GnRH neurons or pituitary gonadotropes. These neuropeptides can regulate social behavior by regulating the HPG axis. However, distribution of neuronal fibers of GnRH, kisspeptin and GnIH neurons are not limited within the hypothalamus, and the existence of extra-hypothalamic neuronal fibers suggests direct control of social behavior within the brain. It has traditionally been shown that central administration of GnRH can stimulate female sexual behavior in rats. Recently, it was shown that Kiss1, one of the paralogs of kisspeptin peptide family, regulates fear responses in zebrafish and GnIH inhibits socio-sexual behavior in birds. Here we highlight recent findings regarding the role of GnRH, kisspeptin and GnIH in the regulation of social behaviors in fish, birds and mammals and discuss their importance in future biological and biomedical research.

  11. Patient specific modeling of the HPA axis related to clinical diagnosis of depression

    DEFF Research Database (Denmark)

    Bangsgaard, Elisabeth; Ottesen, Johnny T.

    2017-01-01

    A novel model of the hypothalamic-pituitary-adrenal axis is presented. The axis is an endocrine system responsible for coping with stress and it is likely to be involved in depression. The dynamics of the system is studied and existence, uniqueness and positivity of the solution and the existence...... of an attracting trapping region are proved. The model is calibrated and compared to data for healthy and depressed subjects. A sensitivity analysis resulting in a set of identifiable physiological parameters is provided. A subset is selected for parameter estimation and a reduced version of the model is stated...... and an approximated version is discussed. The model is physiologically based, thus parameters are representative for gland functions or elimination processes. Hence the model may be used for pointing out pathologies by parameter estimation and hypothesis testing whereby it may be used as an objective and refined...

  12. Interactions of vitamin A and iodine deficiencies: effects on the pituitary-thyroid axis

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2007-01-01

    Vitamin A (VA) deficiency (VAD) and the iodine deficiency disorders (IDD) affect > 30% of the global population and these deficiencies often coexist in vulnerable groups. VAD has multiple effects on the pituitary-thyroid axis; VA status modulates thyroid gland metabolism, peripheral metabolism of

  13. Differential protein expression profile in the hypothalamic GT1-7 cell line after exposure to anabolic androgenic steroids.

    Directory of Open Access Journals (Sweden)

    Freddyson J Martínez-Rivera

    Full Text Available The abuse of anabolic androgenic steroids (AAS has been considered a major public health problem during decades. Supraphysiological doses of AAS may lead to a variety of neuroendocrine problems. Precisely, the hypothalamic-pituitary-gonadal (HPG axis is one of the body systems that is mainly influenced by steroidal hormones. Fluctuations of the hormonal milieu result in alterations of reproductive function, which are made through changes in hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH. In fact, previous studies have shown that AAS modulate the activity of these neurons through steroid-sensitive afferents. To increase knowledge about the cellular mechanisms induced by AAS in GnRH neurons, we performed proteomic analyses of the murine hypothalamic GT1-7 cell line after exposure to 17α-methyltestosterone (17α-meT; 1 μM. These cells represent a good model for studying regulatory processes because they exhibit the typical characteristics of GnRH neurons, and respond to compounds that modulate GnRH in vivo. Two-dimensional difference in gel electrophoresis (2D-DIGE and mass spectrometry analyses identified a total of 17 different proteins that were significantly affected by supraphysiological levels of AAS. Furthermore, pathway analyses showed that modulated proteins were mainly associated to glucose metabolism, drug detoxification, stress response and cell cycle. Validation of many of these proteins, such as GSTM1, ERH, GAPDH, PEBP1 and PDIA6, were confirmed by western blotting. We further demonstrated that AAS exposure decreased expression of estrogen receptors and GnRH, while two important signaling pathway proteins p-ERK, and p-p38, were modulated. Our results suggest that steroids have the capacity to directly affect the neuroendocrine system by modulating key cellular processes for the control of reproductive function.

  14. Effect of endotoxin on the expression of GnRH and GnRHR genes in the hypothalamus and anterior pituitary gland of anestrous ewes.

    Science.gov (United States)

    Herman, Andrzej Przemysław; Tomaszewska-Zaremba, Dorota

    2010-07-01

    An immune/inflammatory challenge can affect reproduction at the level of the hypothalamus, pituitary gland, or gonads. Nonetheless, the major impact is thought to occur within the brain or the pituitary gland. The present study was designed to examine the effect of intravenous (i.v.) lipopolysaccharide (LPS) injection on the expression of gonadotropin-releasing hormone (GnRH) and the gonadotropin-releasing hormone receptor (GnRHR) genes in the hypothalamic structures where GnRH neurons are located as well as in the anterior pituitary gland (AP) of anestrous ewes. We also determined the effect of LPS on luteinizing hormone (LH) release. It was found that i.v. LPS injection significantly decreased GnRH and GnRHR mRNAs levels in the preoptic area (40%, ppituitary cells to GnRH stimulation. The presence of GnRH mRNA in the median eminence, the hypothalamic structure where GnRH-ergic neurons' terminals are located, suggests that the axonal transport of GnRH mRNA may occur in these neurons. This phenomenon could play an important role in the physiology of GnRH neurons. Our data demonstrate that immune stress could be important inhibitor of this process. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Pituitary gland volume and psychosocial stress among children at elevated risk for schizophrenia.

    Science.gov (United States)

    Cullen, A E; Day, F L; Roberts, R E; Pariante, C M; Laurens, K R

    2015-11-01

    Pituitary volume enlargements have been observed among individuals with first-episode psychosis. These abnormalities are suggestive of hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, which may contribute to the development of psychosis. However, the extent to which these abnormalities characterize individuals at elevated risk for schizophrenia prior to illness onset is currently unclear, as volume increases, decreases and no volume differences have all been reported relative to controls. The current study aimed to determine whether antipsychotic-naive, putatively at-risk children who present multiple antecedents of schizophrenia (ASz) or a family history of illness (FHx) show pituitary volume abnormalities relative to typically developing (TD) children. An additional aim was to explore the association between pituitary volume and experiences of psychosocial stress. ASz (n = 30), FHx (n = 22) and TD (n = 32) children were identified at age 9-12 years using a novel community-screening procedure or as relatives of individuals with schizophrenia. Measures of pituitary volume and psychosocial stress were obtained at age 11-14 years. Neither ASz nor FHx children showed differences in pituitary volume relative to TD children. Among FHx children only, pituitary volume was negatively associated with current distress relating to negative life events and exposure to physical punishment. The lack of pituitary volume abnormalities among ASz and FHx children is consistent with our previous work demonstrating that these children are not characterized by elevated diurnal cortisol levels. The findings imply that these biological markers of HPA axis hyperactivity, observed in some older samples of high-risk individuals, may emerge later, more proximally to disease onset.

  16. Panhypopituitarism due to Absence of the Pituitary Stalk: A Rare Aetiology of Liver Cirrhosis.

    Science.gov (United States)

    Gonzalez Rozas, Marta; Hernanz Roman, Lidia; Gonzalez, Diego Gonzalez; Pérez-Castrillón, José Luis

    2016-01-01

    Studies have established a relationship between hypothalamic-pituitary dysfunction and the onset of liver damage, which may occasionally progress to cirrhosis. Patients with hypopituitarism can develop a metabolic syndrome-like phenotype. Insulin resistance is the main pathophysiological axis of metabolic syndrome and is the causal factor in the development of nonalcoholic fatty liver disease (NAFLD). We present the case of a young patient with liver cirrhosis of unknown aetiology that was finally attributed to panhypopituitarism.

  17. Non-analgesic effects of opioids: opioids and the endocrine system.

    Science.gov (United States)

    Elliott, Jennifer A; Opper, Susan E; Agarwal, Sonali; Fibuch, Eugene E

    2012-01-01

    Opioids are among the oldest known and most widely used analgesics. The application of opioids has expanded over the last few decades, especially in the treatment of chronic non-malignant pain. This upsurge in opioid use has been accompanied by the increasingly recognized occurrence of opioid-associated endocrinopathy. This may arise after exposure to enteral, parenteral, or neuraxial opioids. Opioid-associated endocrinopathy consists primarily of hypothalamic-pituitary-gonadal axis or hypothalamic-pituitary-adrenal axis dysfunction and may manifest with symptoms of hypogonadism, adrenal dysfunction, and other hormonal disturbances. Additionally, opioid related endocrine dysfunction may be coupled with such disorders as osteoporosis and mood disturbances including depression. Undesirable changes in pain sensitivity such as opioid-induced hyperalgesia, and reduced potency of opioid analgesia may also be potential consequences of chronic opioid consumption. Few studies to date have been able to establish what degree of opioid exposure, in terms of dose or duration of therapy, may predispose patients to opioid-associated endocrinopathy. This article will review the currently available literature concerning opioid-associated endocrinopathy and will provide recommendations for the evaluation, monitoring, and management of opioid-associated endocrinopathy and its other accompanying undesired effects.

  18. Study of the neuroendocrine and immunologic mechanism of fatigue caused by military operations

    Directory of Open Access Journals (Sweden)

    Xin LI

    2012-01-01

    Full Text Available Objective  To observe the regularity of the changes in neuroendocrine-immune system caused by fatigue due to military operations, and explore the mechanism by which fatigue occurs in military operations. Methods  The subjects were 240 soldiers belonging to a field artillery force. The medical history and physical examination were taken before military operations, and fatigue assessment scale was accomplished as well. The following variables were measured in all the subjects: pituitary-adrenal [adrenocorticotropic hormone (ACTH, cortical hormone (B, 24-h urinary free cortisol (UFC], pituitary-gonadal [luteinizing hormone (LH, testosterone (T, estradiol (E2], pituitary-thyroid functions [serum thyroid stimulating hormone (TSH, tetraiodothyronine (TT4, triiodothyronine (TT3, free thyroxine (FT4, and free triiodothyronine (FT3], and cellular immune parameters (CD3+, CD4+, CD8+, CD4+/CD8+, B, NK. After 7 d of large-scale and high-intensity field exercises, the above variables were again measured in all the subjects. Results  After high-intensity military operations, the unpleasant feelings were significantly increased, and the compulsive and psychotic scores significantly decreased in the soldiers. In addition, the pituitary-adrenal and pituitary-gonadal hormone levels also decreased (all PPPConclusion  The depressed psychological tolerance in soldiers is the psychological factor of fatigue after a high-intensity military operation. The hypocorticoidism and inhibition of hypothalamic-pituitary-gonadal axis are the pathophysiological basis of military operation fatigue. Suppression of immune function is an important reason for an increase of susceptibility to disease after high-intensity military operations.

  19. Female nurses' burnout symptoms: No association with the Hypothalamic-pituitary-thyroid (HPT) axis.

    Science.gov (United States)

    Guo, Yufang; Lam, Louisa; Luo, Yuanhui; Plummer, Virginia; Cross, Wendy; Li, Hui; Yin, Yizhen; Zhang, Jingping

    2017-03-01

    Across the world, hospital nurses experience a high level of burnout. Exploring biochemical markers of burnout could help to understand physiological changes and may provide useful evidence for preventing burnout symptoms. The current study included 94 female nurses from one Chinese third-level hospital. The Maslach Burnout Inventory-General Survey (MBI-GS) was used to investigate burnout symptoms: emotional exhaustion, cynicism, reduced professional efficacy, as well as the burnout average. The HPT axis was tested by checking blood levels of thyroid-stimulating hormone (TSH), thyroxin (T 4 ) and triiodothyronine (T 3 ). Nonparametric tests showed that no significant difference in biochemical markers was found between the burnout and non-burnout groups. Spearman correlation analysis found that biochemical markers had no significant association with burnout symptoms, except weakly negative associations between reduced professional efficacy and blood pressure and heart rate. These findings show a rather poor correlation of the HPT axis on burnout symptoms. Expanding the biochemical index of the HPT axis, comparing well-defined samples and using longitudinal studies are recommended for further studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A model for evaluating steroids acting at the hypothalamus-pituitary axis using radioimmunoassay and related procedures

    International Nuclear Information System (INIS)

    Spona, J.; Bieglmayer, Ch.; Schroeder, R.; Poeckl, E.

    1978-01-01

    The relative affinity constants for binding of estrone (E 1 ), estriol (E 3 ), 17β-estradiol(E 2 ) and 17α-ethinyl-17β-estradiol(EE 2 ) to cytosol estrogen-receptors of rat hypothalamus and pituitary were estimated by a radioligand-receptor assay procedure. The relative affinity constants in the hypothalamic system were 6.5x10 -10 M for E 2 , 1x10 -9 M for EE 2 and 2x10 -8 M for E 1 and E 3 . The affinity constants were 1x10 -9 M for E 2 and E 3 and 7x10 -9 M for E 1 and E 3 when pituitary cytosol samples were used. Some discrepancies between biological activity and affinity for the estrogen-receptor were noted. These may be due to differences in the metabolism and cellular uptake of the estrogens. The radioligand-receptor assay procedure may be useful in evaluating the action of estrogens and anti-estrogens acting at the hypothalamic and pituitary level. Sedimentation patterns of cytosol samples labelled with the estrogens used in this study revealed, upon ultracentrifugation, protein moieties sedimenting in the 8 S region. The potency of progesterone and D-Norgestrel to modulate the release of LH and FSH stimulated by luteinizing hormone-releasing hormone (LH-RH) in castrated female rats was found to correlate well with the biological activity of the progestogens. It is concluded that the radioligand-receptor assay procedure for estrogens and the in-vivo model for the evaluation of the central action of progestogens may be valuable tools for testing new steroids to be used in oral contraceptives. (author)

  1. Antidepressant-like Effect of Bacopaside I in Mice Exposed to Chronic Unpredictable Mild Stress by Modulating the Hypothalamic-Pituitary-Adrenal Axis Function and Activating BDNF Signaling Pathway.

    Science.gov (United States)

    Zu, Xianpeng; Zhang, Mingjian; Li, Wencai; Xie, Haisheng; Lin, Zhang; Yang, Niao; Liu, Xinru; Zhang, Weidong

    2017-11-01

    Preliminary studies conducted in our laboratory have confirmed that Bacopaside I (BS-I), a saponin compound isolated from Bacopa monnieri, displayed antidepressant-like activity in the mouse behavioral despair model. The present investigation aimed to verify the antidepressant-like action of BS-I using a mouse model of behavioral deficits induced by chronic unpredictable mild stress (CUMS) and further probe its underlying mechanism of action. Mice were exposed to CUMS for a period of 5 consecutive weeks to induce depression-like behavior. Then, oral gavage administrations with vehicle (model group), fluoxetine (12 mg/kg, positive group) or BS-I (5, 15, 45 mg/kg, treated group) once daily were started during the last two weeks of CUMS procedure. The results showed that BS-I significantly ameliorated CUMS-induced depression-like behaviors in mice, as characterized by an elevated sucrose consumption in the sucrose preference test and reduced immobility time without affecting spontaneous locomotor activity in the forced swimming test, tail suspension test and open field test. It was also found that BS-I treatment reversed the increased level of plasma corticosterone and decreased mRNA and protein expressions of glucocorticoid receptor induced by CUMS exposure, indicating that hypothalamic-pituitary-adrenal (HPA) axis hyperactivity of CUMS-exposed mice was restored by BS-I treatment. Furthermore, chronic administration of BS-I elevated expression levels of brain-derived neurotrophic factor (BDNF) (mRNA and protein) and activated the phosphorylation of extracellular signal-regulated kinase and cAMP response element-binding protein in the hippocampus and prefrontal cortex in mice subjected to CUMS procedure. Taken together, these results indicated that BS-I exhibited an obvious antidepressant-like effect in mouse model of CUMS-induced depression that was mediated, at least in part, by modulating HPA hyperactivity and activating BDNF signaling pathway.

  2. MR imaging of the pituitary gland in central precocious puberty

    International Nuclear Information System (INIS)

    Kao, S.C.S.; Cook, J.S.; Hansen, J.R.; Simonson, T.M.

    1992-01-01

    Cranial magnetic resonance imaging was performed in 17 children with central precocious puberty (CPP) and 19 aged-matched controls to compare the appearance of the pituitary gland. Gland size was measured on T1-weighted sagittal and coronal images. The gland was graded according to the concavity or convexity of the upper surface, and the signal intensity of the gland was assessed visually. The mean pituitary volume in 13 CPP children without hypothalamic tumor (292.6 mm 3 ) was significantly greater than that in normal controls (181.35 mm 3 ). The mean volume for the four CPP children with hypothalamic tumor was smaller (145.0 mm 3 ). Compared to controls, the upper pituitary surface in CPP patients appeared convex in a higher proportion. The anterior pituitary was isointense to pons in all patients and controls. Although the posterior pituitary bright spot was present in 14 controls and 11 CPP patients, none with hypothalamic tumor showed it. (orig.)

  3. MR imaging of the pituitary gland in central precocious puberty

    Energy Technology Data Exchange (ETDEWEB)

    Kao, S.C.S. (Dept. of Radiology, Univ. of Iowa Coll. of Medicine, Iowa City, IA (United States)); Cook, J.S. (Dept. of Pediatrics, Univ. of Iowa Coll. of Medicine, Iowa City, IA (United States)); Hansen, J.R. (Dept. of Pediatrics, Univ. of Iowa Coll. of Medicine, Iowa City, IA (United States)); Simonson, T.M. (Dept. of Radiology, Univ. of Iowa Coll. of Medicine, Iowa City, IA (United States))

    1992-11-01

    Cranial magnetic resonance imaging was performed in 17 children with central precocious puberty (CPP) and 19 aged-matched controls to compare the appearance of the pituitary gland. Gland size was measured on T1-weighted sagittal and coronal images. The gland was graded according to the concavity or convexity of the upper surface, and the signal intensity of the gland was assessed visually. The mean pituitary volume in 13 CPP children without hypothalamic tumor (292.6 mm[sup 3]) was significantly greater than that in normal controls (181.35 mm[sup 3]). The mean volume for the four CPP children with hypothalamic tumor was smaller (145.0 mm[sup 3]). Compared to controls, the upper pituitary surface in CPP patients appeared convex in a higher proportion. The anterior pituitary was isointense to pons in all patients and controls. Although the posterior pituitary bright spot was present in 14 controls and 11 CPP patients, none with hypothalamic tumor showed it. (orig.)

  4. Increased cortisol responsivity to adrenocorticotropic hormone and low plasma levels of interleukin-1 receptor antagonist in women with functional hypothalamic amenorrhea.

    Science.gov (United States)

    Lindahl, Magnus S; Olovsson, Matts; Nyberg, Sigrid; Thorsen, Kim; Olsson, Tommy; Sundström Poromaa, Inger

    2007-01-01

    To assess the hypothalamic-pituitary-adrenal (HPA) axis at all levels, to determine the origin of the previously reported hypercortisolism in patients with functional hypothalamic amenorrhea. A secondary aim was to evaluate factors outside the central nervous system which are known to affect the HPA axis, i.e., circulating levels of interleukin-6 (IL-6), interleukin-1 receptor antagonist (IL-1Ra), and fat mass-adjusted leptin levels, in patients with functional hypothalamic amenorrhea and healthy controls. Cross-sectional study. Umeå University Hospital, Umeå, Sweden. Fifteen subjects with hypothalamic amenorrhea, and 14 age- and weight-matched controls. None. We collected blood samples four times during a 24-hour interval for analysis of cortisol, leptin, IL-1Ra, and IL-6 levels. We performed a low-dose oral dexamethasone test and a low-dose ACTH test. We measured body-fat percentage using a dual-energy X-ray absorptiometer. Patients with hypothalamic amenorrhea had increased diurnal cortisol levels (P<.001). The cortisol response to intravenous low-dose ACTH was increased in functional hypothalamic amenorrhea patients compared to control subjects (P<.01), but they had similar rates of dexamethasone suppression. Patients with hypothalamic amenorrhea also had decreased diurnal leptin (P<.05), and decreased diurnal IL-1Ra levels (P<.05), compared to controls. Body-fat percentage was the main predictor of leptin levels. The present study suggests novel links for the development of functional hypothalamic amenorrhea, including increased adrenal responsiveness and impairments in proinflammatory cytokine pathways.

  5. Regulation mechanisms of pituitary-thyroid axis in normal subjects and patients with Graves' disease

    International Nuclear Information System (INIS)

    Takagi, Shinko; Yamauchi, Kazuyuki; Mori, Yuichi

    1986-01-01

    The regulatory mechanism of the pituitary-thyroid axis in normal subjects and patients with Graves' disease was investigated using a highly sensitive TSH assay based on the immunoradiometric assay. All of the normal subjects had detectable TSH values within the range 0.35 to 6.0 μU/ml. No negative correlations between TSH and free thyroid hormones existed in normal subjects. Patients with thyroid carcinoma who seemed to have normal pituitary-thyroid function showed a rapid increase of TSH after total thyroidectomy. On the other hand, while untreated patients with Graves' disease all had undetectable TSH values, these patients took 1 to 3.5 months longer to normalize their TSH values than to normalize free thyroid hormones on antithyroid drug therapy. During the recovery phase by the treatment with decrease of antithyroid drug or supplement of T 4 from iatrogenic hypothyroid state after treatment for Graves' disease and thyroid carcinoma, normalization of TSH levels was delayed than that of free thyroid hormones. Patients with Graves' disease in remission showed an extremely positive correlation between basal and peak TSH levels in TRH test, and a negative correlation between basal TSH and FT 4 . In conclusion, an individual patient may have a different set point concerning the regulatory mechanism of the pituitary-thyroid axis, and the persistence of the hyperthyroid state would seem to have caused some reversible dysfunction of the pituitary gland. (author)

  6. The physiology of functional hypothalamic amenorrhea associated with energy deficiency in exercising women and in women with anorexia nervosa.

    Science.gov (United States)

    Allaway, Heather C M; Southmayd, Emily A; De Souza, Mary Jane

    2016-02-01

    An energy deficiency is the result of inadequate energy intake relative to high energy expenditure. Often observed with the development of an energy deficiency is a high drive for thinness, dietary restraint, and weight and shape concerns in association with eating behaviors. At a basic physiologic level, a chronic energy deficiency promotes compensatory mechanisms to conserve fuel for vital physiologic function. Alterations have been documented in resting energy expenditure (REE) and metabolic hormones. Observed metabolic alterations include nutritionally acquired growth hormone resistance and reduced insulin-like growth factor-1 (IGF-1) concentrations; hypercortisolemia; increased ghrelin, peptide YY, and adiponectin; and decreased leptin, triiodothyronine, and kisspeptin. The cumulative effect of the energetic and metabolic alterations is a suppression of the hypothalamic-pituitary-ovarian axis. Gonadotropin releasing hormone secretion is decreased with consequent suppression of luteinizing hormone and follicle stimulating hormone release. Alterations in hypothalamic-pituitary secretion alters the production of estrogen and progesterone resulting in subclinical or clinical menstrual dysfunction.

  7. "Brain sex differentiation" in teleosts: Emerging concepts with potential biomarkers.

    Science.gov (United States)

    Senthilkumaran, Balasubramanian; Sudhakumari, Cheni-Chery; Mamta, Sajwan-Khatri; Raghuveer, Kavarthapu; Swapna, Immani; Murugananthkumar, Raju

    2015-09-01

    "Brain sex differentiation" in teleosts is a contentious topic of research as most of the earlier reports tend to suggest that gonadal sex differentiation drives brain sex differentiation. However, identification of sex-specific marker genes in the developing brain of teleosts signifies brain-gonadal interaction during early sexual development in lower vertebrates. In this context, the influence of gonadotropin-releasing hormone (GnRH)-gonadotropin (GTH) axis on gonadal sex differentiation, if any requires in depth analysis. Presence of seabream (sb) GnRH immunoreactivity (ir-) in the brain of XY Nile tilapia was found as early as 5days post hatch (dph) followed by qualitative reduction in the preoptic area-hypothalamus region. In contrast, in the XX female brain a steady ir- of sbGnRH was evident from 15dph. Earlier studies using sea bass already implied the importance of hypothalamic gonadotropic axis completion during sex differentiation period. Such biphasic pattern of localization was also seen in pituitary GTHs using heterologous antisera in tilapia. However, more recent analysis in the same species could not detect any sexually dimorphic pattern using homologous antisera for pituitary GTHs. Detailed studies on the development of hypothalamo-hypophyseal-gonadal axis in teleosts focusing on hypothalamic monoamines (MA) and MA-related enzymes demonstrated sex-specific differential expression of tryptophan hydroxylase (Tph) in the early stages of developing male and female brains of tilapia and catfish. The changes in Tph expression was in agreement with the levels of serotonin (5-HT) and 5-hydroxytryptophan in the preoptic area-hypothalamus. Considering the stimulatory influence of 5-HT on GnRH and GTH release, it is possible to propose a network association between these correlates during early development, which may bring about brain sex dimorphism in males. A recent study from our laboratory during female brain sex development demonstrated high expression of

  8. Panhypopituitarism due to Absence of the Pituitary Stalk: A Rare Aetiology of Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Marta Gonzalez Rozas

    2016-01-01

    Full Text Available Studies have established a relationship between hypothalamic-pituitary dysfunction and the onset of liver damage, which may occasionally progress to cirrhosis. Patients with hypopituitarism can develop a metabolic syndrome-like phenotype. Insulin resistance is the main pathophysiological axis of metabolic syndrome and is the causal factor in the development of nonalcoholic fatty liver disease (NAFLD. We present the case of a young patient with liver cirrhosis of unknown aetiology that was finally attributed to panhypopituitarism.

  9. The release of 35S from the cut hypothalamic end of the pituitary stalk following intravenous infusion of 35S-cysteine in rats

    International Nuclear Information System (INIS)

    Guzek, J.W.; Tomas, T.

    1974-01-01

    The release of radioactive substances from the hypothalamic end of the cut pituitary stalk was determined following intravenous infusion of 35 S-cysteine in the rats dehydrated for 3 days. Intravenous injection of 5% sodium chloride, 1% of body weight, resulted in a distinct rise of radioactivity present in the fluid washing the cut infundibulum. In the same animals, the radioactivity of the hypothalamic tissue did not differ from that found in the controls (i.e., in animals simply dehydrated). The implications of these findings are discussed, as compared to the speed of axoplasmic transport in the infundibular axons. (author)

  10. Functional heterogeneity among cell types in the normal pituitary gland and in human and rat pituitary tumors.

    NARCIS (Netherlands)

    L.J. Hofland (Leo)

    1989-01-01

    textabstractHormone secretion by the anterior pituitary gland is under control of hypothalamic regulatory factorsjhormones (see chapter I.l) and peripheral hormones. Apart from the direct effects of these hormones on anterior pituitary hormone secretion several fine- regulatory mechanisms

  11. [Protective effect of melatonin and epithalon on hypothalamic regulation of reproduction in female rats in its premature aging model and on estrous cycles in senescent animals in various lighting regimes].

    Science.gov (United States)

    Korenevsky, A V; Milyutina, Yu P; Bukalyov, A V; Baranova, Yu P; Vinogradova, I A; Arutjunyan, A V

    2013-01-01

    Potential neuroprotective effects of the pineal gland hormone melatonin and peptide preparation epitalon on estrous cycles and the central regulation of reproduction in female rats exposed to unfavourable environmental factors have been studied. Estrous cycles of young, mature and aging rats exposed to light pollution were described. The diurnal dynamics and daily mean content of biogenic amines in the hypothalamic areas responsible for gonadotropin-releasing hormone synthesis and secretion in animals of different age groups were investigated. An effect of a chemical factor on the noradrenergic system of the medial preoptic area and on the dopaminergic system of the median eminence with arcuate nuclei of the hypothalamus was studied in premature aging of reproduction model. Administration of the pineal gland peptide melatonin and peptide preparation epitalon was shown to be able to correct a number of impairments of the hypothalamic-pituitary-gonadal axis that can be observed, when the experimental animals were exposed to permanent artificial lighting and a neurotoxic xenobiotic 1,2-dimethylhydrazine. The data obtained testify to an important role of the pineal gland in the circadian signal formation needed for gonadotropin-releasing hormone in order to exert its preovulatory peak secretion and to the protective effect of melatonin and epitalon, which are able to reduce unfavourable environmental influences on reproduction of young and aging female rats.

  12. Effect of weight reduction on insulin sensitivity, sex hormone-binding globulin, sex hormones and gonadotrophins in obese children

    DEFF Research Database (Denmark)

    Birkebaek, N H; Lange, Aksel; Holland-Fischer, P

    2010-01-01

    Obesity in men is associated with reduced insulin sensitivity and hypoandrogenism, while obesity in women is associated with reduced insulin sensitivity and hyperandrogenism. In children, the effect of obesity and weight reduction on the hypothalamo-pituitary-gonadal axis is rarely investigated. ....... The aim of the present study was to investigate the effect of weight reduction in obese Caucasian children on insulin sensitivity, sex hormone-binding globulin (SHBG), DHEAS and the hypothalamo-pituitary-gonadal axis.......Obesity in men is associated with reduced insulin sensitivity and hypoandrogenism, while obesity in women is associated with reduced insulin sensitivity and hyperandrogenism. In children, the effect of obesity and weight reduction on the hypothalamo-pituitary-gonadal axis is rarely investigated...

  13. Long-term follow-up of patients with pituitary macroadenomas after postoperative radiation therapy. Analysis of tumor control and functional outcome

    Energy Technology Data Exchange (ETDEWEB)

    Langsenlehner, T.; Jakse, G.; Kapp, K.S.; Mayer, R. [Medical Univ. of Graz (Austria). Dept. of Therapeutic Radiology and Oncology; Stiegler, C. [Medical Univ. of Graz (Austria). Div. of Endocrinology and Nuclear Medicine; Quehenberger, F. [Medical Univ. of Graz (Austria). Inst. for Medical Informatics, Statistics and Documentation; Feigl, G.C. [Regensburg Univ. (Germany). Dept. of Neurosurgery; Mokry, M. [Medical Univ. of Graz (Austria). Dept. of Neurosurgery; Langsenlehner, U. [Medical Univ. of Graz (Austria). Div. of Oncology

    2007-05-15

    Purpose: Evaluation of long-term tumor control, normalization of hormonal hypersecretion, including incidence and time course of pituitary dysfunction following postoperative radiotherapy of pituitary macroadenomas. Patients and Methods: In a retrospective study, the data of 87 patients with pituitary macroadenomas (61 non-secreting adenomas, 26 secreting adenomas) treated between 1984 and 1994 were analyzed. All patients underwent surgery and received postoperative external-beam radiotherapy with a mean dose of 50.4 Gy (range 46-54 Gy). Results: After a follow-up of 15 years the local tumor control rate achieved was 93.0% for non-secreting adenomas and 100% for secreting adenomas, respectively. Normalization of endocrine hypersecretion was noted in 24 of 26 patients (92%). Detailed endocrinological follow-up data were analyzed by an experienced endocrinologist in 77 patients. After a median follow-up of 10.54 years (mean 10.22; range 1.39-20.75 years), in 75 of 77 patients (97%) a hypopituitarism was observed (partial hypopituitarism, n = 28 [36%], panhypopituitarism, n = 47 [61%]), and 68 out of 77 patients (88%) showed evidence of radiotherapy-induced pituitary disorders. The somatotropic function was most commonly affected, followed by gonadal, thyroid and adrenal function. The gonadal axis showed to be the first to be disturbed. 67 patients (87%) required a hormone replacement therapy. Conclusion: Radiotherapy after pituitary surgery is highly effective in reducing hormonal hypersecretion and preventing recurrences of pituitary adenomas. However, pituitary insufficiencies are commonly observed after radiotherapy requiring a close follow-up to ensure timely diagnosis of pituitary dysfunction and an early inception of hormone replacement therapy. (orig.)

  14. Long-term follow-up of patients with pituitary macroadenomas after postoperative radiation therapy. Analysis of tumor control and functional outcome

    International Nuclear Information System (INIS)

    Langsenlehner, T.; Jakse, G.; Kapp, K.S.; Mayer, R.; Stiegler, C.; Quehenberger, F.; Feigl, G.C.; Mokry, M.; Langsenlehner, U.

    2007-01-01

    Purpose: Evaluation of long-term tumor control, normalization of hormonal hypersecretion, including incidence and time course of pituitary dysfunction following postoperative radiotherapy of pituitary macroadenomas. Patients and Methods: In a retrospective study, the data of 87 patients with pituitary macroadenomas (61 non-secreting adenomas, 26 secreting adenomas) treated between 1984 and 1994 were analyzed. All patients underwent surgery and received postoperative external-beam radiotherapy with a mean dose of 50.4 Gy (range 46-54 Gy). Results: After a follow-up of 15 years the local tumor control rate achieved was 93.0% for non-secreting adenomas and 100% for secreting adenomas, respectively. Normalization of endocrine hypersecretion was noted in 24 of 26 patients (92%). Detailed endocrinological follow-up data were analyzed by an experienced endocrinologist in 77 patients. After a median follow-up of 10.54 years (mean 10.22; range 1.39-20.75 years), in 75 of 77 patients (97%) a hypopituitarism was observed (partial hypopituitarism, n = 28 [36%], panhypopituitarism, n = 47 [61%]), and 68 out of 77 patients (88%) showed evidence of radiotherapy-induced pituitary disorders. The somatotropic function was most commonly affected, followed by gonadal, thyroid and adrenal function. The gonadal axis showed to be the first to be disturbed. 67 patients (87%) required a hormone replacement therapy. Conclusion: Radiotherapy after pituitary surgery is highly effective in reducing hormonal hypersecretion and preventing recurrences of pituitary adenomas. However, pituitary insufficiencies are commonly observed after radiotherapy requiring a close follow-up to ensure timely diagnosis of pituitary dysfunction and an early inception of hormone replacement therapy. (orig.)

  15. Triiodothyronine withdrawal - a possible test for hypothalamic-pituitary-thyroid adequacy

    International Nuclear Information System (INIS)

    Vries, H.P. de; Wiener, J.D.; Vrije Universiteit, Amsterdam

    1976-01-01

    The aim of this study was to develop a test which could be used as a complement to the assay of serum TSH and the TRH test in the evaluation of hypothalamic-pituitary-thyroid adequacy. When T 3 , 75 μg per day, was given to healthy subjects for 7 days (days 1-7), a significant rebound of serum TSH over the basal value was found on at least two of days 15-17 in nine of ten cases, provided potassium iodide, 10 mg per day, was also given on days 6-16. A much more pronounced rebound of TSH was obtained when thyroid hormone release was more rigorously blocked with the following medication: 125 μg T 3 on days 1-7, 500 mg KI on days 1-16, and 400 mg of a slowly resorbed lithium carbonate preparation on days 1-16. In the latter case TSH rose from an average basal value of 0.96 μU/ml to a mean of 3.41 μU/ml on day 17 in 10 healthy subjects. In a subsequent experiment a similar TSH rebound was obtained with 125 μg T 3 (days 1-7) and 500 mg KI (days 1-16) only. The mechanism whereby the TSH rebound is brought about remains to be established. One possibility is a transhypothalamic action. In this case the procedure may prove useful as a clinical test for the detection of slight degrees of hypothalamic insufficiency which cannot be diagnosed with certainty by the TRH test. The present experiments provide indirect evidence for a suppressive action of comparatively small doses (10 mg per day) of KI on thyroid hormone release in healthy subjects. (orig.) [de

  16. A small population of hypothalamic neurons govern fertility: the critical role of VAX1 in GnRH neuron development and fertility maintenance.

    Science.gov (United States)

    Hoffmann, Hanne M; Mellon, Pamela L

    2016-01-01

    Fertility depends on the correct maturation and function of approximately 800 gonadotropin-releasing hormone (GnRH) neurons in the brain. GnRH neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates fertility. In adulthood, GnRH neurons are scattered throughout the anterior hypothalamic area and project to the median eminence, where GnRH is released into the portal vasculature to stimulate release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary. LH and FSH then regulate gonadal steroidogenesis and gametogenesis. Absence of GnRH neurons or inappropriate GnRH release leads to infertility. Despite the critical role of GnRH neurons in fertility, we still have a limited understanding of the genes responsible for proper GnRH neuron development and function in adulthood. GnRH neurons originate in the olfactory placode then migrate into the brain. Homeodomain transcription factors expressed within GnRH neurons or along their migratory path are candidate genes for inherited infertility. Using a combined in vitro and in vivo approach, we have identified Ventral Anterior Homeobox 1 ( Vax1 ) as a novel homeodomain transcription factor responsible for GnRH neuron maturation and fertility. GnRH neuron counts in Vax1 knock-out embryos revealed Vax1 to be required for the presence of GnRH-expressing cells at embryonic day 17.5 (E17.5), but not at E13.5. To localize the effects of Vax1 on fertility, we generated Vax1 flox mice and crossed them with Gnrh cre mice to specifically delete Vax1 within GnRH neurons. GnRH staining in Vax1 flox/flox :GnRH cre mice show a total absence of GnRH expression in the adult. We performed lineage tracing in Vax1 flox/flox :GnRH cre :RosaLacZ mice which proved GnRH neurons to be alive, but incapable of expressing GnRH. The absence of GnRH leads to delayed puberty, hypogonadism and complete infertility in both sexes. Finally, using the immortalized model GnRH neuron cell lines, GN11 and

  17. A Comparative Study of Pituitary Volume Variations in MRI in Acute Onset of Psychiatric Conditions.

    Science.gov (United States)

    Soni, Brijesh Kumar; Joish, Upendra Kumar; Sahni, Hirdesh; George, Raju A; Sivasankar, Rajeev; Aggarwal, Rohit

    2017-02-01

    The growing belief that endocrine abnormalities may underlie many mental conditions has led to increased use of imaging and hormonal assays in patients attending to psychiatric OPDs. People who are in an acute phase of a psychiatric disorder show Hypothalamic Pituitary Adrenal (HPA) axis hyperactivity, but the precise underlying central mechanisms are unclear. To assess the pituitary gland volume variations in patients presenting with new onset acute psychiatric illness in comparison with age and gender matched controls by using MRI. The study included 50 patients, with symptoms of acute psychiatric illness presenting within one month of onset of illness and 50 age and gender matched healthy controls. Both patients and controls were made to undergo MRI of the Brain. A 0.9 mm slices of entire brain were obtained by 3 dimensional T1 weighted sequence. Pituitary gland was traced in all sagittal slices. Anterior pituitary and posterior pituitary bright spot were measured separately in each slice. Volume of the pituitary (in cubic centimetre- cm 3 ) was calculated by summing areas. Significance of variations in pituitary gland volumes was compared between the cases and controls using Analysis of Covariance (ANOVA). There were significantly larger pituitary gland volumes in the cases than the controls, irrespective of psychiatric diagnosis (ANOVA, f=15.56; p=0.0002). Pituitary volumes in cases were 15.36% (0.73 cm 3 ) higher than in controls. There is a strong likelihood of HPA axis overactivity during initial phase of all mental disorders along with increased pituitary gland volumes. Further studies including hormonal assays and correlation with imaging are likely to provide further insight into neuroanatomical and pathological basis of psychiatric disorders.

  18. Lymphocytic hypophysitis and hypothalamitis - a case report

    International Nuclear Information System (INIS)

    Stelmachowska, M.; Bolko, P.; Wasko, R.; Sowinski, J.; Kosinski, D.; Towpik, I.

    2006-01-01

    Lymphocytic hypophysitis is an unusual disorder that nearly exclusively affects women. We present a case of 69 year-old female patient who developed the symptoms of diabetes insipidus and partial insufficiency of the anterior pituitary gland. Magnetic resonance imaging of the brain revealed a mass involving the sella and suprasellar region. After exclusion of other causes of infiltrate in this region and due to evident reaction to glucocorticoid treatment the diagnosis of lymphocytic hypophisitis and hypothalamitis was established. (author)

  19. Pubertal induction in hypogonadism: Current approaches including use of gonadotrophins.

    Science.gov (United States)

    Zacharin, Margaret

    2015-06-01

    Primary disorders of the gonad or those secondary to abnormalities of the hypothalamic pituitary axis result in hypogonadism. The range of health problems of childhood and adolescence that affect this axis has increased, as most children now survive chronic illness, but many have persisting deficits in gonadal function as a result of their underlying condition or its treatment. An integrated approach to hormone replacement is needed to optimize adult hormonal and bone health, and to offer opportunities for fertility induction and preservation that were not considered possible in the past. Timing of presentation ranges from birth, with disorders of sexual development, through adolescent pubertal failure, to adult fertility problems. This review addresses diagnosis and management of hypogonadism and focuses on new management strategies to address current concerns with fertility preservation. These include Turner syndrome, and fertility presevation prior to childhood cancer treatment. New strategies for male hormone replacement therapy that may impinge upon future fertility are emphasized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Validation of the long-term assessment of hypothalamic-pituitary-adrenal activity in rats using hair corticosterone as a biomarker.

    Science.gov (United States)

    Scorrano, Fabrizio; Carrasco, Javier; Pastor-Ciurana, Jordi; Belda, Xavier; Rami-Bastante, Alicia; Bacci, Maria Laura; Armario, Antonio

    2015-03-01

    The evaluation of chronic activity of the hypothalamic-pituitary-adrenal (HPA) axis is critical for determining the impact of chronic stressful situations. However, current methods have important limitations. The potential use of hair glucocorticoids as a noninvasive retrospective biomarker of long-term HPA activity is gaining acceptance in humans and wild animals. However, there is no study examining hair corticosterone (HC) in laboratory animals. The present study validates a method for measuring HC in rats and demonstrates that it properly reflects chronic HPA activity. The HC concentration was similar in male and female rats, despite higher total plasma corticosterone levels in females, tentatively suggesting that it reflects free rather than total plasma corticosterone. Exposure of male rats to 2 different chronic stress protocols (chronic immobilization and chronic unpredictable stress) resulted in similarly higher HC levels compared to controls (1.8-fold). HC also increased after a mild chronic stressor (30 min daily restraint). Chronic administration of 2 different doses of a long-acting ACTH preparation dramatically increased HC (3.1- and 21.5-fold, respectively), demonstrating that a ceiling effect in HC accumulation is unlikely under other more natural conditions. Finally, adrenalectomy significantly reduced HC. In conclusion, HC measurement in rats appears appropriate to evaluate integrated chronic changes in circulating corticosterone. © FASEB.

  1. Hypothalamic involvement in stress-induced hypocalcemia in rats.

    Science.gov (United States)

    Aou, S; Ma, J; Hori, T

    1993-08-20

    Although hormonal regulation of blood calcium homeostasis has been intensively investigated in the peripheral organs, the involvement of the central nervous system in calcium regulation is still poorly understood. In the present study, we found that (1) bilateral lesions of the ventromedial nucleus of the hypothalamus (VMH), but not those of the paraventricular hypothalamic nucleus or the lateral hypothalamic area, eliminated immobilization (IMB)-induced hypocalcemia, and (2) electrical stimulation of the VMH decreased the blood calcium level. The results suggest that the VMH has a hypocalcemic function and plays a role in IMB-induced hypocalcemia.

  2. Metabolomics: A Window for Understanding Long Term Physical Consequences of Distrubed Sleep and Hypothalamic Pituitary Adrenal Function in Posttraumatic Stress

    Science.gov (United States)

    2017-09-01

    Hypothalamic-Pituitary-Adrenal Function in Posttraumatic Stress PRINCIPAL INVESTIGATOR: Sabra Inslicht, Ph.D. RECIPIENT: Northern California Institute...Posttraumatic Stress 5b. GRANT NUMBER W81XWH-16-1-0313 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sabra Inslicht, PhD 5d. PROJECT NUMBER 5e. TASK NUMBER...ABSTRACT Post-traumatic stress (PTS) is a common psychiatric condition that may result after combat exposure and can have a profound effect on sleep

  3. Interaction Between 5-HTTLPR and BDNF Val66Met Polymorphisms on HPA Axis Reactivity in Preschoolers

    OpenAIRE

    Dougherty, Lea R.; Klein, Daniel N.; Congdon, Eliza; Canli, Turhan; Hayden, Elizabeth P.

    2009-01-01

    This study examined whether the interaction between the serotonin transporter promoter region (5-HTTLPR) and brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms was associated with hypothalamic-pituitary-adrenal (HPA) axis reactivity to stress. A community sample of 144 preschool-aged children was genotyped and exposed to stress-inducing laboratory tasks. Salivary cortisol was obtained at four time points during a standardized laboratory assessment before and after stressors invol...

  4. Pituitary disease in childhood: utility of magnetic resonance

    International Nuclear Information System (INIS)

    Vela, A. C.; Oleaga, L.; Ibanez, A. M.; Campo, M.; Grande, D.

    2000-01-01

    To assess the utility of magnetic resonance (MR) imaging in the study of pediatric patients with clinical suspicion of pituitary disease. We studied 18 patients aged 7 to 18 years.Fifteen had hormonal disturbances, two presented amenorrhea and 1 complained of headache, fever and symptoms of polyuria and polydipsia. All the patients were examined using a Siemens SP 42 1-Tesla MRI scanner. Sagittal and coronal T1-weighted spin-echo images were obtained; in addition T2-weighted spin-echo or fast spin-echo imaging was performed in ten cases and intravenous gadolinium was administered in nine. We found 9 patients with hypothalamic-pituitary dysgenesis, 2 with germinoma, 2 cases of pituitary hemosiderosis in patients with thalassemia, 2 cases of microadenoma, one abscess, one case of idiopathic central diabetes insipidus and one of Langerhans cell histiocytosis. MR enabled us to assess pituitary structural alterations in children with hypothalamic-pituitary hormone deficiencies. In our series of patients, hypothalamic-pituitary dysgenesiss was the most frequent cause of adenohypophyseal deficiencies, and most cases of central diabetes insipidus were secondary to masses in the sellar and suprasellar region. In patients with thalassemia, T2-weighted MR images showed the amount of iron deposited in adenophypophysis. Gadolinium-enhanced studies were useful in the study of masses and when the presence of microadenoma was suspected. (Author) 26 refs

  5. Release of /sup 35/S from the cut hypothalamic end of the pituitary stalk following intravenous infusion of /sup 35/S-cysteine in rats

    Energy Technology Data Exchange (ETDEWEB)

    Guzek, J W; Tomas, T [Akademia Medyczna, Lodz (Poland)

    1974-01-01

    The release of radioactive substances from the hypothalamic end of the cut pituitary stalk was determined following intravenous infusion of /sup 35/S-cysteine in the rats dehydrated for 3 days. Intravenous injection of 5% sodium chloride, 1% of body weight, resulted in a distinct rise of radioactivity present in the fluid washing the cut infundibulum. In the same animals, the radioactivity of the hypothalamic tissue did not differ from that found in the controls (i.e., in animals simply dehydrated). The implications of these findings are discussed, as compared to the speed of axoplasmic transport in the infundibular axons.

  6. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats

    Science.gov (United States)

    Harrell, Constance S.; Burgado, Jillybeth; Kelly, Sean D.; Johnson, Zachary P.; Neigh, Gretchen N.

    2015-01-01

    Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats. PMID:26356038

  7. Effects of tyrosine kinase inhibitors on spermatogenesis and pituitary gonadal axis in males with chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Yassin MA

    2014-08-01

    Full Text Available Objective: The introduction of several classes of targeted therapeutics for the treatment of chronic myelogenous leukemia (CML raises the question of whether male fertility is affected and the degree of this affection, if any, among the different generations of tyrosine kinase inhibitors (TKIs. Additionally, when two drugs are equally effective, the drug with less toxic effect on fertility is favourable. Our aims were to evaluate semen parameters and pituitary gonadal function before and four months after starting TKIs namely, dasatinib, nilotinib, and imatinib in patients with CML. Design: Prospective study. Setting, patients and interventions: We studied the effect of TKIs' first generation (imatinib and second generation (dasatinib and nilotinib on semen parameters and endocrine functions in 20 eugonadal male patients with CML, aged between 35 to 51 years. They were receiving imatinib (400 mg once daily, dasatinib (100 mg once daily or nilotinib (300 mg twice daily as upfront therapy. We assessed the serum gonadotropins (LH and FSH and testosterone (T secretion and sperm parameters before and after four months of using these TKIs. Results: Four months after starting TKIs, serum testosterone, LH and FSH concentrations decreased significantly. The total sperm count (SC, total and rapid progressive sperm motility, and % sperms with normal morphology decreased significantly versus pre-treatment. After 4 months of therapy, dasatinib had comparatively the least deleterious effects on SC, ejaculate volume (SV, sperm motility and % of sperms with normal morphology (%NM compared to imatinib and nilotinib. Significant correlations were found between serum T concentrations and semen parameters before and after TKIs therapy including SC (r = 0.658 and r = 0.73 respectively, p < 0.001, rapid progressive motility (r = 0.675 and r = 0.758, respectively; p < 0.001, and the % NM (r = 0.752 and r = 0.834, respectively; p < 0.001. After TKIs therapy, LH were

  8. Insulin-like factor 3 (INSL3 and the HPG axis in the male

    Directory of Open Access Journals (Sweden)

    Richard eIvell

    2014-01-01

    Full Text Available The HPG (hypothalamo-pituitary-gonadal axis comprises pulsatile GnRH from the hypothalamus impacting on the anterior pituitary to induce expression and release of both LH and FSH into the circulation. These in turn stimulate receptors on testicular Leydig and Sertoli cells, respectively, to promote steroidogenesis and spermatogenesis. Both Leydig and Sertoli cells exhibit negative feedback to the pituitary and/or hypothalamus via their products testosterone and inhibin B, respectively, thereby allowing tight regulation of the HPG axis. In particular, LH exerts both acute control on Leydig cells by influencing steroidogenic enzyme activity, as well as chronic control by impacting on Leydig cell differentiation and gene expression. Insulin-like peptide 3 (INSL3 represents an additional and different endpoint of the HPG axis. This Leydig cell hormone interacts with specific receptors, called RXFP2, on Leydig cells themselves to modulate steroidogenesis, and on male germ cells, probably to synergize with androgen-dependent Sertoli cell products to support spermatogenesis. Unlike testosterone, INSL3 is not acutely regulated by the HPG axis, but is a constitutive product of Leydig cells, which reflects their number and/or differentiation status and their ability therefore to produce various factors including steroids, together this is referred to as Leydig cell functional capacity. Because INSL3 is not subject to the acute episodic fluctuations inherent in the HPG axis itself, it serves as an excellent marker for Leydig cell differentiation and functional capacity, as in puberty, or in monitoring the treatment of hypogonadal patients, and at the same time buffering the HPG output.

  9. Neuroendocrine causes of amenorrhea--an update.

    Science.gov (United States)

    Fourman, Lindsay T; Fazeli, Pouneh K

    2015-03-01

    Secondary amenorrhea--the absence of menses for three consecutive cycles--affects approximately 3-4% of reproductive age women, and infertility--the failure to conceive after 12 months of regular intercourse--affects approximately 6-10%. Neuroendocrine causes of amenorrhea and infertility, including functional hypothalamic amenorrhea and hyperprolactinemia, constitute a majority of these cases. In this review, we discuss the physiologic, pathologic, and iatrogenic causes of amenorrhea and infertility arising from perturbations in the hypothalamic-pituitary-adrenal axis, including potential genetic causes. We focus extensively on the hormonal mechanisms involved in disrupting the hypothalamic-pituitary-ovarian axis. A thorough understanding of the neuroendocrine causes of amenorrhea and infertility is critical for properly assessing patients presenting with these complaints. Prompt evaluation and treatment are essential to prevent loss of bone mass due to hypoestrogenemia and/or to achieve the time-sensitive treatment goal of conception.

  10. An acute adrenal insufficiency revealing pituitary metastases of lung ...

    African Journals Online (AJOL)

    A 69-year-old men presented with vomiting, low blood pressure and hypoglycemia. Hormonal exploration confirmed a hypopituitarism. Appropriate therapy was initiated urgently. The hypothalamic-pituitary MRI showed a pituitary hypertrophy, a nodular thickening of the pituitary stalk. The chest X Rays revealed pulmonary ...

  11. A general enhancement of autonomic and cortisol responses during social evaluative threat

    NARCIS (Netherlands)

    van den Bosch, J.A.; de Geus, E.J.C.; Carroll, D.; Goedhart, A.D.; Anane, L.A.; van Zanten, J.J.; Helmerhorst, E.J.; Edwards, K.M.

    2009-01-01

    Objective: To examine the Social Self Preservation Theory, which predicts that stressors involving social evaluative threat (SET) characteristically activate the hypothalamic-pituitary-adrenal (HPA) axis. The idea that distinct psychosocial factors may underlie specific patterns of neuroendocrine

  12. Evolution of hypothalamus-pituitary growth axis among fish, amphibian, birds and mammals

    Directory of Open Access Journals (Sweden)

    Moaeen-Ud-Din M.

    2015-01-01

    Full Text Available Hypothalamus-pituitary growth axis (HP growth axis regulates animal growth and development in pre-natal and post natal life governed by many factors. However, until recently, the evolutionary history of this axis among lineages is not understood. Aim of the present study was to understand the major events in evolution and evolutionary history and trend of HP growth axis. The diversity among Homo sapience, Mus musculus, Rattus norvegicus, Gallus gallus, Danio rerio and Xenopus laevis was determined for genes involved in HP growth axis in current study. Sequences of HP growth axis genes were retrieved from NCBI (http://www.ncbi.nlm.nih.gov/. Nucleotide diversity using Kimura’s two-parameter method; codon-based test of positive selection using the Nei-Gojobori; equality of evolutionary rate with Tajima's relative rate test and phylogenetic history using the RelTime method were estimated in MEGA6. Estimates of the coefficients of evolutionary differentiation based on nucleotides and amino acids substitution patterns of HP growth axis genes showed contrasting evolutionary patterns among the lineages. The results demonstrated that although these genes might have crucial functional roles in each of the species, however, their sequence divergence did not necessarily reflect similar molecular evolution among the species. Codon-based test of positive selection revealed that Human vs Mouse, Chicken vs Rat, Human vs Rat and Mouse vs Rat had similar and higher non synonymous substitutions (P > 0.05. Higher rate of non-synonymous substitutions at similar orthologs level among species indicated a similar positive selection pressure in these species. Results for relative rate test assessed with the chi-squared test showed difference on unique mutations among lineages at synonymous and non synonymous sites except Chicken vs Mouse, Human vs Mouse, Chicken vs Rat, Human vs Rat and Mouse vs Rat. This indicated that the mutagenic process that generates

  13. Disruption of the HPA-axis through corticosterone-release pellets induces robust depressive-like behavior and reduced BDNF levels in mice.

    Science.gov (United States)

    Demuyser, Thomas; Bentea, Eduard; Deneyer, Lauren; Albertini, Giulia; Massie, Ann; Smolders, Ilse

    2016-07-28

    The corticosterone mouse model is widely used in preclinical research towards a better understanding of mechanisms of major depression. One particular administration procedure is the subcutaneous implantation of corticosterone slow-release pellets. In this report we want to provide basic evidence, regarding behavioral changes, neurotransmitter and -modulator levels and some other relevant biomolecules after hypothalamic-pituitary-adrenal-axis distortion. We show that three weeks of corticosterone pellet exposure robustly induces depressive-like but not anxiety-like behavior in mice, accompanied by a significant decrease in hippocampal brain-derived neurotrophic factor levels, at five weeks after the start of treatment. Furthermore there is an overall decrease in plasma corticosterone levels after three weeks of treatment that lasts up until the five weeks' time point. On the other hand, no differences are observed in total monoamine, glutamate or d-serine levels, nor in glucocorticoid receptor expression, in various depression-related brain areas. Altogether this characterization delivers vital information, supplementary to existing literature, regarding the phenotyping of pellet-induced hypothalamic-pituitary-adrenal-axis disruption in mice following three weeks of continuous corticosterone exposure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary progenitors and alters pituitary structure.

    Science.gov (United States)

    Aujla, Paven K; Bogdanovic, Vedran; Naratadam, George T; Raetzman, Lori T

    2015-08-01

    As the pituitary gland develops, signals from the hypothalamus are necessary for pituitary induction and expansion. Little is known about the control of cues that regulate early signaling between the two structures. Ligands and receptors of the Notch signaling pathway are found in both the hypothalamus and Rathke's pouch. The downstream Notch effector gene Hes1 is required for proper pituitary formation; however, these effects could be due to the action of Hes1 in the hypothalamus, Rathke's pouch, or both. To determine the contribution of hypothalamic Notch signaling to pituitary organogenesis, we used mice with loss and gain of Notch function within the developing hypothalamus. We demonstrate that loss of Notch signaling by conditional deletion of Rbpj in the hypothalamus does not affect expression of Hes1 within the posterior hypothalamus or expression of Hes5. In contrast, expression of activated Notch within the hypothalamus results in ectopic Hes5 expression and increased Hes1 expression, which is sufficient to disrupt pituitary development and postnatal expansion. Taken together, our results indicate that Rbpj-dependent Notch signaling within the developing hypothalamus is not necessary for pituitary development, but persistent Notch signaling and ectopic Hes5 expression in hypothalamic progenitors affects pituitary induction and expansion. © 2015 Wiley Periodicals, Inc.

  15. Prenatal stress modifies behavior and hypothalamic-pituitary-adrenal function in female guinea pig offspring: effects of timing of prenatal stress and stage of reproductive cycle.

    Science.gov (United States)

    Kapoor, Amita; Matthews, Stephen G

    2008-12-01

    Prenatal stress is associated with altered behavior and hypothalamic-pituitary-adrenal (HPA) axis function postnatally. Recent studies suggest that these outcomes are dependent on the timing of the prenatal stress. The majority of these studies have been carried out in male offspring. We hypothesized that a short period of prenatal stress would result in female offspring that exhibit differences in open-field behavior and HPA axis activity, but the outcome would depend on the timing of the prenatal stress and the stage of the reproductive cycle. Pregnant guinea pigs were exposed to a strobe light during the fetal brain growth spurt [gestational d 50-52 (PS50)] or during the period of rapid brain myelination [gestational d 60-62 (PS60)]. Open-field activity was assessed in juvenile and adult female offspring. HPA axis function was tested in adult offspring. All tests in adulthood were carried out during the estrous and luteal phases of the reproductive cycle to determine the effect of stage on HPA axis programming. Tissues were collected upon completion of the study for analysis by in situ hybridization. PS60 offspring exhibited decreased activity in an open field during the estrous phase of the reproductive cycle compared with control offspring. Both PS50 and PS60 offspring exhibited a lower salivary cortisol response to a stressor, only during the estrous phase. Consistent with the behavioral and endocrine data, PS60 females exhibited lower plasma estradiol levels, reduced ovary weight, and increased glucocorticoid receptor mRNA in the paraventricular nucleus. In conclusion, we have demonstrated that there are effects of prenatal stress on behavior and HPA axis functioning in female offspring but that the outcomes are dependent on the timing of the prenatal stress together with the status of the reproductive cycle.

  16. Gut Microbiota-brain Axis

    Institute of Scientific and Technical Information of China (English)

    Hong-Xing Wang; Yu-Ping Wang

    2016-01-01

    Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.

  17. cDNA cloning of chicken orexin receptor and tissue distribution: sexually dimorphic expression in chicken gonads.

    Science.gov (United States)

    Ohkubo, T; Tsukada, A; Shamoto, K

    2003-12-01

    Orexin-A and -B are known to stimulate food intake in mammals. However, the critical roles of orexins in birds are not fully understood, since orexins have no stimulatory effect on food intake in the chicken. To understand the physiological role(s) of orexins in birds, we have cloned chicken orexin receptor (cOXR) cDNA by RT-PCR, and analysed the tIssue distribution of OXR mRNA in the chicken. The cOXR cDNA is 1869 bp long and encodes 501 amino acids. The cloned cDNA for cOXR corresponds to the type 2 OXR in mammals, and shows approximately 80% similarity to those of mammals at the amino acid level. Expression analysis by RNase protection assay revealed OXR mRNA was distributed widely in brain regions, and expression in the cerebrum, hypothalamus and optic tectum were abundant. In peripheral tIssues, OXR mRNA was expressed in the pituitary gland, adrenal gland and testis, but no mRNA expression was observed in other tIssues examined. Furthermore, we found that the amount of cOXR mRNA was different between testis and ovary, while prepro-orexin mRNA is equally expressed in the gonads of both sexes in the chicken. These data indicate that the orexins have neuroendocrine actions in chickens, which are mediated through hypothalamic receptors as has been observed in mammals. In addition, orexin may have specific role(s) in the regulation of gonadal function in which sex-dependent mechanisms could be involved.

  18. Food cues do not modulate the neuroendocrine response to a prolonged fast in healthy men.

    Science.gov (United States)

    Snel, Marieke; Wijngaarden, Marjolein A; Bizino, Maurice B; van der Grond, Jeroen; Teeuwisse, Wouter M; van Buchem, Mark A; Jazet, Ingrid M; Pijl, Hanno

    2012-01-01

    Dietary restriction benefits health and increases lifespan in several species. Food odorants restrain the beneficial effects of dietary restriction in Drosophila melanogaster. We hypothesized that the presence of visual and odorous food stimuli during a prolonged fast modifies the neuroendocrine and metabolic response to fasting in humans. In this randomized, crossover intervention study, healthy young men (n = 12) fasted twice for 60 h; once in the presence and once in the absence of food-related visual and odorous stimuli. At baseline and on the last morning of each intervention, an oral glucose tolerance test (OGTT) was performed. During the OGTT, blood was sampled and a functional MRI scan was made. The main effects of prolonged fasting were: (1) decreased plasma thyroid stimulating hormone and triiodothyronine levels; (2) downregulation of the pituitary-gonadal axis; (3) reduced plasma glucose and insulin concentrations, but increased glucose and insulin responses to glucose ingestion; (4) altered hypothalamic blood oxygenation level-dependent (BOLD) signal in response to the glucose load (particularly during the first 20 min after ingestion); (5) increased resting energy expenditure. Exposure to food cues did not affect these parameters. This study shows that 60 h of fasting in young men (1) decreases the hypothalamic BOLD signal in response to glucose ingestion; (2) induces glucose intolerance; (3) increases resting energy expenditure, and (4) downregulates the pituitary-thyroid and pituitary-gonadal axes. Exposure to visual and odorous food cues did not alter these metabolic and neuroendocrine adaptations to nutrient deprivation. Copyright © 2012 S. Karger AG, Basel.

  19. Does the panic attack activate the hypothalamic-pituitary-adrenal axis?

    Directory of Open Access Journals (Sweden)

    Frederico G. Graeff

    2005-09-01

    Full Text Available A bibliographic search has been performed in MEDLINE using cortisol and panic as key-words, occurring in the title and/or in the abstract. Human studies were selected, with no time limit. The following publications were excluded: reviewarticles, case reports, panic attacks in disorders other than panic disorder, and studies on changes that occurred in-between panic attacks. The results showed that real-life panic attacks as well as those induced by selective panicogenic agents such as lactate and carbon dioxide do not activate the hypothalamicpituitary- adrenal (HPA axis. Agonists of the colecystokinin receptor B, such as the colecystokinin-4 peptide and pentagastrin, increase stress hormones regardless of the occurrence of a panic attack and thus, seem to activate the HPA axis directly. The benzodiazepine antagonist flumazenil does not increase stress hormones, but this agent does not reliably induce panic attacks. Pharmacological agents that increased anxiety in both normal subjects and panic patients raised stress hormone levels; among them are the alpha2-adrenergic antagonist yohimbine, the serotonergic agents 1-(m-chlorophenyl piperazine (mCPP and fenfluramine, as well as the psychostimulant agent caffeine. Therefore, the panic attack does not seem to activate the HPAaxis, in contrast to anticipatory anxiety.Realizou-se levantamento bibliográfico no indexadorMEDLINE, através das palavras-chave "cortisol" e "panic", sem limite de tempo, restringindo-se a sereshumanos e à localização das palavras-chave no título e no resumo. Foram excluídos artigos de revisão e relatos de caso, estudos sobre alterações ocorridas entre dois ataques, e os que tratavam de outras doenças psiquiátricas ou de sujeitos sadios, quando não comparados com pacientes de pânico. Os resultados mostraram que ataques de pânico naturais ou provocados pelos agentes panicogênicos seletivos, lactato de sódio e dióxido de carbono, não ativam o eixo hipot

  20. Study on the interaction between leucine-enkephalin and hypothalamus-pituitary-thyroid axis

    International Nuclear Information System (INIS)

    Li Fengying; Chen Jialun; Chen Mingdao; Tang Jinfeng; Li Jiping

    2001-01-01

    Objective: To study the possible interaction between leucine enkephalin and hypothalamus-pituitary-thyroid axis. Methods: Mice models of hyperthyroidism and hypothyroidism were produced. Serum thyroid hormonal levels (T 3 , T 4 , TSH, TRH), the leucine enkephalin content of the whole brain and 5-HT of the hypothalamus were determined in the animals sacrificed on different days after the animal models were established. Results: In hyperthyroid rats, the levels of T 3 , T 4 increased progressively (P 3 , T 4 levels were persistent lower (P < 0.001) along with gradually increasing of serum TSH and TRH levels while pituitary TSh hypothalamus TRH content decreased gradually (P < 0.01), but rose back when reaching the nadir, Besides, LEK elevated and 5-HT decreased (P<0.01). Conclusion: The thyroid functional hormonal changes are not necessarily accompanied by a corresponding increase or decrease of brain LEK