WorldWideScience

Sample records for involving amino acids

  1. Identification of amino acids involved in histamine potentiation of GABA(A receptors

    Directory of Open Access Journals (Sweden)

    Ulrike eThiel

    2015-05-01

    Full Text Available Histamine is a neurotransmitter involved in a number of physiological and neuronal functions. In mammals, such as humans and rodents, the histaminergic neurons found in the tuberomamillary nucleus (TMN project widely throughout the central nervous system (CNS. Histamine acts as positive modulator of GABA(A receptors (GABA(ARs and, in high concentrations (10 mM, as negative modulator of the strychnine-sensitive glycine receptor. However, the exact molecular mechanisms by which histamine acts on GABA(ARs are unknown. In our study, we aimed to identify amino acids potentially involved in the modulatory effect of histamine on GABA(ARs. We expressed GABA(ARs with 12 different point mutations in Xenopus laevis oocytes and characterized the effect of histamine on GABA-induced currents using the two-electrode voltage clamp technique. Our data demonstrate that the amino acid residues ß2(N265 and ß2(M286, which are important for modulation by propofol, are not involved in the action of histamine. However, we found that histamine modulation is dependent on the amino acid residues alpha1(R120, ß2(Y157, ß3(D163, ß3(V175 and ß3(Q185. We showed that the amino acid residues ß2(Y157 and ß3(Q185 mediate the positive modulatory effect of histamine on GABA-induced currents, whereas alpha1(R120 and ß2(D163 form a potential histamine interaction site in GABA(ARs.

  2. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly*

    Science.gov (United States)

    Stransky, Laura A.; Forgac, Michael

    2015-01-01

    The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump composed of a peripheral ATPase domain (V1) and a membrane-integral proton-translocating domain (V0) and is involved in many normal and disease processes. An important mechanism of regulating V-ATPase activity is reversible assembly of the V1 and V0 domains. Increased assembly in mammalian cells occurs under various conditions and has been shown to involve PI3K. The V-ATPase is necessary for amino acid-induced activation of mechanistic target of rapamycin complex 1 (mTORC1), which is important in controlling cell growth in response to nutrient availability and growth signals. The V-ATPase undergoes amino acid-dependent interactions with the Ragulator complex, which is involved in recruitment of mTORC1 to the lysosomal membrane during amino acid sensing. We hypothesized that changes in the V-ATPase/Ragulator interaction might involve amino acid-dependent changes in V-ATPase assembly. To test this, we measured V-ATPase assembly by cell fractionation in HEK293T cells treated with and without amino acids. V-ATPase assembly increases upon amino acid starvation, and this effect is reversed upon readdition of amino acids. Lysosomes from amino acid-starved cells possess greater V-ATPase-dependent proton transport, indicating that assembled pumps are catalytically active. Amino acid-dependent changes in both V-ATPase assembly and activity are independent of PI3K and mTORC1 activity, indicating the involvement of signaling pathways distinct from those implicated previously in controlling assembly. By contrast, lysosomal neutralization blocks the amino acid-dependent change in assembly and reactivation of mTORC1 after amino acid starvation. These results identify an important new stimulus for controlling V-ATPase assembly. PMID:26378229

  3. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  4. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  5. Role of sialic acid in synaptosomal transport of amino acid transmitters

    International Nuclear Information System (INIS)

    Zaleska, M.M.; Erecinska, M.

    1987-01-01

    Active, high-affinity, sodium-dependent uptake of [ 14 C]-aminobutyric acid and of the acidic amino acid D-[ 3 H]-aspartate was inhibited by pretreatment of synaptosomes with neuraminidase from Vibrio cholerae. Inhibition was of a noncompetitive type and was related to the amount of sialic acid released. The maximum accumulation ratios of both amino acids (intracellular [amino acid]/extracellular [amino acid]) remained largely unaltered. Treatment with neuraminidase affected neither the synaptosomal energy levels nor the concentration of internal potassium. It is suggested that the γ-aminobutyric acid and acidic amino acid transporters are glycosylated and that sialic acid is involved in the operation of the carrier proteins directly and not through modification of driving forces responsible for amino acid uptake

  6. Amino acids transport in lactic streptococci

    NARCIS (Netherlands)

    Driessen, Arnold Jacob Mathieu

    1987-01-01

    Lactic streptococci are extremely fastidious bacteria. For growth an exogenous source of amino acids and other nutrients is essential. The amino acid requirement in milk is fulfilled by the milk-protein casein, which is degraded by sequential hydrolysis, involving proteases and peptidases. ... Zie:

  7. PCI-GC-MS-MS approach for identification of non-amino organic acid and amino acid profiles.

    Science.gov (United States)

    Luan, Hemi; Yang, Lin; Ji, Fenfen; Cai, Zongwei

    2017-03-15

    Alkyl chloroformate have been wildly used for the fast derivatization of metabolites with amino and/or carboxyl groups, coupling of powerful separation and detection systems, such as GC-MS, which allows the comprehensive analysis of non-amino organic acids and amino acids. The reagents involving n-alkyl chloroformate and n-alcohol are generally employed for providing symmetric labeling terminal alkyl chain with the same length. Here, we developed an asymmetric labeling strategy and positive chemical ionization gas chromatography-tandem mass spectrometry (PCI-GC-MS-MS) approach for determination of non-amino organic acids and amino acids, as well as the short chain fatty acids. Carboxylic and amino groups could be selectively labelled by propyl and ethyl groups, respectively. The specific neutral loss of C 3 H 8 O (60Da), C 3 H 5 O 2 (74Da) and C 4 H 8 O 2 (88Da) were useful in the selective identification for qualitative analysis of organic acids and amino acid derivatives. PCI-GC-MS-MS using multiple reaction monitoring (MRM) was applied for semi-quantification of typical non-amino organic acids and amino acids. This method exhibited a wide range of linear range, good regression coefficient (R 2 ) and repeatability. The relative standard deviation (RSD) of targeted metabolites showed excellent intra- and inter-day precision (chloroformate derivatization. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters

    International Nuclear Information System (INIS)

    Straka, Elisabeth; Ellinger, Isabella; Balthasar, Christina; Scheinast, Matthias; Schatz, Jasmin; Szattler, Tamara; Bleichert, Sonja; Saleh, Leila; Knöfler, Martin; Zeisler, Harald; Hengstschläger, Markus; Rosner, Margit; Salzer, Hans; Gundacker, Claudia

    2016-01-01

    Highlights: • It is known that MeHg is able to pass the placenta and to affect fetal brain development. • Uptake and efflux transporters were examined in human primary trophoblast cells and BeWo cells. • Involvement in mercury transfer was assessed by measurement of cellular mercury content upon siRNA mediated gene knockdown. • Localization of transporters was determined by immunofluorescence microscopy. • LAT1 and rBAT at the apical membrane of the syncytiotrophoblast (STB) are involved in MeHg uptake. • MRP1 located at basal membrane of STB mediates mercury efflux. - Abstract: Background: The capacity of the human placenta to handle exogenous stressors is poorly understood. The heavy metal mercury is well-known to pass the placenta and to affect brain development. An active transport across the placenta has been assumed. The underlying mechanisms however are virtually unknown. Objectives: Uptake and efflux transporters (17 candidate proteins) assumed to play a key role in placental mercury transfer were examined for expression, localization and function in human primary trophoblast cells and the trophoblast-derived choriocarcinoma cell line BeWo. Methods: To prove involvement of the transporters, we used small interfering RNA (siRNA) and exposed cells to methylmercury (MeHg). Total mercury contents of cells were analyzed by Cold vapor-atomic fluorescence spectrometry (CV-AFS). Localization of the proteins in human term placenta sections was determined via immunofluorescence microscopy. Results: We found the amino acid transporter subunits L-type amino acid transporter (LAT)1 and rBAT (related to b 0,+ type amino acid transporter) as well as the efflux transporter multidrug resistance associated protein (MRP)1 to be involved in mercury kinetics of trophoblast cells (t-test P < 0.05). Conclusion: The amino acid transporters located at the apical side of the syncytiotrophoblast (STB) manage uptake of MeHg. Mercury conjugated to glutathione (GSH) is

  9. Stardust, Supernovae and the Chirality of the Amino Acids

    International Nuclear Information System (INIS)

    Boyd, R.N.; Kajino, T.; Onaka, T.

    2011-01-01

    A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.

  10. Supernovae, Neutrinos and the Chirality of Amino Acids

    Directory of Open Access Journals (Sweden)

    Toshitaka Kajino

    2011-05-01

    Full Text Available A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids.

  11. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    Science.gov (United States)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  12. Plasma free amino acid kinetics in rainbow trout (Oncorhynchus mykiss) using a bolus injection of 15N-labeled amino acids.

    Science.gov (United States)

    Robinson, Jacob William; Yanke, Dan; Mirza, Jeff; Ballantyne, James Stuart

    2011-02-01

    To gain insight into the metabolic design of the amino acid carrier systems in fish, we injected a bolus of (15)N amino acids into the dorsal aorta in mature rainbow trout (Oncorhynchus mykiss). The plasma kinetic parameters including concentration, pool size, rate of disappearance (R(d)), half-life and turnover rate were determined for 15 amino acids. When corrected for metabolic rate, the R(d) values obtained for trout for most amino acids were largely comparable to human values, with the exception of glutamine (which was lower) and threonine (which was higher). R(d) values ranged from 0.9 μmol 100 g(-1) h(-1) (lysine) to 22.1 μmol 100 g(-1) h(-1) (threonine) with most values falling between 2 and 6 μmol 100 g(-1) h(-1). There was a significant correlation between R(d) and the molar proportion of amino acids in rainbow trout whole body protein hydrolysate. Other kinetic parameters did not correlate significantly with whole body amino acid composition. This indicates that an important design feature of the plasma-free amino acids system involves proportional delivery of amino acids to tissues for protein synthesis.

  13. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  14. Optical Sensors for Detection of Amino Acids.

    Science.gov (United States)

    Pettiwala, Aafrin M; Singh, Prabhat K

    2017-11-06

    Amino acids are crucially involved in a myriad of biological processes. Any aberrant changes in physiological level of amino acids often manifest in common metabolic disorders, serious neurological conditions and cardiovascular diseases. Thus, devising methods for detection of trace amounts of amino acids becomes highly elemental to their efficient clinical diagnosis. Recently, the domain of developing optical sensors for detection of amino acids has witnessed significant activity which is the focus of the current review article. We undertook a detailed search of the peer-reviewed literature that primarily deals with optical sensors for amino acids and focuses on the use of different type of materials as a sensing platform. Ninety-five papers have been included in the review, majority of which deals with optical sensors. We attempt to systematically classify these contributions based on applications of various chemical and biological scaffolds such as polymers, supramolecular assemblies, nanoparticles, DNA, heparin etc. for the sensing of amino acids. This review identifies that supramolecular assemblies and nanomaterial continue to be commonly used materials to devise sensors for amino acids followed by surfactant assemblies. The broad implications of amino acids in human health and diagnosis have stirred a lot of interest to develop optimized optical detection systems for amino acids in recent years, using different materials based on chemical and biological scaffolds. We have also attempted to highlight the merits and demerits of some of the noteworthy sensor systems to instigate further efforts for constructing amino acids sensor based on unconventional concepts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  16. Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology.

    Science.gov (United States)

    Sasabe, Jumpei; Suzuki, Masataka

    2018-05-22

    Living organisms enantioselectively employ L-amino acids as the molecular architecture of protein synthesized in the ribosome. Although L-amino acids are dominantly utilized in most biological processes, accumulating evidence points to the distinctive roles of D-amino acids in non-ribosomal physiology. Among the three domains of life, bacteria have the greatest capacity to produce a wide variety of D-amino acids. In contrast, archaea and eukaryotes are thought generally to synthesize only two kinds of D-amino acids: D-serine and D-aspartate. In mammals, D-serine is critical for neurotransmission as an endogenous coagonist of N-methyl D-aspartate receptors. Additionally, D-aspartate is associated with neurogenesis and endocrine systems. Furthermore, recognition of D-amino acids originating in bacteria is linked to systemic and mucosal innate immunity. Among the roles played by D-amino acids in human pathology, the dysfunction of neurotransmission mediated by D-serine is implicated in psychiatric and neurological disorders. Non-enzymatic conversion of L-aspartate or L-serine residues to their D-configurations is involved in age-associated protein degeneration. Moreover, the measurement of plasma or urinary D-/L-serine or D-/L-aspartate levels may have diagnostic or prognostic value in the treatment of kidney diseases. This review aims to summarize current understanding of D-amino-acid-associated biology with a major focus on mammalian physiology and pathology.

  17. Reactions of tritium atoms with amino acids, deuterated amino acids and mixtures of amino acids. Additivity property and isotope effect

    International Nuclear Information System (INIS)

    Badun, G.A.; Filatov, Eh.S.

    1988-01-01

    Interaction of tritium atoms with glycine (1) and leucine (2) amino acids, deuterated amino acids, their mixtures and glycylleucine (3) peptide in the 77-300 K temperature range is studied in isothermal and gradient regimes. Tagged amino acids were separated from targets after conducting the reaction. At T 150 K are associated with intermolecular transmission of free valence in the mixture of amino acids. Regularities of the reaction found for the mixture of amino acids are conserved for (3) as well, i.e. the peptide bond does not essentially affect the reaction of isotopic exchange conditioned by atomic tritium

  18. Comparative analysis of amino acids and amino-acid derivatives in protein crystallization

    International Nuclear Information System (INIS)

    Ito, Len; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2010-01-01

    New types of aggregation suppressors, such as amino acids and their derivatives, were focused on as fourth-component additives. Data were obtained that indicated that the additives promote protein crystallization. Optimal conditions for protein crystallization are difficult to determine because proteins tend to aggregate in saturated solutions. This study comprehensively evaluates amino acids and amino-acid derivatives as additives for crystallization. This fourth component of the solution increases the probability of crystallization of hen egg-white lysozyme in various precipitants owing to a decrease in aggregation. These results suggest that the addition of certain types of amino acids and amino-acid derivatives, such as Arg, Lys and esterified and amidated amino acids, is a simple method of improving the success rate of protein crystallization

  19. Glucagon and Amino Acids Are Linked in a Mutual Feedback Cycle

    DEFF Research Database (Denmark)

    Holst, Jens J; Wewer Albrechtsen, Nicolai J; Pedersen, Jens

    2017-01-01

    ; neither condition is necessarily associated with disturbed glucose metabolism. In glucagonoma patients, amino acid turnover and ureagenesis are greatly accelerated, and low plasma amino acid levels are probably at least partly responsible for the necrolytic migratory erythema, which resolves after amino...... acid administration. In patients with receptor mutations (and in knockout mice), pancreatic swelling is due to α-cell hyperplasia with gross hypersecretion of glucagon, which according to recent groundbreaking research may result from elevated amino acid levels. Additionally, solid evidence indicates...... that ureagenesis, and thereby amino acid levels, is critically controlled by glucagon. Together, this constitutes a complete endocrine system; feedback regulation involving amino acids regulates α-cell function and secretion, while glucagon, in turn, regulates amino acid turnover....

  20. Amino Acid Catabolism in Multiple Sclerosis Affects Immune Homeostasis.

    Science.gov (United States)

    Negrotto, Laura; Correale, Jorge

    2017-03-01

    Amino acid catabolism has been implicated in immunoregulatory mechanisms present in several diseases, including autoimmune disorders. Our aims were to assess expression and activity of enzymes involved in Trp and Arg catabolism, as well as to investigate amino acid catabolism effects on the immune system of multiple sclerosis (MS) patients. To this end, 40 MS patients, 30 healthy control subjects, and 30 patients with other inflammatory neurological diseases were studied. Expression and activity of enzymes involved in Trp and Arg catabolism (IDO1, IDO2, Trp 2,3-dioxygenase [TDO], arginase [ARG] 1, ARG2, inducible NO synthetase) were evaluated in PBMCs. Expression of general control nonrepressed 2 serine/threonine kinase and mammalian target of rapamycin (both molecules involved in sensing amino acid levels) was assessed in response to different stimuli modulating amino acid catabolism, as were cytokine secretion levels and regulatory T cell numbers. The results demonstrate that expression and activity of IDO1 and ARG1 were significantly reduced in MS patients compared with healthy control subjects and other inflammatory neurological diseases. PBMCs from MS patients stimulated with a TLR-9 agonist showed reduced expression of general control nonrepressed 2 serine/threonine kinase and increased expression of mammalian target of rapamycin, suggesting reduced amino acid catabolism in MS patients. Functionally, this reduction resulted in a decrease in regulatory T cells, with an increase in myelin basic protein-specific T cell proliferation and secretion of proinflammatory cytokines. In contrast, induction of IDO1 using CTLA-4 or a TLR-3 ligand dampened proinflammatory responses. Overall, these results highlight the importance of amino acid catabolism in the modulation of the immunological responses in MS patients. Molecules involved in these pathways warrant further exploration as potential new therapeutic targets in MS. Copyright © 2017 by The American Association of

  1. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  2. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    Science.gov (United States)

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

  3. Regional amino acid transport into brain during diabetes: Effect of plasma amino acids

    International Nuclear Information System (INIS)

    Mans, A.M.; DeJoseph, M.R.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Transport of phenylalanine and lysine into the brain was measured in 4-wk streptozotocin-diabetic rats to assess the effect on the neutral and basic amino acid transport systems at the blood-brain barrier. Amino acid concentrations in plasma and brain were also measured. Regional permeability-times-surface area (PS) products and influx were determined using a continuous infusion method and quantitative autoradiography. The PS of phenylalanine was decreased by an average of 40% throughout the entire brain. Influx was depressed by 35%. The PS of lysine was increased by an average of 44%, but the influx was decreased by 27%. Several plasma neutral amino acids (branched chain) were increased, whereas all basic amino acids were decreased. Brain tryptophan, phenylalanine, tyrosine, methionine, and lysine contents were markedly decreased. The transport changes were almost entirely accounted for by the alterations in the concentrations of the plasma amino acids that compete for the neutral and basic amino acid carriers. The reduced influx could be responsible for the low brain content of some essential amino acids, with possibly deleterious consequences for brain functions

  4. Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control.

    Science.gov (United States)

    Somogyi, P; Minson, J B; Morilak, D; Llewellyn-Smith, I; McIlhinney, J R; Chalmers, J

    1989-09-04

    The source and possible role of excitatory amino acid projections to areas of the ventrolateral medulla (VLM) involved in cardiovascular control were studied. Following the injection of [3H]D-aspartate ([3H]D-Asp), a selective tracer for excitatory amino acid pathways, into vasopressor or vasodepressor areas of the VLM in rats, more than 90% of retrogradely labelled neurones were found in the nucleus of the solitary tract (NTS). Very few of the [3H]D-Asp-labelled cells were immunoreactive for tyrosine hydroxylase, none for phenylethanolamine-N-methyltransferase or gamma-aminobutyric acid. The density of labelled cells in the NTS was similar to that obtained with the non-selective tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and WGA-colloidal gold, but these tracers also labelled other cell groups in the medulla. Furthermore, the decrease in blood pressure, caused by pharmacological activation of neurones in the NTS of rats, or by electrical stimulation of the aortic depressor nerve in rabbits could be blocked by the selective N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate injected into the caudal vasodepressor area of the VLM. This area corresponds to the termination of [3H]D-Asp transporting NTS neurones. These results provide evidence that a population of NTS neurones projecting to the VLM use excitatory amino acids as transmitters. Among other possible functions, this pathway may mediate tonic and reflex control of blood pressure via NMDA receptors in the VLM.

  5. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    International Nuclear Information System (INIS)

    Ito, Len; Kobayashi, Toyoaki; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2008-01-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins

  6. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Len, E-mail: len@ksc.kwansei.ac.jp; Kobayashi, Toyoaki [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Shiraki, Kentaro [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamaguchi, Hiroshi [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2008-05-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins.

  7. Amino acids and proteins

    NARCIS (Netherlands)

    van Goudoever, Johannes B.; Vlaardingerbroek, Hester; van den Akker, Chris H.; de Groof, Femke; van der Schoor, Sophie R. D.

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional

  8. Stereoselective synthesis of unsaturated α-amino acids.

    Science.gov (United States)

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  9. Dependence of the metabolic fecal amino acids on the amino acid content of the feed. 1

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Voelker, T.; Reichel, K.

    1981-01-01

    The amount of metabolic fecal amino acids (MFAA) in dependence on the amino acid intake was determined for graded maize rations in 15 N-labelled rats and the part of labelled endogenous amino acids in feces was calculated by the isotope dilution method. The excretion of amino acids and MFAA in feces are described as functions of the amino acid intake for 17 amino acids and calculated regressively. For all 17 amino acids investigated, there was a more or less steep increase of MFAA according to an increasing amino acid intake. In contrast to N-free feeding, the MFAA increase to the 2- to 4.5-fold value in feeding with pure maize (16.5% crude protein). The thesis of the constancy of the excretion of MFAA can consequently be no longer maintained. The true digestibility according to the conventional method is, on an average of all amino acids, 7.3 units below ascertained according to the 15 N method. The limiting amino acids lysine and threonine revealed the greatest difference. Tryptophane as first limiting amino acid could not be determined. The true digestibility of nearly all amino acids ascertained for maize by the isotope method is above 90%. (author)

  10. Laboratory generated artifacts in plasma amino acid quantitation

    Directory of Open Access Journals (Sweden)

    Ananth Nanjunda Rao

    2002-10-01

    Full Text Available The pace of physicians? involvement in amino acid metabolism has been enormous in the last five decades. With further development of technology to identify and quantitate upto picomoles of amino acids, their metabolites and related peptides, diagnosis and effective medical intervention in cases of inherited metabolic disorders have been well within the reach of the clinician. Automatic amino acid analyzers have become an essential part of major medical and research centers around the world. The technology has come indeed as a boon to physicians who in particular deal with inherited defects of amino acid metabolism. However, the technology comes with the risk of major deviations from the actual results when a few minor variations are not looked into. Trivial variations in basic steps of obtaining the sample, the choice of anticoagulant, hemolysis etc. can cause significant variations in the resulting values, particularly while dealing with inherited defects of amino acid metabolism and their treatment/management. Effects of such factors are revisited here for the benefit of the modern day laboratory personnel.

  11. d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light.

    Science.gov (United States)

    Sugahara, Haruna; Meinert, Cornelia; Nahon, Laurent; Jones, Nykola C; Hoffmann, Søren V; Hamase, Kenji; Takano, Yoshinori; Meierhenrich, Uwe J

    2018-07-01

    Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Identification of candidate amino acids involved in the formation of pink-red pigments in onion (Allium cepa L.) juice and separation by HPLC.

    Science.gov (United States)

    Lee, Eun Jin; Yoo, Kil Sun; Patil, Bhimanagouda S

    2010-10-01

    The formation of pink-red pigments ("pinking") by various amino acids was investigated by reacting amino acids with compounds present in onion juice. The unknown pink-red pigments were generated and separated using high-performance liquid chromatography (HPLC) and a diode array detector (DAD) in the range of 200 to 700 nm. To generate pink-red pigments, we developed several reaction systems using garlic alliinase, purified 1-propenyl-L-cysteine sulfoxide (1-PeCSO), onion thiosulfinate, natural onion juice, and 21 free amino acids. The compound 1-PeCSO was a key compound associated with pinking in the presence of both the alliinase and amino acids. Numerous naturally occurring pink-red pigments were detected and separated from pink onion juice using the HPLC-DAD system at 515 nm. Most free amino acids, with the exceptions of histidine, serine, and cysteine, formed various pink-red pigments when reacted with onion thiosulfinate. This observation indicated that onion pinking is caused not by a single pigment, but by many. Furthermore, more than one color compound could be produced from a single amino acid; this explains, in part, why there were many pink-red compound peaks in the chromatogram of discolored natural onion juice. We presumed that the complexity of the pink-red pigments was due to the involvement of more than 21 natural amino acids as well as several derivatives of the color products produced from each amino acid. We observed that the pinking process in onion juice is very similar to that of the greening process in crushed garlic, emphasizing that both thiosulfinate from flavor precursors and free amino acids are absolutely required for the discoloration.

  13. Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.

    Science.gov (United States)

    Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Björneholm, Olle

    2017-04-27

    Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied X-ray photoelectron spectroscopy (XPS) to study aqueous solutions of four amino acids, glycine, alanine, valine, and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidence that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interactions play a central role in cloud droplet formation, and they should be considered in climate models.

  14. Studies on radiolysis of amino acids, (4)

    International Nuclear Information System (INIS)

    Oku, Tadatake

    1978-01-01

    In order to elucidate the effect of adding methionine on the loss of amino acid by γ-irradiation in amino acid mixture, because methionine is one of the most radio-sensitive in amino acids, the remaining amino acids in γ-irradiated aqueous solution of amino acid mixture were studied by determining the total amount of each remaining amino acid. The mixture of 18 amino acids which contains methionine and that of 17 amino acids without methionine were used. Amino acids and the irradiation products were determined with an automatic amino acid analyzer. The total amount of remaining amino acids in the irradiated solution of 18 amino acid mixture was more than that of 17 amino acid mixture. The order of the total amount of each remaining amino acid by low-dose irradiation was Gly>Ala>Asp>Glu>Val>Ser, Pro>Ile, Leu>Thr>Lys>Tyr>Arg>His>Phe>Try>Cys>Met. In case of the comparison of amino acids of same kinds, the total remaining amount of each amino acid in amino acid mixture was more than that of individually irradiated amino acid. The total remaining amounts of glycine, alanine and aspartic acid in irradiated 17 amino acid mixture resulted in slight increase. Ninhydrin positive products formed from 18 amino acid mixture irradiated with 2.640 x 10 3 rad were ammonia, methionine sulfoxide and DOPA of 1.34, 0.001 and 0.25 μmoles/ml of the irradiated solution, respectively. (Kobake, H.)

  15. Indigenous Amino Acids in Iron Meteorites

    Science.gov (United States)

    Elsila, J. E.; Dworkin, J. P.; Glavin, D. P.; Johnson, N. M.

    2018-01-01

    Understanding the organic content of meteorites and the potential delivery of molecules relevant to the origin of life on Earth is an important area of study in astrobiology. There have been many studies of meteoritic organics, with much focus on amino acids as monomers of proteins and enzymes essential to terrestrial life. The majority of these studies have involved analysis of carbonaceous chondrites, primitive meteorites containing approx. 3-5 wt% carbon. Amino acids have been observed in varying abundances and distributions in representatives of all eight carbonaceous chondrite groups, as well as in ungrouped carbonaceous chondrites, ordinary and R chondrites, ureilites, and planetary achondrites [1 and references therein].

  16. Dependence of the metabolic fecal amino acids on the amino acid content of the feed. 2

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Voelker, T.; Reichel, K.

    1982-01-01

    In an experiment with 20 15 N-labelled growing rats the excretion of amino acids as well as of metabolic fecal amino acids were investigated after feeding of soybean oil meal as sole protein source. A low, yet statistically significant increase of the excretion of amino acids and metabolic fecal amino acids was ascertained in accordance with a growing quota of soybean oil meal in the ration. The true digestibility of amino acids ascertained according to conventional methods is above 90% and, under consideration of the increase of metabolic fecal amino acids, on the average increases by 3.5 digestibility units (1.4 to 6.2). (author)

  17. Uptake of 3-[125I]iodo-α-methyl-L-tyrosine into colon cancer DLD-1 cells: characterization and inhibitory effect of natural amino acids and amino acid-like drugs

    International Nuclear Information System (INIS)

    Shikano, Naoto; Ogura, Masato; Okudaira, Hiroyuki; Nakajima, Syuichi; Kotani, Takashi; Kobayashi, Masato; Nakazawa, Shinya; Baba, Takeshi; Yamaguchi, Naoto; Kubota, Nobuo; Iwamura, Yukio; Kawai, Keiichi

    2010-01-01

    Introduction: We examined 3-[ 123 I]iodo-α-methyl-L-tyrosine ([ 123 I]IMT) uptake and inhibition by amino acids and amino acid-like drugs in the human DLD-1 colon cancer cell line, to discuss correlation between the inhibition effect and structure. Methods: Expression of relevant neutral amino acid transporters was examined by real-time PCR with DLD-1 cells. The time course of [ 125 I]IMT uptake, contributions of transport systems, concentration dependence and inhibition effects by amino acids and amino acid-like drugs (1 mM) on [ 125 I]IMT uptake were examined. Results: Expression of system L (4F2hc, LAT1 and LAT2), system A (ATA1, ATA2) and system ASC (ASCT1) was strongly detected; system L (LAT3, LAT4) and MCT8 were weakly detected; and B 0 AT was not detected. [ 125 I]IMT uptake in DLD-1 cells involved Na + -independent system L primarily and Na + -dependent system(s). Uptake of [ 125 I]IMT in Na + -free buffer followed Michaelis-Menten kinetics, with a K m of 78 μM and V max of 333 pmol/10 6 cells per minute. Neutral D- and L-amino acids with branched or aromatic large side chains inhibited [ 125 I]IMT uptake. Tyrosine analogues, tryptophan analogues, L-phenylalanine and p-halogeno-L-phenylalanines, and gamma amino acids [including 3,4-dihydroxy-L-phenylalanine (L-DOPA), DL-threo-β-(3,4-dihydroxyphenyl)serine (DOPS), 4-[bis(2-chloroethyl)amino]-L-phenylalanine and 1-(aminomethyl)-cyclohexaneacetic acid] strongly inhibited [ 125 I]IMT uptake, but L-tyrosine methyl ester and R(+)/S(-)-baclofen weakly inhibited uptake. The substrates of system ASC and A did not inhibit [ 125 I]IMT uptake except L-serine and D/L-cysteine. Conclusions: [ 125 I]IMT uptake in DLD-1 cells involves mostly LAT1 and its substrates' (including amino acid-like drugs derived from tyrosine, tryptophan and phenylalanine) affinity to transport via LAT1. Whether transport of gamma amino acid analogues is involved in LAT1 depends on the structure of the group corresponding to the amino acid

  18. Amino acid "little Big Bang": representing amino acid substitution matrices as dot products of Euclidian vectors.

    Science.gov (United States)

    Zimmermann, Karel; Gibrat, Jean-François

    2010-01-04

    Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  19. Amino acid "little Big Bang": Representing amino acid substitution matrices as dot products of Euclidian vectors

    Directory of Open Access Journals (Sweden)

    Zimmermann Karel

    2010-01-01

    Full Text Available Abstract Background Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. Results We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. Conclusions This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  20. Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters.

    Science.gov (United States)

    Duchiron, Stéphane W; Pollet, Eric; Givry, Sébastien; Avérous, Luc

    2018-01-30

    ε-caprolactone (CL) has been enzymatically polymerized using α-amino acids based on sulfur (methionine and cysteine) as (co-)initiators and immobilized lipase B of Candida antarctica (CALB) as biocatalyst. In-depth characterizations allowed determining the corresponding involved mechanisms and the polymers thermal properties. Two synthetic strategies were tested, a first one with direct polymerization of CL with the native amino acids and a second one involving the use of an amino acid with protected functional groups. The first route showed that mainly polycaprolactone (PCL) homopolymer could be obtained and highlighted the lack of reactivity of the unmodified amino acids due to poor solubility and affinity with the lipase active site. The second strategy based on protected cysteine showed higher monomer conversion, with the amino acids acting as (co-)initiators, but their insertion along the PCL chains remained limited to chain endcapping. These results thus showed the possibility to synthesize enzymatically polycaprolactone-based chains bearing amino acids units. Such cysteine endcapped PCL materials could then find application in the biomedical field. Indeed, subsequent functionalization of these polyesters with drugs or bioactive molecules can be obtained, by derivatization of the amino acids, after removal of the protecting group.

  1. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  2. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  3. Branched-Chain Amino Acids

    Directory of Open Access Journals (Sweden)

    Matteo Ghiringhelli

    2015-07-01

    Full Text Available Our study is focused on evaluation and use of the most effective and correct nutrients. In particular, our attention is directed to the role of certain amino acids in cachectic patients. During parenteral nutrition in humans, physician already associates in the PN-bags different formulations including amino acids, lipids and glucose solutions or essential amino acids solution alone or exclusively branched-chain amino acids (BCAA. Studies investigated the effects of dietary BCAA ingestion on different diseases and conditions such as obesity and metabolic disorders, liver disease, muscle atrophy, cancer, impaired immunity or injuries (surgery, trauma, burns, and sepsis. BCAAs have been shown to affect gene expression, protein metabolism, apoptosis and regeneration of hepatocytes, and insulin resistance. They have also been shown to inhibit the proliferation of liver cancer cells in vitro, and are essential for lymphocyte proliferation and dendritic cell maturation. Oral or parenteral administration of these three amino acids will allow us to evaluate the real efficacy of these compounds during a therapy to treat malnutrition in subjects unable to feed themselves.

  4. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  5. Amino acid racemisation dating

    International Nuclear Information System (INIS)

    Murray-Wallace, C.V.

    1999-01-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject

  6. Studies on radiolysis of amino acids, 1

    International Nuclear Information System (INIS)

    Oku, Tadatake

    1977-01-01

    In order to elucidate the radiolysis of amino acid, peptide, protein and enzyme, the radiolytic mechanisms of neutral amino acids (glycine, L-alanine, L-valine, L-leucine, L-isoleucine, L-serine, and L-threonine) and acidic amino acids (L-aspartic acid, L-glutamic acid and DL-amino-n-adipic acid) were studied in the presence of air or in the atmosphere nitrogen. An aqueous solution of 1 mM. of each amino acid was sealed in a glass ampoule under air or nitrogen. Irradiation of amino acid solutions was carried out with γ-rays of 60 Co at doses of 4.4-2,640x10 3 rads. The amino acids and the radiolytic products formed were determined by ion-exchange chromatography. From the results of determining amino acids and the radiolytic products formed and their G-values, the radiolytic mechanisms of the amino acids were discussed. (auth.)

  7. Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters

    Directory of Open Access Journals (Sweden)

    Stéphane W. Duchiron

    2018-01-01

    Full Text Available ε-caprolactone (CL has been enzymatically polymerized using α-amino acids based on sulfur (methionine and cysteine as (co-initiators and immobilized lipase B of Candida antarctica (CALB as biocatalyst. In-depth characterizations allowed determining the corresponding involved mechanisms and the polymers thermal properties. Two synthetic strategies were tested, a first one with direct polymerization of CL with the native amino acids and a second one involving the use of an amino acid with protected functional groups. The first route showed that mainly polycaprolactone (PCL homopolymer could be obtained and highlighted the lack of reactivity of the unmodified amino acids due to poor solubility and affinity with the lipase active site. The second strategy based on protected cysteine showed higher monomer conversion, with the amino acids acting as (co-initiators, but their insertion along the PCL chains remained limited to chain endcapping. These results thus showed the possibility to synthesize enzymatically polycaprolactone-based chains bearing amino acids units. Such cysteine endcapped PCL materials could then find application in the biomedical field. Indeed, subsequent functionalization of these polyesters with drugs or bioactive molecules can be obtained, by derivatization of the amino acids, after removal of the protecting group.

  8. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie

    2005-01-01

    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form from...... of two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III...... beta-amino alcohols through a straightforward five step sequence. The key step of this synthesis is an original anionic 4-exo-tet ring closure that forms the azetidine ring upon an intramolecular Michael addition. This reaction was proven to be reversible and to lead to a thermodynamic distribution...

  9. Amino acid fermentation at the origin of the genetic code.

    Science.gov (United States)

    de Vladar, Harold P

    2012-02-10

    There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments

  10. Identification of functional amino acid residues involved in polyamine and agmatine transport by human organic cation transporter 2.

    Science.gov (United States)

    Higashi, Kyohei; Imamura, Masataka; Fudo, Satoshi; Uemura, Takeshi; Saiki, Ryotaro; Hoshino, Tyuji; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2014-01-01

    Polyamine (putrescine, spermidine and spermine) and agmatine uptake by the human organic cation transporter 2 (hOCT2) was studied using HEK293 cells transfected with pCMV6-XL4/hOCT2. The Km values for putrescine and spermidine were 7.50 and 6.76 mM, and the Vmax values were 4.71 and 2.34 nmol/min/mg protein, respectively. Spermine uptake by hOCT2 was not observed at pH 7.4, although it inhibited both putrescine and spermidine uptake. Agmatine was also taken up by hOCT2, with Km value: 3.27 mM and a Vmax value of 3.14 nmol/min/mg protein. Amino acid residues involved in putrescine, agmatine and spermidine uptake by hOCT2 were Asp427, Glu448, Glu456, Asp475, and Glu516. In addition, Glu524 and Glu530 were involved in putrescine and spermidine uptake activity, and Glu528 and Glu540 were weakly involved in putrescine uptake activity. Furthermore, Asp551 was also involved in the recognition of spermidine. These results indicate that the recognition sites for putrescine, agmatine and spermidine on hOCT2 strongly overlap, consistent with the observation that the three amines are transported with similar affinity and velocity. A model of spermidine binding to hOCT2 was constructed based on the functional amino acid residues.

  11. Genetic variation in food choice behaviour of amino acid-deprived Drosophila.

    Science.gov (United States)

    Toshima, Naoko; Hara, Chieko; Scholz, Claus-Jürgen; Tanimura, Teiichi

    2014-10-01

    To understand homeostatic regulation in insects, we need to understand the mechanisms by which they respond to external stimuli to maintain the internal milieu. Our previous study showed that Drosophila melanogaster exhibit specific amino acid preferences. Here, we used the D.melanogaster Genetic Reference Panel (DGRP), which is comprised of multiple inbred lines derived from a natural population, to examine how amino acid preference changes depending on the internal nutritional state in different lines. We performed a two-choice preference test and observed genetic variations in the response to amino acid deprivation. For example, a high-responding line showed an enhanced preference for amino acids even after only 1day of deprivation and responded to a fairly low concentration of amino acids. Conversely, a low-responding line showed no increased preference for amino acids after deprivation. We compared the gene expression profiles between selected high- and the low-responding lines and performed SNP analyses. We found several groups of genes putatively involved in altering amino acid preference. These results will contribute to future studies designed to explore how the genetic architecture of an organism evolves to adapt to different nutritional environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Branched-Chain Amino Acids Are the Primary Limiting Amino Acids in the Diets of Endurance-Trained Men after a Bout of Prolonged Exercise.

    Science.gov (United States)

    Kato, Hiroyuki; Suzuki, Katsuya; Bannai, Makoto; Moore, Daniel R

    2018-05-09

    The indicator amino acid oxidation (IAAO) method estimates the protein intake required to maximize whole-body protein synthesis and identify the daily protein requirement in a variety of populations. However, it is unclear whether the greater requirements for endurance athletes previously determined by the IAAO reflect an increased demand for all or only some amino acids. The aim of this study was to determine the primary rate-limiting amino acids in endurance-trained athletes after prolonged exercise, by measuring the oxidation of ingested [1-13C]phenylalanine in response to variable amino acid intake. Five endurance-trained men (means ± SDs: age, 26 ± 7 y; body weight, 66.9 ± 9.5 kg; maximal oxygen consumption, 63.3 ± 4.3 mL · kg-1 · min-1) performed 5 trials that involved 2 d of controlled diet (1.4 g protein · kg-1 · d-1) and running (10 km on day 1 and 5 km on day 2) prior to performing an acute bout of endurance exercise (20-km treadmill run) on day 3. During recovery on day 3, participants consumed test diets as 8 isocaloric hourly meals providing sufficient energy and carbohydrate but a variable amino acid intake. The test diets, consumed in random order, were deficient (BASE: 0.8 g · kg-1 · d-1) and sufficient (SUF; 1.75 g · kg-1 · d-1) amino acid diets modeled after egg protein, and BASE supplemented with branched-chain amino acids (BCAA diet; 1.03 g · kg-1 · d-1), essential amino acids (EAA diet; 1.23 g · kg-1 · d-1), or nonessential amino acids (NEAA diet; 1.75 g · kg-1 · d-1). Whole-body phenylalanine flux (Q), 13CO2 excretion (F13CO2), and phenylalanine oxidation (OX) were determined according to standard IAAO methodology. There was no effect of amino acid intake on Q (P = 0.43). F13CO2 was significantly (all P amino acids in the greater daily protein requirement of endurance trained men. This trial was registered at clinicaltrial.gov as NCT02628249.

  13. Photoinduced electron transfer involving eosin-tryptophan conjugates. Long-lived radical pair states for systems incorporating aromatic amino acid side chains

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G. II; Farahat, C.W.; Oh, C. (Boston Univ., MA (United States))

    1994-07-14

    The electron-transfer photochemistry of the covalent derivatives of the dye eosin, in which the xanthene dye is covalently attached to the amino acid L-tryptophan via the thiohydantoin derivative, the tryptophan dipeptide, and an ethyl ester derivative, has been investigated. The singlet excited state of the dye is significantly quenched on attachment of the aromatic amino acid residue. Dye triplet states are also intercepted through intramolecular interaction of excited dye and amino acid pendants. Flash photolysis experiments verify that this interaction involves electron transfer from the indole side chains of tryptophan. Rate constants for electron transfer are discussed in terms of the distance relationships for the eosin chromophore and aromatic redox sites on peptide derivatives, the pathway for [sigma]-[pi] through-bond interaction between redox sites, and the multiplicity and state of protonation for electron-transfer intermediates. Selected electron-transfer photoreactions were studied under conditions of binding of the peptide derivatives in a high molecular weight, water-soluble, globular polymer, poly(vinyl-2-pyrrolidinone). 28 refs., 4 figs., 1 tab.

  14. Amino acid analogs for tumor imaging

    International Nuclear Information System (INIS)

    Goodman, M.M.; Shoup, T.

    1998-01-01

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [ 18 F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an α-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of α-aminoisobutyric acid

  15. Inhibition of beta-amino acid transport by diamide does not involve the brush border membrane surface

    International Nuclear Information System (INIS)

    Chesney, R.W.; Gusowski, N.; Albright, P.

    1985-01-01

    Diamide (dicarboxylic acid bis-(N,N-dimethylamide) has been shown in previous studies to block the uptake of the beta-amino acid taurine at its high affinity transport site in rat renal cortex slices. Diamide may act by increasing the efflux of taurine from the slice. Studies performed in rat slices again indicate enhanced efflux over 8-12 minutes. The time course of reduced glutathione (GSH) depletion from renal cortex is similar, indicating a potential interaction between GSH depletion and inhibition of taurine accumulation. The effect of 9 mM diamide on the Na+ -dependent accumulation of taurine (10 and 250 microM) by brush border membrane vesicles was examined, and the taurine uptake value both initially and at equilibrium was the same in the presence and absence of diamide. Isolation of the brush border surface and subsequent transport studies of taurine are not influenced by diamide. Thus, diamide inhibition of taurine uptake does not involve physiochemical alteration of the membrane surface where active amino acid transport occurs, despite the thiol-oxidizing properties of this agent. Further, these studies suggest that diamide either acts at the basolateral surface, rather than the brush border surface of rat renal cortex or requires the presence of an intact tubule, capable of metabolism, prior to its inhibitory action

  16. Accelerated protein digestion and amino acid absorption after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Bojsen-Møller, Anna Kirstine; Jacobsen, Siv H; Dirksen, Carsten

    2015-01-01

    BACKGROUND: Roux-en-Y gastric bypass (RYGB) involves exclusion of major parts of the stomach and changes in admixture of gastro-pancreatic enzymes, which could have a major impact on protein digestion and amino acid absorption. OBJECTIVE: We investigated the effect of RYGB on amino acid appearance......: RYGB accelerates caseinate digestion and amino acid absorption, resulting in faster and higher but more transient postprandial elevation of plasma amino acids. Changes are likely mediated by accelerated intestinal nutrient entry and clearly demonstrate that protein digestion is not impaired after RYGB...

  17. New insights into sulfur amino acids function in gut health and disease

    Science.gov (United States)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acids (SAAs) metabolism in the body. Aside from their role in protein synthesis, methionine and cysteine are involved in many biological functions and diseases. Methionine (MET) is an indispensable amino acid and is...

  18. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    Science.gov (United States)

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    Science.gov (United States)

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  20. Amino acid fermentation at the origin of the genetic code

    Science.gov (United States)

    2012-01-01

    There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments

  1. Amino acid fermentation at the origin of the genetic code

    Directory of Open Access Journals (Sweden)

    de Vladar Harold P

    2012-02-01

    Full Text Available Abstract There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can

  2. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    acids in the coastal Arabian Sea sediments: whereas amino acids content of fulvic acids was lower than that of humic acids in the coastal sediments of Bay of Bengal. Slope sedimentary humic acids were relatively enriched in amino acids as compared...

  3. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.

    Science.gov (United States)

    Armentrout, P B; Yang, Bo; Rodgers, M T

    2014-04-24

    Metal cation-amino acid interactions are key components controlling the secondary structure and biological function of proteins, enzymes, and macromolecular complexes comprising these species. Determination of pairwise interactions of alkali metal cations with amino acids provides a thermodynamic vocabulary that begins to quantify these fundamental processes. In the present work, we expand a systematic study of such interactions by examining rubidium and cesium cations binding with the acidic amino acids (AA), aspartic acid (Asp) and glutamic acid (Glu), and their amide derivatives, asparagine (Asn) and glutamine (Gln). These eight complexes are formed using electrospray ionization and their bond dissociation energies (BDEs) are determined experimentally using threshold collision-induced dissociation with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations are conducted at the B3LYP, MP2(full), and M06 levels of theory using def2-TZVPPD basis sets, with results showing reasonable agreement with experiment. At 0 and 298 K, most levels of theory predict that the ground-state conformers for M(+)(Asp) and M(+)(Asn) involve tridentate binding of the metal cation to the backbone carbonyl, amino, and side-chain carbonyl groups, although tridentate binding to the carboxylic acid group and side-chain carbonyl is competitive for M(+)(Asn). For the two longer side-chain amino acids, Glu and Gln, multiple structures are competitive. A comparison of these results to those for the smaller alkali cations, Na(+) and K(+), provides insight into the trends in binding energies associated with the molecular polarizability and dipole moment of the side chain. For all four metal cations, the BDEs are inversely correlated with the size of the metal cation and follow the order Asp < Glu

  4. Amino acid compositional shifts during streptophyte transitions to terrestrial habitats.

    Science.gov (United States)

    Jobson, Richard W; Qiu, Yin-Long

    2011-02-01

    Across the streptophyte lineage, which includes charophycean algae and embryophytic plants, there have been at least four independent transitions to the terrestrial habitat. One of these involved the evolution of embryophytes (bryophytes and tracheophytes) from a charophycean ancestor, while others involved the earliest branching lineages, containing the monotypic genera Mesostigma and Chlorokybus, and within the Klebsormidiales and Zygnematales lineages. To overcome heat, water stress, and increased exposure to ultraviolet radiation, which must have accompanied these transitions, adaptive mechanisms would have been required. During periods of dehydration and/or desiccation, proteomes struggle to maintain adequate cytoplasmic solute concentrations. The increased usage of charged amino acids (DEHKR) may be one way of maintaining protein hydration, while increased use of aromatic residues (FHWY) protects proteins and nucleic acids by absorbing damaging UV, with both groups of residues thought to be important for the stabilization of protein structures. To test these hypotheses we examined amino acid sequences of orthologous proteins representing both mitochondrion- and plastid-encoded proteomes across streptophytic lineages. We compared relative differences within categories of amino acid residues and found consistent patterns of amino acid compositional fluxuation in extra-membranous regions that correspond with episodes of terrestrialization: positive change in usage frequency for residues with charged side-chains, and aromatic residues of the light-capturing chloroplast proteomes. We also found a general decrease in the usage frequency of hydrophobic, aliphatic, and small residues. These results suggest that amino acid compositional shifts in extra-membrane regions of plastid and mitochondrial proteins may represent biochemical adaptations that allowed green plants to colonize the land.

  5. Variations of L- and D-amino acid levels in the brain of wild-type and mutant mice lacking D-amino acid oxidase activity.

    Science.gov (United States)

    Du, Siqi; Wang, Yadi; Weatherly, Choyce A; Holden, Kylie; Armstrong, Daniel W

    2018-05-01

    D-amino acids are now recognized to be widely present in organisms and play essential roles in biological processes. Some D-amino acids are metabolized by D-amino acid oxidase (DAO), while D-Asp and D-Glu are metabolized by D-aspartate oxidase (DDO). In this study, levels of 22 amino acids and the enantiomeric compositions of the 19 chiral proteogenic entities have been determined in the whole brain of wild-type ddY mice (ddY/DAO +/+ ), mutant mice lacking DAO activity (ddY/DAO -/- ), and the heterozygous mice (ddY/DAO +/- ) using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No significant differences were observed for L-amino acid levels among the three strains except for L-Trp which was markedly elevated in the DAO +/- and DAO -/- mice. The question arises as to whether this is an unknown effect of DAO inactivity. The three highest levels of L-amino acids were L-Glu, L-Asp, and L-Gln in all the three strains. The lowest L-amino acid level was L-Cys in ddY/DAO +/- and ddY/DAO -/- mice, while L-Trp showed the lowest level in ddY/DAO +/+ mice. The highest concentration of D-amino acid was found to be D-Ser, which also had the highest % D value (~ 25%). D-Glu had the lowest % D value (~ 0.01%) in all the three strains. Significant differences of D-Leu, D-Ala, D-Ser, D-Arg, and D-Ile were observed in ddY/DAO +/- and ddY/DAO -/- mice compared to ddY/DAO +/+ mice. This work provides the most complete baseline analysis of L- and D-amino acids in the brains of ddY/DAO +/+ , ddY/DAO +/- , and ddY/DAO -/- mice yet reported. It also provides the most effective and efficient analytical approach for measuring these analytes in biological samples. This study provides fundamental information on the role of DAO in the brain and may be relevant for future development involving novel drugs for DAO regulation.

  6. Amino Acid Catabolism in Alzheimer’s Disease Brain: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Jeddidiah W. D. Griffin

    2017-01-01

    Full Text Available There is a dire need to discover new targets for Alzheimer’s disease (AD drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease.

  7. Pharmaceutical salts and cocrystals involving amino acids: a brief structural overview of the state-of-art.

    Science.gov (United States)

    Tilborg, Anaëlle; Norberg, Bernadette; Wouters, Johan

    2014-03-03

    Salification of new drug substances in order to improve physico-chemical or solid-state properties (e.g. dissolution rate or solubility, appropriate workup process, storage for further industrial and marketing development) is a well-accepted procedure. Amino acids, like aspartic acid, lysine or arginine take a great part in this process and are implicated in several different formulations of therapeutic agent families, including antibiotics (amoxicillin from beta lactam class or cephalexin from cephalosporin class), NSAIDs (ketoprofen, ibuprofen and naproxen from profen family, acetylsalicylic acid) or antiarrhythmic agents (e.g. ajmaline). Even if more than a half of known pharmaceutical molecules possess a salifiable moiety, what can be done for new potential drug entity that cannot be improved by transformation into a salt? In this context, after a brief review of pharmaceutical salts on the market and the implication of amino acids in these formulations, we focus on the advantage of using amino acids even when the target compound is not salifiable by exploiting their zwitterionic potentialities for cocrystal edification. We summarize here a series of new examples coming from literature to support the advantages of broadening the application of amino acids in formulation for new drug substances improvement research for non-salifiable molecules. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-01-01

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to ∼ 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase, and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research highlights: → MCF-7/Adr cells showed decreases in cellular GSH

  9. SHORT COMMUNICATION DETERMINATION OF AMINO ACIDS ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    The purpose of this study was to assess the levels of free and total amino acid ... Gas chromatographic method with flame ionization detector (GC-FID) was ... Total amino acid analysis was done on acid hydrolysates of RJ samples by the ion-exchange ... The data of amino acids and protein content for all analyzed fresh and.

  10. Identification of functional amino acid residues involved in polyamine and agmatine transport by human organic cation transporter 2.

    Directory of Open Access Journals (Sweden)

    Kyohei Higashi

    Full Text Available Polyamine (putrescine, spermidine and spermine and agmatine uptake by the human organic cation transporter 2 (hOCT2 was studied using HEK293 cells transfected with pCMV6-XL4/hOCT2. The Km values for putrescine and spermidine were 7.50 and 6.76 mM, and the Vmax values were 4.71 and 2.34 nmol/min/mg protein, respectively. Spermine uptake by hOCT2 was not observed at pH 7.4, although it inhibited both putrescine and spermidine uptake. Agmatine was also taken up by hOCT2, with Km value: 3.27 mM and a Vmax value of 3.14 nmol/min/mg protein. Amino acid residues involved in putrescine, agmatine and spermidine uptake by hOCT2 were Asp427, Glu448, Glu456, Asp475, and Glu516. In addition, Glu524 and Glu530 were involved in putrescine and spermidine uptake activity, and Glu528 and Glu540 were weakly involved in putrescine uptake activity. Furthermore, Asp551 was also involved in the recognition of spermidine. These results indicate that the recognition sites for putrescine, agmatine and spermidine on hOCT2 strongly overlap, consistent with the observation that the three amines are transported with similar affinity and velocity. A model of spermidine binding to hOCT2 was constructed based on the functional amino acid residues.

  11. Urinary amino acid analysis: a comparison of iTRAQ-LC-MS/MS, GC-MS, and amino acid analyzer.

    Science.gov (United States)

    Kaspar, Hannelore; Dettmer, Katja; Chan, Queenie; Daniels, Scott; Nimkar, Subodh; Daviglus, Martha L; Stamler, Jeremiah; Elliott, Paul; Oefner, Peter J

    2009-07-01

    Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of propyl chloroformate and iTRAQ derivatized amino acids, respectively, to conventional amino acid analysis. The GC-MS method builds on the direct derivatization of amino acids in diluted urine with propyl chloroformate, GC separation and mass spectrometric quantification of derivatives using stable isotope labeled standards. The LC-MS/MS method requires prior urinary protein precipitation followed by labeling of urinary and standard amino acids with iTRAQ tags containing different cleavable reporter ions distinguishable by MS/MS fragmentation. Means and standard deviations of percent technical error (%TE) computed for 20 amino acids determined by amino acid analyzer, GC-MS, and iTRAQ-LC-MS/MS analyses of 33 duplicate and triplicate urine specimens were 7.27+/-5.22, 21.18+/-10.94, and 18.34+/-14.67, respectively. Corresponding values for 13 amino acids determined in a second batch of 144 urine specimens measured in duplicate or triplicate were 8.39+/-5.35, 6.23+/-3.84, and 35.37+/-29.42. Both GC-MS and iTRAQ-LC-MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines.

  12. A new highly selective metabotropic excitatory amino acid agonist: 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Sløk, F A; Skjaerbaek, N

    1996-01-01

    The homologous series of acidic amino acids, ranging from aspartic acid (1) to 2-aminosuberic acid (5), and the corresponding series of 3-isoxazolol bioisosteres of these amino acids, ranging from (RS)-2-amino-2-(3-hydroxy-5-methylisoxazol-4-yl)acetic acid (AMAA, 6) to (RS)-2-amino-6-(3-hydroxy-5......-methylisoxazol-4-yl)hexanoic acid (10), were tested as ligands for metabotropic excitatory amino acid receptors (mGlu1 alpha, mGlu2, mGlu4a, and mGlu6). Whereas AMAA (6) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propinoic acid (AMPA, 7) are potent and highly selective agonists at N......-methyl-D-aspartic acid (NMDA) and AMPA receptors, respectively, the higher homologue of AMPA (7), (RS)-2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid (homo-AMPA, 8), is inactive at ionotropic excitatory amino acid receptors. Homo-AMPA (8), which is a 3-isoxazolol bioisostere of 2-aminoadipic acid (3), was...

  13. Nutritional and medicinal aspects of D-amino acids.

    Science.gov (United States)

    Friedman, Mendel; Levin, Carol E

    2012-05-01

    This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.

  14. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...

  15. Amino acid properties conserved in molecular evolution.

    Directory of Open Access Journals (Sweden)

    Witold R Rudnicki

    Full Text Available That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts - one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications.

  16. Urinary Amino Acid Analysis: A Comparison of iTRAQ®-LC-MS/MS, GC-MS, and Amino Acid Analyzer

    Science.gov (United States)

    Kaspar, Hannelore; Dettmer, Katja; Chan, Queenie; Daniels, Scott; Nimkar, Subodh; Daviglus, Martha L.; Stamler, Jeremiah; Elliott, Paul; Oefner, Peter J.

    2009-01-01

    Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of propyl chloroformate and iTRAQ® derivatized amino acids, respectively, to conventional amino acid analysis. The GC-MS method builds on the direct derivatization of amino acids in diluted urine with propyl chloroformate, GC separation and mass spectrometric quantification of derivatives using stable isotope labeled standards. The LC-MS/MS method requires prior urinary protein precipitation followed by labeling of urinary and standard amino acids with iTRAQ® tags containing different cleavable reporter ions distinguishable by MS/MS fragmentation. Means and standard deviations of percent technical error (%TE) computed for 20 amino acids determined by amino acid analyzer, GC-MS, and iTRAQ®-LC-MS/MS analyses of 33 duplicate and triplicate urine specimens were 7.27±5.22, 21.18±10.94, and 18.34±14.67, respectively. Corresponding values for 13 amino acids determined in a second batch of 144 urine specimens measured in duplicate or triplicate were 8.39±5.35, 6.23±3.84, and 35.37±29.42. Both GC-MS and iTRAQ®-LC-MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines. PMID:19481989

  17. Analysis of Protein Amino Acids in Tobacco Using Microwave Digestion of Plant Material

    Directory of Open Access Journals (Sweden)

    Moldoveanu SC

    2014-12-01

    Full Text Available This paper describes a technique using microwave digestion and gas chromatography-mass spectrometry (GC-MS, which makes possible the analysis of protein amino acids in tobacco. The technique involves first the measurement of free amino acids, a hydrolysis using microwave digestion, and a measurement of total resulting amino acids. The content of protein amino acids is determined from the difference of total and free amino acids. The digestion is performed with aqueous 6 N HCl (with 1% phenol for two hours in a microwave at 120°C in sealed vials. The GC-MS analysis is performed after the amino acids are derivatized with N-methyl-N-(t-butyldimethylsilyltrifluoroacetamide (MTBSTFA. The technique provides reliable results with less than 10% relative standard deviation (RSD for most amino acids. Only the determination of very low level amino acids is affected by larger errors. The method provides results for free amino acids that are in very good agreement with those obtained by high performance liquid chromatography (HPLC, and also results for protein levels in tobacco in agreement with data previously reported in the literature. Results are given for several single grade tobaccos and for tobacco blends from four Kentucky reference cigarettes.

  18. Disturbed amino acid metabolism in HIV: association with neuropsychiatric symptoms

    Directory of Open Access Journals (Sweden)

    Johanna M Gostner

    2015-07-01

    Full Text Available Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1-infected patients. Both essential amino acids, tryptophan and phenylalanine are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms such as development of depression, fatigue, and cognitive impairment.Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions.

  19. Synthesis of some labelled non-proteinogenic amino acids

    International Nuclear Information System (INIS)

    Adrianens, P.; Vanderhaeghe, H.

    1987-01-01

    The literature on the synthesis of labeled non-proteinogenic amino acids contains approximately 300 papers, whereas syntheses of labeled proteinogenic amino acids are dealt with in some 800-1000 publications. However, most of the methods described in this paper for the synthesis of non-proteinogenic amino acids are also used for the preparation of the essential amino acids addition, the first category also contains β, γ...amino acids, seleno amino acids, N-methyl and α-methyl amino acids and sometimes have atoms or groups which are not present in the protein building blocks. Furthermore the latter group is more easily available so that methods for synthesis of non-proteinogenic amino acids are more needed

  20. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    Science.gov (United States)

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  1. Amino acid composition of some Mexican foods.

    Science.gov (United States)

    Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor

    2005-06-01

    Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.

  2. Present Global Situation of Amino Acids in Industry.

    Science.gov (United States)

    Tonouchi, Naoto; Ito, Hisao

    At present, amino acids are widely produced and utilized industrially. Initially, monosodium glutamate (MSG) was produced by extraction from a gluten hydrolysate. The amino acid industry started using the residual of the lysate. The discovery of the functions of amino acids has led to the expansion of their field of use. In addition to seasoning and other food use, amino acids are used in many fields such as animal nutrients, pharmaceuticals, and cosmetics. On the other hand, the invention of the glutamate fermentation process, followed by the development of fermentation methods for many other amino acids, is no less important. The supply of these amino acids at a low price is very essential for their industrial use. Most amino acids are now produced by fermentation. The consumption of many amino acids such as MSG or feed-use amino acids is still rapidly increasing.

  3. Enantiomer-specific selection of amino acids.

    Science.gov (United States)

    Ren, Xueying; Tellez, Luis A; de Araujo, Ivan E

    2013-12-01

    Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; (2) these behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.

  4. Synthesis of L-2-amino-8-oxodecanoic acid: an amino acid component of apicidins

    OpenAIRE

    Linares de la Morena, María Lourdes; Agejas Chicharro, Francisco Javier; Alajarín Ferrández, Ramón; Vaquero López, Juan José; Álvarez-Builla Gómez, Julio

    2001-01-01

    The synthesis Of L-2-amino-8-oxodecanoic acid (Aoda) is described. This is a rare amino acid component of apicidins, a family of new cyclic tetrapeptides, inhibitors of histone deacetylase. Aoda was synthesised in seven steps from L-glutamic acid along with some derivatives. Universidad de Alcalá Fundación General de la Universidad de Alcalá FEDER

  5. Free amino acids in spider hemolymph.

    Science.gov (United States)

    Tillinghast, Edward K; Townley, Mark A

    2008-11-01

    We examined the free amino acid composition of hemolymph from representatives of five spider families with an interest in knowing if the amino acid profile in the hemolymph of orb-web-building spiders reflects the high demands for small organic compounds in the sticky droplets of their webs. In nearly all analyses, on both orb and non-orb builders, glutamine was the most abundant free amino acid. Glycine, taurine, proline, histidine, and alanine also tended to be well-represented in orb and non-orb builders. While indications of taxon-specific differences in amino acid composition were observed, it was not apparent that two presumptive precursors (glutamine, taurine) of orb web sticky droplet compounds were uniquely enriched in araneids (orb builders). However, total amino acid concentrations were invariably highest in the araneids and especially so in overwintering juveniles, even as several of the essential amino acids declined during this winter diapause. Comparing the data from this study with those from earlier studies revealed a number of discrepancies. The possible origins of these differences are discussed.

  6. carcass amino acid composition and utilization of dietary amino

    African Journals Online (AJOL)

    Maynard (1954), Fisher & Scott (1954), Forbes &. Rao (1959), Hartsook & Mitchell (1956). King (1963) showed that individual amino acids in the carcass could differ widely from the requirement by the anirnal for those particular amino acids used for purposes other than protein synthesis and subsequent retention. How-.

  7. Structure, function, and regulation of enzymes involved in amino acid metabolism of bacteria and archaea.

    Science.gov (United States)

    Tomita, Takeo

    2017-11-01

    Amino acids are essential components in all organisms because they are building blocks of proteins. They are also produced industrially and used for various purposes. For example, L-glutamate is used as the component of "umami" taste and lysine has been used as livestock feed. Recently, many kinds of amino acids have attracted attention as biological regulators and are used for a healthy life. Thus, to clarify the mechanism of how amino acids are biosynthesized and how they work as biological regulators will lead to further effective utilization of them. Here, I review the leucine-induced-allosteric activation of glutamate dehydrogenase (GDH) from Thermus thermophilus and the relationship with the allosteric regulation of GDH from mammals. Next, I describe structural insights into the efficient production of L-glutamate by GDH from an excellent L-glutamate producer, Corynebacterium glutamicum. Finally, I review the structural biology of lysine biosynthesis of thermophilic bacterium and archaea.

  8. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  9. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  10. Amino Acid Stability in the Early Oceans

    Science.gov (United States)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  11. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration.

    Science.gov (United States)

    Vivancos, Pedro Diaz; Driscoll, Simon P; Bulman, Christopher A; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H

    2011-09-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.

  12. Searching for Extraterrestrial Amino Acids in a Contaminated Meteorite: Amino Acid Analyses of the Canakkale L6 Chondrite

    Science.gov (United States)

    Burton, A. S.; Elsila, J. E.; Glavin, D. P.; Dworkin, J. P.; Ornek, C. Y.; Esenoglu, H. H.; Unsalan, O.; Ozturk, B.

    2016-01-01

    Amino acids can serve as important markers of cosmochemistry, as their abundances and isomeric and isotopic compositions have been found to vary predictably with changes in parent body chemistry and alteration processes. Amino acids are also of astrobiological interest because they are essential for life on Earth. Analyses of a range of meteorites, including all groups of carbonaceous chondrites, along with H, R, and LL chondrites, ureilites, and a martian shergottite, have revealed that amino acids of plausible extraterrestrial origin can be formed in and persist after a wide range of parent body conditions. However, amino acid analyses of L6 chondrites to date have not provided evidence for indigenous amino acids. In the present study, we performed amino acid analysis on larger samples of a different L6 chondite, Canakkale, to determine whether or not trace levels of indigenous amino acids could be found. The Canakkale meteor was an observed fall in late July, 1964, near Canakkale, Turkey. The meteorite samples (1.36 and 1.09 g) analyzed in this study were allocated by C. Y. Ornek, along with a soil sample (1.5 g) collected near the Canakkale recovery site.

  13. Plant Proteins and Synthetic Amino Acids in the Nutrition of Non-Ruminants

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D. [Department of Applied Biochemistry and Nutrition, University Of Nottingham, Nottingham (United Kingdom)

    1968-07-01

    It is to be emphasized that in formulating diets for farm animals other than ruminants it is important to meet the requirements for individual essential amino acids and not merely to give regard to over-ail protein quality. The protein component serves to meet the needs for essential amino acids and also supplies material to synthesize those amino acids that are individually dispensable. In arranging for efficient formulation it is important to have available amino acid requirement standards to meet a particular production objective and data on the quantity of amino acids supplied by the various ingredients available. In considering the amino acid content of ingredients it is important to pay due regard to the problems of availability. Efforts to define amino acid requirements for the pig and chick have given somewhat variable results: it is possible to account for some of this variability. It is recognized that under certain circumstances non-amino nitrogen can be utilized by such species as the chick and the pig. The mechanisms involved are briefly considered. Some experimental work has shown that non-amino nitrogen can support growth, but it is difficult to establish a situation in which the non-essential amino acid levels are sufficiently low to take advantage of this fact. Extensive use of synthetic essential amino acids could change this situation. The case for the use of synthetic amino acids in the diets of farm animals is essentially an economic one. It is no longer necessary to demonstrate that free dietary amino acids can meet the needs of the animal. The only question is whether the needs of the animal are more effectively met by the addition of amino acids or more intact protein. The place of alternative protein sources to such attractive commodities as fish meal or soyabean meal must be considered in terms of amino acid supply. Whilst synthetic methionine and lysine are available there is a developing case for the use of such products as sunflower

  14. Branched-chain amino acids for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Koretz, R L; Kjaergard, L L

    2003-01-01

    Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy....

  15. Sites that Can Produce Left-handed Amino Acids in the Supernova Neutrino Amino Acid Processing Model

    Science.gov (United States)

    Boyd, Richard N.; Famiano, Michael A.; Onaka, Takashi; Kajino, Toshitaka

    2018-03-01

    The Supernova Neutrino Amino Acid Processing model, which uses electron anti-neutrinos and the magnetic field from a source object such as a supernova to selectively destroy one amino acid chirality, is studied for possible sites that would produce meteoroids with partially left-handed amino acids. Several sites appear to provide the requisite magnetic field intensities and electron anti-neutrino fluxes. These results have obvious implications for the origin of life on Earth.

  16. Free amino acid profile of Bubalus bubalis L. meat from the Campania region

    Directory of Open Access Journals (Sweden)

    Nicola Landi

    Full Text Available ABSTRACT In this study, we determined the amount of carnosine and anserine in water buffalo meat without hanging treatment and the free amino acid profile by using amino acid analyser with post-column ninhydrin derivatization procedure. The main free amino acids present in samples were glutamic acid (>60 mg/100 g, followed by alanine, glycine, and arginine. Other protein amino acids were detected in minor amounts (less than 2 mg/100 g. Among the non-protein amine-containing compounds, taurine and urea were the most abundant. The analysis showed that 50% of the total free amino acids was represented by dipeptides carnosine (average ~130.3 mg/100 g and anserine (average ~17.9 mg/100 g. Thus, this study for the first time reports the free amino acids profile of water buffalo meat and the content of carnosine and anserine, potentially involved in the darkening meat process and their ratio, that could be used to estimate the water buffalo meat portion in mixed meat products.

  17. Amino Acid Patterns around Disulfide Bonds

    Directory of Open Access Journals (Sweden)

    Brett Drury

    2010-11-01

    Full Text Available Disulfide bonds provide an inexhaustible source of information on molecular evolution and biological specificity. In this work, we described the amino acid composition around disulfide bonds in a set of disulfide-rich proteins using appropriate descriptors, based on ANOVA (for all twenty natural amino acids or classes of amino acids clustered according to their chemical similarities and Scheffé (for the disulfide-rich proteins superfamilies statistics. We found that weakly hydrophilic and aromatic amino acids are quite abundant in the regions around disulfide bonds, contrary to aliphatic and hydrophobic amino acids. The density distributions (as a function of the distance to the center of the disulfide bonds for all defined entities presented an overall unimodal behavior: the densities are null at short distances, have maxima at intermediate distances and decrease for long distances. In the end, the amino acid environment around the disulfide bonds was found to be different for different superfamilies, allowing the clustering of proteins in a biologically relevant way, suggesting that this type of chemical information might be used as a tool to assess the relationship between very divergent sets of disulfide-rich proteins.

  18. Synthesis and biological activity of amino acid conjugates of abscisic acid.

    Science.gov (United States)

    Todoroki, Yasushi; Narita, Kenta; Muramatsu, Taku; Shimomura, Hajime; Ohnishi, Toshiyuki; Mizutani, Masaharu; Ueno, Kotomi; Hirai, Nobuhiro

    2011-03-01

    We prepared 19 amino acid conjugates of the plant hormone abscisic acid (ABA) and investigated their biological activity, enzymatic hydrolysis by a recombinant Arabidopsis amidohydrolases GST-ILR1 and GST-IAR3, and metabolic fate in rice seedlings. Different sets of ABA-amino acids induced ABA-like responses in different plants. Some ABA-amino acids, including some that were active in bioassays, were hydrolyzed by recombinant Arabidopsis GST-IAR3, although GST-ILR1 did not show hydrolysis activity for any of the ABA-amino acids. ABA-L-Ala, which was active in all the bioassays, an Arabidopsis seed germination, spinach seed germination, and rice seedling elongation assays, except in a lettuce seed germination assay and was hydrolyzed by GST-IAR3, was hydrolyzed to free ABA in rice seedlings. These findings suggest that some plant amidohydrolases hydrolyze some ABA-amino acid conjugates. Because our study indicates the possibility that different plants have hydrolyzing activity toward different ABA-amino acids, an ABA-amino acid may function as a species-selective pro-hormone of ABA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Synthesis and Biological Activity of Novel Amino Acid-(N'-Benzoyl Hydrazide and Amino Acid-(N'-Nicotinoyl Hydrazide Derivatives

    Directory of Open Access Journals (Sweden)

    Sherine N. Khattab

    2005-09-01

    Full Text Available The coupling reaction of benzoic acid and nicotinic acid hydrazides with N- protected L-amino acids including valine, leucine, phenylalanine, glutamic acid and tyrosine is reported. The target compounds, N-Boc-amino acid-(N`-benzoyl- and N- Boc-amino acid-(N`-nicotinoyl hydrazides 5a-5e and 6a-6e were prepared in very high yields and purity using N-[(dimethylamino-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl- methylene]-N-methyl-methanaminium hexafluorophosphate N-oxide (HATU as coupling reagent. The antimicrobial activity of the Cu and Cd complexes of the designed compounds was tested. The products were deprotected affording the corresponding amino acid-(N`-benzoyl hydrazide hydrochloride salts (7a-7e and amino acid-(N`- nicotinoyl hydrazide hydrochloride salts (8a-8e. These compounds and their Cu and Cd complexes were also tested for their antimicrobial activity. Several compounds showed comparable activity to that of ampicillin against S. aureus and E. coli.

  20. Production of amino acids - Genetic and metabolic engineering approaches.

    Science.gov (United States)

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evaluation of methods to estimate the essential amino acids requirements of fish from the muscle amino acid profile

    Directory of Open Access Journals (Sweden)

    Álvaro José de Almeida Bicudo

    2014-03-01

    Full Text Available Many methods to estimate amino acid requirement based on amino acid profile of fish have been proposed. This study evaluates the methodology proposed by Meyer & Fracalossi (2005 and by Tacon (1989 to estimate amino acids requirement of fish, which do exempt knowledge on previous nutritional requirement of reference amino acid. Data on amino acid requirement of pacu, Piaractus mesopotamicus, were used to validate de accuracy of those methods. Meyer & Fracalossi's and Tacon's methodology estimated the lysine requirement of pacu, respectively, at 13 and 23% above requirement determined using dose-response method. The values estimated by both methods lie within the range of requirements determined for other omnivorous fish species, the Meyer & Fracalossi (2005 method showing better accuracy.

  2. Discovery and History of Amino Acid Fermentation.

    Science.gov (United States)

    Hashimoto, Shin-Ichi

    There has been a strong demand in Japan and East Asia for L-glutamic acid as a seasoning since monosodium glutamate was found to present umami taste in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum in 1956 enabled abundant and low-cost production of the amino acid, creating a large market. The discovery also prompted researchers to develop fermentative production processes for other L-amino acids, such as lysine. Currently, the amino acid fermentation industry is so huge that more than 5 million metric tons of amino acids are manufactured annually all over the world, and this number continues to grow. Research on amino acid fermentation fostered the notion and skills of metabolic engineering which has been applied for the production of other compounds from renewable resources. The discovery of glutamate fermentation has had revolutionary impacts on both the industry and science. In this chapter, the history and development of glutamate fermentation, including the very early stage of fermentation of other amino acids, are reviewed.

  3. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.

    Science.gov (United States)

    Sonsalla, P K; Nicklas, W J; Heikkila, R E

    1989-01-20

    The systemic administration of either methamphetamine or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to experimental animals produces degenerative changes in nigrostriatal dopaminergic neurons or their axon terminals. This study was conducted to determine if excitatory amino acids, which appear to be involved in various neurodegenerative disorders, might also contribute to the dopaminergic neurotoxicity produced in mice by either methamphetamine or MPTP. MK-801, phencyclidine, and ketamine, noncompetitive antagonists of one subtype of excitatory amino acid receptor, the N-methyl-D-aspartate receptor, provided substantial protection against neurotoxicity produced by methamphetamine but not that produced by MPTP. These findings indicate that excitatory amino acids play an important role in the nigrostriatal dopaminergic damage induced by methamphetamine.

  4. Amino acid metabolism conflicts with protein diversity

    OpenAIRE

    Krick, Teresa; Shub, David A.; Verstraete, Nina; Ferreiro, Diego U.; Alonso, Leonardo G.; Shub, Michael; Sanchez, Ignacio E.

    2014-01-01

    The 20 protein-coding amino acids are found in proteomes with different relative abundances. The most abundant amino acid, leucine, is nearly an order of magnitude more prevalent than the least abundant amino acid, cysteine. Amino acid metabolic costs differ similarly, constraining their incorporation into proteins. On the other hand, a diverse set of protein sequences is necessary to build functional proteomes. Here, we present a simple model for a cost-diversity trade-off postulating that n...

  5. Asymmetric synthesis including enzymatic catalysis of 11C and 13N labelled amino acids

    International Nuclear Information System (INIS)

    Langstrom, B.; Antonio, G.; Bjurling, P.; Fasth, K.J.; Westerberg, G.; Watanabe, Y.

    1993-01-01

    Use of asymmetric synthesis in production of 11 C- and 13 N-labelled amino acids has been shown to be a useful approach in order to prepare amino acids routinely for PET-studies. Such PET-studies are focused either on problems related to amino acid transport, protein synthesis rate or the turnover of neurotransmitters from amino acids. The paper discusses matters regarding synthetic strategies and techniques involving production of precursors, labelled intermediates and main reaction sequences. In synthesis using the short-lived β + -emitters like 11 C and 13 N with T 1/2 of 20.3 and 10.0 min respectively, many special aspects have to be considered. The use of enzymes as catalysts has shown to be a useful tool in such preparations. The design of the labelled amino acids especially considering the stereochemistry, the position of the label will be addressed since these points are important both with regard to the application of the labelled amino acids as well as to the synthesis itself. In this presentation of the synthesis of labelled amino acids these various aspects are discussed

  6. Sugar amino acids and related molecules

    Indian Academy of Sciences (India)

    Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature's molecular arsenal. In recent years, sugar amino acids have been used extensively in the area of ...

  7. Cerebral net exchange of large neutral amino acids after lipopolysaccharide infusion in healthy humans

    DEFF Research Database (Denmark)

    Berg, Ronan Mg; Taudorf, Sarah; Bailey, Damian M

    2010-01-01

    Alterations in circulating large neutral amino acids (LNAAs), leading to a decrease in the plasma ratio between branched-chain and aromatic amino acids (BCAA/AAA ratio), may be involved in sepsis-associated encephalopathy. We hypothesised that a decrease in the BCAA/AAA ratio occurs along...

  8. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  9. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  10. Amino acid derived 1,4-dialkyl substituted imidazolones

    DEFF Research Database (Denmark)

    Diness, Frederik; Meldal, Morten Peter

    2010-01-01

    A general method for synthesis of 1,4-substituted imidazolones from amino acids on solid support or in solution has been developed. Amino acid derived 3-Boc-(1,3)-oxazinane (Box) protected amino aldehyde building blocks were coupled through urea bonds to the amino terminal of dipeptides or amino...... acids. Upon acidic release, the aldehyde instantaneously formed the cyclic N-carbamyliminium ion, which rearranged to the corresponding imidazolone. Under strongly acidic conditions the imidazolones acted as nuclophiles in the Pictet-Spengler reaction....

  11. Cerebral net exchange of large neutral amino acids after lipopolysaccharide infusion in healthy humans

    DEFF Research Database (Denmark)

    Berg, Ronan Mg; Taudorf, Sarah; Bailey, Damian M

    2010-01-01

    Alterations in circulating large neutral amino acids (LNAAs), leading to a decrease in the plasma ratio between branched-chain and aromatic amino acids (BCAA/AAA ratio), may be involved in sepsis-associated encephalopathy. We hypothesised that a decrease in the BCAA/AAA ratio occurs along with a ...

  12. Protein synthesis in the presence of carbamoyl-amino acids

    International Nuclear Information System (INIS)

    Kraus, L.M.; Stephens, M.C.

    1987-01-01

    The role of exogenous carbamoyl-amino acids in protein biosynthesis has been examined in vitro using a mixture of 14 C amino acids to label newly synthesized protein in human reticulocyte rich (8-18%) peripheral blood. Aliquots of the radiolabeled newly synthesized protein were acid precipitated, washed and the radioactivity measured. Control samples which measured the synthetic capacity of the blood were aliquots of the same blood- 14 C amino acid mixture without added carbamoyl-amino acids or cyanate. N-carbamoyl leucine alone or a 3 N-carbamoyl amino acid mixture of leucine, aspartic acid and tyrosine were used to test inhibition of protein synthesis. Also carbamoyl-amino acids were synthesized using cyanate and Pierce hydrolyzate amino acid calibration standards or the mixture of 14 C amino acids. In this system the carbamoylation of endogenous amino acids by cyanate up to 8 μmol/100μl showed a linear decrease in protein synthesis with time which is inversely related to the cyanate concentration. At greater cyanate levels the inhibition of protein synthesis reaches a plateau. When N-carbamoyl-amino acids only are present there is about a 50% decrease in the 14 C protein at 30 minutes as compared to the synthesis of 14 C protein without N-carbamoyl-amino acids. These results indicate that the presence of carbamoyl-amino acids interferes with protein synthesis

  13. Amino Acid Metabolism in Acute Renal Failure: Influence of Intravenous Essential L-Amino Acid Hyperalimentation Therapy

    Science.gov (United States)

    Abel, Ronald M.; Shih, Vivian E.; Abbott, William M.; Beck, Clyde H.; Fischer, Josef E.

    1974-01-01

    A solution of 8 essential I-amino acids and hypertonic dextrose was administered to 5 patients in acute postoperative renal failure in a program of hyperalimentation designed to decrease the patient's catabolic state and to accrue certain metabolic benefits. A sixth patient receiving intravenous glucose alone served as a control. The pretreatment plasma concentrations of amino acids in all 6 patients did not differ significantly from normal; following intravenous essential amino acids at a dose of approximately 12.6 gm/24 hours, no significant elevations out of the normal range of these substances occurred. Since urinary excretion rates did not dramatically increase, urinary loss was excluded as a possible cause for the failure of increase of plasma concentrations. The results suggest that the administration of an intravenous solution of 1-amino acids and hypertonic dextrose is associated with rapid clearance from the blood of these substances and, with a failure of increased urinary excretion, indirect evidence of amino acid utilization for protein synthesis has been obtained. Histidine supplementation in patients with acute renal failure is probably unnecessary based on the lack of significant decreases in histidine concentrations in these patients. PMID:4850497

  14. Alteration in plasma free amino acid levels and its association with gout.

    Science.gov (United States)

    Mahbub, M H; Yamaguchi, Natsu; Takahashi, Hidekazu; Hase, Ryosuke; Amano, Hiroki; Kobayashi-Miura, Mikiko; Kanda, Hideyuki; Fujita, Yasuyuki; Yamamoto, Hiroshi; Yamamoto, Mai; Kikuchi, Shinya; Ikeda, Atsuko; Kageyama, Naoko; Nakamura, Mina; Ishimaru, Yasutaka; Sunagawa, Hiroshi; Tanabe, Tsuyoshi

    2017-03-16

    Studies on the association of plasma-free amino acids with gout are very limited and produced conflicting results. Therefore, we sought to explore and characterize the plasma-free amino acid (PFAA) profile in patients with gout and evaluate its association with the latter. Data from a total of 819 subjects (including 34 patients with gout) undergoing an annual health examination program in Shimane, Japan were considered for this study. Venous blood samples were collected from the subjects and concentrations of 19 plasma amino acids were determined by high-performance liquid chromatography-electrospray ionization-mass spectrometry. Student's t-test was applied for comparison of variables between patient and control groups. The relationships between the presence or absence of gout and individual amino acids were investigated by logistic regression analysis controlling for the effects of potential demographic confounders. Among 19 amino acids, the levels of 10 amino acids (alanine, glycine, isoleucine, leucine, methionine, phenylalanine, proline, serine, tryptophan, valine) differed significantly (P gout. The observed significant changes in PFAA profiles may have important implications for improving our understanding of pathophysiology, diagnosis and prevention of gout. The findings of this study need further confirmation in future large-scale studies involving a larger number of patients with gout.

  15. Chemical composition and ruminal degradation kinetics of crude protein and amino acids, and intestinal digestibility of amino acids from tropical forages

    Directory of Open Access Journals (Sweden)

    Lidia Ferreira Miranda

    2012-03-01

    Full Text Available The objective of this research was to determine the chemical composition and ruminal degradation of the crude protein (CP, total and individual amino acids of leaves from tropical forages: perennial soybean (Neonotonia wightii, cassava (Manihot esculenta, leucaena (Leucaena leucocephala and ramie (Boehmeria nivea, and to estimate the intestinal digestibility of the rumen undegradable protein (RUDP and individual amino acids of leaves from the tropical forages above cited, but including pigeon pea (Cajanus cajan. Three nonlactating Holstein cows were used to determine the in situ ruminal degradability of protein and amino acids from leaves (6, 18 and 48 hours of ruminal incubation. For determination of the intestinal digestibility of RUDP, the residue from ruminal incubation of the materials was used for 18 hours. A larger concentration of total amino acids for ramie and smaller for perennial soybean were observed; however, they were very similar in leucaena and cassava. Leucine was the essential amino acid of greater concentration, with the exception of cassava, which exhibited a leucine concentration 40.45% smaller. Ramie showed 14.35 and 22.31% more lysine and methionine, respectively. The intestinal digestibility of RUDP varied from 23.56; 47.87; 23.48; 25.69 and 10.86% for leucaena, perennial soybean, cassava, ramie and pigeon pea, respectively. The individual amino acids of tropical forage disappeared in different extensions in the rumen. For the correct evaluation of those forages, one should consider their composition of amino acids, degradations and intestinal digestibility, once the amino acid composition of the forage does not reflect the amino acid profiles that arrived in the small intestine. Differences between the degradation curves of CP and amino acids indicate that degradation of amino acids cannot be estimated through the degradation curve of CP, and that amino acids are not degraded in a similar degradation profile.

  16. Turkey-hen amino acid composition of brain and eyes

    International Nuclear Information System (INIS)

    Adeyeye, E.I.

    2015-01-01

    The amino acids composition of the brain and eyes of the mature Turkey-hen (Meleagris gallopavo L.), were determined on dry weight basis. Total essential amino acids ranged from 35.1-36.0 g/100 g as 49.5-49.8% of the total amino acids. The amino acid score showed that lysine ranged from 0.76-0.91 (on whole hen.s egg comparison), 0.85-1.03 (on provisional essential amino acid scoring pattern), and 0.81-0.98 (on suggested requirement of the essential amino acid of a preschool child). The predicted protein efficiency ratio was 1.94-2.41, whilst essential amino acid index range was 1.06-1.08 and the calculated isoelectric point range was 3.97-4.18. The correlation coefficient (rxy) was positively high and significant at r = 0.01 for the total amino acids, amino acid scores (on the whole hen.s egg comparisons made) and the isoelectric point. On the whole, the eyes were better in 12/18 or 66.7% parameters of the amino acids than the brain of Turkey-Hen. (author)

  17. Methods for preparation of deuterated amino acids

    International Nuclear Information System (INIS)

    Pshenichnikova, A.B.; Karnaukhova, E.N.; Zvonkova, E.N.

    1995-01-01

    The current state and prospects for the use of amino acids labeled with stable isotopes are considered. Methods for the preparation of deuterated amino acids, including synthetic, chemicoenzymatic, and biosynthetic ones, and deuterium exchange reactions are summarized. Problems in the preparation of optically pure amino acids are discussed. 120 refs., 15 figs

  18. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions

    International Nuclear Information System (INIS)

    Aronu, Ugochukwu E.; Hartono, Ardi; Svendsen, Hallvard F.

    2012-01-01

    Highlights: ► Density of amino acid salt and amine amino acid salt. ► Viscosity of amino acid salt and amine amino acid salt. ► Henry’s law constant/N 2 O solubility of amino acid salt and amine amino acid salt. ► Schumpe model. Correlations for density, viscosity, and N 2 O solubility. - Abstract: Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N 2 O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N 2 O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.

  19. Amino acid chirality breaking by N-phosphorylation

    International Nuclear Information System (INIS)

    Zhao Yufen; Yan Qingjin.

    1995-01-01

    The chirality breaking of amino acid is a focus issue in the origin of life. For chemists, there are some interesting chemical approaches to solve the symmetry breaking problem. Our previous experiments indicated that when amino acids were phosphorylated, there were many bio-mimic reactions happened. In this paper, it was found that there had significant difference between the N-phosphoryl L- and D- amino acids such as serine and threonine. The optical rotation tracing experiments of the racemic N-phosphoamino acids also showed the similar results. The chirality breaking of amino acids by N-phosphorylation was a novel phenomena. (author). 3 refs, 1 fig. Abstract only

  20. Amino Acids from a Comet

    Science.gov (United States)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  1. Effects of alkali or acid treatment on the isomerization of amino acids.

    Science.gov (United States)

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue. Copyright © 2012. Published by Elsevier B.V.

  2. Unnatural reactive amino acid genetic code additions

    Energy Technology Data Exchange (ETDEWEB)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, Christopher J.; Schultz, Peter G.

    2017-10-25

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  3. Preferential Treatment: Interaction Between Amino Acids and Minerals

    Science.gov (United States)

    Crapster-Pregont, E. J.; Cleaves, H. J.; Hazen, R. M.

    2008-12-01

    Amino acids are the building blocks of proteins and are important for some models of the origin of life. Polymerization of amino acids from dilute solution is unlikely without a scaffold or catalyst. The surfaces of early Earth minerals are the most likely candidates for this role. The surface adsorption behavior of 12 amino acids (L-alanine, L-serine, L-aspartic acid, L-proline, L- phenylalanine, L-valine, L-arginine, d-amino valeric acid, glycine, L-lysine, L-isoleucine, and B-alanine) on 21 minerals (quartz, calcite, enstatite, illite, olivine, pyrrhotite, pyrite, alkali basalt, albite, analcime, chlorite, barite, hydroxyl apatite, hematite, magnetite, aluminum hydroxide, kaolin, silica gel, corundum, rutile, and montmorillonite) was determined via batch adsorption experiments. Absorption was determined for concentrations between 10-4M and 10-6M in the presence of 0.1M NaCl, and between pH values of 3 and 9 at 25 degrees C. The equilibrated solutions were centrifuged, filtered, derivatized using a fluorescent amino group tag (dansyl-chloride) and analyzed by HPLC. Adsorption was standardized using BET surface area measurements for each mineral to give the number of mols of each amino acid adsorbed per square meter for each mineral. The results indicate an enormous difference in the adsorption of amino acids between minerals, along with major differences in the adsorption of individual amino acids on the same mineral surface. There is also a change in the absorbance of amino acids as the pH changes. Many previous studies of amino acid concentration and catalysis by minerals have used clay minerals because of their high surface areas, however, this data suggests that the surfaces of minerals such as calcite, quartz and pyrite have even higher affinities for amino acids. The results suggest mineral surfaces that could be optimal locations for the polymerization of molecules linked to the origin of life.

  4. Recommended ingestion of indispensable amino acids to young men . A study using stable isotopes, plasmatic amino acids and nitrogen balance

    International Nuclear Information System (INIS)

    Marchini, J.S.

    1992-01-01

    It has been previously stated that the minimum physiological recommendations for the indispensable amino acids in health adults, as proposed by FAO/WHO/UNU in 1985, are far too low, except for the methionine. An amino acid stable isotopic kinetic study was conducted to seek further experimental support to this hypothesis. Twenty healthy young men received an l-amino acid based diet, supplying 140 mg N.kg -1 .d -1 , patterned on egg protein for 1 week, then for 3 weeks either i) a pattern based on current international recommendations (FAO diet, n=7), ii) a the tentative Laboratory of Human Nutrition of the Massachusetts Institute of Technology, new amino acid recommendation pattern (MIT diet, n=7) or iii) again the egg hen pattern (EGG diet, n=6). All subjects were again studied for one final, consecutive week of the egg diet. At the end of the initial week, at the first and third week with the three experimental diets,and after three days following the return of the egg diet, an 8 h primed continuous intravenous infusion with l- 13 C-leucine was conducted (3 h, fast, 5 h fed - while subjects received hourly meals supplying the equivalent of 5/12 total daily intake). Estimation of leucine balance were carried out with measurements plasma free amino acids changes. Daily nitrogen balances were obtained through the study. Interpretation of plasma amino acids profile, and changes of leucine kinetics balances, indicated that the FAO diet was not able to maintain amino acids homeostasis whereas the MIT and the egg diets sustained body amino acids equilibrium with a positive amino acid balance. nitrogen balances tended to be more negative with the FAO diet but failed to show statistically significant differences among the three diets. The finding point out that it would be prudent to use the new, tentative recommended amino acid pattern (MIT diet 0 as the minimum physiological amino acid needs of healthy human adults (author)

  5. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids

    Science.gov (United States)

    Sridev Mohapatra; Rakesh Minocha; Stephanie Long; Subhash C. Minocha

    2010-01-01

    The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis...

  6. Experimental Evolution of a Green Fluorescent Protein Composed of 19 Unique Amino Acids without Tryptophan

    Science.gov (United States)

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words)

  7. Side Chain Cyclized Aromatic Amino Acids

    DEFF Research Database (Denmark)

    Van der Poorten, Olivier; Knuhtsen, Astrid; Sejer Pedersen, Daniel

    2016-01-01

    Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute...... the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected...... to the peptide backbone to provide control of χ(1)- and χ(2)-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors....

  8. Amino acids in the cultivation of mammalian cells.

    Science.gov (United States)

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  9. Distribution, industrial applications, and enzymatic synthesis of D-amino acids.

    Science.gov (United States)

    Gao, Xiuzhen; Ma, Qinyuan; Zhu, Hailiang

    2015-04-01

    D-Amino acids exist widely in microbes, plants, animals, and food and can be applied in pharmaceutical, food, and cosmetics. Because of their widespread applications in industry, D-amino acids have recently received more and more attention. Enzymes including D-hydantoinase, N-acyl-D-amino acid amidohydrolase, D-amino acid amidase, D-aminopeptidase, D-peptidase, L-amino acid oxidase, D-amino acid aminotransferase, and D-amino acid dehydrogenase can be used for D-amino acids synthesis by kinetic resolution or asymmetric amination. In this review, the distribution, industrial applications, and enzymatic synthesis methods are summarized. And, among all the current enzymatic methods, D-amino acid dehydrogenase method not only produces D-amino acid by a one-step reaction but also takes environment and atom economics into consideration; therefore, it is deserved to be paid more attention.

  10. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors

    Science.gov (United States)

    Sun, Aixia; Liu, Xiang; Tang, Ganghua

    2017-12-01

    Tumor cells have an increased nutritional demand for amino acids(AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] amino acids, labeling alpha-C- amino acids, the branched-chain of amino acids and N-substituted carbon-11 labeled amino acids. These tracers target protein synthesis or amino acid(AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non–small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.

  11. Postprandial fate of amino acids: adaptation to molecular forms

    NARCIS (Netherlands)

    Nolles, J.A.

    2006-01-01

    During the postprandial phase dietary proteins are digested to peptides and amino acids and absorbed. Once absorbed the peptides are further hydrolyzed to amino acids and transported to the tissues. These amino acids are largely incorporated into body proteins. Not all amino acids are, however,

  12. Studies on radiolysis of amino acids, (3)

    International Nuclear Information System (INIS)

    Oku, Tadatake

    1978-01-01

    For the purpose of investigating the radiolysis of amino acids and the safeness to radiation, the radiolytic mechanism and radio-sensitivity of sulfur-containing amino acids in aqueous solution in the presence of air or in the atmosphere of nitrogen were studied. Aqueous solutions of L-methionine, cysteine (both 1mM) and L-cystine (0.3mM) were irradiated with γ-ray of 60 Co at the dose of 4.2 - 2,640 x 10 3 rad. The amino acids and the radiolytic products were determined with an amino acid analyzer. The volatile sulfur compounds formed from γ-irradiated methionine were estimated by a flame photometric detector-gas chromatograph. From the results obtained, G values of the radiolysis of sulfur-containing amino acids and the products were calculated, and the radiolytic mechanisms of methionine, cysteine and cystine were proposed. The radio-sensitivity of sulfur-containing amino acids was shown as follows: cysteine (C3-SH) > methionine (C5, -SCH 3 ) > cystine (C 6 , -S-S-). Off-flavor development from γ-irradiated methionine when oxidizing agent was added was less than that when reducing agent was added. (Kobatake, H.)

  13. Stereoselective synthesis of stable-isotope-labeled amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States); Lodwig, S.N. [Centralia College, WA (United States)

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  14. Stereoselective synthesis of stable-isotope-labeled amino acids

    International Nuclear Information System (INIS)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-01-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the α-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids

  15. Lipidization of Simple and di-Functional Amino Acids

    International Nuclear Information System (INIS)

    Zainab Idris; Mohd Wahid Samsudin; Salmiah Ahmad

    2013-01-01

    This paper discuss the modification of azelaic acid into its applicable form by attachment of both its carboxyl sites to N-terminal of amino acid ethyl ester forming amide linkages in anhydrous medium. Acylation of glycine ethyl ester hydrochloride with azelaic acid dichloride was best conducted in a 100 % anhydrous medium. L-amino acid ethyl ester bearing a primary hydroxyl group on its side chain gave mixtures of product and variation in composition depending on the mole ratio of reactants used. Reduction in purity was also observed for L-amino acid ethyl ester with primary -SH group on its side chain as compared to L-amino acid ethyl ester having -SCH 3 group on the L-amino acid side chain. The diamidoester of azelaic acid with L-alanine ethyl ester, L-valine ethyl ester, L-leucine ethyl ester and L-glutamic acid diethyl ester were in good yield when prepared through the modified Schotten-Baumann reaction conditions. (author)

  16. Quantitative amino acid profiling and stable isotopically labeled amino acid tracer enrichment used for in vivo human systemic and tissue kinetics measurements

    DEFF Research Database (Denmark)

    Bornø, Andreas; van Hall, Gerrit

    2014-01-01

    An important area within clinical functional metabolomics is in vivo amino acid metabolism and protein turnover measurements for which accurate amino acid concentrations and stable isotopically labeled amino acid enrichments are mandatory not the least when tissue metabolomics is determined....... The present study describes a new sensitive liquid chromatography tandem mass-spectrometry method quantifying 20 amino acids and their tracer(s) ([ring-(13)C6]/D5Phenylalanine) in human plasma and skeletal muscle specimens. Before analysis amino acids were extracted and purified via deprotonization....../ion exchange, derivatized using a phenylisothiocyanate reagent and each amino acid was quantitated with its own stable isotopically labeled internal standard (uniformly labeled-(13)C/(15)N). The method was validated according to general recommendations for chromatographic analytical methods. The calibration...

  17. Amino acid regulation of autophagosome formation

    NARCIS (Netherlands)

    Meijer, Alfred J.

    2008-01-01

    Amino acids are not only substrates for various metabolic pathways, but can also serve as signaling molecules controlling signal transduction pathways. One of these signaling pathways is mTOR-dependent and is activated by amino acids (leucine in particular) in synergy with insulin. Activation of

  18. Changes in brain amino acid content induced by hyposmolar stress and energy deprivation.

    Science.gov (United States)

    Haugstad, T S; Valø, E T; Langmoen, I A

    1995-12-01

    The changes in endogenous amino acids in brain extracellular and intracellular compartments evoked by hyposmotic stress and energy deprivation were compared. Tissue content and release of ten amino acids were measured simultaneously in rat hippocampal slices by means of high performance liquid chromatography. Hyposmotic stress induced a large release of taurine (25568 pmol mg-1 protein), and a smaller release of glutamate, accompanied by an inverse change in tissue content. Adding mannitol to correct osmolarity, blocked these changes. Energy deprivation caused an increase in the release of all amino acids except glutamine. The release was particularly large for glutamate and GABA (31141 and 13282 pmol mg-1, respectively). The intracellular concentrations were generally reduced, but the total amount of the released amino acids increased In contrast to the effect seen during hyposmolar stress, mannitol enhanced the changes due to energy deprivation. The results show that hyposmolar stress and energy deprivation cause different content and release profiles, suggesting that the mechanisms involved in the two situations are either different or modulated in different ways. The intracellular amino acid depletion seen during energy deprivation shows that increased outward transport is probably a primary event, and increased amino acid formation likely secondary to this release.

  19. AMINO ACIDS APPLICATION TO CREATE OF NANOSTRUCTURES

    Directory of Open Access Journals (Sweden)

    I. S. Chekman

    2014-12-01

    Full Text Available Review is devoted to the amino acids that could be used for nanostructures creation. The investigation of corresponding properties of amino acids is essential for their role definition in creation of nanomedicines. However, amino acid studying as components of nanostructures is insufficient. Study of nanoparticles for medicines creation was initiated by the development of nanotechnology. Amino acids in complexes with the nanoparticles of organic and inorganic nature play an important role for medicines targeting in pathological process. They could reduce toxicity of the nanomaterials used in nanomedicine and are used for creation of biosensors, lab-on-chip and therefore they are a promising material for synthesis of new nanodrugs and diagnostic tools.

  20. The Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  1. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    Science.gov (United States)

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  2. Crystalline amino acids and nitrogen emission

    NARCIS (Netherlands)

    Verstegen, M.W.A.; Jongbloed, A.W.

    2003-01-01

    Reductions in dietary protein level and supplementation with certain crystalline amino acids is a well-established method of formulating diets to achieve a more ideal amino acid pattern and to reduce nitrogen excretion. Up to 35% reduction in nitrogen excretion may be achieved by supplementing pig

  3. 21 CFR 172.320 - Amino acids.

    Science.gov (United States)

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.320 Amino acids. The food additive amino acids may be safely used...

  4. Effects of squat exercise and branched-chain amino acid supplementation on plasma free amino acid concentrations in young women.

    Science.gov (United States)

    Shimomura, Yoshiharu; Kobayashi, Hisamine; Mawatari, Kazunori; Akita, Keiichi; Inaguma, Asami; Watanabe, Satoko; Bajotto, Gustavo; Sato, Juichi

    2009-06-01

    The present study was conducted to examine alterations in plasma free amino acid concentrations induced by squat exercise and branched-chain amino acid (BCAA) supplementation in young, untrained female subjects. In the morning on the exercise session day, participants ingested drinks containing either BCAA (isoleucine:leucine:valine=1:2.3:1.2) or dextrin (placebo) at 0.1 g/kg body weight 15 min before a squat exercise session, which consisted of 7 sets of 20 squats, with 3 min intervals between sets. In the placebo trial, plasma BCAA concentrations were decreased subsequent to exercise, whereas they were significantly increased in the BCAA trial until 2 h after exercise. Marked changes in other free amino acids in response to squat exercise and BCAA supplementation were observed. In particular, plasma concentrations of methionine and aromatic amino acids were temporarily decreased in the BCAA trial, being significantly lower than those in the placebo trial. These results suggest that BCAA intake before exercise affects methionine and aromatic amino acid metabolism.

  5. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids.

    Science.gov (United States)

    Kawakami, Ryushi; Ohmori, Taketo; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2015-08-01

    To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.

  6. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    Science.gov (United States)

    Huang, Tengfang; Jander, Georg

    2017-10-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  7. Impact of Branched-Chain Amino Acid Catabolism on Fatty Acid and Alkene Biosynthesis in Micrococcus luteus.

    Science.gov (United States)

    Surger, Maximilian J; Angelov, Angel; Stier, Philipp; Übelacker, Maria; Liebl, Wolfgang

    2018-01-01

    Micrococcus luteus naturally produces alkenes, unsaturated aliphatic hydrocarbons, and represents a promising host to produce hydrocarbons as constituents of biofuels and lubricants. In this work, we identify the genes for key enzymes of the branched-chain amino acid catabolism in M. luteus , whose first metabolic steps lead also to the formation of primer molecules for branched-chain fatty acid and olefin biosynthesis, and demonstrate how these genes can be used to manipulate the production of specific olefins in this organism. We constructed mutants of several gene candidates involved in the branched-chain amino acid metabolism or its regulation and investigated the resulting changes in the cellular fatty acid and olefin profiles by GC/MS. The gene cluster encoding the components of the branched-chain α-keto acid dehydrogenase (BCKD) complex was identified by deletion and promoter exchange mutagenesis. Overexpression of the BCKD gene cluster resulted in about threefold increased olefin production whereas deletion of the cluster led to a drastic reduction in branched-chain fatty acid content and a complete loss of olefin production. The specificities of the acyl-CoA dehydrogenases of the branched amino acid degradation pathways were deduced from the fatty acid and olefin profiles of the respective deletion mutant strains. In addition, growth experiments with branched amino acids as the only nitrogen source were carried out with the mutants in order to confirm our annotations. Both the deletion mutant of the BCKD complex, responsible for the further degradation of all three branched-chain amino acids, as well as the deletion mutant of the proposed isovaleryl-CoA dehydrogenase (specific for leucine degradation) were not able to grow on leucine in contrast to the parental strain. In conclusion, our experiments allow the unambigous assignment of specific functions to the genes for key enzymes of the branched-chain amino acid metabolism of M. luteus . We also show how

  8. Sulphur-containing Amino Acids: Protective Role Against Free Radicals and Heavy Metals.

    Science.gov (United States)

    Colovic, Mirjana B; Vasic, Vesna M; Djuric, Dragan M; Krstic, Danijela Z

    2018-01-30

    Sulphur is an abundant element in biological systems, which plays an important role in processes essential for life as a constituent of proteins, vitamins and other crucial biomolecules. The major source of sulphur for humans is plants being able to use inorganic sulphur in the purpose of sulphur-containing amino acids synthesis. Sulphur-containing amino acids include methionine, cysteine, homocysteine, and taurine. Methionine and cysteine are classified as proteinogenic, canonic amino acids incorporated in protein structure. Sulphur amino acids are involved in the synthesis of intracellular antioxidants such as glutathione and N-acetyl cysteine. Moreover, naturally occurring sulphur-containing ligands are effective and safe detoxifying agents, often used in order to prevent toxic metal ions effects and their accumulation in human body. Literature search for peer-reviewed articles was performed using PubMed and Scopus databases, and utilizing appropriate keywords. This review is focused on sulphur-containing amino acids - methionine, cysteine, taurine, and their derivatives - glutathione and N-acetylcysteine, and their defense effects as antioxidant agents against free radicals. Additionally, the protective effects of sulphur-containing ligands against the toxic effects of heavy and transition metal ions, and their reactivation role towards the enzyme inhibition are described. Sulphur-containing amino acids represent a powerful part of cell antioxidant system. Thus, they are essential in the maintenance of normal cellular functions and health. In addition to their worthy antioxidant action, sulphur-containing amino acids may offer a chelating site for heavy metals. Accordingly, they may be supplemented during chelating therapy, providing beneficial effects in eliminating toxic metals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Amino Acid Permeases and Virulence in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Kevin Felipe Cruz Martho

    Full Text Available Fungal opportunistic pathogens colonize various environments, from plants and wood to human and animal tissue. Regarding human pathogens, one great challenge during contrasting niche occupation is the adaptation to different conditions, such as temperature, osmolarity, salinity, pressure, oxidative stress and nutritional availability, which may constitute sources of stress that need to be tolerated and overcome. As an opportunistic pathogen, C. neoformans faces exactly these situations during the transition from the environment to the human host, encountering nutritional constraints. Our previous and current research on amino acid biosynthetic pathways indicates that amino acid permeases are regulated by the presence of the amino acids, nitrogen and temperature. Saccharomyces cerevisiae and Candida albicans have twenty-four and twenty-seven genes encoding amino acid permeases, respectively; conversely, they are scarce in number in Basidiomycetes (C. neoformans, Coprinopsis cinerea and Ustilago maydis, where nine to ten permease genes can be found depending on the species. In this study, we have demonstrated that two amino acid permeases are essential for virulence in C. neoformans. Our data showed that C. neoformans uses two global and redundant amino acid permeases, Aap4 and Aap5 to respond correctly to thermal and oxidative stress. Double deletion of these permeases causes growth arrest in C. neoformans at 37°C and in the presence of hydrogen peroxide. The inability to uptake amino acid at a higher temperature and under oxidative stress also led to virulence attenuation in vivo. Our data showed that thermosensitivity caused by the lack of permeases Aap4 and Aap5 can be remedied by alkaline conditions (higher pH and salinity. Permeases Aap4 and Aap5 are also required during fluconazole stress and they are the target of the plant secondary metabolite eugenol, a potent antifungal inhibitor that targets amino acid permeases. In summary, our work

  10. Synthesis, physicochemical and biological properties of poly-α-amino acids - the simplest of protein models

    International Nuclear Information System (INIS)

    Katchalski-Katzir, Ephraim

    1996-01-01

    During the 1950s, linear and multichain poly-α-amino acids were synthesized by polymerization of the corresponding N-carboxy-amino acid anhydrides in solution in the presence of suitable catalysts. The resulting homo- and heteropolymers have since been widely employed as simple protein models. Under appropriate conditions, poly-α-amino acids, in the solid state and in solution, were found to acquire conformations of an α-helix and β-parallel and antiparallel pleased sheets, or to exist as random coils. Their use in experimental and theoretical investigations of helix-coil transitions helped to shed new light on the mechanisms involved in protein denaturation. Poly-α-amino acids played an important role in the deciphering of the genetic code. In addition, analysis of the antigenicity of poly-α-amino acids led to the clucidation of the factors determining the antigenicity of proteins and peptides. Interest in the biological and physicochemical characteristics of poly-α-amino acids was recently renewed because of the reported novel finding that some copolymers of amino acids are effective as drugs in multiple sclerosis, and that glutamine repeats and reiteration of other amino acids occur in inherited neurodegenerative diseases. The presence of repeating sequences of amino acids in proteins, and of nucleotides in DNA, raises many interesting questions about their respective roles in determining protein structure and function, and gene performance and regulation. (author). 35 refs, 3 figs, 2 tabs

  11. Absorption of proteins and amino acids

    International Nuclear Information System (INIS)

    Jeejeebhoy, K.N.

    1976-01-01

    Although the absorption of proteins and amino acids is an important issue in nutrition, its measurement is not common because of the methodological difficulties. Complications are attributable in particular to the magnitude of endogenous protein secretion and to the diversity of absorption mechanisms for amino acids either as individual units or as peptides. Methods for studying absorption include balance techniques, tolerance tests, tracer techniques using proteins or amino acids labelled with 131 I, 3 H, or 15 N, intestinal perfusion studies, and others; they must be selected according to the nature of the information sought. Improvements over the current methods would be useful. (author)

  12. The Role of Microbial Amino Acid Metabolism in Host Metabolism

    Directory of Open Access Journals (Sweden)

    Evelien P. J. G. Neis

    2015-04-01

    Full Text Available Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus.

  13. New Functions and Potential Applications of Amino Acids.

    Science.gov (United States)

    Uneyama, Hisayuki; Kobayashi, Hisamine; Tonouchi, Naoto

    Currently, several types of amino acids are being produced and used worldwide. Nevertheless, several new functions of amino acids have been recently discovered that could result in other applications. For example, oral stimulation by glutamate triggers the cephalic phase response to prepare for food digestion. Further, the stomach and intestines have specific glutamate-recognizing systems in their epithelial mucosa. Regarding clinical applications, addition of monosodium glutamate to the medicinal diet has been shown to markedly enhance gastric secretion in a vagus-dependent manner. Branched-chain amino acids (BCAAs) are the major components of muscles, and ingestion of BCAAs has been found to be effective for decreasing muscle pain. BCAAs are expected to be a solution for the serious issue of aging. Further, ingestion of specific amino acids could be beneficial. Glycine can be ingested for good night's sleep: glycine ingestion before bedtime significantly improved subjective sleep quality. Ingestion of alanine and glutamine effectively accelerates alcohol metabolism, and ingestion of cystine and theanine effectively prevents colds. Finally, amino acids could be used in a novel clinical diagnostic method: the balance of amino acids in the blood could be an indicator of the risk of diseases such as cancer. These newly discovered functions of amino acids are expected to contribute to the resolution of various issues.

  14. Wet, Carbonaceous Asteroids: Altering Minerals, Changing Amino Acids

    Science.gov (United States)

    Taylor, G. J.

    2011-04-01

    Many carbonaceous chondrites contain alteration products from water-rock interactions at low temperature and organic compounds. A fascinating fact known for decades is the presence in some of them of an assortment of organic compounds, including amino acids, sometimes called the building blocks of life. Murchison and other CM carbonaceous chondrites contain hundreds of amino acids. Early measurements indicated that the amino acids in carbonaceous chondrites had equal proportions of L- and D-structures, a situation called racemic. This was in sharp contrast to life on Earth, which heavily favors L- forms. However, beginning in 1997, John Cronin and Sandra Pizzarello (Arizona State University) found L- excesses in isovaline and several other amino acids in the Murchison carbonaceous chondrite. In 2009, Daniel Glavin and Jason Dworkin (Astrobiology Analytical Lab, Goddard Space Flight Center) reported the first independent confirmation of L-isovaline excesses in Murchison using a different analytical technique than employed by Cronin and Pizzarello. Inspired by this work, Daniel Glavin, Michael Callahan, Jason Dworkin, and Jamie Elsila (Astrobiology Analytical Lab, Goddard Space Flight Center), have done an extensive study of the abundance and symmetry of amino acids in carbonaceous chondrites that experienced a range of alteration by water in their parent asteroids. The results show that amino acids are more abundant in the less altered meteorites, implying that aqueous processing changes the mix of amino acids. They also confirmed the enrichment in L-structures of some amino acids, especially isovaline, confirming earlier work. The authors suggest that aqueously-altered planetesimals might have seeded the early Earth with nonracemic amino acids, perhaps explaining why life from microorganisms to people use only L- forms to make proteins. The initial imbalance caused by non-biologic processes in wet asteroids might have been amplified by life on Earth. Alternatively

  15. Amino acid catabolism and generation of volatiles by lactic acid bacteria.

    Science.gov (United States)

    Tavaria, F K; Dahl, S; Carballo, F J; Malcata, F X

    2002-10-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses.

  16. Incretin effect after oral amino Acid ingestion in humans

    DEFF Research Database (Denmark)

    Lindgren, Ola; Pacini, Giovanni; Tura, Andrea

    2015-01-01

    is also present after amino acid ingestion is not known. OBJECTIVE: The objective of the study was to explore insulin secretion and incretin hormones after oral and iv amino acid administration at matched total amino acid concentrations in healthy subjects. DESIGN: An amino acid mixture (Vaminolac......) was administered orally or iv at a rate resulting in matching total amino acid concentrations to 12 male volunteers with age 22.5 ± 1.4 years and a body mass index 22.4 ± 1.4 kg/m(2), who had no history of diabetes. MAIN OUTCOME MEASURES: Main outcome measures were area under the 120-minute curve for insulin, C...... after oral than after iv amino acid challenges (P = .006), whereas there was no significant difference in the glucagon response. Intact and total GIP rose after oral but not after iv amino acid administration, whereas intact and total GLP-1 levels did not change significantly in either test. CONCLUSION...

  17. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    Science.gov (United States)

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  18. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    Science.gov (United States)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James

    2015-01-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223

  19. Extraordinarily adaptive properties of the genetically encoded amino acids.

    Science.gov (United States)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves, H James

    2015-03-24

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or "chemistry space." Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set.

  20. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    Science.gov (United States)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi

    2015-12-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.

  1. Composition of amino acid using carbon monoxide. Amide carbonylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, Kunisuke (Ajinomoto Co., Inc., Tokyo (Japan))

    1989-02-01

    Amide carbonylation reaction is a method to compose N-acyl-{alpha}-amino acid from aldehyde, carboxylic acid amide, and carbon monoxide in a phase and with high yield. Unlike the conventional Strecker reaction, this method does not use HCN which is in question on public pollution and does not require hydrolysis. This amide carbonylation reaction was discovered by Wakamatsu and others of Ajinomoto Co.,Ltd. Present application examples of this method are the composition of N-acetyl amino acid from the aldehyde class, the composition of N-Acyl amino acid from olefin, the composition of N-acyl or acetyl amino acid from the raw material of alcohol and the halide class, the composition of N-acyl or acetyl amino acid via the isomerization of epoxide and allyl alcohol, the composition of amino dicarboxylic acid, applying deoxidation of ring acid anhydride, the composition of N-acyl amino acid from the raw material of the amine class, the stereoselective composition of -substitution ring-{alpha}-amino acid, and the composition of amino aldehyde. 24 refs., 2 figs., 2 tabs.

  2. Extraterrestrial Amino Acids in Ureilites Including Almahata Sitta

    Science.gov (United States)

    Burton, A. S.; Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.

    2011-01-01

    Ureilites are a class of meteorites that lack chondrules (achondrites) but have relatively high carbon abundances, averaging approx.3 wt %. Using highly sensitive liquid chromatography coupled with UV fluorescence and time-of-flight mass spectrometry (LC-FD/ToF-MS), it was recently determined that there are amino acids in. fragment 94 of the Almahata Sitta ureilite[l]. Based on the presence of amino acids that are rare in the Earth's biosphere, as well as the near-racemic enantiomeric ratios of marry of the more common amino acids, it was concluded that most of the detected amino acids were indigenous to the meteorite. Although the composition of the Almahata Sitta ureilite appears to be unlike other recovered ureilites, the discovery of amino acids in this meteorite raises the question of whether other ureilites rnav also contain amino acids. Herein we present the results of LC-FDlTo.F-MS analyses of: a sand sample from the Almahata Sitta strewn held, Almahata Sitta fragments 425 (an ordinary H5 chondrite) and 427 (ureilite), as well as an Antarctic ureilite (Allan lulls, ALHA 77257).

  3. THE INTERCORRELATION OF THE AMINO ACID QUALITY ...

    African Journals Online (AJOL)

    a

    ABSTRACT. Levels of amino acids were determined in the grains of guinea corn, Sorghum bicolor (L.) Moench ... KEY WORDS: Amino acid quality, Raw, Steeped, Germinated, Guinea corn ..... Health Organization: Geneva; 1999; pp. 101-119.

  4. Amino acid nitrosation products as alkylating agents.

    Science.gov (United States)

    García-Santos, M del P; Calle, E; Casado, J

    2001-08-08

    Nitrosation reactions of alpha-, beta-, and gamma-amino acids whose reaction products can act as alkylating agents of DNA were investigated. To approach in vivo conditions for the two-step mechanism (nitrosation and alkylation), nitrosation reactions were carried out in aqueous acid conditions (mimicking the conditions of the stomach lumen) while the alkylating potential of the nitrosation products was investigated at neutral pH, as in the stomach lining cells into which such products can diffuse. These conclusions were drawn: (i) The alkylating species resulting from the nitrosation of amino acids with an -NH(2) group are the corresponding lactones; (ii) the sequence of alkylating power is: alpha-lactones > beta-lactones > gamma-lactones, coming respectively from the nitrosation of alpha-, beta-, and gamma-amino acids; and (iii) the results obtained may be useful in predicting the mutagenic effectiveness of the nitrosation products of amino acids.

  5. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.

    Science.gov (United States)

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald

    2014-09-01

    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. © 2014 Scandinavian Plant Physiology Society.

  6. Comparison of amino acid digestibility of feedstuffs determined with the precision-fed cecectomized rooster assay and the standardized ileal amino acid digestibility assay.

    Science.gov (United States)

    Kim, E J; Utterback, P L; Applegate, T J; Parsons, C M

    2011-11-01

    The objective of this study was to evaluate and compare amino acid digestibility of several feedstuffs using 2 commonly accepted methods: the precision-fed cecectomized rooster assay (PFR) and the standardized ileal amino acid assay (SIAAD). Six corn, 6 corn distillers dried grains with or without solubles (DDGS/DDG), one wet distillers grains, one condensed solubles, 2 meat and bone meal (MBM) and a poultry byproduct meal were evaluated. Due to insufficient amounts, the wet distillers grains and condensed solubles were only evaluated in roosters. Standardized amino acid digestibility varied among the feed ingredients and among samples of the same ingredient for both methods. For corn, there were generally no differences in amino acid digestibility between the 2 methods. When differences did occur, there was no consistent pattern among the individual amino acids and methods. Standardized amino acid digestibility was not different between the 2 methods for 4 of the DDG samples; however, the PFR yielded higher digestibility values for a high protein DDG and a conventionally processed DDGS. The PFR yielded higher amino acid digestibility values than the SIAAD for several amino acids in 1 MBM and the poultry byproduct meal, but it yielded lower digestibility values for the other MBM. Overall, there were no consistent differences between methods for amino acid digestibility values. In conclusion, the PFR and SIAAD methods are acceptable for determining amino acid digestibility. However, these procedures do not always yield similar results for all feedstuffs evaluated. Thus, further studies are needed to understand the underlying causes in this variability.

  7. Amino acid nutrition beyond methionine and lysine for milk protein

    Science.gov (United States)

    Amino acids are involved in many important physiological processes affecting the production, health, and reproduction of high-producing dairy cows. Most research and recommendations for lactating dairy cows has focused on methionine and lysine for increasing milk protein yield. This is because these...

  8. Regulation of intestinal health by branched-chain amino acids.

    Science.gov (United States)

    Zhou, Hua; Yu, Bing; Gao, Jun; Htoo, John Khun; Chen, Daiwen

    2018-01-01

    Besides its primary role in the digestion and absorption of nutrients, the intestine also interacts with a complex external milieu, and is the first defense line against noxious pathogens and antigens. Dysfunction of the intestinal barrier is associated with enhanced intestinal permeability and development of various gastrointestinal diseases. The branched-chain amino acids (BCAAs) are important nutrients, which are the essential substrates for protein biosynthesis. Recently, emerging evidence showed that BCAAs are involved in maintaining intestinal barrier function. It has been reported that dietary supplementation with BCAAs promotes intestinal development, enhances enterocyte proliferation, increases intestinal absorption of amino acids (AA) and glucose, and improves the immune defenses of piglets. The underlying mechanism of these effects is mediated by regulating expression of genes and proteins associate with various signaling pathways. In addition, BCAAs promote the production of beneficial bacteria in the intestine of mice. Compelling evidence supports the notion that BCAAs play important roles in both nutrition and intestinal health. Therefore, as functional amino acids with various physiological effects, BCAAs hold key roles in promoting intestinal development and health in animals and humans. © 2017 Japanese Society of Animal Science.

  9. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    International Nuclear Information System (INIS)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun’ichi

    2015-01-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C 60 ) and fullerene nanowhiskers (FNWs). C 60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C 60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C 60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C 60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C 60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C 60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C 60 . The theoretical simulations showed the bonding distance between C 60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C 60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C 60 . In our study Try and Tyr were hardly adsorbed by C 60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides. (paper)

  10. Determination of amino acids in grape-derived products: a review.

    Science.gov (United States)

    Callejón, R M; Troncoso, A M; Morales, M L

    2010-06-15

    The amino acids present in foods and beverages affect the quality of these products and they play an important role in enology. Amino acids are consumed by yeasts as a source of nitrogen during alcoholic fermentation and are precursors of aroma compounds. In this review various chromatographic methodologies for the determination of amino acids are described, and specific applications for the analysis of amino acid content are discussed. Amino acids usually need to be derivatized to make them more detectable. Several derivatizing reagents have been employed for the determination of amino acids in enological applications, and each has its advantages and disadvantages.

  11. Optical activity and ultraviolet absorbance detection of dansyl L-amino acids separated by gradient liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-01

    Many scientific investigations (e.g., geochronology, pharmaceuticals) have the need to determine enantiometric ratios of amino acids and other compounds. It has been reported that OA/UV or OA/RI (refractive index) are ideal methods for the determination of enantiomeric ratios without the need for chiral columns, chiral eluents, or diasteromer preparation. Unfortunately, only three amino acids are naturally UV absorbing (254 nm), and RI sensitivity for amino acids is low. Derivatization by several methods (o-phthalaldehyde, dansyl, phenylisothiocyanate, fluorescamine, 2,4-dinitrofluorobenzene, and phenylthiohydantoin) renders all amino acids UV absorbing and makes UV or fluorescence viable techniques for amino acids determinations. A previously neglected aspect of derivatization is the effect on optical activity. These highly polar groups influence the chiral center of amino acids drastically (electronic and steric effects). The shifting of the absorption band to the proximity of the wavelength used for OA measurements further enhances the importance of the substituent. The authors report here the determination of 17 dansyl amino acids in a mixture by UV absorbance and optical activity. This involves gradient elution. Previously, the optical activity detector (OAD) has been used only with isocratic HPLC.

  12. Prebiotic Amino Acid Thioester Synthesis: Thiol-Dependent Amino Acid Synthesis from Formose substrates (Formaldehyde and Glycolaldehyde) and Ammonia

    Science.gov (United States)

    Weber, Arthur L.

    1998-01-01

    Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters, the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters-intermediates capable of forming peptides. A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.

  13. Free amino acids and 5'-nucleotides in Finnish forest mushrooms.

    Science.gov (United States)

    Manninen, Hanna; Rotola-Pukkila, Minna; Aisala, Heikki; Hopia, Anu; Laaksonen, Timo

    2018-05-01

    Edible mushrooms are valued because of their umami taste and good nutritional values. Free amino acids, 5'-nucleotides and nucleosides were analyzed from four Nordic forest mushroom species (Lactarius camphoratus, Boletus edulis, Cantharellus cibarius, Craterellus tubaeformis) using high precision liquid chromatography analysis. To our knowledge, these taste components were studied for the first time from Craterellus tubaeformis and Lactarius camphoratus. The focus was on the umami amino acids and 5'-nucleotides. The free amino acid and 5'-nucleotide/nucleoside contents of studied species differed from each other. In all studied samples, umami amino acids were among five major free amino acids. The highest concentration of umami amino acids was on L. camphoratus whereas B. edulis had the highest content of sweet amino acids and C. cibarius had the highest content of bitter amino acids. The content of umami enhancing 5'-nucleotides were low in all studied species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    Science.gov (United States)

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  15. Azide- and alkyne-derivatised α-amino acids

    DEFF Research Database (Denmark)

    Johansson, Karl Henrik; Pedersen, D.S.

    2012-01-01

    With the emergence of the copper-catalysed Huisgen cycloaddition the use of azide- and alkyne-derivatised α-amino acids has found widespread use within most chemistry disciplines. Despite a growing interest in these building blocks researchers are struggling to identify the best way for their syn......With the emergence of the copper-catalysed Huisgen cycloaddition the use of azide- and alkyne-derivatised α-amino acids has found widespread use within most chemistry disciplines. Despite a growing interest in these building blocks researchers are struggling to identify the best way...... for their synthesis. In this review we have compiled available methods for synthesising optically active azide- and alkyne-derivatised α-amino acids that can be prepared from readily available α-amino acids. We highlight a number of commonly overlooked problems associated with existing methods and direct attention...... to unexplored possibilities. Azide- and alkyne-derivatised α-amino acids are finding widespread use within most chemistry disciplines. However, it is far from clear what the best way for the synthesis of these useful building blocks is. Herein we show the available methods for synthesis of optically active...

  16. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    Directory of Open Access Journals (Sweden)

    Michael D Barton

    2010-08-01

    Full Text Available Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental

  17. Anatomical and pharmacological characterization of excitatory amino acid receptors

    International Nuclear Information System (INIS)

    Monaghan, D.T.

    1985-01-01

    The majority of the excitatory neurotransmission in the vertebrate Central Nervous System is thought to be mediated by acidic amino acid neurotransmitters. However, relatively little is known about the excitatory amino acid receptors and their distribution within the CNS. By analyzing radioligand binding to purified synaptic plasma membranes and to thin tissue sections processed for autoradiography, multiple distinct binding sites were found. These binding sites exhibited the pharmacological properties indicative of the excitatory amino acid receptors, which had been identified by electrophysiological techniques. Specifically, L-[ 3 H]-glutamate and D-[ 3 H]-amino-5-phosphonopentanoate appear to label N-methyl-D-aspartate receptors, L-[ 3 H]-glutamate and [ 3 H]-kainic acid appear to label kainic acid receptors, and L-[ 3 H]-glutamate and [ 3 H]-amino-3-hydroxy-5-methyl-4-isoxazolepropionate appear to label quisqualate receptors. Together, these results confirm the three receptor scheme proposed for excitatory amino acid neurotransmission. These results also show that these transmitter-receptor systems are differentially distributed in the brain, and that the total distribution is consistent with that found by other markers for excitatory amino acid-using neurons

  18. Proximate composition, amino acid and fatty acid composition of fish maws.

    Science.gov (United States)

    Wen, Jing; Zeng, Ling; Xu, Youhou; Sun, Yulin; Chen, Ziming; Fan, Sigang

    2016-01-01

    Fish maws are commonly recommended and consumed in Asia over many centuries because it is believed to have some traditional medical properties. This study highlights and provides new information on the proximate composition, amino acid and fatty acid composition of fish maws of Cynoscion acoupa, Congresox talabonoides and Sciades proops. The results indicated that fish maws were excellent protein sources and low in fat content. The proteins in fish maws were rich in functional amino acids (FAAs) and the ratio of FAAs and total amino acids in fish maws ranged from 0.68 to 0.69. Among species, croaker C. acoupa contained the most polyunsaturated fatty acids, arachidonic acid, docosahexaenoic acid and eicosapntemacnioc acid, showing the lowest value of index of atherogenicity and index of thrombogenicity, showing the highest value of hypocholesterolemic/hypercholesterolemic ratio, which is the most desirable.

  19. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  20. Comparison of amino acids interaction with gold nanoparticle.

    Science.gov (United States)

    Ramezani, Fatemeh; Amanlou, Massoud; Rafii-Tabar, Hashem

    2014-04-01

    The study of nanomaterial/biomolecule interface is an important emerging field in bionanoscience, and additionally in many biological processes such as hard-tissue growth and cell-surface adhesion. To have a deeper understanding of the amino acids/gold nanoparticle assemblies, the adsorption of these amino acids on the gold nanoparticles (GNPs) has been investigated via molecular dynamics simulation. In these simulations, all the constituent atoms of the nanoparticles were considered to be dynamic. The geometries of amino acids, when adsorbed on the nanoparticle, were studied and their flexibilities were compared with one another. The interaction of each of 20 amino acids was considered with 3 and 8 nm gold GNPs.

  1. Amino acids grafting of Ar+ ions modified PE

    International Nuclear Information System (INIS)

    Svorcik, V.; Hnatowicz, V.; Stopka, P.; Bacakova, L.; Heitz, J.; Oechsner, R.; Ryssel, H.

    2001-01-01

    Polyethylene (PE) was irradiated with 63 keV Ar + ions to the fluences from 1x10 12 to 3x10 15 cm -2 and then grafted at room temperature from water solution with amino acids (alanine, leucine). Using various spectroscopic techniques (UV-VIS, FTIR, RBS and EPR) it was shown that the amino acids penetrate into PE where they are eventually captured either on double bonds or on free radicals created by the ion irradiation. Grafting with amino acids in the whole specimen layer modified by irradiation is observed. The ion-beam-modified and amino-acid grafted PE is supposed to exhibit increased biocompatibility. (author)

  2. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids

    OpenAIRE

    Zheng, Xiaojiao; Qiu, Yunping; Zhong, Wei; Baxter, Sarah; Su, Mingming; Li, Qiong; Xie, Guoxiang; Ore, Brandon M.; Qiao, Shanlei; Spencer, Melanie D.; Zeisel, Steven H.; Zhou, Zhanxiang; Zhao, Aihua; Jia, Wei

    2013-01-01

    Research in obesity and metabolic disorders that involve intestinal microbiota demands reliable methods for the precise measurement of the short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) concentration. Here, we report a rapid method of simultaneously determining SCFAs and BCAAs in biological samples using propyl chloroformate (PCF) derivatization followed by gas chromatography mass spectrometry (GC-MS) analysis. A one-step derivatization using 100 µL of PCF in a reactio...

  3. Amino Acid Interaction (INTAA) web server.

    Science.gov (United States)

    Galgonek, Jakub; Vymetal, Jirí; Jakubec, David; Vondrášek, Jirí

    2017-07-03

    Large biomolecules-proteins and nucleic acids-are composed of building blocks which define their identity, properties and binding capabilities. In order to shed light on the energetic side of interactions of amino acids between themselves and with deoxyribonucleotides, we present the Amino Acid Interaction web server (http://bioinfo.uochb.cas.cz/INTAA/). INTAA offers the calculation of the residue Interaction Energy Matrix for any protein structure (deposited in Protein Data Bank or submitted by the user) and a comprehensive analysis of the interfaces in protein-DNA complexes. The Interaction Energy Matrix web application aims to identify key residues within protein structures which contribute significantly to the stability of the protein. The application provides an interactive user interface enhanced by 3D structure viewer for efficient visualization of pairwise and net interaction energies of individual amino acids, side chains and backbones. The protein-DNA interaction analysis part of the web server allows the user to view the relative abundance of various configurations of amino acid-deoxyribonucleotide pairs found at the protein-DNA interface and the interaction energies corresponding to these configurations calculated using a molecular mechanical force field. The effects of the sugar-phosphate moiety and of the dielectric properties of the solvent on the interaction energies can be studied for the various configurations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1

    DEFF Research Database (Denmark)

    Larsen, Mie; Larsen, Birger Brodin; Frølund, Bente

    2008-01-01

    The objective of this study was to investigate transepithelial amino acid transport as a function of Caco-2 cell culture time. Furthermore, the objective was to investigate apical uptake characteristics of hPAT1-mediated transport under various experimental conditions. Apical amino acid uptake......, which has been shown to function as a carboxylic acid bioisostere for substrates of the GABA receptor and transport systems....

  5. Radiation-induced increase in the release of amino acids by isolated, perfused skeletal muscle

    International Nuclear Information System (INIS)

    Schwenen, M.

    1989-01-01

    Local exposure of the hindquarter of the rat to 15Gy of gamma-radiation resulted, 4-6h after irradiation, in increased release of amino acids by the isolated, perfused hindquarter preparation, 70% of which is skeletal muscle. This increase in release involves not only alanine and glutamine, but also those amino acids not metabolized by muscle and, therefore, released in proportion to their occurrence in muscle proteins. Because metabolic parameters and content of energy-rich phosphate compounds in muscle remain unchanged, it is unlikely that general cellular damage is the underlying cause of the radiation-induced increase in amino acid release. The findings strongly favour the hypothesis that increased availability of amino acids results from enhanced protein break-down in skeletal muscle which has its onset shortly after irradiation. This radiation-induced disturbance in protein metabolism might be one of the pathogenetic factors in the aetiology of radiation myopathy. (author)

  6. The scaled-charge additive force field for amino acid based ionic liquids

    DEFF Research Database (Denmark)

    Fileti, E. E.; Chaban, V. V.

    2014-01-01

    Ionic liquids (ILs) constitute an emerging research field. New ILs involve more and more organic and inorganic ions. Amino acid based ILs (AAILs) represent a specific interest due to their evolutional connection to proteins. We report a new non-polarizable force field (FF) for the eight AAILs...... comprising 1-ethyl-3-methylimidazolium cation and amino acid anions. The anions were obtained via deprotonation of carboxyl group. Specific cation-anion non-covalent interactions were taken into account by computing electrostatic potential for ion pairs. The van der Waals interactions were adopted from...

  7. Concise and Straightforward Asymmetric Synthesis of a Cyclic Natural Hydroxy-Amino Acid

    Directory of Open Access Journals (Sweden)

    Mario J. Simirgiotis

    2014-11-01

    Full Text Available An enantioselective total synthesis of the natural amino acid (2S,4R,5R-4,5-di-hydroxy-pipecolic acid starting from D-glucoheptono-1, 4-lactone is presented. The best sequence employed as a key step the intramolecular nucleophilic displacement by an amino function of a 6-O-p-toluene-sulphonyl derivative of a methyl D-arabino-hexonate and involved only 12 steps with an overall yield of 19%. The structures of the compounds synthesized were elucidated on the basis of comprehensive spectroscopic (NMR and MS and computational analysis.

  8. Differential utilization of blood meal amino acids in mosquitoes

    OpenAIRE

    Miesfeld, Roger

    2009-01-01

    Guoli Zhou, Roger MiesfeldDepartment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USAAbstract: Amino acids in the mosquito blood meal have two forms, protein-bound and plasma-free amino acids. To determine if the metabolic fate and flux of these two forms of blood meal amino acids are distinct, we fed mosquitoes eight [14C]-labeled amino acids, seven of which are essential for mosquitoes (leucine, valine, isoleucine, phenylalanine, lysine, arginine, histidine), and one th...

  9. Amino acid substitutions in inherited albumin variants from Amerindian and Japanese populations

    International Nuclear Information System (INIS)

    Takahashi, N.; Takahashi, Y.; Isobe, T.; Putnam, F.W.; Fujita, M.; Satoh, C.; Neel, J.V.

    1987-01-01

    The authors report an effort to determine the basis for the altered migration of seven inherited albumin variants detected by one-dimensional electrophoresis in population surveys involving tribal Amerindians and Japanese children. An amino acid substitution has thus far been determined for four of the variants. The randomness in the albumin polypeptide of these and the other sixteen independently ascertained amino acid substitutions of albumin and proalbumin thus far established was analyzed; the clustering of eight of these at two positions in the six-amino acid propeptide sequence seems noteworthy. By comparison with other proteins studied by electrophoresis, albumin exhibits average variability. It is a paradox that individuals who, for genetic reasons, lack albumin exhibit no obvious ill effects; yet, electrophoretic variants of albumin are no more numerous than are variants of proteins, the absence of which results in severe disease

  10. Preference for and learning of amino acids in larval Drosophila

    Directory of Open Access Journals (Sweden)

    Nana Kudow

    2017-03-01

    Full Text Available Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis − and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila. We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila.

  11. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited informationabout nutritional content. The purpose of this research was determine the composition offatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp..The composition of fatty acid was measured by gas chromatography (GC, while amino acids,total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography(HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fattyacid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggscontained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.Keywords: Amino acids, carotenoid total, fatty acid, flying fish egg, α-tocopherol

  12. Composition of amino acids, fatty acids and dietary fibre monomers ...

    African Journals Online (AJOL)

    There is increasing demand for sources of energy and non-meat protein with balanced amino acid profiles worldwide. Nuts are rich in protein and essential amino acids, and have a high energy value due to their high fat content. Kernels from two wild fruits in Mozambique, Adansonia digitata and Sclerocarya birrea, were ...

  13. Animal model of acid-reflux esophagitis: pathogenic roles of acid/pepsin, prostaglandins, and amino acids.

    Science.gov (United States)

    Takeuchi, Koji; Nagahama, Kenji

    2014-01-01

    Esophagitis was induced in rats within 3 h by ligating both the pylorus and transitional region between the forestomach and glandular portion under ether anesthesia. This esophageal injury was prevented by the administration of acid suppressants and antipepsin drug and aggravated by exogenous pepsin. Damage was also aggravated by pretreatment with indomethacin and the selective COX-1 but not COX-2 inhibitor, whereas PGE2 showed a biphasic effect depending on the dose; a protection at low doses, and an aggravation at high doses, with both being mediated by EP1 receptors. Various amino acids also affected this esophagitis in different ways; L-alanine and L-glutamine had a deleterious effect, while L-arginine and glycine were highly protective, both due to yet unidentified mechanisms. It is assumed that acid/pepsin plays a major pathogenic role in this model of esophagitis; PGs derived from COX-1 are involved in mucosal defense of the esophagus; and some amino acids are protective against esophagitis. These findings also suggest a novel therapeutic approach in the treatment of esophagitis, in addition to acid suppressant therapy. The model introduced may be useful to test the protective effects of drugs on esophagitis and investigate the mucosal defense mechanism in the esophagus.

  14. Cyanobacteria as efficient producers of mycosporine-like amino acids.

    Science.gov (United States)

    Jain, Shikha; Prajapat, Ganshyam; Abrar, Mustari; Ledwani, Lalita; Singh, Anoop; Agrawal, Akhil

    2017-09-01

    Mycosporine-like amino acids are the most common group of transparent ultraviolet radiation absorbing intracellular secondary metabolites. These molecules absorb light in the range of ultraviolet-A and -B with a maximum absorbance between 310 and 362 nm. Cyanobacteria might have faced the most deleterious ultraviolet radiation, which leads to an evolution of ultraviolet protecting mycosporine-like amino acids for efficient selection in the environment. In the last 30 years, scientists have investigated various cyanobacteria for novel mycosporine-like amino acids, applying different induction techniques. This review organizes all the cyanobacterial groups that produce various mycosporine-like amino acids. We found out that cyanobacteria belonging to orders Synechococcales, Chroococcales, Oscillatoriales, and Nostocales are frequently studied for the presence of mycosporine-like amino acids, while orders Gloeobacterales, Spirulinales, Pleurocapsales, and Chroococcidiopsidales are still need to be investigated. Nostoc and Anabaena strains are major studied genus for the mycosporine-like amino acids production. Hence, this review will give further insight to the readers about potential mycosporine-like amino acid producing cyanobacterial groups in future investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Significance of Nanoparticles and the Role of Amino Acids in Structuring Them-A Review.

    Science.gov (United States)

    Kulandaisamy, Arockia Jayalatha; Rayappan, John Bosco Balaguru

    2018-08-01

    Nanoparticles has occupied an eminent place in our tech-facilitated society. The processes involved in synthesizing nanoparticles are important not only to find their applications, but also to make them eco-friendly. Attempts are being made to replace the use of harmful surfactants/reagents by amino acids, in the due course of nanoparticle synthesis. Especially in synthesizing the multifunctional metal and metal oxide nanoparticles the use of amino acids as surfactant/as catalyst, helps to obtain required size and shape. Amino acids have the inherent property in directing and assembling the superstructures. They have the tendency to act as a capping agent and their presence during the synthesis processes alters the synthesized particles' morphology. Review has been made to study the role of amino acids like histidine, lysine, arginine in structuring ZnO, FeO, Au and Ag nanoparticles. The change in their morphology that resulted due to the addition of amino acids has been compared. It is important to understand the role of amino acids in synthesizing the nanoparticles, and so it is more important to understand the internal energy variation of the same. To achieve this, the interaction between the bio (amino acids) and non-bio (metal and metal oxide) nanoparticles are to be discussed both experimentally and theoretically. At times the theoretical characterization, especially at low dimensions, help us to understand inter-particle interaction and intra-particle interaction by determining their chemical potential and Lennard-Jones potential. This review has been concluded with a model to characterize the precursor solution (amino acids and inorganic materials) by considering the Equation of State for liquids, which could also be extended to determine the structure factor of nanoparticles.

  16. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    Science.gov (United States)

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Transport of acidic amino acids by human jejunal brush-border membrane vesicles

    International Nuclear Information System (INIS)

    Rajendran, V.M.; Harig, J.M.; Adams, M.B.; Ramaswamy, K.

    1987-01-01

    This study characterizes the transport of radiolabeled acidic amino acids into brush-border membrane vesicles prepared from human jejunum. The uptakes of L-glutamic, L-aspartic, and D-aspartic acids were stimulated by a Na + gradient. Concentrative uptake (resulting in an overshoot phenomenon) of these dicarboxylic amino acids occurred when there was an outward K + gradient. In addition, increasing K + gradients resulted in enhanced uptake of L-glutamic acid. This K + requirement is somewhat specific as Rb + and Cs + could enhance uptake to a limited extent, whereas Li + and choline + showed no enhancement. The presence of a K + gradient did not affect the affinity of the carrier system for L-glutamic acid but it did increase the V/sub max/. The presence of extravesicular anions having differing membrane permeabilities did not altar L-glutamic acid uptake indicating an absence of an effect of membrane potential on the transport process. Finally, the human transport system for L-glutamic acid appears to be specific for acidic amino acids as demonstrated by inhibition studies. The studies demonstrate a transport system in human jejunum specific for acidic amino acids that is energized by an inward Na + gradient and an outward K + gradient

  18. Toward Sustainable Amino Acid Production.

    Science.gov (United States)

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  19. Regulation of autophagy by mTOR and amino acids

    NARCIS (Netherlands)

    Ruf, Stefanie

    2016-01-01

    Amino acids are the molecular building blocks for proteins, which form the molecular framework of every cell. In addition, amino acids are also needed for the production of nucleotides and lipids to make DNA and membranes. Amino acids are essential biomolecules and without them cellular growth would

  20. [Amino acid level in pastry with low caloric value].

    Science.gov (United States)

    Barkhatov, V Iu; Vyskubova, N K; Felipas, T B; Pshemurzova, R M; Kamenetskaia, E V

    1988-01-01

    The effect of fruit paste additives on amino acid composition of farinaceous and decorative confectionery semifinished products was studied to decrease their fuel value. It was found that a partial replacement of sugar and fat for apple and quince pastes in apple biscuit and apple shortbread semiproducts led to an increase in the content of essential and sulfur-containing amino acids. Cream prepared from egg albumin and quince paste had reduced content of amino acids (except for glutamic acid) due to the diminished content of egg albumin, however, the balance of amino acid composition was improved.

  1. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  2. Covalently functionalized graphene sheets with biocompatible natural amino acids

    International Nuclear Information System (INIS)

    Mallakpour, Shadpour; Abdolmaleki, Amir; Borandeh, Sedigheh

    2014-01-01

    Graphene sheets were covalently functionalized with aromatic–aliphatic amino acids (phenylalanine and tyrosine) and aliphatic amino acids (alanine, isoleucine, leucine, methionine and valine) by simple and green procedure. For this aim, at first natural graphite was converted into graphene oxide (GO) through strong oxidation procedure; then, based on the surface-exposed epoxy and carboxylic acid groups in GO solid, its surface modification with naturally occurring amino acids, occurred easily throughout the corresponding nucleophilic substitution and condensation reactions. Amino acid functionalized graphene demonstrates stable dispersion in water and common organic solvents. Fourier transform infrared, Raman and X-ray photoelectron spectroscopies, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy were used to investigate the nanostructures and properties of prepared materials. Each amino acid has different considerable effects on the structure and morphology of the pure graphite, from increasing the layer spacing to layer scrolling, based on their structures, functional groups and chain length. In addition, therogravimetric analysis was used for demonstrating a successful grafting of amino acid molecules to the surface of graphene.

  3. Electronic-state control of amino acids on semiconductor surfaces

    International Nuclear Information System (INIS)

    Oda, Masato; Nakayama, Takashi

    2005-01-01

    Electronic structures of amino acids on the Si(1 1 1) surfaces are investigated by using ab initio Hartree-Fock calculations. It is shown that among various polar amino acids, a histidine is the only one that can be positively ionized when hole carriers are supplied in the Si substrate, by transferring the hole charge from Si substrate to an amino acid. This result indicates that the ionization of a histidine, which will activate the protein functions, can be controlled electrically by producing amino acid/Si junctions

  4. Mechanisms controlling renal hemodynamics and electrolyte excretion during amino acids

    International Nuclear Information System (INIS)

    Woods, L.L.; Mizelle, H.L.; Montani, J.P.; Hall, J.E.

    1986-01-01

    Our purpose was to investigate the mechanisms by which increased plasma amino acids elevate renal blood flow (RBF) and glomerular filtration rate (GFR). Since transport of amino acids and Na + is linked in the proximal tubule, the authors hypothesized that increased amino acids might stimulate proximal tubular Na + reabsorption (PR/sub Na/) and thus increase RBF and GFR by a macula densa feedback mechanism. A solution of four amino acids (Ala, Ser, Gly, Pro) was infused intravenously into anesthetized dogs with normal kidneys (NK) and with kidneys in which the tubuloglomerular feedback mechanism was blunted by lowering renal artery pressure (LPK) or blocked by making the kidneys nonfiltering (NFK). In NK, RBF and GFR increased by 35 +/- 4% and 30 +/- 7% after 90 min of amino acid infusion, while PR/sub Na/ (estimated from lithium clearance) and O 2 consumption increased by 31 +/- 5% and 29 +/- 5% and distal Na + delivery remained relatively constant. Autoregulation of RBF and GFR in response to step deceases in renal artery pressure was impaired during amino acids in NK. The hemodynamic responses to amino acids were abolished in LPK and NFK. Infusion of the nonmetabolized α-aminoisobutyric acid into NK produced changes in renal hemodynamics that were similar to the responses observed with the four metabolizable amino acids. These data are consistent with the hypothesis that elevation of plasma amino acids increases RBF and GFR by a mechanism that requires an intact macula densa feedback. Metabolism of the amino acids does not appear to be necessary for these changes to occur

  5. Mechanisms controlling renal hemodynamics and electrolyte excretion during amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Woods, L.L.; Mizelle, H.L.; Montani, J.P.; Hall, J.E.

    1986-08-01

    Our purpose was to investigate the mechanisms by which increased plasma amino acids elevate renal blood flow (RBF) and glomerular filtration rate (GFR). Since transport of amino acids and Na is linked in the proximal tubule, the authors hypothesized that increased amino acids might stimulate proximal tubular Na reabsorption (PR/sub Na/) and thus increase RBF and GFR by a macula densa feedback mechanism. A solution of four amino acids (Ala, Ser, Gly, Pro) was infused intravenously into anesthetized dogs with normal kidneys (NK) and with kidneys in which the tubuloglomerular feedback mechanism was blunted by lowering renal artery pressure (LPK) or blocked by making the kidneys nonfiltering (NFK). In NK, RBF and GFR increased by 35 +/- 4% and 30 +/- 7% after 90 min of amino acid infusion, while PR/sub Na/ (estimated from lithium clearance) and O2 consumption increased by 31 +/- 5% and 29 +/- 5% and distal Na delivery remained relatively constant. Autoregulation of RBF and GFR in response to step deceases in renal artery pressure was impaired during amino acids in NK. The hemodynamic responses to amino acids were abolished in LPK and NFK. Infusion of the nonmetabolized -aminoisobutyric acid into NK produced changes in renal hemodynamics that were similar to the responses observed with the four metabolizable amino acids. These data are consistent with the hypothesis that elevation of plasma amino acids increases RBF and GFR by a mechanism that requires an intact macula densa feedback. Metabolism of the amino acids does not appear to be necessary for these changes to occur.

  6. Stardust and the Molecules of Life (Why are the Amino Acids Left-Handed?)

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, R N; Kajino, T; Onaka, T

    2010-04-02

    A mechanism for creating and selecting amino acid chirality is identified, and subsequent chemical replication and galactic mixing that would populate the galaxy with the predominant species will be described. This involves: (1) the spin of the {sup 14}N in the amino acids, or in precursor molecules from which amino acids might be formed, coupling to the chirality of the molecules; (2) the neutrinos emitted from the supernova, together with magnetic field from the nascent neutron star or black hole from the supernova selectively destroying one orientation of the {sup 14}N, thereby selecting the chirality associated with the other {sup 14}N orientation; (3) amplification by chemical evolution, by which the molecules replicate on a relatively short timescale; and (4) galactic mixing on a longer timescale mixing the selected molecules throughout the galaxy.

  7. Specific lysosomal transport of small neutral amino acids

    International Nuclear Information System (INIS)

    Pisoni, R.L.; Flickinger, K.S.; Thoene, J.G.; Christensen, H.N.

    1986-01-01

    Studies of amino acid exodus from lysosomes have allowed us previously to describe transport systems specific for cystine and another for cationic amino acids in fibroblast lysosomes. They are now able to study amino acid uptake into highly purified fibroblast lysosomes obtained by separating crude granular fraction on gradients formed by centrifugation in 35% isoosmotic Percoll solutions. Analog inhibition and saturation studies indicate that L-[ 14 C]proline (50 μM) uptake by fibroblast lysosomes at 37 0 C in 50 mM citrate/tris pH 7.0 buffer containing 0.25 M sucrose is mediated by two transport systems, one largely specific for L-proline and the other for which transport is shared with small neutral amino acids such as alanine, serine and threonine. At 7 mM, L-proline inhibits L-[ 14 C]proline uptake almost completely, whereas ala, ser, val, thr, gly, N-methylalanine and sarcosine inhibit proline uptake by 50-65%. The system shared by alanine, serine and threonine is further characterized by these amino acids strongly inhibiting the uptakes of each other. Lysosomal proline transport is selective for the L-isomer of the amino acid, and is scarcely inhibited by 7 mM arg, glu, asp, leu, phe, his, met, (methylamino) isobutyrate, betaine or N,N-dimethylglycine. Cis or trans-4-hydroxy-L-proline inhibit proline uptake only slightly. In sharp contrast to the fibroblast plasma membrane in which Na + is required for most proline and alanine transport, lysosomal uptake of these amino acids occurs independently of Na +

  8. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran.

    Science.gov (United States)

    Levin, Eran; McCue, Marshall D; Davidowitz, Goggy

    2017-02-08

    The ability to allocate resources, even when limited, is essential for survival and fitness. We examine how nutrients that occur in minute amounts are allocated among reproductive, somatic, and metabolic demands. In addition to sugar, flower nectars contain two macronutrients-amino acids and fatty acids. We created artificial nectars spiked with 13 C-labelled amino acids and fatty acids and fed these to adult moths (Manduca sexta: Sphingidae) to understand how they allocate these nutrients among competing sinks (reproduction, somatic tissue, and metabolic fuel). We found that both essential and non-essential amino acids were allocated to eggs and flight muscles and were still detectable in early-instar larvae. Parental-derived essential amino acids were more conserved in the early-instars than non-essential amino acids. All amino acids were used as metabolic fuel, but the non-essential amino acids were oxidized at higher rates than essential amino acids. Surprisingly, the nectar fatty acids were not vertically transferred to offspring, but were readily used as a metabolic fuel by the moth, minimizing losses of endogenous nutrient stores. We conclude that the non-carbohydrate components of nectar may play important roles in both reproductive success and survival of these nectar-feeding animals. © 2017 The Author(s).

  9. Genetic regulation by amino acids of specific membrane protein biosynthesis in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Chiles, T.C.; Handlogten, M.E.; Kilberg, M.S.

    1986-01-01

    Rat Hepatocytes in primary culture were incubated in amino acid-free (AAF) medium or amino acid-supplemented (AAS) medium for 2-6 hr. The effect of amino acid starvation on the synthesis of specific membrane proteins was monitored by including 3 H-leucine during the incubation. A crude plasma membrane fraction was prepared and then analyzed by 2-D gel electrophoresis followed by fluorography. Amino acid deprivation caused an induction of the synthesis of 5 of the 30 proteins studied. The ratio (AAF/-AAS) of cpm incorporated into the remaining 25 proteins was 0.8 +/- 0.2, whereas the ratio for the 5 proteins that showed amino acid-dependent synthesis ranged from 1.5 to 2.5. The presence of 4 μM actinomycin in the AAF medium completely blocked the starvation-induced synthesis of the 5 proteins tested, but did not alter significantly the ratio of cpm incorporated into the other 25 proteins. Binding studies involving ConA suggested a plasma membrane location for the 5 proteins. The molecular weight values of the starvation-induced proteins are 70, 66, 66, 67, and 45kD. Surface-labelling of intact cells and preparation of antibodies against the 5 proteins will be used to establish the subcellular location and to describe the amino acid-dependent synthesis of each in more detail

  10. Effects of amino acids and metabolizable energy on egg ...

    African Journals Online (AJOL)

    Jane

    2011-08-31

    Aug 31, 2011 ... rate. All amino acids are not available in the feedstuffs for maintenance and production. Parts of amino acids are indigestible and can vary among different .... Fertility and hatch- ability are the major economical traits in broiler breeder reproductive performance. Main effects of amino acid of feedstuffs was ...

  11. Commercial laying hen diets formulated according to different recommendations of total and digestible amino acids

    Directory of Open Access Journals (Sweden)

    EM Casartelli

    2005-09-01

    Full Text Available An experiment was conducted to evaluate different commercial laying hen diets formulated based on recommendations for total and digestible amino acids. One hundred and twenty Lohmann LSL commercial laying hens aged 25 weeks were distributed in a completely randomized experimental design involving five replications of six birds in four treatments. Diet formulation on a total amino acid basis followed the recommendations of NRC (1994 and Rostagno et al. (2000, whereas formulation on digestible amino acids basis was according to Rostagno et al. (2000 and Degussa (1997 recommendations. The experimental period was divided into five periods of fourteen days. Performance parameters (egg production, feed intake, feed conversion, egg mass were evaluated for each period, and on the last two days of each period, three eggs per replication were collected to evaluate egg quality parameters (Haugh unit, egg specific gravity, egg weight, eggshell thickness and percentage. Means were compared by orthogonal contrasts. Results on feed intake, egg production, egg mass, feed conversion and egg specific gravity showed that total amino acid recommendations promoted better bird responses than digestible amino acid recommendations.

  12. Amino acid metabolism of Lemna minor L

    International Nuclear Information System (INIS)

    Rhodes, D.; Rich, P.J.; Brunk, D.G.

    1989-01-01

    A serious limitation to the use of N(O,S)-heptafluorobutyryl isobutyl amino acid derivatives in the analysis of 15 N-labeling kinetics of amino acids in plant tissues, is that the amides glutamine and asparagine undergo acid hydrolysis to glutamate and aspartate, respectively, during derivatization. This led us to consider an alternative procedure for derivatization of glutamine and asparagine with N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide in pyridine. Gas chromatography-mass spectrometry yielded fragment ions (M-57) of mass 417 and 431 for the [ 14 N]asparagine and [ 14 N]glutamine derivatives, respectively, suitable for monitoring unlabeled, single- 15 N- and double- 15 N-labeled amide species from the ion clusters at mass to charge ratio (m/z) 415 to 423 for asparagine, and m/z 429 to 437 for glutamine. From separate analyses of the specific isotope abundance of the amino-N groups of asparagine and glutamine as their N-heptafluorobutyryl isobutyl derivatives, the specific amide-[ 15 N] abundance of these amino acids was determined

  13. Abiotic racemization kinetics of amino acids in marine sediments

    DEFF Research Database (Denmark)

    Steen, Andrew; Jørgensen, Bo Barker; Lomstein, Bente Aagaard

    2013-01-01

    Enantiomeric ratios of amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic racemize abiotically. Based on a heating experiment, we report Arrhenius parameters...... between different amino acids or depths. These results can be used in conjunction with measurements of sediment age to predict the ratio of D:L amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial...

  14. Amino acids fortification of low-protein diet for broilers under tropical climate. 2. Nonessential amino acids and increasing essential amino acids

    Directory of Open Access Journals (Sweden)

    Elmutaz Atta Awad

    2014-08-01

    Full Text Available A three-week trial was carried out to evaluate the effect of nonessential amino acids (NEAA supplementation to a low-crude protein (CP diet with adequate essential amino acids (EAA level on growth performance, blood metabolites, and relative weights of abdominal fat, breast yield, and internal organs in broiler chickens raised under tropical hot and humid environment. Five isocaloric (3000 metabolisable energy/kg corn-soybean diets were administered (1 to 21 days to 5 groups of broilers (60 birds/group as follows: i 22.2% CP (positive control; PC; ii 16.2% CP+all EAA to meet or exceed the National Research Council (1994 recommendations (negative control; NC; iii NC+further EAA to equal the levels in the PC diet; iv NC+NEAA to equal the levels in the PC; v NC+EAA and NEAA to equal the amino acids levels in the PC diet. The results showed that the fortification of EAA alone, only improved feed intake (FI, whereas, addition of NEAA or EAA+NEAA significantly enhanced body weight, daily weight gain, and FI and decreased the feed conversion ratio to the same levels as in PC. Serum uric acid was significantly reduced and serum triglyceride increased in NC group. Dietary treatments had no significant effect on relative weights of heart, liver, abdominal fat, breast meat yield, serum albumin, and serum total protein. In conclusion, these results suggest that NEAA fortification may improve the growth performance of broilers fed an excessive low-CP diet under tropical hot and humid condition.

  15. Antioxidative Categorization of Twenty Amino Acids Based on Experimental Evaluation.

    Science.gov (United States)

    Xu, Naijin; Chen, Guanqun; Liu, Hui

    2017-11-27

    In view of the great importance bestowed on amino acids as antioxidants in oxidation resistance, we attempted two common redox titration methods in this report, including micro-potassium permanganate titration and iodometric titration, to measure the antioxidative capacity of 20 amino acids, which are the construction units of proteins in living organisms. Based on the relative intensities of the antioxidative capacity, we further conducted a quantitative comparison and found out that the product of experimental values obtained from the two methods was proven to be a better indicator for evaluating the relative antioxidative capacity of amino acids. The experimental results were largely in accordance with structural analysis made on amino acids. On the whole, the 20 amino acids concerned could be divided into two categories according to their antioxidative capacity. Seven amino acids, including tryptophan, methionine, histidine, lysine, cysteine, arginine and tyrosine, were greater in total antioxidative capacity compared with the other 13 amino acids.

  16. Fortifying Horticultural Crops with Essential Amino Acids: A Review.

    Science.gov (United States)

    Wang, Guoping; Xu, Mengyun; Wang, Wenyi; Galili, Gad

    2017-06-19

    To feed the world's growing population, increasing the yield of crops is not the only important factor, improving crop quality is also important, and it presents a significant challenge. Among the important crops, horticultural crops (particularly fruits and vegetables) provide numerous health compounds, such as vitamins, antioxidants, and amino acids. Essential amino acids are those that cannot be produced by the organism and, therefore, must be obtained from diet, particularly from meat, eggs, and milk, as well as a variety of plants. Extensive efforts have been devoted to increasing the levels of essential amino acids in plants. Yet, these efforts have been met with very little success due to the limited genetic resources for plant breeding and because high essential amino acid content is generally accompanied by limited plant growth. With a deep understanding of the biosynthetic pathways of essential amino acids and their interactions with the regulatory networks in plants, it should be possible to use genetic engineering to improve the essential amino acid content of horticultural plants, rendering these plants more nutritionally favorable crops. In the present report, we describe the recent advances in the enhancement of essential amino acids in horticultural plants and possible future directions towards their bio-fortification.

  17. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    Science.gov (United States)

    Elsila, Jamie E.; Aponte, Jose C.; Blackmond, Donna G.; Burton, Aaron S.; Dworkin, Jason P.; Glavin, Daniel P.

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplied by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large -enantiomeric excesses of some extraterrestrial protein amino acids (up to 60) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work.

  18. Corrosion control of vanadium in aqueous solutions by amino acids

    International Nuclear Information System (INIS)

    El-Rabiee, M.M.; Helal, N.H.; El-Hafez, Gh.M. Abd; Badawy, W.A.

    2008-01-01

    The electrochemical behavior of vanadium in amino acid free and amino acid containing aqueous solutions of different pH was studied using open-circuit potential measurements, polarization techniques and electrochemical impedance spectroscopy (EIS). The corrosion current density, i corr , the corrosion potential, E corr and the corrosion resistance, R corr , were calculated. A group of amino acids, namely, glycine, alanine, valine, histidine, glutamic and cysteine has been investigated as environmentally safe inhibitors. The effect of Cl - on the corrosion inhibition efficiency especially in acid solutions was investigated. In neutral and basic solutions, the presence of amino acids increases the corrosion resistance of the metal. The electrochemical behavior of V before and after the corrosion inhibition process has shown that some amino acids like glutamic acid and histidine have promising corrosion inhibition efficiency at low concentration (≅25 mM). The inhibition efficiency (η) was found to depend on the structure of the amino acid and the constituents of the corrosive medium. The corrosion inhibition process is based on the adsorption of the amino acid molecules on the metal surface and the adsorption process follows the Freundlich isotherm. The adsorption free energy for valine on V in acidic solutions was found to be -9.4 kJ/mol which reveals strong physical adsorption of the amino acid molecules on the vanadium surface

  19. Amino acid composition in parenteral nutrition: what is the evidence?

    Science.gov (United States)

    Yarandi, Shadi S.; Zhao, Vivian M.; Hebbar, Gautam; Ziegler, Thomas R.

    2011-01-01

    Purpose of review Complete parenteral nutrition solutions contain mixed amino acid products providing all nine essential amino acids and a varying composition of nonessential amino acids. Relatively little rigorous comparative efficacy research on altered parenteral nutrition amino acid composition has been published in recent years. Recent findings Limited data from randomized, double-blind, adequately powered clinical trials to define optimal doses of total or individual amino acids in parenteral nutrition are available. An exception is the growing number of studies on the efficacy of glutamine supplementation of parenteral nutrition or given as a single parenteral agent. Parenteral glutamine appears to confer benefit in selected patients; however, additional data to define optimal glutamine dosing and the patient subgroups who may most benefit from this amino acid are needed. Although some promising studies have been published, little data are available in the current era of nutrition support on the clinical efficacy of altered doses of arginine, branched chain amino acids, cysteine, or taurine supplementation of parenteral nutrition. Summary Despite routine use of parenteral nutrition, surprisingly little clinical efficacy data are available to guide total or specific amino acid dosing in adult and pediatric patients requiring this therapy. This warrants increased attention by the research community and funding agencies to better define optimal amino acid administration strategies in patient subgroups requiring parenteral nutrition. PMID:21076291

  20. Polymers with complexing properties. Simple poly(amino acids)

    Science.gov (United States)

    Roque, J. M.

    1978-01-01

    The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.

  1. Interactive Hangman teaches amino acid structures and abbreviations

    OpenAIRE

    Pennington, BO; Sears, D; Clegg, DO

    2014-01-01

    © 2014 by The International Union of Biochemistry and Molecular Biology, 42(6):495-500, 2014. We developed an interactive exercise to teach students how to draw the structures of the 20 standard amino acids and to identify the one-letter abbreviations by modifying the familiar game of "Hangman." Amino acid structures were used to represent single letters throughout the game. To provide additional practice in identifying structures, hints to the answers were written in "amino acid sentences" f...

  2. Hierarchical amino acid utilization and its influence on fermentation dynamics: rifamycin B fermentation using Amycolatopsis mediterranei S699, a case study

    DEFF Research Database (Denmark)

    Bapat, Prashant Madhusudhan; Das, D.; Sohoni, Sujata Vijay

    2006-01-01

    Background: Industrial fermentation typically uses complex nitrogen substrates which consist of mixture of amino acids. The uptake of amino acids is known to be mediated by several amino acid transporters with certain preferences. However, models to predict this preferential uptake are not availa......Background: Industrial fermentation typically uses complex nitrogen substrates which consist of mixture of amino acids. The uptake of amino acids is known to be mediated by several amino acid transporters with certain preferences. However, models to predict this preferential uptake...... predicted simultaneous uptake of amino acids at low cas concentrations and sequential uptake at high cas concentrations. The simulated profile of the key enzymes implies the presence of specific transporters for small groups of amino acids. Conclusion: The work demonstrates utility of the cybernetic model...... unravels formation and utilization of ammonia as well as its inhibitory role during amino acid uptake. Our results have implications for model based optimization and monitoring of other industrial fermentation processes involving complex nitrogen substrate....

  3. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited information about nutritional content. The purpose of this research was determine the composition of fatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp.. The composition of fatty acid was measured by gas chromatography (GC, while amino acids, total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography (HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fatty acid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained 17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggs contained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.

  4. Incorporation of radioactive amino acids into protein in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Seglin, P.O.

    1976-01-01

    The incorporation of radioactivity from a 14 C-labelled amino acid mixture (algal protein hydrolysate) into protein in isolated rat hepatocytes has been studied. The incorporation rate declined with increasing cell concentration, an effect which could be explained by isotope consumption, partly (and largely) by isotope dilution due to the formation of non-labelled amino acids by the cells. At a high extracellular amino acid concentration, the rate of incorporation into protein became independent of cell concentration because the isotope dilution effect was now quantitatively insignificant. The time course of protein labelling at various cell concentrations correlated better with the intracellular than with the extracellular amino acid specific activity, suggesting that amino acids for protein synthesis were taken from an intracellular pool. With increasing extracellular amino acid concentrations, both the intracellular amino acid concentration, the intracellular radioactivity and the rate of incorporation into protein increased. Protein labelling exhibited a distinct time lag at high amino acid concentrations, presumable reflecting the time-dependent expansion of the intracellular amino acid pool. The gradual increase in the rate of protein labelling could be due either to an increased intracellular specific activity, or to a real stimulation of protein synthesis by amino acids, depending on whether the total intracellular amino acid pool or just the expandable compartment is the precursor pool for protein synthesis

  5. Steric and electrostatic interactions govern nanofiltration of amino acids.

    Science.gov (United States)

    Shim, Yongki; Chellam, Shankararaman

    2007-10-01

    Crossflow nanofiltration experiments were performed to investigate the factors influencing the removal of amino acids by a commercially available polymeric thin-film composite membrane. The removals of five monoprotic (Ala, Val, Leu, Gly, and Thr), one diprotic (Asp), and one dibasic (Arg) amino acids in a range of permeate fluxes, feed pH values, and ionic strengths were analyzed using a phenomenological model of membrane transport. At any given pH and ionic strength, reflection coefficients (rejection at asymptotically infinite flux) of monoprotic amino acids increased with molar radius demonstrating the role of steric interactions on their removal. Additionally, consistent with Donnan exclusion, higher reflection coefficients were obtained when the membrane and the amino acids both carried the same nature of charge (positive or negative). In other words, both co-ion repulsion and molecular size determined amino acids removal. Importantly, the removal of effectively neutral amino acids were significantly higher than neutral sugars and alcohols of similar size demonstrating that even near their isoelectric point, zwitterionic characteristics preclude them from being considered as strictly neutral. (c) 2007 Wiley Periodicals, Inc.

  6. Amino Acids from Icy Amines: A Radiation-Chemical Approach to Extraterrestrial Synthesis

    Science.gov (United States)

    Dworkin, J. P.; Moore, M. H.

    2010-01-01

    Detections of amino acids in meteorites go back several decades, with at least 100 such compounds being reported for the Murchison meteorite alone. The presence of these extraterrestrial molecules raises questions as to their formation, abundance, thermal stability, racemization, and possible subsequent reactions. Although all of these topics have been studied in laboratories, such work often involves many variables and unknowns. This has led us to seek out model systems with which to uncover reaction products, test chemical predictions, and sited light on underlying reaction mechanisms. This presentation will describe one such study, focusing on amino-acid formation in ices.

  7. Mycosporine like amino acids in brown algae

    OpenAIRE

    Serban Radu; Stoian Gheorghe

    2013-01-01

    Biosynthesis of mycosporine and accumulation in cells serves as protection, by shielding the cells sensitive molecules Mycosporine-like aminoacids (MAAs) are derivated compounds of mycosporine that contains an amino-cyclohexenimine ring liked to an amino acid, amino alcohol or amino group. They preesent absorbtion maximum between 320 and 360 nm.

  8. Determination of amino acids in industrial effluents contaminated soil

    International Nuclear Information System (INIS)

    Mahar, M.T.; Khuhawar, M.Y.

    2014-01-01

    38 samples of soil for 19 locations partially irrigated on the effluents of sugar mill and oil andghee mill, bottom sediments of evaporation ponds of sugar and fertilizer industries were collected and analyzed for amino acids after acid digestion by gas chromatography using pre column derivatization with trifluroacetyleacetone and ethyl chloroformate. The results obtained were compared with the soil samples irrigated with fresh water. The soil samples were also analyzed for pH, total nitrogen contents and organic carbon. Nine essential (leucine (Leu), threonine (Thr), lysine (Lys), L-phenylalanine (Phe), tryptophan (Trp), histadine (His), L-valine (Val), methionine (Met) and isoleucine Ile) and ten non-essential ( alanine (Ala), cysteine (Cys), asparagine (Asn), glutamic acid (Glu), serine (Ser), glycine (Gly), proline (Pro), Glutamine (Gln), aspartic acid (Asp), tyrosine (Tyr)) amino acids were analyzed 13-15 amino acids were identified and determined quantitatively from soil samples. Amino acids Met, Asn, Gln and Trp were observed absent from all the samples. The variation in the amino acids contents in soil with the industrial effluents added and total nitrogen and organic carbon is discussed. (author)

  9. The multifaceted role of amino acids in chemical evolution

    Science.gov (United States)

    Strasdeit, Henry; Fox, Stefan; Dalai, Punam

    We present an overview of recent ideas about α-amino acids on the Hadean / early Archean Earth and Noachian Mars. Pertinent simulation experiments are discussed. Electrical dis-charges in early Earth's bulk, probably non-reducing atmosphere [1, 2] and in volcanic ash-gas clouds [3] are likely to have synthesized amino acids abiotically. In principle, this may have been followed by the synthesis of peptides. Different kinds of laboratory simulations have, however, revealed severe difficulties with the condensation process under presumed prebiotic conditions. It therefore appears that peptides on the early Earth were mainly di-, tri-and tetramers and slightly longer only in the case of glycine homopeptides. But even such short peptides may have shown primitive catalytic activity after complexation of metal ions to form proto-metalloenzymes. L-enantiomeric excesses (L-ee) of meteoritic amino acids were possibly involved in the origin of biohomochirality [4, 5]. This idea also faces some problems, mainly dilution of the amino acids on Earth and a resulting low overall L-ee. However, as yet unknown reactions might exist that are highly enantioselective even under such unfavorable conditions, perhaps by a combination of autocatalysis and inhibition (compare the Soai reaction). Primor-dial volcanic islands are prebiotically interesting locations. At their hot coasts, solid sea salt probably embedded amino acids [6]. Our laboratory experiments showed that further heating of the salt crusts, simulating the vicinity of lava streams, produced pyrroles among other prod-ucts. Pyrroles are building blocks of biomolecules such as bilins, chlorophylls and heme. Thus, an abiotic route from amino acids to the first photoreceptor and electron-transfer molecules might have existed. There is no reason to assume that the chemical evolutionary processes described above were singular events restricted to Earth and Mars. In fact, they might take place even today on terrestrial exoplanets

  10. Solid state radiolysis of non-proteinaceous amino acids in vacuum. Astrochemical implications

    International Nuclear Information System (INIS)

    Franco Cataldo; Giancarlo Angelini; Yaser Hafez; Susana Iglesias-Groth

    2013-01-01

    The analysis of the amino acids present in Murchison meteorite and in other carbonaceous chondrites has revealed the presence of 66 different amino acids. Only eight of these 66 amino acids are proteinaceous amino acids used by the present terrestrial biochemistry in protein synthesis, the other 58 amino acids are somewhat 'rare' or unusual or even 'unknown' for the current terrestrial biochemistry. For this reason in the present work a series of 'uncommon' non-proteinaceous amino acids, namely, l-2-aminobutyric acid, R(-)-2-aminobutyric acid, 2-aminoisobutyric acid (or α-aminoisobutyric acid), l-norleucine, l-norvaline, l-β-leucine, l-β-homoalanine, l-β-homoglutamic acid, S(-)-α-methylvaline and dl-3-aminoisobutyric acid were radiolyzed in vacuum at 3.2 MGy a dose equivalent to that emitted in 1.05 x 10 9 years from the radionuclide decay in the bulk of asteroids or comets. The residual amount of each amino acid under study remained after radiolysis was determined by differential scanning calorimetry in comparison to pristine samples. For optically active amino acids, the residual amount of each amino acid remained after radiolysis was also determined by optical rotatory dispersion spectroscopy and by polarimetry. With these analytical techniques it was possible to measure also the degree of radioracemization undergone by each amino acid after radiolysis. It was found that the non-proteinaceous amino acids in general do not show a higher radiation and radioracemization resistance in comparison to the common 20 proteinaceous amino acids studied previously. The unique exception is represented by ?-aminoisobutyric acid which shows an extraordinary resistance to radiolysis since 96.6 % is recovered unchanged after 3.2 MGy. Curiously α-aminoisobutyric acid is the most abundant amino acid found in carbonaceous chondrites. In Murchison meteorite α-aminoisobutyric acid represents more than 20 % of the total 66 amino acids found in this meteorite. (author)

  11. The fluctuation of free amino acids in serum during acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Szpetnar Maria

    2016-12-01

    Full Text Available Currently, little data exists regarding the involvement of free amino acids (AA in the pathogenesis of ischemic stroke (IS. Thus, our objective was to study the degree of the degree of fluctuation of free amino acids level in serum during the acute phase of IS. The study consisted of eighteen patients (female/male: 10/8; age: 73.1 ± 4.1 with acute IS that was confirmed by way of computed tomography, while twelve sex and age matched individuals were assigned as control group. During the study period, the patients did not receive any supplemental amino acids therapy that could affect the obtained results. The venous blood was obtained after >3 hours fasting at two time-points; time-point 1 – at admission to the hospital; time-point 2 – on day 5 from stroke onset. The blood for control purposes was collected only once, and the blood collection at time-point 1 was done before thrombolytic treatment (nine patients. The amino acids were identified using the Amino Acids Analyser (AAA 400 by INGOS Corp., Praha, Czech Republic. Our results revealed a statistically significant increase of glutamate, cystine and methionine on day 1 of stroke, in comparison to control, whereas, proline level was decreased on day 1 of stroke – in comparison to control serum. On comparing day 5 to the initial day of IS, elevation was observed of levels of asparagine, glycine, tyrosine, arginine, threonine, valine, leucine and phenylalanine. It can be said, then, that ischemic stroke induces both essential and nonessential amino acid fluctuations. Moreover, the decrease in proline and glutamine serum level with the simultaneous increase in the concentration of branch chain amino acids, Glu and Thr suggests a violent mobilization of the body’s proteins. Thus, a decrease of Pro and a simultaneous increase of Glu serum level could be considered as a marker of acute IS.

  12. Effect of the ratio between essential and nonessential amino acids in the diet on utilization of nitrogen and amino acids by growing pigs

    NARCIS (Netherlands)

    Lenis, N.P.; Diepen, van H.T.M.; Bikker, P.; Jongbloed, A.W.; Meulen, van der J.

    1999-01-01

    In 36 growing pigs (30 to 60 kg), N balance and amino acid (AA) composition of weight gain were measured to evaluate the interactive effect of the ratio between N from essential amino acids (EAA(N)) to nonessential amino acids (NEAA(N)) and total N level (T(N)) in the diet on N retention and

  13. Mycosporine like amino acids in brown algae

    Directory of Open Access Journals (Sweden)

    Serban Radu

    2013-12-01

    Full Text Available Biosynthesis of mycosporine and accumulation in cells serves as protection, by shielding the cells sensitive molecules Mycosporine-like aminoacids (MAAs are derivated compounds of mycosporine that contains an amino-cyclohexenimine ring liked to an amino acid, amino alcohol or amino group. They preesent absorbtion maximum between 320 and 360 nm.

  14. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis.

    Science.gov (United States)

    Raj, Dominic S C; Adeniyi, Oladipo; Dominic, Elizabeth A; Boivin, Michel A; McClelland, Sandra; Tzamaloukas, Antonios H; Morgan, Nancy; Gonzales, Lawrence; Wolfe, Robert; Ferrando, Arny

    2007-06-01

    Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown.

  15. Amino acid biogeo- and stereochemistry in coastal Chilean sediments

    DEFF Research Database (Denmark)

    Lomstein, Bente Aagaard; Jørgensen, Bo Barker; Schubert, Carsten J.

    2006-01-01

    The spatial distribution of total hydrolysable amino acids (THAA) and amino acid enantiomers (D- and L-forms) was investigated in sediments underlying two contrasting Chilean upwelling regions,: at ~23°S off Antofagasta and at ~36°S off Concepcion. The contribution of amino acids to total organic...... carbon (%TAAC: 7-14%) and total nitrogen (%TAAN: 23-38%) in surface sediments decreased with increasing water depth (from 126 to 1350 m) indicating that organic matter becomes increasingly decomposed in surface sediments at greater water depth. Changes in the ratio between the protein amino acid...... aspartate and its non-protein degradation product β-alanine confirmed this observation. Furthermore, estimates of THAA mineralization showed that sedimentary amino acid reactivity decreased with both increasing water depth as well as progressive degradation status of the organic matter that was incorporated...

  16. Protein evolution via amino acid and codon elimination

    DEFF Research Database (Denmark)

    Goltermann, Lise; Larsen, Marie Sofie Yoo; Banerjee, Rajat

    2010-01-01

    BACKGROUND: Global residue-specific amino acid mutagenesis can provide important biological insight and generate proteins with altered properties, but at the risk of protein misfolding. Further, targeted libraries are usually restricted to a handful of amino acids because there is an exponential...... correlation between the number of residues randomized and the size of the resulting ensemble. Using GFP as the model protein, we present a strategy, termed protein evolution via amino acid and codon elimination, through which simplified, native-like polypeptides encoded by a reduced genetic code were obtained...... simultaneously), while retaining varying levels of activity. Combination of these substitutions to generate a Phe-free variant of GFP abolished fluorescence. Combinatorial re-introduction of five Phe residues, based on the activities of the respective single amino acid replacements, was sufficient to restore GFP...

  17. High-level production of C-11-carboxyl-labeled amino acids

    International Nuclear Information System (INIS)

    Washburn, L.C.; Sun, T.T.; Byrd, B.L.; Hayes, R.L.; Butler, T.A.; Callahan, A.P.

    1979-01-01

    Carbon-11-labeled amino acids have significant potential as agents for positron tomographic functional imaging. We have developed a rapid, high-temperature, high-pressure modification of the Buecherer--Strecker amino acid synthesis and found it to be quite general for the production of C-11-carboxyl-labeled neutral amino acids. Production of C-11-carboxyl-labeled DL-tryptophan requires certain modifications in the procedure. Twelve different amino acids have been produced to date by this technique. Synthesis and chromatographic purification require approximately 40 min, and C-11-carboxyl-labeled amino acids have been produced in yields of up to 425 mCi. Two C-11-carboxyl-labeled amino acids are being investigated clinically for tumor scanning and two others for pancreatic imaging. Over 120 batches of the various agents have been produced for clinical use over a three-year period

  18. From Unnatural Amino Acid Incorporation to Artificial Metalloenzymes

    KAUST Repository

    Makki, Arwa

    2016-01-01

    This thesis explores a novel strategy based on the site-selective incorporation of unnatural, metal binding amino acids into a host protein. The unnatural amino acids can either serve directly as metal binding centers can

  19. Method Development for Efficient Incorporation of Unnatural Amino Acids

    KAUST Repository

    Harris, Paul D.

    2014-04-01

    The synthesis of proteins bearing unnatural amino acids has the potential to enhance and elucidate many processes in biochemistry and molecular biology. There are two primary methods for site specific unnatural amino acid incorporation, both of which use the cell’s native protein translating machinery: in vitro chemical acylation of suppressor tRNAs and the use of orthogonal amino acyl tRNA synthetases. Total chemical synthesis is theoretically possible, but current methods severely limit the maximum size of the product protein. In vivo orthogonal synthetase methods suffer from the high cost of the unnatural amino acid. In this thesis I sought to address this limitation by increasing cell density, first in shake flasks and then in a bioreactor in order to increase the yield of protein per amount of unnatural amino acid used. In a parallel project, I used the in vitro chemical acylation system to incorporate several unnatural amino acids, key among them the fluorophore BODIPYFL, with the aim of producing site specifically fluorescently labeled protein for single molecule FRET studies. I demonstrated successful incorporation of these amino acids into the trial protein GFP, although incorporation was not demonstrated in the final target, FEN1. This also served to confirm the effectiveness of a new procedure developed for chemical acylation.

  20. Method Development for Efficient Incorporation of Unnatural Amino Acids

    KAUST Repository

    Harris, Paul D.

    2014-01-01

    The synthesis of proteins bearing unnatural amino acids has the potential to enhance and elucidate many processes in biochemistry and molecular biology. There are two primary methods for site specific unnatural amino acid incorporation, both of which use the cell’s native protein translating machinery: in vitro chemical acylation of suppressor tRNAs and the use of orthogonal amino acyl tRNA synthetases. Total chemical synthesis is theoretically possible, but current methods severely limit the maximum size of the product protein. In vivo orthogonal synthetase methods suffer from the high cost of the unnatural amino acid. In this thesis I sought to address this limitation by increasing cell density, first in shake flasks and then in a bioreactor in order to increase the yield of protein per amount of unnatural amino acid used. In a parallel project, I used the in vitro chemical acylation system to incorporate several unnatural amino acids, key among them the fluorophore BODIPYFL, with the aim of producing site specifically fluorescently labeled protein for single molecule FRET studies. I demonstrated successful incorporation of these amino acids into the trial protein GFP, although incorporation was not demonstrated in the final target, FEN1. This also served to confirm the effectiveness of a new procedure developed for chemical acylation.

  1. The impacts of temperature, alcoholic degree and amino acids content on biogenic amines and their precursor amino acids content in red wine.

    Science.gov (United States)

    Lorenzo, C; Bordiga, M; Pérez-Álvarez, E P; Travaglia, F; Arlorio, M; Salinas, M R; Coïsson, J D; Garde-Cerdán, T

    2017-09-01

    The aim was to study how factors such as temperature, alcoholic degree, and amino acids supplementation are able to influence the content of tyramine, histamine, 2-phenylethylamine, tryptamine and their precursor amino acids in winemaking process. Biogenic amines and amino acids were quantified at the beginning, middle and end of alcoholic fermentation, and at the end of malolactic fermentation. In general, samples produced with amino acid supplementation did not show the highest concentrations of biogenic amines, except for histamine, which content increased with the addition of the four amino acids. The synthesis of tyramine was mainly affected by the temperature and alcoholic degree, the formation of phenylethylamine was largely influenced by alcoholic degree, and tryptamine synthesis principally depended on temperature. Interestingly, there was interaction between these three factors for the biogenic amines studied. In conclusion, winemaking conditions should be established depending on the biogenic amine which synthesis is required to be controlled. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Amino acid catabolism and generation of volatiles by lactic acid bacteria

    OpenAIRE

    Tavaria, F. K.; Dahl, S.; Carballo, F. J.; Malcata, F. X.

    2002-01-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180- d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts...

  3. Residue-specific incorporation of noncanonical amino acids for protein engineering

    NARCIS (Netherlands)

    van Eldijk, Mark B.; van Hest, Jan C.M.; Lemke, E.A.

    2018-01-01

    The incorporation of noncanonical amino acids has given protein chemists access to an expanded repertoire of amino acids. This methodology has significantly broadened the scope of protein engineering allowing introduction of amino acids with non-native functionalities, such as bioorthogonal reactive

  4. Radiolabeled amino acids : Basic aspects and clinical applications in oncology

    NARCIS (Netherlands)

    Jager, PL; Vaalburg, W; Pruim, J; de Vries, EGE; Langen, KJ; Piers, DA

    As the applications of metabolic imaging are expanding, radiolabeled amino acids may gain increased clinical interest, This review first describes the basic aspects of amino acid metabolism, then continues with basic aspects of radiolabeled amino acids, and finally describes clinical applications,

  5. the amino acid composition of selected south african feed ingredients

    African Journals Online (AJOL)

    of assessing the balance of amino acids, each is presented as a percentage of the requirements of broilers up to 3 weeks of age. ... nutritional importance of the total sulphur amino acids .... out and the primary amino acid analysis result sheet.

  6. Rhenium(V) complexes with sulfur-containing amino acids

    International Nuclear Information System (INIS)

    Gagieva, S.Ch.; Tautieva, M.A.; Tsaloev, A.T.; Galimov, Yu.B.; Gagieva, L.Ch.; Belyaeva, T.N.

    2007-01-01

    Rhenium(V) complexes with 2-amino-4-(methylthio)butanoic acid (methionine, Met) and 2-amino-3-sulfopropionic acid (cysteine, Cys) have been synthesized. Depending on the initial reagent ratio, the resulting complexes contain one or two ligand molecules. On heating the compounds with one amino acid molecule, two hydrogen halide molecules are removed at 128-132 deg C to form a molecular complex. The composition, structure, and thermal stability of the complexes have been studied by elemental analysis, conductometry, IR spectroscopy, NMR, and mass spectrometry [ru

  7. Excitatory amino acid neurotoxicity and neurodegenerative disease.

    Science.gov (United States)

    Meldrum, B; Garthwaite, J

    1990-09-01

    The progress over the last 30 years in defining the role of excitatory amino acids in normal physiological function and in the abnormal neuronal activity of epilepsy has been reviewed in earlier articles in this series. In the last five years it has become clear that excitatory amino acids also play a role in a wide range of neurodegenerative processes. The evidence is clearest where the degenerative process is acute, but is more controversial for slow degenerative processes. In this article Brian Meldrum and John Garthwaite review in vivo and in vitro studies of the cytotoxicity of amino acids and summarize the contribution of such toxicity to acute and chronic neurodegenerative disorders.

  8. Cometary Amino Acids from the STARDUST Mission

    Science.gov (United States)

    Cook, Jamie Elsila

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.

  9. Genetically encoded fluorescent coumarin amino acids

    Science.gov (United States)

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2010-10-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  10. Amino acids production focusing on fermentation technologies - A review.

    Science.gov (United States)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although the production processes of amino acids have been extensively investigated in previous studies, a comprehensive overview of the developments in bioprocess technology has not been reported yet. This review states the importance of the fermentation process for industrial amino acids production, underlining the strengths and the weaknesses of the process. Moreover, the potential of innovative approaches utilizing macro and microalgae or bacteria are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Uptake of Tyrosine Amino Acid on Nano-Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Hossam M. Nassef

    2018-01-01

    Full Text Available Graphene oxide (GO is emerging as a promising nanomaterial with potential application in the detection and analysis of amino acids, DNA, enzymes, and proteins in biological fluid samples. So, the reaction of GO with amino acids should be characterized and determined before using it in biosensing methods and devices. In this study, the reaction of tyrosine amino acid (Tyr with GO was characterized using FT-IR, UV-vis spectrophotometry, and scanning electron microscopy (SEM before its use. The optimum conditions for GO’s interaction with Tyr amino acid have been studied under variable conditions. The optimum conditions of pH, temperature, shaking time, and GO and tyrosine concentrations for the uptaking of tyrosine amino acid onto the GO’s surface from aqueous solution were determined. The SEM analysis showed that the GO supplied was in a particle size range between 5.4 and 8.1 nm. A pH of 8.4–9.4 at 25 °C and 5 min of shaking time were the optimum conditions for a maximum uptake of 1.4 μg/mL of tyrosine amino acid onto 0.2 mg/mL of GO.

  12. Catalytic amino acid production from biomass-derived intermediates

    KAUST Repository

    Deng, Weiping

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.

  13. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    Science.gov (United States)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  14. Use of flow scintillation analyzer combined with amino acid analyzer for measuring low-level radioactivity of tritium-labelled amino acids

    CERN Document Server

    Lukashina, E V; Fedoseev, V M; Ksenofontov, A L; Baratova, L A; Dobrov, E N

    2002-01-01

    Potential application of the Radiomatic 150TR Flow Scintillation Analyzer (Packard Instrument Co., USA) for measuring low radioactivity of tritium-labelled amino acids in eluate from the Amino Acid Analyzer 835 (Hitachi, Japan) was studied. Six scintillating cocktails were tested and the Hionic-Fluor and Ultima-Flo AP cocktails proved the most appropriate for flow measurement of radioactivity. Efficiency of tritium radioactivity recording under various conditions of analysis was determined. Under optimal conditions the lower detection limit for the Hionic-Fluor was 150, while for Ultima-Flo AP-100 decays/min in the peak of amino acid

  15. Distribution and Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.

    2015-01-01

    The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.

  16. Comparative radiosensitivity of amino acids during γ-radiolysis in aqueous solutions

    International Nuclear Information System (INIS)

    Duzhenkova, N.A.; Savich, A.V.

    1977-01-01

    The radiosensitivity of amino acids contained in proteins has been compared. The γ-radiolysis of aqueous solutions of amino acids has studied over a wide range of concentrations in the presence of air, the dose rate being 60 rad/sec, and the dose, 100 krad. Radiation-chemical yields of amino acid decay and ammonia accumulation are given. An increase in yields with amino acid concentration has been established. Assumptions concerning some peculiarities of the amino acid decay mechanism are made

  17. Inhibitors of amino acids biosynthesis as antifungal agents.

    Science.gov (United States)

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  18. Time-resolved fluorometry of the aromatic amino acids

    International Nuclear Information System (INIS)

    Laws, W.R.; Ross, J.B.A.; Katsoyannis, P.G.; Wyssbrod, H.R.

    1988-01-01

    The aromatic amino acids tryptophan, tyrosine, and phenylalanine are the chromophores that produce the intrinsic fluorescence of proteins. It has been a long-desired goal to be able to use the fluorescence of these amino acids to help understand protein dynamics, structure, and function. Considerable information about proteins in solution has come from steady-state, or time-averaged, fluorescence measurements, especially from the fluorescence of tryptophan. For a protein to be characterized more extensively, however, the time dependence of the intrinsic fluorescence must also be explained. Unfortunately, complex fluorescence decay kinetics have been observed not only for proteins having just a single aromatic amino acid, but also for simple analogues of these amino acids; the cause of these complex decays is not fully understood. Considerable effort must still be made to resolve the mechanisms causing the complex decays

  19. and amino acids

    Indian Academy of Sciences (India)

    Unknown

    P RABINDRA REDDY* and A MOHAN REDDY. Department of ... The mixed ligand complexes of Cu(II), Ni(II) and Co(II) with uridine and amino acids ..... Sabat M, Satyashur K A and Sundaralingam M 1983 J. Am. Chem. Soc. ... Uemura T, Shimura T, Nakamishi H, Tomahiro T, Nagawa Y and Okuno (Yohmei) H 1991. Inorg.

  20. Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT

    International Nuclear Information System (INIS)

    Held, Christoph; Reschke, Thomas; Müller, Rainer; Kunz, Werner; Sadowski, Gabriele

    2014-01-01

    Highlights: • Amino-acid solubilities and osmotic coefficients in ternary solutions containing one amino acids and one salt measured. • Weak salt influence on amino-acid solubilities except for salts containing Mg [2+] or NO 3 [−] (salting-in behavior). • Osmotic coefficients dominated by the solute with the highest molality. • Amino-acid solubilities and osmotic coefficients predicted reasonably with ePC-SAFT with deviations of 3.7% and 9.3%. • Predictions based on pure-component parameters for ions and amino acids using no ion/amino-acid fitting parameters. -- Abstract: In this work thermodynamic properties of electrolyte/amino acid/water solutions were measured and modeled. Osmotic coefficients at 298.15 K were measured by means of vapor-pressure osmometry. Amino-acid solubility at 298.15 K was determined gravimetrically. Considered aqueous systems contained one of the four amino acids: glycine, L-/DL-alanine, L-/DL-valine, and L-proline up to the respective amino-acid solubility limit and one of 13 salts composed of the ions Li + , Na + , K + , NH 4 + , Cl − , Br − , I − , NO 3 − , and SO 4 2− at salt molalities of 0.5, 1.0, and 3.0 mol · kg −1 , respectively. The data show that the salt influence is more pronounced on osmotic coefficients than on amino-acid solubility. The electrolyte Perturbed-Chain Statistical Association Theory (ePC-SAFT) was applied to model thermodynamic properties in aqueous electrolyte/amino-acid solutions. In previous works, this model had been applied to binary salt/water and binary amino acid/water systems. Without fitting any additional parameters, osmotic coefficients and amino-acid solubility in the ternary electrolyte/amino acid/water systems could be predicted with overall deviations of 3.7% and 9.3%, respectively, compared to the experimental data

  1. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    Science.gov (United States)

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  2. PLASMA PROTEIN AND HEMOGLOBIN PRODUCTION : DELETION OF INDIVIDUAL AMINO ACIDS FROM GROWTH MIXTURE OF TEN ESSENTIAL AMINO ACIDS. SIGNIFICANT CHANGES IN URINARY NITROGEN.

    Science.gov (United States)

    Robscheit-Robbins, F S; Miller, L L; Whipple, G H

    1947-02-28

    Given healthy dogs fed abundant iron and protein-free or low protein diets with sustained anemia and hypoproteinemia, we can study the capacity of these animals to produce simultaneously new hemoglobin and plasma protein. Reserve stores of blood protein-building materials are measurably depleted and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for weeks or months depending upon the intake of food proteins or amino acid mixtures. These dogs are very susceptible to infection and various poisons. Dogs tire of these diets and loss of appetite terminates many experiments. Under these conditions (double depletion) standard growth mixtures of essential amino acids are tested to show the response in blood protein output and urinary nitrogen balance. As a part of each tabulated experiment one of the essential amino acids is deleted from the complete growth mixture to compare such response with that of the whole mixture. Methionine, threonine, phenylalanine, and tryptophane when singly eliminated from the complete amino acid mixture do effect a sharp rise in urinary nitrogen. This loss of urinary nitrogen is corrected when the individual amino acid is replaced in the mixture. Histidine, lysine, and valine have a moderate influence upon urinary nitrogen balance toward nitrogen conservation. Leucine, isoleucine, and arginine have minimal or no effect upon urinary nitrogen balance when these individual amino acids are deleted from the complete growth mixture of amino acids during 3 to 4 week periods. Tryptophane and to a less extent phenylalanine and threonine when returned to the amino acid mixture are associated with a conspicuous preponderance of plasma protein output over the hemoglobin output (Table 4). Arginine, lysine, and histidine when returned to the amino acid mixture are associated with a large preponderance of hemoglobin output. Various amino acid mixtures under these conditions may give a positive

  3. Gustatory sensation of (L)- and (D)-amino acids in humans.

    Science.gov (United States)

    Kawai, Misako; Sekine-Hayakawa, Yuki; Okiyama, Atsushi; Ninomiya, Yuzo

    2012-12-01

    Amino acids are known to elicit complex taste, but most human psychophysical studies on the taste of amino acids have focused on a single basic taste, such as umami (savory) taste, sweetness, or bitterness. In this study, we addressed the potential relationship between the structure and the taste properties of amino acids by measuring the human gustatory intensity and quality in response to aqueous solutions of proteogenic amino acids in comparison to D-enantiomers. Trained subjects tasted aqueous solution of each amino acid and evaluated the intensities of total taste and each basic taste using a category-ratio scale. Each basic taste of amino acids showed the dependency on its hydrophobicity, size, charge, functional groups on the side chain, and chirality of the alpha carbon. In addition, the overall taste of amino acid was found to be the combination of basic tastes according to the partial structure. For example, hydrophilic non-charged middle-sized amino acids elicited sweetness, and L-enantiomeric hydrophilic middle-sized structure was necessary for umami taste. For example, L-serine had mainly sweet and minor umami taste, and D-serine was sweet. We further applied Stevens' psychophysical function to relate the total-taste intensity and the concentration, and found that the slope values depended on the major quality of taste (e.g., bitter large, sour small).

  4. Rewiring protein synthesis: From natural to synthetic amino acids.

    Science.gov (United States)

    Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang

    2017-11-01

    The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Fang He

    2018-01-01

    Full Text Available Intestine is always exposed to external environment and intestinal microorganism; thus it is more sensitive to dysfunction and dysbiosis, leading to intestinal inflammation, such as inflammatory bowel disease (IBD, irritable bowel syndrome (IBS, and diarrhea. An increasing number of studies indicate that dietary amino acids play significant roles in preventing and treating intestinal inflammation. The review aims to summarize the functions and signaling mechanisms of amino acids in intestinal inflammation. Amino acids, including essential amino acids (EAAs, conditionally essential amino acids (CEAAs, and nonessential amino acids (NEAAs, improve the functions of intestinal barrier and expressions of anti-inflammatory cytokines and tight junction proteins but decrease oxidative stress and the apoptosis of enterocytes as well as the expressions of proinflammatory cytokines in the intestinal inflammation. The functions of amino acids are associated with various signaling pathways, including mechanistic target of rapamycin (mTOR, inducible nitric oxide synthase (iNOS, calcium-sensing receptor (CaSR, nuclear factor-kappa-B (NF-κB, mitogen-activated protein kinase (MAPK, nuclear erythroid-related factor 2 (Nrf2, general controlled nonrepressed kinase 2 (GCN2, and angiotensin-converting enzyme 2 (ACE2.

  6. Quantum mechanical effects in zwitterionic amino acids: The case of proline, hydroxyproline, and alanine in water

    Science.gov (United States)

    Ulman, Kanchan; Busch, Sebastian; Hassanali, Ali A.

    2018-06-01

    In this work, we use ab initio molecular dynamics simulations to elucidate the electronic properties of three hydrated zwitterionic amino acids, namely proline, hydroxyproline, and alanine, the former two forming an important constituent of collagen. In all three systems, we find a substantial amount of charge transfer between the amino acids and surrounding solvent, which, rather surprisingly, also involves the reorganization of electron density near the hydrophobic non-polar groups. Water around proline appears to be slightly more polarized, as reflected by the enhanced water dipole moment in its hydration shell. This observation is also complemented by an examination of the IR spectra of the three systems where there is a subtle red and blue shift in the O-H stretch and bend regions, respectively, for proline. We show that polarizability of these amino acids as revealed by a dipole moment analysis involves a significant enhancement from the solvent and that this also involves non-polar groups. Our results suggest that quantum mechanical effects are likely to be important in understanding the coupling between biomolecules and water in general and in hydrophobic interactions.

  7. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    Science.gov (United States)

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  8. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids

    Directory of Open Access Journals (Sweden)

    Hongbin Lin

    2018-05-01

    Full Text Available Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC. Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln, glutamic acid (Glu, aspartic acid (Asp and asparagines (Asn were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  9. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    Science.gov (United States)

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  10. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    International Nuclear Information System (INIS)

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-01-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of 125 I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain

  11. Geochemistry of amino acids in shells of the clam Saxidomus

    Science.gov (United States)

    Kvenvolden, K.A.; Blunt, D.J.; McMenamin, M.A.; Straham, S.E.

    1980-01-01

    Concentrations of amino acids and their corresponding d l enantiomeric ratios have been measured in shells of the bivalve mollusk Saxidomus from eleven localities, ranging in age from modern to probably more than 500,000 yr, along the Pacific coast of North America. Natural logarithms of amino acid concentrations correlate well with d l ratios, and the relationship provides a possible guide to the selection of fossils for use in amino acid dating. The relative order of the extents of racemization of amino acids at any given time appears to change with increasing sample age. Application of the amino acid dating method to shells from Whidbey Island, Washington, yields an age of about 80,000 yr, in contrast to the previously determined radiocarbon age of 36,000 yr which was measured on some shell carbonate and considered a minimum age. The amino acid age is compatible with the geologic record in the area. ?? 1980.

  12. Amino acid analysis in biological fluids by GC-MS

    OpenAIRE

    Kaspar, Hannelore

    2009-01-01

    Amino acids are intermediates in cellular metabolism and their quantitative analysis plays an important role in disease diagnostics. A gas chromatography-mass spectrometry (GC-MS) based method was developed for the quantitative analysis of free amino acids as their propyl chloroformate derivatives in biological fluids. Derivatization with propyl chloroformate could be carried out directly in the biological samples without prior protein precipitation or solid-phase extraction of the amino acid...

  13. tRNAs: cellular barcodes for amino acids

    DEFF Research Database (Denmark)

    Banerjee, Rajat; Chen, Shawn; Dare, Kiley

    2010-01-01

    The role of tRNA in translating the genetic code has received considerable attention over the last 50 years, and we now know in great detail how particular amino acids are specifically selected and brought to the ribosome in response to the corresponding mRNA codon. Over the same period, it has...... also become increasingly clear that the ribosome is not the only destination to which tRNAs deliver amino acids, with processes ranging from lipid modification to antibiotic biosynthesis all using aminoacyl-tRNAs as substrates. Here we review examples of alternative functions for tRNA beyond...... translation, which together suggest that the role of tRNA is to deliver amino acids for a variety of processes that includes, but is not limited to, protein synthesis....

  14. Preferential hydrophobic interactions are responsible for a preference of D-amino acids in the aminoacylation of 5'-AMP with hydrophobic amino acids

    Science.gov (United States)

    Lacey, J. C. Jr; Wickramasinghe, N. S.; Sabatini, R. S.

    1992-01-01

    We have studied the chemistry of aminoacyl AMP to model reactions at the 3' terminus of aminoacyl tRNA for the purpose of understanding the origin of protein synthesis. The present studies relate to the D, L preference in the esterification of 5'-AMP. All N-acetyl amino acids we studied showed faster reaction of the D-isomer, with a generally decreasing preference for D-isomer as the hydrophobicity of the amino acid decreased. The beta-branched amino acids, Ile and Val, showed an extreme preference for D-isomer. Ac-Leu, the gamma-branched amino acid, showed a slightly low D/L ratio relative to its hydrophobicity. The molecular basis for these preferences for D-isomer is understandable in the light of our previous studies and seems to be due to preferential hydrophobic interaction of the D-isomer with adenine. The preference for hydrophobic D-amino acids can be decreased by addition of an organic solvent to the reaction medium. Conversely, peptidylation with Ac-PhePhe shows a preference for the LL isomer over the DD isomer.

  15. Perturbations in amino acids and metabolic pathways in osteoarthritis patients determined by targeted metabolomics analysis.

    Science.gov (United States)

    Chen, Rui; Han, Su; Liu, Xuefeng; Wang, Kunpeng; Zhou, Yong; Yang, Chundong; Zhang, Xi

    2018-05-15

    Osteoarthritis (OA) is a degenerative synovial joint disease affecting people worldwide. However, the exact pathogenesis of OA remains unclear. Metabolomics analysis was performed to obtain insight into possible pathogenic mechanisms and diagnostic biomarkers of OA. Ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-TQ-MS), followed by multivariate statistical analysis, was used to determine the serum amino acid profiles of 32 OA patients and 35 healthy controls. Variable importance for project values and Student's t-test were used to determine the metabolic abnormalities in OA. Another 30 OA patients were used as independent samples to validate the alterations in amino acids. MetaboAnalyst was used to identify the key amino acid pathways and construct metabolic networks describing their relationships. A total of 25 amino acids and four biogenic amines were detected by UPLC-TQ-MS. Differences in amino acid profiles were found between the healthy controls and OA patients. Alanine, γ-aminobutyric acid and 4-hydroxy-l-proline were important biomarkers distinguishing OA patients from healthy controls. The metabolic pathways with the most significant effects were involved in metabolism of alanine, aspartate, glutamate, arginine and proline. The results of this study improve understanding of the amino acid metabolic abnormalities and pathogenic mechanisms of OA at the molecular level. The metabolic perturbations may be important for the diagnosis and prevention of OA. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Urinary Amino Acid Analysis: A Comparison of iTRAQ®-LC-MS/MS, GC-MS, and Amino Acid Analyzer

    OpenAIRE

    Kaspar, Hannelore; Dettmer, Katja; Chan, Queenie; Daniels, Scott; Nimkar, Subodh; Daviglus, Martha L.; Stamler, Jeremiah; Elliott, Paul; Oefner, Peter J.

    2009-01-01

    Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC-MS) and liquid chromatog...

  17. Investigation and kinetic evaluation of the reactions of hydroxymethylfurfural with amino and thiol groups of amino acids.

    Science.gov (United States)

    Hamzalıoğlu, Aytül; Gökmen, Vural

    2018-02-01

    In this study, reactions of hydroxymethylfurfural (HMF) with selected amino acids (arginine, cysteine and lysine) were investigated in HMF-amino acid (high moisture) and Coffee-amino acid (low moisture) model systems at 5, 25 and 50°C. The results revealed that HMF reacted efficiently and effectively with amino acids in both high and low moisture model systems. High-resolution mass spectrometry (HRMS) analyses of the reaction mixtures confirmed the formations of Michael adduct and Schiff base of HMF with amino acids. Calculated pseudo-first order reaction rate constants were in the following order; k Cysteine >k Arginine >k Lysine for high moisture model systems. Comparing to these rate constants, the k Cysteine decreased whereas, k Arginine and k Lysine increased under the low moisture conditions of Coffee-amino acid model systems. The temperature dependence of the rate constants was found to obey the Arrhenius law in a temperature range of 5-50°C under both low and high moisture conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Site-specific labeling of proteins with NMR-active unnatural amino acids

    International Nuclear Information System (INIS)

    Jones, David H.; Cellitti, Susan E.; Hao Xueshi; Zhang Qiong; Jahnz, Michael; Summerer, Daniel; Schultz, Peter G.; Uno, Tetsuo; Geierstanger, Bernhard H.

    2010-01-01

    A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling of proteins for NMR studies. In this perspective, we discuss these opportunities including new photocaged unnatural amino acids, outline usage of metal chelating and spin-labeled unnatural amino acids and expand the approach to in-cell NMR experiments.

  19. Reassessment of the role of TSC, mTORC1 and microRNAs in amino acids-meditated translational control of TOP mRNAs.

    Directory of Open Access Journals (Sweden)

    Ilona Patursky-Polischuk

    Full Text Available TOP mRNAs encode components of the translational apparatus, and repression of their translation comprises one mechanism, by which cells encountering amino acid deprivation downregulate the biosynthesis of the protein synthesis machinery. This mode of regulation involves TSC as knockout of TSC1 or TSC2 rescued TOP mRNAs translation in amino acid-starved cells. The involvement of mTOR in translational control of TOP mRNAs is demonstrated by the ability of constitutively active mTOR to relieve the translational repression of TOP mRNA upon amino acid deprivation. Consistently, knockdown of this kinase as well as its inhibition by pharmacological means blocked amino acid-induced translational activation of these mRNAs. The signaling of amino acids to TOP mRNAs involves RagB, as overexpression of active RagB derepressed the translation of these mRNAs in amino acid-starved cells. Nonetheless, knockdown of raptor or rictor failed to suppress translational activation of TOP mRNAs by amino acids, suggesting that mTORC1 or mTORC2 plays a minor, if any, role in this mode of regulation. Finally, miR10a has previously been suggested to positively regulate the translation of TOP mRNAs. However, we show here that titration of this microRNA failed to downregulate the basal translation efficiency of TOP mRNAs. Moreover, Drosha knockdown or Dicer knockout, which carries out the first and second processing steps in microRNAs biosynthesis, respectively, failed to block the translational activation of TOP mRNAs by amino acid or serum stimulation. Evidently, these results are questioning the positive role of microRNAs in this mode of regulation.

  20. Amino acid metabolism in plant leaf, 1

    International Nuclear Information System (INIS)

    Ito, Osamu; Kumazawa, Kikuo

    1977-01-01

    14C-labelled sodium bicarbonate and 15N-labelled ammonium sulfate were simultaneously vacuum-infiltrated into detached sunflower leaves, and the incorporation of 14C and 15N into free amino acids was chased during 60-min period in the light and in the dark. In the light, the 14C specific activity of aspartic acid, alanine, serine and glycine rapidly increased for 5 min and thereafter decreased. On the other hand, that of glutamic acid continued to increase slowly during the entire 60-min period. In the dark, aspartic acid most actively incorporated 14C. The difference of changes in 14C specific activity between glutamic acid and other amino acids was also observed in the dark as in the light. These results suggest that the carbon skeleton of glutamic acid is synthesized from aspartic acid, alanine, serine and glycine. 15N content of glutamine was the highest of all amino acids investigated in the light, and it was followed by glutamic acid, alanine, aspartic acid, serine and glycine, in this order. In the dark, 15N content of glutamic acid fell remarkably and was lower than that of alanine up to 5 min. From these 15N tracer experiments, it is suggested that the incorporation of ammonium into glutamic acid is strictly dependent on light and that alanine incorporates ammonium by the direct animation besides the transamination from glutamic acid. (auth.)

  1. Kinetic fractionation of stable nitrogen isotopes during amino acid transamination

    International Nuclear Information System (INIS)

    Macko, S.A.; Fogel Estep, M.L.; Engel, M.H.; Hare, P.E.

    1986-01-01

    This study evaluates a kinetic isotope effect involving 15 N, during the transamination reactions catalyzed by glutamic oxalacetic transaminase. During the transfer of amino nitrogen from glutamic acid to oxaloacetate to form aspartic acid, 14 NH 2 reacted 1.0083 times faster than 15 NH 2 . In the reverse reaction transferring NH 2 from aspartic acid to α-ketoglutarate, 14 NH 2 was incorporated 1.0017 times faster than 15 NH 2 . Knowledge of the magnitude and sign of these isotope effects will be useful in the interpretation of the distribution of 15 N in biological and geochemical systems. (author)

  2. Protein Design Using Unnatural Amino Acids

    Science.gov (United States)

    Bilgiçer, Basar; Kumar, Krishna

    2003-11-01

    With the increasing availability of whole organism genome sequences, understanding protein structure and function is of capital importance. Recent developments in the methodology of incorporation of unnatural amino acids into proteins allow the exploration of proteins at a very detailed level. Furthermore, de novo design of novel protein structures and function is feasible with unprecedented sophistication. Using examples from the literature, this article describes the available methods for unnatural amino acid incorporation and highlights some recent applications including the design of hyperstable protein folds.

  3. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Padrah, Shahrokh; Strømgaard, Kristian

    2014-01-01

    An effective and improved procedure is developed for the synthesis of α-hydroxy carboxylic acids by treatment of the corresponding protonated α-amino acid with tert-butyl nitrite in 1,4-dioxane-water. The amino moiety must be protonated and located α to a carboxylic acid function in order...

  4. The influx of amino acids into the heart of the rat

    International Nuclear Information System (INIS)

    Banos, G.; Moorhouse, S.R.; Pratt, O.E.; Wilson, P.A.; Daniel, P.M.

    1978-01-01

    The influx of nineteen amino acids into the heart of the living rat was studied by a method specially devised for experiments under controlled conditions in vivo. When, in separate experiments, the concentration of each amino acid in turn was artificially raised in the circulation, the influx of that amino acid into the heart increased. The data indicate that at least ten of these amino acids enter the heart in vivo by means of saturable carrier-mediated transport systems. The transport rates conform, at least approximately, to Michaelis kinetics and the transport systems are clearly, in the case of many amino acids, active, i.e. energy-dependent. The amino acids which were studied had rates of influx into the heart which differed from each other over a range of more than 10 to 1, even when allowances were made for the differences in their concentration in the circulating blood. These differences in influx were not related to such factors as the molecular size of the individual amino acids. The amino acids which have a high influx into the heart are mainly those which are needed either to re-synthesize contractile protein or as oxidizable substrates. (author)

  5. Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases.

    Science.gov (United States)

    Ghaddar, Kassem; Merhi, Ahmad; Saliba, Elie; Krammer, Eva-Maria; Prévost, Martine; André, Bruno

    2014-12-01

    Many plasma membrane transporters are downregulated by ubiquitylation, endocytosis, and delivery to the lysosome in response to various stimuli. We report here that two amino acid transporters of Saccharomyces cerevisiae, the general amino acid permease (Gap1) and the arginine-specific permease (Can1), undergo ubiquitin-dependent downregulation in response to their substrates and that this downregulation is not due to intracellular accumulation of the transported amino acids but to transport catalysis itself. Following an approach based on permease structural modeling, mutagenesis, and kinetic parameter analysis, we obtained evidence that substrate-induced endocytosis requires transition of the permease to a conformational state preceding substrate release into the cell. Furthermore, this transient conformation must be stable enough, and thus sufficiently populated, for the permease to undergo efficient downregulation. Additional observations, including the constitutive downregulation of two active Gap1 mutants altered in cytosolic regions, support the model that the substrate-induced conformational transition inducing endocytosis involves remodeling of cytosolic regions of the permeases, thereby promoting their recognition by arrestin-like adaptors of the Rsp5 ubiquitin ligase. Similar mechanisms might control many other plasma membrane transporters according to the external concentrations of their substrates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Effect of a keto acid-amino acid supplement on the metabolism and renal elimination of branched-chain amino acids in patients with chronic renal insufficiency on a low protein diet.

    Science.gov (United States)

    Teplan, V; Schück, O; Horácková, M; Skibová, J; Holecek, M

    2000-10-27

    The aim of our study was to evaluate the effect of a low-protein diet supplemented with keto acids-amino acids on renal function and urinary excretion of branched-chain amino acids (BCAA) in patients with chronic renal insufficiency (CRI). In a prospective investigation 28 patients with CRI (16 male, 12 female, aged 28-66 yrs, CCr 18.6 +/- 10.2 ml/min) on a low-protein diet (0.6 g of protein /kg BW/day and energy intake 140 kJ/kg BW/day) for a period of one month were included. Subsequently, this low protein diet was supplemented with keto acids-amino acids at a dose of 0.1 g/kg BW/day orally for a period of 3 months. Examinations performed at baseline and at the end of the follow-up period revealed significant increase in the serum levels of BCAA leucine (p Keto acid-amino acid administration had no effect on renal function and on the clearance of inulin, para-aminohippuric acid. Endogenous creatinine and urea clearance remained unaltered. A significant correlation between fractional excretion of sodium and leucine (p diet the supplementation of keto acids-amino acids does not affect renal hemodynamics, but is associated--despite increases in plasma concentrations--with a reduction of renal amino acid and protein excretion suggesting induction of alterations in the tubular transport mechanisms.

  7. Role of amino acids and vitamins in nutrition of mesophilic Methanococcus spp

    International Nuclear Information System (INIS)

    Whitman, W.B.; Sohn, S.; Kuk, S.; Xing, R.

    1987-01-01

    In this study the authors found that autotrophic methanococci similar to Methanococcus maripaludis obtained up to 57% of their cellular carbon from exogeneous amino acids. About 85% of the incorporation was into protein. Primarily nonpolar and basic amino acids and glycine were incorporated; only small amounts of acidic and some polar amino acids were taken up. An additional 10% of the incorporation was into the nucleic acid fraction. Because little 14 CO 2 was formed from the 14 C-amino acids, little metabolism of the amino acids occurred. Therefore, the growth stimulation by amino acids was probably due to the sparing of anabolic energy requirements. Of the amino acids incorporated, only alanine was also a sole nitrogen source for these methanococci. In contrast, Methanococcus vannielii and Methanococcus aeolicus are autotrophic methanococci which did not incorporate amino acids and did not utilize alanine as a sole nitrogen source. Although glutamine served as a sole nitrogen source for the autotrophic methanococci and Methanococcus voltae, a heterotrophic methanococcus, growth was due to chemical deamination in the medium. M. voltae requires leucine and isoleucine for growth. However, these amino acids were not significant nitrogen sources, and alanine was not a sole nitrogen source for the growth of M. voltae. The branched-chain amino acids were not extensively metabolized by M. voltae. Pantoyl lactone and pantoic acid were readily incorporated by M. voltae. The intact vitamin pantothenate was neither stimulatory to growth nor incorporated. In conclusion, although amino acids and vitamins are nutritionally important to both autotrophic and heterotrophic methanococci, generally they are not subject to extensive catabolism

  8. Nitrogen and amino acid metabolism in dairy cows

    NARCIS (Netherlands)

    Tamminga, S.

    1981-01-01

    For the process of milk production, the dairy cow requires nutrients of which energy supplying nutrients and protein or amino acid supplying nutrients are the most important. Amino acid supplying nutrients have to be absorbed from the small intestine and the research reported in this thesis mainly

  9. Free amino acids in fibromyalgia syndrome: relationship with clinical picture.

    Science.gov (United States)

    Ruggiero, Valeria; Mura, Massimiliano; Cacace, Enrico; Era, Benedetta; Peri, Marcella; Sanna, Giuseppina; Fais, Antonella

    2017-04-01

    The objectives of our study were to evaluate free amino acid (FAA) concentrations in the serum of patients affected by fibromyalgia syndrome (FMS) and to determine the relationships between FAA levels and FMS clinical parameters. Thus, serum amino acid concentrations were quantified (HPLC analysis) in 23 females with fibromyalgia (according to the American College of Rheumatology classification criteria) and 20 healthy females. The results showed significantly higher serum concentrations of aspartate, cysteine, glutamate, glycine, isoleucine, leucine, methionine, ornithine, phenylalanine, sarcosine, serine, taurine, tyrosine and valine in FMS patients vs. healthy controls. Patients with higher Fibromyalgia Impact Questionnaire (FIQ) scores showed increased levels of alanine, glutamine, isoleucine, leucine, phenylalanine, proline and valine. In conclusion, our results indicate an imbalance in some FAAs in FMS patients. Increased Glu is particularly interesting, as it could explain the deficit in monoaminergic transmission involved in pain.

  10. Synthesis and conformational analysis of hybrid α/β-dipeptides incorporating S-glycosyl-β(2,2)-amino acids.

    Science.gov (United States)

    García-González, Iván; Mata, Lara; Corzana, Francisco; Jiménez-Osés, Gonzalo; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M

    2015-01-12

    We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α-amino acid attached to a quaternary glyco-β-amino acid. In particular, we combined a S-glycosylated β(2,2)-amino acid and two different types of α-amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β-dipeptides. The key step in the synthesis involved the ring-opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur-containing nucleophile by using 1-thio-β-D-glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time-averaged restraints (MD-tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β-amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α-amino acids due to the presence of CH-π interactions between the phenyl or indole ring and the methyl groups of the β-amino acid unit. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Bhushan, Ravi; Dixit, Shuchi

    2012-04-01

    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  12. Amino acid code of protein secondary structure.

    Science.gov (United States)

    Shestopalov, B V

    2003-01-01

    The calculation of protein three-dimensional structure from the amino acid sequence is a fundamental problem to be solved. This paper presents principles of the code theory of protein secondary structure, and their consequence--the amino acid code of protein secondary structure. The doublet code model of protein secondary structure, developed earlier by the author (Shestopalov, 1990), is part of this theory. The theory basis are: 1) the name secondary structure is assigned to the conformation, stabilized only by the nearest (intraresidual) and middle-range (at a distance no more than that between residues i and i + 5) interactions; 2) the secondary structure consists of regular (alpha-helical and beta-structural) and irregular (coil) segments; 3) the alpha-helices, beta-strands and coil segments are encoded, respectively, by residue pairs (i, i + 4), (i, i + 2), (i, i = 1), according to the numbers of residues per period, 3.6, 2, 1; 4) all such pairs in the amino acid sequence are codons for elementary structural elements, or structurons; 5) the codons are divided into 21 types depending on their strength, i.e. their encoding capability; 6) overlappings of structurons of one and the same structure generate the longer segments of this structure; 7) overlapping of structurons of different structures is forbidden, and therefore selection of codons is required, the codon selection is hierarchic; 8) the code theory of protein secondary structure generates six variants of the amino acid code of protein secondary structure. There are two possible kinds of model construction based on the theory: the physical one using physical properties of amino acid residues, and the statistical one using results of statistical analysis of a great body of structural data. Some evident consequences of the theory are: a) the theory can be used for calculating the secondary structure from the amino acid sequence as a partial solution of the problem of calculation of protein three

  13. Effects of divalent amino acids on iron absorption

    International Nuclear Information System (INIS)

    Christensen, J.M.; Ghannam, M.; Ayres, J.W.

    1984-01-01

    Solutions of each of 10 amino acids or ascorbic acid were mixed with iron and orally administered to rats. Iron was absorbed to a statistically significantly greater extent when mixed with asparagine, glycine, serine, or ascorbic acid as compared with a control solution of iron. The largest effects were for asparagine and glycine, which also increased iron absorption to a significantly greater extent than did serine or ascorbic acid. No statistically significant increase in iron absorption occurred when any of the other amino acids was mixed with iron. The extent of iron absorption from each test solution, as measured by area under the concentration of iron-59 in the blood-time curve (r2 . 0.0002), and the initial rate of iron absorption for each test solution (r2 . 0.01) showed no correlation with the stability constant of the amino acid-iron complex

  14. Soil amino acid composition across a boreal forest successional sequence

    Science.gov (United States)

    Nancy R. Werdin-Pfisterer; Knut Kielland; Richard D. Boone

    2009-01-01

    Soil amino acids are important sources of organic nitrogen for plant nutrition, yet few studies have examined which amino acids are most prevalent in the soil. In this study, we examined the composition, concentration, and seasonal patterns of soil amino acids across a primary successional sequence encompassing a natural gradient of plant productivity and soil...

  15. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed

  16. AFAL: a web service for profiling amino acids surrounding ligands in proteins

    Science.gov (United States)

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S.; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.

  17. Far Infrared spectroscopy of proteinogenic and other less common amino acids

    Science.gov (United States)

    Iglesias-Groth, S.; Cataldo, F.

    2018-05-01

    Far infrared spectroscopy is a powerful tool complementing the potential of mid infrared spectroscopy for the search and identification of organic molecules in space. The far infrared spectra of a total of 29 amino acids are reported in this study. In addition to the spectra of 20 common proteinogenic amino acids, spectra of a selection of 9 non-proteinogenic amino acids are also reported, including the 2-aminoisobutyric acid or α-aminoisobutyric acid which, with glycine, it is one of the most abundant amino acids found in meteorites. The present database of 29 far infrared spectra may serve as reference in the search for amino acids in space environments, given the new apportunities that JWST offers for mid and far IR spectroscopy.

  18. Behavior of 15N-labelled amino acids in germinated corn

    International Nuclear Information System (INIS)

    Samukawa, Kisaburo; Yamaguchi, Masuro

    1979-01-01

    By investigating the rise and fall of 15 N-labelled amino acids in germinated corns, the behavior of amino radicals in free amino acids, the influence of the hydrolysis products of stored proteins on free amino acids and the change from heterotrophy to autotrophy of seeds were clarified. The amount of amino acid production depending on external nitrogen was very small in the early period of germination. 15 N incorporation into proline was not observed in the early period of germination, which suggested that the proline may be nitrogen-storing source. Most of the amino-state nitrogen of asparagine accumulated at the time of germination was internal nitrogen, and this fact suggested that aspartic acid serve as the acceptor of ammonia produced in the early stage of germination. 15 N content increased significantly on 9 th day after germination, and decreased on 12 th day. These facts prove that there are always active decomposition and production of protein in plant body. (Kobatake, H.)

  19. The Role of Microbial Amino Acid Metabolism in Host Metabolism

    OpenAIRE

    Evelien P. J. G. Neis; Cornelis H. C. Dejong; Sander S. Rensen

    2015-01-01

    Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous protei...

  20. Assays of D-Amino Acid Oxidase Activity

    Directory of Open Access Journals (Sweden)

    Elena Rosini

    2018-01-01

    Full Text Available D-amino acid oxidase (DAAO is a well-known flavoenzyme that catalyzes the oxidative FAD-dependent deamination of D-amino acids. As a result of the absolute stereoselectivity and broad substrate specificity, microbial DAAOs have been employed as industrial biocatalysts in the production of semi-synthetic cephalosporins and enantiomerically pure amino acids. Moreover, in mammals, DAAO is present in specific brain areas and degrades D-serine, an endogenous coagonist of the N-methyl-D-aspartate receptors (NMDARs. Dysregulation of D-serine metabolism due to an altered DAAO functionality is related to pathological NMDARs dysfunctions such as in amyotrophic lateral sclerosis and schizophrenia. In this protocol paper, we describe a variety of direct assays based on the determination of molecular oxygen consumption, reduction of alternative electron acceptors, or α-keto acid production, of coupled assays to detect the hydrogen peroxide or the ammonium production, and an indirect assay of the α-keto acid production based on a chemical derivatization. These analytical assays allow the determination of DAAO activity both on recombinant enzyme preparations, in cells, and in tissue samples.

  1. Essential amino acid metabolism in infected/non-infected, poor, Guatemalan children

    International Nuclear Information System (INIS)

    Mazariegos, M.; De Vettorazzi, C.; Solomons, N.W.; Caballero, B.

    1994-01-01

    Traditional methods used to evaluate protein metabolism left unanswered some of the relevant questions in public health in developing countries, such as growth retardation in children. Particularly, in developing countries, infection (clinical and subclinical) and malnutrition are still relevant problems, and the most important scientific issues for the application of stable isotope tracer methods are related to the impact of infection, such as the oxidative disposal of essential amino acids in well-nourished and malnourished children. The objectives of the present proposal are: (1) To simplify, make less expensive, less time-consuming, and less invasive, methods in clinical research on amino acid metabolism using stable-isotope tracers in children; and (2) To assess the effects of infection (clinical or subclinical) on whole-body protein turnover in children with and without malnutrition. The objectives involve the engineering and assessment of a portable instrument to be used in evaluations of protein oxidation in the developing world. Methodological issues such as intra- and inter-subject variability, which are of great importance for the interpretation of amino acid metabolism and protein turnover, will also be considered. 18 refs, 2 figs

  2. Essential amino acid metabolism in infected/non-infected, poor, Guatemalan children

    Energy Technology Data Exchange (ETDEWEB)

    Mazariegos, M; De Vettorazzi, C; Solomons, N W [Hospital de Ojos y Oidos ` ` Dr. Rodolfo Robles V.` ` , Guatemala City (Guatemala). Centre for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM); Caballero, B [Johns Hopkins Univ., Baltimore, MD (United States). Centre for Human Nutrition

    1994-12-31

    Traditional methods used to evaluate protein metabolism left unanswered some of the relevant questions in public health in developing countries, such as growth retardation in children. Particularly, in developing countries, infection (clinical and subclinical) and malnutrition are still relevant problems, and the most important scientific issues for the application of stable isotope tracer methods are related to the impact of infection, such as the oxidative disposal of essential amino acids in well-nourished and malnourished children. The objectives of the present proposal are: (1) To simplify, make less expensive, less time-consuming, and less invasive, methods in clinical research on amino acid metabolism using stable-isotope tracers in children; and (2) To assess the effects of infection (clinical or subclinical) on whole-body protein turnover in children with and without malnutrition. The objectives involve the engineering and assessment of a portable instrument to be used in evaluations of protein oxidation in the developing world. Methodological issues such as intra- and inter-subject variability, which are of great importance for the interpretation of amino acid metabolism and protein turnover, will also be considered. 18 refs, 2 figs.

  3. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  4. N-13 labeled amino acids: biodistribution, metabolism and dosimetric considerations

    International Nuclear Information System (INIS)

    Rosenspire, K.C.; Gelbard, A.S.

    1986-01-01

    With the growing interest in metabolic imaging and with the increasing number of cyclotron/PET facilities, more studies are being performed in animal and humans using short-lived positron-emitting radionuclides. Amino acids labeled either with N-13 or C-11 are one group of compounds being used to study in vivo regional organ (i.e., brain and heart) or tumor metabolism. Of the studies previously reported using C-11 or N-13 labeled amino acids (methionine, alanine, valine, glutamate, glutamine and tryptophan), imaging was restricted mainly to the organ or tissue of interest with little information obtained about the whole-bode distribution of the label. Such data are important for studying interorgan transport of amino acids and for determining accurate dosimetric measurements after intravenous injection of labeled amino acids. The goals of the authors study were to compare the distribution of several N-13 L-amino acids and N-13 ammonia in tumor-bearing mice and to determine the metabolic fate of the label in vivo. The following amino acids were enzymatically labeled using N-13 ammonia: glutamine, glutamate, methionine, α-aminobutyric acid, valine and leucine. 30 references, 2 figures, 14 tables

  5. The Amino Acid Composition of the Sutter's Mill Carbonaceous Chondrite

    Science.gov (United States)

    Glavin, D. P.; Burton, A. S.; Elsila, J. E.; Dworkin, J. P.; Yin, Q. Z.; Cooper, G.; Jenniskens, P.

    2012-01-01

    In contrast to the Murchison meteorite which had a complex distribution of amino acids with a total C2 to Cs amino acid abundance of approx.14,000 parts-per-billion (ppb) [2], the Sutters Mill meteorite was found to be highly depleted in amino acids. Much lower abundances (approx.30 to 180 ppb) of glycine, beta-alanine, L-alanine and L-serine were detected in SM2 above procedural blank levels indicating that this meteorite sample experienced only minimal terrestrial amino acid contamination after its fall to Earth. Carbon isotope measurements will be necessary to establish the origin of glycine and beta-alanine in SM2. Other non-protein amino acids that are rare on Earth, yet commonly found in other CM meteorites such as aaminoisobutyric acid (alpha-AIB) and isovaline, were not identified in SM2. However, traces of beta-AIB (approx.1 ppb) were detected in SM2 and could be" extraterrestrial in origin. The low abundances of amino acids in the Sutter's Mill meteorite is consistent with mineralogical evidence that at least some parts of the Sutter's Mill meteorite parent body experienced extensive aqueous and/or thermal alteration.

  6. Production of hydrophobic amino acids from biobased resources

    NARCIS (Netherlands)

    Widyarani, W.; Sari, Yessie W.; Ratnaningsih, Enny; Sanders, Johan P.M.; Bruins, Marieke E.

    2016-01-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent

  7. Laser-based optical activity detection of amino acids and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Reitsma, B.H.

    1987-08-01

    The optical activity detector (OAD) for HPLC is a selective detector for optically active substances including amino acids and proteins. Four free amino acids were resolved using cation-exchange chromatography followed by detection with refractive index detector (RI) for proline and threonine and the OAD to an ultraviolet absorbance detector (uv) for tyrosine and phenylalanine. Amino acid detection by refractive index is not sensitive and uv absorbance detects only three amino acids. Derivatization of amino acids to make them detectable by uv absorbance enhances the applicability of OA/uv for the determination of enantiomeric ratios. The separation of 16 dansyl-L-amino acids by RP-HPLC with detection by OA/uv is illustrated. Calculation of the specific rotation of 22 dansyl-L-amino acids shows that derivatization enhances the OA detectability of some amino acids but degrades that of others. RP-HPLC of proteins is a rapidly developing technique. Several researchers have reported the detection of multiple peaks when a pure protein is subjected to HPLC under certain conditions. These multiple peaks have been determined to be different conformations of the same protein. Since proteins are optically active, OA is a suitable detector. The RP-HPLC separation of conformers of soybean trypsin inhibitor is illustrated. Detection by OA/uv provides insights from the chromatogram unavailable from uv absorbance detection alone. In addition, identification of impurities is simplified with OA/uv. Specific rotations of the separated protein fractions show no significant change accompanying change in conformation. 163 refs., 13 figs., 9 tabs.

  8. Interleukin-6 markedly decreases skeletal muscle protein turnover and increases nonmuscle amino acid utilization in healthy individuals

    DEFF Research Database (Denmark)

    van Hall, Gerrit; Steensberg, Adam; Fischer, Christian

    2008-01-01

    CONTEXT: IL-6 is a key modulator of immune function and suggested to be involved in skeletal muscle wasting as seen in sepsis. OBJECTIVE: Our objective was to determine the role of IL-6 in human in vivo systemic and skeletal muscle amino acid metabolism and protein turnover. SUBJECTS AND METHODS...... synthesis was more suppressed than breakdown, causing a small increase in net muscle protein breakdown. Furthermore, rhIL-6 decreased arterial amino acid concentration with 20-40%, despite the increase net release from muscle. CONCLUSIONS: We demonstrated that IL-6 profoundly alters amino acid turnover....... A substantial decrease in plasma amino acids was observed with a concomitant 50% decrease in muscle protein turnover, however, modest increase in net muscle degradation. We hypothesize that the profound reduction in muscle protein turnover and modest increase in net degradation are primarily caused...

  9. Foliar nitrogen application in Cabernet Sauvignon vines: Effects on wine flavonoid and amino acid content.

    Science.gov (United States)

    Gutiérrez-Gamboa, Gastón; Garde-Cerdán, Teresa; Portu, Javier; Moreno-Simunovic, Yerko; Martínez-Gil, Ana M

    2017-06-01

    Wine quality greatly depends on its chemical composition. Among the most important wine chemical compounds, flavonoids are the major contributors to wine organoleptic properties while amino acids have a huge impact on fermentation development and wine volatile profile. Likewise, nitrogen applications are known to have an impact on wine composition. Therefore, the aim of this work was to study the effects of foliar nitrogen applications on wine flavonoid and amino acid composition. The experiment involved five foliar nitrogen applications at veraison time: urea (Ur), urea plus sulphur (Ur+S), arginine (Arg), and two commercial fertilizers Nutrimyr Thiols (NT) and Basfoliar Algae (BA). The results showed that nitrogen foliar treatments decreased wine flavonoid content although the effect varied according to each treatment. This could be related to a low vine nitrogen requirement, since must yeast assimilable nitrogen (YAN) was above acceptable threshold values for all samples. With regard to wine amino acid content, all treatments except for Ur increased its values after the applications. Finally, foliar nitrogen treatments greatly influenced wine composition. Among them, urea seemed to exert the most negative effect on both phenolics and amino acids. In addition, an inverse relationship between wine amino acid content and flavonol concentration was exhibited. Copyright © 2017. Published by Elsevier Ltd.

  10. Rational identification of aggregation hotspots based on secondary structure and amino acid hydrophobicity.

    Science.gov (United States)

    Matsui, Daisuke; Nakano, Shogo; Dadashipour, Mohammad; Asano, Yasuhisa

    2017-08-25

    Insolubility of proteins expressed in the Escherichia coli expression system hinders the progress of both basic and applied research. Insoluble proteins contain residues that decrease their solubility (aggregation hotspots). Mutating these hotspots to optimal amino acids is expected to improve protein solubility. To date, however, the identification of these hotspots has proven difficult. In this study, using a combination of approaches involving directed evolution and primary sequence analysis, we found two rules to help inductively identify hotspots: the α-helix rule, which focuses on the hydrophobicity of amino acids in the α-helix structure, and the hydropathy contradiction rule, which focuses on the difference in hydrophobicity relative to the corresponding amino acid in the consensus protein. By properly applying these two rules, we succeeded in improving the probability that expressed proteins would be soluble. Our methods should facilitate research on various insoluble proteins that were previously difficult to study due to their low solubility.

  11. Emergence of a code in the polymerization of amino acids along RNA templates.

    Directory of Open Access Journals (Sweden)

    Jean Lehmann

    2009-06-01

    Full Text Available The origin of the genetic code in the context of an RNA world is a major problem in the field of biophysical chemistry. In this paper, we describe how the polymerization of amino acids along RNA templates can be affected by the properties of both molecules. Considering a system without enzymes, in which the tRNAs (the translation adaptors are not loaded selectively with amino acids, we show that an elementary translation governed by a Michaelis-Menten type of kinetics can follow different polymerization regimes: random polymerization, homopolymerization and coded polymerization. The regime under which the system is running is set by the relative concentrations of the amino acids and the kinetic constants involved. We point out that the coding regime can naturally occur under prebiotic conditions. It generates partially coded proteins through a mechanism which is remarkably robust against non-specific interactions (mismatches between the adaptors and the RNA template. Features of the genetic code support the existence of this early translation system.

  12. Radiation-induced reactions of amino acids adsorbed on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esquivel Kranksith, L.; Negron-Mendoza, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, UNAM. Cd. Universitaria, A.P. 70-543, 04510 Mexico D.F. (Mexico); Mosqueira, F.G. [Direcion General de Divulgacion de la Ciencia, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, AP. 70-487 Mexico D.F. (Mexico); Ramos-Bernal, Sergio, E-mail: ramos@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, UNAM. Cd. Universitaria, A.P. 70-543, 04510 Mexico D.F. (Mexico)

    2010-07-21

    The purpose of this work is to study the adsorption of compounds such as amino acids on clays and carbon nanotubes (CNTs) as a possible phase in the chemical evolution that may have occurred on the primitive Earth or in extraterrestrial environments. We further study the behavior of amino acids adsorbed on these solid surfaces at different conditions of pH and levels of irradiation, simulating a high-radiation field at early Earth conditions. The relevance of this work is to explain the possible contribution of solids (clays and CNTs) as promoters of polymerization and as shields for the adsorbed organic compounds against external sources of energy. To this end, tryptophan, aspartic acid, and glutamic acid were adsorbed on fixed amounts of solid surfaces and were irradiated by a {sup 60}Co source for different periods of time at fixed dose rates. After irradiation, the amino acids were extracted from the solid and analyzed with UV and IR spectroscopes and high-performance liquid chromatography. The most efficient surface for adsorption of amino acids was clay, followed by CNTs. Studies of the gamma irradiation of amino acids adsorbed on clay (in the solid phase) show a low yield of recovery of the amino acid.

  13. Wafer Cakes of Improved Amino Acid Structure

    Directory of Open Access Journals (Sweden)

    Roksolana Boidunyk

    2017-11-01

    Full Text Available The article presents the results of the study of the amino acid composition of newly developed wafer cakes with adipose fillings combined with natural additives. The appropriateness of the using non-traditional raw materials (powder of willow herb, poppy oilcake, carob, as well as skimmed milk powder in order to increase the biological value of wafer cakes and improve their amino acid composition is proven.

  14. Bias-Exchange Metadynamics Simulation of Membrane Permeation of 20 Amino Acids.

    Science.gov (United States)

    Cao, Zanxia; Bian, Yunqiang; Hu, Guodong; Zhao, Liling; Kong, Zhenzhen; Yang, Yuedong; Wang, Jihua; Zhou, Yaoqi

    2018-03-16

    Thermodynamics of the permeation of amino acids from water to lipid bilayers is an important first step for understanding the mechanism of cell-permeating peptides and the thermodynamics of membrane protein structure and stability. In this work, we employed bias-exchange metadynamics simulations to simulate the membrane permeation of all 20 amino acids from water to the center of a dipalmitoylphosphatidylcholine (DPPC) membrane (consists of 256 lipids) by using both directional and torsion angles for conformational sampling. The overall accuracy for the free energy profiles obtained is supported by significant correlation coefficients (correlation coefficient at 0.5-0.6) between our results and previous experimental or computational studies. The free energy profiles indicated that (1) polar amino acids have larger free energy barriers than nonpolar amino acids; (2) negatively charged amino acids are the most difficult to enter into the membrane; and (3) conformational transitions for many amino acids during membrane crossing is the key for reduced free energy barriers. These results represent the first set of simulated free energy profiles of membrane crossing for all 20 amino acids.

  15. Bias-Exchange Metadynamics Simulation of Membrane Permeation of 20 Amino Acids

    Directory of Open Access Journals (Sweden)

    Zanxia Cao

    2018-03-01

    Full Text Available Thermodynamics of the permeation of amino acids from water to lipid bilayers is an important first step for understanding the mechanism of cell-permeating peptides and the thermodynamics of membrane protein structure and stability. In this work, we employed bias-exchange metadynamics simulations to simulate the membrane permeation of all 20 amino acids from water to the center of a dipalmitoylphosphatidylcholine (DPPC membrane (consists of 256 lipids by using both directional and torsion angles for conformational sampling. The overall accuracy for the free energy profiles obtained is supported by significant correlation coefficients (correlation coefficient at 0.5–0.6 between our results and previous experimental or computational studies. The free energy profiles indicated that (1 polar amino acids have larger free energy barriers than nonpolar amino acids; (2 negatively charged amino acids are the most difficult to enter into the membrane; and (3 conformational transitions for many amino acids during membrane crossing is the key for reduced free energy barriers. These results represent the first set of simulated free energy profiles of membrane crossing for all 20 amino acids.

  16. Regulation of intestinal mucosal growth by amino acids.

    Science.gov (United States)

    Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Amino acids, especially glutamine (GLN) have been known for many years to stimulate the growth of small intestinal mucosa. Polyamines are also required for optimal mucosal growth, and the inhibition of ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis, blocks growth. Certain amino acids, primarily asparagine (ASN) and GLN stimulate ODC activity in a solution of physiological salts. More importantly, their presence is also required before growth factors and hormones such as epidermal growth factor and insulin are able to increase ODC activity. ODC activity is inhibited by antizyme-1 (AZ) whose synthesis is stimulated by polyamines, thus, providing a negative feedback regulation of the enzyme. In the absence of amino acids mammalian target of rapamycin complex 1 (mTORC1) is inhibited, whereas, mTORC2 is stimulated leading to the inhibition of global protein synthesis but increasing the synthesis of AZ via a cap-independent mechanism. These data, therefore, explain why ASN or GLN is essential for the activation of ODC. Interestingly, in a number of papers, AZ has been shown to inhibit cell proliferation, stimulate apoptosis, or increase autophagy. Each of these activities results in decreased cellular growth. AZ binds to and accelerates the degradation of ODC and other proteins shown to regulate proliferation and cell death, such as Aurora-A, Cyclin D1, and Smad1. The correlation between the stimulation of ODC activity and the absence of AZ as influenced by amino acids is high. Not only do amino acids such as ASN and GLN stimulate ODC while inhibiting AZ synthesis, but also amino acids such as lysine, valine, and ornithine, which inhibit ODC activity, increase the synthesis of AZ. The question remaining to be answered is whether AZ inhibits growth directly or whether it acts by decreasing the availability of polyamines to the dividing cells. In either case, evidence strongly suggests that the regulation of AZ synthesis is the

  17. A Propensity for n-omega-Amino Acids in Thermally-Altered Antarctic Meteorites

    Science.gov (United States)

    Burton, Aaron S.; Elsila, Jamie E.; Callahan, Michael P.; Martin, Mildred G.; Glavin, Daniel P.; Johnson, Natasha M.; Dworkin, Jason P.

    2012-01-01

    Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally-altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites were generally less abundant than in more amino acid-rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low-temperature aqueously-altered meteorites that show complete structural diversity in amino acids formed predominantly by Strecker-cyanohydrin synthesis, the thermally-altered meteorites studied here are dominated by small, straight-chain, amine terminal (n-omega-amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n-omega-amino acids measured in one of the CV chondrites are consistent with C-13-depletions observed previously in hydrocarbons produced by Fischer-Tropsch type reactions. The predominance of n-omega-amino acid isomers in thermally-altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids.

  18. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids.

    Science.gov (United States)

    Turner, Nicholas J

    2011-04-01

    Ammonia lyases catalyse the reversible addition of ammonia to cinnamic acid (1: R=H) and p-hydroxycinnamic (1: R=OH) to generate L-phenylalanine (2: R=H) and L-tyrosine (2: R=OH) respectively (Figure 1a). Both phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) are widely distributed in plants, fungi and prokaryotes. Recently there has been interest in the use of these enzymes for the synthesis of a broader range of L-arylalanines. Aminomutases catalyse a related reaction, namely the interconversion of α-amino acids to β-amino acids (Figure 1b). In the case of L-phenylalanine, this reaction is catalysed by phenylalanine aminomutase (PAM) and proceeds stereospecifically via the intermediate cinnamic acid to generate β-Phe 3. Ammonia lyases and aminomutases are related in sequence and structure and share the same active site cofactor 4-methylideneimidazole-5-one (MIO). There is currently interest in the possibility of using these biocatalysts to prepare a wide range of enantiomerically pure l-configured α-amino and β-amino acids. Recent reviews have focused on the mechanism of these MIO containing enzymes. The aim of this review is to review recent progress in the application of ammonia lyase and aminomutase enzymes to prepare enantiomerically pure α-amino and β-amino acids. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Amino Acid Composition of Grape Cultivars ( Vitis Spp.) in Japan

    OpenAIRE

    Shiraishi, Shin-ichi; 白石, 眞一

    1991-01-01

    The concentration of free amino acids and other chemical constituents in 75 grape cultivars at maturity were examined. The amino acid concentrations were found to be in decreasing order of arginine, proline, threonine and alanine in Vitis vinifera cultivars and alanine, arginine, threonine and proline in Vitis labmsca cultivars. The concentration of total amino acid was 5,083 ,umol in ‘Campbell Early’ and 3,391 pmol in ‘Yates’, both Vitis labrusca and table grapes. The amounts of total amino ...

  20. A common periodic table of codons and amino acids.

    Science.gov (United States)

    Biro, J C; Benyó, B; Sansom, C; Szlávecz, A; Fördös, G; Micsik, T; Benyó, Z

    2003-06-27

    A periodic table of codons has been designed where the codons are in regular locations. The table has four fields (16 places in each) one with each of the four nucleotides (A, U, G, C) in the central codon position. Thus, AAA (lysine), UUU (phenylalanine), GGG (glycine), and CCC (proline) were placed into the corners of the fields as the main codons (and amino acids) of the fields. They were connected to each other by six axes. The resulting nucleic acid periodic table showed perfect axial symmetry for codons. The corresponding amino acid table also displaced periodicity regarding the biochemical properties (charge and hydropathy) of the 20 amino acids and the position of the stop signals. The table emphasizes the importance of the central nucleotide in the codons and predicts that purines control the charge while pyrimidines determine the polarity of the amino acids. This prediction was experimentally tested.

  1. Effects of amino acids on the physiochemical properties of potato starch.

    Science.gov (United States)

    Cui, Min; Fang, Ling; Zhou, Hongxian; Yang, Hong

    2014-05-15

    The objective of this study was to evaluate effects of different amino acid additives (phenylalanine (Phe), methionine (Met), lysine (Lys), arginine (Arg), aspartic acid (Asp) and glutamic acid (Glu)) on the physicochemical properties of potato starch gels. Charge-carrying amino acids (Lys, Arg, Asp and Glu) significantly decreased the swelling power, solubility, light transmittance, L(∗) value and gel strength of potato starch, but increased syneresis during freeze-thaw treatment, while neutral amino acids (Phe and Met) did not cause modifications in starch gels. During heating, potato starch with fortified charge-carrying amino acids showed a lower peak G' (storage modulus), when compared with Phe and Met. Results showed that charge-carrying amino acids could modify physicochemical properties and improve the nutritional values of starch-based products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Displacement of carbon-14 labelled amino acids from leaves

    International Nuclear Information System (INIS)

    Schiller, R.

    1973-01-01

    The displacement of amino acids from nature leaves was investigated. The amino acids (Ala, Asn, Asp, Glu, Gln, Val, Leu, Lys, Ser, Pro) were applied on the leaves in L-form, uniformly labelled with 14 C, and the type and direction of displacement have been observed. Most of the studies have been carried out on bush beans aged 3 to 4 weeks. The experiments were carried out in climatic chambers; in one case, barley plants just reaching maturity were used. In order to find out whether the applied amino acids were also displaced in their original form, freeze-dried plants were extracted and the 14 C activity of the various fraction was determined. The radioactivity of some free amino acids was determined after two-dimensional separation by thin film chromatography. (orig./HK) [de

  3. Degradation of amino acids to short-chain fatty acids in humans. An in vitro study

    DEFF Research Database (Denmark)

    Rasmussen, H S; Holtug, K; Mortensen, P B

    1988-01-01

    Short-chain fatty acids (SCFA) originate mainly in the colon through bacterial fermentation of polysaccharides. To test the hypothesis that SCFA may originate from polypeptides as well, the production of these acids from albumin and specific amino acids was examined in a faecal incubation system....... Albumin was converted to all C2-C5-fatty acids, whereas amino acids generally were converted to specific SCFA, most often through the combination of a deamination and decarboxylation of the amino acids, although more complex processes also took place. This study indicates that a part of the intestinal...

  4. Compositional changes of proteins and amino acids in germinating coffee seeds

    Directory of Open Access Journals (Sweden)

    Milton Massao Shimizu

    2000-01-01

    Full Text Available Endosperm is the main reserve tissue in coffee seeds. Coffee (Coffea arabica L. seeds were germinated for six weeks and qualitative and quantitative changes in amino acids and proteins were investigated. The total content of free amino acids were reduced during germination, however, protein content remained constant. SDS-PAGE profiles showed that legumin-like proteins became less stained in the last weeks. Asparagine, glutamic acid, aspartic acid, alanine and lysine were the major free amino acids, although serine and glutamine were also significant. Except for tyrosine, which increased with germination, all other amino acids were reduced. Analysis of the amino acid composition of the total soluble protein showed glutamic acid/glutamine and glycine as the main amino acids. However, other amino acids such as leucine, aspartic acid/asparagine, alanine, lysine, serine were also found in reasonable amounts.Endosperma é o principal tecido de reserva em sementes de café. Sementes de café (Coffea arabica L. foram germinadas por seis semanas e as alterações qualitativas e quantitativas de aminoácidos e proteínas foram investigadas. O conteúdo total de aminoácidos livres reduziu durante a germinação, no entanto, o conteúdo de proteínas permaneceu constante. Perfis eletroforéticos de proteínas em SDS-PAGE mostraram que proteínas do tipo legumina foram menos coradas nas últimas semanas. Asparagina, ácido glutâmico, ácido aspártico, alanina e lisina foram os principais aminoácidos, apesar de que serina e glutamina também estavam presentes em quantidades significativas. Exceto tirosina, a qual aumentou durante a germinação, todos os outros aminoácidos tiveram redução em sua concentração. A análise aminoacídica da fração de proteína solúvel total mostrou que ácido glutâmico/glutamina e glicina eram os principais aminoácidos presentes. No entanto, outros aminoácidos, tais como leucina, ácido asp

  5. Polymerization of amino acids containing nucleotide bases

    Science.gov (United States)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  6. Optimization of short amino acid sequences classifier

    Science.gov (United States)

    Barcz, Aleksy; Szymański, Zbigniew

    This article describes processing methods used for short amino acid sequences classification. The data processed are 9-symbols string representations of amino acid sequences, divided into 49 data sets - each one containing samples labeled as reacting or not with given enzyme. The goal of the classification is to determine for a single enzyme, whether an amino acid sequence would react with it or not. Each data set is processed separately. Feature selection is performed to reduce the number of dimensions for each data set. The method used for feature selection consists of two phases. During the first phase, significant positions are selected using Classification and Regression Trees. Afterwards, symbols appearing at the selected positions are substituted with numeric values of amino acid properties taken from the AAindex database. In the second phase the new set of features is reduced using a correlation-based ranking formula and Gram-Schmidt orthogonalization. Finally, the preprocessed data is used for training LS-SVM classifiers. SPDE, an evolutionary algorithm, is used to obtain optimal hyperparameters for the LS-SVM classifier, such as error penalty parameter C and kernel-specific hyperparameters. A simple score penalty is used to adapt the SPDE algorithm to the task of selecting classifiers with best performance measures values.

  7. The effects of added sulphur amino acids, threonine and an ideal amino acid ratio on nitrogen metabolism in mature, overweight dogs.

    Science.gov (United States)

    Bohaty, Robin E; de Godoy, Maria R C; McLeod, Kyle R; Harmon, David L

    2012-02-01

    The objectives of this study were to investigate the effects of added essential amino acids in conjunction with a dietary lysine/MJ of 0.72 on nitrogen (N) metabolism in dogs. Treatments were; a control diet, a diet that provided an ideal amino acid profile (IAA), a diet with added total sulphur amino acids (TSAA), and a diet with added TSAA and threonine (TT). Diets were fed to eight overweight, mature, female hounds using a replicated 4 x 4 Latin Square design. Food intake was similar across treatments, however, food N intake was higher (p dogs formulated to provide a 0.72 g lysine/MJ ME ratio.

  8. Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism*

    Science.gov (United States)

    Dyachok, Julia; Earnest, Svetlana; Iturraran, Erica N.; Cobb, Melanie H.

    2016-01-01

    The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cell growth with its nutritional, hormonal, energy, and stress status. Amino acids are critical regulators of mTORC1 that permit other inputs to mTORC1 activity. However, the roles of individual amino acids and their interactions in mTORC1 activation are not well understood. Here we demonstrate that activation of mTORC1 by amino acids includes two discrete and separable steps: priming and activation. Sensitizing mTORC1 activation by priming amino acids is a prerequisite for subsequent stimulation of mTORC1 by activating amino acids. Priming is achieved by a group of amino acids that includes l-asparagine, l-glutamine, l-threonine, l-arginine, l-glycine, l-proline, l-serine, l-alanine, and l-glutamic acid. The group of activating amino acids is dominated by l-leucine but also includes l-methionine, l-isoleucine, and l-valine. l-Cysteine predominantly inhibits priming but not the activating step. Priming and activating steps differ in their requirements for amino acid concentration and duration of treatment. Priming and activating amino acids use mechanisms that are distinct both from each other and from growth factor signaling. Neither step requires intact tuberous sclerosis complex of proteins to activate mTORC1. Concerted action of priming and activating amino acids is required to localize mTORC1 to lysosomes and achieve its activation. PMID:27587390

  9. Amino acids as co-amorphous excipients for simvastatin and glibenclamide

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2014-01-01

    to a few drugs and amino acids. To facilitate the rational selection of amino acids, the practical importance of the amino acid coming from the biological target site of the drug (and associated intermolecular interactions) needs to be established. In the present study, the formation of co......-amorphous systems using cryomilling and combinations of two poorly water-soluble drugs (simvastatin and glibenclamide) with the amino acids aspartic acid, lysine, serine, and threonine was investigated. Solid-state characterization with X-ray powder diffraction, differential scanning calorimetry, and Fourier...... in the mixtures. Interestingly, a favorable effect by the excipients on the tautomerism of amorphous glibenclamide in the co-amorphous blends was seen, as the formation of the thermodynamically less stable imidic acid tautomer of glibenclamide was suppressed compared to that of the pure amorphous drug...

  10. Riboflavin enhances photo-oxidation of amino acids under simulated clinical conditions

    International Nuclear Information System (INIS)

    Bhatia, J.; Stegink, L.D.; Ziegler, E.E.

    1983-01-01

    In neonatal nurseries, solutions of amino acids with added vitamins may be exposed to relatively intense light from phototherapy units. Light, especially in the presence of photosensitizers such as certain vitamins, is capable of destroying amino acids. In the present study, the effect of riboflavin on amino acid concentrations in solutions exposed to light was studied. Solutions of crystalline amino acids with and without added riboflavin were infused into shielded collecting vessels for 24 hr under conditions simulating those occurring during phototherapy. Decreases in concentrations of some amino acids were observed with light exposure alone. Decreases in concentrations of methionine, proline, tryptophan, and tyrosine were significantly greater in the presence of riboflavin that in its absence. Riboflavin concentrations were also significantly reduced after light exposure. Although the losses of amino acids are probably not nutritionally significant, the photo-oxidation products are largely unknown and may be toxic

  11. Change in amino acids content during germination and seedling ...

    African Journals Online (AJOL)

    presence of histidine (His) and phenylalanine (Phe), but also to amide amino acids asparagine (Asn), glutamine (Gln) and Arg contents. In Cola sp., free amino acids varied significantly during these two processes indicating their high utilization.

  12. Involvement of tyrosine residues, N-terminal amino acids, and beta-alanine in insect cuticular sclerotization.

    Science.gov (United States)

    Andersen, Svend Olav

    2007-09-01

    During sclerotization of insect cuticle the acyldopamines, N-acetyldopamine (NADA) and N-beta-alanyldopamine (NBAD), are oxidatively incorporated into the cuticular matrix, thereby hardening and stabilizing the material by forming crosslinks between the proteins in the cuticular matrix and by forming polymers filling the intermolecular spaces in the cuticle. Sclerotized cuticle from the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor, was hydrolyzed in dilute hydrochloric acid, and from the hydrolysates some components presumably degradation products of cuticular crosslinks were isolated. In two of the components, the sidechain of 3,4-dihydroxyacetophenone was linked to the amino groups of glycine and beta-alanine, respectively, and in the third component to the phenolic group of tyrosine. These three compounds, glycino-dihydroxyacetophenone, beta-alanino-dihydroxyacetophenone, and O-tyrosino-dihydroxyacetophenone, as well as the previously reported compound, lysino-dihydroxyacetophenone [Andersen, S.O., Roepstorff, P., 2007. Aspects of cuticular sclerotization in the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor. Insect Biochem. Mol. Biol. 37, 223-234], are suggested to be degradation products of cuticular crosslinks, in which amino acid residues formed linkages to both the alpha- and beta-positions of the sidechain of acyldopamines.

  13. DNA methylation of amino acid transporter genes in the human placenta.

    Science.gov (United States)

    Simner, C; Novakovic, B; Lillycrop, K A; Bell, C G; Harvey, N C; Cooper, C; Saffery, R; Lewis, R M; Cleal, J K

    2017-12-01

    Placental transfer of amino acids via amino acid transporters is essential for fetal growth. Little is known about the epigenetic regulation of amino acid transporters in placenta. This study investigates the DNA methylation status of amino acid transporters and their expression across gestation in human placenta. BeWo cells were treated with 5-aza-2'-deoxycytidine to inhibit methylation and assess the effects on amino acid transporter gene expression. The DNA methylation levels of amino acid transporter genes in human placenta were determined across gestation using DNA methylation array data. Placental amino acid transporter gene expression across gestation was also analysed using data from publically available Gene Expression Omnibus data sets. The expression levels of these transporters at term were established using RNA sequencing data. Inhibition of DNA methylation in BeWo cells demonstrated that expression of specific amino acid transporters can be inversely associated with DNA methylation. Amino acid transporters expressed in term placenta generally showed low levels of promoter DNA methylation. Transporters with little or no expression in term placenta tended to be more highly methylated at gene promoter regions. The transporter genes SLC1A2, SLC1A3, SLC1A4, SLC7A5, SLC7A11 and SLC7A10 had significant changes in enhancer DNA methylation across gestation, as well as gene expression changes across gestation. This study implicates DNA methylation in the regulation of amino acid transporter gene expression. However, in human placenta, DNA methylation of these genes remains low across gestation and does not always play an obvious role in regulating gene expression, despite clear evidence for differential expression as gestation proceeds. Copyright © 2017. Published by Elsevier Ltd.

  14. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide

    Directory of Open Access Journals (Sweden)

    M. Fernanda N. N. Carvalho

    2016-04-01

    Full Text Available A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O, reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine to form a compound O2SNC10H13NC10H14NSO2 (2 which was characterized by spectroscopic means (MS and NMR and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a –N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states.

  15. Emerging Role of D-Amino Acid Metabolism in the Innate Defense

    Directory of Open Access Journals (Sweden)

    Jumpei Sasabe

    2018-05-01

    Full Text Available Mammalian innate and adaptive immune systems use the pattern recognition receptors, such as toll-like receptors, to detect conserved bacterial and viral components. Bacteria synthesize diverse D-amino acids while eukaryotes and archaea generally produce two D-amino acids, raising the possibility that many of bacterial D-amino acids are bacteria-specific metabolites. Although D-amino acids have not been identified to bind to any known pattern recognition receptors, D-amino acids are enantioselectively recognized by some other receptors and enzymes including a flavoenzyme D-amino acid oxidase (DAO in mammals. At host–microbe interfaces in the neutrophils and intestinal mucosa, DAO catalyzes oxidation of bacterial D-amino acids, such as D-alanine, and generates H2O2, which is linked to antimicrobial activity. Intestinal DAO also modifies the composition of microbiota through modulation of growth for some bacteria that are dependent on host nutrition. Furthermore, regulation and recognition of D-amino acids in mammals have additional meanings at various host–microbe interfaces; D-phenylalanine and D-tryptophan regulate chemotaxis of neutrophils through a G-coupled protein receptor, D-serine has a bacteriostatic role in the urinary tract, D-phenylalanine and D-leucine inhibit innate immunity through the sweet taste receptor in the upper airway, and D-tryptophan modulates immune tolerance in the lower airway. This mini-review highlights recent evidence supporting the hypothesis that D-amino acids are utilized as inter-kingdom communication at host–microbe interface to modulate bacterial colonization and host defense.

  16. Functionalization of glassy carbon surface by means of aliphatic and aromatic amino acids. An experimental and theoretical integrated approach

    International Nuclear Information System (INIS)

    Vanossi, Davide; Benassi, Rois; Parenti, Francesca; Tassinari, Francesco; Giovanardi, Roberto; Florini, Nicola; De Renzi, Valentina; Arnaud, Gaelle; Fontanesi, Claudio

    2012-01-01

    Highlights: ► Glassy carbon is functionalized via electrochemical assisted grafting of amino acids. ► The grafting mechanism is suggested to involve the “zwitterionic” species. ► DFT calculations allowed to determine the electroactive species. ► An original grafting mechanism is proposed. - Abstract: Glassy carbon (GC) electrode surfaces are functionalized through electrochemical assisted grafting, in oxidation regime, of six amino acids (AA): β-alanine (β-Ala), L-aspartic acid (Asp), 11-aminoundecanoic acid (UA), 4-aminobenzoic acid (PABA), 4-(4-amino-phenyl)-butyric acid (PFB), 3-(4-amino-phenyl)-propionic acid (PFP). Thus, a GC/AA interface is produced featuring carboxylic groups facing the solution. Electrochemical (cyclic voltammetry and electrochemical impedance spectroscopy) and XPS techniques are used to experimentally characterize the grafting process and the surface state. The theoretical results are compared with the experimental evidence to determine, at a molecular level, the overall grafting mechanism. Ionization potentials, standard oxidation potentials, HOMO and electron spin distributions are calculated at the CCD/6-31G* level of the theory. The comparison of experimental and theoretical data suggests that the main electroactive species is the “zwitterionic” form for the three aliphatic amino acids, while the amino acids featuring the amino group bound to the phenyl aromatic moiety show a different behaviour. The comparison between experimental and theoretical results suggests that both the neutral and the zwitterionic forms are present in the acetonitrile solution in the case of 4-(4-amino-phenyl)-butyric acid (PFB) and 3-(4-amino-phenyl)-propionic acid.

  17. Amino Acid Signatures to Evaluate the Beneficial Effects of Weight Loss

    Directory of Open Access Journals (Sweden)

    Nina Geidenstam

    2017-01-01

    Full Text Available Aims. We investigated the relationship between circulating amino acid levels and obesity; to what extent weight loss followed by weight maintenance can correct amino acid abnormalities; and whether amino acids are related to weight loss. Methods. Amino acids associated with waist circumference (WC and BMI were studied in 804 participants from the Malmö Diet and Cancer Cardiovascular Cohort (MDC-CC. Changes in amino acid levels were analyzed after weight loss and weight maintenance in 12 obese subjects and evaluated in a replication cohort (n=83. Results. Out of the eight identified BMI-associated amino acids from the MDC-CC, alanine, isoleucine, tyrosine, phenylalanine, and glutamate decreased after weight loss, while asparagine increased after weight maintenance. These changes were validated in the replication cohort. Scores that were constructed based on obesity-associated amino acids and known risk factors decreased in the ≥10% weight loss group with an associated change in BMI (R2=0.16–0.22, p<0.002, whereas the scores increased in the <10% weight loss group (p<0.0004. Conclusions. Weight loss followed by weight maintenance leads to differential changes in amino acid levels associated with obesity. Treatment modifiable scores based on epidemiological and interventional data may be used to evaluate the potential metabolic benefit of weight loss.

  18. THE ROLE OF BACTERIAL SYMBIONTS IN AMINO ACID COMPOSITION OF BLACK BEAN APHIDS

    Institute of Scientific and Technical Information of China (English)

    MingGan; De-ChengDing; Xue-xiaMiao

    2003-01-01

    To evaluate the role of bacterial symbionts ( Buchnera spp. ) in the black bean aphids ( Aphis craccivora Koch), the aphids were treated with the antibiotic, rifampicin, to eliminate their intracellular symbiotic bacteria. Analysis of protein and amino acid concentration in 7-day-old of aposymbiotic aphids showed that the total protein content per mg fresh weight was significantly reduced by 29 %, but free amino acid titers were increased by 17% . The ratio of the essential amino acids was in general only around 20% essential amino acids in phloem sap of broad bean, whereas it was 44% and 37% in symbiotic and aposymbiotic aphids, respectively,suggesting that the composition of the free amino acids was unbalanced. For example, the essential amino acid,threonine represented 21. 6% of essential amino acids in symbiotic aphids, but it was only 16.7% in aposymbiotic aphids. Likewise, two nonessential amino acids, tyrosine and serine, represented 8.9% and 5.6% of total amino acids in symbiontic aphids, respectively, but they enhanced to 21.1% and 13.6% in aposymbiotic aphids. It seems likely that the elevated free amino acid concentration in aposymbiotic aphids was caused by the limited protein anabolism as the result of the unbalanced amino acid composition.

  19. Responses of garlic bulbs to gamma irradiation. Changes in major amino acids

    International Nuclear Information System (INIS)

    Parolo, Maria E.; Orioli, Gustavo A.; Croci, Clara A.

    1997-01-01

    Studies were conducted to provide information about the amino acids composition of garlic bulbs cv Colorado and to determinate the effect of a dose of 60 Gy of gamma rays on the behavior of the major free amino acids in relation to sprout growth radioinhibition. TLC and HPLC were used for identification and quantification of free amino acids. Eighteen free amino acids were identified in both parts of garlic bulbs: alanine, glycine, proline, methionine, serine, phenylalanine, aspartic acid, glutamic acid, lysine, glutamine, arginine, tyrosine, threonine, cystine, cysteine, leucine + isoleucine and asparagine. In the inner sprout the major amino acids founded were: glutamine, glutamic acid, threonine, asparagine, cystine, cysteine and methionine; in the storage leaf also arginine was also predominant. In general concentration of amino acids appeared to less affected by irradiation in the storage leaf that in the inner sprout. An increase in the short time post-irradiation in glutamine, glutamic acid, asparagine, theorine and methionine was observed. Sprout grouth radioinhibition was evident about 70 days after treatment and was preceded by a decrease in the major amino acids except methionine. It appears that concentration of same major amino acidscan be used as monitors of radioinhibition process in inner sprout of garlic. (author). 15 refs., 8 figs

  20. Stereoconversion of amino acids and peptides in uryl-pendant binol schiff bases.

    Science.gov (United States)

    Park, Hyunjung; Nandhakumar, Raju; Hong, Jooyeon; Ham, Sihyun; Chin, Jik; Kim, Kwan Mook

    2008-01-01

    (S)-2-Hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde (1) forms Schiff bases with a wide range of nonderivatized amino acids, including unnatural ones. Multiple hydrogen bonds, including resonance-assisted ones, fix the whole orientation of the imine and provoke structural rigidity around the imine C==N bond. Due to the structural difference and the increase in acidity of the alpha proton of the amino acid, the imine formed with an L-amino acid (1-l-aa) is converted into the imine of the D-amino acid (1-D-aa), with a D/L ratio of more than 10 for most amino acids at equilibrium. N-terminal amino acids in dipeptides are also predominantly epimerized to the D form upon imine formation with 1. Density functional theory calculations show that 1-D-Ala is more stable than 1-L-Ala by 1.64 kcal mol(-1), a value that is in qualitative agreement with the experimental result. Deuterium exchange of the alpha proton of alanine in the imine form was studied by (1)H NMR spectroscopy and the results support a stepwise mechanism in the L-into-D conversion rather than a concerted one; that is, deprotonation and protonation take place in a sequential manner. The deprotonation rate of L-Ala is approximately 16 times faster than that of D-Ala. The protonation step, however, appears to favor L-amino acid production, which prevents a much higher predominance of the D form in the imine. Receptor 1 and the predominantly D-form amino acid can be recovered from the imine by simple extraction under acidic conditions. Hence, 1 is a useful auxiliary to produce D-amino acids of industrial interest by the conversion of naturally occurring L-amino acids or relatively easily obtainable racemic amino acids.

  1. Parent Body Influences on Amino Acids in the Tagish Lake Meteorite

    Science.gov (United States)

    Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.; Elsila, J. E.; Herd, C. D. K.

    2010-01-01

    The Tagish Lake meteorite is a primitive C2 carbonaceous chondrite with a mineralogy, oxygen isotope, and bulk chemical. However, in contrast to many CI and CM carbonaceous chondrites, the Tagish Lake meteorite was reported to have only trace levels of indigenous amino acids, with evidence for terrestrial L-amino acid contamination from the Tagish Lake meltwater. The lack of indigenous amino acids in Tagish Lake suggested that they were either destroyed during parent body alteration processes and/or the Tagish Lake meteorite originated on a chemically distinct parent body from CI and CM meteorites where formation of amino acids was less favorable. We recently measured the amino acid composition of three different lithologies (11h, 5b, and 11i) of pristine Tagish Lake meteorite fragments that represent a range of progressive aqueous alteration in order 11h amino acids found in hot-water extracts of the Tagish Lake fragments were determined by ultra performance liquid chromatography fluorescence detection and time of flight mass spectrometry coupled with OPA/NAC derivatization. Stable carbon isotope analyses of the most abundant amino acids in 11h were measured with gas chromatography coupled with quadrupole mass spectrometry and isotope ratio mass spectrometry.

  2. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    Science.gov (United States)

    Young, Travis; Schultz, Peter G

    2013-12-17

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  3. Asymmetric Synthesis of Carbon-11 Labelled alpha-Amino Acids for PET

    NARCIS (Netherlands)

    Popkov, Alexander; Elsinga, Philip H.

    2013-01-01

    For PET applications in oncological and neurological diagnostics, amino acids have been studied both clinically and pre-clinically during the last 35 years. Nowadays two applications of labelled amino acids for visualisation of tumours attract the main attention: [C-11] or [F-18]amino acids as

  4. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    Directory of Open Access Journals (Sweden)

    Xiaochuang Cao

    Full Text Available Amino acids are important sources of soil organic nitrogen (N, which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N. On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine did not vary appreciably with elevation (p>0.10. The compositional

  5. Amino acid substitutions in random mutagenesis libraries: lessons from analyzing 3000 mutations.

    Science.gov (United States)

    Zhao, Jing; Frauenkron-Machedjou, Victorine Josiane; Kardashliev, Tsvetan; Ruff, Anna Joëlle; Zhu, Leilei; Bocola, Marco; Schwaneberg, Ulrich

    2017-04-01

    The quality of amino acid substitution patterns in random mutagenesis libraries is decisive for the success in directed evolution campaigns. In this manuscript, we provide a detailed analysis of the amino acid substitutions by analyzing 3000 mutations of three random mutagenesis libraries (1000 mutations each; epPCR with a low-mutation and a high-mutation frequency and SeSaM-Tv P/P) employing lipase A from Bacillus subtilis (bsla). A comparison of the obtained numbers of beneficial variants in the mentioned three random mutagenesis libraries with a site saturation mutagenesis (SSM) (covering the natural diversity at each amino acid position of BSLA) concludes the diversity analysis. Seventy-six percent of the SeSaM-Tv P/P-generated substitutions yield chemically different amino acid substitutions compared to 64% (epPCR-low) and 69% (epPCR-high). Unique substitutions from one amino acid to others are termed distinct amino acid substitutions. In the SeSaM-Tv P/P library, 35% of all theoretical distinct amino acid substitutions were found in the 1000 mutation library compared to 25% (epPCR-low) and 26% (epPCR-high). Thirty-six percent of distinct amino acid substitutions found in SeSaM-Tv P/P were unobtainable by epPCR-low. Comparison with the SSM library showed that epPCR-low covers 15%, epPCR-high 18%, and SeSaM-Tv P/P 21% of obtainable beneficial amino acid positions. In essence, this study provides first insights on the quality of epPCR and SeSaM-Tv P/P libraries in terms of amino acid substitutions, their chemical differences, and the number of obtainable beneficial amino acid positions.

  6. Amino acid composition of soybean seeds as affected by climatic variables

    Directory of Open Access Journals (Sweden)

    Constanza Soledad Carrera

    2011-12-01

    Full Text Available The objective of this work was to perform a quantitative analysis of the amino acid composition of soybean seeds as affected by climatic variables during seed filling. Amino acids were determined from seed samples taken at harvest in 31 multi-environment field trials carried out in Argentina. Total amino acids ranged from 31.69 to 49.14%, and total essential and nonessential amino acids varied from 12.83 to 19.02% and from 18.86 to 31.15%, respectively. Variance components expressed as the percentage of total variation showed that the environment was the most important source of variation for all traits, followed by the genotype x environment interaction. Significant explanatory linear regressions were detected for amino acid content regarding: average daily mean air temperature and cumulative solar radiation, during seed filling; precipitation minus potential evapotranspiration, during the whole reproductive period; and the combinations of these climatic variables. Each amino acid behaves differently according to environmental conditions, indicating compensatory effects among them.

  7. Amino acids and glycine ethyl ester as new crystallization reagents for lysozyme

    International Nuclear Information System (INIS)

    Ito, Len; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2010-01-01

    During the past two decades, amino acids and amino-acid derivatives have been applied in various fields of protein chemistry. The potential use of amino acids and their derivatives as new precipitating agents is described. Several amino acids and their derivatives are prominent additives in the field of protein chemistry. This study reports the use of charged amino acids and glycine ethyl ester as precipitants in protein crystallization, using hen egg-white lysozyme (HEWL) as a model. A discussion of the crystallization of HEWL using these reagents as precipitating agents is given

  8. In vivo microdialysis studies on the effects of decortication and excitotoxic lesions on kainic acid-induced calcium fluxes, and endogenous amino acid release, in the rat striatum

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, S.P.; Lazarewicz, J.W.; Hamberger, A.

    1987-11-01

    The in vivo effects of kainate (1 mM) on fluxes of /sup 45/Ca2+, and endogenous amino acids, were examined in the rat striatum using the brain microdialysis technique. Kainate evoked a rapid decrease in dialysate /sup 45/Ca2+, and an increase in the concentration of amino acids in dialysates in Ca2+-free dialysates. Taurine was elevated six- to 10-fold, glutamate two- to threefold, and aspartate 1.5- to twofold. There was also a delayed increase in phosphoethanolamine, whereas nonneuroactive amino acids were increased only slightly. The kainic acid-evoked reduction in dialysate /sup 45/Ca2+ activity was attenuated in striata lesioned previously with kainate, suggesting the involvement of intrinsic striatal neurons in this response. The increase in taurine concentration induced by kainate was slightly smaller under these conditions. Decortication did not affect the kainate-evoked alterations in either dialysate /sup 45/Ca2+ or amino acids. These data suggest that kainate does not release acidic amino acids from their transmitter pools located in corticostriatal terminals.

  9. Amino acid metabolism during exercise in trained rats: the potential role of carnitine in the metabolic fate of branched-chain amino acids.

    Science.gov (United States)

    Ji, L L; Miller, R H; Nagle, F J; Lardy, H A; Stratman, F W

    1987-08-01

    The influence of endurance training and an acute bout of exercise on plasma concentrations of free amino acids and the intermediates of branched-chain amino acid (BCAA) metabolism were investigated in the rat. Training did not affect the plasma amino acid levels in the resting state. Plasma concentrations of alanine (Ala), aspartic acid (Asp), asparagine (Asn), arginine (Arg), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), and valine (Val) were significantly lower, whereas glutamate (Glu), glycine (Gly), ornithine (Orn), tryptophan (Trp), tyrosine (Tyr), creatinine, urea, and ammonia levels were unchanged, after one hour of treadmill running in the trained rats. Plasma concentration of glutamine (Glu), the branched-chain keto acids (BCKA) and short-chain acyl carnitines were elevated with exercise. Ratios of plasma BCAA/BCKA were dramatically lowered by exercise in the trained rats. A decrease in plasma-free carnitine levels was also observed. These data suggest that amino acid metabolism is enhanced by exercise even in the trained state. BCAA may only be partially metabolized within muscle and some of their carbon skeletons are released into the circulation in forms of BCKA and short-chain acyl carnitines.

  10. An Examination of the Carbon Isotope Effects Associated with Amino Acid Biosynthesis

    Science.gov (United States)

    Scott, James H.; O'Brien, Diane M.; Emerson, David; Sun, Henry; McDonald, Gene D.; Salgado, Antonio; Fogel, Marilyn L.

    2006-12-01

    Stable carbon isotope ratios (δ13C) were determined for alanine, proline, phenylalanine, valine, leucine, isoleucine, aspartate (aspartic acid and asparagine), glutamate (glutamic acid and glutamine), lysine, serine, glycine, and threonine from metabolically diverse microorganisms. The microorganisms examined included fermenting bacteria, organotrophic, chemolithotrophic, phototrophic, methylotrophic, methanogenic, acetogenic, acetotrophic, and naturally occurring cryptoendolithic communities from the Dry Valleys of Antarctica. Here we demonstrated that reactions involved in amino acid biosynthesis can be used to distinguish amino acids formed by life from those formed by nonbiological processes. The unique patterns of δ13C imprinted by life on amino acids produced a biological bias. We also showed that, by applying discriminant function analysis to the δ13C value of a pool of amino acids formed by biological activity, it was possible to identify key aspects of intermediary carbon metabolism in the microbial world. In fact, microorganisms examined in this study could be placed within one of three metabolic groups: (1) heterotrophs that grow by oxidizing compounds containing three or more carbon-to-carbon bonds (fermenters and organotrophs), (2) autotrophs that grow by taking up carbon dioxide (chemolitotrophs and phototrophs), and (3) acetoclastic microbes that grow by assimilation of formaldehyde or acetate (methylotrophs, methanogens, acetogens, and acetotrophs). Furthermore, we demonstrated that cryptoendolithic communities from Antarctica grouped most closely with the autotrophs, which indicates that the dominant metabolic pathways in these communities are likely those utilized for CO2 fixation. We propose that this technique can be used to determine the dominant metabolic types in a community and reveal the overall flow of carbon in a complex ecosystem.

  11. Systems chemistry of α-amino acids and peptides

    Directory of Open Access Journals (Sweden)

    Danger Grégoire

    2014-02-01

    Full Text Available Pathways have been disclosed in the past decade, which support the possibility that α-amino acids could have contributed to self-organization processes leading to the emergence of life. It is proposed that the systems chemistry of these simple building blocks may have led to features of self-organization through the realization of protometabolisms based on unidirectional loops involving both peptide formation and breakdown and additional feedback processes. Potential peptide activating agents have been identified. Scenarios of peptide elongation are proposed to account for peptide elongation both at the N-terminus and the C-terminus and new indications that these processes could be involved in symmetry breaking have been provided.

  12. Discovery of a novel amino acid racemase through exploration of natural variation in Arabidopsis thaliana

    Science.gov (United States)

    Strauch, Renee C.; Svedin, Elisabeth; Dilkes, Brian; Chapple, Clint; Li, Xu

    2015-01-01

    Plants produce diverse low-molecular-weight compounds via specialized metabolism. Discovery of the pathways underlying production of these metabolites is an important challenge for harnessing the huge chemical diversity and catalytic potential in the plant kingdom for human uses, but this effort is often encumbered by the necessity to initially identify compounds of interest or purify a catalyst involved in their synthesis. As an alternative approach, we have performed untargeted metabolite profiling and genome-wide association analysis on 440 natural accessions of Arabidopsis thaliana. This approach allowed us to establish genetic linkages between metabolites and genes. Investigation of one of the metabolite–gene associations led to the identification of N-malonyl-d-allo-isoleucine, and the discovery of a novel amino acid racemase involved in its biosynthesis. This finding provides, to our knowledge, the first functional characterization of a eukaryotic member of a large and widely conserved phenazine biosynthesis protein PhzF-like protein family. Unlike most of known eukaryotic amino acid racemases, the newly discovered enzyme does not require pyridoxal 5′-phosphate for its activity. This study thus identifies a new d-amino acid racemase gene family and advances our knowledge of plant d-amino acid metabolism that is currently largely unexplored. It also demonstrates that exploitation of natural metabolic variation by integrating metabolomics with genome-wide association is a powerful approach for functional genomics study of specialized metabolism. PMID:26324904

  13. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    Science.gov (United States)

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.

  14. Amino Acids Are an Ineffective Fertilizer for Dunaliella spp. Growth

    Directory of Open Access Journals (Sweden)

    Colin A. Murphree

    2017-05-01

    Full Text Available Autotrophic microalgae are a promising bioproducts platform. However, the fundamental requirements these organisms have for nitrogen fertilizer severely limit the impact and scale of their cultivation. As an alternative to inorganic fertilizers, we investigated the possibility of using amino acids from deconstructed biomass as a nitrogen source in the genus Dunaliella. We found that only four amino acids (glutamine, histidine, cysteine, and tryptophan rescue Dunaliella spp. growth in nitrogen depleted media, and that supplementation of these amino acids altered the metabolic profile of Dunaliella cells. Our investigations revealed that histidine is transported across the cell membrane, and that glutamine and cysteine are not transported. Rather, glutamine, cysteine, and tryptophan are degraded in solution by a set of oxidative chemical reactions, releasing ammonium that in turn supports growth. Utilization of biomass-derived amino acids is therefore not a suitable option unless additional amino acid nitrogen uptake is enabled through genetic modifications of these algae.

  15. Effect of Amino Acids on Morphology of Hydrothermally Synthesized Hydroxyapatite Fibers

    Directory of Open Access Journals (Sweden)

    QI Mei-li

    2017-05-01

    Full Text Available Based on the basic principle of biomineralization, hydroxyapatite fiber (HAF with high crystallinity was fabricated via a hydrothermal route with Ca(NO32·4H2O and (NH42HPO4 as the resources, respectively. Effects of the addition of acidic amino acid L-glutamic acid (Glu, neutral amino acid L-phenylalanine (Phe and basic amino acid L-lysine (Lys on the phase composition and morphology of the obtained products were laid special emphasis on. The results show that the products obtained by using the three amino acids are all hydroxyapatite (HA phase with minor CaCO3 in some samples. Meanwhile, all of the amino acids inhibit the growth of the fibers. Spherical morphology exists when Glu is added, the homogeneity of the fibers deteriorates with the addition of Lys. However, rod-like fibers with good uniformity can be obtained with the addition of Phe.

  16. Amino acid catabolism by Lactobacillus helveticus in cheese

    DEFF Research Database (Denmark)

    Kananen, Soila Kaarina

    Amino acid catabolism is the final step in the conversion of caseins to flavour compounds and a part of a complex combination of biochemical pathways in cheese flavour formation. Lactobacillus helveticus is a thermophilic lactic acid bacterium that is used in cheese manufacture as a primary starter...... culture or as an adjunct culture. It has shown high proteolytic activities in conversion of caseins to peptides and further to amino acids and flavour compounds. Better understanding of the enzyme activity properties and the influence of different properties on final cheese flavour is favourable...... for developing new cheese products with enhanced flavour. The aim of this Ph.D. study was to investigate the importance of strain variation of Lb. helveticus in relation flavour formation in cheese related to amino acid catabolism. Aspects of using Lb. helveticus as starter as well as adjunct culture in cheese...

  17. Reactivity of glycyl-amino acids toward hydroxyl radical in neutral aqueous solutions

    International Nuclear Information System (INIS)

    Masuda, Takahiro; Iwashita, Naomi; Shinohara, Hiroyuki; Kondo, Masaharu

    1978-01-01

    Rate constants for reactions of hydroxyl radicals with several glycyl-amino acids were determined by a competition method using p-nitrosodimethylailine as a reference compound. For glycyl-aliphatic amino acids, the enhancement of reactivity was observed as compared with the corresponding free amino acids. The reactivity was explained qualitatively in terms of partial reactivities assigned to each C-H bond of the dipeptides. For glycyl-aromatic amino acids, the rate constants were found to be almost equal to those of the corresponding free amino acids. The reactivity of a protein toward hydroxyl radical was well understood by summation of the rate constants, corrected by steric factors, of amino acid residues located on surface of the protein. The enhanced reactivity of the aliphatic peptides was interpreted in terms of the difference in interaction energy between NH 2 - and NH 3 + -forms of an aliphatic amino acid, which was calculated for the system including glycine and hydroxyl radical according to CNDO/2 method. (auth.)

  18. Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis.

    Science.gov (United States)

    Carroll, Bernadette; Korolchuk, Viktor I; Sarkar, Sovan

    2015-10-01

    Maintenance of amino acid homeostasis is important for healthy cellular function, metabolism and growth. Intracellular amino acid concentrations are dynamic; the high demand for protein synthesis must be met with constant dietary intake, followed by cellular influx, utilization and recycling of nutrients. Autophagy is a catabolic process via which superfluous or damaged proteins and organelles are delivered to the lysosome and degraded to release free amino acids into the cytoplasm. Furthermore, autophagy is specifically activated in response to amino acid starvation via two key signaling cascades: the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and the general control nonderepressible 2 (GCN2) pathways. These pathways are key regulators of the integration between anabolic (amino acid depleting) and catabolic (such as autophagy which is amino acid replenishing) processes to ensure intracellular amino acid homeostasis. Here, we discuss the key roles that amino acids, along with energy (ATP, glucose) and oxygen, are playing in cellular growth and proliferation. We further explore how sophisticated methods are employed by cells to sense intracellular amino acid concentrations, how amino acids can act as a switch to dictate the temporal and spatial activation of anabolic and catabolic processes and how autophagy contributes to the replenishment of free amino acids, all to ensure cell survival. Relevance of these molecular processes to cellular and organismal physiology and pathology is also discussed.

  19. Amino acid residues involved in ligand preference of the Snf3 transporter-like sensor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Dietvorst, J.; Karhumaa, Kaisa; Kielland-Brandt, Morten

    2010-01-01

    /preferences of Snf3. The ability of cells to sense sugars in vivo was monitored by following the degradation of the Mth1 protein, :ill earl., event ill the signal pathway. Our study reveals that Snf3. ill addition to glucose. also senses fructose and mannose, as well as the glucose analogues 2-deoxyglucose, 3-O......-methylglucoside and 6-deoxyglucose. The signalling proficiency of a non-phosphorylatable analogue strongly supports the notion that sensing through Snf3 does not require sugar phosphorylation. Sequence comparisons of Snf3 to glucose transporters indicated amino acid residues possibly involved in sensing of sugars other...... than glucose. By site-specific mutagenesis of the structural gene, roles of specific residues in Snf3 could he established. Change of isoleucine-374 to valine ill transmembrane segment 7 of Snf3 partially abolished sensing of fructose mannose. while mutagenesis causing it change of phenylalanine-462 (4...

  20. Effects of Long-Term Protein Restriction on Meat Quality, Muscle Amino Acids, and Amino Acid Transporters in Pigs.

    Science.gov (United States)

    Yin, Jie; Li, Yuying; Zhu, Xiaotong; Han, Hui; Ren, Wenkai; Chen, Shuai; Bin, Peng; Liu, Gang; Huang, Xingguo; Fang, Rejun; Wang, Bin; Wang, Kai; Sun, Liping; Li, Tiejun; Yin, Yulong

    2017-10-25

    This study aimed to investigate the long-term effects of protein restriction from piglets to finishing pigs for 16 weeks on meat quality, muscle amino acids, and amino acid transporters. Thirty-nine piglets were randomly divided into three groups: a control (20-18-16% crude protein, CP) and two protein restricted groups (17-15-13% CP and 14-12-10% CP). The results showed that severe protein restriction (14-12-10% CP) inhibited feed intake and body weight, while moderate protein restriction (17-15-13% CP) had little effect on growth performance in pigs. Meat quality (i.e., pH, color traits, marbling, water-holding capacity, and shearing force) were tested, and the results exhibited that 14-12-10% CP treatment markedly improved muscle marbling score and increased yellowness (b*). pH value (45 min) was significantly higher in 17-15-13% CP group than that in other groups. In addition, protein restriction reduced muscle histone, arginine, valine, and isoleucine abundances and enhanced glycine and lysine concentrations compared with the control group, while the RT-PCR results showed that protein restriction downregulated amino acids transporters. Mechanistic target of rapamycin (mTOR) signaling pathway was inactivated in the moderate protein restricted group (17-15-13% CP), while severe protein restriction with dietary 14-12-10% CP markedly enhanced mTOR phosphorylation. In conclusion, long-term protein restriction affected meat quality and muscle amino acid metabolism in pigs, which might be associated with mTOR signaling pathway.

  1. Volumetric studies of some amino acids in aqueous medium at different temperatures

    International Nuclear Information System (INIS)

    Jamal, M.A.; Iqbal, M.

    2011-01-01

    Apparent molar volume (fiV), partial molar volume (V/sup 0), solute-solute interaction parameter (Sv), partial molar expansivity (E/sub 0/) and isobaric thermal expansion co-efficient (a) of twelve amino acids namely, alanine, arginine, asparagine, glutamic acid, glycine, histidine, leucine, lysine HCl, proline, serine, threonine and valine in water have been calculated from the measured solution densities over a temperature range of 283.15 to 313.15 +- 0.01 K. The solution densities were measured by using electronic vibrating tube density meter at 283.15 to 313.15 K and then partial molar volume and expansivity were determined by using least square fit method. Amino acid-water interactions were interpreted in terms of partial molar volume, V/sup 0/ data with particular reference to structural features of solute molecules, such as hydrogen bonding, side group interactions etc. Salvations of amino acids were also described in terms of electrostrictive hydration at the charged ends whereas the intervening part of the molecule was believed to involve less strong interaction with the solvent. The behavior of these parameters has been used to investigate the solute-solute and solute-solvent interactions as well as the effect of temperature on these interactions. (author)

  2. Growth and clinical variables in nitrogen-restricted piglets fed an adjusted essential amino acid mix: Effects using free amino acid-based diets

    Science.gov (United States)

    Excess protein intake in early life has been linked to obesity and metabolic syndrome in later life. Yet, protein, and in particular the essential amino acids (EAA), need to be present in adequate quantity to support growth. Using a piglet model restricted in dietary amino acids (AA), our objective...

  3. Effect of amino acid-functionalized multi-walled carbon nanotubes ...

    Indian Academy of Sciences (India)

    In a single-step, rapid microwave-assisted process, multi-walled carbon nanotubes were functionalized by -valine amino acid. Formation of amino acid on nanotube surface was confirmed by Fourier transform-infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, field emission scanning and transmission ...

  4. Effect of gamma irradiation on the amino acid contents of seafood cooking drips

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Yeon Joo; Choi, Jong Il; Kim, Yun Joo; Kim, Jae Hun; Kim, Jin Kyu; Byun, Myung Woo; Kwon, Joong Ho; Ahn, Dong Hyun; Chun, Byung Soo

    2008-01-01

    In this study, the effects of gamma irradiation on the change of structural and free amino acids contents of cooking drips from Hizikia fusiformis (HF) and Enteroctopus dofleini (ED) were investigated. The main structural amino acids were glutamic acid in HF cooking drip, and glutamic acid, glycine, arginine and aspartic acid in ED cooking drip, respectively. The concentrations of structural amino acids in both cooking drip extracts were decreased by the gamma irradiation at the dose of 10 kGy. Especially, the sulfur-containing amino acids were severely degraded by the irradiation. In free amino acid, ED cooking drip extract was contained the larger amount of free amino acid than that of HF cooking drip affecting its rich flavor. The free amino acid concentrations of cooking drips extracts from HF and ED were both increased by irradiation, and it explained the higher protein content by the irradiation

  5. THE D-AMINO ACID CONTENT OF FOODSTUFFS SUBJECTED TO VARIOUS TECHNOLOGICAL PROCEDURES

    Directory of Open Access Journals (Sweden)

    János Csapó

    2000-06-01

    Full Text Available D-amino acids occurring in dietary proteins originate as a consequence of technological intervention while basic materials are being prepared for consumption. Foodstuffs are the most significant sources of D-amino acids, as in the process of cooking or during the various processing procedures used in the food industry dietary proteins undergo racemisation to a greater or lesser degree. Food stores are now selling increasing quantities of foods (such as breakfast cereals, baked potatoes, liquid and powdered infant foods, meat substitutes and other supplements which in some cases contain substantial quantities of D-amino acids, which in turn possess characteristics harmful with respect to digestion and health. Alkali treatment catalyses the racemisation of optically active amino acids. The degree of racemisation undergone varies from protein to protein, but the relative order of the degree of racemisation of the individual amino acids within proteins shows a high level of similarity. The principal factors influencing racemisation are the pH of the medium, heat treatment, the duration of the application of alkaline treatment and the structure of the respective amino acids. D-amino acids formed in the course of treatment with alkalis or heat give rise to a deterioration in quality and reduce the extent to which food thus treated can be used safely. The presence of D-amino acids in proteins leads to a decrease in digestibility and the availability of the other amino acids. This results in a reduction in the quantities of the L-enantiomers of the essential amino acids, as the peptide bonds cannot split in the normal way. Some D-amino acids can exert an isomer-toxic effect and have the capacity to give rise to changes in the biological effect of lysinoalanine.

  6. Saponification of esters of chiral alpha-amino acids anchored through their amine function on solid support.

    Science.gov (United States)

    Cantel, Sonia; Desgranges, Stéphane; Martinez, Jean; Fehrentz, Jean-Alain

    2004-06-01

    Anchoring an alpha-amino acid residue by its amine function onto a solid support is an alternative to develop chemistry on its carboxylic function. This strategy can involve the use of amino-acid esters as precursors of the carboxylic function. A complete study on the Wang-resin was performed to determine the non racemizing saponification conditions of anchored alpha-amino esters. The use of LiOH, NaOH, NaOSi(Me)3, various solvents and temperatures were tested for this reaction. After saponification and cleavage from the support, samples were examined through their Marfey's derivatives by reversed phase HPLC to evaluate the percentage of racemization.

  7. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors

    Science.gov (United States)

    Pal Choudhuri, Shreoshi; Delay, Rona J.; Delay, Eugene R.

    2015-01-01

    Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5’ ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5’ monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex. PMID:26110622

  8. Mapping the Hydropathy of Amino Acids Based on Their Local Solvation Structure

    KAUST Repository

    Bonella, S.

    2014-06-19

    In spite of its relevant biological role, no general consensus exists on the quantitative characterization of amino acid\\'s hydropathy. In particular, many hydrophobicity scales exist, often producing quite different rankings for the amino acids. To make progress toward a systematic classification, we analyze amino acids\\' hydropathy based on the orientation of water molecules at a given distance from them as computed from molecular dynamics simulations. In contrast with what is usually done, we argue that assigning a single number is not enough to characterize the properties of an amino acid, in particular when both hydrophobic and hydrophilic regions are present in a residue. Instead we show that appropriately defined conditional probability densities can be used to map the hydrophilic and hydrophobic groups on the amino acids with greater detail than possible with other available methods. Three indicators are then defined based on the features of these probabilities to quantify the specific hydrophobicity and hydrophilicity of each amino acid. The characterization that we propose can be used to understand some of the ambiguities in the ranking of amino acids in the current scales. The quantitative indicators can also be used in combination with standard bioinformatics tools to predict the location of transmembrane regions of proteins. The method is sensitive to the specific environment of the amino acids and can be applied to unnatural and modified amino acids, as well as to other small organic molecules. © 2014 American Chemical Society.

  9. Amino acid transporter expansions associated with the evolution of obligate endosymbiosis in sap-feeding insects (Hemiptera: sternorrhyncha).

    Science.gov (United States)

    Dahan, Romain A; Duncan, Rebecca P; Wilson, Alex C C; Dávalos, Liliana M

    2015-03-25

    Mutualistic obligate endosymbioses shape the evolution of endosymbiont genomes, but their impact on host genomes remains unclear. Insects of the sub-order Sternorrhyncha (Hemiptera) depend on bacterial endosymbionts for essential amino acids present at low abundances in their phloem-based diet. This obligate dependency has been proposed to explain why multiple amino acid transporter genes are maintained in the genomes of the insect hosts. We implemented phylogenetic comparative methods to test whether amino acid transporters have proliferated in sternorrhynchan genomes at rates grater than expected by chance. By applying a series of methods to reconcile gene and species trees, inferring the size of gene families in ancestral lineages, and simulating the null process of birth and death in multi-gene families, we uncovered a 10-fold increase in duplication rate in the AAAP family of amino acid transporters within Sternorrhyncha. This gene family expansion was unmatched in other closely related clades lacking endosymbionts that provide essential amino acids. Our findings support the influence of obligate endosymbioses on host genome evolution by both inferring significant expansions of gene families involved in symbiotic interactions, and discovering increases in the rate of duplication associated with multiple emergences of obligate symbiosis in Sternorrhyncha.

  10. Absolute quantitation of proteins by Acid hydrolysis combined with amino Acid detection by mass spectrometry

    DEFF Research Database (Denmark)

    Mirgorodskaya, Olga A; Körner, Roman; Kozmin, Yuri P

    2012-01-01

    Amino acid analysis is among the most accurate methods for absolute quantification of proteins and peptides. Here, we combine acid hydrolysis with the addition of isotopically labeled standard amino acids and analysis by mass spectrometry for accurate and sensitive protein quantitation...

  11. The intercorrelation of the amino acid quality between raw, steeped ...

    African Journals Online (AJOL)

    The total amino acid contents were: steeped [57.71 g/100 g crude protein (c.p.)], germinated (53.37 g/100 g c.p.) and raw (37.91 g/100 g c.p.) with respective essential amino acids of 30.70 g/100 g c.p., 28.33 g/100 g c.p. and 21.48 g/100 g c.p. Percentage cystine/total sulfur amino acid (% Cys/TSAA) trend was 72.0 ...

  12. Interaction study of amino acids and the peptide aspartame with lanthanide (III) ions

    International Nuclear Information System (INIS)

    Carubelli, C.R.

    1990-01-01

    The interactions between the Nd(III) ion with the amino acids L-aspartic acid, L-glutamic acid and L-histidine and the peptide aspartame in aqueous solution were studied. The study was conducted by means of electronic spectroscopy with the Judd-Ofelt formalism for transition intensity parameters calculations. Several coordination compounds involving Nd(III), Eu(III), and Tb(III) and the ligands L-histidine and aspartame were synthesized and characterized in the solid state. Mixed compounds involving Eu(III) and Tb(III) with the same ligands were synthesized and characterized also. The characterization were achieved by chemical analysis, melting points, vibrational spectroscopy (IR) and powder X-ray diffractometry. (author)

  13. Combined metabolomic and correlation networks analyses reveal fumarase insufficiency altered amino acid metabolism.

    Science.gov (United States)

    Hou, Entai; Li, Xian; Liu, Zerong; Zhang, Fuchang; Tian, Zhongmin

    2018-04-01

    Fumarase catalyzes the interconversion of fumarate and l-malate in the tricarboxylic acid cycle. Fumarase insufficiencies were associated with increased levels of fumarate, decreased levels of malate and exacerbated salt-induced hypertension. To gain insights into the metabolism profiles induced by fumarase insufficiency and identify key regulatory metabolites, we applied a GC-MS based metabolomics platform coupled with a network approach to analyze fumarase insufficient human umbilical vein endothelial cells (HUVEC) and negative controls. A total of 24 altered metabolites involved in seven metabolic pathways were identified as significantly altered, and enriched for the biological module of amino acids metabolism. In addition, Pearson correlation network analysis revealed that fumaric acid, l-malic acid, l-aspartic acid, glycine and l-glutamic acid were hub metabolites according to Pagerank based on their three centrality indices. Alanine aminotransferase and glutamate dehydrogenase activities increased significantly in fumarase deficiency HUVEC. These results confirmed that fumarase insufficiency altered amino acid metabolism. The combination of metabolomics and network methods would provide another perspective on expounding the molecular mechanism at metabolomics level. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition.

    Science.gov (United States)

    De Vendittis, Emmanuele; Castellano, Immacolata; Cotugno, Roberta; Ruocco, Maria Rosaria; Raimo, Gennaro; Masullo, Mariorosario

    2008-01-07

    The growth temperature adaptation of six model proteins has been studied in 42 microorganisms belonging to eubacterial and archaeal kingdoms, covering optimum growth temperatures from 7 to 103 degrees C. The selected proteins include three elongation factors involved in translation, the enzymes glyceraldehyde-3-phosphate dehydrogenase and superoxide dismutase, the cell division protein FtsZ. The common strategy of protein adaptation from cold to hot environments implies the occurrence of small changes in the amino acid composition, without altering the overall structure of the macromolecule. These continuous adjustments were investigated through parameters related to the amino acid composition of each protein. The average value per residue of mass, volume and accessible surface area allowed an evaluation of the usage of bulky residues, whereas the average hydrophobicity reflected that of hydrophobic residues. The specific proportion of bulky and hydrophobic residues in each protein almost linearly increased with the temperature of the host microorganism. This finding agrees with the structural and functional properties exhibited by proteins in differently adapted sources, thus explaining the great compactness or the high flexibility exhibited by (hyper)thermophilic or psychrophilic proteins, respectively. Indeed, heat-adapted proteins incline toward the usage of heavier-size and more hydrophobic residues with respect to mesophiles, whereas the cold-adapted macromolecules show the opposite behavior with a certain preference for smaller-size and less hydrophobic residues. An investigation on the different increase of bulky residues along with the growth temperature observed in the six model proteins suggests the relevance of the possible different role and/or structure organization played by protein domains. The significance of the linear correlations between growth temperature and parameters related to the amino acid composition improved when the analysis was

  15. Insulin-dependent signaling: regulation by amino acids and energy

    NARCIS (Netherlands)

    Meijer, A. J.

    2004-01-01

    Recent research has indicated that amino acids stimulate a signal-transduction pathway that is also used by insulin. Moreover, for insulin to exert its anabolic and anticatabolic effects on protein, there is an absolute requirement for amino acids. This signaling pathway becomes inhibited by

  16. Pre-staining thin layer chromatography method for amino acid ...

    African Journals Online (AJOL)

    Jane

    2010-12-13

    Dec 13, 2010 ... inexpensive and the results obtained were clean and reproducible. However, it is suitable for the high throughput screening of amino acid-producing strains. Key words: Thin layer chromatography, pre-staining, amino acid detection. INTRODUCTION. Several analytical techniques have been often used for.

  17. Unusual Amino Acids in Medicinal Chemistry.

    Science.gov (United States)

    Blaskovich, Mark A T

    2016-12-22

    Unusual amino acids are fundamental building blocks of modern medicinal chemistry. The combination of readily functionalized amine and carboxyl groups attached to a chiral central core along with one or two potentially diverse side chains provides a unique three-dimensional structure with a high degree of functionality. This makes them invaluable as starting materials for syntheses of complex molecules, highly diverse elements for SAR campaigns, integral components of peptidomimetic drugs, and potential drugs on their own. This Perspective highlights the diversity of unnatural amino acid structures found in hit-to-lead and lead optimization campaigns and clinical stage and approved drugs, reflecting their increasingly important role in medicinal chemistry.

  18. Thz Spectroscopy and DFT Modeling of Intermolecular Vibrations in Hydrophobic Amino Acids

    Science.gov (United States)

    Williams, michael R. C.; Aschaffenburg, Daniel J.; Schmuttenmaer, Charles A.

    2013-06-01

    Vibrations that involve intermolecular displacements occur in molecular crystals at frequencies in the 0.5-5 THz range (˜15-165 cm^{-1}), and these motions are direct indicators of the interaction potential between the molecules. The intermolecular potential energy surface of crystalline hydrophobic amino acids is inherently interesting simply because of the wide variety of forces (electrostatic, dipole-dipole, hydrogen-bonding, van der Waals) that are present. Furthermore, an understanding of these particular interactions is immediately relevant to important topics like protein conformation and pharmaceutical polymorphism. We measured the low-frequency absorption spectra of several polycrystalline hydrophobic amino acids using THz time-domain spectroscopy, and in addition we carried out DFT calculations using periodic boundary conditions and an exchange-correlation functional that accounts for van der Waals dispersion forces. We chose to investigate a series of similar amino acids with closely analogous unit cells (leucine, isoleucine, and allo-isoleucine, in racemic or pseudo-racemic mixtures). This allows us to consider trends in the vibrational spectra as a function of small changes in molecular arrangement and/or crystal geometry. In this way, we gain confidence that peak assignments are not based on serendipitous similarities between calculated and observed features.

  19. Changes in monosaccharides, organic acids and amino acids during Cabernet Sauvignon wine ageing based on a simultaneous analysis using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Zhang, Xin-Ke; Lan, Yi-Bin; Zhu, Bao-Qing; Xiang, Xiao-Feng; Duan, Chang-Qing; Shi, Ying

    2018-01-01

    Monosaccharides, organic acids and amino acids are the important flavour-related components in wines. The aim of this article is to develop and validate a method that could simultaneously analyse these compounds in wine based on silylation derivatisation and gas chromatography-mass spectrometry (GC-MS), and apply this method to the investigation of the changes of these compounds and speculate upon their related influences on Cabernet Sauvignon wine flavour during wine ageing. This work presented a new approach for wine analysis and provided more information concerning red wine ageing. This method could simultaneously quantitatively analyse 2 monosaccharides, 8 organic acids and 13 amino acids in wine. A validation experiment showed good linearity, sensitivity, reproducibility and recovery. Multiple derivatives of five amino acids have been found but their effects on quantitative analysis were negligible, except for methionine. The evolution pattern of each category was different, and we speculated that the corresponding mechanisms involving microorganism activities, physical interactions and chemical reactions had a great correlation with red wine flavours during ageing. Simultaneously quantitative analysis of monosaccharides, organic acids and amino acids in wine was feasible and reliable and this method has extensive application prospects. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Kinetics of Oxidation of Some Amino Acids by N-Chlorosaccharin in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2004-01-01

    Full Text Available The kinetics of oxidation of some amino acids namely, glycine, alanine, aspartic acid, arginine, and histidine, (AA by N-chlorosaccharin (NCSA in aqueous acetic acid medium in the presence of perchloric acid have been investigated. The observed rate of oxidation is first order in [AA], [NCSA] and of inverse fractional order in [H+]. The main product of the oxidation is the corresponding aldehyde. The ionic strength on the reaction rate has no significant effect. The effect of changing the dielectric constant of the medium on the rate indicates the reaction to be of dipole-dipole type. Hypochlorous acid has been postulated as the reactive oxidizing species. The reaction constants involved in the mechanism are derived. The activation parameters are computed with respect to slow step of the mechanism.

  1. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  2. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    Science.gov (United States)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  3. Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis

    Science.gov (United States)

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  4. Boron stress activates the general amino acid control mechanism and inhibits protein synthesis.

    Directory of Open Access Journals (Sweden)

    Irem Uluisik

    Full Text Available Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance.

  5. Ultrasound-assisted extraction of amino acids from grapes.

    Science.gov (United States)

    Carrera, Ceferino; Ruiz-Rodríguez, Ana; Palma, Miguel; Barroso, Carmelo G

    2015-01-01

    Recent cultivar techniques on vineyards can have a marked influence on the final nitrogen content of grapes, specifically individual amino acid contents. Furthermore, individual amino acid contents in grapes are related to the final aromatic composition of wines. A new ultrasound-assisted method for the extraction of amino acids from grapes has been developed. Several extraction variables, including solvent (water/ethanol mixtures), solvent pH (2-7), temperature (10-70°C), ultrasonic power (20-70%) and ultrasonic frequency (0.2-1.0s(-)(1)), were optimized to guarantee full recovery of the amino acids from grapes. An experimental design was employed to optimize the extraction parameters. The surface response methodology was used to evaluate the effects of the extraction variables. The analytical properties of the new method were established, including limit of detection (average value 1.4mmolkg(-)(1)), limit of quantification (average value 2.6mmolkg(-)(1)), repeatability (average RSD=12.9%) and reproducibility (average RSD=15.7%). Finally, the new method was applied to three cultivars of white grape throughout the ripening period. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Science.gov (United States)

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques. PMID:28348303

  7. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  8. Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics.

    Science.gov (United States)

    Mu, Chunlong; Yang, Yuxiang; Yu, Kaifan; Yu, Miao; Zhang, Chuanjian; Su, Yong; Zhu, Weiyun

    2017-04-01

    In-feed antibiotics have been used to promote growth in piglets, but its impact on metabolomics profiles associated with host metabolism is largely unknown. In this study, to test the hypothesis that antibiotic treatment may affect metabolite composition both in the gut and host biofluids, metabolomics profiles were analyzed in antibiotic-treated piglets. Piglets were fed a corn-soy basal diet with or without in-feed antibiotics from postnatal day 7 to day 42. The serum biochemical parameters, metabolomics profiles of the serum, urine, and jejunal digesta, and indicators of microbial metabolism (short-chain fatty acids and biogenic amines) were analyzed. Compared to the control group, antibiotics treatment did not have significant effects on serum biochemical parameters except that it increased (P Antibiotics treatment increased the relative concentrations of metabolites involved in amino-acid metabolism in the serum, while decreased the relative concentrations of most amino acids in the jejunal content. Antibiotics reduced urinary 2-ketoisocaproate and hippurate. Furthermore, antibiotics decreased (P Antibiotics significantly affected the concentrations of biogenic amines, which are derived from microbial amino-acid metabolism. The three major amines, putrescine, cadaverine, and spermidine, were all increased (P antibiotics-treated piglets. These results identified the phenomena that in-feed antibiotics may have significant impact on the metabolomic markers of amino-acid metabolism in piglets.

  9. Behavior of /sup 15/N-labelled amino acids in germinated corn

    Energy Technology Data Exchange (ETDEWEB)

    Samukawa, K; Yamaguchi, M [Osaka Prefectural Univ., Sakai (Japan). Coll. of Agriculture

    1979-06-01

    By investigating the rise and fall of /sup 15/N-labelled amino acids in germinated corns, the behavior of amino radicals in free amino acids, the influence of the hydrolysis products of stored proteins on free amino acids and the change from heterotrophy to autotrophy of seeds were clarified. The amount of amino acid production depending on external nitrogen was very small in the early period of germination. /sup 15/N incorporation into proline was not observed in the early period of germination, which suggested that the proline may be nitrogen-storing source. Most of the amino-state nitrogen of asparagine accumulated at the time of germination was internal nitrogen, and this fact suggested that aspartic acid serve as the acceptor of ammonia produced in the early stage of germination. /sup 15/N content increased significantly on 9 th day after germination, and decreased on 12 th day. These facts prove that there are always active decomposition and production of protein in plant body.

  10. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.

    Science.gov (United States)

    Xu, Chen; Hu, Xin; Wang, Jie; Zhang, Ye-Min; Liu, Xiao-Jiu; Xie, Bin-Bin; Yao, Chen; Li, Yi; Li, Xin-Song

    2015-08-12

    Biofouling is of great concern in numerous applications ranging from ophthalmological implants to catheters, and from bioseparation to biosensors. In this report, a general and facile strategy to combat surface fouling is developed by grafting of amino acids onto polymer substrates to form zwitterionic structure through amino groups induced epoxy ring opening click reaction. First of all, a library of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) hydrogels with zwitterionic surfaces were prepared, resulting in the formation of pairs of carboxyl anions and protonated secondary amino cations. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of amino acids on the hydrogel surfaces. After that, the contact angle and equilibrium water content of the modified hydrogels showed that the hydrogels exhibited improved hydrophilicity compared with the parent hydrogel. Furthermore, the protein deposition was evaluated by bicinchoninic acid assay using bovine serum albumin (BSA) and lysozyme as models. The results indicated that the performance of the hydrogels was determined by the nature of incorporated amino acid: the hydrogels incorporated with neutral amino acids had nonspecific antiadsorption capability to both BSA and lysozyme; the hydrogels incorporated with charged amino acids showed antiadsorption behaviors against protein with same charge and enhanced adsorption to the protein with opposite charge; the optimal antiadsorption performance was observed on the hydrogels incorporated with polar amino acids with a hydroxyl residual. The improvement of antiprotein fouling of the neutral amino acids grafted hydrogels can be ascribed to the formation of zwitterionic surfaces. Finally, a couple of soft contact lenses grafted with amino acids were fabricated having improved antifouling property and hydrophilicity. The result demonstrated the success of

  11. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

    Science.gov (United States)

    Dokmanić, Ivan; Sikić, Mile; Tomić, Sanja

    2008-03-01

    Metal ions are constituents of many metalloproteins, in which they have either catalytic (metalloenzymes) or structural functions. In this work, the characteristics of various metals were studied (Cu, Zn, Mg, Mn, Fe, Co, Ni, Cd and Ca in proteins with known crystal structure) as well as the specificity of their environments. The analysis was performed on two data sets: the set of protein structures in the Protein Data Bank (PDB) determined with resolution metal ion and its electron donors and the latter was used to assess the preferred coordination numbers and common combinations of amino-acid residues in the neighbourhood of each metal. Although the metal ions considered predominantly had a valence of two, their preferred coordination number and the type of amino-acid residues that participate in the coordination differed significantly from one metal ion to the next. This study concentrates on finding the specificities of a metal-ion environment, namely the distribution of coordination numbers and the amino-acid residue types that frequently take part in coordination. Furthermore, the correlation between the coordination number and the occurrence of certain amino-acid residues (quartets and triplets) in a metal-ion coordination sphere was analysed. The results obtained are of particular value for the identification and modelling of metal-binding sites in protein structures derived by homology modelling. Knowledge of the geometry and characteristics of the metal-binding sites in metalloproteins of known function can help to more closely determine the biological activity of proteins of unknown function and to aid in design of proteins with specific affinity for certain metals.

  12. Telluro amino acids-synthesis, characterization and properties of a new and potentially useful class of compounds

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.

    1978-01-01

    The Te-123m nuclide emits 159 keV photons suggesting that agents labeled with this nuclide would be attractive candidates for tissue imaging. Amino acids labeled with Te-123m are of particular interest since some of these compounds would be isosteric with the sulfur analogs and might behave similarly in vivo. Such agents could possibly be useful for pancreatic imaging and for other biomedical applications. The goal of this investigation was to develop a general chemical method for the preparation of telluro amino acids. Attempts by other workers to prepare such compounds by microbiological methods have been unsuccessful. Since telluro amino acids were unknown prior to our studies we attempted the synthesis of a representative member of this class of compounds by several routes. Two general approaches were considered which involved either the introduction of an (organo telluro) reagent into a substrate that contained the protected -CH(NH 2 )COOH moiety or introduction of the reagent into a substrate that could subsequently be converted to the α-amino acid after the coupling step

  13. Analysis of amino acid and codon usage in Paramecium bursaria.

    Science.gov (United States)

    Dohra, Hideo; Fujishima, Masahiro; Suzuki, Haruo

    2015-10-07

    The ciliate Paramecium bursaria harbors the green-alga Chlorella symbionts. We reassembled the P. bursaria transcriptome to minimize falsely fused transcripts, and investigated amino acid and codon usage using the transcriptome data. Surface proteins preferentially use smaller amino acid residues like cysteine. Unusual synonymous codon and amino acid usage in highly expressed genes can reflect a balance between translational selection and other factors. A correlation of gene expression level with synonymous codon or amino acid usage is emphasized in genes down-regulated in symbiont-bearing cells compared to symbiont-free cells. Our results imply that the selection is associated with P. bursaria-Chlorella symbiosis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Amino acids production focusing on fermentation technologies – A review

    DEFF Research Database (Denmark)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    2018-01-01

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives...... an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium...... glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although...

  15. The Role of Amino Acids in Gluconeogenesis in Lactating Ruminants

    Energy Technology Data Exchange (ETDEWEB)

    Black, A. L.; Egan, A. R.; Anand, R. S.; Chapman, T. E. [Department of Physiological Sciences, School of Veterinary Medicine, University of California, Davis, CA (United States)

    1968-07-01

    Gluconeogenesis has an important metabolic role in all animals, but it is especially important in ruminants because of the paucity of their alimentary glucose. Several amino acids give rise to glucogenic precursors during metabolism and thus dietary or body protein represents an important source of potential glucogenic material that the ruminant can utilize to manufacture the glucose required for its physiological functions. The role of various amino acids as glucose precursors has been evaluated in lactating ruminants by making a single intravenous injection of several different amino acids uniformly labelled with {sup 14}C and following, with time, the rate and extent of incorporation of {sup 14}C into the plasma glucose. The time interval after injecting each {sup 14}C-amino acid until the specific activity maximum occurred in plasma glucose was found to vary widely among the different amino acids. Thus, the maximum specific activity in plasma glucose occurred 6 min after injection of L-aspartate-{sup 14}C and 15 min after injection of L-glutamate- {sup 14}C, while for L-valine-{sup 14}C and L-arginine-{sup 14}C the maximum specific activity in plasma glucose did not occur until 45 and 90 min, respectively, had elapsed. After injection of L-serine and L-alanine there were several maxima in the glucose specific activity. These maxima occurred between 12 and 24 min after injection of serine and during the first 30 min after injection of alanine indicating that carbon from these amino acids becomes available for glucose synthesis along diverse pathways which have different delays. Although only a few amino acids have been studied, the experimental results obtained clearly suggest an important metabolic role for protein in ruminants which has previously not been recognized. It appears that amino acids, released from protein, are utilized by the animal in a fashion which results in a prolonged availability of glucogenic precursors so that the animal can form glucose

  16. Dietary amino acids fed in free form or as protein do differently affect amino acid absorption in a rat everted sac model

    NARCIS (Netherlands)

    Nolles, J.A.; Peeters, I.G.S.; Bremer, B.I.; Moorman, R.; Koopmanschap, R.E.; Verstegen, M.W.A.; Schreurs, V.V.A.M.

    2008-01-01

    In the present study, the effect of free amino acid (FAA) diets on the intestinal absorption rate of methionine and leucine was studied 'ex vivo' with rats adapted for different periods of time to the diets, using the everted sac method. The adaptation period to the 21% FAA diet with an amino acid

  17. Evolution of proteomes: fundamental signatures and global trends in amino acid compositions

    Directory of Open Access Journals (Sweden)

    Yeramian Edouard

    2006-12-01

    Full Text Available Abstract Background The evolutionary characterization of species and lifestyles at global levels is nowadays a subject of considerable interest, particularly with the availability of many complete genomes. Are there specific properties associated with lifestyles and phylogenies? What are the underlying evolutionary trends? One of the simplest analyses to address such questions concerns characterization of proteomes at the amino acids composition level. Results In this work, amino acid compositions of a large set of 208 proteomes, with significant number of representatives from the three phylogenetic domains and different lifestyles are analyzed, resorting to an appropriate multidimensional method: Correspondence analysis. The analysis reveals striking discrimination between eukaryotes, prokaryotic mesophiles and hyperthemophiles-themophiles, following amino acid usage. In sharp contrast, no similar discrimination is observed for psychrophiles. The observed distributional properties are compared with various inferred chronologies for the recruitment of amino acids into the genetic code. Such comparisons reveal correlations between the observed segregations of species following amino acid usage, and the separation of amino acids following early or late recruitment. Conclusion A simple description of proteomes according to amino acid compositions reveals striking signatures, with sharp segregations or on the contrary non-discriminations following phylogenies and lifestyles. The distribution of species, following amino acid usage, exhibits a discrimination between [high GC]-[high optimal growth temperatures] and [low GC]-[moderate temperatures] characteristics. This discrimination appears to coincide closely with the separation of amino acids following their inferred early or late recruitment into the genetic code. Taken together the various results provide a consistent picture for the evolution of proteomes, in terms of amino acid usage.

  18. Generation of deviation parameters for amino acid singlets, doublets ...

    Indian Academy of Sciences (India)

    We present a new method, secondary structure prediction by deviation parameter (SSPDP) for predicting the secondary structure of proteins from amino acid sequence. Deviation parameters (DP) for amino acid singlets, doublets and triplets were computed with respect to secondary structural elements of proteins based on ...

  19. Mechanisms of amino acid sensing in mTOR signaling pathway

    OpenAIRE

    Kim, Eunjung

    2009-01-01

    Amino acids are fundamental nutrients for protein synthesis and cell growth (increase in cell size). Recently, many compelling evidences have shown that the level of amino acids is sensed by extra- or intra-cellular amino acids sensor(s) and regulates protein synthesis/degradation. Mammalian target of rapamycin complex 1 (mTORC1) is placed in a central position in cell growth regulation and dysregulation of mTOR signaling pathway has been implicated in many serious human diseases including ca...

  20. Amino acid starvation has opposite effects on mitochondrial and cytosolic protein synthesis.

    Directory of Open Access Journals (Sweden)

    Mark A Johnson

    Full Text Available Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary, we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of inhibiting nutrient-demanding anabolism that drives cellular proliferation.

  1. substantiation of the standards for tritium amino acids intake by human organism

    International Nuclear Information System (INIS)

    Zhesko, T.V.; Balonov, M.I.

    1984-01-01

    Calculated values of β-irradiation tissue doses of bound tritium and tritium oxide absorbed by animals treated with different amino acids are given. The obtained dose values are compared with tritium water doses. The data obtained in animal studies are extrapolated to man in order to determine the dose equivalent to the incorporated 3 H-amino acids dose. It is assumed that the dose equivalent to 3 H-amino acids radiation is three times as high as the equivalent amount of tritium oxide. 9 mCi/yr is established as the maximum allowable blood intake of 3 H-amino acids. Due to their metabolic characteristics, air permissible concentrations of 3 H-amino acids and tritium oxide have approximately the same values. The value of 30 nCi/cm 2 is recommended as a standard for work clothing contamination with 3 H-amino acids

  2. Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties.

    Science.gov (United States)

    Fonseca, Ana C; Coelho, Jorge F J; Valente, Joana F A; Correia, Tiago R; Correia, Ilídio J; Gil, Maria H; Simões, Pedro N

    2013-01-01

    Novel biodegradable and low cytotoxic poly(ester amide)s (PEAs) based on α-amino acids and (L)-lactic acid (L-LA) oligomers were successfully synthesized by interfacial polymerization. The chemical structure of the new polymers was confirmed by spectroscopic analyses. Further characterization suggests that the α-amino acid plays a critical role on the final properties of the PEA. L-phenylalanine provides PEAs with higher glass transition temperature, whereas glycine enhances the crystallinity. The hydrolytic degradation in PBS (pH = 7.4) at 37 °C also depends on the α-amino acid, being faster for glycine-based PEAs. The cytotoxic profiles using fibroblast human cells indicate that the PEAs did not elicit an acute cytotoxic effect. The strategy presented in this work opens the possibility of synthesizing biodegradable PEAs with low citotoxicity by an easy and fast method. It is worth to mention also that the properties of these materials can be fine-tuned only by changing the α-amino acid.

  3. Metabonomics and its role in amino acid nutrition research.

    Science.gov (United States)

    He, Qinghua; Yin, Yulong; Zhao, Feng; Kong, Xiangfeng; Wu, Guoyao; Ren, Pingping

    2011-06-01

    Metabonomics combines metabolic profiling and multivariate data analysis to facilitate the high-throughput analysis of metabolites in biological samples. This technique has been developed as a powerful analytical tool and hence has found successful widespread applications in many areas of bioscience. Metabonomics has also become an important part of systems biology. As a sensitive and powerful method, metabonomics can quantitatively measure subtle dynamic perturbations of metabolic pathways in organisms due to changes in pathophysiological, nutritional, and epigenetic states. Therefore, metabonomics holds great promise to enhance our understanding of the complex relationship between amino acids and metabolism to define the roles for dietary amino acids in maintaining health and the development of disease. Such a technique also aids in the studies of functions, metabolic regulation, safety, and individualized requirements of amino acids. Here, we highlight the common workflow of metabonomics and some of the applications to amino acid nutrition research to illustrate the great potential of this exciting new frontier in bioscience.

  4. Amino Acid Enantiomeric Ratios in Biogeochemistry: Complications and Opportunities

    Science.gov (United States)

    McDonald, G. D.; Sun, H. J.; Tsapin, A. I.

    2003-12-01

    Amino acid enantiomeric ratios have been used for many years as an indicator of the process of racemization, and thus as a method to determine the age of biological samples such as bones, shells, and teeth. Dating biological samples by this method relies on an accurate knowledge of the environmental temperatures the sample has experienced, and the racemization kinetic parameters in the sample matrix. In some environments, where an independent dating method such as radiocarbon is available, the observed amino acid D/L ratios are found to be either higher or lower than those expected due to racemization alone. The observed D/L ratios in these cases can be clues to biogeochemical processes operating in addition to, or in place of, chemical racemization. In Siberian permafrost (Brinton et al. 2002, Astrobiology 2, 77) we have found D/L ratios lower than expected, which we have interpreted as evidence for low-level D-amino acid metabolism and recycling in microorganisms previously thought to be metabolically dormant. In microbially-colonized Antarctic Dry Valley sandstones (McDonald and Sun 2002, Eos Trans. AGU 83, Fall Meet. Suppl., Abstract B11A-0720) we have found D/L ratios higher than can be accounted for by racemization alone, most likely due to the accumulation of D-amino-acid-containing peptidoglycan material from multiple bacterial generations. D/L profiles in polar ices and in ice-covered lakes (Tsapin et al. 2002, Astrobiology 2, 632) can be used to indicate the sources and histories of water or ice samples. Multiple biological and biogeochemical processes may complicate the interpretation of amino acid enantiomeric excesses in both terrestrial and extraterrestrial samples; however, amino acid racemization remains a useful tool in biogeochemistry and astrobiology. With a good knowledge of the environmental history of samples, amino acid D/L profiles can be used as a window into processes such as molecular repair and biomass turnover that are difficult to

  5. Laser-based optical activity detection of amino acids and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Reitsma, B.H.

    1987-01-01

    The optical activity detector (OAD) for HPLC is a selective detector for optically active substances including amino acids and proteins. This study illustrates the use of the OAD in three related areas. Section I illustrates the separation of four free amino acids using cation-exchange chromatography. Detection by coupling the OAD to a refractive index detector (RI) for proline and threonine and the OAD to an ultraviolet absorbance detector (UV) for tyrosine and phenylalanine allows the calculation of enantiomeric (D/L) ratios of these amino acids without physical separation. Specific rotations of these four amino acids are also reported. Section II illustrates the separation of 16 dansyl-L-amino acids by RP-HPLC with detection by OA/UV. Section III illustrates the RP-HPLC separation of conformers of soybean trypsin inhibitor. Detection by OA/UV provides insights from the chromatogram unavailable for UV absorbance detection alone. In addition, identification of impurities is simplified with OA/UV. Specific rotations of the separated protein fractions show no significant change accompanying change in conformation.

  6. Influence of irradiation on protein and amino acids in laboratory rodent diet

    International Nuclear Information System (INIS)

    Ford, D.J.

    1979-01-01

    The effect of irradiation treatment on the protein quality and constituent amino acids of laboratory rodent diets is reviewed and compared with other methods of sterilization - autoclaving and ethylene oxide fumigation. Gamma irradiation has been shown to have minimal influence on total protein, protein quality and total and available amino acid levels. Autoclaving reduces amino acid availability and consequently protein quality. Limited evidence shows reduction of certain available amino acids following ethylene oxide fumigation. (author)

  7. Influence of nitrogen sources on amino acid production by aspergillus niger

    International Nuclear Information System (INIS)

    Almani, F.; Dahot, M.U.

    2007-01-01

    The effect of different organic and inorganic nitrogen sources in 0.1% and 0.2% concentration on the production of amino acid was studied using a wild strain of Aspergillus niger. The rate of amino acid biosynthesis was found to be higher when 0.2% corn steep liquor was incorporated in the mineral medium. It was concluded from the study that the amino acid synthesis by wild strain depends not only on the nature and type of nitrogen sources used but the concentration of nitrogen source also play an important in the accumulation of free amino acids in the medium. (author)

  8. Review: Taurine: A “very essential” amino acid

    Science.gov (United States)

    Shen, Wen

    2012-01-01

    Taurine is an organic osmolyte involved in cell volume regulation, and provides a substrate for the formation of bile salts. It plays a role in the modulation of intracellular free calcium concentration, and although it is one of the few amino acids not incorporated into proteins, taurine is one of the most abundant amino acids in the brain, retina, muscle tissue, and organs throughout the body. Taurine serves a wide variety of functions in the central nervous system, from development to cytoprotection, and taurine deficiency is associated with cardiomyopathy, renal dysfunction, developmental abnormalities, and severe damage to retinal neurons. All ocular tissues contain taurine, and quantitative analysis of ocular tissue extracts of the rat eye revealed that taurine was the most abundant amino acid in the retina, vitreous, lens, cornea, iris, and ciliary body. In the retina, taurine is critical for photoreceptor development and acts as a cytoprotectant against stress-related neuronal damage and other pathological conditions. Despite its many functional properties, however, the cellular and biochemical mechanisms mediating the actions of taurine are not fully known. Nevertheless, considering its broad distribution, its many cytoprotective attributes, and its functional significance in cell development, nutrition, and survival, taurine is undoubtedly one of the most essential substances in the body. Interestingly, taurine satisfies many of the criteria considered essential for inclusion in the inventory of neurotransmitters, but evidence of a taurine-specific receptor has yet to be identified in the vertebrate nervous system. In this report, we present a broad overview of the functional properties of taurine, some of the consequences of taurine deficiency, and the results of studies in animal models suggesting that taurine may play a therapeutic role in the management of epilepsy and diabetes. PMID:23170060

  9. Novel male-biased expression in paralogs of the aphid slimfast nutrient amino acid transporter expansion

    Directory of Open Access Journals (Sweden)

    Nathanson Lubov

    2011-09-01

    Full Text Available Abstract Background A major goal of molecular evolutionary biology is to understand the fate and consequences of duplicated genes. In this context, aphids are intriguing because the newly sequenced pea aphid genome harbors an extraordinary number of lineage-specific gene duplications relative to other insect genomes. Though many of their duplicated genes may be involved in their complex life cycle, duplications in nutrient amino acid transporters appear to be associated rather with their essential amino acid poor diet and the intracellular symbiosis aphids rely on to compensate for dietary deficits. Past work has shown that some duplicated amino acid transporters are highly expressed in the specialized cells housing the symbionts, including a paralog of an aphid-specific expansion homologous to the Drosophila gene slimfast. Previous data provide evidence that these bacteriocyte-expressed transporters mediate amino acid exchange between aphids and their symbionts. Results We report that some nutrient amino acid transporters show male-biased expression. Male-biased expression characterizes three paralogs in the aphid-specific slimfast expansion, and the male-biased expression is conserved across two aphid species for at least two paralogs. One of the male-biased paralogs has additionally experienced an accelerated rate of non-synonymous substitutions. Conclusions This is the first study to document male-biased slimfast expression. Our data suggest that the male-biased aphid slimfast paralogs diverged from their ancestral function to fill a functional role in males. Furthermore, our results provide evidence that members of the slimfast expansion are maintained in the aphid genome not only for the previously hypothesized role in mediating amino acid exchange between the symbiotic partners, but also for sex-specific roles.

  10. Effects of 20 standard amino acids on the growth, total fatty acids production, and γ-linolenic acid yield in Mucor circinelloides.

    Science.gov (United States)

    Tang, Xin; Zhang, Huaiyuan; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2014-12-01

    Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.

  11. Uptake and conversion of D-amino acids in Arabidopsis thaliana.

    Science.gov (United States)

    Gördes, Dirk; Kolukisaoglu, Üner; Thurow, Kerstin

    2011-02-01

    The D-enantiomers of proteinogenic amino acids fulfill essential functions in bacteria, fungi and animals. Just in the plant kingdom, the metabolism and role of D-amino acids (D-AAs) still remains unclear, although plants have to cope with significant amounts of these compounds from microbial decay in the rhizosphere. To fill this gap of knowledge, we tested the inhibitory effects of D-AAs on plant growth and established a method to quantitate 16 out of 19 proteinogenic amino acids and their D-enantiomers in plant tissue extracts. Therefore, the amino acids in the extracts were derivatized with Marfey's reagent and separated by HPLC-MS. We used two ecotypes (Col-0 and C24) and a mutant (lht1) of the model plant Arabidopsis thaliana to determine the influence and fate of exogenously applied D-AAs. All of them were found in high concentrations in the plant extracts after application, even in lht1, which points to additional transporters facilitating the import of D-AAs. The addition of particular amino acids (D-Trp, D-Phe, D-Met and D-His) led to the accumulation of the corresponding L-amino acid. In almost all cases, the application of a D-AA resulted in the accumulation of D-Ala and D-Glu. The presented results indicate that soil borne D-AAs can actively be taken up and metabolized via central metabolic routes.

  12. Serum amino acid abnormalities in pediatric patients with chronic ...

    African Journals Online (AJOL)

    Background: Plasma amino acid concentrations have been reported to be abnormal in patients with chronic renal failure. L-Arginine has been used to improve endothelial function by increasing nitric oxide (NO) bioavailability. The present study aim at investigating the status of plasma amino acids in pediatric patients with ...

  13. Evolution of the biosynthesis of the branched-chain amino acids

    Science.gov (United States)

    Keefe, Anthony D.; Lazcano, Antonio; Miller, Stanley L.

    1995-01-01

    The origins of the biosynthetic pathways for the branched-chain amino acids cannot be understood in terms of the backwards development of the present acetolactate pathway because it contains unstable intermediates. We propose that the first biosynthesis of the branched-chain amino acids was by the reductive carboxylation of short branched chain fatty acids giving keto acids which were then transaminated. Similar reaction sequences mediated by nonspecific enzymes would produce serine and threomine from the abundant prebiotic compounds glycolic and lactic acids. The aromatic amino acids may also have first been synthesized in this way, e.g. tryptophan from indole acetic acid. The next step would have been the biosynthesis of leucine from alpha-ketoisovalerc acid. The acetolactate pathway developed subsequently. The first version of the Krebs cycle, which was used for amino acid biosynthesis, would have been assembled by making use fo the reductive carboxylation and leucine biosynthesis enzymes, and completed with the development of a single new enzyme, succinate dehydrogenase. This evolutionary scheme suggests that there may be limitations to inferring the origins of metabolism by a simple back extrapolation of current pathways.

  14. A molecular rotor based ratiometric sensor for basic amino acids.

    Science.gov (United States)

    Pettiwala, Aafrin M; Singh, Prabhat K

    2018-01-05

    The inevitable importance of basic amino acids, arginine and lysine, in human health and metabolism demands construction of efficient sensor systems for them. However, there are only limited reports on the 'ratiometric' detection of basic amino acids which is further restricted by the use of chemically complex sensor molecules, which impedes their prospect for practical applications. Herein, we report a ratiometric sensor system build on simple mechanism of disassociation of novel emissive Thioflavin-T H-aggregates from heparin surface, when subjected to interaction with basic amino acids. The strong and selective electrostatic and hydrogen bonding interaction of basic amino acids with heparin leads to large alteration in photophysical attributes of heparin bound Thioflavin-T, which forms a highly sensitive sensor platform for detection of basic amino acids in aqueous solution. These selective interactions between basic amino acids and heparin allow our sensor system to discriminate arginine and lysine from other amino acids. This unique mechanism of dissociation of Thioflavin-T aggregates from heparin surface provides ratiometric response on both fluorimetric and colorimetric outputs for detection of arginine and lysine, and thus it holds a significant advantage over other developed sensor systems which are restricted to single wavelength detection. Apart from the sensitivity and selectivity, our system also provides the advantage of simplicity, dual mode of sensing, and more importantly, it employs an inexpensive commercially available probe molecule, which is a significant advantage over other developed sensor systems that uses tedious synthesis protocol for the employed probe in the detection scheme, an impediment for practical applications. Additionally, our sensor system also shows response in complex biological media of serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Rigid nonproteinogenic cyclic amino acids as ligands for glutamate receptors: trans-tris(homoglutamic) acids

    DEFF Research Database (Denmark)

    Meyer, Udo; Bisel, Philippe; Bräuner-Osborne, Hans

    2005-01-01

    The second-generation asymmetric synthesis of the trans-tris(homoglutamic) acids reported herein proceeds via Strecker reaction of chiral ketimines, obtained from condensation of racemic 2-ethoxycarbonylmethylcyclopentanone and commercially available (S)- and (R)-1-phenylethylamine, respectively......) yielded diastereomeric mixtures of secondary alpha-amino amido-esters, which after separation were hydrogenolyzed and hydrolyzed each to the enantiomeric trans-1-amino-2-carboxymethylcyclopentanecarboxylic acids. Their configuration was completely established by NMR methods, CD spectra, and X-ray analysis...... of the trans-1S,2R-configured secondary alpha-amino amido-ester. In receptor binding assays and functional tests, trans-1S,2R-1-amino-2-carboxymethylcyclopentanecarboxylic acid hydrochloride was found to behave as a selective mGluR(2)-antagonist without relevant binding properties at iGluRs....

  16. D:L-AMINO Acids and the Turnover of Microbial Biomass

    Science.gov (United States)

    Lomstein, B. A.; Braun, S.; Mhatre, S. S.; Jørgensen, B. B.

    2015-12-01

    Decades of ocean drilling have demonstrated wide spread microbial life in deep sub-seafloor sediment, and surprisingly high microbial cell numbers. Despite the ubiquity of life in the deep biosphere, the large community sizes and the low energy fluxes in the vast buried ecosystem are still poorly understood. It is not know whether organisms of the deep biosphere are specifically adapted to extremely low energy fluxes or whether most of the observed cells are in a maintenance state. Recently we developed and applied a new culture independent approach - the D:L-amino acid model - to quantify the turnover times of living microbial biomass, microbial necromass and mean metabolic rates. This approach is based on the built-in molecular clock in amino acids that very slowly undergo chemical racemization until they reach an even mixture of L- and D- forms, unless microorganisms spend energy to keep them in the L-form that dominates in living organisms. The approach combines sensitive analyses of amino acids, the unique bacterial endospore marker (dipicolinic acid) with racemization dynamics of stereo-isomeric amino acids. Based on a heating experiment, we recently reported kinetic parameters for racemization of aspartic acid, glutamic acid, serine and alanine in bulk sediment from Aarhus Bay, Denmark. The obtained racemization rate constants were faster than the racemization rate constants of free amino acids, which we have previously applied in Holocene sediment from Aarhus Bay and in up to 10 mio yr old sediment from ODP Leg 201. Another important input parameter for the D:L-amino acid model is the cellular carbon content. It has recently been suggested that the cellular carbon content most likely is lower than previously thought. In recognition of these new findings, previously published data based on the D:L-amino acid model were recalculated and will be presented together with new data from an Arctic Holocene setting with constant sub-zero temperatures.

  17. Functional evidence for the critical amino-terminal conserved domain and key amino acids of Arabidopsis 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE.

    Science.gov (United States)

    Hsieh, Wei-Yu; Sung, Tzu-Ying; Wang, Hsin-Tzu; Hsieh, Ming-Hsiun

    2014-09-01

    The plant 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR) catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which are common precursors for the synthesis of plastid isoprenoids. The Arabidopsis (Arabidopsis thaliana) genomic HDR transgene-induced gene-silencing lines are albino, variegated, or pale green, confirming that HDR is essential for plants. We used Escherichia coli isoprenoid synthesis H (Protein Data Bank code 3F7T) as a template for homology modeling to identify key amino acids of Arabidopsis HDR. The predicted model reveals that cysteine (Cys)-122, Cys-213, and Cys-350 are involved in iron-sulfur cluster formation and that histidine (His)-152, His-241, glutamate (Glu)-242, Glu-243, threonine (Thr)-244, Thr-312, serine-379, and asparagine-381 are related to substrate binding or catalysis. Glu-242 and Thr-244 are conserved only in cyanobacteria, green algae, and land plants, whereas the other key amino acids are absolutely conserved from bacteria to plants. We used site-directed mutagenesis and complementation assay to confirm that these amino acids, except His-152 and His-241, were critical for Arabidopsis HDR function. Furthermore, the Arabidopsis HDR contains an extra amino-terminal domain following the transit peptide that is highly conserved from cyanobacteria, and green algae to land plants but not existing in the other bacteria. We demonstrated that the amino-terminal conserved domain was essential for Arabidopsis and cyanobacterial HDR function. Further analysis of conserved amino acids in the amino-terminal conserved domain revealed that the tyrosine-72 residue was critical for Arabidopsis HDR. These results suggest that the structure and reaction mechanism of HDR evolution have become specific for oxygen-evolving photosynthesis organisms and that HDR probably evolved independently in cyanobacteria versus other prokaryotes. © 2014

  18. Finding coevolving amino acid residues using row and column weighting of mutual information and multi-dimensional amino acid representation

    DEFF Research Database (Denmark)

    Oliveira, Rodrigo Gouveia; Pedersen, Anders Gorm

    2007-01-01

    ABSTRACT: BACKGROUND: Some amino acid residues functionally interact with each other. This interaction will result in an evolutionary co-variation between these residues - coevolution. Our goal is to find these coevolving residues. RESULTS: We present six new methods for detecting coevolving...... residues. Among other things, we suggest measures that are variants of Mutual Information, and measures that use a multidimensional representation of each residue in order to capture the physico-chemical similarities between amino acids. We created a benchmarking system, in silico, able to evaluate...

  19. Utilization of milk amino acids for body gain in suckling mink (Mustela vison) kits

    DEFF Research Database (Denmark)

    Tauson, Anne-Helene; Fink, Rikke; Hansen, Niels E

    2005-01-01

    The efficiency of utilization of milk amino acids for body gain in suckling mink kits from small (n = 3), medium (n = 6) and large litters (n = 9) was investigated by using 36 mink dams and their litters for measurements during lactation weeks 1 through 4. Measurements on each dam and litter were...... performed once, hence three dams per litter size each week (n = 9). Individual milk intake of kits was determined, milk samples were collected and kits were killed for determination of amino acid composition. The most abundant amino acids in milk were glutamate, leucine and aspartate making up about 40......% of total amino acids. Branched chained amino acids made up slightly more than 20% and sulphur containing amino acids less than 5% of total milk amino acids. In kit bodies the sum of glutamate, aspartate and leucine made up about 32% of amino acids, branched chain amino acids about 16% and sulphur...

  20. Glutamic Acid – the Main Dietary Amino Acid – and Blood Pressure: The INTERMAP Study

    Science.gov (United States)

    Stamler, Jeremiah; Brown, Ian J; Daviglus, Martha L; Chan, Queenie; Kesteloot, Hugo; Ueshima, Hirotsugu; Zhao, Liancheng; Elliott, Paul

    2009-01-01

    Background Data are available indicating an independent inverse relationship of dietary vegetable protein to the blood pressure (BP) of individuals. Here we assess whether BP is associated with glutamic acid intake (the predominant dietary amino acid, especially in vegetable protein) and with each of four other amino acids higher relatively in vegetable than animal protein (proline, phenylalanine, serine, cystine). Methods and Results Cross-sectional epidemiological study; 4,680 persons ages 40–59 -- 17 random population samples in China, Japan, U.K., U.S.A.; BP measurement 8 times at 4 visits; dietary data (83 nutrients, 18 amino acids) from 4 standardized multi-pass 24-hour dietary recalls and 2 timed 24-hour urine collections. Dietary glutamic acid (percent of total protein intake) was inversely related to BP. Across multivariate regression models (Model 1 controlled for age, gender, sample, through Model 5 controlled for 16 non-nutrient and nutrient possible confounders) estimated average BP differences associated with glutamic acid intake higher by 4.72% total dietary protein (2 s.d.) were −1.5 to −3.0 mm Hg systolic and −1.0 to −1.6 mm Hg diastolic (Z-values −2.15 to −5.11). Results were similar for the glutamic acid-BP relationship with each other amino acid also in the model, e.g., with control for 15 variables plus proline, systolic/diastolic pressure differences −2.7/−2.0 (Z −2.51, −2.82). In these 2-amino acid models, higher intake (2 s.d.) of each other amino acid was associated with small BP differences and Z-values. Conclusions Dietary glutamic acid may have independent BP lowering effects, possibly contributing to the inverse relation of vegetable protein to BP. PMID:19581495

  1. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    International Nuclear Information System (INIS)

    Wang Zuguang; Chen Hong

    2009-01-01

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear β-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  2. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania)

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  3. Amino acid transamination is crucial for ischaemic cardioprotection in normal and preconditioned isolated rat hearts--focus on L-glutamate

    DEFF Research Database (Denmark)

    Løfgren, Bo; Povlsen, Jonas Agerlund; Rasmussen, Lars Ege

    2010-01-01

    We have found that cardioprotection by l-glutamate mimics protection by classical ischaemic preconditioning (IPC). We investigated whether the effect of IPC involves amino acid transamination and whether IPC modulates myocardial glutamate metabolism. In a glucose-perfused, isolated rat heart model...... subjected to 40 min global no-flow ischaemia and 120 min reperfusion, the effects of IPC (2 cycles of 5 min ischaemia and 5 min reperfusion) and continuous glutamate (20 mm) administration during reperfusion on infarct size and haemodynamic recovery were studied. The effect of inhibiting amino acid...... transamination was evaluated by adding the amino acid transaminase inhibitor amino-oxyacetate (AOA; 0.025 mm) during reperfusion. Changes in coronary effluent, interstitial (microdialysis) and intracellular glutamate ([GLUT](i)) concentrations were measured. Ischaemic preconditioning and postischaemic glutamate...

  4. Branched-Chain Amino and Keto Acid Biochemistry and Cellular Biology in Central Nervous System Diseases

    Science.gov (United States)

    2009-05-21

    proceeded through the BCKDC, they result in ubiquitously produced small molecules involved in various metabolic pathways, such as gluconeogenesis ...I. Nissim, L. Hertz, Precursors of glutamic acid nitrogen in primary neuronal cultures: studies with 15N, Neurochem Res 15 (1990) 1191-1196. 35...amino acid transamination. J Neurochem 66(1):378-85. Yudkoff M, Nissim I, Hertz L. 1990. Precursors of glutamic acid nitrogen in primary neuronal

  5. Protein and Amino Acid Composition of Water Melon ( Citrullus ...

    African Journals Online (AJOL)

    The protein and amino acids composition of seeds and pulp of watermelon, Citrullus lanatus were analyzed using Kjeldahl method and ion-exchange chromatography (IEC) respectively. The protein contents (% dry matter) of seeds and pulp were found to be 24.23 and 1.05% respectively. The results of amino acids ...

  6. Representation of protein-sequence information by amino acid subalphabets

    DEFF Research Database (Denmark)

    Andersen, C.A.F.; Brunak, Søren

    2004-01-01

    -sequence information, using machine learning strategies, where the primary goal is the discovery of novel powerful representations for use in AI techniques. In the case of proteins and the 20 different amino acids they typically contain, it is also a secondary goal to discover how the current selection of amino acids...

  7. Large neutral amino acids in daily practice

    DEFF Research Database (Denmark)

    Ahring, Kirsten Kiær

    2010-01-01

    At the Kennedy Centre for Phenylketonuria, Denmark, large neutral amino acids (LNAAs) are being used to treat adult and adolescent patients who are nonadherent to dietary treatment for phenylketonuria (PKU). At the start of treatment, a patient must undergo dietary analysis and regular blood...... sampling to measure plasma amino acid (AA) concentrations. The aim of this analysis and treatment is that the patient receives 25-30% of the daily protein requirement from LNAA supplementation and the remaining 70-75% from natural, low-phenylalanine proteins (although some patients have difficulties...

  8. New insights into the metabolism of aspartate-family amino acids in plant seeds.

    Science.gov (United States)

    Wang, Wenyi; Xu, Mengyun; Wang, Guoping; Galili, Gad

    2018-02-05

    Aspartate-family amino acids. Aspartate (Asp)-family pathway, via several metabolic branches, leads to four key essential amino acids: Lys, Met, Thr, and Ile. Among these, Lys and Met have received the most attention, as they are the most limiting amino acid in cereals and legumes crops, respectively. The metabolic pathways of these four essential amino acids and their interactions with regulatory networks have been well characterized. Using this knowledge, extensive efforts have been devoted to augmenting the levels of these amino acids in various plant organs, especially seeds, which serve as the main source of human food and livestock feed. Seeds store a number of storage proteins, which are utilized as nutrient and energy resources. Storage proteins are composed of amino acids, to guarantee the continuation of plant progeny. Thus, understanding the seed metabolism, especially with respect to the accumulation of aspartate-derived amino acids Lys and Met, is a crucial factor for sustainable agriculture. In this review, we summarized the Asp-family pathway, with some new examples of accumulated Asp-family amino acids, particularly Lys and Met, in plant seeds. We also discuss the recent advances in understanding the roles of Asp-family amino acids during seed development.

  9. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution

    DEFF Research Database (Denmark)

    Maida, Adriano; Chan, Jessica S K; Sjøberg, Kim Anker

    2017-01-01

    OBJECTIVE: Dietary protein dilution (PD) has been associated with metabolic advantages such as improved glucose homeostasis and increased energy expenditure. This phenotype involves liver-induced release of FGF21 in response to amino acid insufficiency; however, it has remained unclear whether...... dietary dilution of specific amino acids (AAs) is also required. Circulating branched chain amino acids (BCAAs) are sensitive to protein intake, elevated in the serum of obese humans and mice and thought to promote insulin resistance. We tested whether replenishment of dietary BCAAs to an AA-diluted (AAD......) diet is sufficient to reverse the glucoregulatory benefits of dietary PD. METHODS: We conducted AA profiling of serum from healthy humans and lean and high fat-fed or New Zealand obese (NZO) mice following dietary PD. We fed wildtype and NZO mice one of three amino acid defined diets: control, total...

  10. Determination of Selected Amino Acids in Serum of Patients with Liver Disease.

    Science.gov (United States)

    Kanďár, Roman; Drábková, Petra; Toiflová, Tereza; Čegan, Alexander

    2016-01-01

    The determination of amino acids can be a reliable approach for extended diagnosis of liver diseases. This is because liver disease can be a cause of impaired amino acid metabolism. Therefore, a method for the determination of serum amino acids, applicable for clinical purposes, is necessary. The aim of this study was to find differences in the levels of selected amino acids between patients with liver disease and a control group. Samples of peripheral venous blood were obtained from a group of patients with liver disease (n = 131, 59 women at an average age of 60 years and 72 men at an average age of 52 years) and a control group (n = 105, 47 women at an average age of 62 years and 58 men at an average age of 58 years). Before the separation, the amino acids were derivatized with naphthalene-2,3-dicarboxaldehyde. For the separation, reverse phase column was used. The effluent was monitored with a fluorescence detector. There were significant differences in the concentrations of some amino acids between the patients and the control group, but also between women and men. Correlations between some amino acids and markers of liver blood tests and lipid metabolism were observed. A simple, relatively rapid and selective HPLC method with fluorescence detection for the determination of selected amino acids in serum has been developed.

  11. Plant amino acid-derived vitamins: biosynthesis and function.

    Science.gov (United States)

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  12. The amino acid composition of Polygonum hydropiper L. and Polygonum persicaria L. herbs of Ukrainian flora

    Directory of Open Access Journals (Sweden)

    I. A. Lukina

    2015-04-01

    Full Text Available Amino acids belong to the primary synthesis substances that are found in above-ground and underground organs of almost all flowering plants, are synthesized from simple inorganic compounds and are involved in the synthesis of proteins, coenzymes, flavonoids, steroidal compounds, polyphenols, complex carbohydrates, fats, vitamins and pigments. They are present in plants in easily digestible complexes and biologically available concentrations for a human body, and therefore have higher physiological activity comparing with synthetic analogues. Plant amino acids play an important role in the functioning of various systems and organs of the human body and are characterized by distinct pharmacological properties, as well as contribute to more rapid absorption and potentiate the effect of other biologically active compounds present in plants. Thisdetermines the relevance of selecting most valuable species of plants that contain amino acids complex. The aim of research is to study the qualitative composition and quantitative content of free and bound amino acids in the protein in Polygonum hydropiper L. and Polygonum persicaria L. herbs of Ukrainian flora. Materials and methods. Polygonum hydropiper L. and Polygonum persicaria L. herbs were collected in the summer during the phase of mass flowering (July - August 2013,VolodymyrivkaVillage, Zaporozhye Region. To confirm the qualitative composition and to detect the quantitative content of free and bound amino an acid in protein a methodology proposed by Stein and Moore, has been used; a high-performance liquid chromatograph, Model AAA 881 (Czech Republic has been used. Results. In conducting the research the content of free and bound 15 amino acids, of which 9 are essentialhas been established. Qualitative composition of the substances in both studied species was fully identified. During the experiment the content of the total amount of free and bound amino acids was established. In Polygonum hydropiper

  13. 40 Oil Characterization, Amino Acid and Vitamin A and C ...

    African Journals Online (AJOL)

    AL-AMAANI

    using Techno sequential multi sample amino acid analyser and except phenylalanine which was most abundant in the sample had the highest contents of all the amino acids analysed. The fatty ..... Health Organization Rome, 19-26. October.

  14. Synthesis and structure-activity studies on acidic amino acids and related diacids as NMDA receptor ligands

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1994-01-01

    The 3-isoxazolol amino acids (S)-2-amino-3-(3-hydroxy-5-methyl-4- isoxazolyl)propionic acid [(S)-AMPA, 2] and (R,S)-2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid (AMAA, 5a) (Figure 1) are potent and specific agonists at the AMPA and N-methyl-D-aspartic acid (NMDA) subtypes, respectively......, of (S)-glutamic acid (1) receptors. A number of amino acids and diacids structurally related to AMAA were synthesized and tested electrophysiologically and in receptor-binding assays. The hydroxymethyl analogue 7c of AMAA was an NMDA agonist approximately equipotent with AMAA in the [3H...... by molecular mechanics calculations. Compound 7a possesses extra steric bulk and shows significant restriction of conformational flexibility compared to AMAA and 7c, which may be determining factors for the observed differences in biological activity. Although the nitrogen atom of quinolinic acid (6) has very...

  15. Filling gaps in bacterial amino acid biosynthesis pathways with high-throughput genetics.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    2018-01-01

    Full Text Available For many bacteria with sequenced genomes, we do not understand how they synthesize some amino acids. This makes it challenging to reconstruct their metabolism, and has led to speculation that bacteria might be cross-feeding amino acids. We studied heterotrophic bacteria from 10 different genera that grow without added amino acids even though an automated tool predicts that the bacteria have gaps in their amino acid synthesis pathways. Across these bacteria, there were 11 gaps in their amino acid biosynthesis pathways that we could not fill using current knowledge. Using genome-wide mutant fitness data, we identified novel enzymes that fill 9 of the 11 gaps and hence explain the biosynthesis of methionine, threonine, serine, or histidine by bacteria from six genera. We also found that the sulfate-reducing bacterium Desulfovibrio vulgaris synthesizes homocysteine (which is a precursor to methionine by using DUF39, NIL/ferredoxin, and COG2122 proteins, and that homoserine is not an intermediate in this pathway. Our results suggest that most free-living bacteria can likely make all 20 amino acids and illustrate how high-throughput genetics can uncover previously-unknown amino acid biosynthesis genes.

  16. Cephalopod vision involves dicarboxylic amino acids: D-aspartate, L-aspartate and L-glutamate.

    Science.gov (United States)

    D'Aniello, Salvatore; Spinelli, Patrizia; Ferrandino, Gabriele; Peterson, Kevin; Tsesarskia, Mara; Fisher, George; D'Aniello, Antimo

    2005-03-01

    In the present study, we report the finding of high concentrations of D-Asp (D-aspartate) in the retina of the cephalopods Sepia officinalis, Loligo vulgaris and Octopus vulgaris. D-Asp increases in concentration in the retina and optic lobes as the animal develops. In neonatal S. officinalis, the concentration of D-Asp in the retina is 1.8+/-0.2 micromol/g of tissue, and in the optic lobes it is 5.5+/-0.4 micromol/g of tissue. In adult animals, D-Asp is found at a concentration of 3.5+/-0.4 micromol/g in retina and 16.2+/-1.5 micromol/g in optic lobes (1.9-fold increased in the retina, and 2.9-fold increased in the optic lobes). In the retina and optic lobes of S. officinalis, the concentration of D-Asp, L-Asp (L-aspartate) and L-Glu (L-glutamate) is significantly influenced by the light/dark environment. In adult animals left in the dark, these three amino acids fall significantly in concentration in both retina (approx. 25% less) and optic lobes (approx. 20% less) compared with the control animals (animals left in a diurnal/nocturnal physiological cycle). The reduction in concentration is in all cases statistically significant (P=0.01-0.05). Experiments conducted in S. officinalis by using D-[2,3-3H]Asp have shown that D-Asp is synthesized in the optic lobes and is then transported actively into the retina. D-aspartate racemase, an enzyme which converts L-Asp into D-Asp, is also present in these tissues, and it is significantly decreased in concentration in animals left for 5 days in the dark compared with control animals. Our hypothesis is that the dicarboxylic amino acids, D-Asp, L-Asp and L-Glu, play important roles in vision.

  17. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA.

    Science.gov (United States)

    Bag, Subhendu Sekhar; Jana, Subhashis; Pradhan, Manoj Kumar

    2016-08-15

    The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV-visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO-LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor-acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor-acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide-protein interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. ruminants by amino acid analysis of the products of

    African Journals Online (AJOL)

    reveals that in all cases histidine is the limiting amino acid for milk production. Comparison of the milk production potential predicted from the duodenal amino acid supply with that predicted from ... also recognized, in ruminants, as'a critical point in the chain .... be used to model the in vivo situation and measurement of.

  19. Stereoselective assembly of amino acid-based metal-biomolecule nanofibers.

    Science.gov (United States)

    Wu, Hong; Tian, Chunyong; Zhang, Yufei; Yang, Chen; Zhang, Songping; Jiang, Zhongyi

    2015-04-14

    A series of amino acid-based metal-biomolecule nanofibers are fabricated through a coordination-directed assembly process. The chirality and carbon chain length of the amino acids exert a pronounced influence on the assembly process. This study may be extended to design diverse kinds of 1-D metal-biomolecule frameworks (MBioFs).

  20. CO2 sorption by supported amino acid ionic liquids

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials.......The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials....

  1. Formation of amino acids by cobalt-60 irradiation of hydrogen cyanide solutions

    Science.gov (United States)

    Sweeney, M. A.; Toste, A. P.; Ponnamperuma, C.

    1976-01-01

    Experiments were conducted to study the pathway for the prebiotic origin of amino acids from hydrogen cyanide (HCN) under the action of ionizing radiation considered as an effective source of energy on the primitive earth. The irradiations were performed in a cobalt-60 source with a dose rate of 200,000 rad/hr. Seven naturally occurring amino acids are identified among the products formed by the hydrolysis of gamma-irradiated solutions of HCN: glycine, alanine, valine, serine, threonine, aspartic acid, and glutamic acid. The identity of these amino acids is established by gas chromatography and mass spectrometry. Control experiments provided evidence that the amino acids are not the result of contamination.

  2. Effect of various amino acids on shoot regeneration of sugarcane ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-06

    Apr 6, 2009 ... Full Length Research Paper. Effect of various amino acids .... maize, sorghum, pineapple, rice and other monocots to enhance somatic ... without additional amino acids, making a total of 26 treatments. All culture media were ...

  3. Composition of antioxidants and amino acids in Stevia leaf infusions.

    Science.gov (United States)

    Periche, Angela; Koutsidis, Georgios; Escriche, Isabel

    2014-03-01

    Stevia, a non-caloric natural sweetener with beneficial properties and considerable antioxidants and amino acids, is increasingly consumed as an infusion. This work evaluates the influence of the conditions (temperature: 50, 70 or 90 °C and time: 1, 5, 20 or 40 min) applied to obtain Stevia infusions, on antioxidants (total phenols, flavonoids and antioxidant activity) and amino acids. The total concentration of the eleven amino acids found was 11.70 mg/g in dried leaves and from 6.84 to 9.11 mg/g per gram of Stevia in infusions. However, infusions showed higher levels of certain amino acids (alanine, asparagine, leucine and proline), and greater values of the three antioxidant parameters in comparison with dry leaves. Temperature had more influence (minimum values at 50 °C and maximum at 90 °C) than time in the case of antioxidants. At 90 °C there were no important increases in the extraction of antioxidant compounds after 5 min; each gram of Stevia had 117 mg trolox (total antioxidant activity), 90 mg gallic acid (total phenols) and 56 mg catechin equivalents (flavonoids). Varying the temperature and time conditions no notable differences were observed in the concentrations of the majority of amino acids. However, the infusion treatment at 90 °C for 5 min was the best, as it gave the highest yield of 8 of the 11 amino acids. Therefore, with respect to the compounds analyzed in this study, the best way to obtain Stevia leaf infusions is the same as the domestic process, almost boiling water for a short time.

  4. Oxidative kinetics of amino acids by peroxydisulfate: Effect of dielectric constant

    International Nuclear Information System (INIS)

    Khalid, Mohammad A. A.

    2008-01-01

    The kinetics and mechanism of oxidation of alanine, asparagines, cysteine, glutamic acid, lysine, phenylalanine and serine by peroxydisulfate ion have been studied in aqueous acidic (sulfuric acid) medium at the temperature range 60-80C. The rate shows first order dependence on peroxydisulfate concentration and zero order dependence on amino acid concentration. The rate law observed is: -d [S2O82-] /dt = Kobs [S2O82-] [amino acid]0. An autocatalytic effect has been observed in amino acids oxidation due to formation of Schiff's base between the formed aldehyde and parent amino acid. A decrease in the dielectric constant of the medium-adding acetic acid (5-15% v/v) results in a decrease in the rate in all cases studied. Reactions were carried out at different temperature (60-80C) and the thermodynamics parameters have been calculated. The logarithm of the rate constant is linearly interrelated to the square root of the ionic strength. (author)

  5. Reactivity of amino acid anions with nitrogen and oxygen atoms.

    Science.gov (United States)

    Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M

    2018-02-14

    For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

  6. Branched-chain amino acid supplementation and the immune response of long-distance athletes.

    Science.gov (United States)

    Bassit, Reinaldo A; Sawada, Letícia A; Bacurau, Reury F P; Navarro, Franciso; Martins, Eivor; Santos, Ronaldo V T; Caperuto, Erico C; Rogeri, Patrícia; Costa Rosa, Luís F B P

    2002-05-01

    Intense long-duration exercise has been associated with immunosuppression, which affects natural killer cells, lymphokine-activated killer cells, and lymphocytes. The mechanisms involved, however, are not fully determined and seem to be multifactorial, including endocrine changes and alteration of plasma glutamine concentration. Therefore, we evaluated the effect of branched-chain amino acid supplementation on the immune response of triathletes and long-distance runners. Peripheral blood was collected prior to and immediately after an Olympic Triathlon or a 30k run. Lymphocyte proliferation, cytokine production by cultured cells, and plasma glutamine were measured. After the exercise bout, athletes from the placebo group presented a decreased plasma glutamine concentration that was abolished by branched-chain amino acid supplementation and an increased proliferative response in their peripheral blood mononuclear cells. Those cells also produced, after exercise, less tumor necrosis factor, interleukins-1 and -4, and interferon and 48% more interleukin-2. Supplementation stimulated the production of interleukin-2 and interferon after exercise and a more pronounced decrease in the production of interleukin-4, indicating a diversion toward a Th1 type immune response. Our results indicate that branched-chain amino acid (BCAA) supplementation recovers the ability of peripheral blood mononuclear cells proliferate in response to mitogens after a long distance intense exercise, as well as plasma glutamine concentration. The amino acids also modify the pattern of cytokine production leading to a diversion of the immune response toward a Th1 type of immune response.

  7. Amino acid composition of casein isolated from the milks of different species

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, B H; Baker, B E

    1977-01-01

    Casein was isolated from the milks of the following species: cow, horse, pig, reindeer, caribou, moose, harp seal, musk-ox, polar bear, dall sheep, and fin whale. The caseins were subjected to acid hydrolysis, the resultant amino acids were converted to their n-butyl-N-trifluoroacetyl esters, and the amino acid composition of the caseins was determined by gas chromatographic analysis of these esters. Notable among the results was the close similarity, with respect to amino acid composition, of reindeer and caribou caseins. The results of the amino acid analyses of the other caseins are presented and discussed.

  8. Synthesis and properties of radiation stabilized poly(α-amino acid)

    International Nuclear Information System (INIS)

    Nakagawa, T.; Shibata, T.

    1981-01-01

    In previous papers, one of the authors reported that modified poly(vinyl chloride) containing dithiocarbamate group has an excellent antiradiation property against γ-irradiation from the viewpoint of a negligibly small gaseous product, especially hydrogen chloride which was generated by radiolysis. Our studies of antiradiation polymers have now been extended to examine the stability of modified poly(α-amino acid) against γ-irradiation. Poly(α-amino acid) membranes have already been shown to be biologically compatible with blood and tissue. However, for practical uses of synthetic biomaterials, they would be required to be stable in the sterilization processing. The sterilization by γ-irradiation is more profitable for poly(α-amino acid) membranes which are less thermally stable. On the other hand, the transport of oxygen through poly(α-amino acid) membranes is of special interest because of the importance as a biomaterial for artificial lungs, skin and corneas. The purpose of the present study is to synthesize the antiradiation poly(α-amino acid) membranes by dithiocarbamate substitution, as well as to study the effect of dithiocarbamate substitution on the transport property of gases. (author)

  9. Enhanced detection of amino acids in hydrophilic interaction chromatography electrospray tandem mass spectrometry with carboxylic acids as mobile phase additives.

    Science.gov (United States)

    Yin, Dengyang; Hu, Xunxiu; Liu, Dantong; Du, Wencheng; Wang, Haibo; Guo, Mengzhe; Tang, Daoquan

    2017-06-01

    Liquid chromatography coupled with mass spectrometry technique has been widely used in the analysis of biological targets such as amino acids, peptides, and proteins. In this work, eight common single carboxylic acids or diacids, which contain different pKa have been investigated as the additives to the analysis of amino acids. As the results, carboxylic acid additive can improve the signal intensity of acidity amino acids such as Asp and Glu and the chromatographic separation of basic amino acids such as Arg, His, and Lys. In particular, the diacids have better performance than single acids. The proposed mechanism is that the diacid has hydrogen bond interaction with amino acids to reduce their polarity/amphiprotic characteristics. Besides, oxalic acid has been found having better enhancement than phthalic acid by overall consideration. Therefore, we successfully quantified the 15 amino acids in Sepia bulk pharmaceutical chemical by using oxalic acid as the additive.

  10. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are enhanced by shortage of amino acids

    Directory of Open Access Journals (Sweden)

    Signe eAdamberg

    2014-12-01

    Full Text Available Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by the catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory and levan (synthesized using levansucrase from Pseudomonas syringae, two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (DP > 3. Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h, followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of D-lactate (82 ± 33 mmol/gDW occurred in parallel with extensive consumption (up to 17 mmol/gDW of amino acids, especially Ser, Thr and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will be studied in

  11. Effects of Dietary Garlic Extracts on Whole Body Amino Acid and Fatty Acid Composition, Muscle Free Amino Acid Profiles and Blood Plasma Changes in Juvenile Sterlet Sturgeon,

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Lee

    2012-10-01

    Full Text Available A series of studies were carried out to investigate the supplemental effects of dietary garlic extracts (GE on whole body amino acids, whole body and muscle free amino acids, fatty acid composition and blood plasma changes in 6 month old juvenile sterlet sturgeon (Acipenser ruthenus. In the first experiment, fish with an average body weight of 59.6 g were randomly allotted to each of 10 tanks (two groups of five replicates, 20 fish/tank and fed diets with (0.5% or without (control GE respectively, at the level of 2% of fish body weight per day for 5 wks. Whole body amino acid composition between the GE and control groups were not different (p>0.05. Among free amino acids in muscle, L-glutamic acid, L-alanine, L-valine, L-leucine and L-phenylalanine were significantly (p0.05 were noticed at 12 h (74.6 vs 73.0. Plasma insulin concentrations (μIU/ml between the two groups were significantly (p<0.05 different at 1 (10.56 vs 5.06 and 24 h (32.56 vs 2.96 after feeding. The present results suggested that dietary garlic extracts could increase dietary glucose utilization through the insulin secretion, which result in improved fish body quality and feed utilization by juvenile sterlet sturgeon.

  12. Chlorine dioxide reaction with selected amino acids in water

    International Nuclear Information System (INIS)

    Navalon, Sergio; Alvaro, Mercedes; Garcia, Hermenegildo

    2009-01-01

    Chlorine dioxide is a hypochlorite alternative disinfectant agent. In this context, we have determined the products formed in the reaction of ClO 2 with selected amino acids as model compounds that can be present in natural waters. The reaction of tryptophane, histidine and tyrosine (10 ppm each) with ClO 2 were studied at molar ratios ranging from 0.25 to 4 in the presence or absence of oxygen. It was found that in the absence of oxygen adding substoichiometric amounts of ClO 2 creates products that are structurally similar to the starting amino acids. Through a series of cascade reactions the initial product distribution gradually evolves toward simple, small carbon chain products that are far from the starting amino acid. The reaction product distribution revealed that chlorine dioxide can attack the electron-rich aromatic moieties as well as the nitrogen atom lone electron pair. Our study is relevant to gain knowledge on the reaction mechanism of ClO 2 with ubiquitous amino acids present in natural waters.

  13. Azide- and Alkyne-Functionalised α- and β3-Amino Acids

    DEFF Research Database (Denmark)

    Sminia, T.J.; Pedersen, Daniel Sejer

    2012-01-01

    The synthesis and full characterisation of bifunctional β -amino acids that have side chains functionalised with terminal azides (S)-4 and (R)-4 or acetylenes 5 and 6 is reported for the first time. The building blocks incorporate a turn-inducing β -segment and a side chain that can...... be functionalised further, for example, through copper-catalysed Huisgen cycloaddition. Moreover, the corresponding α-amino acids 1 and 3 have been synthesised and characterised. All amino acid building blocks were of high optical purity as demonstrated by derivatisation and subsequent NMR analysis....

  14. alpha-Ketoglutarate application in hemodialysis patients improves amino acid metabolism.

    Science.gov (United States)

    Riedel, E; Nündel, M; Hampl, H

    1996-01-01

    In hemodialysis patients, free amino acids and alpha-ketoacids in plasma were determined by fluorescence HPLC to assess the effect of alpha-ketoglutarate administration in combination with the phosphate binder calcium carbonate on the amino acid metabolism. During 1 year of therapy in parallel to inorganic phosphate, urea in plasma decreased significantly, histidine, arginine and proline as well as branched chain alpha-ketoacids, in particular alpha-ketoisocaproate, a regulator of protein metabolism, increased. Thus, administration of alpha-ketoglutarate with calcium carbonate effectively improves amino acid metabolism in hemodialysis patients as it decreases hyperphosphatemia.

  15. Engineering an ATP-dependent D-Ala:D-Ala ligase for synthesizing amino acid amides from amino acids.

    Science.gov (United States)

    Miki, Yuta; Okazaki, Seiji; Asano, Yasuhisa

    2017-05-01

    We successfully engineered a new enzyme that catalyzes the formation of D-Ala amide (D-AlaNH 2 ) from D-Ala by modifying ATP-dependent D-Ala:D-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of D-Ala-D-Ala from two molecules of D-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second D-Ala of D-Ala-D-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for D-AlaNH 2 production. The S293E variant, which was selected as the best enzyme for D-AlaNH 2 production, exhibited an optimal activity at pH 9.0 and 40 °C for D-AlaNH 2 production. The apparent K m values of this variant for D-Ala and NH 3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of D-AlaNH 2 from 10 and 50 mM D-Ala and 3 M NH 4 Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.

  16. Isolation and complete amino acid sequence of human thymopoietin and splenin

    International Nuclear Information System (INIS)

    Audhya, T.; Schlesinger, D.H.; Goldstein, G.

    1987-01-01

    Human thymopoietin and splenin were isolated from human thymus and spleen, respectively, by monitoring tissue fractionation with a bovine thymopoietin RIA cross-reactive with human thymopoietin and splenin. Bovine thymopoietin and splenin are 49-amino acid polypeptides that differ by only 2 amino acids at positions 34 and 43; the change at position 34 in the active-site region changes the receptor specificities and biological activities. The complete amino acid sequences of purified human thymopoietin and splenin were determined and shown to be 48-amino acid polypeptides differing at four positions. Ten amino acids, constant within each species for thymopoietin and splenin, differ between the human and bovine polypeptides. The pentapeptide active side of thymopoietin (residues 32-36) is constant between the human and bovine thymopoietins, but position 34 in the active site of splenin has changed from glutamic acid in bovine splenin to alanine in human splenin, accounting for the biological activity of the human but not the bovine splenin on the human T-cell line MOLT-4

  17. Free amino acids of leaves and berries of Cabernet Sauvignon grapevines

    Directory of Open Access Journals (Sweden)

    Alberto Miele

    2000-03-01

    Full Text Available The composition of free amino acids was studied from leaves, pericarps, skins, musts and seeds of Vitis vinifera L. cv. Cabernet Sauvignon. Vineyards were in the Bordeaux region and the grapevines were conducted in espalier and lyre systems. Grapes were collected at maturity and lyophilized after sampling. Extraction of free amino acids was done with a hydroalcoholic solution and their analysis was performed with an autoanalyzer. A standard of 34 amino acids was utilized for the qualitative analysis. The results showed that, for both espalier and lyre training systems, respectively, the free amino acids were predominant in the pericarps (12.85 and 11.21 mg/g dw - 16.88 and 15.12 mg/g dw in skins and 3.29 and 2.88 g/l in musts -, followed by the seeds (2.37 and 2.32 mg/g dw and leaves (1.87 and 1.98 mg/g dw. The most abundant free amino acids in leaves were glutamic acid (23.8 and 28.8 p. cent, aspartic acid (8.8 and 11.1 p. cent, and glutamine (10.1 and 9.4 p. cent. Proline (41.8 and 41.5 p. cent and arginine (22.8 and 22.4 p. cent predominated in the pericarps. In seeds, the main amino acids were proline (14.5 and 15.8 p. cent, arginine (11.0 and 11.8 p. cent, histidine (11.2 and 8.7 p. cent, and glutamic acid (11.3 and 8.2 p. cent. Grapevine training system showed some differences in the total amount and in the percentages of each free amino acid, but the pattern of these compounds for each tissue was similar for both training systems.

  18. gamma-Glutamyl amino acids. Transport and conversion to 5-oxoproline in the kidney

    International Nuclear Information System (INIS)

    Bridges, R.J.; Meister, A.

    1985-01-01

    Transport of gamma-glutamyl amino acids, a step in the proposed glutathione-gamma-glutamyl transpeptidase-mediated amino acid transport pathway, was examined in mouse kidney. The transport of gamma-glutamyl amino acids was demonstrated in vitro in studies on kidney slices. Transport was followed by measuring uptake of 35 S after incubation of the slices in media containing gamma-glutamyl methionine [ 35 S]sulfone. The experimental complication associated with extracellular conversion of the gamma-glutamyl amino acid to amino acid and uptake of the latter by slices was overcome by using 5-oxoproline formation (catalyzed by intracellular gamma-glutamyl-cyclotransferase) as an indicator of gamma-glutamyl amino acid transport. This method was also successfully applied to studies on transport of gamma-glutamyl amino acids in vivo. Transport of gamma-glutamyl amino acids in vitro and in vivo is inhibited by several inhibitors of gamma-glutamyl transpeptidase and also by high extracellular levels of glutathione. This seems to explain urinary excretion of gamma-glutamylcystine by humans with gamma-glutamyl transpeptidase deficiency and by mice treated with inhibitors of this enzyme. Mice depleted of glutathione by treatment with buthionine sulfoximine (which inhibits glutathione synthesis) or by treatment with 2,6-dimethyl-2,5-heptadiene-4-one (which effectively interacts with tissue glutathione) exhibited significantly less transport of gamma-glutamyl amino acids than did untreated controls. The findings suggest that intracellular glutathione functions in transport of gamma-glutamyl amino acids. Evidence was also obtained for transport of gamma-glutamyl gamma-glutamylphenylalanine into kidney slices

  19. Amino acid-based dithiazines: synthesis and photofragmentation of their benzaldehyde adducts.

    Science.gov (United States)

    Kurchan, Alexei N; Kutateladze, Andrei G

    2002-11-14

    Alpha-amino acids and GABA are functionalized with dithiazine rings via reaction with sodium hydrosulfide in aqueous formaldehyde. The resulting dithiazines are lithiated at -78 degrees C and reacted with benzaldehyde furnishing amino acid-based 2,5-bis-substituted dithiazines. These adducts undergo externally sensitized photofragmentation with quantum efficiency comparable to that of the parent dithiane adducts, thus offering a novel approach to amino acid-based photolabile tethers. [reaction: see text

  20. A detailed analysis of the properties of radiolyzed proteinaceous amino acids

    International Nuclear Information System (INIS)

    Franco Cataldo; Pietro Ragni; Susana Iglesias-Groth; Arturo Manchado

    2011-01-01

    The thermal behaviour of 21 proteinaceous l-amino acids either as pristine samples and also as radiolyzed (3.2 MGy) samples was studied with the differential scanning calorimeter. The onset and peak melting point as well as the melting enthalpy of all samples before and after the radiation treatment was measured and reported. The residual amount of each amino acid survived to the radiation dose of 3.2 MGy (N γ ) was measured from the melting enthalpies before and after radiolysis and hence the radiation resistance of each amino acid has been determined. The radiolysis causes a systematic reduction of the melting enthalpy and a shift of the onset and peak melting point to lower values. It is shown that N γ does not correlate with the melting points of the amino acids but shows a correlation with the entity of the shift of the melting point peaks occurred after radiolysis. Such correlation instead does not exist between the N γ parameter and the onset melting points of the amino acids. An explanation of such lack of correlation was given. Furthermore, a general relationship has been found between the amino acids melting point peak measured on pristine samples and the melting point peaks after solid state radiolysis. Such relationship can be used to predict roughly the expected melting point after radiolysis at 3.2 MGy of any given amino acid. The last part of the study was dedicated in the attempt to find a correlation between the N γ parameter and the amount of the amino acids survived the radiolysis R γ as measured by spectropolarimetry (ORD spectroscopy). A general trend was found in the connection between the N γ and R γ parameters but not a very strong correlation. (author)

  1. Comparative study on free amino acid composition of wild edible mushroom species.

    Science.gov (United States)

    Ribeiro, Bárbara; Andrade, Paula B; Silva, Branca M; Baptista, Paula; Seabra, Rosa M; Valentão, Patrícia

    2008-11-26

    A comparative study on the amino acid composition of 11 wild edible mushroom species (Suillus bellini, Suillus luteus, Suillus granulatus, Tricholomopsis rutilans, Hygrophorus agathosmus, Amanita rubescens, Russula cyanoxantha, Boletus edulis, Tricholoma equestre, Fistulina hepatica, and Cantharellus cibarius) was developed. To define the qualitative and quantitative profiles, a derivatization procedure with dabsyl chloride was performed, followed by HPLC-UV-vis analysis. Twenty free amino acids (aspartic acid, glutamic acid, asparagine, glutamine, serine, threonine, glycine, alanine, valine, proline, arginine, isoleucine, leucine, tryptophan, phenylalanine, cysteine, ornithine, lysine, histidine, and tyrosine) were determined. B. edulis and T. equestre were revealed to be the most nutritional species, whereas F. hepatica was the poorest. The different species exhibited distinct free amino acid profiles. The quantification of the identified compounds indicated that, in a general way, alanine was the major amino acid. The results show that the analyzed mushroom species possess moderate amino acid contents, which may be relevant from a nutritional point of view because these compounds are indispensable for human health. A combination of different mushroom species in the diet would offer good amounts of amino acids and a great diversity of palatable sensations.

  2. Viability and amino acid picture of paecilomyces violacea as affected by gamma radiation

    International Nuclear Information System (INIS)

    Nadia, M.A.; Salama, A.M.; EL-Zawahry, Y.A.; Abo-EL-Khair, I.A.

    1988-01-01

    The dose response curve of paecilomyces violacea was of the type a(simple exponential relationship) and the D 1 0 value was estimated as 0.5 kGy. Qualitative and quantitative variations in the amino acid pool of irradiated p.violacea revealed that seven extracellular amino acids were detected in the control medium namely, cystine, glycine, arginine, proline, valine leucine and cysteine, while, seventeen amino acids were detected in the mycelium of P. violacea (free and combined) under control condition. Nine amino acids in the free state could be detected at different irradiation doses but were completely missed from the amino pool under control condition. But, in the combined state (protein) only five amino acids were detected. The appearance of some amino acids only after irradiation, or their accumulation in amounts higher than control value was explained in the light of their probable role as radioprotectors

  3. Site specific incorporation of keto amino acids into proteins

    Science.gov (United States)

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  4. Consumption of Diet Containing Free Amino Acids Exacerbates Colitis in Mice

    Directory of Open Access Journals (Sweden)

    Adna Luciana Souza

    2017-11-01

    Full Text Available Dietary proteins can influence the maturation of the immune system, particularly the gut-associated lymphoid tissue, when consumed from weaning to adulthood. Moreover, replacement of dietary proteins by amino acids at weaning has been shown to impair the generation of regulatory T cells in the gut as well as immune activities such as protective response to infection, induction of oral and nasal tolerance as well as allergic responses. Polymeric and elemental diets are used in the clinical practice, but the specific role of intact proteins and free amino acids during the intestinal inflammation are not known. It is plausible that these two dietary nitrogen sources would yield distinct immunological outcomes since proteins are recognized by the immune system as antigens and amino acids do not bind to antigen-recognition receptors but instead to intracellular receptors such as mammalian target of rapamycin (mTOR. In this study, our aim was to evaluate the effects of consumption of an amino acid-containing diet (AA diet versus a control protein-containing diet in adult mice at steady state and during colitis development. We showed that consumption of a AA diet by adult mature mice lead to various immunological changes including decrease in the production of serum IgG as well as increase in the levels of IL-6, IL-17A, TGF-β, and IL-10 in the small and large intestines. It also led to changes in the intestinal morphology, to increase in intestinal permeability, in the number of total and activated CD4+ T cells in the small intestine as well as in the frequency of proliferating cells in the colon. Moreover, consumption of AA diet during and prior to development of dextran sodium sulfate-induced colitis exacerbated gut inflammation. Administration of rapamycin during AA diet consumption prevented colitis exacerbation suggesting that mTOR activation was involved in the effects triggered by the AA diet. Therefore, our study suggests that different

  5. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    Directory of Open Access Journals (Sweden)

    Tor E. Kristensen

    2015-04-01

    Full Text Available Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA, many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  6. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    Science.gov (United States)

    2015-01-01

    Summary Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  7. Computer-assisted high-pressure liquid chromatography of radio-labelled phenylthiohydantoin amino acids

    International Nuclear Information System (INIS)

    Bhown, A.S.; Mole, J.E.; Hollaway, W.L.; Bennet, J.C.

    1978-01-01

    A computer-controlled high-pressure liquid chromatographic (HPLC) system is described to identify in vitro phenyl [ 35 S]isothiocyanate-labelled phenylthiohydantoin (PTH) amino acids from a solid-phase sequencer. Each radio-labelled amino acid from the sequencer is added to a PTH amino acid standard and the mixture separated by HPLC using a computer, programmed to detect a slope change in the absorbance. Individual fractions corresponding to the PTH amino acids are collected and counted. The sensitivity of the system is demonstrated on 700 pmoles of lysozyme. (Auth.)

  8. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise

    DEFF Research Database (Denmark)

    Moberg, Marcus; Apró, William; Ekblom, Björn

    2016-01-01

    Protein synthesis is stimulated by resistance exercise and intake of amino acids, in particular leucine. Moreover, activation of mammalian target of rapamycin complex 1 (mTORC1) signaling by leucine is potentiated by the presence of other essential amino acids (EAA). However, the contribution...... of the branched-chain amino acids (BCAA) to this effect is yet unknown. Here we compare the stimulatory role of leucine, BCAA, and EAA ingestion on anabolic signaling following exercise. Accordingly, eight trained volunteers completed four sessions of resistance exercise during which they ingested either placebo...

  9. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... amino acid taken up during exercise and recovery. Alanine and glutamine were also associated...... with pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism...

  10. Branched-Chain Amino Acids.

    Science.gov (United States)

    Yamamoto, Keisuke; Tsuchisaka, Atsunari; Yukawa, Hideaki

    Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and L-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.

  11. Determination of feedstuff amino acids composition by ion-exchange chromatography

    Directory of Open Access Journals (Sweden)

    A. A. Volnin

    2018-01-01

    Full Text Available Determination of animal feeds amino acids composition is the very important part of agricultural sciences and livestock management. This is necessary for normalization and balanced of farm animal’s diets parameters. Advances in husbandry techniques are making in response to the needs for rearing high genetic merit livestock. The nutrition of livestock has a critical role in these developments and is an element which needs to be continually updated as new scientific information becomes available. This article is devoted to the use of ion-exchange chromatography with post-colum derivatization by ninhydrin in the study of the amino acid composition and evaluation of the biological value of livestock feedstuff components. The amino acid composition (except tryptophan of the livestock feed-stuff component is presented for threonine – 3.26 g/100g of protein, leucine – 6.43, isoleucine – 3.24, valine – 4.77, methionine – 2.18, lysine – 2.90, phenylalanine – 3.16, histidine – 2.03, tyrosine – 2.33, sum of asparagine and aspartate – 6.76, serine – 3.97, sum of glutamine and glutamic acid – 12.04, glycine – 6.00, alanine – 6.71, arginine – 6.93, proline – 3.08, sum of cystine and cysteine – 1.38. Biological value of feedstuff component compared with the "ideal" protein (FAO WHO is estimated, limiting amino acids were found. The amino acid score was calculated: for threonine – 81.5%, leucine – 91.9%, isoleucine – 81%, valine – 95.4%, lysine – 52.7%, phenylalanine and tyrosine sum – 91.5%, methionine and cysteine sum – 101.7%. Feedstuff component had a low level of essential amino acids in compare with "ideal" protein (FAO WHO. Feedstuff component can be used for livestock nutrition as a component of essential amino-acid balanced diet.

  12. Subcritical water extraction of amino acids from Mars analog soils.

    Science.gov (United States)

    Noell, Aaron C; Fisher, Anita M; Fors-Francis, Kisa; Sherrit, Stewart

    2018-01-18

    For decades, the Martian regolith has stymied robotic mission efforts to catalog the organic molecules present. Perchlorate salts, found widely throughout Mars, are the main culprit as they breakdown and react with organics liberated from the regolith during pyrolysis, the primary extraction technique attempted to date on Mars. This work further develops subcritical water extraction (SCWE) as a technique for extraction of amino acids on future missions. The effect of SCWE temperature (185, 200, and 215°C) and duration of extraction (10-120 min) on the total amount and distribution of amino acids recovered was explored for three Mars analog soils (JSC Mars-1A simulant, an Atacama desert soil, and an Antarctic Dry Valleys soil) and bovine serum albumin (as a control solution of known amino acid content). Total amounts of amino acids extracted increased with both time and temperature; however, the distribution shifted notably due to the destruction of the amino