WorldWideScience

Sample records for involve caspase cleavage

  1. Nuclear substructure reorganization during late stageerythropoiesis is selective and does not involve caspase cleavage ofmajor nuclear substructural proteins

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Sharon Wald; Lo, Annie J.; Short, Sarah A.; Koury, MarkJ.; Mohandas, Narla; Chasis, Joel Anne

    2005-04-06

    Enucleation, a rare feature of mammalian differentiation, occurs in three cell types: erythroblasts, lens epithelium and keratinocytes. Previous investigations suggest that caspase activation functions in lens epithelial and keratinocyte enucleation, as well as in early erythropoiesis encompassing BFU-E differentiation to proerythroblast. To determine whether caspase activation contributes to later erythropoiesis and whether nuclear substructures other than chromatin reorganize, we analyzed distributions of nuclear subcompartment proteins and assayed for caspase-induced cleavage of subcompartmental target proteins in mouse erythroblasts. We found that patterns of lamin B in the filamentous network interacting with both the nuclear envelope and DNA, nuclear matrix protein NuMA, and splicing factors Sm and SC35 persisted during nuclear condensation, consistent with effective transcription of genes expressed late in differentiation. Thus nuclear reorganization prior to enucleation is selective, allowing maintenance of critical transcriptional processes independent of extensive chromosomal reorganization. Consistent with these data, we found no evidence for caspase-induced cleavage of major nuclear subcompartment proteins during late erythropoiesis, in contrast to what has been observed in early erythropoiesis and in lens epithelial and keratinocyte differentiation. These findings imply that nuclear condensation and extrusion during terminal erythroid differentiation involve novel mechanisms that do not entail major activation of apoptotic machinery.

  2. Sox11 Reduces Caspase-6 Cleavage and Activity.

    Directory of Open Access Journals (Sweden)

    Elaine Waldron-Roby

    Full Text Available The apoptotic cascade is an orchestrated event, whose final stages are mediated by effector caspases. Regulatory binding proteins have been identified for caspases such as caspase-3, -7, -8, and -9. Many of these proteins belong to the inhibitor of apoptosis (IAP family. By contrast, caspase-6 is not believed to be influenced by IAPs, and little is known about its regulation. We therefore performed a yeast-two-hybrid screen using a constitutively inactive form of caspase-6 for bait in order to identify novel regulators of caspase-6 activity. Sox11 was identified as a potential caspase-6 interacting protein. Sox11 was capable of dramatically reducing caspase-6 activity, as well as preventing caspase-6 self- cleavage. Several regions, including amino acids 117-214 and 362-395 within sox11 as well as a nuclear localization signal (NLS all contributed to the reduction in caspase-6 activity. Furthermore, sox11 was also capable of decreasing other effector caspase activity but not initiator caspases -8 and -9. The ability of sox11 to reduce effector caspase activity was also reflected in its capacity to reduce cell death following toxic insult. Interestingly, other sox proteins also had the ability to reduce caspase-6 activity but to a lesser extent than sox11.

  3. Caspase activation increases beta-amyloid generation independently of caspase cleavage of the beta-amyloid precursor protein (APP).

    Science.gov (United States)

    Tesco, Giuseppina; Koh, Young Ho; Tanzi, Rudolph E

    2003-11-14

    The amyloid precursor protein (APP) undergoes "alternative" proteolysis mediated by caspases. Three major caspase recognition sites have been identified in the APP, i.e. one at the C terminus (Asp720) and two at the N terminus (Asp197 and Asp219). Caspase cleavage at Asp720 has been suggested as leading to increased production of Abeta. Thus, we set out to determine which putative caspase sites in APP, if any, are cleaved in Chinese hamster ovary cell lines concurrently with the increased Abeta production that occurs during apoptosis. We found that cleavage at Asp720 occurred concurrently with caspase 3 activation and the increased production of total secreted Abeta and Abeta1-42 in association with staurosporine- and etoposide-induced apoptosis. To investigate the contribution of caspase cleavage of APP to Abeta generation, we expressed an APP mutant truncated at Asp720 that mimics APP caspase cleavage at the C-terminal site. This did not increase Abeta generation but, in contrast, dramatically decreased Abeta production in Chinese hamster ovary cells. Furthermore, the ablation of caspase-dependent cleavage at Asp720, Asp197, and Asp219 (by site-directed mutagenesis) did not prevent enhanced Abeta production following etoposide-induced apoptosis. These findings indicate that the enhanced Abeta generation associated with apoptosis does not require cleavage of APP at its C-terminal (Asp720) and/or N-terminal caspase sites.

  4. Caspase Cleavages of the Lymphocyte-oriented Kinase Prevent Ezrin, Radixin, and Moesin Phosphorylation during Apoptosis*

    Science.gov (United States)

    Leroy, Catherine; Belkina, Natalya V.; Long, Thavy; Deruy, Emeric; Dissous, Colette; Shaw, Stephen; Tulasne, David

    2016-01-01

    The lymphocyte-oriented kinase (LOK), also called serine threonine kinase 10 (STK10), is synthesized mainly in lymphocytes. It is involved in lymphocyte migration and polarization and can phosphorylate ezrin, radixin, and moesin (the ERM proteins). In a T lymphocyte cell line and in purified human lymphocytes, we found LOK to be cleaved by caspases during apoptosis. The first cleavage occurs at aspartic residue 332, located between the kinase domain and the coiled-coil regulation domain. This cleavage generates an N-terminal fragment, p50 N-LOK, containing the kinase domain and a C-terminal fragment, which is further cleaved during apoptosis. Although these cleavages preserve the entire kinase domain, p50 N-LOK displays no kinase activity. In apoptotic lymphocytes, caspase cleavages of LOK are concomitant with a decrease in ERM phosphorylation. When non-apoptotic lymphocytes from mice with homozygous and heterozygous LOK knockout were compared, the latter showed a higher level of ERM phosphorylation, but when apoptosis was induced, LOK−/− and LOK+/− lymphocytes showed the same low level, confirming in vivo that LOK-induced ERM phosphorylation is prevented during lymphocyte apoptosis. Our results demonstrate that cleavage of LOK during apoptosis abolishes its kinase activity, causing a decrease in ERM phosphorylation, crucial to the role of the ERM proteins in linking the plasma membrane to actin filaments. PMID:26945071

  5. Caspase Cleavages of the Lymphocyte-oriented Kinase Prevent Ezrin, Radixin, and Moesin Phosphorylation during Apoptosis.

    Science.gov (United States)

    Leroy, Catherine; Belkina, Natalya V; Long, Thavy; Deruy, Emeric; Dissous, Colette; Shaw, Stephen; Tulasne, David

    2016-05-06

    The lymphocyte-oriented kinase (LOK), also called serine threonine kinase 10 (STK10), is synthesized mainly in lymphocytes. It is involved in lymphocyte migration and polarization and can phosphorylate ezrin, radixin, and moesin (the ERM proteins). In a T lymphocyte cell line and in purified human lymphocytes, we found LOK to be cleaved by caspases during apoptosis. The first cleavage occurs at aspartic residue 332, located between the kinase domain and the coiled-coil regulation domain. This cleavage generates an N-terminal fragment, p50 N-LOK, containing the kinase domain and a C-terminal fragment, which is further cleaved during apoptosis. Although these cleavages preserve the entire kinase domain, p50 N-LOK displays no kinase activity. In apoptotic lymphocytes, caspase cleavages of LOK are concomitant with a decrease in ERM phosphorylation. When non-apoptotic lymphocytes from mice with homozygous and heterozygous LOK knockout were compared, the latter showed a higher level of ERM phosphorylation, but when apoptosis was induced, LOK(-/-) and LOK(+/-) lymphocytes showed the same low level, confirming in vivo that LOK-induced ERM phosphorylation is prevented during lymphocyte apoptosis. Our results demonstrate that cleavage of LOK during apoptosis abolishes its kinase activity, causing a decrease in ERM phosphorylation, crucial to the role of the ERM proteins in linking the plasma membrane to actin filaments. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Caspase-Dependent Apoptosis Induced by Telomere Cleavage and TRF2 Loss

    Directory of Open Access Journals (Sweden)

    Asha S. Multani

    2000-07-01

    Full Text Available Chromosomal abnormalities involving telomeric associations (TAs often precede replicative senescence and abnormal chromosome configurations. We report here that telomere cleavage following exposure to proapoptotic agents is an early event in apoptosis. Exposure of human and murine cancer cells to a variety of pro-apoptotic stimuli (staurosporine, thapsigargin, anti-Fas antibody, cancer chemotherapeutic agents resulted in telomere cleavage and aggregation, finally their extrusion from the nuclei. Telomere loss was associated with arrest of cells in G2/M phase and preceded DNA fragmentation. Telomere erosion and subsequent large-scale chromatin cleavage were inhibited by overexpression of the anti -apoptotic protein, bcl-2, two peptide caspase inhibitors (BACMK and zVADfmk, indicating that both events are regulated by caspase activation. The results demonstrate that telomere cleavage is an early chromatin alteration detected in various cancer cell lines leading to drug-induced apoptosis, suggest that this event contributes to mitotic catastrophe and induction of cell death. Results also suggest that the decrease of telomeric-repeat binding factor 2 (TRF2 may be the earliest event in the ara-C-induced telomere shortening, induction of endoreduplication and chromosomal fragmentation leading to cell death.

  7. Caspase-1 cleavage of transcription factor GATA4 and regulation of cardiac cell fate.

    Science.gov (United States)

    Aries, A; Whitcomb, J; Shao, W; Komati, H; Saleh, M; Nemer, M

    2014-12-11

    Caspase-1 or interleukin-1β (IL-1β) converting enzyme is a pro-inflammatory member of the caspase family. An IL-1β-independent role for caspase-1 in cardiomyocyte cell death and heart failure has emerged but the mechanisms underlying these effects are incompletely understood. Here, we report that transcription factor GATA4, a key regulator of cardiomyocyte survival and adaptive stress response is an in vivo and in vitro substrate for caspase-1. Caspase-1 mediated cleavage of GATA4 generates a truncated protein that retains the ability to bind DNA but lacks transcriptional activation domains and acts as a dominant negative regulator of GATA4. We show that caspase-1 is rapidly activated in cardiomyocyte nuclei treated with the cell death inducing drug Doxorubicin. We also find that inhibition of caspase-1 alone is as effective as complete caspase inhibition at rescuing GATA4 degradation and myocyte cell death. Caspase-1 inhibition of GATA4 transcriptional activity is rescued by HSP70, which binds directly to GATA4 and masks the caspase recognition motif. The data identify a caspase-1 nuclear substrate and suggest a direct role for caspase-1 in transcriptional regulation. This mechanism may underlie the inflammation-independent action of caspase-1 in other organs.

  8. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Hyeok; Seo, Sung-Keum [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); An, Sungkwan; Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  9. p38 Activation Is Required Upstream of Potassium Current Enhancement and Caspase Cleavage in Thiol Oxidant-Induced Neuronal Apoptosis

    Science.gov (United States)

    McLaughlin, BethAnn; Pal, Sumon; Tran, Minhnga P.; Parsons, Andrew A.; Barone, Frank C.; Erhardt, Joseph A.; Aizenman, Elias

    2013-01-01

    Oxidant-induced neuronal apoptosis has been shown to involve potassium and zinc dysregulation, energetic dysfunction, activation of stress-related kinases, and caspase cleavage. The temporal ordering and interdependence of these events was investigated in primary neuronal cultures exposed to the sulfhydryl oxidizing agent 2,2′-dithiodipyridine (DTDP), a compound that induces the intracellular release of zinc. We previously observed that tetraethylammonium (TEA), high extracellular potassium, or cysteine protease inhibitors block apoptosis induced by DTDP. We now report that both p38 and extracellular signal-regulated kinase phosphorylation are evident in neuronal cultures within 2 hr of a brief exposure to 100 μm DTDP. However, only p38 inhibition is capable of blocking oxidant-induced toxicity. Cyclohexamide or actinomycin D does not attenuate DTDP-induced cell death, suggesting that posttranslational modification of existing targets, rather than transcriptional activation, is responsible for the deleterious effects of p38. Indeed, an early robust increase in TEA-sensitive potassium channel currents induced by DTDP is attenuated by p38 inhibition but not by caspase inhibition. Moreover, we found that activation of p38 is required for caspase 3 and 9 cleavage, suggesting that potassium currents enhancement is required for caspase activation. Finally, we observed that DTDP toxicity could be blocked with niacinamide or benzamide, inhibitors of poly (ADP-ribose) synthetase. Based on these findings, we conclude that oxidation of sulfhydryl groups on intracellular targets results in intracellular zinc release, p38 phosphorylation, enhancement of potassium currents, caspase cleavage, energetic dysfunction, and translationally independent apoptotic cell death. PMID:11331359

  10. Hydrogen peroxide-mediated necrosis induction in HUVECs is associated with an atypical pattern of caspase-3 cleavage.

    Science.gov (United States)

    Csordas, Adam; Wick, Georg; Bernhard, David

    2006-06-10

    Oxidative stress, continuously exerted during chronic inflammation, has been implicated as a major causative agent of cellular dysfunction and cell death. In the present study, we investigated the impact of oxidative stress on the mode of cell death in HUVECs using H2O2 as a model reagent. We found that the predominant form of cell death was necrosis. Necrosis induction was accompanied by a distinct mode of caspase-3 cleavage, yielding a 29-kDa fragment. While inhibition of caspases could not prevent the generation of the 29-kDa fragment, general protease inhibitors, such as leupeptin and LLNL, proved to be effective in inhibiting the distinct processing pattern of caspase-3. These results suggest that caspases can act as substrates for non-caspase proteases in cells primed for necrosis induction. Thus, the pattern of caspase-3 cleavage might reflect the proteolytic system engaged in the cell death machinery in HUVECs.

  11. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance

    International Nuclear Information System (INIS)

    Singh, Mohan; Chaudhry, Parvesh; Fabi, Francois; Asselin, Eric

    2013-01-01

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells

  12. Voltage dependent anion channel-1 regulates death receptor mediated apoptosis by enabling cleavage of caspase-8

    International Nuclear Information System (INIS)

    Chacko, Alex D; Liberante, Fabio; Paul, Ian; Longley, Daniel B; Fennell, Dean A

    2010-01-01

    Activation of the extrinsic apoptosis pathway by tumour necrosis factor related apoptosis inducing ligand (TRAIL) is a novel therapeutic strategy for treating cancer that is currently under clinical evaluation. Identification of molecular biomarkers of resistance is likely to play an important role in predicting clinical anti tumour activity. The involvement of the mitochondrial type 1 voltage dependent anion channel (VDAC1) in regulating apoptosis has been highly debated. To date, a functional role in regulating the extrinsic apoptosis pathway has not been formally excluded. We carried out stable and transient RNAi knockdowns of VDAC1 in non-small cell lung cancer cells, and stimulated the extrinsic apoptotic pathway principally by incubating cells with the death ligand TRAIL. We used in-vitro apoptotic and cell viability assays, as well as western blot for markers of apoptosis, to demonstrate that TRAIL-induced toxicity is VDAC1 dependant. Confocal microscopy and mitochondrial fractionation were used to determine the importance of mitochondria for caspase-8 activation. Here we show that either stable or transient knockdown of VDAC1 is sufficient to antagonize TRAIL mediated apoptosis in non-small cell lung cancer (NSCLC) cells. Specifically, VDAC1 is required for processing of procaspase-8 to its fully active p18 form at the mitochondria. Loss of VDAC1 does not alter mitochondrial sensitivity to exogenous caspase-8-cleaved BID induced mitochondrial depolarization, even though VDAC1 expression is essential for TRAIL dependent activation of the intrinsic apoptosis pathway. Furthermore, expression of exogenous VDAC1 restores the apoptotic response to TRAIL in cells in which endogenous VDAC1 has been selectively silenced. Expression of VDAC1 is required for full processing and activation of caspase-8 and supports a role for mitochondria in regulating apoptosis signaling via the death receptor pathway

  13. Individual expression of poliovirus 2Apro and 3Cpro induces activation of caspase-3 and PARP cleavage in HeLa cells.

    Science.gov (United States)

    Calandria, Carlos; Irurzun, Alicia; Barco, Angel; Carrasco, Luis

    2004-08-01

    The expression of individual viral genes enables the study of their effects on cellular functions. Our group previously generated stable HeLa cell lines that efficiently express poliovirus proteases 2A (clone 2A7d) and 3C (clone 3C7) under the control of tetracycline [Virology 266 (2000a) 352; J. Virol. 74 (2000b) 2383]. Upon induction of these proteases, the cells undergo drastic morphological alterations and eventually die. The present paper characterizes, in detail, the cellular and molecular events that lead to cell death in these lines. Several signs of apoptosis were observed in both 2A7d- and 3C7-induced cells, such as nuclear fragmentation, DNA breakdown (as determined by TUNEL), and phosphatidylserine translocation. Protease 2A induces the cleavage of poly-ADP-ribose-polymerase (PARP). This is blocked by the caspase-3 inhibitor DEVD in both 2A7d-On and 3C7-On cells suggesting that this enzyme might account for PARP cleavage in both cell lines. The results indicate that both poliovirus proteases induce apoptosis by mechanisms involving caspase activation, although the kinetics of apoptosis differs.

  14. EspC, an Autotransporter Protein Secreted by Enteropathogenic Escherichia coli, Causes Apoptosis and Necrosis through Caspase and Calpain Activation, Including Direct Procaspase-3 Cleavage

    Directory of Open Access Journals (Sweden)

    Antonio Serapio-Palacios

    2016-06-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC has the ability to antagonize host apoptosis during infection through promotion and inhibition of effectors injected by the type III secretion system (T3SS, but the total number of these effectors and the overall functional relationships between these effectors during infection are poorly understood. EspC produced by EPEC cleaves fodrin, paxillin, and focal adhesion kinase (FAK, which are also cleaved by caspases and calpains during apoptosis. Here we show the role of EspC in cell death induced by EPEC. EspC is involved in EPEC-mediated cell death and induces both apoptosis and necrosis in epithelial cells. EspC induces apoptosis through the mitochondrial apoptotic pathway by provoking (i a decrease in the expression levels of antiapoptotic protein Bcl-2, (ii translocation of the proapoptotic protein Bax from cytosol to mitochondria, (iii cytochrome c release from mitochondria to the cytoplasm, (iv loss of mitochondrial membrane potential, (v caspase-9 activation, (vi cleavage of procaspase-3 and (vii an increase in caspase-3 activity, (viii PARP proteolysis, and (ix nuclear fragmentation and an increase in the sub-G1 population. Interestingly, EspC-induced apoptosis was triggered through a dual mechanism involving both independent and dependent functions of its EspC serine protease motif, the direct cleavage of procaspase-3 being dependent on this motif. This is the first report showing a shortcut for induction of apoptosis by the catalytic activity of an EPEC protein. Furthermore, this atypical intrinsic apoptosis appeared to induce necrosis through the activation of calpain and through the increase of intracellular calcium induced by EspC. Our data indicate that EspC plays a relevant role in cell death induced by EPEC.

  15. Caspase-3 cleavage of GGA3 stabilizes BACE: implications for Alzheimer's disease.

    Science.gov (United States)

    Vassar, Robert

    2007-06-07

    BACE initiates the production of beta-amyloid (Abeta), the likely cause of Alzheimer's disease (AD). In this issue of Neuron, Tesco et al. show that during apoptosis caspase-3 cleaves the adaptor protein GGA3, which is required for BACE lysosomal degradation, consequently stabilizing BACE and elevating Abeta generation.

  16. Grb7 and Hax1 may colocalize partially to mitochondria in EGF treated SKBR3 cells and their interaction can affect Caspase3 cleavage of Hax1

    Science.gov (United States)

    Qian, Lei; Bradford, Andrew M.; Cooke, Peter H.; Lyons, Barbara A.

    2017-01-01

    Growth factor receptor bound protein 7 (Grb7) is a signal transducing adaptor protein that mediates specific protein-protein interactions in multiple signaling pathways. Grb7, with Grb10 and Grb14, are members of the Grb7 protein family. The topology of the Grb7 family members contains several protein-binding domains that facilitate the formation of protein complexes and high signal transduction efficiency. Grb7 has been found overexpressed in several types of cancers and cancer cell lines, and is presumed involved in cancer progression through promotion of cell proliferation and migration via interactions with the ErbB2 (HER2) receptor, FAK (focal adhesion kinase), Ras-GTPases, and other signaling partners. We previously reported Grb7 binds to Hax1 (HS1 associated protein X1) isoform 1, an anti-apoptotic protein also involved in cell proliferation and calcium homeostasis. In this study, we confirm the in vitro Grb7/Hax1 interaction is exclusive to these two proteins and their interaction does not depend on Grb7 dimerization state. In addition, we report Grb7 and Hax1 isoform 1 may colocalize partially to mitochondria in EGF treated SKBR3 cells and growth conditions can affect this colocalization. Moreover, Grb7 can affect Caspase3 cleavage of the Hax1 isoform 1 in vitro, and Grb7 expression may slow the Caspase3 cleavage of Hax1 isoform 1 in apoptotic HeLa cells. Finally, Grb7 is shown to increase cell viability in apoptotic HeLa cells in a time dependent manner. Taken together, these discoveries provide clues for the role of a Grb7/Hax1 protein interaction in apoptosis pathways involving Hax1. PMID:26869103

  17. Grb7 and Hax1 may colocalize partially to mitochondria in EGF-treated SKBR3 cells and their interaction can affect Caspase3 cleavage of Hax1.

    Science.gov (United States)

    Qian, Lei; Bradford, Andrew M; Cooke, Peter H; Lyons, Barbara A

    2016-07-01

    Growth factor receptor bound protein 7 (Grb7) is a signal-transducing adaptor protein that mediates specific protein-protein interactions in multiple signaling pathways. Grb7, with Grb10 and Grb14, is members of the Grb7 protein family. The topology of the Grb7 family members contains several protein-binding domains that facilitate the formation of protein complexes, and high signal transduction efficiency. Grb7 has been found overexpressed in several types of cancers and cancer cell lines and is presumed involved in cancer progression through promotion of cell proliferation and migration via interactions with the erythroblastosis oncogene B 2 (human epidermal growth factor receptor 2) receptor, focal adhesion kinase, Ras-GTPases, and other signaling partners. We previously reported Grb7 binds to Hax1 (HS1 associated protein X1) isoform 1, an anti-apoptotic protein also involved in cell proliferation and calcium homeostasis. In this study, we confirm that the in vitro Grb7/Hax1 interaction is exclusive to these two proteins and their interaction does not depend on Grb7 dimerization state. In addition, we report Grb7 and Hax1 isoform 1 may colocalize partially to mitochondria in epidermal growth factor-treated SKBR3 cells and growth conditions can affect this colocalization. Moreover, Grb7 can affect Caspase3 cleavage of Hax1 isoform 1 in vitro, and Grb7 expression may slow Caspase3 cleavage of Hax1 isoform 1 in apoptotic HeLa cells. Finally, Grb7 is shown to increase cell viability in apoptotic HeLa cells in a time-dependent manner. Taken together, these discoveries provide clues for the role of a Grb7/Hax1 protein interaction in apoptosis pathways involving Hax1. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Epigenetic regulation of nitric oxide synthase 2, inducible (Nos2) by NLRC4 inflammasomes involves PARP1 cleavage.

    Science.gov (United States)

    Buzzo, Carina de Lima; Medina, Tiago; Branco, Laura M; Lage, Silvia L; Ferreira, Luís Carlos de Souza; Amarante-Mendes, Gustavo P; Hottiger, Michael O; De Carvalho, Daniel D; Bortoluci, Karina R

    2017-02-02

    Nitric oxide synthase 2, inducible (Nos2) expression is necessary for the microbicidal activity of macrophages. However, NOS2 over-activation causes multiple inflammatory disorders, suggesting a tight gene regulation is necessary. Using cytosolic flagellin as a model for inflammasome-dependent NOS2 activation, we discovered a surprising new role for NLRC4/caspase-1 axis in regulating chromatin accessibility of the Nos2 promoter. We found that activation of two independent mechanisms is necessary for NOS2 expression by cytosolic flagellin: caspase-1 and NF-κB activation. NF-κB activation was necessary, but not sufficient, for NOS2 expression. Conversely, caspase-1 was necessary for NOS2 expression, but dispensable for NF-κB activation, indicating that this protease acts downstream NF-κB activation. We demonstrated that epigenetic regulation of Nos2 by caspase-1 involves cleavage of the chromatin regulator PARP1 (also known as ARTD1) and chromatin accessibility of the NF-κB binding sites located at the Nos2 promoter. Remarkably, caspase-1-mediated Nos2 transcription and NO production contribute to the resistance of macrophages to Salmonella typhimurium infection. Our results uncover the molecular mechanism behind the constricted regulation of Nos2 expression and open new therapeutic opportunities based on epigenetic activities of caspase-1 against infectious and inflammatory diseases.

  19. Caspase-10 Is the Key Initiator Caspase Involved in Tributyltin-Mediated Apoptosis in Human Immune Cells

    Directory of Open Access Journals (Sweden)

    Harald F. Krug

    2012-01-01

    Full Text Available Tributyltin (TBT is one of the most toxic compounds produced by man and distributed in the environment. A multitude of toxic activities have been described, for example, immunotoxic, neurotoxic, and endocrine disruptive effects. Moreover, it has been shown for many cell types that they undergo apoptosis after treatment with TBT and the cell death of immune cells could be the molecular background of its immunotoxic effect. As low as 200 nM up to 1 μM of TBT induces all signs of apoptosis in Jurkat T cells within 1 to 24 hrs of treatment. When compared to Fas-ligand control stimulation, the same sequence of events occurs: membrane blebbing, phosphatidylserine externalisation, the activation of the “death-inducing signalling complex,” and the following sequence of cleavage processes. In genetically modified caspase-8-deficient Jurkat cells, the apoptotic effects are only slightly reduced, whereas, in FADD-negative Jurkat cells, the TBT effect is significantly diminished. We could show that caspase-10 is recruited by the TRAIL-R2 receptor and apoptosis is totally prevented when caspase-10 is specifically inhibited in all three cell lines.

  20. Cleavage of the JunB Transcription Factor by Caspases Generates a Carboxyl-terminal Fragment That Inhibits Activator Protein-1 Transcriptional Activity*

    Science.gov (United States)

    Lee, Jason K. H.; Pearson, Joel D.; Maser, Brandon E.; Ingham, Robert J.

    2013-01-01

    The activator protein-1 (AP-1) family transcription factor, JunB, is an important regulator of proliferation, apoptosis, differentiation, and the immune response. In this report, we show that JunB is cleaved in a caspase-dependent manner in apoptotic anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma cell lines and that ectopically expressed JunB is cleaved in murine RAW 264.7 macrophage cells treated with the NALP1b inflammasome activator, anthrax lethal toxin. In both cases, we identify aspartic acid 137 as the caspase cleavage site and demonstrate that JunB can be directly cleaved in vitro by multiple caspases at this site. Cleavage of JunB at aspartic acid 137 separates the N-terminal transactivation domain from the C-terminal DNA binding and dimerization domains, and we show that the C-terminal cleavage fragment retains both DNA binding activity and the ability to interact with AP-1 family transcription factors. Furthermore, this fragment interferes with the binding of full-length JunB to AP-1 sites and inhibits AP-1-dependent transcription. In summary, we have identified and characterized a novel mechanism of JunB post-translational modification and demonstrate that the C-terminal JunB caspase cleavage product functions as a potent inhibitor of AP-1-dependent transcription. PMID:23749999

  1. Cleavage of the JunB transcription factor by caspases generates a carboxyl-terminal fragment that inhibits activator protein-1 transcriptional activity.

    Science.gov (United States)

    Lee, Jason K H; Pearson, Joel D; Maser, Brandon E; Ingham, Robert J

    2013-07-26

    The activator protein-1 (AP-1) family transcription factor, JunB, is an important regulator of proliferation, apoptosis, differentiation, and the immune response. In this report, we show that JunB is cleaved in a caspase-dependent manner in apoptotic anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma cell lines and that ectopically expressed JunB is cleaved in murine RAW 264.7 macrophage cells treated with the NALP1b inflammasome activator, anthrax lethal toxin. In both cases, we identify aspartic acid 137 as the caspase cleavage site and demonstrate that JunB can be directly cleaved in vitro by multiple caspases at this site. Cleavage of JunB at aspartic acid 137 separates the N-terminal transactivation domain from the C-terminal DNA binding and dimerization domains, and we show that the C-terminal cleavage fragment retains both DNA binding activity and the ability to interact with AP-1 family transcription factors. Furthermore, this fragment interferes with the binding of full-length JunB to AP-1 sites and inhibits AP-1-dependent transcription. In summary, we have identified and characterized a novel mechanism of JunB post-translational modification and demonstrate that the C-terminal JunB caspase cleavage product functions as a potent inhibitor of AP-1-dependent transcription.

  2. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  3. Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells.

    Science.gov (United States)

    Dos Santos, Alessandra Antunes; López-Granero, Caridad; Farina, Marcelo; Rocha, João B T; Bowman, Aaron B; Aschner, Michael

    2018-03-01

    Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD + /NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA. Copyright © 2018. Published by Elsevier Ltd.

  4. Caspase-mediated cleavage of Beclin1 inhibits autophagy and promotes apoptosis induced by S1 in human ovarian cancer SKOV3 cells.

    Science.gov (United States)

    Li, Xiaoning; Su, Jing; Xia, Meihui; Li, Hongyan; Xu, Ye; Ma, Chunhui; Ma, Liwei; Kang, Jingsong; Yu, Huimei; Zhang, Zhichao; Sun, Liankun

    2016-02-01

    S1, a novel BH3 mimetic, can induce apoptosis dependent on Bax/Bak through inhibition of Bcl-2 in various tumors. S1 also induces autophagy through interrupting the interaction of Bcl-2 and Beclin1. Our results showed that S1 induces apoptosis in human ovarian cancer SKOV3 cells in a time- and dose-dependent manner. Autophagy precedes apoptosis, in SKOV3 cells treated with S1 (6 μmol/L), autophagy reached the maximum peak at 12 h after treatment and decreased to 24 h. In SKOV3 cells treated with different concentrations of S1 for 24 h, the highest level of autophagy was observed with 5 μmol/L and decreased to 10 μmol/L. Autophagy inhibitors 3-MA and CQ enhanced apoptosis induced by S1 in SKOV3 cells. However, overactivation of caspases in apoptosis induced by S1 may inhibit the autophagy-inducing function of Beclin1. Because the pan-caspase inhibitor Z-VAD recovered the autophagy-inducing function of Beclin1 through reduction of activated caspase-mediated cleavage of Beclin1. Furthermore, the Beclin1 cleavage products could further increase apoptosis induced by S1 in SKOV3 cells. This indicates that apoptosis induced by high doses and long exposure of S1 causes the overactivation of caspases and subsequent cleavage of Beclin1, and inhibits the protection of autophagy. Moreover, the cleaved product of Beclin1 further promotes apoptosis induced by S1 in SKOV3 cells. Our results suggest this may be a molecular mechanism for enhancing the sensitivity of cancer cells to apoptosis induced by small molecular compound targeting Bcl-2.

  5. Early apoptotic reorganization of spliceosomal proteins involves caspases, CAD and rearrangement of NuMA.

    Science.gov (United States)

    Dieker, Jürgen; Iglesias-Guimarais, Victoria; Décossas, Marion; Stevenin, James; van der Vlag, Johan; Yuste, Victor J; Muller, Sylviane

    2012-02-01

    The reorganization of nuclear structures is an important early feature of apoptosis and involves the activity of specific proteases and nucleases. Well-known is the condensation and fragmentation of chromatin; however, much less is understood about the mechanisms involved in the reorganization of structures from the interchromatin space, such as interchromatin granule clusters (IGCs). In this study, we show that the initial enlargement and rounding-up of IGCs correlate with a decrease in mRNA transcription and are caspase-independent, but involve protein phosphatases PP1/PP2A. Subsequently, multiple enlarged IGCs dissociate from chromatin and fuse into a single structure. The dissociation requires caspase activity and involves caspase-activated DNase (CAD). Apoptotic IMR-5 cells, lacking a proper processing of CAD, show multiple enlarged IGCs that remain linked with chromatin. Overexpression of CAD in IMR-5 cells results in the dissociation of IGCs from chromatin, but the fusion into a single structure remains disturbed. Nuclear matrix protein NuMA is reorganized in a caspase-dependent way around fused IGCs. In conclusion, we show here that the apoptotic rearrangement of IGCs, the nuclear matrix and chromatin are closely associated, occur in defined stages and depend on the activity of protein phosphatases, caspases and CAD. © 2011 John Wiley & Sons A/S.

  6. A genetic screen for modifiers of Drosophila caspase Dcp-1 reveals caspase involvement in autophagy and novel caspase-related genes

    Directory of Open Access Journals (Sweden)

    Ahnn Joohong

    2010-01-01

    Full Text Available Abstract Background Caspases are cysteine proteases with essential functions in the apoptotic pathway; their proteolytic activity toward various substrates is associated with the morphological changes of cells. Recent reports have described non-apoptotic functions of caspases, including autophagy. In this report, we searched for novel modifiers of the phenotype of Dcp-1 gain-of-function (GF animals by screening promoter element- inserted Drosophila melanogaster lines (EP lines. Results We screened ~15,000 EP lines and identified 72 Dcp-1-interacting genes that were classified into 10 groups based on their functions and pathways: 4 apoptosis signaling genes, 10 autophagy genes, 5 insulin/IGF and TOR signaling pathway genes, 6 MAP kinase and JNK signaling pathway genes, 4 ecdysone signaling genes, 6 ubiquitination genes, 11 various developmental signaling genes, 12 transcription factors, 3 translation factors, and 11 other unclassified genes including 5 functionally undefined genes. Among them, insulin/IGF and TOR signaling pathway, MAP kinase and JNK signaling pathway, and ecdysone signaling are known to be involved in autophagy. Together with the identification of autophagy genes, the results of our screen suggest that autophagy counteracts Dcp-1-induced apoptosis. Consistent with this idea, we show that expression of eGFP-Atg5 rescued the eye phenotype caused by Dcp-1 GF. Paradoxically, we found that over-expression of full-length Dcp-1 induced autophagy, as Atg8b-GFP, an indicator of autophagy, was increased in the eye imaginal discs and in the S2 cell line. Taken together, these data suggest that autophagy suppresses Dcp-1-mediated apoptotic cell death, whereas Dcp-1 positively regulates autophagy, possibly through feedback regulation. Conclusions We identified a number of Dcp-1 modifiers that genetically interact with Dcp-1-induced cell death. Our results showing that Dcp-1 and autophagy-related genes influence each other will aid future

  7. Involvement of JNK and Caspase Activation in Hoiamide A-Induced Neurotoxicity in Neocortical Neurons

    Directory of Open Access Journals (Sweden)

    Zhengyu Cao

    2015-02-01

    Full Text Available The frequent occurrence of Moorea producens (formerly Lyngbya majuscula blooms has been associated with adverse effects on human health. Hoiamide A is a structurally unique cyclic depsipeptide isolated from an assemblage of the marine cyanobacteria M. producens and Phormidium gracile. We examined the influence of hoiamide A on neurite outgrowth in neocortical neurons and found that it suppressed neurite outgrowth with an IC50 value of 4.89 nM. Further study demonstrated that hoiamide A stimulated lactic acid dehydrogenase (LDH efflux, nuclear condensation and caspase-3 activity with EC50 values of 3.66, 2.55 and 4.33 nM, respectively. These data indicated that hoiamide A triggered a unique neuronal death profile that involves both necrotic and apoptotic mechanisms. The similar potencies and similar time-response relationships between LDH efflux and caspase-3 activation/nuclear condensation suggested that both necrosis and apoptosis may derive from interaction with a common molecular target. The broad-spectrum caspase inhibitor, Z-VAD-FMK completely inhibited hoiamide A-induced neurotoxicity. Additionally, hoiamide A stimulated JNK phosphorylation, and a JNK inhibitor attenuated hoiamide A-induced neurotoxicity. Collectively, these data demonstrate that hoiamide A-induced neuronal death requires both JNK and caspase signaling pathways. The potent neurotoxicity and unique neuronal cell death profile of hoiamide A represents a novel neurotoxic chemotype from marine cyanobacteria.

  8. FADD cleavage by NK cell granzyme M enhances its self-association to facilitate procaspase-8 recruitment for auto-processing leading to caspase cascade.

    Science.gov (United States)

    Wang, S; Xia, P; Shi, L; Fan, Z

    2012-04-01

    Granzyme M (GzmM), an orphan Gzm, is constitutively and abundantly expressed in innate effector natural killer cells. We previously demonstrated that GzmM induces caspase (casp)-dependent apoptosis and cytochrome c release from mitochondria. We also resolved the crystal structure for GzmM and generated its specific inhibitor. However, how GzmM causes casp activation has not been defined. Here we found that casp-8 is an initiator caspase in GzmM-induced casp cascade, which causes other casp activation and Bid cleavage. GzmM does not directly cleave procaspase-3 and Bid, whose processing is casp dependent. Casp-8 knockdown or deficient cells attenuate or abolish GzmM-induced proteolysis of procaspase-3 and Bid. Extrinsic death receptor pathway adaptor Fas-associated protein with death domain (FADD) contributes to GzmM-induced casp-8 activation. GzmM specifically cleaves FADD after Met 196 to generate truncated FADD (tFADD) that enhances its self-association for oligomerization. The oligomerized tFADD facilitates procaspase-8 recruitment to promote its auto-processing leading to casp activation cascade. FADD-deficient cells abrogate GzmM-induced activation of casp-8 and apoptosis as well as significantly inhibit lymphokine-activated killer cell-mediated cytotoxicity. FADD processing by GzmM can potentiate killing efficacy against tumor cells and intracellular pathogens.

  9. Regulation of axon arborization pattern in the developing chick ciliary ganglion: Possible involvement of caspase 3.

    Science.gov (United States)

    Katow, Hidetaka; Kanaya, Teppei; Ogawa, Tomohisa; Egawa, Ryo; Yawo, Hiromu

    2017-04-01

    During a certain critical period in the development of the central and peripheral nervous systems, axonal branches and synapses are massively reorganized to form mature connections. In this process, neurons search their appropriate targets, expanding and/or retracting their axons. Recent work suggested that the caspase superfamily regulates the axon morphology. Here, we tested the hypothesis that caspase 3, which is one of the major executioners in apoptotic cell death, is involved in regulating the axon arborization. The embryonic chicken ciliary ganglion was used as a model system of synapse reorganization. A dominant negative mutant of caspase-3 precursor (C3DN) was made and overexpressed in presynaptic neurons in the midbrain to interfere with the intrinsic caspase-3 activity using an in ovo electroporation method. The axon arborization pattern was 3-dimensionally and quantitatively analyzed in the ciliary ganglion. The overexpression of C3DN significantly reduced the number of branching points, the branch order and the complexity index, whereas it significantly elongated the terminal branches at E6. It also increased the internodal distance significantly at E8. But, these effects were negligible at E10 or later. During E6-8, there appeared to be a dynamic balance in the axon arborization pattern between the "targeting" mode, which is accompanied by elongation of terminal branches and the pruning of collateral branches, and the "pathfinding" mode, which is accompanied by the retraction of terminal branches and the sprouting of new collateral branches. The local and transient activation of caspase 3 could direct the balance towards the pathfinding mode. © 2017 Japanese Society of Developmental Biologists.

  10. Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways

    Directory of Open Access Journals (Sweden)

    Jasmin Balmer

    2015-07-01

    Full Text Available Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3 both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg. Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL staining. The activation of caspases and calpain was measured using immunohistochemistry. Additionally, cytotoxicity and apoptosis in retinal pigment epithelial (RPE cells, primary retinal cells, and the cone photoreceptor (PRC cell line 661W were assessed in vitro after NaIO3 treatment using the ApoToxGlo™ assay. The 7-AAD/Annexin-V staining was performed and necrostatin (Nec-1 was administered to the NaIO3-treated cells to confirm the results. In vivo, degenerating RPE cells displayed a rounded shape and retracted microvilli, whereas PRCs featured apoptotic nuclei. Caspase and calpain activity was significantly upregulated in retinal sections and protein samples from NaIO3-treated animals. In vitro, NaIO3 induced necrosis in RPE cells and apoptosis in PRCs. Furthermore, Nec-1 significantly decreased NaIO3-induced RPE cell death, but had no rescue effect on treated PRCs. In summary, several different cell-death pathways are activated in retinal cells as a result of NaIO3.

  11. The neuroprotective effect of nicotine in Parkinson’s disease models is associated with inhibiting PARP-1 and caspase-3 cleavage

    Directory of Open Access Journals (Sweden)

    Justin Y.D. Lu

    2017-10-01

    Full Text Available Clinical evidence points to neuroprotective effects of smoking in Parkinson’s disease (PD, but the molecular mechanisms remain unclear. We investigated the pharmacological pathways involved in these neuroprotective effects, which could provide novel ideas for developing targeted neuroprotective treatments for PD. We used the ETC complex I inhibitor methylpyridinium ion (MPP+ to induce cell death in SH-SY5Y cells as a cellular model for PD and found that nicotine inhibits cell death. Using choline as a nicotinic acetylcholine receptor (nAChR agonist, we found that nAChR stimulation was sufficient to protect SH-SY5Y cells against cell death from MPP+. Blocking α7 nAChR with methyllycaconitine (MLA prevented the protective effects of nicotine, demonstrating that these receptors are necessary for the neuroprotective effects of nicotine. The neuroprotective effect of nicotine involves other pathways relevant to PD. Cleaved Poly (ADP-ribose polymerase-1 (PARP-1 and cleaved caspase-3 were decreased by nicotine in 6-hydroxydopamine (6-OHDA lesioned mice and in MPP+-treated SH-SY5Y cells. In conclusion, our data indicate that nicotine likely exerts neuroprotective effects in PD through the α7 nAChR and downstream pathways including PARP-1 and caspase-3. This knowledge could be pursued in future research to develop neuroprotective treatments for PD.

  12. Changes of caspase activities involved in apoptosis of a macrophage-like cell line J774.1/JA-4 treated with lipopolysaccharide (LPS) and cycloheximide.

    Science.gov (United States)

    Karahashi, H; Amano, F

    2000-02-01

    The addition of lipopolysaccharide (LPS) together with cycloheximide (CHX) induced apoptosis in a subline of a J774.1 macrophage-like cell line, JA-4, as judged by terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL)-staining and poly(adenosine 5'-diphosphate (ADP)-ribose) polymerase (PARP)-cleavage. Caspase activities were examined in these macrophages in vitro using fluorogenic substrates such as acetyl-DEVD-aminomethyl coumarine (Ac-DEVD-AMC, caspase-3-like), acetyl-YVAD-aminomethyl coumarine (Ac-YVAD-AMC, caspase-1-like), acetyl-VEID-aminomethyl coumarine (Ac-VEID-AMC, caspase-6-like), and carbobenzoxy-IETD-aminofluoro coumarine (Z-IETD-AFC; caspase-8-like). Kinetic studies revealed these caspase activities with different Km and Vmax values in extracts of apoptotic macrophages. In the course of apoptosis, caspase-3-like activity increased first at 75 min, simultaneously with the appearance of TUNEL staining and prior to PARP cleavage, and then caspase-6 and 8-like activities increased at 90 and 105 min, respectively. However, caspase-1-like activity did not change throughout the experiment. Furthermore, removal of LPS and CHX by extensive washing of the cells for 60 min completely abolished the apoptosis and the subsequent release of lactate dehydrogenase (LDH) during additional incubation until 4 h after LPS addition. However, washing of the cells after 75 min or later resulted in the progress of apoptosis and LDH release, which was coordinated with the elevation of caspase-3-like activity at 60 min and that of caspase-6 or 8-like activity at 90 min, but not with that of caspase-1-like activity. These results suggest that caspase-3-like activity represents the most apical caspase among these caspases in terms of the intiation of apoptosis in macrophages treated with LPS and CHX. In the present study, we also provide evidence on the relatively low specificities of a series of caspase inhibitors other

  13. Expression and activation of Daphnia pulex Caspase-3 are involved in regulation of aging.

    Science.gov (United States)

    Tong, Qiaoqiong; Zhang, Mengmeng; Cao, Xiao; Xu, Shanliang; Wang, Danli; Zhao, Yunlong

    2017-11-15

    Death-mediating proteases such as Caspases have been implicated in aging. Remarkably, active Caspase-3 can trigger widespread damage and degeneration, playing a key role in causing cell death. In order to explore the relationship between Caspase-3 and aging in Daphnia pulex, we cloned and analyzed the full-length cDNA sequence of its Caspase-3 gene. Both mRNA expression and activity of D. pulex Caspase-3 increased with age. Moreover, different forms of Caspase-3 appeared with aging. The expression of casp3-L was higher and decreased with age, while that of casp3-S was weak and increased with age, consistent with the trend in Caspase-3 activity. Mhc mRNA expression declined over time and was negatively correlated with age and Caspase-3. In situ hybridization results showed that Caspase-3 mRNA was expressed in different growth and reproduction stages, and its expression levels in embryos and larva were lower than that in adult D. pulex. Western blot analysis revealed the presence of Caspase-3 in the form of zymogens with a molecular weight of ~36kDa. Overall, this study explored age-associated gene regulation to provide a basis for the molecular mechanism of D. pulex reproductive conversion. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Analysis of the Proteolytic Processing of ABCA3: Identification of Cleavage Site and Involved Proteases.

    Directory of Open Access Journals (Sweden)

    Nicole Hofmann

    Full Text Available ABCA3 is a lipid transporter in the limiting membrane of lamellar bodies in alveolar type II cells. Mutations in the ABCA3 gene cause respiratory distress syndrome in new-borns and childhood interstitial lung disease. ABCA3 is N-terminally cleaved by an as yet unknown protease, a process believed to regulate ABCA3 activity.The exact site where ABCA3 is cleaved was localized using mass spectrometry (MS. Proteases involved in ABCA3 processing were identified using small molecule inhibitors and siRNA mediated gene knockdown. Results were verified by in vitro digestion of a synthetic peptide substrate mimicking ABCA3's cleavage region, followed by MS analysis.We found that cleavage of ABCA3 occurs after Lys174 which is located in the proteins' first luminal loop. Inhibition of cathepsin L and, to a lesser extent, cathepsin B resulted in attenuation of ABCA3 cleavage. Both enzymes showed activity against the ABCA3 peptide in vitro with cathepsin L being more active.We show here that, like some other proteins of the lysosomal membrane, ABCA3 is a substrate of cathepsin L. Therefore, cathepsin L may represent a potential target to therapeutically influence ABCA3 activity in ABCA3-associated lung disease.

  15. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments

    KAUST Repository

    Rodrigo, María J.

    2013-09-04

    Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly ?-citraurin (3-hydroxy-?-apo-8?-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of ?-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in ?-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and ?-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7?,8? double bond in zeaxanthin and ?-cryptoxanthin, confrming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7?,8? double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration. The Author 2013.

  16. Caspase-1 is involved in the genesis of inflammatory hypernociception by contributing to peripheral IL-1β maturation

    Directory of Open Access Journals (Sweden)

    Zamboni Dario S

    2010-10-01

    Full Text Available Abstract Background Caspase-1 is a cysteine protease responsible for the processing and secretion of IL-1β and IL-18, which are closely related to the induction of inflammation. However, limited evidence addresses the participation of caspase-1 in inflammatory pain. Here, we investigated the role of caspase-1 in inflammatory hypernociception (a decrease in the nociceptive threshold using caspase-1 deficient mice (casp1-/-. Results Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. The production of cytokines, PGE2 and neutrophil migration were evaluated by ELISA, radioimmunoassay and myeloperoxidase activity, respectively. The interleukin (IL-1β and cyclooxygenase (COX-2 protein expression were evaluated by western blotting. The mechanical hypernociception induced by intraplantar injection of carrageenin, tumour necrosis factor (TNFα and CXCL1/KC was reduced in casp1-/- mice compared with WT mice. However, the hypernociception induced by IL-1β and PGE2 did not differ in WT and casp1-/- mice. Carrageenin-induced TNF-α and CXCL1/KC production and neutrophil recruitment in the paws of WT mice were not different from casp1-/- mice, while the maturation of IL-1β was reduced in casp1-/- mice. Furthermore, carrageenin induced an increase in the expression of COX-2 and PGE2 production in the paw of WT mice, but was reduced in casp1-/- mice. Conclusion These results suggest that caspase-1 plays a critical role in the cascade of events involved in the genesis of inflammatory hypernociception by promoting IL-1β maturation. Because caspase-1 is involved in the induction of COX-2 expression and PGE2 production, our data support the assertion that caspase-1 is a key target to control inflammatory pain.

  17. Caspase-3-mediated cleavage of p65/RelA results in a carboxy-terminal fragment that inhibits IκBα and enhances HIV-1 replication in human T lymphocytes

    Directory of Open Access Journals (Sweden)

    Alcamí José

    2008-12-01

    Full Text Available Abstract Background Degradation of p65/RelA has been involved in both the inhibition of NF-κB-dependent activity and the onset of apoptosis. However, the mechanisms of NF-κB degradation are unclear and can vary depending on the cell type. Cleavage of p65/RelA can produce an amino-terminal fragment that was shown to act as a dominant-negative inhibitor of NF-κB, thereby promoting apoptosis. However, the opposite situation has also been described and the production of a carboxy-terminal fragment that contains two potent transactivation domains has also been related to the onset of apoptosis. In this context, a carboxy-terminal fragment of p65/RelA (ΔNH2p65, detected in non-apoptotic human T lymphocytes upon activation, has been studied. T cells constitute one of the long-lived cellular reservoirs of the human immunodeficiency virus type 1 (HIV-1. Because NF-κB is the most important inducible element involved in initiation of HIV-1 transcription, an adequate control of NF-κB response is of paramount importance for both T cell survival and viral spread. Its major inhibitor IκBα constitutes a master terminator of NF-κB response that is complemented by degradation of p65/RelA. Results and conclusions In this study, the function of a caspase-3-mediated carboxy-terminal fragment of p65/RelA, which was detected in activated human peripheral blood lymphocytes (PBLs, was analyzed. Cells producing this truncated p65/RelA did not undergo apoptosis but showed a high viability, in spite of caspase-3 activation. ΔNH2p65 lacked most of DNA-binding domain but retained the dimerization domain, NLS and transactivation domains. Consequently, it could translocate to the nucleus, associate with NF-κB1/p50 and IκBα, but could not bind -κB consensus sites. However, although ΔNH2p65 lacked transcriptional activity by itself, it could increase NF-κB activity in a dose-dependent manner by hijacking IκBα. Thus, its expression resulted in a persistent

  18. Prostaglandin F2alpha- and FAS-activating antibody-induced regression of the corpus luteum involves caspase-8 and is defective in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Flavell Richard A

    2003-02-01

    Full Text Available Abstract We recently demonstrated that caspase-3 is important for apoptosis during spontaneous involution of the corpus luteum (CL. These studies tested if prostaglandin F2α (PGF2α or FAS regulated luteal regression, utilize a caspase-3 dependent pathway to execute luteal cell apoptosis, and if the two receptors work via independent or potentially shared intracellular signaling components/pathways to activate caspase-3. Wild-type (WT or caspase-3 deficient female mice, 25–26 days old, were given 10 IU equine chorionic gonadotropin (eCG intraperitoneally (IP followed by 10 IU human chorionic gonadotropin (hCG IP 46 h later to synchronize ovulation. The animals were then injected with IgG (2 micrograms, i.v., the FAS-activating antibody Jo2 (2 micrograms, i.v., or PGF2α (10 micrograms, i.p. at 24 or 48 h post-ovulation. Ovaries from each group were collected 8 h later for assessment of active caspase-3 enzyme and apoptosis (measured by the TUNEL assay in the CL. Regardless of genotype or treatment, CL in ovaries collected from mice injected 24 h after ovulation showed no evidence of active caspase-3 or apoptosis. However, PGF2α or Jo2 at 48 h post-ovulation and collected 8 h later induced caspase-3 activation in 13.2 ± 1.8% and 13.7 ± 2.2 % of the cells, respectively and resulted in 16.35 ± 0.7% (PGF2α and 14.3 ± 2.5% TUNEL-positive cells when compared to 1.48 ± 0.8% of cells CL in IgG treated controls. In contrast, CL in ovaries collected from caspase-3 deficient mice whether treated with PGF2α , Jo2, or control IgG at 48 h post-ovulation showed little evidence of active caspase-3 or apoptosis. CL of WT mice treated with Jo2 at 48 h post-ovulation had an 8-fold increase in the activity of caspase-8, an activator of caspase-3 that is coupled to the FAS death receptor. Somewhat unexpectedly, however, treatment of WT mice with PGF2α at 48 h post-ovulation resulted in a 22-fold increase in caspase-8 activity in the CL, despite the fact

  19. Scutellaria barbate extract induces apoptosis of hepatoma H22 cells via the mitochondrial pathway involving caspase-3.

    Science.gov (United States)

    Dai, Zhi-Jun; Wang, Xi-Jing; Li, Zong-Fang; Ji, Zong-Zheng; Ren, Hong-Tao; Tang, Wei; Liu, Xiao-Xu; Kang, Hua-Feng; Guan, Hai-Tao; Song, Ling-Qin

    2008-12-28

    To study the growth inhibitory and apoptotic effects of Scutellaria barbata D.Don (S. barbata) and to determine the underlying mechanism of its antitumor activity in mouse liver cancer cell line H22. Proliferation of H22 cells was examined by MTT assay. Cellular morphology of PC-2 cells was observed under fluorescence microscope and transmission electron microscope (EM). Mitochondrial transmembrane potential was determined under laser scanning confocal microscope (LSCM) with rhodamine 123 staining. Flow cytometry was performed to analyze the cell cycle of H22 cells with propidium iodide staining. Protein level of cytochrome C and caspase-3 was measured by semi-quantitive RT-PCR and Western blot analysis. Activity of caspase-3 enzyme was measured by spectrofluorometry. MTT assay showed that extracts from S. barbata (ESB) could inhibit the proliferation of H22 cells in a time-dependent manner. Among the various phases of cell cycle, the percentage of cells in S phase was significantly decreased, while the percentage of cells in G(1) phase was increased. Flow cytometry assay also showed that ESB had a positive effect on apoptosis. Typical apoptotic morphologies such as condensation and fragmentation of nuclei and blebbing membrane of apoptotic cells could be observed under transmission electron microscope and fluorescence microscope. To further investige the molecular mechanism behind ESB-induced apoptosis, ESB-treated cells rapidly lost their mitochondrial transmembrane potential, released mitochondrial cytochrome C into cytosol, and induced caspase-3 activity in a dose-dependent manner. ESB can effectively inhibit the proliferation and induce apoptosis of H22 cells involving loss of mitochondrial transmembrane potential, release of cytochrome C, and activation of caspase-3.

  20. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    International Nuclear Information System (INIS)

    Sun, Hengwen; Yang, Shana; Li, Jianhua; Zhang, Yajie; Gao, Dongsheng; Zhao, Shenting

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  1. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hengwen [Department of Radiation, Cancer Center of Guangdong General Hospital (Guangdong Academy of Medical Science), Guangzhou, 510080, Guangdong (China); Yang, Shana; Li, Jianhua [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Zhang, Yajie [Department of Pathology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Gao, Dongsheng [Department of Oncology, Guangdong Medical College Affiliated Pengpai Memorial Hospital, Hai Feng, 516400, Gungdong (China); Zhao, Shenting, E-mail: zhaoshenting@126.com [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China)

    2016-03-25

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  2. Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng Tien [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Weng, Te I. [Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Chen, Li Ping [Department of Dentistry, Chang Gang Memorial Hospital, Chang Gang University, Taoyuan, Taiwan (China); Chiang, Chih Kang [Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Liu, Shing Hwa, E-mail: shinghwaliu@ntu.edu.tw [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China)

    2013-01-01

    Contrast medium (CM) induces a direct toxic effect on renal tubular cells. This toxic effect subjects in the disorder of CM-induced nephropathy. Our previous work has demonstrated that CM shows to activate the endoplasmic reticulum (ER)-related adaptive unfolding protein response (UPR) activators. Glucose-regulated protein 78 (GRP78)/eukaryotic initiation factor 2α (eIF2α)-related pathways play a protective role during the urografin (an ionic CM)-induced renal tubular injury. However, the involvement of ER stress-related apoptotic signals in the urografin-induced renal tubular cell injury remains unclear. Here, we examined by the in vivo and in vitro experiments to explore whether ER stress-regulated pro-apoptotic activators participate in urografin-induced renal injury. Urografin induced renal tubular dilation, tubular cells detachment, and necrosis in the kidneys of rats. The tubular apoptosis, ER stress-related pro-apoptotic transcriptional factors, and kidney injury marker-1 (kim-1) were also conspicuously up-regulated in urografin-treated rats. Furthermore, treatment of normal rat kidney (NRK)-52E tubular cells with urografin augmented the expressions of activating transcription factor-6 (ATF-6), C/EBP homologous protein (CHOP), Bax, caspase-12, JNK, and inositol-requiring enzyme (IRE) 1 signals. Urografin-induced renal tubular cell apoptosis was not reversed by the inhibitors of ATF-6, JNK signals or CHOP siRNA transfection, but it could be partially reversed by the inhibitor of caspase-12. Taken together, the present results and our previous findings suggest that exposure of CM/urografin activates the ER stress-regulated survival- and apoptosis-related signaling pathways in renal tubular cells. Caspase-12-dependent apoptotic pathway may be partially involved in the urografin-induced nephropathy. -- Highlights: ► Ionic contrast medium-urografin induces renal tubular cell apoptosis. ► Urografin induces the ER stress-regulated survival and apoptosis

  3. Mechanisms for ribotoxin-induced ribosomal RNA cleavage

    Energy Technology Data Exchange (ETDEWEB)

    He, Kaiyu [Department of Microbiology and Molecular Genetics (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Zhou, Hui-Ren [Food Science and Human Nutrition (United States); Pestka, James J., E-mail: pestka@msu.edu [Department of Microbiology and Molecular Genetics (United States); Food Science and Human Nutrition (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States)

    2012-11-15

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥ 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥ 10 ng/ml) and ribosome-inactivating protein ricin (≥ 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ► Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ► Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ► Ribotoxins induce rRNA cleavage via

  4. Early apoptotic reorganization of spliceosomal proteins involves caspases, CAD and rearrangement of NuMA.

    NARCIS (Netherlands)

    Dieker, J.; Iglesias-Guimarais, V.; Decossas, M.; Stevenin, J.; Vlag, J. van der; Yuste, V.J.; Muller, S.

    2012-01-01

    The reorganization of nuclear structures is an important early feature of apoptosis and involves the activity of specific proteases and nucleases. Well-known is the condensation and fragmentation of chromatin; however, much less is understood about the mechanisms involved in the reorganization of

  5. Mechanisms for ribotoxin-induced ribosomal RNA cleavage.

    Science.gov (United States)

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J

    2012-11-15

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥25ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥10ng/ml) and ribosome-inactivating protein ricin (≥300ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Streptococcal Cysteine Protease-Mediated Cleavage of Desmogleins Is Involved in the Pathogenesis of Cutaneous Infection

    Directory of Open Access Journals (Sweden)

    Tomoko Sumitomo

    2018-01-01

    Full Text Available Streptococcus pyogenes is responsible for a wide variety of cutaneous infections ranging from superficial impetigo to fulminant invasive necrotizing fasciitis. Dysfunction of desmosomes is associated with the pathogenesis of cutaneous diseases. We identified streptococcal pyrogenic exotoxin B (SpeB as a proteolytic factor that cleaves the extracellular domains of desmoglein 1 and 3. In an epicutaneous infection model, lesional skin infected with an speB deletion mutant were significantly smaller as compared to those caused by the wild-type strain. Furthermore, immunohistological analysis indicated cleavage of desmogleins that developed around the invasion site of the wild-type strain. In contrast, the speB mutant was preferentially found on the epidermis surface layer. Taken together, our findings provide evidence that SpeB-mediated degradation of desmosomes has a pathogenic role in development of S. pyogenes cutaneous infection.

  7. NuMA and nuclear lamins are cleaved during viral infection--inhibition of caspase activity prevents cleavage and rescues HeLa cells from measles virus-induced but not from rhinovirus 1B-induced cell death.

    Science.gov (United States)

    Taimen, Pekka; Berghäll, Heidi; Vainionpää, Raija; Kallajoki, Markku

    2004-03-01

    Nuclear matrix is a structural framework of important nuclear processes. We studied the effect of two different types of viral infections on nuclear matrix. HeLa cells were infected with human rhinovirus 1B (HRV 1B) or measles virus (MV), and Nuclear Mitotic Apparatus protein (NuMA) and lamins A/C and B were used as markers for internal nuclear matrix and peripheral nuclear lamina, respectively. We show that NuMA, lamins, and poly(ADP-ribose) polymerase-1 are cleaved during viral infection in a virus family-specific manner suggesting that these viruses activate different sets of proteases. Morphologically, NuMA was excluded from the condensed chromatin, lamins showed a folded distribution, and both proteins finally remained around the nuclear fragments. A general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-FMK) prevented the nuclear disintegration and the cleavage of the proteins studied. Interestingly, z-VAD-FMK rescued MV-infected but not HRV 1B-infected cells from cell death. These results show for the first time that NuMA and lamins are specific target proteins during virus-induced programmed cell death.

  8. NuMA and nuclear lamins are cleaved during viral infection - inhibition of caspase activity prevents cleavage and rescues HeLa cells from measles virus-induced but not from rhinovirus 1B-induced cell death

    International Nuclear Information System (INIS)

    Taimen, Pekka; Berghaell, Heidi; Vainionpaeae, Raija; Kallajoki, Markku

    2004-01-01

    Nuclear matrix is a structural framework of important nuclear processes. We studied the effect of two different types of viral infections on nuclear matrix. HeLa cells were infected with human rhinovirus 1B (HRV 1B) or measles virus (MV), and Nuclear Mitotic Apparatus protein (NuMA) and lamins A/C and B were used as markers for internal nuclear matrix and peripheral nuclear lamina, respectively. We show that NuMA, lamins, and poly(ADP-ribose) polymerase-1 are cleaved during viral infection in a virus family-specific manner suggesting that these viruses activate different sets of proteases. Morphologically, NuMA was excluded from the condensed chromatin, lamins showed a folded distribution, and both proteins finally remained around the nuclear fragments. A general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-FMK) prevented the nuclear disintegration and the cleavage of the proteins studied. Interestingly, z-VAD-FMK rescued MV-infected but not HRV 1B-infected cells from cell death. These results show for the first time that NuMA and lamins are specific target proteins during virus-induced programmed cell death

  9. Targets and intracellular signaling mechanisms for deoxynivalenol-induced ribosomal RNA cleavage.

    Science.gov (United States)

    He, Kaiyu; Zhou, Hui-Ren; Pestka, James J

    2012-06-01

    The trichothecene mycotoxin deoxynivalenol (DON), a known translational inhibitor, induces ribosomal RNA (rRNA) cleavage. Here, we characterized this process relative to (1) specific 18S and 28S ribosomal RNA cleavage sites and (2) identity of specific upstream signaling elements in this pathway. Capillary electrophoresis indicated that DON at concentrations as low as 200 ng/ml evoked selective rRNA cleavage after 6 h and that 1000 ng/ml caused cleavage within 2 h. Northern blot analysis revealed that DON exposure induced six rRNA cleavage fragments from 28S rRNA and five fragments from 18S rRNA. When selective kinase inhibitors were used to identify potential upstream signals, RNA-activated protein kinase (PKR), hematopoietic cell kinase (Hck), and p38 were found to be required for rRNA cleavage, whereas c-Jun N-terminal kinase and extracellular signal-regulated kinase were not. Furthermore, rRNA fragmentation was suppressed by the p53 inhibitors pifithrin-α and pifithrin-μ as well as the pan caspase inhibitor Z-VAD-FMK. Concurrent apoptosis was confirmed by acridine orange/ethidium bromide staining and flow cytometry. DON activated caspases 3, 8, and 9, thus suggesting the possible coinvolvement of both extrinsic and intrinsic apoptotic pathways in rRNA cleavage. Satratoxin G (SG), anisomycin, and ricin also induced specific rRNA cleavage profiles identical to those of DON, suggesting that ribotoxins might share a conserved rRNA cleavage mechanism. Taken together, DON-induced rRNA cleavage is likely to be closely linked to apoptosis activation and appears to involve the sequential activation of PKR/Hck →p38→p53→caspase 8/9→caspase 3.

  10. Involvement of a cytosine side chain in proton transfer in the rate-determining step of ribozyme self-cleavage

    Science.gov (United States)

    Shih, I-hung; Been, Michael D.

    2001-01-01

    Ribozymes of hepatitis delta virus have been proposed to use an active-site cytosine as an acid-base catalyst in the self-cleavage reaction. In this study, we have examined the role of cytosine in more detail with the antigenomic ribozyme. Evidence that proton transfer in the rate-determining step involved cytosine 76 (C76) was obtained from examining cleavage activity of the wild-type and imidazole buffer-rescued C76-deleted (C76Δ) ribozymes in D2O and H2O. In both reactions, a similar kinetic isotope effect and shift in the apparent pKa indicate that the buffer is functionally substituting for the side chain in proton transfer. Proton inventory of the wild-type reaction supported a mechanism of a single proton transfer at the transition state. This proton transfer step was further characterized by exogenous base rescue of a C76Δ mutant with cytosine and imidazole analogues. For the imidazole analogues that rescued activity, the apparent pKa of the rescue reaction, measured under kcat/KM conditions, correlated with the pKa of the base. From these data a Brønsted coefficient (β) of 0.51 was determined for the base-rescued reaction of C76Δ. This value is consistent with that expected for proton transfer in the transition state. Together, these data provide strong support for a mechanism where an RNA side chain participates directly in general acid or general base catalysis of the wild-type ribozyme to facilitate RNA cleavage. PMID:11171978

  11. Inhibition of CUG-binding protein 1 and activation of caspases are critically involved in piperazine derivative BK10007S induced apoptosis in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Ju-Ha Kim

    Full Text Available Though piperazine derivative BK10007S was known to induce apoptosis in pancreatic cancer xenograft model as a T-type CaV3.1 a1G isoform calcium channel blocker, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the antitumor mechanism of BK10007S was elucidated in hepatocellular carcinoma cells (HCCs. Herein, BK10007S showed significant cytotoxicity by 3-[4,5-2-yl]-2,5-diphenyltetra-zolium bromide (MTT assay and anti-proliferative effects by colony formation assay in HepG2 and SK-Hep1 cells. Also, apoptotic bodies and terminal deoxynucleotidyl transferase (TdT dUTP Nick End Labeling (TUNEL positive cells were observed in BK10007S treated HepG2 and SK-Hep1 cells by 4',6-diamidino-2-phenylinodole (DAPI staining and TUNEL assay, respectively. Consistently, BK10007S increased sub G1 population in HepG2 and SK-Hep1 cells by cell cycle analysis. Furthermore, Western blotting revealed that BK10007S activated the caspase cascades (caspase 8, 9 and 3, cleaved poly (ADP-ribose polymerase (PARP, and downregulated the expression of cyclin D1, survivin and for CUG-binding protein 1 (CUGBP1 or CELF1 in HepG2 and SK-Hep1 cells. Conversely, overexpression of CUGBP1 reduced cleavages of PARP and caspase 3, cytotoxicity and subG1 population in BK10007S treated HepG2 cells. Overall, these findings provide scientific evidences that BK10007S induces apoptosis via inhibition of CUGBP1 and activation of caspases in hepatocellular carcinomas as a potent anticancer candidate.

  12. Caspase-8 Binding to Cardiolipin in Giant Unilamellar Vesicles Provides a Functional Docking Platform for Bid

    DEFF Research Database (Denmark)

    Jalmar, Olivier; Franc¸ois-Moutal, Liberty; García-Sáez, Ana-Jesus

    2013-01-01

    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential...... system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results...... that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding...

  13. Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells.

    Science.gov (United States)

    Yang, Lu; Wu, Dingfang; Luo, Kewang; Wu, Shihua; Wu, Ping

    2009-04-18

    Despite recent significant advances in the treatment of human carcinoma (HCC), the results of chemotherapy to date remain unsatisfactory. 5-Fluorouracil (5-FU) still represents the cornerstone of treatment of carcinoma, and resistance to the actions of 5-FU is a major obstacle to successful chemotherapy. More effective treatment strategies may involve combinations of agents with activity against HCC. Andrographolide (ANDRO), a natural bicyclic diterpenoid lactone isolated from Andrographis paniculata, has been shown to suppress the growth of HCC cells and trigger apoptosis in vitro. To assess the suitability of ANDRO as a chemotherapeutic agent in HCC, its cytotoxic effects have been evaluated both as a single agent and in combination with 5-FU. ANDRO potentiates the cytotoxic effect of 5-FU in HCC cell line SMMC-7721 through apoptosis. ANDRO alone induces SMMC-7721 apoptosis with p53 expression, Bax conformation and caspase-3,8,9 activation. Surprisingly, the addition of ANDRO to 5-FU induces synergistic apoptosis, which could be corroborated to the increased caspase-8, p53 activity and the significant changes of Bax conformation in these cells, resulting in increased losses of mitochondrial membrane potential, increased release of cytochrome c, and activation of caspase-9 and caspase-3. Suppression of caspase-8 with the specific inhibitor z-IETD-fmk abrogates largely ANDRO/5-FU biological activity by preventing mitochondrial membrane potential disappearance, caspase-3,9 activation and subsequent apoptosis. The results suggest that ANDRO may be effective in combination with 5-FU for the treatment of HCC cells SMMC-7721.

  14. Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production

    International Nuclear Information System (INIS)

    Shen, S.-C.; Ko, C.H.; Tseng, S.-W.; Tsai, S.-H.; Chen, Y.-C.

    2004-01-01

    Flavonoids exist extensively in plants and Chinese herbs, and several biological effects of flavonoids have been demonstrated. The antitumor effects in colorectal carcinoma cells (HT29, COLO205, and COLO320HSR) of eight flavanones including flavanone, 2'-OH flavanone, 4'-OH flavanone, 6-OH flavanone, 7-OH flavanone, naringenin, nargin, and taxifolin were investigated. Results of the MTT assay indicate that 2'-OH flavanone showed the most potent cytotoxic effect on these three cells, and cell death induced by 2'-OH flavanone was via the occurrence of DNA ladders, apoptotic bodies, and hypodiploid cells, all characteristics of apoptosis. Induction of caspase 3 protein processing and enzyme activity associated with cleavage of poly(ADP-ribose) polymerase (PARP) was identified in 2'-OH flavanone-treated cells, and a peptidyl inhibitor (Ac-DEVD-FMK) of caspase 3 attenuated the cytotoxicity of 2'-OH flavanone in COLO205 and HT-29 cells. Elevation of p21 (but not p53) and a decrease in Mcl-1 protein were found in 2'-OH flavanone-treated COLO205 and HT-29 cells. Elevation of intracellular reactive oxygen species (ROS) was detected in 2'-OH flavanone-treated cells by the 2',7'-dichlorodihydrofluorescein diacetate (DCHF-DA) assay, and ROS scavengers including 4,5-dihydro-1,3-benzene disulfonic acid (tiron), catalase, superoxide dismutase (SOD), and pyrrolidine dithiocarbamate (PDTC) suppressed the 2'-OH flavanone-induced cytotoxic effect. Subcutaneous injection of COLO205 induced tumor formation in nude mice, and 2'-OH flavanone showed a significant inhibitory effect on tumor formation. The appearance of apoptotic cells with H and E staining, and an increase in p21, but not p53, protein by immunohistochemistry were observed in tumor tissues under 2'-OH flavanone treatment. Primary tumor cells (COLO205-X) derived from a tumor specimen elicited by COLO205 were established, and 2'-OH flavanone showed an significant apoptotic effect in COLO205-X cells in accordance with the

  15. Amplification activation loop between caspase-8 and -9 dominates artemisinin-induced apoptosis of ASTC-a-1 cells.

    Science.gov (United States)

    Xiao, Fenglian; Gao, Weijie; Wang, Xiaoping; Chen, Tongsheng

    2012-06-01

    Although caspases have been demonstrated to be involved in artemisinin (ARTE)-induced apoptosis, their exact functions are not well understood. The aim of this report is to explore the roles of caspase-8, -9 and -3 during ARTE-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cells. ARTE treatment induces a rapid generation of reactive oxygen species (ROS), and ROS-dependent apoptosis as well as the activation of caspase-8, -9 and -3 via time- and dose-dependent fashion. Of upmost importance, inhibition of caspase-8 or -9, but not caspase-3, almost completely blocks the ARTE-induced not only activation of the caspase-8, -9 and -3 but also apoptosis. In addition, the apoptotic process triggered by ARTE does not involve the Bid cleavage, tBid translocation, significant loss of mitochondrial membrane potential and cytochrome c release from mitochondria. Moreover, silencing Bax/Bak does not prevent the ATRE-induced cell death as well as the activation of caspase-8, -9 and -3. Collectively, our data firstly demonstrate that ARTE triggers a ROS-mediated positive feedback amplification activation loop between caspase-8 and -9 independent of mitochondria, which dominantly mediated the ARTE-induced apoptosis via a caspase-3-independent apoptotic pathway in ASTC-a-1 cells. Our findings imply a potential to develop new derivatives from artemisinin to effectively initiate the amplification activation loop of caspases.

  16. The impact of caspase-12 on susceptibility to candidemia.

    NARCIS (Netherlands)

    Rosentul, D.C.; Plantinga, T.S.; Scott, W.K.; Alexander, B.D.; Geer, N.M. van de; Perfect, J.R.; Kullberg, B.J.; Johnson, M.D.; Netea, M.G.

    2012-01-01

    Candida is one of the leading causes of sepsis, and an effective host immune response to Candida critically depends on the cytokines IL-1beta and IL-18, which need caspase-1 cleavage to become bioactive. Caspase-12 has been suggested to inhibit caspase-1 activation and has been implicated as a

  17. Triggering apoptotic death of human malignant melanoma a375.s2 cells by bufalin: involvement of caspase cascade-dependent and independent mitochondrial signaling pathways.

    Science.gov (United States)

    Hsiao, Yu-Ping; Yu, Chun-Shu; Yu, Chien-Chih; Yang, Jai-Sing; Chiang, Jo-Hua; Lu, Chi-Cheng; Huang, Hui-Ying; Tang, Nou-Ying; Yang, Jen-Hung; Huang, An-Cheng; Chung, Jing-Gung

    2012-01-01

    Bufalin was obtained from the skin and parotid venom glands of toad and has been shown to induce cytotoxic effects in various types of cancer cell lines, but there is no report to show that whether bufalin affects human skin cancer cells. The aim of this investigation was to study the effects of bufalin on human malignant melanoma A375.S2 cells and to elucidate possible mechanisms involved in induction of apoptosis. A375.S2 cells were treated with different concentrations of bufalin for a specific time period and investigated for effects on apoptotic analyses. Our results indicated that cells after exposure to bufalin significantly decreased cell viability, and induced cell morphological changes and chromatin condensation in a concentration-dependent manner. Flow cytometric assays indicated that bufalin promoted ROS productions, loss of mitochondrial membrane potential (ΔΨ(m)), intracellular Ca(2+) release, and nitric oxide (NO) formations in A375.S2 cells. Additionally, the apoptotic induction of bufalin on A375.S2 cells resulted from mitochondrial dysfunction-related responses (disruption of the ΔΨ(m) and releases of cytochrome c, AIF, and Endo G), and activations of caspase-3, caspase-8 and caspase-9 expressions. Based on those observations, we suggest that bufalin-triggered apoptosis in A375.S2 cells is correlated with extrinsic- and mitochondria-mediated multiple signal pathways.

  18. Reduction of the tumorigenic potential of human retinoblastoma cell lines by TFF1 overexpression involves p53/caspase signaling and miR-18a regulation.

    Science.gov (United States)

    Busch, Maike; Große-Kreul, Jan; Wirtz, Janina Jasmin; Beier, Manfred; Stephan, Harald; Royer-Pokora, Brigitte; Metz, Klaus; Dünker, Nicole

    2017-08-01

    Trefoil factor family (TFF) peptides have been shown to play a pivotal role in oncogenic transformation, tumorigenesis and metastasis by changing cell proliferation, apoptosis, migration and invasion behavior of various cancer cell lines. In the study presented, we investigated the effect of TFF1 overexpression on cell growth, viability, migration and tumorigenicity of different retinoblastoma (RB) cell lines. Transient TFF1 overexpression significantly increases RB cell apoptosis levels. Stable, lentiviral TFF1 overexpression likewise decreases RB cell viability, proliferation and growth and significantly increases apoptosis as revealed by WST-1 assays, BrdU and DAPI cell counts. TFF1-induced apoptosis is executed via cleaved caspase-3 activation as revealed by caspase blockage experiments and caspase-3 immunocytochemistry. Results from pG13-luciferase reporter assays and Western blot analyses indicate that TFF1-induced apoptosis is mediated through transcriptional activity of p53 with concurrently downregulated miR-18a expression. In ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF1 overexpression significantly decreases the size of tumors forming from Y79 and RB355 cells and reduces the migration potential of RB355 cells. Differentially expressed genes and pathways involved in cancer progression were identified after TFF1 overexpression in Y79 cells by gene expression array analysis, underlining the effects on reduced tumorigenicity. TFF1 knockdown in RBL30 cells revealed caspase-3/7-independent apoptosis induction, but no changes on cell proliferation level. In summary, the in vitro and in vivo data demonstrate for the first time a tumor suppressor function of TFF1 in RB cells which is at least partly mediated by p53 activation and miR-18a downregulation. © 2017 UICC.

  19. Mitochondrial and caspase pathways are involved in the induction of apoptosis by nardosinen in MCF-7 breast cancer cell line.

    Science.gov (United States)

    Shahali, Amirhosein; Ghanadian, Mustafa; Jafari, Seyyed Mehdi; Aghaei, Mahmoud

    2018-02-01

    Natural products isolated from plants provide a valuable source for expansion of new anticancer drugs. Nardosinen (4,9-dihydroxy-nardosin-6-en) is a natural sesquiterpene extracted from Juniperus foetidissima . Recently, we have reported the cytotoxic effects of nardosinen in various cancer cells. The aim of the current study was to investigate the anticancer features of nardosinen as well as its possible molecular mechanisms of the nardosinen cytotoxic effect on breast tumor cells. MTT assay showed that nardosinen notably inhibited cell proliferation in a dose-dependent manner in MCF-7 breast cancer cells. The growth inhibitory effect of nardosinen was associated with the induction of cell apoptosis, activation of caspase-6, increase of reactive oxygen species (ROS), and loss of mitochondrial membrane potentials (ΔΨm). Western blot assay following treatment with nardosinen showed that the expression levels of the Bax were significantly up-regulated and the expression levels of the Bcl-2 were significantly down-regulated. Our results finally exhibited that nardosinen induces apoptosis in breast cancer cells via the mitochondrial and caspase pathways.

  20. The caspase-activated DNase

    DEFF Research Database (Denmark)

    Larsen, Brian D; Sørensen, Claus S

    2017-01-01

    CAD-induced DNA breaks. Furthermore, an apparent consequence of CAD activity is also emerging, as a potential source of oncogenic mutations. This review will discuss the mechanisms underlying CAD-induced DNA breaks and highlight how CAD activity promotes diverse cell fates....... and integral to this balance. Importantly, the view of apoptotic signal transduction has expanded over the previous decades. Subapoptotic caspase signaling has surfaced as mechanism that can promote the adoption of a range of cellular fates. An emerging mechanism of subapoptotic caspase signaling...... is the activation of the caspase-activated DNase (CAD) through controlled cleavage of the inhibitor of CAD (ICAD). CAD-induced DNA breaks incite a DNA damage response, frequently invoking p53 signaling, that transduces a change in cell fate. Cell differentiation and senescence are fates demonstrated to arise from...

  1. Phenylpropanoid 2,3-dioxygenase involved in the cleavage of the ferulic acid side chain to form vanillin and glyoxylic acid in Vanilla planifolia.

    Science.gov (United States)

    Negishi, Osamu; Negishi, Yukiko

    2017-09-01

    Enzyme catalyzing the cleavage of the phenylpropanoid side chain was partially purified by ion exchange and gel filtration column chromatography after (NH 4 ) 2 SO 4 precipitation. Enzyme activities were dependent on the concentration of dithiothreitol (DTT) or glutathione (GSH) and activated by addition of 0.5 mM Fe 2+ . Enzyme activity for ferulic acid was as high as for 4-coumaric acid in the presence of GSH, suggesting that GSH acts as an endogenous reductant in vanillin biosynthesis. Analyses of the enzymatic reaction products with quantitative NMR (qNMR) indicated that an amount of glyoxylic acid (GA) proportional to vanillin was released from ferulic acid by the enzymatic reaction. These results suggest that phenylpropanoid 2,3-dioxygenase is involved in the cleavage of the ferulic acid side chain to form vanillin and GA in Vanilla planifolia.

  2. Inclusion Complex of Zerumbone with Hydroxypropyl-β-Cyclodextrin Induces Apoptosis in Liver Hepatocellular HepG2 Cells via Caspase 8/BID Cleavage Switch and Modulating Bcl2/Bax Ratio

    Directory of Open Access Journals (Sweden)

    Nabilah Muhammad Nadzri

    2013-01-01

    Full Text Available Zerumbone (ZER isolated from Zingiber zerumbet was previously encapsulated with hydroxypropyl-β-cyclodextrin (HPβCD to enhance ZER’s solubility in water, thus making it highly tolerable in the human body. The anticancer effects of this new ZER-HPβCD inclusion complex via apoptosis cell death were assessed in this study for the first time in liver hepatocellular cells, HepG2. Apoptosis was ascertained by morphological study, nuclear stain, and sub-G1 cell population accumulation with G2/M arrest. Further investigations showed the release of cytochrome c and loss of mitochondrial membrane potential, proving mitochondrial dysfunction upon the ZER-HPβCD treatment as well as modulating proapoptotic and anti-apototic Bcl-2 family members. A significant increase in caspase 3/7, caspase 9, and caspase 8 was detected with the depletion of BID cleaved by caspase 8. Collectively, these results prove that a highly soluble inclusion complex of ZER-HPβCD could be a promising anticancer agent for the treatment of hepatocellular carcinoma in humans.

  3. Caspase inhibitors of the P35 family are more active when purified from yeast than bacteria.

    Directory of Open Access Journals (Sweden)

    Ingo L Brand

    Full Text Available Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a "reactive site loop" within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins may underestimate their activity.

  4. A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly.

    Directory of Open Access Journals (Sweden)

    Frédérique Végran

    Full Text Available Alternative splicing of caspase-3 produces a short isoform caspase-3s that antagonizes caspase-3 apoptotic activity. However, the mechanism of apoptosis inhibition by caspase-3s remains unknown. Here we show that exogenous caspase-3 sensitizes MCF-7 and HBL100 breast cancers cells to chemotherapeutic treatments such as etoposide and methotrexate whereas co-transfection with caspase-3s strongly inhibits etoposide and methotrexate-induced apoptosis underlying thus the anti-apoptotic role of caspase-3s. In caspase-3 transfected cells, lamin-A and α-fodrin were cleaved when caspase-3 was activated by etoposide or methotrexate. When caspase-3s was co-transfected, this cleavage was strongly reduced. Depletion of caspase-3 by RNA interference in HBL100 containing endogenous caspase-3s caused reduction in etoposide and methotrexate-induced apoptosis, whereas the depletion of caspase-3s sensitized cells to chemotherapy. In the presence of caspase-3s, a lack of interaction between caspase-3 and caspase-9 was observed. Immunoprecipitation assays showed that caspase-3s binds the pro-forms of caspase-3. This result suggested that the absence of interaction with caspase-9 when both variants of caspase-3 are present contribute to block the apoptosome assembly and inhibit apoptosis. These data support that caspases-3s negatively interferes with caspase-3 activation and apoptosis in breast cancer, and that it can play key roles in the modulation of response to chemotherapeutic treatments.

  5. TRAIL-induced cleavage and inactivation of SPAK sensitizes cells to apoptosis

    International Nuclear Information System (INIS)

    Polek, Tara C.; Talpaz, Moshe; Spivak-Kroizman, Taly R.

    2006-01-01

    Ste20-related proline-alanine-rich kinase (SPAK) has been linked to various cellular processes, including proliferation, differentiation, and ion transport regulation. Recently, we showed that SPAK mediates signaling by the TNF receptor, RELT. The presence of a caspase cleavage site in SPAK prompted us to study its involvement in apoptotic signaling induced by another TNF member, TRAIL. We show that TRAIL stimulated caspase 3-like proteases that cleaved SPAK at two distinct sites. Cleavage had little effect on the activity of SPAK but removed its substrate-binding domain. In addition, TRAIL reduced the activity of SPAK in HeLa cells in a caspase-independent manner. Thus, TRAIL inhibited SPAK by two mechanisms: activation of caspases, which removed its substrate-binding domain, and caspase-independent down-regulation of SPAK activity. Furthermore, reducing the amount of SPAK by siRNA increased the sensitivity of HeLa cells to TRAIL-induced apoptosis. Thus, TRAIL down-regulation of SPAK is an important event that enhances its apoptotic effects

  6. Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: Implications for chronic neurodegeneration

    Directory of Open Access Journals (Sweden)

    Olena Y Glushakova

    2017-01-01

    Full Text Available Acute brain injuries, including ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI, are major worldwide health concerns with very limited options for effective diagnosis and treatment. Stroke and TBI pose an increased risk for the development of chronic neurodegenerative diseases, notably chronic traumatic encephalopathy, Alzheimer's disease, and Parkinson's disease. The existence of premorbid neurodegenerative diseases can exacerbate the severity and prognosis of acute brain injuries. Apoptosis involving caspase-3 is one of the most common mechanisms involved in the etiopathology of both acute and chronic neurological and neurodegenerative diseases, suggesting a relationship between these disorders. Over the past two decades, several clinical biomarkers of apoptosis have been identified in cerebrospinal fluid and peripheral blood following ischemic stroke, intracerebral and subarachnoid hemorrhage, and TBI. These biomarkers include selected caspases, notably caspase-3 and its specific cleavage products such as caspase-cleaved cytokeratin-18, caspase-cleaved tau, and a caspase-specific 120 kDa αII-spectrin breakdown product. The levels of these biomarkers might be a valuable tool for the identification of pathological pathways such as apoptosis and inflammation involved in injury progression, assessment of injury severity, and prediction of clinical outcomes. This review focuses on clinical studies involving biomarkers of caspase-3-mediated pathways, following stroke and TBI. The review further examines their prospective diagnostic utility, as well as clinical utility for improved personalized treatment of stroke and TBI patients and the development of prophylactic treatment chronic neurodegenerative disease.

  7. Isololiolide, a carotenoid metabolite isolated from the brown alga Cystoseira tamariscifolia, is cytotoxic and able to induce apoptosis in hepatocarcinoma cells through caspase-3 activation, decreased Bcl-2 levels, increased p53 expression and PARP cleavage.

    Science.gov (United States)

    Vizetto-Duarte, Catarina; Custódio, Luísa; Gangadhar, Katkam N; Lago, João Henrique G; Dias, Catarina; Matos, Ana Marta; Neng, Nuno; Nogueira, José Manuel Florêncio; Barreira, Luísa; Albericio, Fernando; Rauter, Amelia P; Varela, João

    2016-05-15

    Brown macroalgae have attracted attention because they display a wide range of biological activities, including antitumoral properties. Inthis study we isolated isololiolide from Cystoseira tamariscifolia for the first time. To examine the therapeutical potential of isololiolide against tumor cell lines. The structure of the compound was established and confirmed by 1D and 2D NMR as well as HRMS spectral analysis. The in vitro cytotoxicity was analyzed by colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay in tumoral as well as in non-tumoral cell lines. Cell cycle arrest and induction of apoptosis were assessed by flow cytometry. Alteration of expression levels in proteins important in the apoptotic cascade was analyzed by western blotting. Isololiolidewas isolated for the first time from the brown macroalga C.tamariscifolia. Isololiolide exhibited significant cytotoxic activity against three human tumoral cell lines, namely hepatocarcinoma HepG2 cells, whereas no cytotoxicity was found in non-malignant MRC-5 and HFF-1 human fibroblasts. Isololiolide completely disrupted the HepG2 normal cell cycle and induced significant apoptosis. Moreover, western blot analysis showed that isololiolide altered the expression of proteins that are important in the apoptotic cascade, increasing PARP cleavage and p53 expression while decreasing procaspase-3 and Bcl-2 levels. Isololiolide isolated from C. tamariscifolia is able to exert a selective cytotoxic activity on hepatocarcinoma HepG2 cells as well as induce apoptosis through the modulation of apoptosis-related proteins. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Compound K, a metabolite of ginseng saponin, induces apoptosis via caspase-8-dependent pathway in HL-60 human leukemia cells

    International Nuclear Information System (INIS)

    Cho, Sung-Hee; Chung, Kyung-Sook; Choi, Jung-Hye; Kim, Dong-Hyun; Lee, Kyung-Tae

    2009-01-01

    Compound K [20-O-β-(D-glucopyranosyl)-20(S)-protopanaxadiol], a metabolite of the protopanaxadiol-type saponins of Panax ginseng C.A. Meyer, has been reported to possess anti-tumor properties to inhibit angiogenesis and to induce tumor apoptosis. In the present study, we investigated the effect of Compound K on apoptosis and explored the underlying mechanisms involved in HL-60 human leukemia cells. We examined the effect of Compound K on the viabilities of various cancer cell lines using MTT assays. DAPI assay, Annexin V and PI double staining, Western blot assay and immunoprecipitation were used to determine the effect of Compound K on the induction of apoptosis. Compound K was found to inhibit the viability of HL-60 cells in a dose- and time-dependent manner with an IC 50 of 14 μM. Moreover, this cell death had typical features of apoptosis, that is, DNA fragmentation, DNA ladder formation, and the externalization of Annexin V targeted phosphatidylserine residues in HL-60 cells. In addition, compound-K induced a series of intracellular events associated with both the mitochondrial- and death receptor-dependent apoptotic pathways, namely, (1) the activation of caspases-3, -8, and -9; (2) the loss of mitochondrial membrane potential; (3) the release of cytochrome c and Smac/DIABLO to the cytosol; (4) the translocation of Bid and Bax to mitochondria; and (5) the downregulations of Bcl-2 and Bcl-xL. Furthermore, a caspase-8 inhibitor completely abolished caspase-3 activation, Bid cleavage, and subsequent DNA fragmentation by Compound K. Interestingly, the activation of caspase-3 and -8 and DNA fragmentation were significantly prevented in the presence of cycloheximide, suggesting that Compound K-induced apoptosis is dependent on de novo protein synthesis. The results indicate that caspase-8 plays a key role in Compound K-stimulated apoptosis via the activation of caspase-3 directly or indirectly through Bid cleavage, cytochrome c release, and caspase-9 activation

  9. Apoptosis induced by lipid-associated membrane proteins from Mycoplasma hyopneumoniae in a porcine lung epithelial cell line with the involvement of caspase 3 and the MAPK pathway.

    Science.gov (United States)

    Ni, B; Bai, F F; Wei, Y; Liu, M J; Feng, Z X; Xiong, Q Y; Hua, L Z; Shao, G Q

    2015-09-25

    Lipid-associated membrane proteins (LAMPs) are important in the pathogenicity of the Mycoplasma genus of bacteria. We investigated whether Mycoplasma hyopneumoniae LAMPs have pathogenic potential by inducing apoptosis in a St. Jude porcine lung epithelial cell line (SJPL). LAMPs from a pathogenic strain of M. hyopneumoniae (strain 232) were used in the research. Our investigation made use of diamidino-phenylindole (DAPI) and acridine orange/ethidium bromide (AO/EB) staining, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) analysis, and Annexin-V-propidium iodide staining. After LAMP treatment for 24 h, typical changes were induced, chromosomes were concentrated, apoptotic bodies were observed, the 3'-OH groups of cleaved genomes were exposed, and the percentage of apoptotic cells reached 36.5 ± 11.66%. Caspase 3 and caspase 8 were activated and cytochrome c (cyt c) was released from the mitochondria into the cytoplasm; poly ADP ribose polymerase (PARP) was digested into two fragments; p38 mitogen-activated protein kinase (MAPK) was phosphorylated; and the expression of pro-apoptosis protein Bax increased while the anti-apoptosis protein Bcl-2 decreased. LAMPs also stimulated SJPL cells to produce nitric oxide (NO) and superoxide. This study demonstrated that LAMPs from M. hyopneumoniae can induce apoptosis in SJPL cells through the activation of caspase 3, caspase 8, cyt c, Bax, and p38 MAPK, thereby contributing to our understanding of the pathogenesis of M. hyopneumoniae, which should improve the treatment of M. hyopneumoniae infections.

  10. High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation

    International Nuclear Information System (INIS)

    Yamakawa, Nobuhiro; Takahashi, Akihisa; Mori, Eiichiro; Imai, Yuichiro; Ohnishi, Ken; Kirita, Tadaaki; Ohnishi, Takeo; Furusawa, Yoshiya

    2008-01-01

    Although mutations in the p53 gene can lead to resistance to radiotherapy, chemotherapy and thermotherapy, high linear energy transfer (LET) radiation induces apoptosis regardless of p53 gene status in cancer cells. The aim of this study was to clarify the mechanisms involved in high LET radiation-induced apoptosis. Human gingival cancer cells (Ca9-22 cells) containing a mutated p53 (mp53) gene were irradiated with X-rays, C-ion (13-100 KeV/μm), or Fe-ion beams (200 KeV/μm). Cellular sensitivities were determined using colony forming assays. Apoptosis was detected and quantified with Hoechst 33342 staining. The activity of Caspase-3 was analyzed with Western blotting and flow cytometry. Cells irradiated with high LET radiation showed a high sensitivity with a high frequency of apoptosis induction. The relative biological effectiveness (RBE) values for the surviving fraction and apoptosis induction increased in a LET-dependent manner. Both RBE curves reached a peak at 100 KeV/μm, and then decreased at values over 100 KeV/μm. When cells were irradiated with high LET radiation, Caspase-3 was cleaved and activated, leading to poly (ADP-ribose) polymerase (PARP) cleavage. In addition, Caspase-9 inhibitor suppressed Caspase-3 activation and apoptosis induction resulting from high LET radiation to a greater extent than Caspase-8 inhibitor. These results suggest that high LET radiation enhances apoptosis by activation of Caspase-3 through Caspase-9, even in the presence of mp53. (author)

  11. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3

    Science.gov (United States)

    Murthy, Aditya; Li, Yun; Peng, Ivan; Reichelt, Mike; Katakam, Anand Kumar; Noubade, Rajkumar; Roose-Girma, Merone; Devoss, Jason; Diehl, Lauri; Graham, Robert R.; van Lookeren Campagne, Menno

    2014-02-01

    Crohn's disease is a debilitating inflammatory bowel disease (IBD) that can involve the entire digestive tract. A single-nucleotide polymorphism (SNP) encoding a missense variant in the autophagy gene ATG16L1 (rs2241880, Thr300Ala) is strongly associated with the incidence of Crohn's disease. Numerous studies have demonstrated the effect of ATG16L1 deletion or deficiency; however, the molecular consequences of the Thr300Ala (T300A) variant remains unknown. Here we show that amino acids 296-299 constitute a caspase cleavage motif in ATG16L1 and that the T300A variant (T316A in mice) significantly increases ATG16L1 sensitization to caspase-3-mediated processing. We observed that death-receptor activation or starvation-induced metabolic stress in human and murine macrophages increased degradation of the T300A or T316A variants of ATG16L1, respectively, resulting in diminished autophagy. Knock-in mice harbouring the T316A variant showed defective clearance of the ileal pathogen Yersinia enterocolitica and an elevated inflammatory cytokine response. In turn, deletion of the caspase-3-encoding gene, Casp3, or elimination of the caspase cleavage site by site-directed mutagenesis rescued starvation-induced autophagy and pathogen clearance, respectively. These findings demonstrate that caspase 3 activation in the presence of a common risk allele leads to accelerated degradation of ATG16L1, placing cellular stress, apoptotic stimuli and impaired autophagy in a unified pathway that predisposes to Crohn's disease.

  12. Developing a powerful In Silico tool for the discovery of novel caspase-3 substrates: a preliminary screening of the human proteome

    Directory of Open Access Journals (Sweden)

    Ayyash Muneef

    2012-01-01

    Full Text Available Abstract Background Caspases are a family of cysteinyl proteases that regulate apoptosis and other biological processes. Caspase-3 is considered the central executioner member of this family with a wide range of substrates. Identification of caspase-3 cellular targets is crucial to gain further insights into the cellular mechanisms that have been implicated in various diseases including: cancer, neurodegenerative, and immunodeficiency diseases. To date, over 200 caspase-3 substrates have been identified experimentally. However, many are still awaiting discovery. Results Here, we describe a powerful bioinformatics tool that can predict the presence of caspase-3 cleavage sites in a given protein sequence using a Position-Specific Scoring Matrix (PSSM approach. The present tool, which we call CAT3, was built using 227 confirmed caspase-3 substrates that were carefully extracted from the literature. Assessing prediction accuracy using 10 fold cross validation, our method shows AUC (area under the ROC curve of 0.94, sensitivity of 88.83%, and specificity of 89.50%. The ability of CAT3 in predicting the precise cleavage site was demonstrated in comparison to existing state-of-the-art tools. In contrast to other tools which were trained on cleavage sites of various caspases as well as other similar proteases, CAT3 showed a significant decrease in the false positive rate. This cost effective and powerful feature makes CAT3 an ideal tool for high-throughput screening to identify novel caspase-3 substrates. The developed tool, CAT3, was used to screen 13,066 human proteins with assigned gene ontology terms. The analyses revealed the presence of many potential caspase-3 substrates that are not yet described. The majority of these proteins are involved in signal transduction, regulation of cell adhesion, cytoskeleton organization, integrity of the nucleus, and development of nerve cells. Conclusions CAT3 is a powerful tool that is a clear improvement over

  13. Apoptotic mechanism behind the testicular atrophy in photorefractory and scotosensitive quail: Involvement of GnIH induced p-53 dependent Bax-Caspase-3 mediated pathway.

    Science.gov (United States)

    Banerjee, Somanshu; Chaturvedi, Chandra Mohini

    2017-11-01

    In most of the avian species, daylength or photoperiod is the main environmental factor regulating reproduction. During their annual gonadal cycle, birds once sensitive to short or long day effect develop refractoriness to the same daylength and gonad develop or regress accordingly. The present study investigated the effects of photoperiodic alterations on apoptosis mediated testicular responses of photosensitive/photorefractory and scotosensitive/scotorefractory quail, Coturnix coturnix japonica. Testicular apoptosis in the quail of different photoperiodic conditions was assessed by monitoring the alterations in the local testicular expression of GnRH-I, GnIH, pro-apoptotic proteins (p53 and Bax), inactive caspase (pro-Caspase-3), executioner active-Caspase-3 and inactive/uncleaved PARP-1 (DNA repair enzyme) and TUNEL analysis. Alterations in these parameters indicate that testicular quiescence/regression in scotosensitive and photorefractory quail is mediated by apoptosis of testicular cells and hence apoptosis appears to be the key mechanism of testicular regression in Japanese quail. Present findings demonstrated the underlying molecular mechanism of how avian testes respond differentially to same photoperiodic conditions and exhibit scoto-/photo-sensitivity and refractoriness. It is concluded that photoperiod induced testicular stimulation in photosensitive/scotorefractory quail may be due to apoptotic inhibition and testicular regression in scotosensitive/photorefractory quail is guided by apoptosis, an effect invariably regulated by local action of GnRH and GnIH. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Caspases: An apoptosis mediator

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Palai

    2015-03-01

    Full Text Available The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy - dependent biochemical mechanisms. Apoptosis is a widely conserved phenomenon helping many processes, including normal cell turnover, proper development and functioning of the immune system, hormone dependent atrophy etc. Inappropriate apoptosis (either low level or high level leads to many developmental abnormalities like, neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. To use cells for therapeutic purposes through generating cell lines, it is critical to study the cell cycle machinery and signalling pathways that controls cell death and apoptosis. Apoptotic pathways provide a fundamental protective mechanism that decreases cellular sensitivity to damaging events and allow proper developmental process in multi-cellular organisms. Major mediator of apoptosis is a family of proteins known as caspases. There are mainly fourteen types of caspases but out of them only ten caspasese have got essential role in controlling the process of apoptosis. These ten caspases have been categorized into either initiator caspases (caspase 2, 8, 9, 10 or executioner caspases (caspase 3, 6, 7. Although various types of caspases have been identified so far, the exact mechanisms of action of these groups of proteins is still to be fully understood. The aim of this review is to provide a detail overview of role of different caspases in regulating the process of apoptosis.

  15. Sulfur mustard causes caspase-mediated cleavage of cytoskeletal keratins

    NARCIS (Netherlands)

    Mol, M.A.E.; Berg, R.M. van den; Dijk, C. van; Jong, A.L. de

    2004-01-01

    In order to study the toxic mechanism of action of sulfur mustard (HD), we examined protein expression in control and HD-treated cultured human epidermal keratinocytes (HEK) at 24 h after exposure to 100 μM HD. Protein patterns of cell lysates were prepared using two-dimensional gel electrophoresis

  16. The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors.

    Science.gov (United States)

    Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen

    2016-11-15

    Particular peptides generated from the vicilin-class(7S) globulin of the cocoa beans by acid-induced proteolysis during cocoa fermentation are essential precursors of the cocoa-specific aroma notes. As revealed by in vitro studies, the formation of the cocoa-specific aroma precursors depends on the particular cleavage specificity of the cocoa aspartic protease, which cannot be substituted by pepsin. Therefore, we have investigated the effects of aspartic protease inhibitors on both enzymes and comparatively studied their cleavage specificities using different protein substrates and MALDI-TOF mass spectrometric analyses of the generated oligopeptides. Three classes of cleavage sites have been identified and characterized: (I) sequences exclusively cleaved by the cocoa enzyme, (II) sequences cleaved by both pepsin and the cocoa enzyme, and (III) those cleaved exclusively by pepsin. In contrast to most aspartic proteases from other origins, basic amino acid residues, particularly lysine, were found to be abundant in the specific cleavage sites of the cocoa enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Activation of caspase-9 is required for UV-induced apoptosis of human keratinocytes.

    Science.gov (United States)

    Sitailo, Leonid A; Tibudan, Shalini S; Denning, Mitchell F

    2002-05-31

    UV radiation from the sun activates both the membrane death receptor and the intrinsic or mitochondrial apoptotic signaling pathways in epidermal keratinocytes, triggering apoptosis and affording protection against skin cancer formation. We have investigated the involvement of caspase-9 in the UV death effector pathway in human keratinocytes, since this is the initiating caspase in the mitochondrial pathway required for UV-induced apoptosis in some, but not all, cell types. UV radiation triggered activation of caspase-3, caspase-9, and caspase-8 with similar kinetics, although the rank order of activation was caspase-3 > caspase-9 > caspase-8. Inhibition of caspase-9 with either the peptide inhibitor benzyloxycarbonyl-Leu-Glu(OCH(3))-His-Asp(OCH(3))-fluoromethyl ketone, or expression of a catalytically inactive caspase-9 by retroviral transduction, protected normal keratinocytes from UV-induced apoptosis. HaCaT keratinocytes harboring mutant p53 alleles were also protected from UV-induced apoptosis by the dominant negative caspase-9. The dominant negative caspase-9 blocked UV-induced activation of caspase-3, caspase-9, and caspase-8, and also protected cells from the loss of mitochondrial membrane potential. In contrast, the dominant negative caspase-9 did not protect from anti-Fas-induced apoptosis or caspase activation. These results identify caspase-9 as the critical upstream caspase initiating apoptosis by UV radiation in human keratinocytes, the relevant cell type for this important environmental carcinogen.

  18. Divergent modulation of neuronal differentiation by caspase-2 and -9.

    Directory of Open Access Journals (Sweden)

    Giuseppa Pistritto

    Full Text Available Human Ntera2/cl.D1 (NT2 cells treated with retinoic acid (RA differentiate towards a well characterized neuronal phenotype sharing many features with human fetal neurons. In view of the emerging role of caspases in murine stem cell/neural precursor differentiation, caspases activity was evaluated during RA differentiation. Caspase-2, -3 and -9 activity was transiently and selectively increased in differentiating and non-apoptotic NT2-cells. SiRNA-mediated selective silencing of either caspase-2 (si-Casp2 or -9 (si-Casp9 was implemented in order to dissect the role of distinct caspases. The RA-induced expression of neuronal markers, i.e. neural cell adhesion molecule (NCAM, microtubule associated protein-2 (MAP2 and tyrosine hydroxylase (TH mRNAs and proteins, was decreased in si-Casp9, but markedly increased in si-Casp2 cells. During RA-induced NT2 differentiation, the class III histone deacetylase Sirt1, a putative caspase substrate implicated in the regulation of the proneural bHLH MASH1 gene expression, was cleaved to a ∼100 kDa fragment. Sirt1 cleavage was markedly reduced in si-Casp9 cells, even though caspase-3 was normally activated, but was not affected (still cleaved in si-Casp2 cells, despite a marked reduction of caspase-3 activity. The expression of MASH1 mRNA was higher and occurred earlier in si-Casp2 cells, while was reduced at early time points during differentiation in si-Casp9 cells. Thus, caspase-2 and -9 may perform opposite functions during RA-induced NT2 neuronal differentiation. While caspase-9 activation is relevant for proper neuronal differentiation, likely through the fine tuning of Sirt1 function, caspase-2 activation appears to hinder the RA-induced neuronal differentiation of NT2 cells.

  19. MiR-30b Is Involved in the Homocysteine-Induced Apoptosis in Human Coronary Artery Endothelial Cells by Regulating the Expression of Caspase 3

    Directory of Open Access Journals (Sweden)

    Feng Li

    2015-07-01

    Full Text Available Homocysteine (Hcy is an independent risk factor for a variety of cardiovascular diseases, such as coronary heart disease, hypertension, stroke, etc. There is a close relationship between the vascular endothelial cell apoptosis and these diseases. Recent studies have shown homocysteine can induce apoptosis in endothelial cells, which may be an important mechanism for the development of theses cardiovascular diseases. Although there are several reports about how the Hcy induces apoptosis in endothelial cells, the exact mechanism is not fully understood. MicroRNAs are small, non-coding RNA. Previous studies have shown that there is a close relationship between several microRNAs and cell apoptosis. However, there are no studies about the role of microRNAs in Hcy-induced apoptosis in endothelial cells so far. In this study, we constructed the model of homocysteine-induced apoptosis in human coronary artery endothelial cells (HCAECs and found miR-30b was significantly down-regulated by 1 mmol/L Hcy. In addition, overexpression of miR-30b can improve the Hcy-induced apoptosis in HCAECs by downregulating caspase-3 expression. Therefore, miR-30b may play an important role in Hcy-induced apoptosis in endothelial cells.

  20. Caspase-12 and the inflammatory response to Yersinia pestis.

    Science.gov (United States)

    Ferwerda, Bart; McCall, Matthew B B; de Vries, Maaike C; Hopman, Joost; Maiga, Boubacar; Dolo, Amagana; Doumbo, Ogobara; Daou, Modibo; de Jong, Dirk; Joosten, Leo A B; Tissingh, Rudi A; Reubsaet, Frans A G; Sauerwein, Robert; van der Meer, Jos W M; van der Ven, André J A M; Netea, Mihai G

    2009-09-01

    Caspase-12 functions as an antiinflammatory enzyme inhibiting caspase-1 and the NOD2/RIP2 pathways. Due to increased susceptibility to sepsis in individuals with functional caspase-12, an early-stop mutation leading to the loss of caspase-12 has replaced the ancient genotype in Eurasia and a significant proportion of individuals from African populations. In African-Americans, it has been shown that caspase-12 inhibits the pro-inflammatory cytokine production. We assessed whether similar mechanisms are present in African individuals, and whether evolutionary pressures due to plague may have led to the present caspase-12 genotype population frequencies. No difference in cytokine induction through the caspase-1 and/or NOD2/RIP2 pathways was observed in two independent African populations, among individuals with either an intact or absent caspase-12. In addition, stimulations with Yersinia pestis and two other species of Yersinia were preformed to investigate whether caspase-12 modulates the inflammatory reaction induced by Yersinia. We found that caspase-12 did not modulate cytokine production induced by Yersinia spp. Our experiments demonstrate for the first time the involvement of the NOD2/RIP2 pathway for recognition of Yersinia. However, caspase-12 does not modulate innate host defense against Y. pestis and alternative explanations for the geographical distribution of caspase-12 should be sought.

  1. Host cell killing by the West Nile Virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway

    International Nuclear Information System (INIS)

    Ramanathan, Mathura P.; Chambers, Jerome A.; Pankhong, Panyupa; Chattergoon, Michael; Attatippaholkun, Watcharee; Dang, Kesen; Shah, Neelima; Weiner, David B.

    2006-01-01

    The West Nile Virus (WNV) non-structural proteins 2B and 3 (NS2B-NS3) constitute the proteolytic complex that mediates the cleavage and processing of the viral polyprotein. NS3 recruits NS2B and NS5 proteins to direct protease and replication activities. In an effort to investigate the biology of the viral protease, we cloned cDNA encoding the NS2B-NS3 proteolytic complex from brain tissue of a WNV-infected dead crow, collected from the Lower Merion area (Merion strain). Expression of the NS2B-NS3 gene cassette induced apoptosis within 48 h of transfection. Electron microscopic analysis of NS2B-NS3-transfected cells revealed ultra-structural changes that are typical of apoptotic cells including membrane blebbing, nuclear disintegration and cytoplasmic vacuolations. The role of NS3 or NS2B in contributing to host cell apoptosis was examined. NS3 alone triggers the apoptotic pathways involving caspases-8 and -3. Experimental results from the use of caspase-specific inhibitors and caspase-8 siRNA demonstrated that the activation of caspase-8 was essential to initiate apoptotic signaling in NS3-expressing cells. Downstream of caspase-3 activation, we observed nuclear membrane ruptures and cleavage of the DNA-repair enzyme, PARP in NS3-expressing cells. Nuclear herniations due to NS3 expression were absent in the cells treated with a caspase-3 inhibitor. Expression of protease and helicase domains themselves was sufficient to trigger apoptosis generating insight into the apoptotic pathways triggered by NS3 from WNV

  2. Tyrosine Phosphorylation of Caspase-8 Abrogates Its Apoptotic Activity and Promotes Activation of c-Src

    Science.gov (United States)

    Tsang, Jennifer LY; Jia, Song Hui; Parodo, Jean; Plant, Pamela; Lodyga, Monika; Charbonney, Emmanuel; Szaszi, Katalin; Kapus, Andras; Marshall, John C.

    2016-01-01

    Src family tyrosine kinases (SFKs) phosphorylate caspase-8A at tyrosine (Y) 397 resulting in suppression of apoptosis. In addition, the phosphorylation of caspase-8A at other sites including Y465 has been implicated in the regulation of caspase-8 activity. However, the functional consequences of these modifications on caspase-8 processing/activity have not been elucidated. Moreover, various Src substrates are known to act as potent Src regulators, but no such role has been explored for caspase-8. We asked whether the newly identified caspase-8 phosphorylation sites might regulate caspase-8 activation and conversely, whether caspase-8 phosphorylation might affect Src activity. Here we show that Src phosphorylates caspase-8A at multiple tyrosine sites; of these, we have focused on Y397 within the linker region and Y465 within the p12 subunit of caspase-8A. We show that phosphomimetic mutation of caspase-8A at Y465 prevents its cleavage and the subsequent activation of caspase-3 and suppresses apoptosis. Furthermore, simultaneous phosphomimetic mutation of caspase-8A at Y397 and Y465 promotes the phosphorylation of c-Src at Y416 and increases c-Src activity. Finally, we demonstrate that caspase-8 activity prevents its own tyrosine phosphorylation by Src. Together these data reveal that dual phosphorylation converts caspase-8 from a pro-apoptotic to a pro-survival mediator. Specifically, tyrosine phosphorylation by Src renders caspase-8 uncleavable and thereby inactive, and at the same time converts it to a Src activator. This novel dynamic interplay between Src and caspase-8 likely acts as a potent signal-integrating switch directing the cell towards apoptosis or survival. PMID:27101103

  3. Compound K, a metabolite of ginseng saponin, induces apoptosis via caspase-8-dependent pathway in HL-60 human leukemia cells

    Directory of Open Access Journals (Sweden)

    Choi Jung-Hye

    2009-12-01

    Full Text Available Abstract Background Compound K [20-O-β-(D-glucopyranosyl-20(S-protopanaxadiol], a metabolite of the protopanaxadiol-type saponins of Panax ginseng C.A. Meyer, has been reported to possess anti-tumor properties to inhibit angiogenesis and to induce tumor apoptosis. In the present study, we investigated the effect of Compound K on apoptosis and explored the underlying mechanisms involved in HL-60 human leukemia cells. Methods We examined the effect of Compound K on the viabilities of various cancer cell lines using MTT assays. DAPI assay, Annexin V and PI double staining, Western blot assay and immunoprecipitation were used to determine the effect of Compound K on the induction of apoptosis. Results Compound K was found to inhibit the viability of HL-60 cells in a dose- and time-dependent manner with an IC50 of 14 μM. Moreover, this cell death had typical features of apoptosis, that is, DNA fragmentation, DNA ladder formation, and the externalization of Annexin V targeted phosphatidylserine residues in HL-60 cells. In addition, compound-K induced a series of intracellular events associated with both the mitochondrial- and death receptor-dependent apoptotic pathways, namely, (1 the activation of caspases-3, -8, and -9; (2 the loss of mitochondrial membrane potential; (3 the release of cytochrome c and Smac/DIABLO to the cytosol; (4 the translocation of Bid and Bax to mitochondria; and (5 the downregulations of Bcl-2 and Bcl-xL. Furthermore, a caspase-8 inhibitor completely abolished caspase-3 activation, Bid cleavage, and subsequent DNA fragmentation by Compound K. Interestingly, the activation of caspase-3 and -8 and DNA fragmentation were significantly prevented in the presence of cycloheximide, suggesting that Compound K-induced apoptosis is dependent on de novo protein synthesis. Conclusions The results indicate that caspase-8 plays a key role in Compound K-stimulated apoptosis via the activation of caspase-3 directly or indirectly through

  4. p53 increases caspase-6 expression and activation in muscle tissue expressing mutant huntingtin

    DEFF Research Database (Denmark)

    Ehrnhoefer, Dagmar E; Skotte, Niels H; Ladha, Safia

    2014-01-01

    as in muscle tissues from two different HD mouse models. p53, a transcriptional activator of caspase-6, is upregulated in neuronal cells and tissues expressing mutant huntingtin. Activation of p53 leads to a dramatic increase in levels of caspase-6 mRNA, caspase-6 activity and cleavage of lamin A. Using mouse...... embryonic fibroblasts (MEFs) from YAC128 mice, we show that this increase in caspase-6 activity can be mitigated by pifithrin-α (pifα), an inhibitor of p53 transcriptional activity, but not through the inhibition of p53's mitochondrial pro-apoptotic function. Remarkably, the p53-mediated increase in caspase......-6 expression and activation is exacerbated in cells and tissues of both neuronal and peripheral origin expressing mutant huntingtin (Htt). These findings suggest that the presence of the mutant Htt protein enhances p53 activity and lowers the apoptotic threshold, which activates caspase-6...

  5. Caspase Activation of p21-Activated Kinase 2 Occurs During Cisplatin-Induced Apoptosis of SH-SY5Y Neuroblastoma Cells and in SH-SY5Y Cell Culture Models of Alzheimer’s and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jerry W. Marlin

    2010-04-01

    Full Text Available p21-activated kinase 2 (PAK-2 appears to have a dual function in the regulation of cell survival and cell death. Activation of full-length PAK-2 by the p21 G-proteins Rac or Cdc42 stimulates cell survival. However, PAK-2 is unique among the PAK family because it is also activated through proteolytic cleavage by caspase 3 or similar caspases to generate the constitutively active PAK-2p34 fragment. Caspase activation of PAK-2 correlates with the induction of apoptosis in response to many stimuli and recombinant expression of PAK-2p34 has been shown to stimulate apoptosis in several human cell lines. Here, we show that caspase activation of PAK-2 also occurs during cisplatin-induced apoptosis of SH-SY5Y neuroblastoma cells as well as in SH-SY5Y cell culture models for Alzheimer’s and Parkinson’s disease. Inhibition of mitochondrial complex I or of ubiquitin/proteasome-mediated protein degradation, which both appear to be involved in Parkinson’s disease, induce apoptosis and caspase activation of PAK-2 in SH-SY5Y cells. Overexpression of the amyloid precursor protein, which results in accumulation and aggregation of β-amyloid peptide, the main component of β-amyloid plaques in Alzheimer’s disease, also induces apoptosis and caspase activation of PAK-2 in SH-SY5Y cells. Expression of the PAK-2 regulatory domain inhibits caspase-activated PAK-2p34 and prevents apoptosis in 293T human embryonic kidney cells, indicating that caspase activation of PAK-2 is directly involved in the apoptotic response. This is the first evidence that caspase activation of PAK-2 correlates with apoptosis in cell culture models of Alzheimer’s and Parkinson’s disease and that selective inhibition of caspase-activated PAK-2p34 could prevent apoptosis.

  6. Methotrexate induces poly(ADP-ribose) polymerase-dependent, caspase 3-independent apoptosis in subsets of proliferating CD4+ T cells

    DEFF Research Database (Denmark)

    Nielsen, C H; Albertsen, L; Bendtzen, K

    2007-01-01

    ) cells play a significant role in most AID. We therefore examined directly, by flow cytometry, the uptake of MTX by the T helper (Th) cells stimulated for 6 days with Candida albicans (CA) or tetanus toxoid (TT), and its consequences with respect to induction of apoptosis. While none of the resting Th...... apoptosis in both undivided and divided Th cells. PHA-induced apoptosis involved activation of caspase-3 and the anti-apoptotic protein Bcl-2 in addition to PARP cleavage, suggesting that PHA induces apoptosis via different pathways than CA and TT. We suggest that the latter are more representative...

  7. Avian encephalomyelitis virus nonstructural protein 2C induces apoptosis by activating cytochrome c/caspase-9 pathway

    International Nuclear Information System (INIS)

    Liu Jue; Wei Ting; Kwang, Jimmy

    2004-01-01

    The nonstructural protein 2C is highly conserved among picornaviruses and plays an important role in the assembly of mature virions, membrane association, and viral RNA synthesis. The investigation of other potential functions of nonstructural protein 2C from avian encephalomyelitis virus (AEV) resulted in identifying for the first time that the protein 2C is involved in apoptosis. Expression of the protein 2C on chick embryo brain (CEB) and Cos-7 cells produced TUNEL-positive cells characterized by a cleavage of cellular DNA and the formation of membrane-enclosed apoptotic bodies. Analysis of the protein 2C showed that the N-terminal domain containing 35 amino acid (aa) residues (between 46 and 80 aa) is associated with apoptotic function. Transfection of the deletion mutant lacking this 35 aa's into CEB and Cos-7 cells failed to induce apoptosis. Furthermore, the protein 2C induced apoptosis in the transfected CEB and Cos-7 cells through activation of caspase-9 rather than caspase-8 followed by activation of caspase-3 pathway. Analysis of the Western blots of caspase-3 and caspase-9 showed the characteristics of active caspase-3 and -9 in the 2C-transfected CEB and Cos-7 cells as seen in the AEV-infected CEB cells while they were in the form of procaspase-3 and procaspase-9 in the 2C mutant-transfected cells. To further elucidate the mechanism of the 2C-induced apoptosis, the 2C-transfected CEB and Cos-7 cells were fractionated into mitochondria and cytosol and subjected for Western blotting, located cytochrome c in the mitochondria as well as the cytosol fractions, while it was only sequestered in the mitochondrial fraction in the mutant 2C-transfected cells. The protein 2C was located in the mitochondria and cytosol of the transfected/infected CEB and transfected Cos-7 cells, but the mutant lost its ability to localize to the mitochondria. Altogether, the results demonstrate that the protein 2C localized to the mitochondria of the transfected cells triggered

  8. Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection

    Science.gov (United States)

    Vojtech, Lucia N.; Scharping, Nichole; Woodson, James C.; Hansen, John D.

    2012-01-01

    The interleukin-1 family of cytokines are essential for the control of pathogenic microbes but are also responsible for devastating autoimmune pathologies. Consequently, tight regulation of inflammatory processes is essential for maintaining homeostasis. In mammals, interleukin-1 beta (IL-1β) is primarily regulated at two levels, transcription and processing. The main pathway for processing IL-1β is the inflammasome, a multiprotein complex that forms in the cytosol and which results in the activation of inflammatory caspase (caspase 1) and the subsequent cleavage and secretion of active IL-1β. Although zebrafish encode orthologs of IL-1β and inflammatory caspases, the processing of IL-1β by activated caspase(s) has never been examined. Here, we demonstrate that in response to infection with the fish-specific bacterial pathogen Francisella noatunensis, primary leukocytes from adult zebrafish display caspase-1-like activity that results in IL-1β processing. Addition of caspase 1 or pancaspase inhibitors considerably abrogates IL-1β processing. As in mammals, this processing event is concurrent with the secretion of cleaved IL-1β into the culture medium. Furthermore, two putative zebrafish inflammatory caspase orthologs, caspase A and caspase B, are both able to cleave IL-1β, but with different specificities. These results represent the first demonstration of processing and secretion of zebrafish IL-1β in response to a pathogen, contributing to our understanding of the evolutionary processes governing the regulation of inflammation.                   

  9. Human herpesvirus 6A induces apoptosis of primary human fetal astrocytes via both caspase-dependent and -independent pathways

    Directory of Open Access Journals (Sweden)

    Gu Bin

    2011-12-01

    Full Text Available Abstract Background Human herpesvirus 6 (HHV-6 is a T-lymphtropic and neurotropic virus that can infect various types of cells. Sequential studies reported that apoptosis of glia and neurons induced by HHV-6 might act a potential trigger for some central nervous system (CNS diseases. HHV-6 is involved in the pathogenesis of encephalitis, multiple sclerosis (MS and fatigue syndrome. However, the mechanisms responsible for the apoptosis of infected CNS cells induced by HHV-6 are poorly understood. In this study, we investigated the cell death processes of primary human fetal astrocytes (PHFAs during productive HHV-6A infection and the underlying mechanisms. Results HHV-6A can cause productive infection in primary human fetal astrocytes. Annexin V-PI staining and electron microscopic analysis indicated that HHV-6A was an inducer of apoptosis. The cell death was associated with activation of caspase-3 and cleavage of poly (ADP-ribose polymerase (PARP, which is known to be an important substrate for activated caspase-3. Caspase-8 and -9 were also significantly activated in HHV-6A-infected cells. Moreover, HHV-6A infection led to Bax up-regulation and Bcl-2 down-regulation. HHV-6A infection increased the release of Smac/Diablo, AIF and cytochrome c from mitochondria to cytosol, which induced apoptosis via the caspase-dependent and -independent pathways. In addition, we also found that anti-apoptotic factors such as IAPs and NF-κB decreased in HHV-6A infected PHFAs. Conclusion This is the first demonstration of caspase-dependent and -independent apoptosis in HHV-6A-infected glial cells. These findings would be helpful in understanding the mechanisms of CNS diseases caused by HHV-6.

  10. The role of caspase 3 and BclxL in the action of interleukin 7 (IL-7): a survival factor in activated human T cells

    DEFF Research Database (Denmark)

    Amos, C L; Woetmann, A; Nielsen, M

    1998-01-01

    cells. Both cytokines abrogated the dexamethasone-induced stimulation of Caspase 3 and prevented the cleavage of poly (ADP-ribose) polymerase (PARP), a substrate for the Caspase 3. IL-7 upregulated the expression of Bc1xL and counteracted the downregulation of this anti-apoptotic protein...... by the synthetic glucocorticoid, dexamethasone. Bcl-2 protein expression was uupregulated by IL-7 with or without dexamethasone, but Bc1-2 was expressed at a much lower level than BclxL in these cells. Levels of Bax did not markedly change on either cytokine stimulation or dexamethasone treatment. An unidentified...... 23-kDa band, which was recognized by the anti-Bc1-2 antibody, was induced by dexamthasone and suppressed by IL-7 and IL-2. This protein was subject to independent regulation as compared to the p26 Bc1-2 protein, suggesting that it may be a novel factor, possibly involved in the regulation...

  11. Caspases -2, -3, -6, and -9, but not caspase-1, are activated in sepsis-induced thymocyte apoptosis.

    Science.gov (United States)

    Tinsley, K W; Cheng, S L; Buchman, T G; Chang, K C; Hui, J J; Swanson, P E; Karl, I E; Hotchkiss, R S

    2000-01-01

    Sepsis induces extensive lymphocyte cell death that may contribute to immune depression and morbidity/mortality in the disorder. bcl-2 is a member of a new class of oncogenes that prevents cell death from an array of noxious stimuli. Transgenic mice that overexpress BCL-2 in T lymphocytes are resistant to sepsis-induced T cell apoptosis, and mortality was decreased in sepsis. The purpose of this study was to identify key initiator and executioner "caspases" involved in sepsis-induced lymphocyte apoptosis and to determine if BCL-2 acts prior to caspase activation. Thymi were removed 5-22 h post-cecal ligation and puncture (CLP) or sham surgery. Apoptosis was evaluated in thymocytes by annexin-V FITC labeling and flow cytometry. Caspase-1 activity was determined by western blot analysis of the procaspase protein and p20 subunit of the activated caspase; activities of caspases -2, -6, and -9 were determined by colorimetric assays using specific substrates conjugated to a color reporter molecule. Caspase-3 activity was determined both by western blot and by a fluorogenic assay in which a fluorescent compound was generated. Thymocytes from CLP mice had markedly increased apoptosis and activation of caspases -2, -3, -6, and -9 in comparison with thymocytes of sham-operated mice. Caspase-1 was not activated. BCL-2 prevented sepsis-induced thymocyte apoptosis and inhibited activation of all caspases. We conclude that sepsis causes activation of multiple caspases and that BCL-2 acts upstream as an inhibitor of caspase activation. The pattern of caspase activation suggests a mitochondrial mediated pathway.

  12. Blockade of processing/activation of caspase-3 by hypoxia

    International Nuclear Information System (INIS)

    Han, Sang Hee; Kim, Moonil; Park, Kyoungsook; Kim, Tae-Hyoung; Seol, Dai-Wu

    2008-01-01

    Tumor hypoxia, which is caused by the rapid proliferation of tumor cells and aberrant vasculature in tumors, results in inadequate supplies of oxygen and nutrients to tumor cells. Paradoxically, these unfavorable growth conditions benefit tumor cell survival, although the mechanism is poorly understood. We have demonstrated for the first time that hypoxia inhibits TRAIL-induced apoptosis by blocking translocation of Bax from cytosol to the mitochondria in tumor cells. However, it is largely unknown how hypoxia-inhibited Bax translocation attenuates TRAIL-induced apoptosis. Here, we demonstrate that despite its inhibitory activity in TRAIL-induced apoptosis, hypoxia does not affect TRAIL-triggered proximal apoptotic signaling events, including caspase-8 activation and Bid cleavage. Instead, hypoxia inhibited processing of caspase-3, leading to incomplete activation of the caspase. Importantly, hypoxia-blocked translocation of Bax to the mitochondria significantly inhibited releasing the mitochondrial factors, such as cytochrome c and Smac/DIABLO, to the cytosol in response to TRAIL. It is well-known that complete processing/activation of caspase-3 requires Smac/DIABLO released from mitochondria. Therefore, our data indicate that an engagement of the apoptotic mitochondrial events leading to caspase-3 activation is blocked by hypoxia. Our data shed new light on understanding of the apoptotic signal transduction and targets regulated by tumor hypoxia

  13. A novel bicistronic sensor vector for detecting caspase-3 activation.

    Science.gov (United States)

    Vagner, Tatyana; Mouravlev, Alexandre; Young, Deborah

    2015-01-01

    Apoptosis is involved in pathological cell death of a wide range of human diseases. One of the most important biochemical markers of apoptosis is activation of caspase-3. Ability to detect caspase-3 activation early in the pathological process is important for determining the timing for interfering with apoptosis initiation and prevention of cell damage. Techniques allowing detection of caspase-3 activity at a single cell level show increased sensitivity, compared to biochemical assays; therefore, we developed a novel bicistronic caspase-3 sensor vector enabling detection of caspase-3 activity in individual cells. We employed green fluorescent protein (GFP) as a reporter for caspase-3 activation in our constructs and assessed the functionality of the generated constructs in transiently transfected Neuro2A and HEK293 cells under basal conditions and following application of okadaic acid (OA) or staurosporine (STS) to induce apoptosis. To ensure responsiveness of the new sensor vector to active caspase-3, we co-transfected the sensor with plasmid(s) overexpressing active caspase-3 and quantified GFP fluorescence using a plate reader. We observed an increase in GFP expression in cells transfected with the new bicistronic caspase-3 sensor in response to both OA and STS. We also showed a significant increase in GFP fluorescence intensity in cells co-expressing the sensor with the plasmid(s) encoding active caspase-3. We generated a novel bicistronic caspase-3 sensor vector which relies on a transcription factor/response element system. The obtained sensor combines high sensitivity of the single cell level detection with the possibility of automated quantification. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Abrogation of the presenilin 1/beta-catenin interaction and preservation of the heterodimeric presenilin 1 complex following caspase activation.

    Science.gov (United States)

    Tesco, G; Kim, T W; Diehlmann, A; Beyreuther, K; Tanzi, R E

    1998-12-18

    beta-Catenin has previously been shown to interact with presenilin 1 (PS1) in transfected cells. Here we report that beta-catenin co-immunoprecipitates with the endogenous C-terminal fragment of presenilin 1 (PS1-CTF) but not with the endogenous CTF of presenilin 2 (PS2-CTF) in H4 human neuroglioma cells. During staurosporine (STS)-induced cell death, beta-catenin and PS1-CTF undergo a caspase-mediated cleavage. After 12 h of STS treatment, the beta-catenin.PS1-CTF interaction is abrogated. While PS1-CTF immunoprecipitated with all caspase-cleaved species of beta-catenin, beta-catenin holoprotein did not co-immunoprecipitate with the "alternative" caspase-derived PS1-CTF (PS1-aCTF). Thus, the abrogation of the beta-catenin.PS1-CTF complex was due to caspase cleavage of PS1-CTF. beta-Catenin co-immunoprecipitated with PS1-NTF, but only when PS1-NTF was associated with PS1-CTF. Even though PS1-NTF.CTF complex stability was not altered by caspase cleavage, its ability to bind beta-catenin was abolished. Thus, while the PS1-NTF.CTF complex is preserved after caspase cleavage, it may no longer be fully functional.

  15. Caspases : more than just killers?

    OpenAIRE

    Los, Marek Jan; Stroh, C.; Janicke, R. U.; Engels, I. H.; Schulze-Osthoff, K.

    2001-01-01

    Proteases of the caspase family constitute the central executioners of apoptosis, Several recent observations suggest that caspases and apoptosis-regulatory molecules exert important functions beyond that of cell death, including the control of T-cell proliferation and cell-cycle progression. Here, Los and colleagues propose a model that directly connects cell suicide mechanisms to the regulation of cell-cycle progression.

  16. Caspases: more than just killers?

    Science.gov (United States)

    Los, M; Stroh, C; Jänicke, R U; Engels, I H; Schulze-Osthoff, K

    2001-01-01

    Proteases of the caspase family constitute the central executioners of apoptosis. Several recent observations suggest that caspases and apoptosis-regulatory molecules exert important functions beyond that of cell death, including the control of T-cell proliferation and cell-cycle progression. Here, Los and colleagues propose a model that directly connects cell suicide mechanisms to the regulation of cell-cycle progression.

  17. Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway.

    Science.gov (United States)

    Deng, Lin; Adachi, Tetsuya; Kitayama, Kikumi; Bungyoku, Yasuaki; Kitazawa, Sohei; Ishido, Satoshi; Shoji, Ikuo; Hotta, Hak

    2008-11-01

    We previously reported that cells harboring the hepatitis C virus (HCV) RNA replicon as well as those expressing HCV NS3/4A exhibited increased sensitivity to suboptimal doses of apoptotic stimuli to undergo mitochondrion-mediated apoptosis (Y. Nomura-Takigawa, et al., J. Gen. Virol. 87:1935-1945, 2006). Little is known, however, about whether or not HCV infection induces apoptosis of the virus-infected cells. In this study, by using the chimeric J6/JFH1 strain of HCV genotype 2a, we demonstrated that HCV infection induced cell death in Huh7.5 cells. The cell death was associated with activation of caspase 3, nuclear translocation of activated caspase 3, and cleavage of DNA repair enzyme poly(ADP-ribose) polymerase, which is known to be an important substrate for activated caspase 3. These results suggest that HCV-induced cell death is, in fact, apoptosis. Moreover, HCV infection activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change and its increased accumulation on mitochondrial membranes. Concomitantly, HCV infection induced disruption of mitochondrial transmembrane potential, followed by mitochondrial swelling and release of cytochrome c from mitochondria. HCV infection also caused oxidative stress via increased production of mitochondrial superoxide. On the other hand, HCV infection did not mediate increased expression of glucose-regulated protein 78 (GRP78) or GRP94, which are known as endoplasmic reticulum (ER) stress-induced proteins; this result suggests that ER stress is not primarily involved in HCV-induced apoptosis in our experimental system. Taken together, our present results suggest that HCV infection induces apoptosis of the host cell through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway(s).

  18. Development of cell death-based method for the selectivity screening of caspase-1 inhibitors

    DEFF Research Database (Denmark)

    Chopra, Puneet; Gupta, Shashank; Dastidar, Sunanda G

    2009-01-01

    be used for the selectivity screening of multiple caspases in a biologically relevant context in a single assay. In this study, we have developed an assay in which DNA fragmentation, a hallmark of apoptosis, of Jurkat cell line was examined post induction with etoposide in the presence or absence...... belonging to caspase-1 family (1, 4 and 5) are not present in the Jurkat cells or might not be involved in the etoposide-induced DNA fragmentation. Since the inhibition of caspases 3, 8 and 9 is accompanied by the down regulation of the activity of a cascade of caspases (caspases 2, 6, 7, 9 and 10...

  19. Zinc-mediated Allosteric Inhibition of Caspase-6*

    Science.gov (United States)

    Velázquez-Delgado, Elih M.; Hardy, Jeanne A.

    2012-01-01

    Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250

  20. A Type III Effector NleF from EHEC Inhibits Epithelial Inflammatory Cell Death by Targeting Caspase-4

    Directory of Open Access Journals (Sweden)

    Ting Song

    2017-01-01

    Full Text Available Enterohemorrhagic E. coli (EHEC is a highly pathogenic bacterial strain capable of inducing severe gastrointestinal disease. Here, we show that EHEC uses the T3SS effector NleF to counteract the host inflammatory response by dampening caspase-4-mediated inflammatory epithelial cell death and by preventing the production of IL-1β. The other two inflammatory caspases, caspase-1 and caspase-5, are not involved in EHEC ΔnleF-induced inflammatory cell death. We found that NleF not only interrupted the heterodimerization of caspase-4-p19 and caspase-4-p10, but also inhibited the interaction of caspase-1 and caspase-4. The last four amino acids of the NleF carboxy terminus are essential in inhibiting caspase-4-dependent inflammatory cell death.

  1. Dietary and behavioral interventions protect against age related activation of caspase cascades in the canine brain.

    Directory of Open Access Journals (Sweden)

    Shikha Snigdha

    Full Text Available Lifestyle interventions such as diet, exercise, and cognitive training represent a quietly emerging revolution in the modern approach to counteracting age-related declines in brain health. Previous studies in our laboratory have shown that long-term dietary supplementation with antioxidants and mitochondrial cofactors (AOX or behavioral enrichment with social, cognitive, and exercise components (ENR, can effectively improve cognitive performance and reduce brain pathology of aged canines, including oxidative damage and Aβ accumulation. In this study, we build on and extend our previous findings by investigating if the interventions reduce caspase activation and ceramide accumulation in the aged frontal cortex, since caspase activation and ceramide accumulation are common convergence points for oxidative damage and Aβ, among other factors associated with the aged and AD brain. Aged beagles were placed into one of four treatment groups: CON--control environment/control diet, AOX--control environment/antioxidant diet, ENR--enriched environment/control diet, AOX/ENR--enriched environment/antioxidant diet for 2.8 years. Following behavioral testing, brains were removed and frontal cortices were analyzed to monitor levels of active caspase 3, active caspase 9 and their respective cleavage products such as tau and semaphorin7a, and ceramides. Our results show that levels of activated caspase-3 were reduced by ENR and AOX interventions with the largest reduction occurring with combined AOX/ENR group. Further, reductions in caspase-3 correlated with reduced errors in a reversal learning task, which depends on frontal cortex function. In addition, animals treated with an AOX arm showed reduced numbers of cells expressing active caspase 9 or its cleavage product semaphorin 7A, while ENR (but not AOX reduced ceramide levels. Overall, these data demonstrate that lifestyle interventions curtail activation of pro-degenerative pathways to improve cellular

  2. Dietary and behavioral interventions protect against age related activation of caspase cascades in the canine brain.

    Science.gov (United States)

    Snigdha, Shikha; Berchtold, Nicole; Astarita, Giuseppe; Saing, Tommy; Piomelli, Daniele; Cotman, Carl W

    2011-01-01

    Lifestyle interventions such as diet, exercise, and cognitive training represent a quietly emerging revolution in the modern approach to counteracting age-related declines in brain health. Previous studies in our laboratory have shown that long-term dietary supplementation with antioxidants and mitochondrial cofactors (AOX) or behavioral enrichment with social, cognitive, and exercise components (ENR), can effectively improve cognitive performance and reduce brain pathology of aged canines, including oxidative damage and Aβ accumulation. In this study, we build on and extend our previous findings by investigating if the interventions reduce caspase activation and ceramide accumulation in the aged frontal cortex, since caspase activation and ceramide accumulation are common convergence points for oxidative damage and Aβ, among other factors associated with the aged and AD brain. Aged beagles were placed into one of four treatment groups: CON--control environment/control diet, AOX--control environment/antioxidant diet, ENR--enriched environment/control diet, AOX/ENR--enriched environment/antioxidant diet for 2.8 years. Following behavioral testing, brains were removed and frontal cortices were analyzed to monitor levels of active caspase 3, active caspase 9 and their respective cleavage products such as tau and semaphorin7a, and ceramides. Our results show that levels of activated caspase-3 were reduced by ENR and AOX interventions with the largest reduction occurring with combined AOX/ENR group. Further, reductions in caspase-3 correlated with reduced errors in a reversal learning task, which depends on frontal cortex function. In addition, animals treated with an AOX arm showed reduced numbers of cells expressing active caspase 9 or its cleavage product semaphorin 7A, while ENR (but not AOX) reduced ceramide levels. Overall, these data demonstrate that lifestyle interventions curtail activation of pro-degenerative pathways to improve cellular health and are the

  3. The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and -7 during TGEV-induced apoptosis.

    Science.gov (United States)

    Eléouët, J F; Slee, E A; Saurini, F; Castagné, N; Poncet, D; Garrido, C; Solary, E; Martin, S J

    2000-05-01

    The transmissible gastroenteritis coronavirus (TGEV), like many other viruses, exerts much of its cytopathic effect through the induction of apoptosis of its host cell. Apoptosis is coordinated by a family of cysteine proteases, called caspases, that are activated during apoptosis and participate in dismantling the cell by cleaving key structural and regulatory proteins. We have explored the caspase activation events that are initiated upon infection of the human rectal tumor cell line HRT18 with TGEV. We show that TGEV infection results in the activation of caspase-3, -6, -7, -8, and -9 and cleavage of the caspase substrates eIF4GI, gelsolin, and alpha-fodrin. Surprisingly, the TGEV nucleoprotein (N) underwent proteolysis in parallel with the activation of caspases within the host cell. Cleavage of the N protein was inhibited by cell-permeative caspase inhibitors, suggesting that this viral structural protein is a target for host cell caspases. We show that the TGEV nucleoprotein is a substrate for both caspase-6 and -7, and using site-directed mutagenesis, we have mapped the cleavage site to VVPD(359) downward arrow. These data demonstrate that viral proteins can be targeted for destruction by the host cell death machinery.

  4. The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells.

    Science.gov (United States)

    Alaimo, Agustina; Gorojod, Roxana M; Kotler, Mónica L

    2011-08-01

    Manganese (Mn) is a trace element known to be essential for maintaining the proper function and regulation of many biochemical and cellular reactions. However, chronic exposure to high levels of Mn in occupational or environmental settings can lead to its accumulation in the brain resulting in a degenerative brain disorder referred to as Manganism. Astrocytes are the main Mn store in the central nervous system and several lines of evidence implicate these cells as major players in the role of Manganism development. In the present study, we employed rat astrocytoma C6 cells as a sensitive experimental model for investigating molecular mechanisms involved in Mn neurotoxicity. Our results show that C6 cells undergo reactive oxygen species-mediated apoptotic cell death involving caspase-8 and mitochondrial-mediated pathways in response to Mn. Exposed cells exhibit typical apoptotic features, such as chromatin condensation, cell shrinkage, membrane blebbing, caspase-3 activation and caspase-specific cleavage of the endogenous substrate poly (ADP-ribose) polymerase. Participation of the caspase-8 dependent pathway was assessed by increased levels of FasL, caspase-8 activation and Bid cleavage. The involvement of the mitochondrial pathway was demonstrated by the disruption of the mitochondrial membrane potential, the opening of the mitochondrial permeability transition pore, cytochrome c release, caspase-9 activation and the increased mitochondrial levels of the pro-apoptotic Bcl-2 family proteins. In addition, our data also shows for the first time that mitochondrial fragmentation plays a relevant role in Mn-induced apoptosis. Taking together, these findings contribute to a deeper elucidation of the molecular signaling mechanisms underlying Mn-induced apoptosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. The IAP-antagonist ARTS initiates caspase activation upstream of cytochrome C and SMAC/Diablo

    Science.gov (United States)

    Edison, N; Zuri, D; Maniv, I; Bornstein, B; Lev, T; Gottfried, Y; Kemeny, S; Garcia-Fernandez, M; Kagan, J; Larisch, S

    2012-01-01

    ARTS (Sept4_i2) is a pro-apoptotic tumor suppressor protein that functions as an antagonist of X-linked IAP (XIAP) to promote apoptosis. It is generally thought that mitochondrial outer membrane permeabilization (MOMP) occurs before activation of caspases and is required for it. Here, we show that ARTS initiates caspase activation upstream of MOMP. In living cells, ARTS is localized to the mitochondrial outer membrane. In response to apoptotic signals, ARTS translocates rapidly to the cytosol in a caspase-independent manner, where it binds XIAP and promotes caspase activation. This translocation precedes the release of cytochrome C and SMAC/Diablo, and ARTS function is required for the normal timing of MOMP. We also show that ARTS-induced caspase activation leads to cleavage of the pro-apoptotic Bcl-2 family protein Bid, known to promote MOMP. We propose that translocation of ARTS initiates a first wave of caspase activation that can promote MOMP. This leads to the subsequent release of additional mitochondrial factors, including cytochrome C and SMAC/Diablo, which then amplifies the caspase cascade and causes apoptosis. PMID:21869827

  6. Axonal cleaved caspase-3 regulates axon targeting and morphogenesis in the developing auditory brainstem

    Directory of Open Access Journals (Sweden)

    Sarah E Rotschafer

    2016-10-01

    Full Text Available Caspase-3 is a cysteine protease that is most commonly associated with cell death. Recent studies have shown additional roles in mediating cell differentiation, cell proliferation, and development of cell morphology. We investigated the role of caspase-3 in the development of chick auditory brainstem nuclei during embryogenesis. Immunofluorescence from embryonic days E6-13 revealed that the temporal expression of cleaved caspase-3 follows the ascending anatomical pathway. Expression is first seen in the auditory portion of VIIIth nerve including central axonal regions projecting to nucleus magnocellularis (NM, then later in NM axons projecting to nucleus laminaris (NL, and subsequently in NL dendrites. To examine the function of cleaved caspase-3 in chick auditory brainstem development, we blocked caspase-3 cleavage in developing chick embryos with the caspase-3 inhibitor Z-DEVD-FMK from E6 to E9, then examined NM and NL morphology and NM axonal targeting on E10. NL lamination in treated embryos was disorganized and the neuropil around NL contained a significant number of glial cells normally excluded from this region. Additionally, NM axons projected into inappropriate portions of NL in Z-DEVD-FMK treated embyros. We found that the presence of misrouted axons was associated with more severe NL disorganization. The effects of axonal caspase-3 inhibition on both NL morphogenesis and NM axon targeting suggest that these developmental processes are coordinated, likely through communication between axons and their targets.

  7. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. Keywords: Aspartic protease, Cleavage sites, Cocoa, In-vitro proteolysis, Mass spectrometry, Peptides

  8. Integrity of XIAP is essential for effective activity recovery of apoptosome and its downstream caspases by Smac/Diablo.

    Science.gov (United States)

    Attaran-Bandarabadi, Faezeh; Abhari, Behnaz Ahangarian; Neishabouri, Shima Hallaj; Davoodi, Jamshid

    2017-08-01

    Contribution of individual BIR domains to Smac antagonism is investigated. Ammonium citrate was used to activate caspase-9 and pro-caspase-9 (D315, D330/A). However, the presence of citrate resulted in autoproteolysis of pro-caspase-9 and its inhibition by XIAP BIR3, which was not observed for apoptosome activated pro-caspase-9 indicating abnormal behavior of pro-caspase-9 in kosmotropic citrate salt. Thus, we used Apaf-1(residues 1-591) to activate caspase-9 through the formation of mini-apoptosome instead. Inhibition of apoptosome by XIAP BIR-1-2-3 was observed to be similar to that of BIR3 indicating that the cleavage of XIAP does not affect its potency. However, BIR1-2-3 was more prone to Smac antagonism due to simultaneous interaction of two BIR domains from XIAP with two N-terminal binding sites of Smac. Therefore, despite the role in caspase-9 activation, Apaf-1 does not influence caspase-9 inhibition by XIAP. In addition, caspase-3, -7 and -9 activity recovery by Smac protein and peptide were more efficient for BIR1-2-3 than for BIR1-2. Consequently, it can be proposed that the presence of multiple BIR domains for XIAP among different species along with dimeric nature of Smac are evolutionary designed to strengthen the antagonistic activity of Smac culminating in efficient induction of cell death. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Structural Features of Caspase-Activating Complexes

    Directory of Open Access Journals (Sweden)

    Hyun Ho Park

    2012-04-01

    Full Text Available Apoptosis, also called programmed cell death, is an orderly cellular suicide program that is critical for the development, immune regulation and homeostasis of a multi-cellular organism. Failure to control this process can lead to serious human diseases, including many types of cancer, neurodegenerative diseases, and autoimmununity. The process of apoptosis is mediated by the sequential activation of caspases, which are cysteine proteases. Initiator caspases, such as caspase-2, -8, -9, and -10, are activated by formation of caspase-activating complexes, which function as a platform to recruit caspases, providing proximity for self-activation. Well-known initiator caspase-activating complexes include (1 DISC (Death Inducing Signaling Complex, which activates caspases-8 and 10; (2 Apoptosome, which activates caspase-9; and (3 PIDDosome, which activates caspase-2. Because of the fundamental biological importance of capases, many structural and biochemical studies to understand the molecular basis of assembly mechanism of caspase-activating complexes have been performed. In this review, we summarize previous studies that have examined the structural and biochemical features of caspase-activating complexes. By analyzing the structural basis for the assembly mechanism of the caspase-activating complex, we hope to provide a comprehensive understanding of caspase activation by these important oligomeric complexes.

  10. Prognostic value of inhibitors of apoptosis proteins (IAPs) and caspases in prostate cancer: caspase-3 forms and XIAP predict biochemical progression after radical prostatectomy

    International Nuclear Information System (INIS)

    Rodríguez-Berriguete, Gonzalo; Torrealba, Norelia; Ortega, Miguel Angel; Martínez-Onsurbe, Pilar; Olmedilla, Gabriel; Paniagua, Ricardo; Guil-Cid, Manuel; Fraile, Benito; Royuela, Mar

    2015-01-01

    The expression status of apoptotic regulators, such as caspases and inhibitors of apoptosis proteins (IAPs), could reflect the aggressiveness of tumors and, therefore, could be useful as prognostic markers. We explored the associations between tumor expression of caspases and IAPs and clinicopathological features of prostate cancer – clinical and pathological T stage, Gleason score, preoperative serum PSA levels, perineural invasion, lymph node involvement, surgical margin status and overall survival – and evaluated its capability to predict biochemical progression after radical prostatectomy. Protein expression of caspases (procaspase-8, cleaved caspase-8, procaspase-3, cleaved caspase-3, caspase-7 and procaspase-9) and IAPs (cIAP1/2, cIAP2, NAIP, Survivin and XIAP) was analyzed by immunohistochemistry in radical prostatectomy samples from 84 prostate cancer patients. Spearman’s test, Kaplan-Meier curves, and univariate and multivariate Cox proportional hazard regression analysis were performed. cIAP1/2, cIAP2, Survivin, procaspase-8, cleaved caspase-8, procaspase-3 and caspase-7 expression correlated with at least one clinicopathological feature of the disease. Patients negative for XIAP, procaspase-3 or cleaved caspase-3 had a significantly worse prognosis. Of note, XIAP, procaspase-3 and cleaved caspase-3 were predictors of biochemical progression independent of Gleason score and pathological T stage. Our results indicate that alterations in the expression of IAPs and caspases contribute to the malignant behavior of prostate tumors and suggest that tumor expression of XIAP, procaspase-3 and cleaved caspase-3 may help to identify prostate cancer patients at risk of progression

  11. Cordycepin enhances cisplatin apoptotic effect through caspase/MAPK pathways in human head and neck tumor cells

    Directory of Open Access Journals (Sweden)

    Chen YH

    2013-07-01

    Full Text Available Ying-Hui Chen,1,2,* Jo-Yu Wang,3,* Bo-Syong Pan,3,4 Yi-Fen Mu,3 Meng-Shao Lai,3,4 Edmund Cheung So,5 Thian-Sze Wong,6 Bu-Miin Huang3,4 1Department of Anesthesia, Chi-Mei Medical Center, Liouying, 2Department of Nursing, Min-Hwei College of Health Care Management, 3Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 4The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 5Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, Taiwan; 6Department of Surgery, University of Hong Kong Medical Center, Faculty of Medicine, The University of Hong Kong, Hong Kong *Authors contributed equally to this work Purpose: The present study aims to investigate whether the combination treatment of cordycepin (an extracted pure compound from Cordyceps sinensis and cisplatin (a platinum-based chemotherapy drug has better apoptotic effect in head and neck squamous cell carcinoma (HNSCC. Methods: The apoptotic influences of cordycepin and/or cisplatin treatments to human OC3, OEC-M1, and FaDu HNSCC cells were investigated by morphological observations, viability assay, flow cytometry assay, and Western blotting methods. Results: Data showed that the cell death phenomenon increased as the dosage of cordycepin or cisplatin increased, and it appeared more in cordycepin plus cisplatin cotreatment among three cell lines. Cell survival rates significantly decreased as the dosage of cordycepin or cisplatin increased, and the better apoptotic effects were observed in cotreatment. Cell cycle analysis further demonstrated that percentages of subG1 cells in cordycepin or cisplatin treatments significantly increased, suggesting that cells underwent apoptosis, and cordycepin plus cisplatin induced many more subG1 cells. Furthermore, cordycepin or cisplatin induced caspase-8, caspase-9, caspase-3, and poly adenosine diphosphate-ribose polymerase protein cleavages, and stimulated c

  12. Pharmacological caspase inhibitors: research towards therapeutic perspectives.

    Science.gov (United States)

    Kudelova, J; Fleischmannova, J; Adamova, E; Matalova, E

    2015-08-01

    Caspases are key molecules of apoptosis and the inflammatory response. Up-regulation of the caspase cascade contributes to human pathologies such as neurodegenerative and immune disorders. Thus, blocking the excessive apoptosis by pharmacological inhibitors seems promising for therapeutic interventions in such diseases. Caspase inhibitors, both natural and artificial, have been used as research tools and have helped to define the role of the individual caspases in apoptosis and in non-apoptotic processes. Moreover, some caspase inhibitors have demonstrated their therapeutic efficiency in the reduction of cell death and inflammation in animal models of human diseases. However, no drug based on caspase inhibition has been approved on the market until now. Thus, the development of therapeutic approaches that specifically target caspases remains a great challenge and is now the focus of intense biological and clinical interest. Here, we provide a brief review of recent knowledge about pharmacological caspase inhibitors with special focus on their proposed clinical applications.

  13. Expression of Caspase Signaling Components in the Outer Membranes of Chronic Subdural Hematomas.

    Science.gov (United States)

    Osuka, Koji; Watanabe, Yasuo; Usuda, Nobuteru; Aoyama, Masahiro; Iwami, Kenichiro; Takeuchi, Mikinobu; Watabe, Takeya; Takayasu, Masakazu

    2017-11-15

    Chronic subdural hematoma (CSDH) is fundamentally treatable through surgery, although CSDH recurs in some cases. We have observed several cases of spontaneous resolution of CSDH outer membranes, including in trabecular CSDH, after trepanation surgery. In this study, we examined the expression of molecules involved in caspase signaling in CSDH outer membranes. Eight patients whose outer membranes were obtained successfully during trepanation surgery were included in this study. The expression of Fas; Fas-associated death domain (FADD); tumor necrosis factor receptor type 1-associated death domain (TRADD); receptor-interacting protein (RIP); caspases 3, 7, 8, and 9; poly-(ADP-ribose) polymerase (PARP); DNA fragmentation factor 45 (DFF45) and β-actin was examined by Western blot analysis. The expression levels of PARP, caspase-3, and cleaved caspase-3 were also examined by immunohistochemistry. Fas; FADD; TRADD; RIP; caspases 3, 7, 8, and 9; PARP, and DFF45 were detected in nearly all samples. Caspase-3 and PARP were localized in the endothelial cells of vessels and in fibroblasts in CSDH outer membranes. In addition, cleaved caspase-3 was detected in fibroblasts. We detected molecules of the caspase signaling pathway in CSDH outer membranes. In particular, cleaved caspase-3 was detected, which suggests that apoptosis may occur within these membranes. Thus, during the growth of CSDH outer membranes, the caspase signaling pathway may be restrained. Once the pathway is activated, gradual resolution of CSDH outer membranes may occur. Therefore, these molecules may be novel therapeutic targets for intractable CSDH.

  14. Apoptotic block in colon cancer cells may be rectified by lentivirus mediated overexpression of caspase-9.

    Science.gov (United States)

    Xu, D; Wang, C; Shen, X; Yu, Y; Rui, Y; Zhang, D; Zhou, Z

    2013-12-01

    At present, the inhibition of apoptosis during pathogenesis of colorectal cancer is widely recognized while the role of caspase-9 in this process remains controversial. We aimed to investigate the differential expression of caspase-9 and evaluate the therapeutic potential of expression intervention in this study. We first examined the different expression of caspase-9 in normal colon mucosa, adenoma and cancer, investigating the relationship between its expression and clinico-pathological characteristics. Secondly, overexpression of caspase-9 was established in colon cancer cell lines by lentivirus infection to study the changes in growth, proliferation and apoptosis. Compared with normal colon mucosa, the expression of caspase-9 was higher in adenoma while lower in cancer both at mRNA and protein level (P expression is more common in poorly differentiated cancers (P expression of caspase-9, poorer colony formation and slower cell proliferation. In terms of apoptosis related indicators, caspase-9 overexpression leads to higher apoptosis rate and GO/G1 arrest, while up-regulating the expression of caspase-3 (P expression from colon mucosa, adenoma to cancer suggested it may be involved in the carcinogenesis of colon cancer. The overexpression of caspase-9 exhibits an inhibitory role in cancer growth and proliferation while promoting apoptosis. However, a non-apoptotic role of caspase-9 facilitating differentiation was also implied.

  15. Caffeic Acid Induced Apoptosis in MG63 Osteosarcoma Cells Through Activation of Caspases

    Directory of Open Access Journals (Sweden)

    Ferry Sandra

    2017-03-01

    Full Text Available Background: Caffeic acid has been reported that when it is combined with all-trans retinoic acid, it can inhibit proliferation activity of SaOS-2 or OSA-01 cells. In addition, caffeic acid merely could reduce cell viability of SaOS-2 cells. However, there is not any study in caffeic acid's possible effect to induce apoptosis in osteosarcoma cell. Materials and Methods: MG-63 cells were cultured in Dulbecco’s Modified Eagle Medium containing 10% fetal bovine serum. Cells were treated with various concentrations of caffeic acid. Apoptosis were analyzed with Sub-G1 assay and activation of caspase-8, -9, and -3 were analyzed with immunoblotting. Caffeic acid-induced percentage of apoptotic cells and cleaved-8, -9, -3 were then statistically analyzed. Results: Sub-G1 results showed that caffeic acid significantly induced apoptosis in MG-63 osteosarcoma cells in concentration dependent manner. Immunoblotting results showed that caffeic acid induced cleavage of caspase-8, -9 and -3. Cleaved-caspase-8 and -9 were increased at 1-hour treatment of caffeic acid, while cleaved-caspase 3 was increased markedly at 6-hours treatment of caffeic acid. Conclusions: Caffeic acid induces apoptosis significantly in concentration dependent manner through caspase-dependent intrinsic apoptotic pathway. Keywords: caffeic acid, osteosarcoma, MG-63, apoptosis, caspase

  16. Molecular cloning, immunohistochemical localization, characterization and expression analysis of caspase-9 from the purse red common carp (Cyprinus carpio) exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dian; Xu, Zhen’e [Medical College of Nanchang University, Nanchang 330006 (China); Institute of Immunotherapy, Nanchang University, Nanchang 330006 (China); Zhang, Xiaoyan [Medical College of Nanchang University, Nanchang 330006 (China); Wang, Hongmei [Medical College of Nanchang University, Nanchang 330006 (China); Institute of Immunotherapy, Nanchang University, Nanchang 330006 (China); Wang, Yannan [Medical College of Nanchang University, Nanchang 330006 (China); Min, Weiping, E-mail: weiping.min@gmail.com [Medical College of Nanchang University, Nanchang 330006 (China); Institute of Immunotherapy, Nanchang University, Nanchang 330006 (China); Jiangxi Academy of Medical Sciences, Nanchang 330006 (China)

    2013-10-15

    Highlights: •The cDNA of caspase-9 in common carp was cloned. •The evolutionary conservation including caspase recruitment domain, large and small subunits was clarified. •The mRNA level of caspase-9 cannot be used as a major marker at an earlier point in the apoptotic cascade. •Caspase-9 cleavage form was detected. •Immunopositive staining was limited to the cytoplasm of renal tubular epithelial cells. -- Abstract: Caspase-9, the essential initiator caspase is believed to play a central role in mitochondria-mediated apoptosis signaling. In this study, we isolated the caspase-9 gene from common carp, one of the most important industrial aquatic animals in China using rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of caspase-9, composed of 436 amino acids, showed approximately 47.6% identity and 64.7% similarity to human caspase-9. It also possessed a conserved caspase-associated recruitment domain (CARD), a large subunit and a small subunit. Phylogenetic analysis clearly demonstrated that caspase-9 formed a clade with cyprinid fish caspase-9. Real-time quantitative PCR analysis revealed that caspase-9 transcripts were not significantly increased in kidney after exposure to cadmium (Cd). Whereas caspase-9 cleaved fragments were detected using Western blot analysis with the same Cd treatment condition. Furthermore, the result of immunohistochemical detection showed immunoreactivities were predominantly limited to the cytoplasm of renal tubular epithelial cells and no remarkable changes of immunopositive staining were observed after Cd treatment. Accordingly, the results signify that caspase-9 may play an essential role in Cd induced apoptosis.

  17. Quantification of DNA cleavage specificity in Hi-C experiments.

    Science.gov (United States)

    Meluzzi, Dario; Arya, Gaurav

    2016-01-08

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Microparticulate Caspase-1 Regulates Gasdermin-D and Pulmonary Vascular Endothelial Cell Injury.

    Science.gov (United States)

    Mitra, Srabani; Exline, Matthew; Habyarimana, Fabien; Gavrilin, Mikhail; Baker, Paul; Masters, Seth L; Wewers, Mark D; Sarkar, Anasuya

    2018-01-24

    Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Caspases 1, 4 and 5 are essential for completion of the apoptotic program known as pyroptosis that also involves pro-inflammatory cytokines. Because GSDM-D mediates pyroptotic death and is essential for pore formation, we hypothesized that it may direct caspase-1 encapsulated microparticle (MP) release and mediate endothelial cell death. Our current work provides evidence that GSDM-D is released by LPS stimulated THP1 monocytic cells where it is packaged into microparticles along with active caspase-1. Furthermore, only MP released from stimulated monocytic cells that contain both cleaved GSDM-D and active caspase-1 induce endothelial cell apoptosis. MPs pretreated with caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, do not contain cleaved GSDM-D. MPs from caspase-1KO cells are also deficient in p30 active GSDM-D, further confirming that caspase-1 regulates GSDM-D function. Although control MPs contained cleaved GSDM-D without caspase-1, these fractions were unable to induce cell death, suggesting that encapsulation of both caspase-1 and GSDM-D is essential for cell death induction. Release of microparticulate active caspase-1 was abrogated in GSDM-KO cells, although cytosolic caspase-1 activation was not impaired. Lastly, higher levels of microparticulate GSDM-D was detected in septic ARDS patient plasma when compared to healthy donors. Taken together, these findings suggest that GSDM-D regulates the release of microparticulate active caspase-1 from monocytes essential for induction of cell death and thereby may play a critical role in sepsis-induced endothelial cell injury.

  19. Imaging of activated caspase-3 in living cell by fluorescence resonance energy transfer during photosensitization-induced apoptosis

    Science.gov (United States)

    Wu, Yunxia; Xing, Da; Chen, Qun; Tang, Yonghong

    2005-01-01

    Photodynamic therapy (PDT) is a novel and promising cancer treatment that employs a combination of a photosensitizing chemical and visible light, induces apoptosis in cell, and activation of caspase-3 is considered to be the final step in many apoptosis pathways. The changes of caspase-3 activation in cell during TNFα- and photodynamic therapy-induced apoptosis was measured by fluorescence resonance energy transfer (FRET) analysis. FRET probe consisting of fusions of an enhanced cyan fluorescent protein (ECFP), Venus and a linker peptide containing the caspase-3 cleavage sequence DEVD was utilized. Therefore, activated caspase-3 cleaved the linker peptide of FRET probe and disrupted the FRET signal. Human lung adenocarcinoma cell line (ASTC-a-1) were stably transfected with the plasmid (ECFP-DEVD-Venus) and then were treated by TNF-α and PDT, respectively. Experimental results indicated that caspase-3 activation resulted in cleavage of linker peptide and subsequent disruption of the FRET signal during TNFα- and photodynamic therapy-induced apoptosis, and that the activation of caspase-3 induced by photodynamic therapy was faster than that induce by TNF-α. The study supports that using FRET technique and different recombinant substrates as FRET probes could be used to detect the process of PDT-induced apoptosis and provide a new means to investigate apoptotic mechanism of PDT.

  20. The pan-ErbB tyrosine kinase inhibitor canertinib induces caspase-mediated cell death in human T-cell leukemia (Jurkat) cells

    Energy Technology Data Exchange (ETDEWEB)

    Trinks, Cecilia, E-mail: Cecilia.trinks@liu.se [Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Severinsson, Emelie A., E-mail: Emelie.severinsson@liu.se [Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Holmlund, Birgitta, E-mail: Birgitta.holmlund@lio.se [Department of Oncology, County Council of Ostergoetland, Linkoeping (Sweden); Green, Anna, E-mail: Anna.green@liu.se [Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Green, Henrik, E-mail: Henrik.green@liu.se [Clinical Pharmacology, Division of Drug Research, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Joensson, Jan-Ingvar, E-mail: Jan-ingvar.jonsson@liu.se [Experimental Hematology Unit, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Hallbeck, Anna-Lotta, E-mail: Anna-Lotta.Hallbeck@lio.se [Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Department of Oncology, County Council of Ostergoetland, Linkoeping (Sweden); Walz, Thomas M., E-mail: Thomas.Walz@lio.se [Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoeping University, Linkoeping (Sweden); Department of Oncology, County Council of Ostergoetland, Linkoeping (Sweden)

    2011-07-08

    Highlights: {yields} Canertinib induces caspase-mediated apoptosis in T-cell leukemia cells in vitro. {yields} Canertinib mediates activation of the intrinsic apoptotic pathway. {yields} Canertinib induces apoptosis in an ErbB receptor independent manner. {yields} Lymphocyte specific proteins as well as survival kinases are inhibited. {yields} Canertinib may act as a multi-kinase inhibiting drug in human T-cell malignancies. -- Abstract: Canertinib is a novel ErbB-receptor inhibitor currently in clinical development for the treatment of solid tumors overexpressing ErbB-receptors. We have recently demonstrated that canertinib displays anti-proliferative and pro-apoptotic effects in human myeloid leukemia cells devoid of ErbB-receptors. The mechanism mediating these effects are however unknown. In this study, we show that canertinib is able to act as a multi-kinase inhibitor by inhibition of several intracellular kinases involved in T-cell signaling such as Akt, Erk1/2 and Zap-70, and reduced Lck protein expression in the human T-cell leukemia cell line Jurkat. Treatment with canertinib at a concentration of 2 {mu}M caused accumulation of Jurkat cells in the G{sub 1} cell cycle phase and increased doses induced apoptosis in a time-dependent manner. Apoptotic signs of treated cells were detected by Annexin V staining and cleavage of PARP, caspase-3, -8, -9, -10 and Bid. A subset of the pro-apoptotic signals mediated by canertinib could be significantly reduced by specific caspase inhibitors. Taken together, these results demonstrate the dual ability of canertinib to downregulate important signaling pathways and to activate caspase-mediated intrinsic apoptosis pathway in human T-cell leukemia cells.

  1. Equol enhances tamoxifen’s anti-tumor activity by induction of caspase-mediated apoptosis in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Charalambous, Christiana; Pitta, Chara A; Constantinou, Andreas I

    2013-01-01

    Soy phytoestrogens, such as daidzein and its metabolite equol, have been proposed to be responsible for the low breast cancer rate in Asian women. Since the majority of estrogen receptor positive breast cancer patients are treated with tamoxifen, the basic objective of this study is to determine whether equol enhances tamoxifen’s anti-tumor effect, and to identify the molecular mechanisms involved. For this purpose, we examined the individual and combined effects of equol and tamoxifen on the estrogen-dependent MCF-7 breast cancer cells using viability assays, annexin-V/PI staining, cell cycle and western blot analysis. We found that equol (>50 μM) and 4-hydroxy-tamoxifen (4-OHT; >100 nM) significantly reduced the MCF-7 cell viability. Furthermore, the combination of equol (100 μM) and 4-OHT (10 μM) induced apoptosis more effectively than each compound alone. Subsequent treatment of MCF-7 cells with the pan-caspase inhibitor Z-VAD-FMK inhibited equol- and 4-OHT-mediated apoptosis, which was accompanied by PARP and α-fodrin cleavage, indicating that apoptosis is mainly caspase-mediated. These compounds also induced a marked reduction in the bcl-2:bax ratio, which was accompanied by caspase-9 and caspase-7 activation and cytochrome-c release to the cytosol. Taken together, these data support the notion that the combination of equol and tamoxifen activates the intrinsic apoptotic pathway more efficiently than each compound alone. Consequently, equol may be used therapeutically in combination treatments and clinical studies to enhance tamoxifen’s effect by providing additional protection against estrogen-responsive breast cancers

  2. Cr(VI) induces mitochondrial-mediated and caspase-dependent apoptosis through reactive oxygen species-mediated p53 activation in JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Son, Young-Ok; Hitron, J. Andrew; Wang Xin; Chang Qingshan; Pan Jingju; Zhang Zhuo; Liu Jiankang; Wang Shuxia; Lee, Jeong-Chae; Shi Xianglin

    2010-01-01

    Cr(VI) compounds are known to cause serious toxic and carcinogenic effects. Cr(VI) exposure can lead to a severe damage to the skin, but the mechanisms involved in the Cr(VI)-mediated toxicity in the skin are unclear. The present study examined whether Cr(VI) induces cell death by apoptosis or necrosis using mouse skin epidermal cell line, JB6 Cl41 cells. We also investigated the cellular mechanisms of Cr(VI)-induced cell death. This study showed that Cr(VI) induced apoptotic cell death in a dose-dependent manner, as demonstrated by the appearance of cell shrinkage, the migration of cells into the sub-G1 phase, the increase of Annexin V positively stained cells, and the formation of nuclear DNA ladders. Cr(VI) treatment resulted in the increases of mitochondrial membrane depolarization and caspases activation. Electron spin resonance (ESR) and fluorescence analysis revealed that Cr(VI) increased intracellular levels of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anion radical in dose-dependent manner. Blockage of p53 by si-RNA transfection suppressed mitochondrial changes of Bcl-2 family composition, mitochondrial membrane depolarization, caspase activation and PARP cleavage, leading to the inhibition of Cr(VI)-induced apoptosis. Further, catalase treatment prevented p53 phosphorylation stimulated by Cr(VI) with the concomitant inhibition of caspase activation. These results suggest that Cr(VI) induced a mitochondrial-mediated and caspase-dependent apoptosis in skin epidermal cells through activation of p53, which are mainly mediated by reactive oxidants generated by the chemical.

  3. Toxoplasma gondii inhibits cytochrome c-induced caspase activation in its host cell by interference with holo-apoptosome assembly

    Directory of Open Access Journals (Sweden)

    Kristin Graumann

    2015-05-01

    Full Text Available Inhibition of programmed cell death pathways of mammalian cells often facilitates the sustained survival of intracellular microorganisms. The apicomplexan parasite Toxoplasma gondii is a master regulator of host cell apoptotic pathways. Here, we have characterized a novel anti-apoptotic activity of T. gondii. Using a cell-free cytosolic extract model, we show that T. gondii interferes with the activities of caspase 9 and caspase 3/7 which have been induced by exogenous cytochrome c and dATP. Proteolytic cleavage of caspases 9 and 3 is also diminished suggesting inhibition of holo-apoptosome function. Parasite infection of Jurkat T cells and subsequent triggering of apoptosome formation by exogenous cytochrome c in vitro and in vivo indicated that T. gondii also interferes with caspase activation in infected cells. Importantly, parasite inhibition of cytochrome c-induced caspase activation considerably contributes to the overall anti-apoptotic activity of T. gondii as observed in staurosporine-treated cells. Co-immunoprecipitation showed that T. gondii abolishes binding of caspase 9 to Apaf-1 whereas the interaction of cytochrome c with Apaf-1 remains unchanged. Finally, T. gondii lysate mimics the effect of viable parasites and prevents holo-apoptosome functionality in a reconstituted in vitro system comprising recombinant Apaf-1 and caspase 9. Beside inhibition of cytochrome c release from host cell mitochondria, T. gondii thus also targets the holo-apoptosome assembly as a second mean to efficiently inhibit the caspase-dependent intrinsic cell death pathway.

  4. Vertebrate Embryonic Cleavage Pattern Determination.

    Science.gov (United States)

    Hasley, Andrew; Chavez, Shawn; Danilchik, Michael; Wühr, Martin; Pelegri, Francisco

    2017-01-01

    The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

  5. Programmed cell death in plants and caspase-like activities

    NARCIS (Netherlands)

    Gaussand, Gwénael Martial Daniel Jean-Marie

    2007-01-01

    The development of multicellular organisms involves an important balance between cell growth, cell division and cell death. In animals, programmed cell death (PCD) plays a key role by forming and deleting structures, controlling cell numbers and eliminating abnormal damaged cells. Caspases were

  6. Proliferative and anti-proliferative effects of dietary levels of phytoestrogens in rat pituitary GH3/B6/F10 cells - the involvement of rapidly activated kinases and caspases

    International Nuclear Information System (INIS)

    Jeng, Yow-Jiun; Watson, Cheryl S

    2009-01-01

    Phytoestogens are a group of lipophillic plant compounds that can have estrogenic effects in animals; both tumorigenic and anti-tumorigenic effects have been reported. Prolactin-secreting adenomas are the most prevalent form of pituitary tumors in humans and have been linked to estrogen exposures. We examined the proliferative effects of phytoestrogens on a rat pituitary tumor cell line, GH 3 /B 6 /F 10 , originally subcloned from GH 3 cells based on its ability to express high levels of the membrane estrogen receptor-α. We measured the proliferative effects of these phytoestrogens using crystal violet staining, the activation of several mitogen-activated protein kinases (MAPKs) and their downstream targets via a quantitative plate immunoassay, and caspase enzymatic activities. Four phytoestrogens (coumestrol, daidzein, genistein, and trans-resveratrol) were studied over wide concentration ranges. Except trans-resveratrol, all phytoestrogens increased GH 3 /B 6 /F 10 cell proliferation at some concentration relevant to dietary levels. All four phytoestrogens attenuated the proliferative effects of estradiol when administered simultaneously. All phytoestrogens elicited MAPK and downstream target activations, but with time course patterns that often differed from that of estradiol and each other. Using selective antagonists, we determined that MAPKs play a role in the ability of these phytoestrogens to elicit these responses. In addition, except for trans-resveratrol, a serum removal-induced extrinsic apoptotic pathway was blocked by these phytoestrogens. Phytoestrogens can block physiological estrogen-induced tumor cell growth in vitro and can also stimulate growth at high dietary concentrations in the absence of endogenous estrogens; these actions are correlated with slightly different signaling response patterns. Consumption of these compounds should be considered in strategies to control endocrine tumor cell growth, such as in the pituitary

  7. Inflammasomes and inflammatory caspases in skin inflammation.

    Science.gov (United States)

    Iversen, Lars; Johansen, Claus

    2008-11-01

    The inflammatory caspases comprise a subclass of caspases associated with immune responses. Caspase-1 was the first identified member of this class, which also includes caspase-4, -5, -11 and -12. Caspase-1 was identified as the IL-1beta-converting enzyme and, more recently, it has also been shown to activate IL-18 and IL-33. Activation of the inflammatory caspases occurs upon assembly of multiprotein complexes, termed inflammasomes. The inflammasomes and inflammatory caspases are part of the innate immune system, which constitutes the first line of defense that detects pathogens, such as nonself antigens, bacterial and viral components, and other danger signals, and orchestrates the immune response. Inflammasomes and inflammatory caspases have also been suggested to bridge the innate immune responses to the adaptive immune system. More recently, the expression and role of inflammasomes and inflammatory caspases have been studied in both human and rodent skin, and findings have indicated a possible key role of these regulators of the immune system in the pathogenesis of inflammatory skin diseases. This article will review some of the most recent findings, identifying inflammasomes and inflammatory caspases as potential inducers and regulators of skin inflammation in contact hypersensitivity and psoriasis.

  8. Ordering of ceramide formation and caspase-9 activation in CD95L-induced Jurkat leukemia T cell apoptosis.

    Science.gov (United States)

    Lafont, Elodie; Dupont, Romain; Andrieu-Abadie, Nathalie; Okazaki, Toshiro; Schulze-Osthoff, Klaus; Levade, Thierry; Benoist, Hervé; Ségui, Bruno

    2012-04-01

    Ceramide, a biologically active sphingolipid in cell death signaling, accumulates upon CD95L treatment, concomitantly to apoptosis induction in Jurkat leukemia T cells. Herein, we show that ceramide did not increase in caspase-8 and -10-doubly deficient Jurkat cells in response to CD95L, indicating that apical caspases are essential for CD95L-triggered ceramide formation. Jurkat cells are typically defined as type 2 cells, which require the activation of the mitochondrial pathway for efficient apoptosis induction in response to CD95L. Caspase-9-deficient Jurkat cells significantly resisted CD95L-induced apoptosis, despite ceramide accumulation. Knock-down of sphingomyelin synthase 1, which metabolizes ceramide to sphingomyelin, enhanced (i) CD95L-triggered ceramide production, (ii) cytochrome c release from the mitochondria and (iii) caspase-9 activation. Exogenous ceramide-induced caspase-3 activation and apoptosis were impaired in caspase-9-deficient Jurkat cells. Conversely, caspase-9 re-expression in caspase-9-deficient Jurkat cells restored caspase-3 activation and apoptosis upon exogenous ceramide treatment. Collectively, our data provide genetic evidence that CD95L-triggered endogenous ceramide increase in Jurkat leukemia T cells (i) is not a mere consequence of cell death and occurs mainly in a caspase-9-independent manner, (ii) is likely involved in the pro-apoptotic mitochondrial pathway leading to caspase-9 activation. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Cytoprotective effect of selective small-molecule caspase inhibitors against staurosporine-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Wu J

    2014-05-01

    Full Text Available Jianghong Wu, Yuren Wang, Shuguang Liang, Haiching Ma Reaction Biology Corp, Malvern, PA, USA Abstract: Caspases are currently known as the central executioners of the apoptotic pathways. Inhibition of apoptosis and promotion of normal cell survival by caspase inhibitors would be a tremendous benefit for reducing the side effects of cancer therapy and for control of neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases. The objective of this study was to discover small-molecule caspase inhibitors with which to achieve cytoprotective effect. We completed the high-throughput screening of Bionet's 37,500-compound library (Key Organics Limited, Camelford, Cornwall, UK against caspase-1, -3, and -9 and successfully identified 43 initial hit compounds. The 43 hit compounds were further tested for cytoprotective activity against staurosporine-induced cell death in NIH3T3 cells. Nineteen compounds were found to have significant cytoprotective effects in cell viability assays. One of the compounds, RBC1023, was demonstrated to protect NIH3T3 cells from staurosporine-induced caspase-3 cleavage and activation. RBC1023 was also shown to protect against staurosporine-induced impairment of mitochondrial membrane potential. DNA microarray analysis demonstrated that staurosporine treatment induced broad global gene expression alterations, and RBC1023 co-treatment significantly restored these changes, especially of the genes that are related to cell growth and survival signaling such as Egr1, Cdc25c, cdkn3, Rhob, Nek2, and Taok1. Collectively, RBC1023 protects NIH3T3 cells against staurosporine-induced apoptosis via inhibiting caspase activity, restoring mitochondrial membrane potential, and possibly upregulating some cell survival-related gene expressions and pathways. Keywords: cell death, caspase inhibition, mitochondria, RBC1023

  10. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Alexander Jonathan S

    2010-12-01

    Full Text Available Abstract The normal function of poly (ADP-ribose polymerase-1 (PARP-1 is the routine repair of DNA damage by adding poly (ADP ribose polymers in response to a variety of cellular stresses. Recently, it has become widely appreciated that PARP-1 also participates in diverse physiological and pathological functions from cell survival to several forms of cell death and has been implicated in gene transcription, immune responses, inflammation, learning, memory, synaptic functions, angiogenesis and aging. In the CNS, PARP inhibition attenuates injury in pathologies like cerebral ischemia, trauma and excitotoxicity demonstrating a central role of PARP-1 in these pathologies. PARP-1 is also a preferred substrate for several 'suicidal' proteases and the proteolytic action of suicidal proteases (caspases, calpains, cathepsins, granzymes and matrix metalloproteinases (MMPs on PARP-1 produces several specific proteolytic cleavage fragments with different molecular weights. These PARP-1 signature fragments are recognized biomarkers for specific patterns of protease activity in unique cell death programs. This review focuses on specific suicidal proteases active towards PARP-1 to generate signature PARP-1 fragments that can identify key proteases and particular forms of cell death involved in pathophysiology. The roles played by some of the PARP-1 fragments and their associated binding partners in the control of different forms of cell death are also discussed.

  11. Active caspase-3 expression levels as bioindicator of individual radiosensitivity

    Directory of Open Access Journals (Sweden)

    NEYLIANE F.G. DOS SANTOS

    Full Text Available ABSTRACT Several molecules and events involved in cell response to radiation-induced damage have been investigated towards a personalized radiotherapy. Considering the importance of active caspase-3 in the proteolytic cascade that ensures radiation-induced apoptosis execution, this research was designed to evaluate the expression levels of this protein as a bioindicator of individual radiosensitivity. Peripheral blood samples of 10 healthy individuals were gamma-irradiated (cobalt-60 source with 1, 2 and 4 Gy (control: non-irradiated samples, and active caspase-3 expression levels were measured in lymphocytes, by flow cytometry, ex vivo and after different times of in vitro incubation (24, 48 and 72 hours. Short-term incubation of 24 h was the most adequate condition to evidence correlations between dose radiation and active caspase-3 expression. For each radiation dose, it was observed a significant inter-individual variation in active caspase-3 expression intensity, suggesting that this parameter may be suitable for evidence individual radiosensitivity. The methodology presented and discussed in this work may help to predict healthy tissues response to radiation exposure toward the better patient outcome.

  12. Pharmacological caspase inhibitors: Research towards therapeutic perspectives

    Czech Academy of Sciences Publication Activity Database

    Kudělová, J.; Fleischmannová, Jana; Adamová, Eva; Matalová, Eva

    2015-01-01

    Roč. 66, č. 4 (2015), s. 473-482 ISSN 0867-5910 R&D Projects: GA ČR GB14-37368G Institutional support: RVO:67985904 Keywords : caspase * caspase inhibitor * apoptosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.804, year: 2015

  13. Pharmacological caspase inhibitors: Research towards therapeutic perspectives

    Czech Academy of Sciences Publication Activity Database

    Kudělová, J.; Fleischmannová, J.; Adamová, E.; Matalová, Eva

    2015-01-01

    Roč. 66, č. 4 (2015), s. 473-482 ISSN 0867-5910 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : caspase * caspase inhibitor * apoptosis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.804, year: 2015

  14. Apoptotic cleavage of NuMA at the C-terminal end is related to nuclear disruption and death amplification.

    Science.gov (United States)

    Lin, Hsueh-Hsuan; Hsu, Hsin-Ling; Yeh, Ning-Hsing

    2007-09-01

    NuMA is a nuclear matrix protein in interphase and distributes to the spindle poles during mitosis. While the essential function of NuMA for mitotic spindle assembly is well established, a structural role of NuMA in interphase nucleus has also been proposed. Several observations suggest that the apoptotic degradation of NuMA may relate to chromatin condensation and micronucleation. Here we demonstrate that four apoptotic cleavage sites are clustered at a junction between the globular tail and the central coiled-coil domains of NuMA. Cleavage of a caspase-6-sensitive site at D(1705) produced the R-form, a major tail-less product of NuMA during apoptosis. The other two cleavage sites were defined at D(1726) and D(1747) that were catalyzed, respectively, by caspase-3 and an unknown aspartase. A NuMA deletion mutant missing the entire cleavage region of residues 1701-1828 resisted degradation and protected cells from nuclear disruption upon apoptotic attack. Under such conditions, cytochrome c was released from mitochondria, but the subsequent apoptotic events such as caspase-3 activation, poly(ADP-ribose) polymerase degradation, and DNA fragmentation were attenuated. Conversely, the tail-less NuMA alone, a mutant mimicking the R-form, induced chromatin condensation and activated the death machinery. It supports that intact NuMA is a structural element in maintaining nuclear integrity.

  15. DNA cleavage agents from Schisandra propinqua var. sinensis

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... DNA strand breakage process is involved in various bio- logical stages such as inflammation, mutagenesis, carci- nogenesis, or aging (Mibu et al., 2003; Chen et al., 2006). As a consequence of the clinical utility of DNA cleavage ..... and its use in folk medicine to treat fracture, chronic gas- tritis and ...

  16. Uncovering the Protocatechuate 2,3-Cleavage Pathway Genes▿ †

    OpenAIRE

    Kasai, Daisuke; Fujinami, Toshihiro; Abe, Tomokuni; Mase, Kohei; Katayama, Yoshihiro; Fukuda, Masao; Masai, Eiji

    2009-01-01

    Paenibacillus sp. (formerly Bacillus macerans) strain JJ-1b is able to grow on 4-hydroxybenzoate (4HB) as a sole source of carbon and energy and is known to degrade 4HB via the protocatechuate (PCA) 2,3-cleavage pathway. However, none of the genes involved in this pathway have been identified. In this study, we identified and characterized the JJ-1b genes for the 4HB catabolic pathway via the PCA 2,3-cleavage pathway, which consisted of praR and praABEGFDCHI. Based on the enzyme activities of...

  17. Apoptosis of CTLL-2 cells induced by an immunosuppressant, ISP-I, is caspase-3-like protease-independent.

    Science.gov (United States)

    Yamaji, T; Nakamura, S; Takematsu, H; Kawasaki, T; Kozutsumi, Y

    2001-04-01

    In our previous study, the sphingosine-like immunosuppressant ISP-1 was shown to induce apoptosis in the mouse cytotoxic T cell line CTLL-2. In this study, we characterized the ISP-1-induced apoptotic pathway. Although caspase-3-like protease activity increases concomitantly with ISP-1-induced apoptosis in CTLL-2 cells, the apoptosis is not inhibited by caspase-3-like protease inhibitors, i.e. DEVD-cho and z-DEVD-fmk. In contrast, sphingosine-induced apoptosis in CTLL-2 cells is caspase-3-like protease-dependent. A caspase inhibitor with broad specificity, z-VAD-fmk, protects cells from apoptosis induced by ISP-1, indicating that ISP-1-induced apoptosis is dependent on caspase(s) other than caspase-3. Overexpression of Bcl-2 or Bcl-xL suppresses the apoptosis induced by ISP-1, although sphingosine-induced apoptosis is not efficiently inhibited by Bcl-2. Finally, ISP-1-induced mitochondrial depolarization, which is thought to be a checkpoint dividing the apoptotic pathway into upstream and downstream stages, is not inhibited by DEVD-cho, but is inhibited by z-VAD-fmk. These data suggest that a pathway dependent on caspase(s) other than caspase-3 is involved upstream of mitochondrial depolarization in ISP-1-induced apoptosis.

  18. Overexpression of caspase-1 (interleukin-1beta converting enzyme) in chronic pancreatitis and its participation in apoptosis and proliferation.

    Science.gov (United States)

    Ramadani, M; Yang, Y; Gansauge, F; Gansauge, S; Beger, H G

    2001-05-01

    Caspase-1, formerly designated interleukin-1beta converting enzyme, was the first described member of a group of cysteine proteases called caspases. It is suggested that caspases play an important role in apoptosis, but recent observations could show that caspase-1 might also be involved in cellular proliferation. We investigated the expression of caspase-1 in 38 chronic pancreatitis tissues, six pancreatitis tissues from patients with pancreatic carcinoma and nine normal pancreatic tissues by immunohistochemistry. Western blot analysis was used to confirm the immunohistochemical findings. We found a clear expression of caspase-1 in chronic pancreatitis, but not in normal pancreatic tissues. Interestingly, we found expression of caspase-1 in three distinct morphologic compartments: (i) in atrophic acinar cells (31 of 35; 89%), (ii) proliferating cells of ductal origin (33 of 38; 87%), and (iii) in acinar cells redifferentiating to form tubular structures (26 of 31; 83%). These immunohistochemical findings were confirmed by Western blot analysis, which showed an expression of caspase-1 in 85% of the tissues. No correlation was found between any of the examined clinicopathologic features and the caspase-1 expression in chronic pancreatitis. In conclusion, the expression of caspase-1 is a frequent event in chronic pancreatitis and its distribution pattern may reflect two functions of this protease: on one hand its participation in the apoptotic pathway in atrophic acinar cells and, on the other hand, its role in proliferation and differentiation in proliferating duct cells.

  19. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.; Wu, J.P. [Fudan University, Jinshan Hospital, Department of Orthopaedics, Shanghai, China, Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai (China); Xu, G. [Fudan University, Jinshan Hospital, Center Laboratory, Shanghai, China, Center Laboratory, Jinshan Hospital, Fudan University, Shanghai (China); Zhu, B.; Zeng, Q.M.; Li, D.F.; Lu, W. [Fudan University, Jinshan Hospital, Department of Orthopaedics, Shanghai, China, Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai (China)

    2014-05-09

    Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.

  20. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    Directory of Open Access Journals (Sweden)

    L. Ding

    2014-06-01

    Full Text Available Current studies find that degenerated cartilage endplates (CEP of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.

  1. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    International Nuclear Information System (INIS)

    Ding, L.; Wu, J.P.; Xu, G.; Zhu, B.; Zeng, Q.M.; Li, D.F.; Lu, W.

    2014-01-01

    Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis

  2. Cleavage entropy as quantitative measure of protease specificity.

    Directory of Open Access Journals (Sweden)

    Julian E Fuchs

    2013-04-01

    Full Text Available A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity.

  3. Overexpression of FADD and Caspase-8 inhibits proliferation and promotes apoptosis of human glioblastoma cells.

    Science.gov (United States)

    Wang, Hong-Bin; Li, Tao; Ma, Dong-Zhou; Ji, Yan-Xin; Zhi, Hua

    2017-09-01

    The study aimed at exploring the effects involved in Fas-Associated protein with Death Domain (FADD) expression and cysteine-aspartic acid specific protease-8 (Caspase-8) in relation to the proliferation and apoptosis of human glioblastoma (GBM) cells. 93 GBM tissues and 64 normal brain tissues were the central mediums used for the investigation of the study. Cultured human GBM SC189 cells were divided into separate groups including the blank negative control (NC), FADD and Caspase-8 groups. The mRNA and protein expressions of FADD and Caspase-8 in tissues and human glioblastoma (GBM) cells were detected using qRT-PCR and Western blotting techniques. Cell proliferation was tested by CCK-8. Flow cytometry was used for the measure of cell cycle and apoptosis rates. The mRNA and protein expressions of FADD and Caspase-8 in GBM tissues were less than the levels of expression displayed in normal brain tissues. Correlations between the expressions of FADD and Caspase-8 in GBM tissues were analyzed as being linked with the clinical grades of GBM patients. Patients in stage III+IV displayed lower expressions of FADD and Caspase-8 than patients in stage I+II. In comparison with the blank group, the FADD and Caspase-8 groups showed decreased proliferation rates of SHG44 cells and lower ratios of cells in the S phase and Bcl-2 expression. Greater ratios of cells in the G0/G1 stage as well as increased cell apoptosis and expressions of Caspase-8 and Bax were exhibited. The expression of FADD in the FADD group was higher than the blank group, however no significant differences in FADD expression was observed between the blank and Caspase-8 groups. The data obtained during the study demonstrated that overexpression of FADD and Caspase-8 suppresses proliferation whilst promoting the apoptosis of human GBM cells. Copyright © 2017. Published by Elsevier Masson SAS.

  4. Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus.

    Directory of Open Access Journals (Sweden)

    Fang Chen

    Full Text Available Brucella species are Gram-negative, facultative intracellular bacteria that cause zoonotic brucellosis. Survival and replication inside macrophages is critical for establishment of chronic Brucella infection. Virulent smooth B. abortus strain 2308 inhibits programmed macrophage cell death and replicates inside macrophages. Cattle B. abortus vaccine strain RB51 is an attenuated rough, lipopolysaccharide O antigen-deficient mutant derived from smooth strain 2308. B. abortus rough mutant RA1 contains a single wboA gene mutation in strain 2308. Our studies demonstrated that live RB51 and RA1, but not strain 2308 or heat-killed Brucella, induced both apoptotic and necrotic cell death in murine RAW264.7 macrophages and bone marrow derived macrophages. The same phenomenon was also observed in primary mouse peritoneal macrophages from mice immunized intraperitoneally with vaccine strain RB51 using the same dose as regularly performed in protection studies. Programmed macrophage cell death induced by RB51 and RA1 was inhibited by a caspase-2 inhibitor (Z-VDVAD-FMK. Caspase-2 enzyme activation and cleavage were observed at the early infection stage in macrophages infected with RB51 and RA1 but not strain 2308. The inhibition of macrophage cell death promoted the survival of rough Brucella cells inside macrophages. The critical role of caspase-2 in mediating rough B. abortus induced macrophage cell death was confirmed using caspase-2 specific shRNA. The mitochondrial apoptosis pathway was activated in macrophages infected with rough B. abortus as demonstrated by increase in mitochondrial membrane permeability and the release of cytochrome c to cytoplasm in macrophages infected with rough Brucella. These results demonstrate that rough B. abortus strains RB51 and RA1 induce apoptotic and necrotic murine macrophage cell death that is mediated by caspase-2. The biological relevance of Brucella O antigen and caspase-2-mediated macrophage cell death in Brucella

  5. Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus.

    Science.gov (United States)

    Chen, Fang; He, Yongqun

    2009-08-28

    Brucella species are Gram-negative, facultative intracellular bacteria that cause zoonotic brucellosis. Survival and replication inside macrophages is critical for establishment of chronic Brucella infection. Virulent smooth B. abortus strain 2308 inhibits programmed macrophage cell death and replicates inside macrophages. Cattle B. abortus vaccine strain RB51 is an attenuated rough, lipopolysaccharide O antigen-deficient mutant derived from smooth strain 2308. B. abortus rough mutant RA1 contains a single wboA gene mutation in strain 2308. Our studies demonstrated that live RB51 and RA1, but not strain 2308 or heat-killed Brucella, induced both apoptotic and necrotic cell death in murine RAW264.7 macrophages and bone marrow derived macrophages. The same phenomenon was also observed in primary mouse peritoneal macrophages from mice immunized intraperitoneally with vaccine strain RB51 using the same dose as regularly performed in protection studies. Programmed macrophage cell death induced by RB51 and RA1 was inhibited by a caspase-2 inhibitor (Z-VDVAD-FMK). Caspase-2 enzyme activation and cleavage were observed at the early infection stage in macrophages infected with RB51 and RA1 but not strain 2308. The inhibition of macrophage cell death promoted the survival of rough Brucella cells inside macrophages. The critical role of caspase-2 in mediating rough B. abortus induced macrophage cell death was confirmed using caspase-2 specific shRNA. The mitochondrial apoptosis pathway was activated in macrophages infected with rough B. abortus as demonstrated by increase in mitochondrial membrane permeability and the release of cytochrome c to cytoplasm in macrophages infected with rough Brucella. These results demonstrate that rough B. abortus strains RB51 and RA1 induce apoptotic and necrotic murine macrophage cell death that is mediated by caspase-2. The biological relevance of Brucella O antigen and caspase-2-mediated macrophage cell death in Brucella pathogenesis and

  6. Ultrafine particles of Ulmus davidiana var. japonica induce apoptosis of gastric cancer cells via activation of caspase and endoplasmic reticulum stress.

    Science.gov (United States)

    Ahn, Joungjwa; Lee, Jong Suk; Yang, Kyung Mi

    2014-06-01

    Small-sized particles are more suitable for targeted delivery and are therapeutically more effective than large-sized particles. In this study, we investigated the anticancer effects of ultrafine particles of Ulmus davidiana var. japonica (ufUJ) on human gastric cancer cell lines SNU-1, SNU-216, and SNU-484. ufUJ induced apoptosis by the proteolytic activation of caspase-9, caspase-6, and caspase-3 and cleavage of poly (ADP-ribose) polymerase. The expression levels of the endoplasmic reticulum stress-related protein BiP markedly increased after ufUJ treatment. BiP knockdown decreased ufUJ-induced cell death. ufUJ-induced apoptosis was inhibited by the caspase-3 inhibitor z-DEVD-fmk, caspase-6 inhibitor z-VEID-fmk, and caspase-9 inhibitor z-LEHD-fmk, and by siRNAs against caspases 3, 6, and 9. Gastric cancer cells did not show anchorage-independent growth in the presence of ufUJ. However, cells treated with caspase inhibitors showed an enhanced colony-forming ability. These findings may be helpful in the prevention of gastric cancer and in the development of functional foods.

  7. Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions

    NARCIS (Netherlands)

    Sun, Z.; Hans, J.; Walter, M.H.; Matusova, R.; Beekwilder, M.J.; Verstappen, F.W.A.; Ming, Z.; Echteld, van E.; Strack, D.; Bisseling, T.; Bouwmeester, H.J.

    2008-01-01

    Colonisation of maize roots by arbuscular mycorrhizal (AM) fungi leads to the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives). Other root apocarotenoids (strigolactones) are involved in signalling during early steps of the AM symbiosis but also in stimulation of

  8. Caspase-2 associates with FAN through direct interaction and overlapping functionality.

    Science.gov (United States)

    Forsberg, Jeremy; Li, Xinge; Zamaraev, Aleksey V; Panaretakis, Theocharis; Zhivotovsky, Boris; Olsson, Magnus

    2018-04-06

    Caspase-2 has been implicated in diverse cellular processes, and the identification of factors with which it interacts has steadily increased. In the present study, we report a direct interaction between caspase-2 and factor associated with neutral sphingomyelinase activation (FAN) using yeast two-hybrid screening and co-immunoprecipitation. Further, stable suppression of caspase-2 expression in HEK293T and HeLa cells enabled a systematic investigation of putative novel enzyme functionalities, especially with respect to ceramide production, cell migration, IL-6 production and vesicular homeostasis, all of which have been previously reported to be associated with FAN. Lipidomics excluded the involvement of caspase-2 in the generation of ceramide species, but caspase-2-dependent deregulation of IL-6 release, vesicular size and delayed cell relocation supported an association between caspase-2 and FAN. Collectively, these data identify a novel caspase-2-interacting factor, FAN, and expand the role for the enzyme in seemingly non-apoptotic cellular mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Both the caspase CSP-1 and a caspase-independent pathway promote programmed cell death in parallel to the canonical pathway for apoptosis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Daniel P Denning

    Full Text Available Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3, of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell

  10. Attenuation of the ELAV1-like protein HuR sensitizes adenocarcinoma cells to the intrinsic apoptotic pathway by increasing the translation of caspase-2L.

    Science.gov (United States)

    Winkler, C; Doller, A; Imre, G; Badawi, A; Schmid, T; Schulz, S; Steinmeyer, N; Pfeilschifter, J; Rajalingam, K; Eberhardt, W

    2014-07-10

    Caspase-2 represents the most conserved member of the caspase family, which exhibits features of both initiator and effector caspases. Using ribonucleoprotein (RNP)-immunoprecipitation assay, we identified the proapoptotic caspase-2L encoding mRNA as a novel target of the ubiquitous RNA-binding protein HuR in DLD-1 colon carcinoma cells. Unexpectedly, crosslinking-RNP and RNA probe pull-down experiments revealed that HuR binds exclusively to the caspase-2-5' untranslated region (UTR) despite that the 3' UTR of the mRNA bears several adenylate- and uridylate-rich elements representing the prototypical HuR binding sites. By using RNAi-mediated loss-of-function approach, we observed that HuR regulates the mRNA and in turn the protein levels of caspase-2 in a negative manner. Silencing of HuR did not affect the stability of caspase-2 mRNA but resulted in an increased redistribution of caspase-2 transcripts from RNP particles to translational active polysomes implicating that HuR exerts a direct repressive effect on caspase-2 translation. Consistently, in vitro translation of a luciferase reporter gene under the control of an upstream caspase-2-5'UTR was strongly impaired after the addition of recombinant HuR, whereas translation of caspase-2 coding region without the 5'UTR is not affected by HuR confirming the functional role of the caspase-2-5'UTR. Functionally, an elevation in caspase-2 level by HuR knockdown correlated with an increased sensitivity of cells to apoptosis induced by staurosporine- and pore-forming toxins as implicated by their significant accumulation in the sub G1 phase and an increase in caspase-2, -3 and poly ADP-ribose polymerase cleavage, respectively. Importantly, HuR knockdown cells remained insensitive toward STS-induced apoptosis if cells were additionally transfected with caspase-2-specific siRNAs. Collectively, our findings support the hypothesis that HuR by acting as an endogenous inhibitor of caspase-2-driven apoptosis may essentially

  11. Caspase-6 Induces 7A6 Antigen Localization to Mitochondria During FAS-induced Apoptosis of Jurkat Cells.

    Science.gov (United States)

    Suita, Hiroaki; Shinomiya, Takahisa; Nagahara, Yukitoshi

    2017-04-01

    Mitochondria are central to apoptosis. However, apoptosis progression involving mitochondria is not fully understood. A factor involved in mitochondria-mediated apoptosis is 7A6 antigen. 7A6 localizes to mitochondria from the cytosol during apoptosis, which seems to involve 'effector' caspases. In this study, we investigated the precise role of effector caspases in 7A6 localization to mitochondria during apoptosis. Human T-cell lymphoma Jurkat cells were treated with an antibody against FAS. 7A6 localization was analyzed by confocal laser scanning microscopy and flow cytometry. Caspases activation was determined by western blot analysis. 7A6 localization to mitochondria during anti-FAS-induced apoptosis was significantly reduced by the caspase-6 inhibitor, N-acetyl-Val-Glu-Ile-Asp-aldehyde, but not by the caspase-3 inhibitor, N-acetyl-Asp-Asn-Leu-Asp-aldehyde, nor caspase-7/3 inhibitor, N-acetyl-Asp-Gln-Thr-Asp-aldehyde. Moreover, caspase-6 down-regulation suppressed 7A6 localization to mitochondria. Caspase-6 regulates 7A6 localization to mitochondria during anti-FAS-induced apoptosis of Jurkat cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Caspase-12 and the inflammatory response to Yersinia pestis.

    NARCIS (Netherlands)

    Ferwerda, B.; McCall, M.B.B.; Vries, M.C. de; Hopman, J.C.W.; Maiga, B.; Dolo, A.; Doumbo, O.; Daou, M.; Jong, D.J. de; Joosten, L.A.B.; Tissingh, R.A.; Reubsaet, F.A.; Sauerwein, R.W.; Meer, J.W.M. van der; Ven, A.J.A.M. van der; Netea, M.G.

    2009-01-01

    BACKGROUND: Caspase-12 functions as an antiinflammatory enzyme inhibiting caspase-1 and the NOD2/RIP2 pathways. Due to increased susceptibility to sepsis in individuals with functional caspase-12, an early-stop mutation leading to the loss of caspase-12 has replaced the ancient genotype in Eurasia

  13. The Marine Fungal Metabolite, Dicitrinone B, Induces A375 Cell Apoptosis through the ROS-Related Caspase Pathway

    Directory of Open Access Journals (Sweden)

    Li Chen

    2014-04-01

    Full Text Available Dicitrinone B, a rare carbon-bridged citrinin dimer, was isolated from the marine-derived fungus, Penicillium citrinum. It was reported to have antitumor effects on tumor cells previously; however, the details of the mechanism remain unclear. In this study, we found that dicitrinone B inhibited the proliferation of multiple tumor types. Among them, the human malignant melanoma cell, A375, was confirmed to be the most sensitive. Morphologic evaluation, cell cycle arrest and apoptosis rate analysis results showed that dicitrinone B significantly induced A375 cell apoptosis. Subsequent observation of reactive oxygen species (ROS accumulation and mitochondrial membrane potential (MMP reduction revealed that the apoptosis induced by dicitrinone B may be triggered by over-producing ROS. Further studies indicated that the apoptosis was associated with both intrinsic and extrinsic apoptosis pathways under the regulation of Bcl-2 family proteins. Caspase-9, caspase-8 and caspase-3 were activated during the process, leading to PARP cleavage. The pan-caspase inhibitor, Z-VAD-FMK, could reverse dicitrinone B-induced apoptosis, suggesting that it is a caspase-dependent pathway. Our data for the first time showed that dicitrinone B inhibits the proliferation of tumor cells by inducing cell apoptosis. Moreover, compared with the first-line chemotherapy drug, 5-fluorouracil (5-Fu, dicitrinone B showed much more potent anticancer efficacy, suggesting that it might serve as a potential antitumor agent.

  14. A polypeptide from Chlamys farreri inhibits UVB-induced HaCaT cells apoptosis via the Apaf-1/caspase-9 and Smac/XIAP signaling pathway

    Science.gov (United States)

    Liu, Xiaojin; Wang, Wencheng; Wang, Hongjiang; Zhang, Lanlan; Liu, Leqian; Wang, Yuejun; Wang, Chunbo

    2009-09-01

    A novel marine active polypeptide (PCF), isolated from the gonochoric Chinese scallop, Chlamys farreri, has potential antioxidant and anti-apoptotic activity against ultraviolet irradiation. We investigated whether UVB-induced HaCaT cell apoptosis occurs via the mitochondrial pathways Apaf-1/caspase-9 and Smac/XIAP/caspase-3. We then investigated the molecular mechanisms controlling the anti-apoptotic effect of PCF. Pre-treatment with PCF and caspase-9 inhibitor significantly inhibited UVB-induced apoptosis in HaCaT cells based on a DNA fragmentation assay and Hoechst 33258 staining. The expression of Apaf-1 and the cleavage of procaspase-9 were dose-dependently reduced by 1.42-5.96 mmol/L PCF pretreatment in UVB-irradiated HaCaT cells. This was followed by inhibition of cleavage of procaspase-3, whose activation induced cell apoptosis. Meanwhile, PCF significantly and dose-dependently enhanced the activation of ATPase. Furthermore, we demonstrated that PCF strongly inhibited the release of Smac from the mitochondria to cytosol by reducing the degradation of XIAP dose-dependently. We conclude that the protective effect of PCF against UVB irradiation in HaCaT cells may be attributed to the inhibition of the Apaf-1/caspase-9 and Smac/XIAP/caspase-3 apoptotic signaling pathways.

  15. Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yu-Qin Zhang

    Full Text Available The role of Pokemon (POK erythroid myeloid ontogenic actor, a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy.

  16. Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Yu-Qin; Xiao, Chuan-Xing; Lin, Bi-Yun; Shi, Ying; Liu, Yun-Peng; Liu, Jing-Jing; Guleng, Bayasi; Ren, Jian-Lin

    2013-01-01

    The role of Pokemon (POK erythroid myeloid ontogenic actor), a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC) and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma) as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy.

  17. Regulatory effect of caspase-11 on interleukin-1β in the fungal keratitis.

    Science.gov (United States)

    Zhu, Keke; Mu, Hongmei; Pi, Baimu

    2016-11-01

    Caused by fungus, fungal keratitis is a kind of infections corneal disease with high rate of blindness, which patients are mainly farmers in developing countries. Interleukin, as important proinflammatory cytokines, involve in immune defense process against fungal infection of cornea. The expression of interleukin in the pathogenesis of fungal keratitis, especially the main source of its cells, is not clear and the cell signaling pathways which regulate the synthesis and modification of interleukin is still unknown. Caspase-11 was obtained and cultured. And the ELISA and Western-blot methods were used to explore the regulatory effect of Caspse-11 on Interleukin-1β in the fungal keratitis. neutrophils were the main cell lineage of IL-1β to take part in the innate anti-fungi immunity in the cornea; IL-1β generation induced by fungal infection might not be through the pre-excitation in the classical signal pathway; TLR4/TRIF pathway was not involved in pro-IL-1β generation; while Dectin-1/syk pathway was involved in IL-1β generation in the fungal keratitis; Caspase-l participated in the modification of IL-1β to change from the precursor into the mature body; but NLRP3 inflammasome and ASC inflammasome were not involved in IL-1β generation; Caspase-11 was involved in IL-1β generation through regulating the modified process of Caspase-l to turning from precursor into mature body. TLR4/TRIF pathway and NLRP3 inflammasome and ASC inflammasome are not involved in the pro-IL-1β generation, while Caspase-l, Caspase-11 and Dectin-1/syk pathway are involved in the IL-1β generation.

  18. Interaction of translationally controlled tumor protein with Apaf-1 is involved in the development of chemoresistance in HeLa cells

    International Nuclear Information System (INIS)

    Jung, Jaehoon; Kim, Hyo Young; Maeng, Jeehye; Kim, Moonhee; Shin, Dong Hae; Lee, Kyunglim

    2014-01-01

    Translationally controlled tumor protein (TCTP), alternatively called fortilin, is believed to be involved in the development of the chemoresistance of tumor cells against anticancer drugs such as etoposide, taxol, and oxaliplatin, the underlying mechanisms of which still remain elusive. Cell death analysis of TCTP-overexpressing HeLa cells was performed following etoposide treatment to assess the mitochondria-dependent apoptosis. Apoptotic pathway was analyzed through measuring the cleavage of epidermal growth factor receptor (EGFR) and phospholipase C-γ (PLC-γ), caspase activation, mitochondrial membrane perturbation, and cytochrome c release by flow cytometry and western blotting. To clarify the role of TCTP in the inhibition of apoptosome, in vitro apoptosome reconstitution and immunoprecipitation was used. Pull-down assay and silver staining using the variants of Apaf-1 protein was applied to identify the domain that is responsible for its interaction with TCTP. In the present study, we confirmed that adenoviral overexpression of TCTP protects HeLa cells from cell death induced by cytotoxic drugs such as taxol and etoposide. TCTP antagonized the mitochondria-dependent apoptotic pathway following etoposide treatment, including mitochondrial membrane damage and resultant cytochrome c release, activation of caspase-9, and -3, and eventually, the cleavage of EGFR and PLC-γ. More importantly, TCTP interacts with the caspase recruitment domain (CARD) of Apaf-1 and is incorporated into the heptameric Apaf-1 complex, and that C-terminal cleaved TCTP specifically associates with Apaf-1 of apoptosome in apoptosome-forming condition thereby inhibiting the amplification of caspase cascade. TCTP protects the cancer cells from etoposide-induced cell death by inhibiting the mitochondria-mediated apoptotic pathway. Interaction of TCTP with Apaf-1 in apoptosome is involved in the molecular mechanism of TCTP-induced chemoresistance. These findings suggest that TCTP may serve

  19. A Secreted Protein Promotes Cleavage Furrow Maturation during Cytokinesis

    OpenAIRE

    Xu, Xuehong; Vogel, Bruce E.

    2011-01-01

    Developmental modifications in cell shape depend on dynamic interactions between the extracellular matrix and cytoskeleton. In contrast, existing models of cytokinesis describe substantial cell surface remodeling that involves many intracellular regulatory and structural proteins but includes no contribution from the extracellular matrix [1–3]. Here, we show that extracellular hemicentins assemble at the cleavage furrow of dividing cells in the C. elegans germline and in preimplantation mouse...

  20. Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia

    Directory of Open Access Journals (Sweden)

    Tsukasa Nakanishi

    2016-05-01

    Full Text Available We previously reported that the inflammasome inhibitor cucurbitacin D (CuD induces apoptosis in human leukemia cell lines. Here, we investigated the effects of CuD and a B-cell lymphoma extra-large (Bcl-xL inhibitor on autophagy in peripheral blood lymphocytes (PBL isolated from adult T-cell leukemia (ATL patients. CuD induced PBL cell death in patients but not in healthy donors. This effect was not significantly inhibited by treatment with rapamycin or 3-methyladenine (3-MA. The Bcl-xL inhibitor Z36 induced death in primary cells from ATL patients including that induced by CuD treatment, effects that were partly inhibited by 3-MA. Similarly, cell death induced by the steroid prednisolone was enhanced in the presence of Z36. A western blot analysis revealed that Z36 also promoted CuD-induced poly(ADP ribose polymerase cleavage. Interestingly, the effects of CuD and Z36 were attenuated in primary ATL patient cells obtained upon recurrence after umbilical cord blood transplantation, as compared to those obtained before chemotherapy. Furthermore, cells from this patient expressed a high level of caspase-1, and treatment with caspase-1 inhibitor-enhanced CuD-induced cell death. Taken together, these results suggest that rescue from resistance to steroid drugs can enhance chemotherapy, and that caspase-1 is a good marker for drug resistance in ATL patients.

  1. Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages.

    Directory of Open Access Journals (Sweden)

    Antje Bast

    2014-03-01

    Full Text Available The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1β and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail. Furthermore, the role of B. pseudomallei factors in inflammasome activation is still ill defined. In the present study we show that caspase-1 processing and pyroptosis is exclusively dependent on NLRC4, but not on NLRP3 in the early phase of macrophage infection, whereas at later time points caspase-1 activation and cell death is NLRC4- independent. In the early phase we identified an activation pathway involving caspases-9, -7 and PARP downstream of NLRC4 and caspase-1. Analyses of caspase-1/11-deficient infected macrophages revealed a strong induction of apoptosis, which is dependent on activation of apoptotic initiator and effector caspases. The early activation pathway of caspase-1 in macrophages was markedly reduced or completely abolished after infection with a B. pseudomallei flagellin FliC or a T3SS3 BsaU mutant. Studies using cells transfected with the wild-type and mutated T3SS3 effector protein BopE indicated also a role of this protein in caspase-1 processing. A T3SS3 inner rod protein BsaK mutant failed to activate caspase-1, revealed higher intracellular counts, reduced cell death and IL-1β secretion during early but not during late macrophage infection compared to the wild-type. Intranasal infection of BALB/c mice with the BsaK mutant displayed a strongly decreased mortality, lower bacterial loads in organs, and reduced levels of IL-1β, myeloperoxidase and neutrophils in bronchoalveolar lavage fluid. In conclusion, our results indicate a major role for a functional T3SS3 in early NLRC4-mediated caspase-1 activation and pyroptosis and a contribution of late caspase-1

  2. Krebs Cycle Moonlights in Caspase Regulation

    OpenAIRE

    Minis, Adi; Steller, Hermann

    2016-01-01

    In this issue of Developmental Cell, Aram et al. (2016) identify a mechanism that uses a Krebs cycle protein to control local activation of a ubiquitin ligase complex at the mitochondrial outer membrane for temporally and spatially restricted caspase activation during Drosophila sperm differentiation.

  3. Krebs Cycle Moonlights in Caspase Regulation.

    Science.gov (United States)

    Minis, Adi; Steller, Hermann

    2016-04-04

    In this issue of Developmental Cell, Aram et al. (2016) identify a mechanism that uses a Krebs cycle protein to control local activation of a ubiquitin ligase complex at the mitochondrial outer membrane for temporally and spatially restricted caspase activation during Drosophila sperm differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease

    Directory of Open Access Journals (Sweden)

    Bissada Nagat

    2011-08-01

    Full Text Available Abstract Background Huntington Disease (HD is a neurodegenerative disorder in which caspase activation and cleavage of substrates, including the huntingtin protein, has been invoked as a pathological mechanism. Specific changes in caspase-2 (casp2 activity have been suggested to contribute to the pathogenesis of HD, however unique casp2 cleavage substrates have remained elusive. We thus utilized mice completely lacking casp2 (casp2-/- to examine the role played by casp2 in the progression of HD. This 'substrate agnostic' approach allows us to query the effect of casp2 on HD progression without pre-defining proteolytic substrates of interest. Results YAC128 HD model mice lacking casp2 show protection from well-validated motor and cognitive features of HD, including performance on rotarod, swimming T-maze, pre-pulse inhibition, spontaneous alternation and locomotor tasks. However, the specific pathological features of the YAC128 mice including striatal volume loss and testicular degeneration are unaltered in mice lacking casp2. The application of high-resolution magnetic resonance imaging (MRI techniques validates specific neuropathology in the YAC128 mice that is not altered by ablation of casp2. Conclusions The rescue of behavioral phenotypes in the absence of pathological improvement suggests that different pathways may be operative in the dysfunction of neural circuitry in HD leading to behavioral changes compared to the processes leading to cell death and volume loss. Inhibition of caspase-2 activity may be associated with symptomatic improvement in HD.

  5. Conformational similarity in the activation of caspase-3 and -7 revealed by the unliganded and inhibited structures of caspase-7

    Energy Technology Data Exchange (ETDEWEB)

    Agniswamy, Johnson; Fang, Bin; Weber, Irene T.; (GSU)

    2009-09-08

    Caspase-mediated apoptosis has important roles in normal cell differentiation and aging and in many diseases including cancer, neuromuscular disorders and neurodegenerative diseases. Therefore, modulation of caspase activity and conformational states is of therapeutic importance. We report crystal structures of a new unliganded conformation of caspase-7 and the inhibited caspase-7 with the tetrapeptide Ac-YVAD-Cho. Different conformational states and mechanisms for substrate recognition have been proposed based on unliganded structures of the redundant apoptotic executioner caspase-3 and -7. The current study shows that the executioner caspase-3 and -7 have similar conformations for the unliganded active site as well as the inhibitor-bound active site. The new unliganded caspase-7 structure exhibits the tyrosine flipping mechanism in which the Tyr230 has rotated to block entry to the S2 binding site similar to the active site conformation of unliganded caspase-3. The inhibited structure of caspase-7/YVAD shows that the P4 Tyr binds the S4 region specific to polar residues at the expense of a main chain hydrogen bond between the P4 amide and carbonyl oxygen of caspase-7 Gln 276, which is similar to the caspase-3 complex. This new knowledge of the structures and conformational states of unliganded and inhibited caspases will be important for the design of drugs to modulate caspase activity and apoptosis.

  6. The apoptotic function analysis of p53, Apaf1, Caspase3 and Caspase7 during the spermatogenesis of the Chinese fire-bellied newt Cynops orientalis.

    Directory of Open Access Journals (Sweden)

    Da-Hui Wang

    Full Text Available BACKGROUND: Spontaneous and stress-induced germ cell apoptosis during spermatogenesis of multicellular organisms have been investigated broadly in mammals. Spermatogenetic process in urodele amphibians was essentially like that in mammals in spite of morphological differences; however, the mechanism of germ cell apoptosis in urodele amphibians remains unknown. The Chinese fire-belly newt, Cynops orientalis, was an excellent organism for studying germ cell apoptosis due to its sensitiveness to temperature, strong endurance of starvation, and sensitive skin to heavy metal exposure. METHODOLOGY/PRINCIPAL FINDINGS: TUNEL result showed that spontaneous germ cell apoptosis took place in normal newt, and severe stress-induced apoptosis occurred to spermatids and sperm in response to heat shock (40°C 2 h, cold exposure (4°C 12 h, cadmium exposure (Cd 36 h, and starvation stress. Quantitative reverse transcription polymerase chain reactions (qRT-PCR showed that gene expression of Caspase3 or Caspase7 was obviously elevated after stress treatment. Apaf1 was not altered at its gene expression level, and p53 was significantly decreased after various stress treatment. Caspase assay demonstrated that Caspase-3, -8, -9 enzyme activities in newt testis were significantly elevated after heat shock (40°C 2 h, cold exposure (4°C 12 h, and cadmium exposure (Cd 36 h, while Caspase3 and Caspase8 activities were increased with Caspase9 significantly decreased after starvation treatment. CONCLUSIONS/SIGNIFICANCE: Severe germ cell apoptosis triggered by heat shock, cold exposure, and cadmium exposure was Caspase3 dependent, which probably involved both extrinsic and intrinsic pathways. Apaf1 may be involved in this process without elevating its gene expression. But starvation-induced germ cell apoptosis was likely mainly through extrinsic pathway. p53 was probably not responsible for stress-induced germ cell apoptosis in newt testis. The intriguing high occurrence

  7. Cleavages in Serbia and consolidation of democracy

    Directory of Open Access Journals (Sweden)

    Antonić Slobodan

    2007-01-01

    Full Text Available The article discusses the sociological obstacles for consolidation in Serbia after 2000. The author claim that the reason for slow consolidation lies squarely with the type of political cleavages that continue to dominate Serbian politics. Throughout Eastern Europe, symbolic conflicts relatively quickly gave way to distributional conflicts during the 1990s. Distributional conflicts typically result in compromise, which is why they are regarded as favorable to consolidation of democracy. Other type of dominant cleavages is ideological and symbolical. Ideological cleavages divide the body politics to those who were loyal to the previous regime and to those who support the current reformists, and symbolical cleavages are identity-based. The inability to remove the symbolical issues from the political agenda in seven years is what undermines the weak foundation for democracy in Serbia today. Due to the resistance of symbolical and ideological cleavages (patriots/- Europeans, old regime forces/reformers etc. rather than socio-economic cleavages, author defines the party system of Serbia as deeply polarized with the existence of anti-system parties. Deep polarization and the existence of the anti system parties is what undermines consolidation of democracy. The author shows that the existence of anti-system parties is precisely the reason why Serbia cannot get out of the spirit of electoral authoritarianism and why electoral democracy keeps failing to consolidate.

  8. Artemisinin induces A549 cell apoptosis dominantly via a reactive oxygen species-mediated amplification activation loop among caspase-9, -8 and -3.

    Science.gov (United States)

    Gao, Weijie; Xiao, Fenglian; Wang, Xiaoping; Chen, Tongsheng

    2013-10-01

    This report is designed to explore the roles of caspase-8, -9 and -3 in artemisinin (ARTE)-induced apoptosis in non-small cell lung cancer cells (A549 cells). ARTE induced reactive oxygen species (ROS)-mediated apoptosis in dose- and time-dependent fashion. Although ARTE treatment did not induce Bid cleavage and significant loss of mitochondrial membrane potential, it induced release of Smac and AIF but not cytochrome c from mitochondria, and silencing of Bak but not Bax significantly prevented ARTE-induced cytotoxicity. Moreover, ARTE treatment induced ROS-dependent activation of caspase-9, -8 and -3. Of the utmost importance, silencing or inhibiting any one of caspase-8, -9 and -3 almost completely prevented ARTE-induced activation of all the three caspases and remarkably abrogated the cytotoxicity of ARTE, suggesting that ARTE triggered an amplification activation loop among caspase-9, -8 and -3. Collectively, our data demonstrate that ARTE induces a ROS-mediated amplification activation loop among caspase-9, -8 and -3 to dominantly mediate the apoptosis of A549 cells.

  9. Endosomes and lysosomes are involved in early steps of Tl(III)-mediated apoptosis in rat pheochromocytoma (PC12) cells.

    Science.gov (United States)

    Hanzel, Cecilia E; Almeira Gubiani, María F; Verstraeten, Sandra V

    2012-11-01

    The mechanisms that mediate thallium (Tl) toxicity are still not completely understood. The exposure of rat pheochromocytoma (PC12) cells to Tl(I) or Tl(III) activates both mitochondrial (Tl(I) and Tl(III)) and extrinsic (Tl(III)) pathways of apoptosis. In this work we evaluated the hypothesis that the effects of Tl(III) may be mediated by the damage to lysosomes, where it might be incorporated following the route of iron uptake. PC12 cells exposed for 3 h to 100 μM Tl(III) presented marked endosomal acidification, effect that was absent when cells were incubated in a serum-free medium and that was fully recovered when the latter was supplemented with transferrin. After 6 h of incubation the colocalization of cathepsins D and B with the lysosomal marker Lamp-1 was decreased together with an increase in the total activity of the enzymes. A permanent damage to lysosomes after 18 h of exposure was evidenced from the impairment of acridine orange uptake. Cathepsin D caused the cleavage of pro-apoptotic protein BID that is involved in the activation of the intrinsic pathway of apoptosis. Supporting that, BID cleavage and the activation of caspase 3 by Tl(III) were fully prevented when cells were preincubated with cathepsin D inhibitor (pepstatin A) and only partially prevented when cathepsin B inhibitor (E64d) was used. None of these inhibitors affected BID cleavage or caspase 3 activation in Tl(I)-treated cells. Together, experimental results support the role of Tl(III) uptake by the acidic cell compartments and their involvement in the early steps of Tl(III)-mediated PC12 cells apoptosis.

  10. Molluscan death effector domain (DED)-containing caspase-8 gene from disk abalone (Haliotis discus discus): molecular characterization and expression analysis.

    Science.gov (United States)

    Lee, Youngdeuk; De Zoysa, Mahanama; Whang, Ilson; Lee, Sukkyoung; Kim, Yucheol; Oh, Chulhong; Choi, Cheol Young; Yeo, Sang-Yeob; Lee, Jehee

    2011-02-01

    The caspase family represents aspartate-specific cysteine proteases that play key roles in apoptosis and immune signaling. In this study, we cloned the first death effector domain (DED)-containing molluscan caspase-8 gene from disk abalone (Haliotis discus discus), which is named as hdCaspase-8. The full-length hdCaspase was 2855 bp, with a 1908 bp open reading frame encoding 636 amino acids. The hdCaspase-8 had 72 kDa predicted molecular mass with an estimated isoelectric point (PI) of 6.0. The hdCaspase-8 amino acid sequence contained the characteristic feature of an N-terminal two DED, a C-terminal catalytic domain and the caspase family cysteine active site ⁵¹³KPKLFFLQACQG⁵²⁴. Phylogenetic analysis results showed that hdCaspase-8 is more similar to the invertebrate Tubifex tubifex (sludge worm) caspase-8. Real-time RT-PCR results showed that hdCaspase-8 constitutively and ubiquitously expressed in all tested tissue of unchallenged disk abalone. The basal expression level of hdCaspase-8 in gill tissue was higher than all other tested tissues. The hdCaspase-8 mRNA expression in gill and hemocytes was significantly up-regulated by exposure to bacteria (Vibrio alginolyticus, Vibrio parahemolyticus and Listeria monocytogenes) and VHSV (viral hemorrhagic septicemia virus), as compared to control animals. These results suggest that hdCaspase-8 may be involved in immune response reactions in disk abalone. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Regulation of caspase-3 expression to maintain fetal growth in Porphyromonas gingivalis-infected pregnant rats

    Directory of Open Access Journals (Sweden)

    Banun Kusumawardani

    2016-04-01

    Full Text Available Periodontal disease has been involved in a variety of systemic disorders and suspected as a potential risk factor for fetal growth restriction. Periodontal pathogenic bacteria may actively regulate embryonic development, implantation and placental trophoblast cell invasion. This study aimed to analyze the role of TNF-α, IL-10 and caspase-3 to maintain fetal growth in Porphyromonasgingivalis-infected pregnant rats. Female rats were infected with live-Porphyromonas gingivalis at concentration of 2x109 cells/ml into subgingival sulcus area of the maxillary first molar before and during pregnancy. They were sacrificed on gestational day (GD-14 and GD20. The weight and length of placentas and fetuses were evaluated. The expression of TNF-α, IL-10 and caspase-3 in macrophages and trophoblast cells were detected by immunohistochemistry. On GD14, TNF-α (R2=0.416;P=0.000 and IL-10 (R2=0.187;P=0.012 had an important role to increase expression of caspase-3 in the placenta, but only TNF-α (R2=0.393;P=0.000 was able to increase the expression of caspase-3 on GD20. TNF-α and caspase-3 also had an important role (P0.000. The increasing expressions of TNF-α and IL-10 did not only enhance immune protection, but also maintained the trophoblast cells survival by regulating expression of caspase-3. Porphyromonas gingivalis infection in maternal periodontal tissue can lead to decrease in placental weight, fetal weight and fetal length which mediated by increasing expression of TNF-α, IL-10 and caspase-3 in the placenta.

  12. Ofloxacin induces apoptosis in microencapsulated juvenile rabbit chondrocytes by caspase-8-dependent mitochondrial pathway

    International Nuclear Information System (INIS)

    Sheng Zhiguo; Cao Xiaojuan; Peng Shuangqing; Wang Changyong; Li Qianqian; Wang Yimei; Liu Mifeng

    2008-01-01

    Quinolones (QNs)-induced arthropathy is an important toxic effect in immature animals leading to restriction of their therapeutic use in pediatrics. However, the exact mechanism still remains unclear. Recently, we have demonstrated that ofloxacin, a typical QN, induces apoptosis of alginate microencapsulated juvenile rabbit joint chondrocytes by disturbing the β 1 integrin functions and inactivating the ERK/MAPK signaling pathway. In this study, we extend our initial observations to further elucidate the mechanism(s) of ofloxacin-induced apoptosis by utilizing specific caspase inhibitors. Pretreatment with both caspase-9-specific inhibitor zLEHD-fmk and caspase-8 inhibitor zIETD-fmk attenuated ofloxacin-induced apoptosis and activation of caspase-3 of chondrocyte in a concentration-dependent manner, as determined by fluorescent dye staining, enzyme activity assay and immunoblotting. Furthermore, the activation of caspase-9, -8 and -3 stimulated by ofloxacin was significantly inhibited in the presence of zIETD-fmk while pretreatment with zLEHD-fmk only blocked the activation of caspase-9 and -3. Ofloxacin also stimulated a concentration-dependent translocation of cytochrome c from mitochondria into the cytosol and a decrease of mitochondrial transmembrane potential, which was completely inhibited by zIETD-fmk. In addition, ofloxacin was found to increase the level of Bax, tBid, p53 in a concentration- and time-dependent manner. Taken together, The current results indicate that the caspase-8-dependent mitochondrial pathway is primarily involved in the ofloxacin-induced apoptosis of microencapsulated juvenile rabbit joint chondrocytes

  13. A combinatorial approach to identify calpain cleavage sites in the Machado-Joseph disease protein ataxin-3.

    Science.gov (United States)

    Weber, Jonasz J; Golla, Matthias; Guaitoli, Giambattista; Wanichawan, Pimthanya; Hayer, Stefanie N; Hauser, Stefan; Krahl, Ann-Christin; Nagel, Maike; Samer, Sebastian; Aronica, Eleonora; Carlson, Cathrine R; Schöls, Ludger; Riess, Olaf; Gloeckner, Christian J; Nguyen, Huu P; Hübener-Schmid, Jeannette

    2017-05-01

    Ataxin-3, the disease protein in Machado-Joseph disease, is known to be proteolytically modified by various enzymes including two major families of proteases, caspases and calpains. This processing results in the generation of toxic fragments of the polyglutamine-expanded protein. Although various approaches were undertaken to identify cleavage sites within ataxin-3 and to evaluate the impact of fragments on the molecular pathogenesis of Machado-Joseph disease, calpain-mediated cleavage of the disease protein and the localization of cleavage sites remained unclear. Here, we report on the first precise localization of calpain cleavage sites in ataxin-3 and on the characterization of the resulting breakdown products. After confirming the occurrence of calpain-derived fragmentation of ataxin-3 in patient-derived cell lines and post-mortem brain tissue, we combined in silico prediction tools, western blot analysis, mass spectrometry, and peptide overlay assays to identify calpain cleavage sites. We found that ataxin-3 is primarily cleaved at two sites, namely at amino acid positions D208 and S256 and mutating amino acids at both cleavage sites to tryptophan nearly abolished ataxin-3 fragmentation. Furthermore, analysis of calpain cleavage-derived fragments showed distinct aggregation propensities and toxicities of C-terminal polyglutamine-containing breakdown products. Our data elucidate the important role of ataxin-3 proteolysis in the pathogenesis of Machado-Joseph disease and further emphasize the relevance of targeting this disease pathway as a treatment strategy in neurodegenerative disorders. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Triglyceride-induced macrophage cell death is triggered by caspase-1.

    Science.gov (United States)

    Son, Sin Jee; Rhee, Ki-Jong; Lim, Jaewon; Kim, Tae Ue; Kim, Tack-Joong; Kim, Yoon Suk

    2013-01-01

    Triglyceride (TG) induces macrophage cell death which contributes to the development of atherosclerosis. We confirmed that exogenous TG accumulates in human THP-1 macrophages and causes cell death. TG treated THP-1 macrophages exhibited no change in tumor necrosis factor (TNF)-α, interleukin (IL)-18, macrophage inflammatory protein (MIP)-1α, and IL-1R1 receptor mRNA expression. However, there was a marked decrease in IL-1β mRNA expression but an increase in IL-1β protein secretion. Decreased expression of IL-1β mRNA and increased secretion of IL-1β protein was not the direct cause of cell death. Until now, TG was assumed to induce necrotic cell death in macrophages. Since caspase-1 is known to be involved in activation and secretion of IL-1β protein and pyroptotic cell death, next we determined whether caspase-1 is associated with TG-induced macrophage cell death. We found an increase in caspase-1 activity in TG-treated THP-1 macrophages and inhibition of caspase-1 activity using a specific inhibitor partially rescued cell death. These results suggest activation of the pyroptotic pathway by TG. This is the first report implicating the activation of caspase-1 and the triggering of the pyroptosis pathway in TG-induced macrophage cell death.

  15. Acrolein activates cell survival and apoptotic death responses involving the endoplasmic reticulum in A549 lung cells.

    Science.gov (United States)

    Tanel, André; Pallepati, Pragathi; Bettaieb, Ahmed; Morin, Patrick; Averill-Bates, Diana A

    2014-05-01

    Acrolein, a highly reactive α,β-unsaturated aldehyde, is a product of endogenous lipid peroxidation. It is a ubiquitous environmental pollutant that is generated mainly by smoke, overheated cooking oil and vehicle exhaust. Acrolein damages cellular proteins, which could lead to accumulation of aberrantly-folded proteins in the endoplasmic reticulum (ER). This study determines the mechanisms involved in acrolein-induced apoptosis mediated by the ER and possible links with the ER stress response in human A549 lung cells. The exposure of cells to acrolein (15-50μM) for shorter times of 15 to 30min activated several ER stress markers. These included the ER chaperone protein BiP and the three ER sensors: (i) the survival/rescue molecules protein kinase RNA (PKR)-like ER kinase (PERK) and eukaryotic initiation factor 2 alpha (eIF2α) were phosphorylated; (ii) cleavage of activating transcription factor 6 (ATF6) occurred, and (iii) inositol-requiring protein-1 alpha (IRE1α) was phosphorylated. Acrolein (25-50μM) caused apoptotic cell death mediated by the ER after 2h, which was characterised by the induction of CHOP and activation of ER proteases calpain and caspase-4. Calpain and caspase-7 were the initiating factors for caspase-4 activation in acrolein-induced apoptosis. These results increase our knowledge about cellular responses to acrolein in lung cells, which have implications for human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Novel Bioinformatics-Based Approach for Proteomic Biomarkers Prediction of Calpain-2 & Caspase-3 Protease Fragmentation: Application to βII-Spectrin Protein

    Science.gov (United States)

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges; Kobeissy, Firas

    2017-01-01

    The crucial biological role of proteases has been visible with the development of degradomics discipline involved in the determination of the proteases/substrates resulting in breakdown-products (BDPs) that can be utilized as putative biomarkers associated with different biological-clinical significance. In the field of cancer biology, matrix metalloproteinases (MMPs) have shown to result in MMPs-generated protein BDPs that are indicative of malignant growth in cancer, while in the field of neural injury, calpain-2 and caspase-3 proteases generate BDPs fragments that are indicative of different neural cell death mechanisms in different injury scenarios. Advanced proteomic techniques have shown a remarkable progress in identifying these BDPs experimentally. In this work, we present a bioinformatics-based prediction method that identifies protease-associated BDPs with high precision and efficiency. The method utilizes state-of-the-art sequence matching and alignment algorithms. It starts by locating consensus sequence occurrences and their variants in any set of protein substrates, generating all fragments resulting from cleavage. The complexity exists in space O(mn) as well as in O(Nmn) time, where N, m, and n are the number of protein sequences, length of the consensus sequence, and length per protein sequence, respectively. Finally, the proposed methodology is validated against βII-spectrin protein, a brain injury validated biomarker.

  17. Cas Ilgly Induces Apoptosis in Glioma C6 Cells In Vitro and In Vivo through Caspase-Dependent and Caspase-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Cristina Trejo-Solís

    2005-06-01

    Full Text Available In this work, we investigated the effects of Casiopeina Il-gly (Cas ILgly—a new copper compound exhibiting antineoplastic activity—on glioma C6 cells under both in vitro and in vivo conditions, as an approach to identify potential therapeutic agents against malignant glioma. The exposure of C6 cells to Cas Ilgly significantly inhibited cell proliferation, increased reactive oxygen species (ROS formation, and induced apoptosis in a dose-dependent manner. In cultured C6 cells, Cas Ilgly caused mitochondrio-nuclear translocation of apoptosis induction factor (AIF and endonuclease G at all concentrations tested; in contrast, fragmentation of nucleosomal DNA, cytochrome c release, and caspase-3 activation were observed at high concentrations. Administration of N-acetyl-l-cystein, an antioxidant, resulted in significant inhibition of AIF translocation, nucleosomal DNA fragmentation, and caspase-3 activation induced by Cas Ilgly. These results suggest that caspase-dependent and caspase-independent pathways both participate in apoptotic events elicited by Cas Ilgly. ROS formation induced by Cas Ilgly might also be involved in the mitochondrio-nuclear translocation of AIF and apoptosis. In addition, treatment of glioma C6-positive rats with Cas Ilgly reduced tumor volume and mitotic and cell proliferation indexes, and increased apoptotic index. Our findings support the use of Cas Ilgly for the treatment of malignant gliomas.

  18. Granzyme A Cleaves a Mitochondrial Complex I Protein to Initiate Caspase-Independent Cell Death

    Science.gov (United States)

    Martinvalet, Denis; Dykxhoorn, Derek M.; Ferrini, Roger; Lieberman, Judy

    2010-01-01

    SUMMARY The killer lymphocyte protease granzyme A (GzmA) triggers caspase-independent target cell death with morphological features of apoptosis. We previously showed that GzmA acts directly on mitochondria to generate reactive oxygen species (ROS) and disrupt the transmembrane potential (ΔΨm) but does not permeabilize the mitochondrial outer membrane. Mitochondrial damage is critical to GzmA-induced cell death since cells treated with superoxide scavengers are resistant to GzmA. Here we find that GzmA accesses the mitochondrial matrix to cleave the complex I protein NDUFS3, an iron-sulfur subunit of the NADH:ubiquinone oxidoreductase complex I, after Lys56 to interfere with NADH oxidation and generate superoxide anions. Target cells expressing a cleavage site mutant of NDUFS3 are resistant to GzmA-mediated cell death but remain sensitive to GzmB. PMID:18485875

  19. RNA silencing of Mcl-1 enhances ABT-737-mediated apoptosis in melanoma: role for a caspase-8-dependent pathway.

    Science.gov (United States)

    Keuling, Angela M; Felton, Kathleen E A; Parker, Arabesque A M; Akbari, Majid; Andrew, Susan E; Tron, Victor A

    2009-08-17

    Malignant melanoma is resistant to almost all conventional forms of chemotherapy. Recent evidence suggests that anti-apoptotic proteins of the Bcl-2 family are overexpressed in melanoma and may contribute to melanoma's striking resistance to apoptosis. ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-xl and Bcl-w, has demonstrated efficacy in several forms of leukemia, lymphoma as well as solid tumors. However, overexpression of Mcl-1, a frequent observance in melanoma, is known to confer ABT-737 resistance. Here we report that knockdown of Mcl-1 greatly reduces cell viability in combination with ABT-737 in six different melanoma cell lines. We demonstrate that the cytotoxic effect of this combination treatment is due to apoptotic cell death involving not only caspase-9 activation but also activation of caspase-8, caspase-10 and Bid, which are normally associated with the extrinsic pathway of apoptosis. Caspase-8 (and caspase-10) activation is abrogated by inhibition of caspase-9 but not by inhibitors of the death receptor pathways. Furthermore, while caspase-8/-10 activity is required for the full induction of cell death with treatment, the death receptor pathways are not. Finally, we demonstrate that basal levels of caspase-8 and Bid correlate with treatment sensitivity. Our findings suggest that the combination of ABT-737 and Mcl-1 knockdown represents a promising, new treatment strategy for malignant melanoma. We also report a death receptor-independent role for extrinsic pathway proteins in treatment response and suggest that caspase-8 and Bid may represent potential markers of treatment sensitivity.

  20. RNA silencing of Mcl-1 enhances ABT-737-mediated apoptosis in melanoma: role for a caspase-8-dependent pathway.

    Directory of Open Access Journals (Sweden)

    Angela M Keuling

    Full Text Available BACKGROUND: Malignant melanoma is resistant to almost all conventional forms of chemotherapy. Recent evidence suggests that anti-apoptotic proteins of the Bcl-2 family are overexpressed in melanoma and may contribute to melanoma's striking resistance to apoptosis. ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-xl and Bcl-w, has demonstrated efficacy in several forms of leukemia, lymphoma as well as solid tumors. However, overexpression of Mcl-1, a frequent observance in melanoma, is known to confer ABT-737 resistance. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that knockdown of Mcl-1 greatly reduces cell viability in combination with ABT-737 in six different melanoma cell lines. We demonstrate that the cytotoxic effect of this combination treatment is due to apoptotic cell death involving not only caspase-9 activation but also activation of caspase-8, caspase-10 and Bid, which are normally associated with the extrinsic pathway of apoptosis. Caspase-8 (and caspase-10 activation is abrogated by inhibition of caspase-9 but not by inhibitors of the death receptor pathways. Furthermore, while caspase-8/-10 activity is required for the full induction of cell death with treatment, the death receptor pathways are not. Finally, we demonstrate that basal levels of caspase-8 and Bid correlate with treatment sensitivity. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that the combination of ABT-737 and Mcl-1 knockdown represents a promising, new treatment strategy for malignant melanoma. We also report a death receptor-independent role for extrinsic pathway proteins in treatment response and suggest that caspase-8 and Bid may represent potential markers of treatment sensitivity.

  1. Drosha regulates gene expression independently of RNA cleavage function

    DEFF Research Database (Denmark)

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara

    2013-01-01

    Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression....

  2. Drosophila spaghetti and doubletime link the circadian clock and light to caspases, apoptosis and tauopathy.

    Directory of Open Access Journals (Sweden)

    John C Means

    2015-05-01

    Full Text Available While circadian dysfunction and neurodegeneration are correlated, the mechanism for this is not understood. It is not known if age-dependent circadian dysfunction leads to neurodegeneration or vice-versa, and the proteins that mediate the effect remain unidentified. Here, we show that the knock-down of a regulator (spag of the circadian kinase Dbt in circadian cells lowers Dbt levels abnormally, lengthens circadian rhythms and causes expression of activated initiator caspase (Dronc in the optic lobes during the middle of the day or after light pulses at night. Likewise, reduced Dbt activity lengthens circadian period and causes expression of activated Dronc, and a loss-of-function mutation in Clk also leads to expression of activated Dronc in a light-dependent manner. Genetic epistasis experiments place Dbt downstream of Spag in the pathway, and Spag-dependent reductions of Dbt are shown to require the proteasome. Importantly, activated Dronc expression due to reduced Spag or Dbt activity occurs in cells that do not express the spag RNAi or dominant negative Dbt and requires PDF neuropeptide signaling from the same neurons that support behavioral rhythms. Furthermore, reduction of Dbt or Spag activity leads to Dronc-dependent Drosophila Tau cleavage and enhanced neurodegeneration produced by human Tau in a fly eye model for tauopathy. Aging flies with lowered Dbt or Spag function show markers of cell death as well as behavioral deficits and shortened lifespans, and even old wild type flies exhibit Dbt modification and activated caspase at particular times of day. These results suggest that Dbt suppresses expression of activated Dronc to prevent Tau cleavage, and that the circadian clock defects confer sensitivity to expression of activated Dronc in response to prolonged light. They establish a link between the circadian clock factors, light, cell death pathways and Tau toxicity, potentially via dysregulation of circadian neuronal remodeling in

  3. A ROS-dependent and Caspase-3-mediated apoptosis in sheep bronchial epithelial cells in response to Mycoplasma Ovipneumoniae infections.

    Science.gov (United States)

    Xue, Di; Li, Yanan; Jiang, Zhongjia; Deng, Guangcun; Li, Min; Liu, Xiaoming; Wang, Yujiong

    2017-05-01

    Mycoplasma Ovipneumoniae (M. ovipneumoniae) is a primary etiological agent of enzootic pneumonia in sheep and goats. It can enter and colonize ovine respiratory epithelial cells to establish an infection, which leads a serious cell death of epithelial cells. However, the nature of the interaction between pathogen of M. ovipneumoniae and host cells in the cell injury is currently not well understood. In this study, we investigated the epithelial cell apoptosis caused by an infection of M. ovipneumoniae in sheep primary air-liquid interface (ALI) epithelial cultures. The results showed that M. ovipneumoniae could specifically bind to ciliated cells at early stage of infection. Flow cytometric analysis demonstrated that an infection of M. ovipneumoniae induced a time-dependent cell apoptotic cell death, accompanied with an increased production of extracellular nitric oxide (NO), intracellular reactive oxygen species (ROS) production and activation of caspase-3 signaling in sheep bronchial epithelial cells. The induced cell apoptosis was further confirmed by a transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) assay. Interestingly, the M. ovipneumoniae-induced apoptosis and activation of caspase-3 were correlated with the production of ROS but not NO. Mechanistically, M. ovipneumoniae-induced cell apoptosis was mediated by a mechanism by increasing the expression of phosphorylation of p38 and pro-apoptotic proteins, and activating caspase-3, caspase-8 and poly ADP-ribose polymerase (PARP) cleavage. These results suggest a ROS-dependent and caspase-3-mediated cell apoptosis in sheep bronchial epithelial cells in response to M. ovipneumoniae infections. Copyright © 2017. Published by Elsevier B.V.

  4. Prostate-derived sterile 20-like kinase 1-alpha induces apoptosis. JNK- and caspase-dependent nuclear localization is a requirement for membrane blebbing.

    Science.gov (United States)

    Zihni, Ceniz; Mitsopoulos, Costas; Tavares, Ignatius A; Baum, Buzz; Ridley, Anne J; Morris, Jonathan D H

    2007-03-02

    We have demonstrated previously that full-length prostate-derived sterile 20-like kinase 1-alpha (PSK1-alpha) binds to microtubules via its C terminus and regulates their organization and stability independently of its catalytic activity. Here we have shown that apoptotic and microtubule-disrupting agents promote catalytic activation, C-terminal cleavage, and nuclear translocation of endogenous phosphoserine 181 PSK1-alpha and activated N-terminal PSK1-alpha-induced apoptosis. PSK1-alpha, unlike its novel isoform PSK1-beta, stimulated the c-Jun N-terminal kinase (JNK) pathway, and the nuclear localization of PSK1-alpha and its induction of cell contraction, membrane blebbing, and apoptotic body formation were dependent on JNK activity. PSK1-alpha was also a caspase substrate, and the broad spectrum caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone or mutation of a putative caspase recognition motif ((916)DPGD(919)) blocked nuclear localization of PSK1-alpha and its induction of membrane blebs. Additional inhibition of caspase 9 was needed to prevent cell contraction. PSK1-alpha is therefore a bifunctional kinase that associates with microtubules, and JNK- and caspase-mediated removal of its C-terminal microtubule-binding domain permits nuclear translocation of the N-terminal region of PSK1-alpha and its induction of apoptosis.

  5. T-cell receptor downregulation by ceramide-induced caspase activation and cleavage of the zeta chain

    DEFF Research Database (Denmark)

    Menné, C; Lauritsen, Jens Peter Holst; Dietrich, J

    2001-01-01

    Regulation of T-cell receptor (TCR) cell surface expression levels is probably an important mechanism by which T-cell responsiveness is controlled. Previously, two distinct pathways for TCR downregulation have been described. One is dependent on protein kinase C (PKC) and the leucine-based recept...

  6. Etoposide (VP-16) sensitizes p53-deficient human non-small cell lung cancer cells to caspase-7-mediated apoptosis.

    Science.gov (United States)

    Chiu, C-C; Lin, C-H M Y; Fang, K

    2005-05-01

    Human non-small-cell-lung-cancer (NSCLC) cells of (p)53-null genotype were exposed to low-dosage topoisomearse II inhibitor etoposide (VP-16). The cellular proliferation rate could be effectively inhibited by VP-16 in dose-dependent manner. The effective drug concentration for growth inhibition could be as low as 0.5 microM and the apoptotic phenotype became evident 48 h later. In H1299 cells, VP-16-induced cytotoxic effect was demonstrated associated with apoptosis that disappeared when restored with wild-type p53. Cell cycle analysis revealed that, upon VP-16 induction, cell death began with growth arrest by accumulating cells at the G(2)-M phase. The cells at sub-G(1) phase increased at the expense of those at G(2)-M transition state. To assess the regulation of cell cycle modulators, western blot analysis of H1299 cell lysates showed the release of apoptosis initiator, cytochrome c and apaf-1 hours following drug induction. The cleavage of downstream effectors, procaspase-9 and procaspase-7, but not procaspase-3, was accompanied with proteolysis of poly-(ADP-ribose) polymerase (PARP). VP-16-activated procaspase-7 cleavage was abrogated in cells with ectopically expressed p53. On the other hand, the inhibited procaspase-7 fragmentation by caspase-specific inhibitor reversed apoptotic phenotype caused by drug induction. Thus, VP-16-induced apoptotic cell death was contributed by caspase-7 activation in(p)53-deficient human NSCLC cells.

  7. Inhibitor specificity of recombinant and endogenous caspase-9.

    Science.gov (United States)

    Ryan, Ciara A; Stennicke, Henning R; Nava, Victor E; Burch, Jennifer B; Hardwick, J Marie; Salvesen, Guy S

    2002-01-01

    Apoptosis triggered through the intrinsic pathway by radiation and anti-neoplastic drugs is initiated by the activation of caspase-9. To elucidate control mechanisms in this pathway we used a range of synthetic and natural reagents. The inhibitory potency of acetyl-Asp-Glu-Val-Asp-aldehyde ('Ac-DEVD-CHO'), benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone ('Z-VAD-FMK') and the endogenous caspase inhibitor X-chromosome-linked inhibitor of apoptosis protein ('XIAP') against recombinant caspase-9 were predictive of the efficacy of these compounds in a cell-free system. However, the viral proteins CrmA and p35, although potent inhibitors of recombinant caspase-9, had almost no ability to block caspase-9 in this system. These findings were also mirrored in cell expression studies. We hypothesize that the viral inhibitors CrmA and p35 are excluded from reacting productively with the natural form of active caspase-9 in vivo, making the potency of inhibitors highly context-dependent. This is supported by survival data from a mouse model of apoptosis driven by Sindbis virus expressing either p35 or a catalytic mutant of caspase-9. These results consolidate previous findings that CrmA is a potent inhibitor of caspase-9 in vitro, yet fails to block caspase-9-mediated cell death. PMID:12067274

  8. Caspase-10 Negatively Regulates Caspase-8-Mediated Cell Death, Switching the Response to CD95L in Favor of NF-κB Activation and Cell Survival

    Directory of Open Access Journals (Sweden)

    Sebastian Horn

    2017-04-01

    Full Text Available Formation of the death-inducing signaling complex (DISC initiates extrinsic apoptosis. Caspase-8 and its regulator cFLIP control death signaling by binding to death-receptor-bound FADD. By elucidating the function of the caspase-8 homolog, caspase-10, we discover that caspase-10 negatively regulates caspase-8-mediated cell death. Significantly, we reveal that caspase-10 reduces DISC association and activation of caspase-8. Furthermore, we extend our co-operative/hierarchical binding model of caspase-8/cFLIP and show that caspase-10 does not compete with caspase-8 for binding to FADD. Utilizing caspase-8-knockout cells, we demonstrate that caspase-8 is required upstream of both cFLIP and caspase-10 and that DISC formation critically depends on the scaffold function of caspase-8. We establish that caspase-10 rewires DISC signaling to NF-κB activation/cell survival and demonstrate that the catalytic activity of caspase-10, and caspase-8, is redundant in gene induction. Thus, our data are consistent with a model in which both caspase-10 and cFLIP coordinately regulate CD95L-mediated signaling for death or survival.

  9. Real-time monitoring of caspase cascade activation in living cells.

    Science.gov (United States)

    Zhu, Lei; Huang, Xinglu; Choi, Ki Young; Ma, Ying; Zhang, Fan; Liu, Gang; Lee, Seulki; Chen, Xiaoyuan

    2012-10-10

    We introduce a simple, versatile and robust one-step technique that enables real-time imaging of multiple intracellular caspase activities in living cells without the need for complicated synthetic protocols. Conventional fluorogenic probes or recently reported activatable probes have been designed to target various proteases but are limited to extracellular molecules. Only a few have been applied to image intracellular proteases in living cells because most of these probes have limited cell-permeability. Our platform does not need complicated synthetic processes; instead it involves a straightforward peptide synthesis and a simple mixing step with a commercial transfection agent. The transfection agent efficiently delivered the highly quenched fluorogenic probes, comprised of distinctive pairs of dyes and quenchers, to the initiator caspase-8 and the effector caspase-3 in MDA-MB-435 cells, allowing dual-imaging of the activities of both caspases during the apoptotic process induced by TNF-related apoptosis induced ligand (TRAIL). With the combination of multiple fluorogenic probes, this simple platform can be applied to multiplexed imaging of selected intracellular proteases to study apoptotic processes in pathologies or for cell-based high throughput screening systems for drug discovery. Published by Elsevier B.V.

  10. Association of caspase-1 polymorphisms with Chagas cardiomyopathy among individuals in Santa Cruz, Bolivia.

    Science.gov (United States)

    Fu, Katherine Yih-Jia; Zamudio, Roxana; Henderson-Frost, Jo; Almuedo, Alex; Steinberg, Hannah; Clipman, Steven Joseph; Duran, Gustavo; Marcus, Rachel; Crawford, Thomas; Alyesh, Daniel; Colanzi, Rony; Flores, Jorge; Gilman, Robert Hugh; Bern, Caryn

    2017-01-01

    Trypanosoma cruzi (Tc) infection is usually acquired in childhood in endemic areas, leading to Chagas disease, which progresses to Chagas cardiomyopathy in 20-30% of infected individuals over decades. The pathogenesis of Chagas cardiomyopathy involves the host inflammatory response to T. cruzi, in which upstream caspase-1 activation prompts the cascade of inflammatory chemokines/cytokines, cardiac remodeling, and myocardial dysfunction. The aim of the present study was to examine the association of two caspase-1 single nucleotide polymorphisms (SNPs) with cardiomyopathy. We recruited infected (Tc+, n = 149) and uninfected (Tc-, n = 87) participants in a hospital in Santa Cruz, Bolivia. Cardiac status was classified (I, II, III, IV) based on Chagas cardiomyopathy-associated electrocardiogram findings and ejection fractions on echocardiogram. Genotypes were determined using Taqman probes via reverse transcription-polymerase chain reaction of peripheral blood DNA. Genotype frequencies were analyzed according to three inheritance patterns (dominant, recessive, additive) using logistic regression adjusted for age and sex. The AA allele for the caspase-1 SNP rs501192 was more frequent in Tc+ cardiomyopathy (classes II, III, IV) patients compared to those with a normal cardiac status (class I) [odds ratio (OR) = -2.18, p = 0.117]. This trend approached statistical significant considering only Tc+ patients in class I and II (OR = -2.64, p = 0.064). Caspase-1 polymorphisms may play a role in Chagas cardiomyopathy development and could serve as markers to identify individuals at higher risk for priority treatment.

  11. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    Modification of lignin is recognized as an important aspect of the successful refining of lignocellulosic biomass, and enzyme-assisted processing and upcycling of lignin is receiving significant attention in the literature. Laccases (EC 1.103.2) are taking the centerstage of this attention, since...... these enzymes may help degrading lignin, using oxygen as the oxidant. Laccases can catalyze polymerization of lignin, but the question is whether and how laccases can directly catalyze modification of lignin via catalytic bond cleavage. Via a thorough review of the available literature and detailed...... illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin...

  12. [Laparoscopic cleavage in splenic symptomatic cyst].

    Science.gov (United States)

    Fernández-López, Antonio-José; Candel-Arenas, Marifé; González-Valverde, Francisco-Miguel; Luján-Martínez, Delia; Medina-Manuel, Esther; Albarracín Marín-Blázquez, Antonio

    2017-12-01

    Splenic cysts are rare diseases that are diagnosed incidentally during imaging studies. When cysts are recognized, surgical treatment is recommended adapted to the particular case, depending on the size and location of the cyst and the age of the patient in order to avoid dangerous complications such as spleen rupture or cyst infection with abscess. We report 2patients with symptomatic splenic epidermoid cyst treated by laparoscopic cleavage. Laparoscopic cleavage is a surgical option for splenic cyst, with the goal of reducing postoperative complications while preserving splenic function. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  13. Caspase-like proteins: Acanthamoeba castellanii metacaspase and ...

    Indian Academy of Sciences (India)

    Caspases are cysteine proteases that are important regulators of programmed cell death in animals. Two novel relatives to members of the caspase families metacaspases and paracaspase have been discovered. Metacaspase type-1 was identified in Acanthamoeba castellanii, an opportunistic protozoan parasite that ...

  14. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    International Nuclear Information System (INIS)

    Lee, Ye-Ji; Lee, Seung-Hae; Youn, Young-So; Choi, Ji-Yeon; Song, Keung-Sub; Cho, Min-Sun; Kang, Jihee Lee

    2012-01-01

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0 increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.

  15. Can laccases catalyze bond cleavage in lignin?

    Science.gov (United States)

    Munk, Line; Sitarz, Anna K; Kalyani, Dayanand C; Mikkelsen, J Dalgaard; Meyer, Anne S

    2015-01-01

    Modification of lignin is recognized as an important aspect of the successful refining of lignocellulosic biomass, and enzyme-assisted processing and upcycling of lignin is receiving significant attention in the literature. Laccases (EC 1.10.3.2) are taking the centerstage of this attention, since these enzymes may help degrading lignin, using oxygen as the oxidant. Laccases can catalyze polymerization of lignin, but the question is whether and how laccases can directly catalyze modification of lignin via catalytic bond cleavage. Via a thorough review of the available literature and detailed illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin model compounds; ii) For laccases to catalyze inter-unit bond cleavage in lignin substrates, the presence of a mediator system is required. Clearly, the higher the redox potential of the laccase enzyme, the broader the range of substrates, including o- and p-diphenols, aminophenols, methoxy-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin is proposed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Controllable laser thermal cleavage of sapphire wafers

    Science.gov (United States)

    Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin

    2018-03-01

    Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

  17. Calpain cleavage prediction using multiple kernel learning.

    Directory of Open Access Journals (Sweden)

    David A DuVerle

    Full Text Available Calpain, an intracellular Ca²⁺-dependent cysteine protease, is known to play a role in a wide range of metabolic pathways through limited proteolysis of its substrates. However, only a limited number of these substrates are currently known, with the exact mechanism of substrate recognition and cleavage by calpain still largely unknown. While previous research has successfully applied standard machine-learning algorithms to accurately predict substrate cleavage by other similar types of proteases, their approach does not extend well to calpain, possibly due to its particular mode of proteolytic action and limited amount of experimental data. Through the use of Multiple Kernel Learning, a recent extension to the classic Support Vector Machine framework, we were able to train complex models based on rich, heterogeneous feature sets, leading to significantly improved prediction quality (6% over highest AUC score produced by state-of-the-art methods. In addition to producing a stronger machine-learning model for the prediction of calpain cleavage, we were able to highlight the importance and role of each feature of substrate sequences in defining specificity: primary sequence, secondary structure and solvent accessibility. Most notably, we showed there existed significant specificity differences across calpain sub-types, despite previous assumption to the contrary. Prediction accuracy was further successfully validated using, as an unbiased test set, mutated sequences of calpastatin (endogenous inhibitor of calpain modified to no longer block calpain's proteolytic action. An online implementation of our prediction tool is available at http://calpain.org.

  18. On the mechanism of action of ribonucleases: dinucleotide cleavage catalyzed by imidazole and Zn2+.

    OpenAIRE

    Breslow, R; Huang, D L; Anslyn, E

    1989-01-01

    Cyclization/cleavage of the 2-(p-nitrophenyl) phosphate ester of propylene glycol is catalyzed by imidazole and, much more effectively, by Zn2+ with imidazole. In the latter case, the mechanism involves simultaneous Lewis acid/base catalysis. Similar Zn2+ and imidazole catalysis of cyclization/cleavage is seen with the dinucleotide 3',5'-UpU (uridylyluridine). Again, the zinc system is much more effective than is catalysis by imidazole alone, and in this case simultaneous Lewis acid/base cata...

  19. The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available Death signaling provided by tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC, a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1, and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.

  20. Cleavage crystallography of liquid metal embrittled aluminum alloys

    Science.gov (United States)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  1. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    International Nuclear Information System (INIS)

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-01-01

    Highlights: ► We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. ► Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. ► Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. ► DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. ► DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X L expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  2. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  3. Tau and Caspase 3 as Targets for Neuroprotection

    Directory of Open Access Journals (Sweden)

    Anat Idan-Feldman

    2012-01-01

    Full Text Available The peptide drug candidate NAP (davunetide has demonstrated protective effects in various in vivo and in vitro models of neurodegeneration. NAP was shown to reduce tau hyperphosphorylation as well as to prevent caspase-3 activation and cytochrome-3 release from mitochondria, both characteristic of apoptotic cell death. Recent studies suggest that caspases may play a role in tau pathology. The purpose of this study was to evaluate the effect of NAP on tau hyperphosphorylation and caspase activity in the same biological system. Our experimental setup used primary neuronal cultures subjected to oxygen-glucose deprivation (OGD, with and without NAP or caspase inhibitor. Cell viability was assessed by measuring mitochondrial activity (MTS assay, and immunoblots were used for analyzing protein level. It was shown that apoptosis was responsible for all cell death occurring following ischemia, and NAP treatment showed a concentration-dependent protection from cell death. Ischemia caused an increase in the levels of active caspase-3 and hyperphosphorylated tau, both of which were prevented by either NAP or caspase-inhibitor treatment. Our data suggest that, in this model system, caspase activation may be an upstream event to tau hyperphosphorylation, although additional studies will be required to fully elucidate the cascade of events.

  4. Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy

    Science.gov (United States)

    Putinski, Charis; Abdul-Ghani, Mohammad; Stiles, Rebecca; Brunette, Steve; Dick, Sarah A.; Fernando, Pasan; Megeney, Lynn A.

    2013-01-01

    Cardiomyocyte hypertrophy is the cellular response that mediates pathologic enlargement of the heart. This maladaptation is also characterized by cell behaviors that are typically associated with apoptosis, including cytoskeletal reorganization and disassembly, altered nuclear morphology, and enhanced protein synthesis/translation. Here, we investigated the requirement of apoptotic caspase pathways in mediating cardiomyocyte hypertrophy. Cardiomyocytes treated with hypertrophy agonists displayed rapid and transient activation of the intrinsic-mediated cell death pathway, characterized by elevated levels of caspase 9, followed by caspase 3 protease activity. Disruption of the intrinsic cell death pathway at multiple junctures led to a significant inhibition of cardiomyocyte hypertrophy during agonist stimulation, with a corresponding reduction in the expression of known hypertrophic markers (atrial natriuretic peptide) and transcription factor activity [myocyte enhancer factor-2, nuclear factor kappa B (NF-κB)]. Similarly, in vivo attenuation of caspase activity via adenoviral expression of the biologic effector caspase inhibitor p35 blunted cardiomyocyte hypertrophy in response to agonist stimulation. Treatment of cardiomyocytes with procaspase 3 activating compound 1, a small-molecule activator of caspase 3, resulted in a robust induction of the hypertrophy response in the absence of any agonist stimulation. These results suggest that caspase-dependent signaling is necessary and sufficient to promote cardiomyocyte hypertrophy. These results also confirm that cell death signal pathways behave as active remodeling agents in cardiomyocytes, independent of inducing an apoptosis response. PMID:24101493

  5. Early increase in DcR2 expression and late activation of caspases in the platelet storage lesion.

    Science.gov (United States)

    Plenchette, S; Moutet, M; Benguella, M; N'Gondara, J P; Guigner, F; Coffe, C; Corcos, L; Bettaieb, A; Solary, E

    2001-10-01

    Platelet transfusion is widely used to prevent bleeding in patients with severe thrombocytopenia. The maximal storage duration of platelet concentrates is usually 5 days, due to the platelet storage lesion that impairs their functions when stored for longer times. Some of the morphological and biochemical changes that characterize this storage lesion are reminiscent of cell death by apoptosis. The present study analyzed whether proteins involved in nucleated cell apoptosis could play a role in the platelet storage lesion. Storage of leukocyte-depleted platelets obtained by apheresis is associated with a late and limited activation of caspases, mainly caspase-3. This event correlates with an increased expression of the pro-apoptotic BH3-only protein Bim in the particulate fraction and a slight and late release of the pro-apoptotic mitochondrial protein Diablo/Smac in the cytosol. Platelets do not express the death receptors Fas, DR4 and DR5 on their plasma membrane, while the expression of the decoy receptor DcR2 increases progressively during platelet storage. Addition of low concentrations of the cryoprotector dimethylsulfoxide accelerates platelet caspase activation during storage, an effect that is partially prevented by the caspase inhibitor z-VAD-fmk. Altogether, DcR2 expression on the plasma membrane is an early event while caspase activation is a late event during platelet storage. These observations suggest that caspases are unlikely to account for the platelet storage lesion. As a consequence, addition of caspase inhibitors may not improve the quality of platelet concentrates stored in standard conditions.

  6. Abyssal fiction: common shares, colonial cleavages

    Directory of Open Access Journals (Sweden)

    Alexandre Montaury

    2016-12-01

    Full Text Available The paper aims to develop a reflection on the interaction between the legacies of colonialism and traditional symbolic and cultural practices in African Portuguese-speaking spaces. From a preliminary analysis of fictional texts of wide circulation in Brazil, aims to examine the cleavages, or “abyssal lines” that constitute experiences printed in the daily life of the former Portuguese colony of Cape Verde, Mozambique and Angola.---DOI: http://dx.doi.org/10.21881/abriluff.2016n17a378

  7. Fas-Induced Apoptosis of Renal Cell Carcinoma is Mediated by Apoptosis Signal-Regulating Kinase 1 via Mitochondrial Damage-Dependent Caspase-8 Activation

    Directory of Open Access Journals (Sweden)

    Mohamed Hassan

    2009-01-01

    Full Text Available Renal cell carcinoma (RCC is a prototype of a chemo refractory tumour. It remains the most lethal of the common urologic cancers and is highly resistant to conventional therapy. Here, we confirmed the efficiency of anti-Fas monoclonal antibody (CH11 as alternative therapeutic approach for the treatment of RCC and investigated the molecular mechanism(s, whereby CH11 induces apoptosis of RCC cells. The present study shows an essential role for apoptosis signal-regulating kinase 1 (ASK1, together with both c-jun-N-terminal kinase (JNK and p38 pathways, and caspase-8 in this process. Furthermore, CH11-dependent induction of the ASK1–JNK/p38 pathways was found to activate the transcription factors AP-1 and ATF-2, and FADD-caspase-8-Bid signalling, resulting in the translocation of both Bax and Bak proteins, and subsequently mitochondrial dysregulation that is characterized by the loss of mitochondrial membrane potential (ΔΨm, cytochrome c release and cleavage of caspase-9, caspase-3 and PARP. Thus, the described molecular mechanisms of CH11-induced apoptosis suggest the reliability of Fas activation as an alternative therapeutic approach for the treatment of patients with advanced renal cell carcinoma.

  8. A novel synthetic drug, LB-18, closely related to lembehyne-A derived from a marine sponge, induces caspase-independent cell death to human neuroblastoma cells.

    Science.gov (United States)

    Izumi, Moriatsu; Yogosawa, Shingo; Aoki, Shunji; Watanabe, Hirotsuna; Kamiyama, Jun; Takahara, Yoshinori; Sowa, Yoshihiro; Kobayashi, Motomasa; Hosoi, Hajime; Sugimoto, Tohru; Sakai, Toshiyuki

    2006-07-01

    Neuroblastoma is a common solid tumor of children that arises from the sympathetic nervous system. Much work has consequently focused on the possibility of inducing marked cell death in neuroblastoma, and the new effective drugs are required. We have newly synthesized LB-18, closely related to lembehyne A (LB-A), a polyacetylene derived from a kind of marine sponge. LB-A has been shown to induce p21/WAF1 and causes G1 phase arrest in mouse neuroblastoma Neuro2A cells; however, we show here that LB-18 causes cell death in human neuroblastoma KP-N-TK cells in a dose-dependent manner. TUNEL assay and flow cytometric analysis showed that the cell death caused by LB-18 was associated with the DNA damage but the pan-caspase inhibitor, zVAD-fmk, could not prevent the cell death. Western blot analysis and cleavage of the caspase-3 or -7 substrate assay showed that LB-18 could not activate caspases 3, 7, 8 and 9. These results suggest that LB-18 causes caspase-independent cell death in human neuroblastoma cells. In the future, LB-18 may be useful for cancer therapeutics, especially for neuroblastoma.

  9. TRAIL Activates a Caspase 9/7-Dependent Pathway in Caspase 8/10-Defective SK-N-SH Neuroblastoma Cells with Two Functional End Points: Induction of Apoptosis and PGE2 Release

    Directory of Open Access Journals (Sweden)

    Giorgio Zauli

    2003-09-01

    Full Text Available Most neuroblastoma cell lines do not express apical caspases 8 and 10, which play a key role in mediating tumor necrosis factor-related apoptosis-inducing ligand (TRAIL cytotoxicity in a variety of malignant cell types. In this study, we demonstrated that TRAIL induced a moderate but significant increase of apoptosis in the caspase 8/10-deficient SK-N-SH neuroblastoma cell line, through activation of a novel caspase 9/7 pathway. Concomitant to the induction of apoptosis, TRAIL also promoted a significant increase of prostaglandin E2 (PGE2 release by SKN-SH cells. Moreover, coadministration of TRAIL plus indomethacin, a pharmacological inhibitor of cyclooxygenase (COX, showed an additive effect on SKN-SH cell death. In spite of the ability of TRAIL to promote the phosphorylation of both ERKi/2 and p38/MAPK, which have been involved in the control of COX expression/activity, neither PD98059 nor SB203580, pharmacological inhibitors of the ERKi/2 and p38/MAPK pathways, respectively, affected either PGE2 production or apoptosis induced by TRAIL. Finally, both induction of apoptosis and PGE2 release were completely abrogated by the broad caspase inhibitor z-VAD4mk, suggesting that both biologic end points were regulated in SK-N-SH cells through a caspase 9/7-dependent pathway.

  10. Non-steroidal Anti-inflammatory Drugs Are Caspase Inhibitors.

    Science.gov (United States)

    Smith, Christina E; Soti, Subada; Jones, Torey A; Nakagawa, Akihisa; Xue, Ding; Yin, Hang

    2017-03-16

    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world. While the role of NSAIDs as cyclooxygenase (COX) inhibitors is well established, other targets may contribute to anti-inflammation. Here we report caspases as a new pharmacological target for NSAID family drugs such as ibuprofen, naproxen, and ketorolac at physiologic concentrations both in vitro and in vivo. We characterize caspase activity in both in vitro and in cell culture, and combine computational modeling and biophysical analysis to determine the mechanism of action. We observe that inhibition of caspase catalysis reduces cell death and the generation of pro-inflammatory cytokines. Further, NSAID inhibition of caspases is COX independent, representing a new anti-inflammatory mechanism. This finding expands upon existing NSAID anti-inflammatory behaviors, with implications for patient safety and next-generation drug design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Autoactivation of mouse trypsinogens is regulated by chymotrypsin C via cleavage of the autolysis loop.

    Science.gov (United States)

    Németh, Balázs Csaba; Wartmann, Thomas; Halangk, Walter; Sahin-Tóth, Miklós

    2013-08-16

    Chymotrypsin C (CTRC) is a proteolytic regulator of trypsinogen autoactivation in humans. CTRC cleavage of the trypsinogen activation peptide stimulates autoactivation, whereas cleavage of the calcium binding loop promotes trypsinogen degradation. Trypsinogen mutations that alter these regulatory cleavages lead to increased intrapancreatic trypsinogen activation and cause hereditary pancreatitis. The aim of this study was to characterize the regulation of autoactivation of mouse trypsinogens by mouse Ctrc. We found that the mouse pancreas expresses four trypsinogen isoforms to high levels, T7, T8, T9, and T20. Only the T7 activation peptide was cleaved by mouse Ctrc, causing negligible stimulation of autoactivation. Surprisingly, mouse Ctrc poorly cleaved the calcium binding loop in all mouse trypsinogens. In contrast, mouse Ctrc readily cleaved the Phe-150-Gly-151 peptide bond in the autolysis loop of T8 and T9 and inhibited autoactivation. Mouse chymotrypsin B also cleaved the same peptide bond but was 7-fold slower. T7 was less sensitive to chymotryptic regulation, which involved slow cleavage of the Leu-149-Ser-150 peptide bond in the autolysis loop. Modeling indicated steric proximity of the autolysis loop and the activation peptide in trypsinogen, suggesting the cleaved autolysis loop may directly interfere with activation. We conclude that autoactivation of mouse trypsinogens is under the control of mouse Ctrc with some notable differences from the human situation. Thus, cleavage of the trypsinogen activation peptide or the calcium binding loop by Ctrc is unimportant. Instead, inhibition of autoactivation via cleavage of the autolysis loop is the dominant mechanism that can mitigate intrapancreatic trypsinogen activation.

  12. Implication of Caspase-3 as a Common Therapeutic Target for Multineurodegenerative Disorders and Its Inhibition Using Nonpeptidyl Natural Compounds

    Directory of Open Access Journals (Sweden)

    Saif Khan

    2015-01-01

    Full Text Available Caspase-3 has been identified as a key mediator of neuronal apoptosis. The present study identifies caspase-3 as a common player involved in the regulation of multineurodegenerative disorders, namely, Alzheimer’s disease (AD, Parkinson’s disease (PD, Huntington’s disease (HD, and amyotrophic lateral sclerosis (ALS. The protein interaction network prepared using STRING database provides a strong evidence of caspase-3 interactions with the metabolic cascade of the said multineurodegenerative disorders, thus characterizing it as a potential therapeutic target for multiple neurodegenerative disorders. In silico molecular docking of selected nonpeptidyl natural compounds against caspase-3 exposed potent leads against this common therapeutic target. Rosmarinic acid and curcumin proved to be the most promising ligands (leads mimicking the inhibitory action of peptidyl inhibitors with the highest Gold fitness scores 57.38 and 53.51, respectively. These results were in close agreement with the fitness score predicted using X-score, a consensus based scoring function to calculate the binding affinity. Nonpeptidyl inhibitors of caspase-3 identified in the present study expeditiously mimic the inhibitory action of the previously identified peptidyl inhibitors. Since, nonpeptidyl inhibitors are preferred drug candidates, hence, discovery of natural compounds as nonpeptidyl inhibitors is a significant transition towards feasible drug development for neurodegenerative disorders.

  13. Regioselectivity in the Reductive Bond Cleavage of Diarylalkylsulfonium Salts

    DEFF Research Database (Denmark)

    Kampmeier, Jack; Mansurul Hoque, AKM; D. Saeva, Franklin

    2009-01-01

    products vary from regiospecific alkyl cleavage to predominant aryl cleavage as a function of the potential of the reducing agent. We conclude that differences between the reductive cleavages of mono- and diarylsulfonium salts are direct consequences of the structures of the sulfuranyl radical......- tolylethylsulfonium and di-4-tolyl-2-phenylethylsulfonium salts by a variety of one-electron reducing agents ranging in potential from -0.77 to +2.5 eV (vs SCE) and including thermal reductants, indirect electrolyses mediated by a series of cyanoaromatics, and excited singlet states. We report that the cleavage...... intermediates and the bond dissociation energies of the alkyl and aryl bonds. Competitions between the rates of cleavage and oxidation of the intermediate sulfuranyl radicals and between concerted and stepwise mechanisms are discussed to explain the variations in bond cleavage products as a function...

  14. Caspase-1 dependent IL-1β secretion is critical for host defense in a mouse model of Chlamydia pneumoniae lung infection.

    Directory of Open Access Journals (Sweden)

    Kenichi Shimada

    Full Text Available Chlamydia pneumoniae (CP is an important human pathogen that causes atypical pneumonia and is associated with various chronic inflammatory disorders. Caspase-1 is a key component of the 'inflammasome', and is required to cleave pro-IL-1β to bioactive IL-1β. Here we demonstrate for the first time a critical requirement for IL-1β in response to CP infection. Caspase-1⁻/⁻ mice exhibit delayed cytokine production, defective clearance of pulmonary bacteria and higher mortality in response to CP infection. Alveolar macrophages harbored increased bacterial numbers due to reduced iNOS levels in Caspase-1⁻/⁻ mice. Pharmacological blockade of the IL-1 receptor in CP infected wild-type mice phenocopies Caspase-1-deficient mice, and administration of recombinant IL-1β rescues CP infected Caspase-1⁻/⁻ mice from mortality, indicating that IL-1β secretion is crucial for host immune defense against CP lung infection. In vitro investigation reveals that CP-induced IL-1β secretion by macrophages requires TLR2/MyD88 and NLRP3/ASC/Caspase-1 signaling. Entry into the cell by CP and new protein synthesis by CP are required for inflammasome activation. Neither ROS nor cathepsin was required for CP infection induced inflammasome activation. Interestingly, Caspase-1 activation during CP infection occurs with mitochondrial dysfunction indicating a possible mechanism involving the mitochondria for CP-induced inflammasome activation.

  15. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine.

    Science.gov (United States)

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C

    2015-09-24

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases.

  16. Caspase inhibitors affect the kinetics and dimensions of tracheary elements in xylogenic Zinnia (Zinnia elegans cell cultures

    Directory of Open Access Journals (Sweden)

    Schel Jan HN

    2010-08-01

    Full Text Available Abstract Background The xylem vascular system is composed of fused dead, hollow cells called tracheary elements (TEs that originate through trans-differentiation of root and shoot cambium cells. TEs undergo autolysis as they differentiate and mature. The final stage of the formation of TEs in plants is the death of the involved cells, a process showing some similarities to programmed cell death (PCD in animal systems. Plant proteases with functional similarity to proteases involved in mammalian apoptotic cell death (caspases are suggested as an integral part of the core mechanism of most PCD responses in plants, but participation of plant caspase-like proteases in TE PCD has not yet been documented. Results Confocal microscopic images revealed the consecutive stages of TE formation in Zinnia cells during trans-differentiation. Application of the caspase inhibitors Z-Asp-CH2-DCB, Ac-YVAD-CMK and Ac-DEVD-CHO affected the kinetics of formation and the dimensions of the TEs resulting in a significant delay of TE formation, production of larger TEs and in elimination of the 'two-wave' pattern of TE production. DNA breakdown and appearance of TUNEL-positive nuclei was observed in xylogenic cultures and this was suppressed in the presence of caspase inhibitors. Conclusions To the best of our knowledge this is the first report showing that caspase inhibitors can modulate the process of trans-differentiation in Zinnia xylogenic cell cultures. As caspase inhibitors are closely associated with cell death inhibition in a variety of plant systems, this suggests that the altered TE formation results from suppression of PCD. The findings presented here are a first step towards the use of appropriate PCD signalling modulators or related molecular genetic strategies to improve the hydraulic properties of xylem vessels in favour of the quality and shelf life of plants or plant parts.

  17. NLRP3 controls Trypanosoma cruzi infection through a caspase-1-dependent IL-1R-independent NO production.

    Science.gov (United States)

    Gonçalves, Virginia M; Matteucci, Kely C; Buzzo, Carina L; Miollo, Bruna H; Ferrante, Danny; Torrecilhas, Ana C; Rodrigues, Mauricio M; Alvarez, Jose M; Bortoluci, Karina R

    2013-01-01

    Trypanosoma cruzi (T. cruzi) is an intracellular protozoan parasite and the etiological agent of Chagas disease, a chronic infectious illness that affects millions of people worldwide. Although the role of TLR and Nod1 in the control of T. cruzi infection is well-established, the involvement of inflammasomes remains to be elucidated. Herein, we demonstrate for the first time that T. cruzi infection induces IL-1β production in an NLRP3- and caspase-1-dependent manner. Cathepsin B appears to be required for NLRP3 activation in response to infection with T. cruzi, as pharmacological inhibition of cathepsin B abrogates IL-1β secretion. NLRP3(-/-) and caspase1(-/-) mice exhibited high numbers of T. cruzi parasites, with a magnitude of peak parasitemia comparable to MyD88(-/-) and iNOS(-/-) mice (which are susceptible models for T. cruzi infection), indicating the involvement of NLRP3 inflammasome in the control of the acute phase of T. cruzi infection. Although the inflammatory cytokines IL-6 and IFN-γ were found in spleen cells from NLRP3(-/-) and caspase1(-/-) mice infected with T. cruzi, these mice exhibited severe defects in nitric oxide (NO) production and an impairment in macrophage-mediated parasite killing. Interestingly, neutralization of IL-1β and IL-18, and IL-1R genetic deficiency demonstrate that these cytokines have a minor effect on NO secretion and the capacity of macrophages to control T. cruzi infection. In contrast, inhibition of caspase-1 with z-YVAD-fmk abrogated NO production by WT and MyD88(-/-) macrophages and rendered them as susceptible to T. cruzi infection as NLRP3(-/-) and caspase-1(-/-) macrophages. Taken together, our results demonstrate a role for the NLRP3 inflammasome in the control of T. cruzi infection and identify NLRP3-mediated, caspase-1-dependent and IL-1R-independent NO production as a novel effector mechanism for these innate receptors.

  18. NLRP3 controls Trypanosoma cruzi infection through a caspase-1-dependent IL-1R-independent NO production.

    Directory of Open Access Journals (Sweden)

    Virginia M Gonçalves

    Full Text Available Trypanosoma cruzi (T. cruzi is an intracellular protozoan parasite and the etiological agent of Chagas disease, a chronic infectious illness that affects millions of people worldwide. Although the role of TLR and Nod1 in the control of T. cruzi infection is well-established, the involvement of inflammasomes remains to be elucidated. Herein, we demonstrate for the first time that T. cruzi infection induces IL-1β production in an NLRP3- and caspase-1-dependent manner. Cathepsin B appears to be required for NLRP3 activation in response to infection with T. cruzi, as pharmacological inhibition of cathepsin B abrogates IL-1β secretion. NLRP3(-/- and caspase1(-/- mice exhibited high numbers of T. cruzi parasites, with a magnitude of peak parasitemia comparable to MyD88(-/- and iNOS(-/- mice (which are susceptible models for T. cruzi infection, indicating the involvement of NLRP3 inflammasome in the control of the acute phase of T. cruzi infection. Although the inflammatory cytokines IL-6 and IFN-γ were found in spleen cells from NLRP3(-/- and caspase1(-/- mice infected with T. cruzi, these mice exhibited severe defects in nitric oxide (NO production and an impairment in macrophage-mediated parasite killing. Interestingly, neutralization of IL-1β and IL-18, and IL-1R genetic deficiency demonstrate that these cytokines have a minor effect on NO secretion and the capacity of macrophages to control T. cruzi infection. In contrast, inhibition of caspase-1 with z-YVAD-fmk abrogated NO production by WT and MyD88(-/- macrophages and rendered them as susceptible to T. cruzi infection as NLRP3(-/- and caspase-1(-/- macrophages. Taken together, our results demonstrate a role for the NLRP3 inflammasome in the control of T. cruzi infection and identify NLRP3-mediated, caspase-1-dependent and IL-1R-independent NO production as a novel effector mechanism for these innate receptors.

  19. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States); Whittaker, Gary R., E-mail: grw7@cornell.edu [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States)

    2012-12-05

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  20. Suture compression induced midpalatal suture chondrocyte apoptosis with increased caspase-3, caspase-9, Bad, Bak, Bax and Bid expression.

    Science.gov (United States)

    Lan, Tingting; Zhao, Hanchi; Xiang, Bilu; Wang, Jun; Liu, Yang

    2017-07-22

    Previous studies found bone resorption and chondrocytes loss in mouse models of mid-palatal suture when given continuous compressive force, although chondrocytes response remained unknown. Herein, we design this study to determine how continuous compression force induces chondrocytes apoptosis. Thirty C57BL/6 male mice (aged 6 weeks) were randomly assigned into controls (not ligated to a spring), blank controls (ligated with no compression) and the compression group (ligated with 20-g compression). After 4 d, palatal tissues were sampled and stained by TB and safranin-O. Tunel staining measured the percentage of apoptotic chondrocytes, and immunohistochemistry was performed to label apoptosis-associated proteins (e.g., Bcl-2, Bcl-xl, Bax, Bak, Bid, Bad, caspase-3, caspase-8 and caspase-9). Intergroup comparison was made by the rank sum test, and P compression group was significantly decreased, while the control group remained largely unaltered. Tunel staining showed that apoptotic cell numbers in the mid-palatal suture were significantly higher than the control group. Immunohistochemistry showed that mice in the compression group had significantly increased expression of caspase-3, caspase-9, Bad, Bak, Bax and Bid; However, caspase-8 remained unaltered. No expression of Bcl-2 and Bcl-xl was detected. Continuous compression force induces chondrocytes apoptosis in the mid-palatal suture. This process might be associated with the mitochondrial pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane

    NARCIS (Netherlands)

    Schug, Z. T.; Gonzalvez, F.; Houtkooper, R. H.; Vaz, F. M.; Gottlieb, E.

    2011-01-01

    Caspase-8 stably inserts into the mitochondrial outer membrane during extrinsic apoptosis. Inhibition of caspase-8 enrichment on the mitochondria impairs caspase-8 activation and prevents apoptosis. However, the function of active caspase-8 on the mitochondrial membrane remains unknown. In this

  2. Caspase-14 Expression Impairs Retinal Pigment Epithelium Barrier Function: Potential Role in Diabetic Macular Edema

    Directory of Open Access Journals (Sweden)

    Selina Beasley

    2014-01-01

    Full Text Available We recently showed that caspase-14 is a novel molecule in retina with potential role in accelerated vascular cell death during diabetic retinopathy (DR. Here, we evaluated whether caspase-14 is implicated in retinal pigment epithelial cells (RPE dysfunction under hyperglycemia. The impact of high glucose (HG, 30 mM D-glucose on caspase-14 expression in human RPE (ARPE-19 cells was tested, which showed significant increase in caspase-14 expression compared with normal glucose (5 mM D-glucose + 25 mM L-glucose. We also evaluated the impact of modulating caspase-14 expression on RPE cells barrier function, phagocytosis, and activation of other caspases using ARPE-19 cells transfected with caspase-14 plasmid or caspase-14 siRNA. We used FITC-dextran flux assay and electric cell substrate impedance sensing (ECIS to test the changes in RPE cell barrier function. Similar to HG, caspase-14 expression in ARPE-19 cells increased FITC-dextran leakage through the confluent monolayer and decreased the transcellular electrical resistance (TER. These effects of HG were prevented by caspase-14 knockdown. Furthermore, caspase-14 knockdown prevented the HG-induced activation of caspase-1 and caspase-9, the only activated caspases by HG. Phagocytic activity was unaffected by caspase-14 expression. Our results suggest that caspase-14 contributes to RPE cell barrier disruption under hyperglycemic conditions and thus plays a role in the development of diabetic macular edema.

  3. Caspase-12 ablation preserves muscle function in the mdx mouse

    Science.gov (United States)

    Moorwood, Catherine; Barton, Elisabeth R.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin. Several downstream consequences of dystrophin deficiency are triggers of endoplasmic reticulum (ER) stress, including loss of calcium homeostasis, hypoxia and oxidative stress. During ER stress, misfolded proteins accumulate in the ER lumen and the unfolded protein response (UPR) is triggered, leading to adaptation or apoptosis. We hypothesized that ER stress is heightened in dystrophic muscles and contributes to the pathology of DMD. We observed increases in the ER stress markers BiP and cleaved caspase-4 in DMD patient biopsies, compared with controls, and an increase in multiple UPR pathways in muscles of the dystrophin-deficient mdx mouse. We then crossed mdx mice with mice null for caspase-12, the murine equivalent of human caspase-4, which are resistant to ER stress. We found that deleting caspase-12 preserved mdx muscle function, resulting in a 75% recovery of both specific force generation and resistance to eccentric contractions. The compensatory hypertrophy normally found in mdx muscles was normalized in the absence of caspase-12; this was found to be due to decreased fibre sizes, and not to a fibre type shift or a decrease in fibrosis. Fibre central nucleation was not significantly altered in the absence of caspase-12, but muscle fibre degeneration found in the mdx mouse was reduced almost to wild-type levels. In conclusion, we have identified heightened ER stress and abnormal UPR signalling as novel contributors to the dystrophic phenotype. Caspase-4 is therefore a potential therapeutic target for DMD. PMID:24879640

  4. Expression of caspase-3, p53 and Bcl-2 in generalized aggressive periodontitis

    Directory of Open Access Journals (Sweden)

    Özdemir B Handan

    2006-06-01

    Full Text Available Abstract Background Apoptosis, or programmed cell death is a form of physiological cell death. It is increased or decreased in the presence of infection, inflammation or tissue remodelling. Previous studies suggest that apoptosis is involved in the pathogenesis of inflammatory periodontal disease. The aim of the present study was to investigate the clinical features and known indicators of apoptosis (p53, Bcl-2, Caspase-3 in patients with generalized aggressive periodontitis (GAP Methods Eight patients with GAP, who had sites with probing depths (PD > 5 mm, and 10 periodontally-healthy persons were included in the study. Clinical examinations and PD were performed, and the plaque index and gingival index were recorded. Gingival tissues biopsies were obtained from active site of each patient and from healthy individuals. The expression of caspase-3, Bcl-2, and p53 was evaluated by immunohistochemistry Results There were no significant differences between GAP and control group with respect to levels of caspase-3 and p53 expression (P > 0.05. Contrary, the frequency of grade 3 expression of Bcl-2 was higher in GAP group than the control group. Conclusion The higher frequency of Bcl-2 expression in GAP group indicates and delayed apoptosis can lead to increasing resident inflammatory cells in periodontal tissues and resulting in progressive periodontal destruction.

  5. Primary enamel knot cell death in Apaf-1 and caspase-9 deficient mice.

    Science.gov (United States)

    Setkova, J; Matalova, E; Sharpe, P T; Misek, I; Tucker, A S

    2007-01-01

    During molar development, apoptosis occurs in a well-characterised pattern suggesting several roles for cell death in odontogenesis. However, molecular mechanisms of dental apoptosis are only poorly understood. In this study, Apaf-1 and caspase-9 knockouts were used to uncover the engagement of these members of the apoptotic machinery during early tooth development, concentrating primarily on their function in the apoptotic elimination of primary enamel knot cells. Molar tooth germ morphology, proliferation and apoptosis were investigated on frontal histological sections of murine heads at embryonic days (ED) 15.5, the stage when the primary enamel knot is eliminated apoptotically. In molar tooth germs of both knockouts, no apoptosis was observed according to morphological (haematoxylin-eosin) as well as biochemical criteria (TUNEL). Morphology of the mutant tooth germs, however, was not changed. Additionally, knockout mice showed no changes in proliferation compared to wild type mice. According to our findings on knockout embryos, Apaf-1 and caspase-9 are involved in apoptosis during tooth development; however, they seem dispensable and not necessary for proper tooth shaping. Compensatory or other mechanisms of cell death may act to eliminate the primary enamel knot cells in the absence of Apaf-1 and caspase-9.

  6. Artemisinin induces ROS-mediated caspase3 activation in ASTC-a-1 cells

    Science.gov (United States)

    Xiao, Feng-Lian; Chen, Tong-Sheng; Qu, Jun-Le; Liu, Cheng-Yi

    2010-02-01

    Artemisinin (ART), an antimalarial phytochemical from the sweet wormwood plant or a naturally occurring component of Artemisia annua, has been shown a potential anticancer activity by apoptotic pathways. In our report, cell counting kit (CCK-8) assay showed that treatment of human lung adenocarcinoma (ASTC-a-1) cells with ART effectively increase cell death by inducing apoptosis in a time- and dose-dependent fashion. Hoechst 33258 staining was used to detect apoptosis as well. Reactive oxygen species (ROS) generation was observed in cells exposed to ART at concentrations of 400 μM for 48 h. N-acetyl-L-cysteine (NAC), an oxygen radical scavenger, suppressed the rate of ROS generation and inhibited the ART-induced apoptosis. Moreover, AFC assay (Fluorometric assay for Caspase3 activity) showed that ROS was involved in ART-induced caspase3 acitvation. Taken together, our data indicate that ART induces ROS-mediated caspase3 activation in a time-and dose-dependent way in ASCT-a-1 cells.

  7. Restriction enzyme cleavage of ultraviolet-damaged Simian virus 40 and pBR322 DNA

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1983-01-01

    Cleavage of specific DNA sequences by the restriction enzymes EcoRI, HindIII and TaqI was prevented when the DNA was irradiated with ultraviolet light. Most of the effects were attributed to cyclobutane pyrimidine dimers in the recognition sequences; the effectiveness of irradiation was directly proportional to the number of potential dimer sites in the DNA. Combining EcoRI with dimer-specific endonuclease digestion revealed that pyrimidine dimers blocked cleavage within one base-pair on the strand opposite to the dimer but did not block cleavage three to four base-pairs away on the same strand. These are the probable limits for the range of influence of pyrimidine dimers along the DNA, at least for this enzyme. The effect of irradiation on cleavage by TaqI seemed far greater than expected for the cyclobutane dimer yield, possibly because of effects from photoproducts flanking the tetranucleotide recognition sequence and the effect of non-cyclobutane (6-4)pyrimidine photoproducts involving adjacent T and C bases. (author)

  8. Prokaryotic caspase homologs: phylogenetic patterns and functional characteristics reveal considerable diversity.

    Directory of Open Access Journals (Sweden)

    Johannes Asplund-Samuelsson

    Full Text Available Caspases accomplish initiation and execution of apoptosis, a programmed cell death process specific to metazoans. The existence of prokaryotic caspase homologs, termed metacaspases, has been known for slightly more than a decade. Despite their potential connection to the evolution of programmed cell death in eukaryotes, the phylogenetic distribution and functions of these prokaryotic metacaspase sequences are largely uncharted, while a few experiments imply involvement in programmed cell death. Aiming at providing a more detailed picture of prokaryotic caspase homologs, we applied a computational approach based on Hidden Markov Model search profiles to identify and functionally characterize putative metacaspases in bacterial and archaeal genomes. Out of the total of 1463 analyzed genomes, merely 267 (18% were identified to contain putative metacaspases, but their taxonomic distribution included most prokaryotic phyla and a few archaea (Euryarchaeota. Metacaspases were particularly abundant in Alphaproteobacteria, Deltaproteobacteria and Cyanobacteria, which harbor many morphologically and developmentally complex organisms, and a distinct correlation was found between abundance and phenotypic complexity in Cyanobacteria. Notably, Bacillus subtilis and Escherichia coli, known to undergo genetically regulated autolysis, lacked metacaspases. Pfam domain architecture analysis combined with operon identification revealed rich and varied configurations among the metacaspase sequences. These imply roles in programmed cell death, but also e.g. in signaling, various enzymatic activities and protein modification. Together our data show a wide and scattered distribution of caspase homologs in prokaryotes with structurally and functionally diverse sub-groups, and with a potentially intriguing evolutionary role. These features will help delineate future characterizations of death pathways in prokaryotes.

  9. Association of caspase-1 polymorphisms with Chagas cardiomyopathy among individuals in Santa Cruz, Bolivia

    Directory of Open Access Journals (Sweden)

    Katherine Yih-Jia Fu

    Full Text Available Abstract INTRODUCTION: Trypanosoma cruzi (Tc infection is usually acquired in childhood in endemic areas, leading to Chagas disease, which progresses to Chagas cardiomyopathy in 20-30% of infected individuals over decades. The pathogenesis of Chagas cardiomyopathy involves the host inflammatory response to T. cruzi, in which upstream caspase-1 activation prompts the cascade of inflammatory chemokines/cytokines, cardiac remodeling, and myocardial dysfunction. The aim of the present study was to examine the association of two caspase-1 single nucleotide polymorphisms (SNPs with cardiomyopathy. METHODS: We recruited infected (Tc+, n = 149 and uninfected (Tc−, n = 87 participants in a hospital in Santa Cruz, Bolivia. Cardiac status was classified (I, II, III, IV based on Chagas cardiomyopathy-associated electrocardiogram findings and ejection fractions on echocardiogram. Genotypes were determined using Taqman probes via reverse transcription-polymerase chain reaction of peripheral blood DNA. Genotype frequencies were analyzed according to three inheritance patterns (dominant, recessive, additive using logistic regression adjusted for age and sex. RESULTS: The AA allele for the caspase-1 SNP rs501192 was more frequent in Tc+ cardiomyopathy (classes II, III, IV patients compared to those with a normal cardiac status (class I [odds ratio (OR = −2.18, p = 0.117]. This trend approached statistical significant considering only Tc+ patients in class I and II (OR = −2.64, p = 0.064. CONCLUSIONS: Caspase-1 polymorphisms may play a role in Chagas cardiomyopathy development and could serve as markers to identify individuals at higher risk for priority treatment.

  10. Caspase 2 activation and ER stress drive rapid Jurkat cell apoptosis by clofibrate.

    Directory of Open Access Journals (Sweden)

    Fabio Penna

    Full Text Available Differently from the antiapoptotic action most commonly assigned to peroxisome proliferators (PPs, we demonstrated that some of them, clofibrate (CF in particular, display clearcut apoptogenic properties on rat hepatoma cell lines. We and others could confirm that CF as well as various other PPs can induce apoptosis in a variety of cells, including human liver, breast and lung cancer cell lines. The present study was aimed at investigating the cytotoxic action of CF on a neoplastic line of different origin, the human T leukemia Jurkat cells. We observed that CF rapidly triggers an extensive and morphologically typical apoptotic process on Jurkat cells, though not in primary T cells, which is completely prevented by the polycaspase inhibitor zVADfmk. Gene silencing studies demonstrated that CF-induced apoptosis in Jurkat cells is partially dependent on activation of caspase 2. Looking for a possible trigger of caspase 2 activation, we observed increased levels of phosphorylated eIF2α and JNK in CF-treated cells. Moreover, intracellular Ca(2+ homeostasis was perturbed. Together, these findings are suggestive for the occurrence of ER stress, an event that is known to have the potential to activate caspase 2. The present observations demonstrate that CF induces in Jurkat cells a very fast and extensive apoptosis, that involves induction of ER stress and activation of caspases 2 and 3. Since apoptosis in Jurkat cells occurs at pharmacologically relevant concentrations of CF, the present findings encourage further in depth analysis in order to work out the potential implications of CF cytotoxcity on leukemic cells.

  11. HSV and glycoprotein J inhibit caspase activation and apoptosis induced by granzyme B or Fas.

    Science.gov (United States)

    Jerome, K R; Chen, Z; Lang, R; Torres, M R; Hofmeister, J; Smith, S; Fox, R; Froelich, C J; Corey, L

    2001-10-01

    HSV-1 inhibits apoptosis of infected cells, presumably to ensure that the infected cell survives long enough to allow completion of viral replication. Because cytotoxic lymphocytes kill their targets via the induction of apoptosis, protection from apoptosis could constitute a mechanism of immune evasion for HSV. Several HSV genes are involved in the inhibition of apoptosis, including Us5, which encodes glycoprotein J (gJ). Viruses deleted for Us5 showed defects in inhibition of caspase activation after Fas ligation or UV irradiation. Transfected cells expressing the Us5 gene product gJ were protected from Fas- or UV-induced apoptosis, as measured by morphology, caspase activation, membrane permeability changes, or mitochondrial transmembrane potential. In contrast, caspase 3 activation in mitochondria-free cell lysates by granzyme (gr)B was inhibited equivalently by Us5 deletion and rescue viruses, suggesting that gJ is not required for HSV to inhibition this process. However, mitochondria-free lysates from transfected cells expressing Us5/gJ were protected from grB-induced caspase activation, suggesting that Us5/gJ is sufficient to inhibit this process. Transfected cells expressing Us5/gJ were also protected from death induced by incubation with purified grB and perforin. These findings suggest that HSV has a comprehensive set of immune evasion functions that antagonize both Fas ligand- and grB-mediated pathways of CTL-induced apoptosis. The understanding of HSV effects on killing by CTL effector mechanisms may shed light on the incomplete control of HSV infections by the immune system and may allow more rational approaches to the development of immune modulatory treatments for HSV infection.

  12. Full Length Research Paper Curcumin induces cleavage of -catenin ...

    African Journals Online (AJOL)

    β-Catenin/Tcf-4 signaling pathway plays important roles in colorectal tumorigenesis. RT-PCR, western blotting and immunoprecipitation were used to study the effects of curcumin on β-catenin/Tcf-4 signaling pathway in HT-29 cells. Treatment of curcumin could induce cleavage of β-catenin and the cleavage could be ...

  13. The Restriction Endonuclease Cleavage Map of Rat Liver Mitochondrial DNA

    NARCIS (Netherlands)

    Bakker, H.; Holtrop, M.; Terpstra, P.

    1977-01-01

    Mitochondrial DNA from rat liver contains six sites for cleavage by the restriction endonucleases Hind III and EcoRI. A large stretch of DNA, comprising about 40% of the mitochondrial genome is not cleaved by either of the enzymes; eight cleavage sites are located on a DNA stretch of 35% of the

  14. New therapeutic activity of metabolic enhancer piracetam in treatment of neurodegenerative disease: Participation of caspase independent death factors, oxidative stress, inflammatory responses and apoptosis.

    Science.gov (United States)

    Verma, Dinesh Kumar; Gupta, Sonam; Biswas, Joyshree; Joshi, Neeraj; Singh, Abhishek; Gupta, Parul; Tiwari, Shubhangini; Sivarama Raju, K; Chaturvedi, Swati; Wahajuddin, M; Singh, Sarika

    2018-03-16

    Piracetam, a nootropic drug that has been clinically used for decades but remains enigmatic due to no distinct understanding of its mechanism of action. The present study aimed to investigate the role of caspase independent pathway in piracetam mediated neuroprotection. LPS administration caused significant alterations in oxidative stress related parameters like glutathione, glutathione reductase and increased lipid peroxidation. LPS administration also caused augmented expression of inflammatory cytokines and astrocytes activation. Piracetam treatment offered significant protection against LPS induced oxidative and inflammatory parameters and inhibited astrocytes activation. LPS administration caused augmented level of reactive oxygen species and depleted mitochondrial membrane potential which were attenuated with piracetam treatment. This study for the first time demonstrates the role of caspase independent death factors in piracetam induced neuroprotective effects in rat brain. Translocation of mitochondrial resident apoptosis inducing factor and endonuclease G to nucleus through cytosol after LPS administration was significantly blocked with piracetam treatment. Further, LPS induced DNA fragmentation along with up regulated Poly [ADP-ribose] polymerase 1 (PARP1) levels were also inhibited with piracetam treatment. Apoptotic death was confirmed by the cleavage of caspase 3 as well as histological alteration in rat brain regions. LPS administration caused significantly increased level of cleaved caspase 3, altered neuronal morphology and decreased neuronal density which were restored with piracetam treatment. Collectively our findings indicate that piracetam offered protection against LPS induced inflammatory responses and cellular death including its antioxidative antiapoptotic activity with its attenuation against mitochondria mediated caspase independent pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Cadmium induces Ca2+ mediated, calpain-1/caspase-3-dependent apoptosis in primary cultured rat proximal tubular cells.

    Science.gov (United States)

    Wang, Hong; Zhai, Nianhui; Chen, Ying; Xu, Haibin; Huang, Kehe

    2017-07-01

    Calcium, as a ubiquitous second messenger, governs a large array of cellular processes and is necessary for cell survival. More recently, it was observed that the cytosolic Ca 2+ concentration ([Ca 2+ ] c ) elevation could induce apoptosis in primary cultured rat proximal tubular (rPT) cells exposed to cadmium (Cd), but the concrete mechanism is still unclear. This study was designed to investigate the signal pathway involved in [Ca 2+ ] c elevation-mediated apoptosis. The results confirmed the elevation of [Ca 2+ ] c by confocal microscopy and enhancement of the apoptosis by Hoechst 33258 staining and flow cytometer when rPT cells were exposed to Cd for 12h. Then we demonstrated that Cd enhanced the protein levels of active calpain-1 and caspase-3 in rPT cells. Pretreatment with a cytosolic Ca 2+ chelator, 1,2-Bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), markedly blocked the up-regulation of active calpain-1 and caspase-3 and inhibited the apoptosis induced by Cd. Further, rPT cells were pretreated with a cell-permeable selective calpain-1 inhibitor, 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) and caspase-3 inhibitor, N-Acetyl-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO), respectively. PD150606 significantly attenuated the up-regulation of active caspase-3 and the apoptosis induced by Cd. As expected, inhibition of active caspase-3 by Ac-DEVD-CHO decreased the apoptosis induced by Cd. Taken together, it could be concluded that [Ca 2+ ] c elevation did act as a pro-apoptotic signal in Cd-induced cytotoxicity of rPT cells, triggered calpain-1 and caspase-3 activation in turn, and induced apoptosis of rPT cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Saikosaponin d induces cell death through caspase-3-dependent, caspase-3-independent and mitochondrial pathways in mammalian hepatic stellate cells

    International Nuclear Information System (INIS)

    Chen, Ming-Feng; Huang, S. Joseph; Huang, Chao-Cheng; Liu, Pei-Shan; Lin, Kun-I; Liu, Ching-Wen; Hsieh, Wen-Chuan; Shiu, Li-Yen; Chen, Chang-Han

    2016-01-01

    Saikosaponin d (SSd) is one of the main active triterpene saponins in Bupleurum falcatum. It has a steroid-like structure, and is reported to have pharmacological activities, including liver protection in rat, cell cycle arrest and apoptosis induction in several cancer cell lines. However, the biological functions and molecular mechanisms of mammalian cells under SSd treatment are still unclear. The cytotoxicity and apoptosis of hepatic stellate cells (HSCs) upon SSd treatment were discovered by MTT assay, colony formation assay and flow cytometry. The collage I/III, caspase activity and apoptotic related genes were examined by quantitative PCR, Western blotting, immunofluorescence and ELISA. The mitochondrial functions were monitored by flow cytometry, MitoTracker staining, ATP production and XF24 bioenergetic assay. This study found that SSd triggers cell death via an apoptosis path. An example of this path might be typical apoptotic morphology, increased sub-G1 phase cell population, inhibition of cell proliferation and activation of caspase-3 and caspase-9. However, the apoptotic effects induced by SSd are partially blocked by the caspase-3 inhibitor, Z-DEVD-FMK, suggesting that SSd may trigger both HSC-T6 and LX-2 cell apoptosis through caspase-3-dependent and independent pathways. We also found that SSd can trigger BAX and BAK translocation from the cytosol to the mitochondria, resulting in mitochondrial function inhibition, membrane potential disruption. Finally, SSd also increases the release of apoptotic factors. The overall analytical data indicate that SSd-elicited cell death may occur through caspase-3-dependent, caspase-3-independent and mitochondrial pathways in mammalian HSCs, and thus can delay the formation of liver fibrosis by reducing the level of HSCs

  17. Essential Oil from Cryptomeria japonica Induces Apoptosis in Human Oral Epidermoid Carcinoma Cells via Mitochondrial Stress and Activation of Caspases

    Directory of Open Access Journals (Sweden)

    Ji-Young Kim

    2012-03-01

    Full Text Available Cryptomeria japonica D. Don (C. japonica has been used in traditional medicines from Asia for a variety of indications, including liver ailments, and an antitussive, and for its antiulcer activities. We examined the cell viability and apoptosis of KB cells treated with C. japonica essential oil at several concentrations for 12 h by MTT assay, Hoechst-33258 dye staining, DNA fragmentation, flow cytometry (cell cycle, and Western blotting for mitochondria stress, activation of caspases, and poly (ADP-ribose polymerase. The essential oil induced the apoptosis of KB cells in a dose-dependent manner, which was verified by DNA fragmentation, appearance of apoptotic bodies, and the sub-G1 ratio. The essential oil also induced rapid and transient caspase-3 activity and cleavage of PARP of the KB cells. Treating the cells with the oil also caused changes in the mitochondrial level of the Bcl-2 family proteins such as Bcl-2 and Bax, thereby inducing the release of cytochrome c into the cytosol. The essential oil of C. japonica may have potential as a cancer chemopreventive and therapeutic agent.

  18. A Dimeric Smac/Diablo Peptide Directly Relieves Caspase-3 Inhibition by XIAP: Dynamic and Cooperative Regulation of XIAP by Smac/Diablo

    OpenAIRE

    Gao, Zhonghua; Tian, Yuan; Wang, Junru; Yin, Qian; Wu, Hao; Li, Yue-Ming; Jiang, Xuejun

    2007-01-01

    Caspase activation, the executing event of apoptosis, is under deliberate regulation. IAP proteins inhibit caspase activity whereas Smac/Diablo antagonizes IAP. XIAP, a ubiquitous IAP, can inhibit both caspase-9, the initiator caspase of the mitochondrial apoptotic pathway, and the downstream effector caspases, caspase-3 and caspase-7. Smac neutralizes XIAP inhibition of caspase-9 by competing for binding of the BIR3 domain of XIAP with caspase-9, whereas how Smac liberates effector caspases ...

  19. Human Innate Immunity to Toxoplasma gondii Is Mediated by Host Caspase-1 and ASC and Parasite GRA15

    Science.gov (United States)

    Gov, Lanny; Karimzadeh, Alborz; Ueno, Norikiyo; Lodoen, Melissa B.

    2013-01-01

    ABSTRACT   Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gondii infection are poorly understood. We report that T. gondii induces IL-1β transcript, processing/cleavage, and release from infected primary human monocytes and THP-1 cells. Treating monocytes with the caspase-1 inhibitor Ac-YVAD-CMK reduced IL-1β release, suggesting a role for the inflammasome in T. gondii-induced IL-1β production. This was confirmed by performing short hairpin RNA (shRNA) knockdown of caspase-1 and of the inflammasome adaptor protein ASC. IL-1β induction required active parasite invasion of monocytes, since heat-killed or mycalolide B-treated parasites did not induce IL-1β. Among the type I, II, and III strains of T. gondii, the type II strain induced substantially more IL-1β mRNA and protein release than did the type I and III strains. Since IL-1β transcript is known to be induced downstream of NF-κB signaling, we investigated a role for the GRA15 protein, which induces sustained NF-κB signaling in a parasite strain-specific manner. By infecting human monocytes with a GRA15-knockout type II strain and a type I strain stably expressing type II GRA15, we determined that GRA15 is responsible for IL-1β induction during T. gondii infection of human monocytes. This research defines a pathway driving human innate immunity by describing a role for the classical inflammasome components caspase-1 and ASC and the parasite GRA15 protein in T. gondii-induced IL-1β production. PMID:23839215

  20. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls

    KAUST Repository

    Bruno, Mark

    2015-04-01

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-. trans-β-carotene at the C9\\'-C10\\' double bond, leading to β-ionone and all-. trans-β-apo-10\\'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9\\'-C10\\' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-. cis-β-carotene, which led to 9-. cis-β-apo-10\\'-carotenal. Our data indicate that all-. trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development.

  1. Efficient and specific internal cleavage of a retroviral palindromic DNA sequence by tetrameric HIV-1 integrase.

    Directory of Open Access Journals (Sweden)

    Olivier Delelis

    Full Text Available BACKGROUND: HIV-1 integrase (IN catalyses the retroviral integration process, removing two nucleotides from each long terminal repeat and inserting the processed viral DNA into the target DNA. It is widely assumed that the strand transfer step has no sequence specificity. However, recently, it has been reported by several groups that integration sites display a preference for palindromic sequences, suggesting that a symmetry in the target DNA may stabilise the tetrameric organisation of IN in the synaptic complex. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the ability of several palindrome-containing sequences to organise tetrameric IN and investigated the ability of IN to catalyse DNA cleavage at internal positions. Only one palindromic sequence was successfully cleaved by IN. Interestingly, this symmetrical sequence corresponded to the 2-LTR junction of retroviral DNA circles-a palindrome similar but not identical to the consensus sequence found at integration sites. This reaction depended strictly on the cognate retroviral sequence of IN and required a full-length wild-type IN. Furthermore, the oligomeric state of IN responsible for this cleavage differed from that involved in the 3'-processing reaction. Palindromic cleavage strictly required the tetrameric form, whereas 3'-processing was efficiently catalysed by a dimer. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that the restriction-like cleavage of palindromic sequences may be a general physiological activity of retroviral INs and that IN tetramerisation is strongly favoured by DNA symmetry, either at the target site for the concerted integration or when the DNA contains the 2-LTR junction in the case of the palindromic internal cleavage.

  2. The Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells Independent of Any Repair Defect

    Directory of Open Access Journals (Sweden)

    Susannah L. Hewitt

    2017-10-01

    Full Text Available Many DNA lesions associated with lymphoid malignancies are linked to off-target cleavage by the RAG1/2 recombinase. However, off-target cleavage has mostly been analyzed in the context of DNA repair defects, confounding any mechanistic understanding of cleavage deregulation. We identified a conserved SQ phosphorylation site on RAG2 365 to 366 that is involved in feedback control of RAG cleavage. Mutation of serine 365 to a non-phosphorylatable alanine permits bi-allelic and bi-locus RAG-mediated breaks in the same cell, leading to reciprocal translocations. This phenomenon is analogous to the phenotype we described for ATM kinase inactivation. Here, we establish deregulated cleavage itself as a driver of chromosomal instability without the associated repair defect. Intriguingly, a RAG2-S365E phosphomimetic rescues the deregulated cleavage of ATM inactivation, reducing the incidence of reciprocal translocations. These data support a model in which feedback control of cleavage and maintenance of genome stability involves ATM-mediated phosphorylation of RAG2.

  3. Suppression of human T cell proliferation by the caspase inhibitors, z-VAD-FMK and z-IETD-FMK is independent of their caspase inhibition properties

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C.P. [Medical Research Council Toxicology Unit, Hodgkin Building, Lancaster Road, University of Leicester, Leicester LE1 9HN (United Kingdom); Chow, S.C., E-mail: chow.sek.chuen@monash.edu [School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan (Malaysia)

    2012-11-15

    The caspase inhibitors, benzyloxycarbony (Cbz)-l-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) and benzyloxycarbonyl (Cbz)-Ile-Glu (OMe)-Thr-Asp (OMe)-FMK (z-IETD-FMK) at non-toxic doses were found to be immunosuppressive and inhibit human T cell proliferation induced by mitogens and IL-2 in vitro. Both caspase inhibitors were shown to block NF-κB in activated primary T cells, but have little inhibitory effect on the secretion of IL-2 and IFN-γ during T cell activation. However, the expression of IL-2 receptor α-chain (CD25) in activated T cells was inhibited by both z-VAD-FMK and z-IETD-FMK, whereas the expression of the early activated T cell marker, CD69 was unaffected. During primary T cell activation via the antigen receptor, both caspase-8 and caspase-3 were activated and processed to their respective subunits, but neither caspase inhibitors had any effect on the processing of these two caspases. In sharp contrast both caspase inhibitors readily blocked apoptosis and the activation of caspases during FasL-induced apoptosis in activated primary T cells and Jurkat T cells. Collectively, the results demonstrate that both z-VAD-FMK and z-IETD-FMK are immunosuppressive in vitro and inhibit T cell proliferation without blocking the processing of caspase-8 and caspase-3. -- Highlights: ► Caspase-8 and caspase-3 were activated during T cell activation and proliferation. ► T cell proliferation was blocked by caspase inhibitors. ► Caspase activation during T cell proliferation was not block by caspase inhibitors.

  4. Measurement of the cleavage energy of graphite.

    Science.gov (United States)

    Wang, Wen; Dai, Shuyang; Li, Xide; Yang, Jiarui; Srolovitz, David J; Zheng, Quanshui

    2015-08-28

    The basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m(-2) for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitive to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m(-2), is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches.

  5. Inhibition of Mitochondrial Cytochrome c Release and Suppression of Caspases by Gamma-Tocotrienol Prevent Apoptosis and Delay Aging in Stress-Induced Premature Senescence of Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2012-01-01

    Full Text Available In this study, we determined the molecular mechanism of γ-tocotrienol (GTT in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS model of human diploid fibroblasts (HDFs. Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P<0.05. GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P<0.05. Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P<0.05 in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.

  6. A Yersinia effector with enhanced inhibitory activity on the NF-κB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages.

    Directory of Open Access Journals (Sweden)

    Ying Zheng

    2011-04-01

    Full Text Available A type III secretion system (T3SS in pathogenic Yersinia species functions to translocate Yop effectors, which modulate cytokine production and regulate cell death in macrophages. Distinct pathways of T3SS-dependent cell death and caspase-1 activation occur in Yersinia-infected macrophages. One pathway of cell death and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an acetyltransferase that inactivates MAPK kinases and IKKβ to cause TLR4-dependent apoptosis in naïve macrophages. A YopJ isoform in Y. pestis KIM (YopJ(KIM has two amino acid substitutions, F177L and K206E, not present in YopJ proteins of Y. pseudotuberculosis and Y. pestis CO92. As compared to other YopJ isoforms, YopJ(KIM causes increased apoptosis, caspase-1 activation, and secretion of IL-1β in Yersinia-infected macrophages. The molecular basis for increased apoptosis and activation of caspase-1 by YopJ(KIM in Yersinia-infected macrophages was studied. Site directed mutagenesis showed that the F177L and K206E substitutions in YopJ(KIM were important for enhanced apoptosis, caspase-1 activation, and IL-1β secretion. As compared to YopJ(CO92, YopJ(KIM displayed an enhanced capacity to inhibit phosphorylation of IκB-α in macrophages and to bind IKKβ in vitro. YopJ(KIM also showed a moderately increased ability to inhibit phosphorylation of MAPKs. Increased caspase-1 cleavage and IL-1β secretion occurred in IKKβ-deficient macrophages infected with Y. pestis expressing YopJ(CO92, confirming that the NF-κB pathway can negatively regulate inflammasome activation. K+ efflux, NLRP3 and ASC were important for secretion of IL-1β in response to Y. pestis KIM infection as shown using macrophages lacking inflammasome components or by the addition of exogenous KCl. These data show that caspase-1 is activated in naïve macrophages in response to infection with a pathogen that inhibits IKKβ and MAPK kinases and induces TLR4-dependent apoptosis. This pro

  7. Caspase dependent and independent mechanisms of apoptosis across gestation in a sheep model of placental insufficiency and intrauterine growth restriction.

    Science.gov (United States)

    Monson, Troy; Wright, Tanner; Galan, Henry L; Reynolds, Paul R; Arroyo, Juan A

    2017-05-01

    Increased placental apoptosis is a hallmark of intrauterine growth restricted (IUGR). Several molecules have been shown to be involved in the control of apoptosis during this disease. Our objective was to determine the expression of Bcl2, Bax, phospho XIAP, AIF, caspase 3 and 9, and telomerase activity across gestation in an ovine hyperthermia-induced model of IUGR. Pregnant sheep were placed in hyperthermic (HT) conditions to induce IUGR along with age-matched controls. Placental tissues were collected at 55 (early), 95 (mid-gestation) and 130 (near-term) days of gestational age (dGA) to determine the expression of apoptotic molecules during the development of IUGR. Compared to the control placenta, IGUR pregnancies showed: significantly reduced placental Bcl2 in early gestation (55 dGA) with a significant increase observed at mid gestation (95 dGA); decreased placental pXIAP at both mid and near term gestational days (95 and 130 dGA); placental AIF increased only at 55 dGA (early gestation); active caspase 3 increased at both mid and near term gestational days (95 and 130 dGA); caspase 9 only increased at mid gestation (95 dGA) and decreased Telomerase activity near term. Placental apoptosis, mediated in part by the apoptosis related molecule, participates in the development of IUGR. Findings from this study suggest a caspase-independent apoptotic pathway during early gestation and caspase-dependent apoptosis at mid and near term gestation. The data also implicate decreased activation of XIAP as a plausible factor involved in the control of placental apoptosis during IUGR.

  8. RNase MC2: a new Momordica charantia ribonuclease that induces apoptosis in breast cancer cells associated with activation of MAPKs and induction of caspase pathways.

    Science.gov (United States)

    Fang, Evandro Fei; Zhang, Chris Zhi Yi; Fong, Wing Ping; Ng, Tzi Bun

    2012-04-01

    Ribonucleases (RNases) are ubiquitously distributed nucleases that cleave RNA into smaller pieces. They are promising drugs for different cancers based on their concrete antitumor activities in vitro and in vivo. Here we report for the first time purification and characterization of a 14-kDa RNase, designated as RNase MC2, in the seeds of bitter gourd (Momordica charantia). RNase MC2 manifested potent RNA-cleavage activity toward baker's yeast tRNA, tumor cell rRNA, and an absolute specificity for uridine. RNase MC2 demonstrated both cytostatic and cytotoxic activities against MCF-7 breast cancer cells. Treatment of MCF-7 cells with RNase MC2 caused nuclear damage (karyorrhexis, chromatin condensation, and DNA fragmentation), ultimately resulting in early/late apoptosis. Further molecular studies unveiled that RNase MC2 induced differential activation of MAPKs (p38, JNK and ERK) and Akt. On the other hand, RNase MC2 exposure activated caspase-8, caspase-9, caspase-7, increased the production of Bak and cleaved PARP, which in turn contributed to the apoptotic response. In conclusion, RNase MC2 is a potential agent which can be exploited in the worldwide fight against breast cancer.

  9. Lasiodin inhibits proliferation of human nasopharyngeal carcinoma cells by simultaneous modulation of the Apaf-1/caspase, AKT/MAPK and COX-2/NF-κB signaling pathways.

    Directory of Open Access Journals (Sweden)

    Lianzhu Lin

    Full Text Available Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid. The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.

  10. Photosensitized methyl paraben induces apoptosis via caspase dependent pathway under ambient UVB exposure in human skin cells.

    Science.gov (United States)

    Dubey, Divya; Chopra, Deepti; Singh, Jyoti; Srivastav, Ajeet K; Kumari, Smita; Verma, Ankit; Ray, Ratan Singh

    2017-10-01

    Methyl paraben (MP), is a widely used preservative in pharmaceutical, food and cosmetic products. Its molecular mechanism under ambient ultraviolet radiation is not well understood. We investigated photosensitizing mechanism of MP under ambient UVB (0.6 mW/cm 2 ) intensity. MP showed dose dependent decrease in cell viability of human keratinocyte cell line (HaCaT) by MTT and NRU assays. Study showed 40% reduction in antimicrobial activity of UVB irradiated MP through E. coli culture. Photosensitized MP (25 μg/ml) significantly enhanced lipid peroxidation, intracellular ROS generation and disrupted mitochondrial membrane integrity. MP induced loss of lysosomal membrane integrity and endoplasmic reticulum (ER) mediated stress evident from Ca +2 release. Phototoxicity of MP showed nuclear fragmentation, phosphatidylserine translocation, 30% tail DNA and micronuclei formation. Study showed mitochondria mediated apoptosis via upregulation of Bax, Apaf-1, Cytochrome C and Caspase-3. Upregulation of Caspase-12 (2 folds) specifically showed role of ER in apoptosis. Specific caspase inhibitor, Z-VAD-FMK showed involvement of caspase cascade pathway in apoptosis. Results indicate that photosensitive MP leads to oxidative stress mediated DNA damage and apoptosis through mitochondria and ER. MP causes deleterious effects and its long term exposure to human skin may promote skin diseases. Therefore, MP should be replaced by other photosafe preservatives for humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. E. adenophorum Induces Cell Cycle and Apoptosis of Renal Cells through Mitochondrial Pathway and Caspase Activation in Saanen Goat.

    Directory of Open Access Journals (Sweden)

    Yajun He

    Full Text Available The cytotoxicity effects of E. adenophorum on cell cycle and apoptosis of renal cells in Saanen goat was evaluated by TUNEL, DAPI, AO/EB staining, DNA fragmentation assay, Caspase activity, Western-blot, qRT-PCR and flow cytometry analysis. 16 saanen goats randomly divided into four groups were fed on 0%, 40%, 60% and 80% E. adenophorum diets. The Results showed that E. adenophorum induced typical apoptotic features of renal cells. E. adenophorum significantly suppressed renal cells viability, caused cell cycle activity arrest and induced typical apoptotic features in a dose-dependent manner. However, the protein levels of Fas/FasL, Bid and caspase-8 did not appear significant changes in the process of E. adenophorum-induced apoptosis. Moreover, E. adenophorum administration slightly decreased Bcl-2 expression, promoted Bax translocation to mitochondria, triggered the release of Cyt c from mitochondria into cytosol and activated caspase-9, -3, and cleaved PARP. The mitochondrial p53 translocation was significantly activated, accompanied by a significant increase in the loss of ΔΨm, Cyt c release and caspase-9 activation. Above all, these data suggest that E. adenophorum induces renal cells apoptosis via the activation of mitochondria-mediated apoptosis pathway in renal cells. These findings may provide new insights to understand the mechanisms involved in E. adenophorum-caused cytotoxicity of renal cells.

  12. Ethyl Alcohol Extract of Hizikia fusiforme Induces Caspase ...

    African Journals Online (AJOL)

    Ethyl Alcohol Extract of Hizikia fusiforme Induces Caspase-dependent Apoptosis in Human Leukemia U937 Cells by Generation of Reactive Oxygen Species. C-H Kang, S-H Kang, S-H Boo, S-Y Park, D-O Moon, G-Y Kim ...

  13. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  14. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons.

    Science.gov (United States)

    Weber, Thomas; Namikawa, Kazuhiko; Winter, Barbara; Müller-Brown, Karina; Kühn, Ralf; Wurst, Wolfgang; Köster, Reinhard W

    2016-11-15

    The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTAC TM ) further expands the repertoire of genetic tools for conditional interrogation of cellular functions. © 2016. Published by The Company of Biologists Ltd.

  15. Resistance to topoisomerase cleavage complex induced lethality in Escherichia coli via titration of transcription regulators PurR and FNR

    Directory of Open Access Journals (Sweden)

    Liu I-Fen

    2011-12-01

    Full Text Available Abstract Background Accumulation of gyrase cleavage complex in Escherichia coli from the action of quinolone antibiotics induces an oxidative damage cell death pathway. The oxidative cell death pathway has also been shown to be involved in the lethality following accumulation of cleavage complex formed by bacterial topoisomerase I with mutations that result in defective DNA religation. Methods A high copy number plasmid clone spanning the upp-purMN region was isolated from screening of an E. coli genomic library and analyzed for conferring increased survival rates following accumulation of mutant topoisomerase I proteins as well as treatment with the gyrase inhibitor norfloxacin. Results Analysis of the intergenic region upstream of purM demonstrated a novel mechanism of resistance to the covalent protein-DNA cleavage complex through titration of the cellular transcription regulators FNR and PurR responsible for oxygen sensing and repression of purine nucleotide synthesis respectively. Addition of adenine to defined growth medium had similar protective effect for survival following accumulation of topoisomerase cleavage complex, suggesting that increase in purine level can protect against cell death. Conclusions Perturbation of the global regulator FNR and PurR functions as well as increase in purine nucleotide availability could affect the oxidative damage cell death pathway initiated by topoisomerase cleavage complex.

  16. Activation of Pro-apoptotic Caspases in Non-apoptotic Cells During Odontogenesis and Related Osteogenesis

    Directory of Open Access Journals (Sweden)

    Eva Svandova

    2018-03-01

    Full Text Available Caspases are well known proteases in the context of inflammation and apoptosis. Recently, novel roles of pro-apoptotic caspases have been reported, including findings related to the development of hard tissues. To further investigate these emerging functions of pro-apoptotic caspases, the in vivo localisation of key pro-apoptotic caspases (-3,-6,-7,-8, and -9 was assessed, concentrating on the development of two neighbouring hard tissues, cells participating in odontogenesis (represented by the first mouse molar and intramembranous osteogenesis (mandibular/alveolar bone. The expression of the different caspases within the developing tissues was correlated with the apoptotic status of the cells, to produce a picture of whether different caspases have potentially distinct, or overlapping non-apoptotic functions. The in vivo investigation was additionally supported by examination of caspases in an osteoblast-like cell line in vitro. Caspases-3,-7, and -9 were activated in apoptotic cells of the primary enamel knot of the first molar; however, caspase-7 and -8 activation was also associated with the non-apoptotic enamel epithelium at the same stage and later with differentiating/differentiated odontoblasts and ameloblasts. In the adjacent bone, active caspases-7 and -8 were present abundantly in the prenatal period, while the appearance of caspases-3,-6, and -9 was marginal. Perinatally, caspases-3 and -7 were evident in some osteoclasts and osteoblastic cells, and caspase-8 was abundant mostly in osteoclasts. In addition, postnatal activation of caspases-7 and -8 was retained in osteocytes. The results provide a comprehensive temporo-spatial pattern of pro-apoptotic caspase activation, and demonstrate both unique and overlapping activation in non-apoptotic cells during development of the molar tooth and mandibular/alveolar bone. The importance of caspases in osteogenic pathways is highlighted by caspase inhibition in osteoblast-like cells, which

  17. Cytotoxic, DNA binding, DNA cleavage and antibacterial studies of ...

    Indian Academy of Sciences (India)

    fluoroquinolone complexes. Mohan N ... DNA-binding properties of Ru complexes have been studied by means of absorption spectrophotometry and viscosity measurements as well as their HS DNA cleavage properties by means of agarose gel ...

  18. Detection of nucleic acids by multiple sequential invasive cleavages

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Jeff G; Lyamichev, Victor I; Mast, Andrea L; Brow, Mary Ann D

    2012-10-16

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  19. Caspase-3 Inhibition Attenuates the Cytopathic Effects of EV71 Infection

    Directory of Open Access Journals (Sweden)

    Fengmei Song

    2018-04-01

    Full Text Available Previous studies demonstrate that human enterovirus 71 (EV71, a primary causative agent for hand, foot, and mouth disease, activates caspase-3 through the non-structural viral 3C protein to induce host cell apoptosis; however, until now it was unclear how 3C activates caspase-3 and how caspase-3 activation affects viral production. Our results demonstrate that 3C binds caspase-8 and caspase-9 but does not directly bind caspase-3 to activate them, and that the proteolytic activity of 3C is required by the activation of caspase-8, caspase-9, and caspase-3. Inhibition of caspase-3 activity attenuates apoptosis in 3C-transfected cells. Furthermore, caspase-3 inhibitor protects host cells from the cytopathic effect of EV71 infection and prevents cell cycle arrest, which is known to be favored for EV71 viral replication. Inhibition of caspase-3 activity decreases EV71 viral protein expression and viral production, but has no effect on viral entry, replication, even polyprotein translation. Therefore, caspase-3 is exploited functionally by EV71 to facilitate its production, which suggests a novel therapeutic approach for the treatment and prevention of hand, foot, and mouth disease.

  20. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    Science.gov (United States)

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  1. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N

    1997-01-01

    relative to the reaction in solution. The time course of uPA-catalyzed cleavage of cell-bound uPAR was studied using U937 cells stimulated with phorbol 12-myristate 13-acetate. Only 30 min was required for 10 nM uPA to cleave 50% of the cell-bound uPAR. This uPA-catalyzed cleavage reaction was inhibited...

  2. Cleavage events and sperm dynamics in chick intrauterine embryos.

    Directory of Open Access Journals (Sweden)

    Hyung Chul Lee

    Full Text Available This study was undertaken to elucidate detailed event of early embryogenesis in chicken embryos using a noninvasive egg retrieval technique before oviposition. White Leghorn intrauterine eggs were retrieved from 95 cyclic hens aged up to 54-56 weeks and morphogenetic observation was made under both bright field and fluorescent image in a time course manner. Differing from mammals, asymmetric cleavage to yield preblastodermal cells was observed throughout early embryogenesis. The first two divisions occurred synchronously and four polarized preblastodermal cells resulted after cruciform cleavage. Then, asynchronous cleavage continued in a radial manner and overall cell size in the initial cleavage region was smaller than that in the distal area. Numerous sperms were visible, regardless of zygotic nuclei formation. Condensed sperm heads were present mainly in the perivitelline space and cytoplasm, and rarely in the yolk region, while decondensed sperm heads were only visible in the yolk. In conclusion, apparent differences in sperm dynamics and early cleavage events compared with mammalian embryos were detected in chick embryo development, which demonstrated polarized cleavage with penetrating supernumerary sperm into multiple regions.

  3. The human papillomavirus (HPV) E6 oncoproteins promotes nuclear localization of active caspase 8

    Energy Technology Data Exchange (ETDEWEB)

    Manzo-Merino, Joaquin [Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080 (Mexico); Massimi, Paola [International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste (Italy); Lizano, Marcela, E-mail: lizanosoberon@gmail.com [Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080 (Mexico); Banks, Lawrence, E-mail: banks@icgeb.org [International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste (Italy)

    2014-02-15

    The HPV-16 E6 and E6{sup ⁎} proteins have been shown previously to be capable of regulating caspase 8 activity. We now show that the capacity of E6 to interact with caspase 8 is common to diverse HPV types, being also seen with HPV-11 E6, HPV-18 E6 and HPV-18 E6{sup ⁎}. Unlike most E6-interacting partners, caspase 8 does not appear to be a major proteasomal target of E6, but instead E6 appears able to stimulate caspase 8 activation, without affecting the overall apoptotic activity. This would appear to be mediated in part by the ability of the HPV E6 oncoproteins to recruit active caspase 8 to the nucleus. - Highlights: • Multiple HPV E6 oncoproteins interact with the caspase 8 DED domain. • HPV E6 stimulates activation of caspase 8. • HPV E6 promotes nuclear accumulation of caspase 8.

  4. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor.

    Directory of Open Access Journals (Sweden)

    Joseph Chavarría-Smith

    Full Text Available Inflammasomes are multimeric protein complexes that respond to infection by recruitment and activation of the Caspase-1 (CASP1 protease. Activated CASP1 initiates immune defense by processing inflammatory cytokines and by causing a rapid and lytic cell death called pyroptosis. Inflammasome formation is orchestrated by members of the nucleotide-binding domain and leucine-rich repeat (NLR or AIM2-like receptor (ALR protein families. Certain NLRs and ALRs have been shown to function as direct receptors for specific microbial ligands, such as flagellin or DNA, but the molecular mechanism responsible for activation of most NLRs is still poorly understood. Here we determine the mechanism of activation of the NLRP1B inflammasome in mice. NLRP1B, and its ortholog in rats, is activated by the lethal factor (LF protease that is a key virulence factor secreted by Bacillus anthracis, the causative agent of anthrax. LF was recently shown to cleave mouse and rat NLRP1 directly. However, it is unclear if cleavage is sufficient for NLRP1 activation. Indeed, other LF-induced cellular events have been suggested to play a role in NLRP1B activation. Surprisingly, we show that direct cleavage of NLRP1B is sufficient to induce inflammasome activation in the absence of LF. Our results therefore rule out the need for other LF-dependent cellular effects in activation of NLRP1B. We therefore propose that NLRP1 functions primarily as a sensor of protease activity and thus could conceivably detect a broader spectrum of pathogens than just B. anthracis. By adding proteolytic cleavage to the previously established ligand-receptor mechanism of NLR activation, our results illustrate the remarkable flexibility with which the NLR architecture can be deployed for the purpose of pathogen-detection and host defense.

  5. Identification and expression pattern of a new carotenoid cleavage dioxygenase gene member from Bixa orellana

    Science.gov (United States)

    Rodríguez-Ávila, N. L.; Narváez-Zapata, J. A.; Ramírez-Benítez, J. E.; Aguilar-Espinosa, M. L.; Rivera-Madrid, R.

    2011-01-01

    Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes involved in the biosynthesis of a broad diversity of secondary metabolites known as apocarotenoids. In plants, CCDs are part of a genetic family with members which cleave specific double bonds of carotenoid molecules. CCDs are involved in the production of diverse and important metabolites such as vitamin A and abscisic acid (ABA). Bixa orellana L. is the main source of the natural pigment annatto or bixin, an apocarotenoid accumulated in large quantities in its seeds. Bixin biosynthesis has been studied and the involvement of a CCD has been confirmed in vitro. However, the CCD genes involved in the biosynthesis of the wide variety of apocarotenoids found in this plant have not been well documented. In this study, a new CCD1 gene member (BoCCD1) was identified and its expression was charaterized in different plant tissues of B. orellana plantlets and adult plants. The BoCCD1 sequence showed high homology with plant CCD1s involved mainly in the cleavage of carotenoids in several sites to generate multiple apocarotenoid products. Here, the expression profiles of the BoCCD1 gene were analysed and discussed in relation to total carotenoids and other important apocarotenoids such as bixin. PMID:21813796

  6. Bile Acid-induced Apoptosis in Hepatocytes Is Caspase-6-dependent

    NARCIS (Netherlands)

    Rust, Christian; Wild, Nadine; Bernt, Carina; Vennegeerts, Timo; Wimmer, Ralf; Beuers, Ulrich

    2009-01-01

    Apoptosis induced by hydrophobic bile acids is thought to contribute to liver injury during cholestasis. Caspase-6 is an executioner caspase that also appears to have regulatory functions in hematopoetic cell lines. We aimed to elucidate the role of caspase-6 in bile acid-induced apoptosis. The

  7. Ecstasy-Induced Caspase Expression Alters Following Ginger Treatment

    Directory of Open Access Journals (Sweden)

    Sara Soleimani Asl

    2013-11-01

    Full Text Available Introduction: Exposure to 3-4, methylenedioxymethamphetamine (MDMA leads to cell death. Herein, we studied the protective effects of ginger on MDMA- induced apoptosis. Methods: 15 Sprague dawley male rats were administrated with 0, 10 mg/kg MDMA, or MDMA along with 100mg/kg ginger, IP for 7 days. Brains were removed to study the caspase 3, 8, and 9 expressions in the hippocampus by RT-PCR. Data was analyzed by SPSS 16 software using the one-way ANOVA test. Results: MDMA treatment resulted in a significant increase in caspase 3, 8, and 9 as compared to the sham group (p<0.001. Ginger administration however, appeared to significantly decrease the same (p<0.001. Discussion: Our findings suggest that ginger consumption may lead to the improvement of MDMA-induced neurotoxicity.

  8. Caspases in yeast apoptosis-like death: facts and artefacts

    Czech Academy of Sciences Publication Activity Database

    Váchová, Libuše; Palková, Z.

    2007-01-01

    Roč. 7, - (2007), s. 12-21 ISSN 1567-1356 R&D Projects: GA ČR GA525/05/0297; GA MŠk(CZ) LC531 Institutional research plan: CEZ:AV0Z50200510 Keywords : caspases and metacaspases * apoptosis and programmed cell death in yeast * saccharomyces cerevisiae Subject RIV: EE - Microbiology, Virology Impact factor: 2.812, year: 2007

  9. Molar tooth development in caspase-3 deficient mice

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Sharpe, P. T.; Lakhani, S. A.; Roth, K. A.; Flavell, R. A.; Šetková, Jana; Míšek, Ivan; Tucker, A. S.

    2006-01-01

    Roč. 50, 5 (2006), s. 491-497 ISSN 0214-6282 R&D Projects: GA AV ČR KJB500450503; GA MŠk OC B23.001 Grant - others:European Molecular Biology Organization ASTF195.00-05; NIH NS41962 Institutional research plan: CEZ:AV0Z50450515 Keywords : tooth development * dental apoptosis * caspase-3 mutant Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.577, year: 2006

  10. Bioluminescence determination of active caspase-3 in single apoptotic cells

    Czech Academy of Sciences Publication Activity Database

    Lišková, Marcela; Klepárník, Karel; Matalová, Eva; Hegrová, Jitka; Přikryl, Jan; Švandová, Eva; Foret, František

    2013-01-01

    Roč. 34, č. 12 (2013), s. 1772-1777 ISSN 0173-0835 R&D Projects: GA ČR GAP206/11/2377 Grant - others:GA ČR(CZ) GAP502/12/1285 Program:GA Institutional support: RVO:68081715 ; RVO:67985904 Keywords : apoptosis * bioluminescence * caspase-3 Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  11. IMMUNEPOTENT CRP induces cell cycle arrest and caspase-independent regulated cell death in HeLa cells through reactive oxygen species production.

    Science.gov (United States)

    Martínez-Torres, Ana Carolina; Reyes-Ruiz, Alejandra; Benítez-Londoño, Milena; Franco-Molina, Moises Armides; Rodríguez-Padilla, Cristina

    2018-01-03

    Regulated cell death (RCD) is a mechanism by which the cell activates its own machinery to self-destruct. RCD is important for the maintenance of tissue homeostasis and its deregulation is involved in diseases such as cervical cancer. IMMUNEPOTENT CRP (I-CRP) is a dialyzable bovine leukocyte extract that contains transfer factors and acts as an immunomodulator, and can be cytotoxic to cancer cell lines and reduce tumor burden in vivo. Although I-CRP has shown to improve or modulate immune response in inflammation, infectious diseases and cancer, its widespread use has been limited by the absence of conclusive data on the molecular mechanism of its action. In this study we analyzed the mechanism by which I-CRP induces cytotoxicity in HeLa cells. We assessed cell viability, cell death, cell cycle, nuclear morphology and DNA integrity, caspase dependence and activity, mitochondrial membrane potential, and reactive oxygen species production. I-CRP diminishes cell viability in HeLa cells through a RCD pathway and induces cell cycle arrest in the G2/M phase. We show that the I-CRP induces caspase activation but cell death induction is independent of caspases, as observed by the use of a pan-caspase inhibitor, which blocked caspase activity but not cell death. Moreover, we show that I-CRP induces DNA alterations, loss of mitochondrial membrane potential, and production of reactive-oxygen species. Finally, pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger, prevented both ROS generation and cell death induced by I-CRP. Our data indicate that I-CRP treatment induced cell cycle arrest in G2/M phase, mitochondrial damage, and ROS-mediated caspase-independent cell death in HeLa cells. This work opens the way to the elucidation of a more detailed cell death pathway that could potentially work in conjunction with caspase-dependent cell death induced by classical chemotherapies.

  12. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation.

    Science.gov (United States)

    Rawlings, Neil D

    2016-03-01

    One peptidase can usually be distinguished from another biochemically by its action on proteins, peptides and synthetic substrates. Since 1996, the MEROPS database (http://merops.sanger.ac.uk) has accumulated a collection of cleavages in substrates that now amounts to 66,615 cleavages. The total number of peptidases for which at least one cleavage is known is 1700 out of a total of 2457 different peptidases. This paper describes how the cleavages are obtained from the scientific literature, how they are annotated and how cleavages in peptides and proteins are cross-referenced to entries in the UniProt protein sequence database. The specificity profiles of 556 peptidases are shown for which ten or more substrate cleavages are known. However, it has been proposed that at least 40 cleavages in disparate proteins are required for specificity analysis to be meaningful, and only 163 peptidases (6.6%) fulfil this criterion. Also described are the various displays shown on the website to aid with the understanding of peptidase specificity, which are derived from the substrate cleavage collection. These displays include a logo, distribution matrix, and tables to summarize which amino acids or groups of amino acids are acceptable (or not acceptable) in each substrate binding pocket. For each protein substrate, there is a display to show how it is processed and degraded. Also described are tools on the website to help with the assessment of the physiological relevance of cleavages in a substrate. These tools rely on the hypothesis that a cleavage site that is conserved in orthologues is likely to be physiologically relevant, and alignments of substrate protein sequences are made utilizing the UniRef50 database, in which in each entry sequences are 50% or more identical. Conservation in this case means substitutions are permitted only if the amino acid is known to occupy the same substrate binding pocket from at least one other substrate cleaved by the same peptidase

  13. Hypocapnia induces caspase-3 activation and increases Abeta production.

    Science.gov (United States)

    Xie, Zhongcong; Moir, Robert D; Romano, Donna M; Tesco, Giuseppina; Kovacs, Dora M; Tanzi, Rudolph E

    2004-01-01

    At least half of all cases of early onset (<60) familial Alzheimer's disease (FAD) are caused by any of over 150 mutations in three genes: the amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2). Mutant forms of PS1 have been shown to sensitize cells to apoptotic cell death. We investigated the effects of hypocapnia, a risk factor for both cognitive and neurodevelopment deficits, on caspase-3 activation, apoptosis, and amyloid beta-protein (Abeta) production, and assessed the influence of the PS1Delta9 FAD mutation on these effects. For this purpose, we exposed stably transfected H4 human neuroglioma cells to conditions consistent with hypocapnia (PCO2<40 mm Hg) and hypocapnia plus hypoxia (PO2<21%). Hypocapnia (20 mm Hg CO2 for 6 h) induced caspase-3 activation and apoptosis; the PS1Delta9 FAD mutation significantly potentiated these effects. Moreover, the combination of hypocapnia (20 mm Hg CO2) and hypoxia (5%O2) induced caspase-3 activation and apoptosis in a synergistic manner. Hypocapnia (5 and 20 mm Hg CO2 for 6 h) also led to an increased Abeta production. The findings suggest that hypocapnia (e.g. during general anesthesia) could exacerbate AD neuropathogenesis. Copyright (c) 2004 S. Karger AG, Basel.

  14. Involvement of the Extrinsic and Intrinsic Pathways in Ultraviolet B-Induced Apoptosis of Corneal Epithelial Cells

    Science.gov (United States)

    Ubels, John L.; Glupker, Courtney D.; Schotanus, Mark P.; Haarsma, Loren D.

    2015-01-01

    The goal of this study was to elucidate the pathway by which UVB initiates efflux of K+ and subsequently apoptosis in human corneal limbal epithelial (HCLE) cells. The initial focus of the study was on the extrinsic pathway involving Fas. HCLE cells transfected with Fas siRNA were exposed to 80–150 mJ/cm2 UVB and incubated in culture medium with 5.5 mM K+. Knock down of Fas resulted in limited reduction in UVB-induced caspase-8 and -3 activity. Patch-clamp recordings showed no difference in UVB-induced normalized K+ currents between Fas transfected and control cells. Knockdown of caspase-8 had no effect on the activation of caspase-3 following UVB exposure, while a caspase-8 inhibitor completely eliminated UVB activation of caspase-3. This suggests that caspase-8 is a robust enzyme, able to activate caspase-3 via residual caspase-8 present after knockdown, and that caspase-8 is directly involved in the UVB activation of caspase-3. Inhibition of caspase-9 significantly decreased the activation of caspases-8 and -3 in response to UVB. Knockdown of Apaf-1, required for activation of caspase-9, resulted in a significant reduction in UVB-induced activation of caspases-9, -8, and -3. Knockdown of Apaf-1 also inhibited intrinsic and UVB-induced levels of apoptosis, as determined by DNA fragmentation measured by TUNEL assay. In UVB exposed cultures treated with caspase-3 inhibitor, the percentage of apoptotic cells was reduced to control levels, confirming the necessity of caspase-3 activation in DNA fragmentation. The lack of effect of Fas knockdown on K+ channel activation, as well as the limited effect on activation of caspases-8 and -3, strongly suggest that Fas and the extrinsic pathway is not of primary importance in the initiation of apoptosis in response to UVB in HCLE cells. Inhibition of caspase-8 and -3 activation following inhibition of caspase-9, as well as reduction in activation of caspases-9, -8, and -3 and DNA fragmentation in response to Apaf-1

  15. Cleavage of mispaired heteroduplex DNA substrates by numerous restriction enzymes.

    Science.gov (United States)

    Langhans, Mark T; Palladino, Michael J

    2009-01-01

    The utility of restriction endonucleases as a tool in molecular biology is in large part due to the high degree of specificity with which they cleave well-characterized DNA recognition sequences. The specificity of restriction endonucleases is not absolute, yet many commonly used assays of biological phenomena and contemporary molecular biology techniques rely on the premise that restriction enzymes will cleave only perfect cognate recognition sites. In vitro, mispaired heteroduplex DNAs are commonly formed, especially subsequent to polymerase chain reaction amplification. We investigated a panel of restriction endonucleases to determine their ability to cleave mispaired heteroduplex DNA substrates. Two straightforward, non-radioactive assays are used to evaluate mispaired heteroduplex DNA cleavage: a PCR amplification method and an oligonucleotide-based assay. These assays demonstrated that most restriction endonucleases are capable of site-specific double-strand cleavage with heteroduplex mispaired DNA substrates, however, certain mispaired substrates do effectively abrogate cleavage to undetectable levels. These data are consistent with mispaired substrate cleavage previously reported for Eco RI and, importantly, extend our knowledge of mispaired heteroduplex substrate cleavage to 13 additional enzymes.

  16. Ring cleavage of sulfur heterocycles: how does it happen?

    Science.gov (United States)

    Bressler, D C; Norman, J A; Fedorak, P M

    Sulfur heterocycles are common constituents of petroleum and liquids derived from coal, and they are found in some secondary metabolites of microorganisms and plants. They exist primarily as saturated rings and thiophenes. There are two major objectives driving investigations of the microbial metabolism of organosulfur compounds. One is the quest to develop a process for biodesulfurization of fossil fuels, and the other is to understand the fates of organosulfur compounds in petroleum- or creosote-contaminated environments which is important in assessing bioremediation processes. For these processes to be successful, cleavage of different types of sulfur heterocyclic rings is paramount. This paper reviews the evidence for microbial ring cleavage of a variety of organosulfur compounds and discusses the few well-studied cases which have shown that the C-S bond is most susceptible to breakage leading to disruption of the ring. In most cases, the introduction of one or more oxygen atom(s) onto the adjacent C atom and/or onto the S atom weakens the C-S bond, facilitating its cleavage. Although much is known about the thiophene ring cleavage in dibenzothiophene, there is still a great deal to be learned about the cleavage of other sulfur heterocycles.

  17. Ring cleavage of sulfur heterocycles: how does it happen?

    Energy Technology Data Exchange (ETDEWEB)

    Bressler, D.C.; Norman, J.A.; Fedorak, P.M. [University of Alberta, Edmonton, AB (Canada). Dept. of Biological Sciences

    1997-12-31

    Sulfur heterocycles are common constituents of petroleum and liquids derived from coal, and they are found in some secondary metabolites of microorganisms and plants. They exist primarily as saturated rings and thiophenes. There are two major objectives driving investigations of the microbial metabolism of organosulfur compounds. One is the quest to develop a process for biodesulfurization of fossil fuels, and the other is to understand the fates of organosulfur compounds in petroleum-or-creosote-contaminated environments which is important in assessing bioremediation processes. For these processes to be successful, cleavage of different types of sulfur heterocyclic rings is paramount. This paper reviews the evidence for microbial ring cleavage of a variety of organosulfur compounds and discusses the few well-studied cases which have shown that the C-S bond is most susceptible to breakage leading to disruption of the ring. In most cases, the introduction of one or more oxygen atom(s) onto the adjacent C atom and/or onto the S atom weakens the C-S bond, facilitating its cleavage. Although much is known about the thiophene ring cleavage in dibenzothiophene, there is still a great deal to be learned about the cleavage of other sulfur heterocycles.

  18. Phosphorylation of Smac by Akt promotes the caspase-3 activation during etoposide-induced apoptosis in HeLa cells.

    Science.gov (United States)

    Jeong, Chul-Ho; Chun, Kyung-Soo; Kundu, Juthika; Park, Byoungduck

    2015-02-01

    The Akt, family of serine/threonine protein kinases functions as key regulators of multiple aspects of cell behavior, such as survival, proliferation, migration, and carcinogenesis. Notably, Akt exerts its anti-apoptotic effects through the phosphorylation of numerous substrates related with cell cycle, genome stability, and cancer development. In this report, nevertheless, we focused our view on the novel role of Akt which involves in a pro-apoptotic action by phosphorylating second mitochondria derived activator of caspases (Smac) protein during etoposide-induced apoptotic processes. Our data reveals that Akt could bind to and phosphorylate Smac at serine residue 67, which enhances the ability of Smac to interact with the cytosolic X-chromosome linked IAP (XIAP) protein. The cellular interaction of wild-type Smac with XIAP was enhanced with similar activation kinetics of Akt activity, while this interaction was markedly attenuated in cells expressing the phosphorylation-defective mutant S67A-Smac during etoposide-induced apoptosis. Moreover, we provide the evidence indicating that the phosphorylation of Smac at ser-67 markedly upregulates the caspase-3 activity by promoting the interaction of Smac with XIAP. Taken together, we propose that the phosphorylation of Smac by Akt might be a novel mechanism that involves in amplification of caspase cascade pathway during etoposide-induced apoptosis in HeLa cells. © 2013 Wiley Periodicals, Inc.

  19. Changes in ultrastructure, protease and caspase-like activities during flower senescence in Lilium longiflorum.

    Science.gov (United States)

    Battelli, Riccardo; Lombardi, Lara; Rogers, Hilary J; Picciarelli, Piero; Lorenzi, Roberto; Ceccarelli, Nello

    2011-05-01

    The last phase of flower development is senescence during which nutrients are recycled to developing tissues. The ultimate fate of petal cells is cell death. In this study we used the ethylene-insensitive Lilium longiflorum as a model system to characterize Lily flower senescence from the physiological, biochemical and ultrastructural point of view. Lily flower senescence is highly predictable: it starts three days after flower opening, before visible signs of wilting, and ends with the complete wilting of the corolla within 10 days. The earliest events in L. longiflorum senescence include a fall in fresh and dry weight, fragmentation of nuclear DNA and cellular disruption. Mesophyll cell degradation is associated with vacuole permeabilization and rupture. Protein degradation starts later, coincident with the first visible signs of tepal senescence. A fall in total protein is accompanied by a rise in total proteases, and also by a rise of three classes of caspase-like activity with activities against YVAD, DEVD and VEID. The timing of the appearance of these caspase-like activities argues against their involvement in the regulation of the early stages of senescence, but their possible role in the regulation of the final stages of senescence and cell death is discussed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Comparative genomics reveals conservation of filaggrin and loss of caspase-14 in dolphins.

    Science.gov (United States)

    Strasser, Bettina; Mlitz, Veronika; Fischer, Heinz; Tschachler, Erwin; Eckhart, Leopold

    2015-05-01

    The expression of filaggrin and its stepwise proteolytic degradation are critical events in the terminal differentiation of epidermal keratinocytes and in the formation of the skin barrier to the environment. Here, we investigated whether the evolutionary transition from a terrestrial to a fully aquatic lifestyle of cetaceans, that is dolphins and whales, has been associated with changes in genes encoding filaggrin and proteins involved in the processing of filaggrin. We used comparative genomics, PCRs and re-sequencing of gene segments to screen for the presence and integrity of genes coding for filaggrin and proteases implicated in the maturation of (pro)filaggrin. Filaggrin has been conserved in dolphins (bottlenose dolphin, orca and baiji) but has been lost in whales (sperm whale and minke whale). All other S100 fused-type genes have been lost in cetaceans. Among filaggrin-processing proteases, aspartic peptidase retroviral-like 1 (ASPRV1), also known as saspase, has been conserved, whereas caspase-14 has been lost in all cetaceans investigated. In conclusion, our results suggest that filaggrin is dispensable for the acquisition of fully aquatic lifestyles of whales, whereas it appears to confer an evolutionary advantage to dolphins. The discordant evolution of filaggrin, saspase and caspase-14 in cetaceans indicates that the biological roles of these proteins are not strictly interdependent. © 2015 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  1. Prediction of proprotein convertase cleavage sites

    DEFF Research Database (Denmark)

    Duckert, Peter; Brunak, Søren; Blom, Nikolaj

    2004-01-01

    by members of the subtilisin/kexin-like proprotein convertase (PC) family. In mammals, seven members have been identified, with furin being the one first discovered and best characterized. Recently, the involvement of furin in diseases ranging from Alzheimer's disease and cancer to anthrax and Ebola fever...

  2. A Novel Method for Imaging Apoptosis Using a Caspase-1 Near-Infrared Fluorescent Probe

    Directory of Open Access Journals (Sweden)

    Shanta M. Messerli

    2004-03-01

    Full Text Available Here we describe a novel method for imaging apoptosis in cells using a near-infrared fluorescent (NIRF probe selective for caspase-1 (interleukin β-converting enzyme, ICE. This biocompatible, optically quenched ICE-NIRF probe incorporates a peptide substrate, which can be selectively cleaved by caspase-1, resulting in the release of fluorescence signal. The specificity of this probe for caspase-1 is supported by various lines of evidence: 1 activation by purified caspase-1, but not another caspase in vitro; 2 activation of the probe by infection of cells with a herpes simplex virus amplicon vector (HGC-ICE-IacZ expressing a catalytically active caspase-1-IacZ fusion protein; 3 inhibition of HGC-ICE-IacZ vector-induced activation of the probe by coincubation with the caspase-1 inhibitor YVAD-cmk, but not with a caspase-3 inhibitor; and 4 activation of the probe following standard methods of inducing apoptosis with staurosporine, ganciclovir, or ionizing radiation in culture. These results indicate that this novel ICE-NIRF probe can be used in monitoring endogenous and vector-expressed caspase-1 activity in cells. Furthermore, tumor implant experiments indicate that this ICE-NIRF probe can be used to detect caspase-1 activity in living animals. This novel ICE-NIRF probe should prove useful in monitoring endogenous and vector-expressed caspase-1 activity, and potentially apoptosis in cell culture and in vivo.

  3. Mitochondrial DNA oxidation induces imbalanced activity of NLRP3/NLRP6 inflammasomes by activation of caspase-8 and BRCC36 in dry eye.

    Science.gov (United States)

    Chi, Wei; Hua, Xia; Chen, Xin; Bian, Fang; Yuan, Xiaoyong; Zhang, Lili; Wang, Xiaoran; Chen, Ding; Deng, Ruzhi; Li, Zhijie; Liu, Yizhi; de Paiva, Cintia S; Pflugfelder, Stephen C; Li, De-Quan

    2017-06-01

    The concept of innate immunity has been expanded to recognize environmental pathogens other than microbial components. However, whether and how the innate immunity is initiated by epithelium in response to environmental physical challenges such as low humidity and high osmolarity in an autoimmune disease, dry eye, is still largely unknown. Using two experimental dry eye models, primary human corneal epithelial cultures exposed to hyperosmolarity and mouse ocular surface facing desiccating stress, we uncovered novel innate immunity pathway by ocular surface epithelium, where oxidized mitochondrial DNA induces imbalanced activation of NLRP3/NLRP6 inflammasomes via stimulation of caspase-8 and BRCC36 in response to environmental stress. Activated NLRP3 with suppressed NLRP6 stimulates caspase-1 activation that leads to IL-1β and IL-18 maturation and secretion. NLRP3-independent caspase-8 noncanonically activates caspase-1 via reciprocal regulation of NLRP3/NLRP6-mediated inflammasomes. Reactive oxygen species-induced mitochondrial DNA oxidative damage and BRCC36 deubiquitinating activity provide a missing link and mechanism by which innate immunity responds to environmental stress via caspase-8-involved NLRP3/NLRP6 inflammasomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dioscin induces caspase-independent apoptosis through activation of apoptosis-inducing factor in breast cancer cells.

    Science.gov (United States)

    Kim, Eun-Ae; Jang, Ji-Hoon; Lee, Yun-Han; Sung, Eon-Gi; Song, In-Hwan; Kim, Joo-Young; Kim, Suji; Sohn, Ho-Yong; Lee, Tae-Jin

    2014-07-01

    Dioscin, a saponin extracted from the roots of Polygonatum zanlanscianense, shows several bioactivities such as antitumor, antifungal, and antiviral properties. Although, dioscin is already known to induce cell death in variety cancer cells, the molecular basis for dioscin-induced cell death was not definitely known in cancer cells. In this study, we found that dioscin treatment induced cell death in dose-dependent manner in breast cancer cells such as MDA-MB-231, MDA-MB-453, and T47D cells. Dioscin decreased expressions of Bcl-2 and cIAP-1 proteins, which were down-regulated at the transcriptional level. Conversely, Mcl-1 protein level was down-regulated by facilitating ubiquitin/proteasome-mediated Mcl-1 degradation in dioscin-treated cells. Pretreatment with z-VAD fails to attenuate dioscin-induced cell death as well as caspase-mediated events such as cleavages of procaspase-3 and PARP. In addition, dioscin treatment increased the population of annexin V positive cells and induced DNA fragmentation in a dose-dependent manner in MDA-MB-231 cells. Furthermore, apoptosis inducing factor (AIF) was released from the mitochondria and translocated to the nucleus. Suppression in AIF expression by siRNA reduced dioscin-induced apoptosis in MDA-MB-231 cells. Taken together, our results demonstrate that dioscin-induced cell death was mediated via AIF-facilitating caspase-independent pathway as well as down-regulating anti-apoptotic proteins such as Bcl-2, cIAP-1, and Mcl-1 in breast cancer cells.

  5. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release

    Directory of Open Access Journals (Sweden)

    Zhang YueMei

    2005-02-01

    Full Text Available Abstract Background Apoptosis plays a key role in cell death observed in neurodegenerative diseases marked by a progressive loss of neurons as seen in Alzheimer's disease. Although the exact cause of apoptosis is not known, a number of factors such as free radicals, insufficient levels of nerve growth factors and excessive levels of glutamate have been implicated. We and others, have previously reported that in a stable HT22 neuronal cell line, glutamate induces apoptosis as indicated by DNA fragmentation and up- and down-regulation of Bax (pro-apoptotic, and Bcl-2 (anti-apoptotic genes respectively. Furthermore, these changes were reversed/inhibited by estrogens. Several lines of evidence also indicate that a family of cysteine proteases (caspases appear to play a critical role in neuronal apoptosis. The purpose of the present study is to determine in primary cultures of cortical cells, if glutamate-induced neuronal apoptosis and its inhibition by estrogens involve changes in caspase-3 protease and whether this process is mediated by Fas receptor and/or mitochondrial signal transduction pathways involving release of cytochrome c. Results In primary cultures of rat cortical cells, glutamate induced apoptosis that was associated with enhanced DNA fragmentation, morphological changes, and up-regulation of pro-caspase-3. Exposure of cortical cells to glutamate resulted in a time-dependent cell death and an increase in caspase-3 protein levels. Although the increase in caspase-3 levels was evident after 3 h, cell death was only significantly increased after 6 h. Treatment of cells for 6 h with 1 to 20 mM glutamate resulted in a 35 to 45% cell death that was associated with a 45 to 65% increase in the expression of caspase-3 protein. Pretreatment with caspase-3-protease inhibitor z-DEVD or pan-caspase inhibitor z-VAD significantly decreased glutamate-induced cell death of cortical cells. Exposure of cells to glutamate for 6 h in the presence or

  6. A new cultural cleavage in post-modern society

    Directory of Open Access Journals (Sweden)

    Jan-Erik Lane

    2007-09-01

    Full Text Available The attitudes towards gender and homosexuality tend to be linked at the micro level (individuals, which explains the political saliency of this newly emerging cleavage. At the macro level (country, the main finding is that the value orientations towards gender and homosexuality are strongly embedded in the basic cultural or civilisation differences among countries. As developing countries modernise and enter post-modernity, they will also experience the gender cleavage, especially when they adhere to an individualistic culture. Cultural cleavages in the post-modern society, whether in rich or developing countries, can only be properly researched by the survey method. It opens up a large area for both micro and macro analyses in the social sciences.

  7. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  8. Sensitive and fast mutation detection by solid phase chemical cleavage

    DEFF Research Database (Denmark)

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A

    1996-01-01

    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  9. Identification of Rbd2 as a candidate protease for sterol regulatory element binding protein (SREBP) cleavage in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsil; Ha, Hye-Jeong [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kim, Sujin [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Choi, Ah-Reum [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Sook-Jeong [Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Hoe, Kwang-Lae, E-mail: kwanghoe@cnu.ac.kr [Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Kim, Dong-Uk, E-mail: kimdongu@kribb.re.kr [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2015-12-25

    Lipid homeostasis in mammalian cells is regulated by sterol regulatory element-binding protein (SREBP) transcription factors that are activated through sequential cleavage by Golgi Site-1 and Site-2 proteases. Fission yeast SREBP, Sre1, engages a different mechanism involving the Golgi Dsc E3 ligase complex, but it is not clearly understood exactly how Sre1 is proteolytically cleaved and activated. In this study, we screened the Schizosaccharomyces pombe non-essential haploid deletion collection to identify missing components of the Sre1 cleavage machinery. Our screen identified an additional component of the SREBP pathway required for Sre1 proteolysis named rhomboid protein 2 (Rbd2). We show that an rbd2 deletion mutant fails to grow under hypoxic and hypoxia-mimetic conditions due to lack of Sre1 activity and that this growth phenotype is rescued by Sre1N, a cleaved active form of Sre1. We found that the growth inhibition phenotype under low oxygen conditions is specific to the strain with deletion of rbd2, not any other fission yeast rhomboid-encoding genes. Our study also identified conserved residues of Rbd2 that are required for Sre1 proteolytic cleavage. All together, our results suggest that Rbd2 is a functional SREBP protease with conserved residues required for Sre1 cleavage and provide an important piece of the puzzle to understand the mechanisms for Sre1 activation and the regulation of various biological and pathological processes involving SREBPs. - Highlights: • An rbd2-deleted yeast strain shows defects in growth in response to low oxygen levels. • rbd2-deficient cells fail to generate cleaved Sre1 (Sre1N) under hypoxic conditions. • Expression of Sre1N rescues the rbd2 deletion mutant growth phenotype. • Rbd2 contains conserved residues potentially critical for catalytic activity. • Mutation of the conserved Rbd2 catalytic residues leads to defects in Sre1 cleavage.

  10. Autoregulatory Feedback Mechanism of P38MAPK/Caspase-8 in Photodynamic Therapy-Hydrophilic/Lipophilic Tetra-α-(4-carboxyphenoxy Phthalocyanine Zinc-Induced Apoptosis of Human Hepatocellular Carcinoma Bel-7402 Cells

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Photodynamic therapy (PDT is a novel and promising antitumor treatment. Our previous study showed that hydrophilic/lipophilic tetra-α-(4-carboxyphenoxy phthalocyanine zinc- (TαPcZn- mediated PDT (TαPcZn-PDT inhibits the proliferation of human hepatocellular carcinoma Bel-7402 cells by triggering apoptosis and arresting cell cycle. However, mechanisms of TαPcZn-PDT-induced apoptosis of Bel-7402 cells have not been fully clarified. In the present study, therefore, effect of TαPcZn-PDT on apoptosis, P38MAPK, p-P38MAPK, Caspase-8, Caspase-3, Bcl-2, Bid, Cytochrome c, and mitochondria membrane potential in Bel-7402 cells without or with P38MAPK inhibitor SB203580 or Caspase-8 inhibitor Ac-IEFD-CHO was investigated by haematoxylin and eosin (HE staining assay, flow cytometry analysis of annexin V-FITC/propidium iodide (PI double staining cells and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1, and immunoblot assay. We found that TαPcZn-PDT resulted in apoptosis induction, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. In contrast, SB203580 or Ac-IEFD-CHO attenuated induction of apoptosis, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. Taken together, we conclude that Caspase-3, Bcl-2, Bid, and mitochondria are involved in autoregulatory feedback of P38MAPK/Caspase-8 during TαPcZn-PDT-induced apoptosis of Bel-7402 cells.

  11. Chemical -induced apoptotic cell death in tomato cells : involvement of caspase-like proteases

    NARCIS (Netherlands)

    Jong, de A.J.; Hoeberichts, F.A.; Yakimova, E.T.; Maximova, E.; Woltering, E.J.

    2000-01-01

    A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the

  12. Erythrocyte caspase-3 levels in children with chronic kidney disease.

    Science.gov (United States)

    Polak-Jonkisz, D; Purzyc, L; Szcepańska, M; Makulska, I

    2013-02-01

    In chronic kidney disease (CKD), a number of intra- and extracellular factors, e.g., uremic toxins, mechanic, oxidative or osmotic stress - induce changes (rearrangements) in the structure of cytoplasmatic membrane, while also simultaneously deregulating blood cell metabolism and, in consequence, contributing to preliminary ageing and suicidal death of red blood cells (RBCs).The aim of the reported study was an evaluation of caspase-3 and lactate dehydrogenase activities and of ATP concentrations in erythrocytes as cellular responses to CKD progress. Conservatively treated sixty (60) CKD children were enrolled into the study and divided, according to CKD progression (stage I-IV). The control group consisted of twenty-five (25) healthy children. The activity of caspase-3 (Casp-3) and lactate dehydrogenase (LDH) were spectrophotometrically assayed in haemolysed erythrocytes. Adenosine triphosphate (ATP(e)) concentrations were measured by means of a luciferin-luciferase kit. A gradual increase of LDH and ATP levels was observed in transition from CKD stage I to stage III. In Group IV, the levels of those parameters were statistically significantly lower than in the control group. The activity of Casp-3 in Group I was comparable to that in healthy children. The highest activity of Casp-3 was observed in Group III. 1. The activity of caspase-3 in RBCs of CKD children grows with progression of the disease. 2. The lower LDH activities and the ATP concentration drop below the values characteristic for the control group, as observed in stage IV of CKD, indicate a compromised energy balance. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway

    KAUST Repository

    Zaher, Manal S.

    2018-01-27

    RNA-DNA hybrid primers synthesized by low fidelity DNA polymerase α to initiate eukaryotic lagging strand synthesis must be removed efficiently during Okazaki fragment (OF) maturation to complete DNA replication. In this process, each OF primer is displaced and the resulting 5\\'-single-stranded flap is cleaved by structure-specific 5\\'-nucleases, mainly Flap Endonuclease 1 (FEN1), to generate a ligatable nick. At least two models have been proposed to describe primer removal, namely short- and long-flap pathways that involve FEN1 or FEN1 along with Replication Protein A (RPA) and Dna2 helicase/nuclease, respectively. We addressed the question of pathway choice by studying the kinetic mechanism of FEN1 action on short- and long-flap DNA substrates. Using single molecule FRET and rapid quench-flow bulk cleavage assays, we showed that unlike short-flap substrates, which are bound, bent and cleaved within the first encounter between FEN1 and DNA, long-flap substrates can escape cleavage even after DNA binding and bending. Notably, FEN1 can access both substrates in the presence of RPA, but bending and cleavage of long-flap DNA is specifically inhibited. We propose that FEN1 attempts to process both short and long flaps, but occasional missed cleavage of the latter allows RPA binding and triggers the long-flap OF maturation pathway.

  14. AlCl3 induces lymphocyte apoptosis in rats through the mitochondria-caspase dependent pathway.

    Science.gov (United States)

    Li, Miao; Song, Miao; Ren, Li-Min; Xiu, Chun-Yu; Liu, Jian-Yu; Zhu, Yan-zhu; Li, Yan-Fei

    2016-04-01

    To investigate apoptosis mechanisms in lymphocytes induced by aluminum trichloride (AlCl3) through the mitochondria-caspase dependent pathway, the spleen lymphocytes of rats were cultured with RPMI-1640 medium and exposed to AlCl3·6H2O in the final concentrations of 0 (control group, CG), 0.3 (low-dose group, LG), 0.6 (mid-dose group, MG), and 1.2 (high-dose group, HG) mmol·L(-1) for 24 h, respectively. Mitochondrial transmembrane potential (ΔΨm), cytochrome C (Cyt C) protein expression in cytoplasm, Caspase-3 and Caspase-9 activity, Bcl-2, Bax, Caspase-3 and Caspase-9 mRNA expressions, DNA ladder and lymphocytes apoptosis index were detected. The results showed that Cyt C protein expression in cytoplasm, Caspase-3 and Caspase-9 activity, Bcl-2, Bax, Caspase-3 and Caspase-9 mRNA expressions, the ratio of Bcl-2 and Bax mRNA expression, lymphocytes apoptosis index increased, while ΔΨm decreased in the AlCl3-treated groups compared with those in CG. The results indicate that AlCl3 induces lymphocyte apoptosis in rats through the mitochondria-caspase dependent pathway. © 2014 Wiley Periodicals, Inc.

  15. Induction of Manduca sexta Larvae Caspases Expression in Midgut Cells by Bacillus thuringiensis Cry1Ab Toxin

    Directory of Open Access Journals (Sweden)

    Helena Porta

    2011-01-01

    Full Text Available Bacillus thuringiensis produces crystal toxins known as Cry that are highly selective against important agricultural and human health-related insect pests. Cry proteins are pore-forming toxins that interact with specific receptors in the midgut cell membrane of susceptible larvae making pores that cause osmotic shock, leading finally to insect death. In the case of pore-forming toxins that are specific to mammalian cells, death responses at low doses may induce apoptosis or pyroptosis, depending on the cell type. The death mechanism induced by Cry toxins in insect midgut cells is poorly understood. Here, we analyze the caspases expression by RT-PCR analysis, showing that the initial response of Manduca sexta midgut cells after low dose of Cry1Ab toxin administration involves a fast and transient accumulation of caspase-1 mRNA, suggesting that pyroptosis was activated by Cry1Ab toxin as an initial response but was repressed later. In contrast, caspase-3 mRNA requires a longer period of time of toxin exposure to be activated but presents a sustained activation, suggesting that apoptosis may be a cell death mechanism induced also at low dose of toxin.

  16. Purification and characterization of a cytochrome c with novel caspase-3 activation activity from the pathogenic fungus Rhizopus arrhizus.

    Science.gov (United States)

    Saxena, Manoj; Sharma, Rohit Kumar; Ramirez-Paz, Josell; Tinoco, Arthur D; Griebenow, Kai

    2015-09-03

    Members of Rhizopus species are the most common cause of mucormycosis, a rare but often fatal fungal infection. Host induced pathogen apoptosis and pathogen induced host cell apoptosis are often involved in fungal infections. In many organisms, the release of mitochondrial cytochrome c can trigger apoptosis by activating caspase proteases, but the role of fungal cytochrome c in apoptosis remains unknown. DNA sequence encoding Rhizopus arrhizus cytochrome c was cloned and expressed in E. coli. Both native and recombinant cytochrome c were purified using ion exchange followed by gel filtration chromatography. The identities of purified proteins were confirmed by MALDI-MS and UV-Visible spectroscopy. For the first time, we demonstrated that Rhizopus arrhizus cytochrome c could activate human capspase-3 in HeLa cell extracts. We also found that Rhizopus arrhizus cytochrome c has redox potential, peroxidase activity, and spectral properties similar to human and horse cytochrome c proteins. Rhizopus arrhizus cytochrome c can activate human caspase-3 in HeLa cell extracts and it possesses similar physical and spectral properties as human and horse cytochrome c. This protein was found to have a previously unknown potential to activate human caspase-3, an important step in the apoptosis cascade.

  17. DNA cleavage agents from Schisandra propinqua var. sinensis ...

    African Journals Online (AJOL)

    DNA cleavage agents from Schisandra propinqua var. sinensis. Y Chen, L Hai, Y Liu, X Liao. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  18. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B

    DEFF Research Database (Denmark)

    Baron, Caroline; Jacobsen, S.; Purslow, P.P.

    2004-01-01

    The intermediate filament protein, desmin, was purified from pork longissimus dorsi and incubated with either P-calpain, m-calpain or cathepsin B. Proteolysis of desmin was followed using SDS-PAGE and Western blotting. After incubation of desmin with the proteases, cleavage sites on the desmin...

  19. DNA binding and cleavage activity of a structurally characterized Ni ...

    Indian Academy of Sciences (India)

    1375–1381. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0900-4. DNA binding and cleavage activity of a structurally characterized Ni(II). Schiff base complex. SARAT CHANDRA KUMARa, ABHIJIT PALa, MERRY MITRAa,. V M MANIKANDAMATHAVANb, CHIA -HER LINc, BALACHANDRAN UNNI NAIRb,∗.

  20. Early post-cleavage stages and abnormalities identified in the ...

    African Journals Online (AJOL)

    Six early, post-cleavage embryonic stages for chokka squid Loligo vulgaris reynaudii eggs that were developed in an aquarium are identified and described, expanding the embryonic stages for this species from 14 to 20. The influence of water temperature on embryonic development is described. At temperatures  ...

  1. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.|info:eu-repo/dai/nl/325783802

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid

  2. Detection of meta - and ortho -cleavage dioxygenases in bacterial ...

    African Journals Online (AJOL)

    In contrast, isolates S-5, Sea-8, W-6, W-15 and Pla-1 showed activity with the enzyme catalyzing the second step in the phenol degradation meta-cleavage pathway, catechol-2,3-dioxygenase. On the basis of our previous and present analysis, the investigated isolates are considered to have a good potential for application ...

  3. Photo-induced antimicrobial and DNA cleavage studies of ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 125, No. 5, September 2013, pp. 1015–1027. c Indian Academy of Sciences. Photo-induced antimicrobial and DNA cleavage studies ... †Present address: Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, India. #Present address: ..... C overnight and exam- ined for ...

  4. Definition issues of concepts of social cleavages in Africa | Raphael ...

    African Journals Online (AJOL)

    The main problem is whether the definitions of concepts are coherent to reflect the complex social realities. Based on the theoretical framework and on the analysis of the definitions, it becomes clear that the social cleavage concepts are not consistent once applied to African societies. For the Rwandan society in particular, ...

  5. DNA binding and cleavage activity of a structurally characterized Ni ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 8. DNA binding and cleavage activity of a structurally characterized Ni(II) Schiff base complex. Sarat Chandra Kumar Abhijit Pal Merry Mitra V M Manikandamathavan Chia -Her Lin Balachandran Unni Nair Rajarshi Ghosh. Regular Articles Volume 127 ...

  6. Kinetics of phycocyanobilin cleavage from C-phycocyanin by methanolysis

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Roda Serrat, Maria Cinta; Christensen, Knud Villy

    2016-01-01

    Phycocyanobilin (PCB) is an important linear tetrapyrrolic molecule for food as well as pharmaceutical industry. It is obtained from blue-green algae, where it is attached covalently to phycobiliproteins (C-PC and APC) present in the light harvesting complexes. In this work, cleavage of PCB from...

  7. Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma.

    Science.gov (United States)

    Gonzalez-Gomez, Pilar; Bello, M Josefa; Inda, M Mar; Alonso, M Eva; Arjona, Dolores; Amiñoso, Cinthia; Lopez-Marin, Isabel; de Campos, Jose M; Sarasa, Jose L; Castresana, Javier S; Rey, Juan A

    2004-09-01

    Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm.

  8. Modulation of Caspase Activity Regulates Skeletal Muscle Regeneration and Function in Response to Vasopressin and Tumor Necrosis Factor

    Science.gov (United States)

    Moresi, Viviana; Garcia-Alvarez, Gisela; Pristerà, Alessandro; Rizzuto, Emanuele; Albertini, Maria C.; Rocchi, Marco; Marazzi, Giovanna; Sassoon, David; Adamo, Sergio; Coletti, Dario

    2009-01-01

    Muscle homeostasis involves de novo myogenesis, as observed in conditions of acute or chronic muscle damage. Tumor Necrosis Factor (TNF) triggers skeletal muscle wasting in several pathological conditions and inhibits muscle regeneration. We show that intramuscular treatment with the myogenic factor Arg8-vasopressin (AVP) enhanced skeletal muscle regeneration and rescued the inhibitory effects of TNF on muscle regeneration. The functional analysis of regenerating muscle performance following TNF or AVP treatments revealed that these factors exerted opposite effects on muscle function. Principal component analysis showed that TNF and AVP mainly affect muscle tetanic force and fatigue. Importantly, AVP counteracted the effects of TNF on muscle function when delivered in combination with the latter. Muscle regeneration is, at least in part, regulated by caspase activation, and AVP abrogated TNF-dependent caspase activation. The contrasting effects of AVP and TNF in vivo are recapitulated in myogenic cell cultures, which express both PW1, a caspase activator, and Hsp70, a caspase inhibitor. We identified PW1 as a potential Hsp70 partner by screening for proteins interacting with PW1. Hsp70 and PW1 co-immunoprecipitated and co-localized in muscle cells. In vivo Hsp70 protein level was upregulated by AVP, and Hsp70 overexpression counteracted the TNF block of muscle regeneration. Our results show that AVP counteracts the effects of TNF through cross-talk at the Hsp70 level. Therefore, muscle regeneration, both in the absence and in the presence of cytokines may be enhanced by increasing Hsp70 expression. PMID:19440308

  9. Modulation of caspase activity regulates skeletal muscle regeneration and function in response to vasopressin and tumor necrosis factor.

    Directory of Open Access Journals (Sweden)

    Viviana Moresi

    Full Text Available Muscle homeostasis involves de novo myogenesis, as observed in conditions of acute or chronic muscle damage. Tumor Necrosis Factor (TNF triggers skeletal muscle wasting in several pathological conditions and inhibits muscle regeneration. We show that intramuscular treatment with the myogenic factor Arg(8-vasopressin (AVP enhanced skeletal muscle regeneration and rescued the inhibitory effects of TNF on muscle regeneration. The functional analysis of regenerating muscle performance following TNF or AVP treatments revealed that these factors exerted opposite effects on muscle function. Principal component analysis showed that TNF and AVP mainly affect muscle tetanic force and fatigue. Importantly, AVP counteracted the effects of TNF on muscle function when delivered in combination with the latter. Muscle regeneration is, at least in part, regulated by caspase activation, and AVP abrogated TNF-dependent caspase activation. The contrasting effects of AVP and TNF in vivo are recapitulated in myogenic cell cultures, which express both PW1, a caspase activator, and Hsp70, a caspase inhibitor. We identified PW1 as a potential Hsp70 partner by screening for proteins interacting with PW1. Hsp70 and PW1 co-immunoprecipitated and co-localized in muscle cells. In vivo Hsp70 protein level was upregulated by AVP, and Hsp70 overexpression counteracted the TNF block of muscle regeneration. Our results show that AVP counteracts the effects of TNF through cross-talk at the Hsp70 level. Therefore, muscle regeneration, both in the absence and in the presence of cytokines may be enhanced by increasing Hsp70 expression.

  10. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris.

    Directory of Open Access Journals (Sweden)

    Camille Luyet

    Full Text Available The majority of pemphigus vulgaris (PV patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis. The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG, PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice as well as PV patients' biopsies (n=6. A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other

  11. Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis

    Directory of Open Access Journals (Sweden)

    Denise Nicole Bronner

    2013-11-01

    Full Text Available Programmed cell death (PCD can play a crucial role in tuning the immune response to microbial infection. Although PCD can occur in different forms, all are mediated by a family of proteases called caspases. Caspase-2 is the most conserved caspase; however its function in cell death is ill-defined. Previously we demonstrated that live attenuated cattle vaccine strain Brucella abortus RB51 induces caspase-2-mediated PCD of infected macrophages. However, the mechanism of caspase-2-mediated cell death pathway remained unclear. In this study, we found that caspase-2 mediated proinflammatory cell death of RB51-infected macrophages and regulated many genes in different PCD pathways. We show that the activation of proapoptotic caspases-3 and -8 was dependent upon caspase-2. Caspase-2 regulated mitochondrial cytochrome c release and TNFα production, both of which are known to activate caspase-3 and caspase-8, respectively. In addition to TNFα, RB51-induced caspase-1 and IL-1β production was also driven by caspase-2-mediated mitochondrial dysfunction. Interestingly, pore formation, a phenomenon commonly associated with caspase-1-mediated pyroptosis, occurred; however it did not contribute to RB51-induced proinflammatory cell death. Our data suggest that caspase-2 acts as an initiator caspase that mediates a novel RB51-induced hybrid cell death that simulates but differs from typical apoptosis and pyroptosis. The initiator role of the caspase-2-mediated cell death was also conserved in cellular stress-induced cell death of macrophages treated with etoposide, naphthalene, or anti-Fas. Caspase-2 also regulated caspase-3 and -8 activation, as well as cell death in macrophages treated with each of the three reagents. Taken together, our data has demonstrated that caspase-2 can play an important role in mediating a proinflammatory response and a hybrid cell death that demonstrates features of both apoptosis and pyroptosis.

  12. Fe3O4 nanoparticle loaded paclitaxel induce multiple myeloma apoptosis by cell cycle arrest and increase cleavage of caspases in vitro

    Science.gov (United States)

    Yang, Cuiping; He, Xiangfeng; Chen, Junsong; Chen, Dengyu; Liu, Yunjing; Xiong, Fei; Shi, Fangfang; Dou, Jun; Gu, Ning

    2013-08-01

    Multiple myeloma (MM) still remains an incurable disease in spite of extending the patient survival by new therapies. The hypothesis of cancer stem cells (CSCs) states that although chemotherapy kills most tumor cells, it is believed to leave a reservoir of CSCs that allows the tumor cell propagation. The objective of this research was to evaluate the therapeutic effect of new paclitaxel-Fe3O4 nanoparticles (PTX-NPs) with an average size range of 7.17 ± 1.31 nm on MM CSCs in vitro. The characteristics of CD138-CD34- cells, isolated from human MM RPMI 8226 and NCI-H929 cell lines by the magnetic associated cell sorting method, were identified by the assays of colony formation, cell proliferation, drug resistance, cell migration, and tumorigenicity in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, respectively. Inhibitory effects of PTX-NPs on CD138-CD34- cells were evaluated by a variety of assays in vitro. The results showed that the CD138-CD34- cells were capable of forming colonies, exhibited high proliferative and migratory ability, possessed a strong drug resistance, and had powerful tumorigenicity in NOD/SCID mice compared to non-CD138-CD34- cells. PTX-NPs significantly inhibited CD138- CD34- cell viability and invasive ability, and resulted in G0/G1 cell cycle arrest and apoptosis compared with PTX alone. We concluded that the CD138-CD34- phenotype cells might be CSCs in RPMI 8226 and NCI-H929 cell lines. PTX-NPs had an obvious inhibitory effect on MM CD138-CD34- CSCs. The findings may provide a guideline for PTX-NPs' treatment of MM CSCs in preclinical investigation.

  13. Fe{sub 3}O{sub 4} nanoparticle loaded paclitaxel induce multiple myeloma apoptosis by cell cycle arrest and increase cleavage of caspases in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cuiping [Medical School, Southeast University, Department of Pathogenic Biology and Immunology (China); He, Xiangfeng [Affiliated Tumor Hospital of Nantong University, Department of Medical Oncology (China); Chen, Junsong; Chen, Dengyu; Liu, Yunjing [Medical School, Southeast University, Department of Pathogenic Biology and Immunology (China); Xiong, Fei [Southeast University, School of Biological Science and Medical Engineering (China); Shi, Fangfang [Zhongda Hospital, Southeast University, Department of Oncology (China); Dou, Jun, E-mail: njdoujun@yahoo.com.cn [Medical School, Southeast University, Department of Pathogenic Biology and Immunology (China); Gu, Ning, E-mail: guning@seu.edu.cn [Southeast University, School of Biological Science and Medical Engineering (China)

    2013-08-15

    Multiple myeloma (MM) still remains an incurable disease in spite of extending the patient survival by new therapies. The hypothesis of cancer stem cells (CSCs) states that although chemotherapy kills most tumor cells, it is believed to leave a reservoir of CSCs that allows the tumor cell propagation. The objective of this research was to evaluate the therapeutic effect of new paclitaxel-Fe{sub 3}O{sub 4} nanoparticles (PTX-NPs) with an average size range of 7.17 {+-} 1.31 nm on MM CSCs in vitro. The characteristics of CD138{sup -}CD34{sup -} cells, isolated from human MM RPMI 8226 and NCI-H929 cell lines by the magnetic associated cell sorting method, were identified by the assays of colony formation, cell proliferation, drug resistance, cell migration, and tumorigenicity in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, respectively. Inhibitory effects of PTX-NPs on CD138{sup -}CD34{sup -} cells were evaluated by a variety of assays in vitro. The results showed that the CD138{sup -}CD34{sup -} cells were capable of forming colonies, exhibited high proliferative and migratory ability, possessed a strong drug resistance, and had powerful tumorigenicity in NOD/SCID mice compared to non-CD138{sup -}CD34{sup -} cells. PTX-NPs significantly inhibited CD138{sup -} CD34{sup -} cell viability and invasive ability, and resulted in G0/G1 cell cycle arrest and apoptosis compared with PTX alone. We concluded that the CD138{sup -}CD34{sup -} phenotype cells might be CSCs in RPMI 8226 and NCI-H929 cell lines. PTX-NPs had an obvious inhibitory effect on MM CD138{sup -}CD34{sup -} CSCs. The findings may provide a guideline for PTX-NPs' treatment of MM CSCs in preclinical investigation.

  14. Fe3O4 nanoparticle loaded paclitaxel induce multiple myeloma apoptosis by cell cycle arrest and increase cleavage of caspases in vitro

    International Nuclear Information System (INIS)

    Yang, Cuiping; He, Xiangfeng; Chen, Junsong; Chen, Dengyu; Liu, Yunjing; Xiong, Fei; Shi, Fangfang; Dou, Jun; Gu, Ning

    2013-01-01

    Multiple myeloma (MM) still remains an incurable disease in spite of extending the patient survival by new therapies. The hypothesis of cancer stem cells (CSCs) states that although chemotherapy kills most tumor cells, it is believed to leave a reservoir of CSCs that allows the tumor cell propagation. The objective of this research was to evaluate the therapeutic effect of new paclitaxel-Fe 3 O 4 nanoparticles (PTX-NPs) with an average size range of 7.17 ± 1.31 nm on MM CSCs in vitro. The characteristics of CD138 − CD34 − cells, isolated from human MM RPMI 8226 and NCI-H929 cell lines by the magnetic associated cell sorting method, were identified by the assays of colony formation, cell proliferation, drug resistance, cell migration, and tumorigenicity in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, respectively. Inhibitory effects of PTX-NPs on CD138 − CD34 − cells were evaluated by a variety of assays in vitro. The results showed that the CD138 − CD34 − cells were capable of forming colonies, exhibited high proliferative and migratory ability, possessed a strong drug resistance, and had powerful tumorigenicity in NOD/SCID mice compared to non-CD138 − CD34 − cells. PTX-NPs significantly inhibited CD138 − CD34 − cell viability and invasive ability, and resulted in G0/G1 cell cycle arrest and apoptosis compared with PTX alone. We concluded that the CD138 − CD34 − phenotype cells might be CSCs in RPMI 8226 and NCI-H929 cell lines. PTX-NPs had an obvious inhibitory effect on MM CD138 − CD34 − CSCs. The findings may provide a guideline for PTX-NPs’ treatment of MM CSCs in preclinical investigation

  15. Catalytically active Yersinia outer protein P induces cleavage of RIP and caspase-8 at the level of the DISC independently of death receptors in dendritic cells

    Czech Academy of Sciences Publication Activity Database

    Gröbner, S.; Adkins, Irena; Schulz, S.; Richter, K.; Borgmann, S.; Wesselborg, S.; Ruckdeschel, K.; Micheau, O.; Autenrieth, I. B.

    2007-01-01

    Roč. 10, č. 12 (2007), s. 1813-1825 ISSN 1360-8185 Institutional research plan: CEZ:AV0Z50200510 Keywords : yersinia enterocolitica * yopp * death receptors Subject RIV: EC - Immunology Impact factor: 3.043, year: 2007

  16. A novel stereo bioactive metabolite isolated from an endophytic fungus induces caspase dependent apoptosis and STAT-3 inhibition in human leukemia cells.

    Science.gov (United States)

    Pathania, Anup Singh; Guru, Santosh Kumar; Ul Ashraf, Nissar; Riyaz-Ul-Hassan, Syed; Ali, Asif; Abdullah Tasduq, Sheikh; Malik, Fayaz; Bhushan, Shashi

    2015-10-15

    The present study describes the anti-leukemic potential of a novel stereo bioactive secondary metabolite, (R)-5-hydroxy-2-methylchroman-4-one (HMC) isolated from a novel endophytic fungus source (Cryptosporiopsis sp. H2-1, NFCCI-2856), associated with Clidemia hirta. HMC inhibited cell proliferation of different cancer cell lines with IC50 values in the range of 8-55 µg/ml. The cytotoxicity window of HMC was 6-12 times lower in normal cells as compared to susceptible leukemic HL-60, MOLT-4 and K-562 cells. It persuades apoptosis through both intrinsic and extrinsic pathways in above leukemic cell lines, which was evident through Hoechst staining, Annexin-V binding, cell cycle analysis, loss of mitochondrial membrane potential (Δψm), release of cytochrome c, Bax, Bid, over-expression of apical death receptors, activation of caspase-3,-8,-9 and PARP (poly ADP ribose polymerase) cleavage. HMC induced caspase dependent apoptosis and robustly attenuate transcription factor, p-STAT-3 in myeloid and lymphoid leukemia cells. The mechanism of HMC arbitrated inhibition of p-STAT-3 was due to the activation of ubiquitin dependent degradation of p-STAT-3. Therefore, our study not only describes the anti-leukemic potential of HMC but also provides insights into how endophytes can be useful in discovery and development of novel anticancer therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Andrographolide downregulates the v-Src and Bcr-Abl oncoproteins and induces Hsp90 cleavage in the ROS-dependent suppression of cancer malignancy.

    Science.gov (United States)

    Liu, Sheng-Hung; Lin, Chao-Hsiung; Liang, Fong-Ping; Chen, Pei-Fen; Kuo, Cheng-Deng; Alam, Mohd Mujahid; Maiti, Barnali; Hung, Shih-Kai; Chi, Chin-Wen; Sun, Chung-Ming; Fu, Shu-Ling

    2014-01-15

    Andrographolide is a diterpenoid compound isolated from Andrographis paniculata that exhibits anticancer activity. We previously reported that andrographolide suppressed v-Src-mediated cellular transformation by promoting the degradation of Src. In the present study, we demonstrated the involvement of Hsp90 in the andrographolide-mediated inhibition of Src oncogenic activity. Using a proteomics approach, a cleavage fragment of Hsp90α was identified in andrographolide-treated cells. The concentration- and time-dependent induction of Hsp90 cleavage that accompanied the reduction in Src was validated in RK3E cells transformed with either v-Src or a human truncated c-Src variant and treated with andrographolide. In cancer cells, the induction of Hsp90 cleavage by andrographolide and its structural derivatives correlated well with decreased Src levels, the suppression of transformation, and the induction of apoptosis. Moreover, the andrographolide-induced Hsp90 cleavage, Src degradation, inhibition of transformation, and induction of apoptosis were abolished by a ROS inhibitor, N-acetyl-cysteine. Notably, Hsp90 cleavage, decreased levels of Bcr-Abl (another known Hsp90 client protein), and the induction of apoptosis were also observed in human K562 leukemia cells treated with andrographolide or its active derivatives. Together, we demonstrated a novel mechanism by which andrographolide suppressed cancer malignancy that involved inhibiting Hsp90 function and reducing the levels of Hsp90 client proteins. Our results broaden the molecular basis of andrographolide-mediated anticancer activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Intracellular acidification by inhibition of the Na+/H+-exchanger leads to caspase-independent death of cerebellar granule neurons resembling paraptosis.

    Science.gov (United States)

    Schneider, D; Gerhardt, E; Bock, J; Müller, M M; Wolburg, H; Lang, F; Schulz, J B

    2004-07-01

    Potassium withdrawal is commonly used to induce caspase-mediated apoptosis in cerebellar granule neurons in vitro. However, the underlying and cell death-initiating mechanisms are unknown. We firstly investigated potassium efflux through the outward delayed rectifier K+ current (Ik) as a potential mediator. However, tetraethylammoniumchloride, an inhibitor of Ik, was ineffective to block apoptosis after potassium withdrawal. Since potassium withdrawal reduced intracellular pH (pHi) from 7.4 to 7.2, we secondly investigated the effects of intracellular acidosis. To study intracellular acidosis in cerebellar granule neurons, we inhibited the Na+/H+ exchanger (NHE) with 4-isopropyl-3-methylsulfonylbenzoyl-guanidine methanesulfonate (HOE 642) and 5-(N-ethyl-N-isopropyl)-amiloride. Both inhibitors concentration-dependently induced cell death and potentiated cell death after potassium withdrawal. Although inhibition of the NHE induced cell death with morphological criteria of apoptosis in light and electron microscopy including chromatin condensation, positive TUNEL staining and cell shrinkage, no internucleosomal DNA cleavage or activation of caspases was detected. In contrast to potassium withdrawal-induced apoptosis, cell death induced by intracellular acidification was not prevented by insulin-like growth factor-1, cyclo-adenosine-monophosphate, caspase inhibitors and transfection with an adenovirus expressing Bcl-XL. However, cycloheximide protected cerebellar granule neurons from death induced by potassium withdrawal as well as from death after treatment with HOE 642. Therefore, the molecular mechanisms leading to cell death after acidification appear to be different from the mechanisms after potassium withdrawal and resemble the biochemical but not the morphological characteristics of paraptosis.

  19. Activation of two caspase cascades, caspase 8/3/6 and caspase 9/3/6, during photodynamic therapy using a novel photosensitizer, ATX-S10(Na), in normal human keratinocytes.

    Science.gov (United States)

    Takahashi, Hidetoshi; Itoh, Yasuhiro; Miyauchi, Yuki; Nakajima, Susumu; Sakata, Isao; Ishida-Yamamoto, Akemi; Iizuka, Hajime

    2003-11-01

    Photodynamic therapy (PDT) is a potent treatment for skin tumors. Although the therapeutic effect of PDT is supposed to be due to cellular cytotoxicity, the precise mechanism is still unknown. ATX-S10(Na) [13,17-bis(1-carboxypropionyl)carbamoylethyl-8-ethenyl-2-hydroxy-3-hydroxyiminoethylidene-2,7,12,18-tetramethylporphyrin sodium salt], a novel hydrophilic chlorin photosensitizer, shows good accumulation in tumors and is suitable for use in PDT. In this study, we investigated the mechanism of PDT-induced cell death using ATX-S10(Na). . Following ATX-S10(Na) treatment for 12 h, normal human keratinocytes (NHK) were irradiated using a diode laser. PDT-induced cell death and the activity of various caspases were measured. Activation of Fas antigen was also determined by immunoprecipitation analysis. The expression of Bax, cytochrome c, and apoptosis-inducing factor (AIF) was determined by Western blotting. ATX-S10(Na)-PDT had induced apoptosis of NHK by 2 h and the maximal effect was observed at 6 h following irradiation. The effect was suppressed by pretreatment of NHK with inhibitors of caspases 3, 6, 8 and 9. A caspase activity assay revealed the sequential activation of caspases 8, 3 and 6, and caspases 9, 3 and 6, respectively. Immunoprecipitation analysis indicated multimerization of Fas antigen without Fas ligand binding in ATX-S10(Na)-PDT-treated NHK. Western blotting revealed cytosolic release of cytochrome c and AIF accompanied by decreased Bax expression in the cytosol. ATX-S10(Na)-PDT induces apoptosis of NHK, and this was mediated by sequential activation of two caspase cascades, caspases 8, 3 and 6, and caspases 9, 3 and 6. This was accompanied by multimerization of Fas antigen and cytosolic release of cytochrome c and AIF.

  20. Topoisomerase I function during Escherichia coli response to antibiotics and stress enhances cell killing from stabilization of its cleavage complex

    Science.gov (United States)

    Liu, I-Fen; Sutherland, Jeanette H.; Cheng, Bokun; Tse-Dinh, Yuk-Ching

    2011-01-01

    Objectives To explore the role of topoisomerase I in gene activation and increased RecA levels during the bacterial SOS response, as well as the effect of antibiotic treatment and stress challenge on cell killing initiated by trapped topoisomerase I cleavage complex. Methods A mutant Escherichia coli strain with a ΔtopA mutation was used to investigate the role of topoisomerase I function in the SOS response to trimethoprim and mitomycin C. Induction of the recA and dinD1 promoters was measured using luciferase reporters of these promoters fused to luxCDABE. An increase in the RecA level following trimethoprim treatment was quantified directly by western blotting. The effect of stress challenge from trimethoprim and acidified nitrite treatments on cell killing by topoisomerase I cleavage complex accumulation was measured by the decrease in viability following induction of recombinant mutant topoisomerase I that forms a stabilized cleavage complex. Results Topoisomerase I function was found to be required for efficient transcriptional activation of the recA and dinD1 promoters during the E. coli SOS response to trimethoprim and mitomycin C. The role of topoisomerase I in the SOS response was confirmed with quantitative western blot analysis of RecA following trimethoprim treatment. The bactericidal effect from topoisomerase I cleavage complex accumulation was shown to be enhanced by stress challenge from trimethoprim and acidified nitrite. Conclusions Bacterial topoisomerase I function is actively involved in the SOS response to antibiotics and stress challenge. Cell killing initiated by the topoisomerase I cleavage complex would be enhanced by antibiotics and the host response. These findings provide further support for bacterial topoisomerase I as a therapeutic target. PMID:21486853

  1. Ion beam modifications of defect sub-structure of calcite cleavages

    Indian Academy of Sciences (India)

    , brought about by He+ ion-bombardment of calcite cleavages (100), have been carried out. Optical and scanning ... stimulation. Planar plastic anisotropy has been studied on irradiated calcite cleavages by measurement of microhardness.

  2. Engineering a light-activated caspase-3 for precise ablation of neurons in vivo.

    Science.gov (United States)

    Smart, Ashley D; Pache, Roland A; Thomsen, Nathan D; Kortemme, Tanja; Davis, Graeme W; Wells, James A

    2017-09-26

    The circuitry of the brain is characterized by cell heterogeneity, sprawling cellular anatomy, and astonishingly complex patterns of connectivity. Determining how complex neural circuits control behavior is a major challenge that is often approached using surgical, chemical, or transgenic approaches to ablate neurons. However, all these approaches suffer from a lack of precise spatial and temporal control. This drawback would be overcome if cellular ablation could be controlled with light. Cells are naturally and cleanly ablated through apoptosis due to the terminal activation of caspases. Here, we describe the engineering of a light-activated human caspase-3 (Caspase-LOV) by exploiting its natural spring-loaded activation mechanism through rational insertion of the light-sensitive LOV2 domain that expands upon illumination. We apply the light-activated caspase (Caspase-LOV) to study neurodegeneration in larval and adult Drosophila Using the tissue-specific expression system (UAS)-GAL4, we express Caspase-LOV specifically in three neuronal cell types: retinal, sensory, and motor neurons. Illumination of whole flies or specific tissues containing Caspase-LOV-induced cell death and allowed us to follow the time course and sequence of neurodegenerative events. For example, we find that global synchronous activation of caspase-3 drives degeneration with a different time-course and extent in sensory versus motor neurons. We believe the Caspase-LOV tool we engineered will have many other uses for neurobiologists and others for specific temporal and spatial ablation of cells in complex organisms.

  3. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury

    Science.gov (United States)

    Mitra, Srabani

    2015-01-01

    Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC) apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1) induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control) nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury. PMID:26710067

  4. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Science.gov (United States)

    Mitra, Srabani; Wewers, Mark D; Sarkar, Anasuya

    2015-01-01

    Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC) apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1) induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control) nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  5. Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism

    Science.gov (United States)

    Feng, Xiao; Yu, Yang; He, Sijia; Cheng, Jin; Gong, Yanping; Zhang, Zhengxiang; Yang, Xuguang; Xu, Bing; Liu, Xinjian; Li, Chuan-Yuan; Tian, Ling; Huang, Qian

    2017-01-01

    Vascular recovery or re-angiogenesis after radiotherapy plays a significant role in tumor recurrence, whereas molecular mechanisms of this process remain elusive. In this work, we found that dying glioma cells promoted post-irradiation angiogenesis through a caspase 3 dependent mechanism. Evidence in vitro and in vivo indicated that caspase 3 inhibition undermined proangiogenic effects of dying glioma cells. Proteolytic inactivation of caspase 3 in glioma cells reduced tumorigenicity. Importantly, we identified that NF-κB/COX-2/PGE2 axis acted as downstream signaling of caspase 3, mediating proangiogenic response after irradiation. Additionally, VEGF-A, regulated by caspase 3 possibly through phosphorylated eIF4E, was recognized as another downstream factor participating in the proangiogenic response. In conclusion, these data demonstrated that caspase 3 in dying glioma cells supported the proangiogenic response after irradiation by governing NF-κB/COX-2/PGE2 axis and p-eIF4E/VEGF-A signaling. While inducing caspase 3 activation has been a generally-adopted notion in cancer therapeutics, our study counterintuitively illustrated that caspase 3 activation in dying glioma cells unfavorably supported post-irradiation angiogenesis, suggesting that radiotherapy combined with caspase 3 inhibitors may be more effective strategies due to restricted post-irradiation angiogenesis. PMID:27826040

  6. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  7. The limits for detection of activated caspases of spermatozoa by western blot in human semen.

    Science.gov (United States)

    Brugnon, F; Pons-Rejraji, H; Artonne, C; Janny, L; Grizard, G

    2012-08-01

    Detection of activated caspases of spermatozoa could be helpful to evaluate male infertility. Although western blot is validated as a highly specific method to detect the proteins extracted from cells, the ability of this technique to detect activated sperm caspases in human semen may be limited. Indeed, round cells, which potentially contain some activated caspases, may be present in semen and interfere with the detection of activated sperm caspases. Moreover, it is necessary to evaluate the minimum amount of spermatozoa necessary to optimise the detection of activated caspases in semen samples. Our results showed that interference due to round cells contained in semen with activated caspase-3 requires separation of spermatozoa by density migration. This sperm preparation selects a mature sperm population that does not reflect the whole sperm population, and in infertile men with oligoasthenoteratozoospermia, the amount of spermatozoa thus selected is usually low. Moreover, the western blot technique's low detection sensitivity and the low level of caspase enzyme activity in human spermatozoa for activated caspase-3, -8 and -9 mean that large quantities of spermatozoa are needed to detect the expression of the activated caspases. These limitations prevent this method being used for routine analysis in clinical practice. © 2012 Blackwell Verlag GmbH.

  8. Combined Quantification of the Global Proteome, Phosphoproteome, and Proteolytic Cleavage to Characterize Altered Platelet Functions in the Human Scott Syndrome.

    Science.gov (United States)

    Solari, Fiorella A; Mattheij, Nadine J A; Burkhart, Julia M; Swieringa, Frauke; Collins, Peter W; Cosemans, Judith M E M; Sickmann, Albert; Heemskerk, Johan W M; Zahedi, René P

    2016-10-01

    The Scott syndrome is a very rare and likely underdiagnosed bleeding disorder associated with mutations in the gene encoding anoctamin-6. Platelets from Scott patients are impaired in various Ca 2+ -dependent responses, including phosphatidylserine exposure, integrin closure, intracellular protein cleavage, and cytoskeleton-dependent morphological changes. Given the central role of anoctamin-6 in the platelet procoagulant response, we used quantitative proteomics to understand the underlying molecular mechanisms and the complex phenotypic changes in Scott platelets compared with control platelets. Therefore, we applied an iTRAQ-based multi-pronged strategy to quantify changes in (1) the global proteome, (2) the phosphoproteome, and (3) proteolytic events between resting and stimulated Scott and control platelets. Our data indicate a limited number of proteins with decreased (70) or increased (64) expression in Scott platelets, among those we confirmed the absence of anoctamin-6 and the strong up-regulation of aquaporin-1 by parallel reaction monitoring. The quantification of 1566 phosphopeptides revealed major differences between Scott and control platelets after stimulation with thrombin/convulxin or ionomycin. In Scott platelets, phosphorylation levels of proteins regulating cytoskeletal or signaling events were increased. Finally, we quantified 1596 N-terminal peptides in activated Scott and control platelets, 180 of which we identified as calpain-regulated, whereas a distinct set of 23 neo-N termini was caspase-regulated. In Scott platelets, calpain-induced cleavage of cytoskeleton-linked and signaling proteins was downregulated, in accordance with an increased phosphorylation state. Thus, multipronged proteomic profiling of Scott platelets provides detailed insight into their protection against detrimental Ca 2+ -dependent changes that are normally associated with phosphatidylserine exposure. © 2016 by The American Society for Biochemistry and Molecular

  9. The PECACE domain: a new family of enzymes with potential peptidoglycan cleavage activity in Gram-positive bacteria

    Directory of Open Access Journals (Sweden)

    Di Guilmi Anne

    2005-02-01

    Full Text Available Abstract Background The metabolism of bacterial peptidoglycan is a dynamic process, synthases and cleavage enzymes are functionally coordinated. Lytic Transglycosylase enzymes (LT are part of multienzyme complexes which regulate bacterial division and elongation. LTs are also involved in peptidoglycan turnover and in macromolecular transport systems. Despite their central importance, no LTs have been identified in the human pathogen Streptococcus pneumoniae. We report the identification of the first putative LT enzyme in S. pneumoniae and discuss its role in pneumococcal peptidoglycan metabolism. Results Homology searches of the pneumococcal genome allowed the identification of a new domain putatively involved in peptidoglycan cleavage (PECACE, PEptidoglycan CArbohydrate Cleavage Enzyme. This sequence has been found exclusively in Gram-positive bacteria and gene clusters containing pecace are conserved among Streptococcal species. The PECACE domain is, in some instances, found in association with other domains known to catalyze peptidoglycan hydrolysis. Conclusions A new domain, PECACE, putatively involved in peptidoglycan hydrolysis has been identified in S. pneumoniae. The probable enzymatic activity deduced from the detailed analysis of the amino acid sequence suggests that the PECACE domain may proceed through a LT-type or goose lyzosyme-type cleavage mechanism. The PECACE function may differ largely from the other hydrolases already identified in the pneumococcus: LytA, LytB, LytC, CBPD and PcsB. The multimodular architecture of proteins containing the PECACE domain is another example of the many activities harbored by peptidoglycan hydrolases, which is probably required for the regulation of peptidoglycan metabolism. The release of new bacterial genomes sequences will probably add new members to the five groups identified so far in this work, and new groups could also emerge. Conversely, the functional characterization of the unknown

  10. Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis.

    Science.gov (United States)

    Bronner, Denise N; O'Riordan, Mary X D; He, Yongqun

    2013-01-01

    Programmed cell death (PCD) can play a crucial role in tuning the immune response to microbial infection. Although PCD can occur in different forms, all are mediated by a family of proteases called caspases. Caspase-2 is the most conserved caspase, however, its function in cell death is ill-defined. Previously we demonstrated that live attenuated cattle vaccine strain Brucella abortus RB51 induces caspase-2-mediated and caspase-1-independent PCD of infected macrophages. We also discovered that rough attenuated B. suis strain VTRS1 induces a caspase-2-mediated and caspase-1-independent proinflammatory cell death in infected macrophages, which was tentatively coined "caspase-2-mediated pyroptosis". However, the mechanism of caspase-2-mediated cell death pathway remained unclear. In this study, we found that caspase-2 mediated proinflammatory cell death of RB51-infected macrophages and regulated many genes in different PCD pathways. We show that the activation of proapoptotic caspases-3 and -8 was dependent upon caspase-2. Caspase-2 regulated mitochondrial cytochrome c release and TNFα production, both of which are known to activate caspase-3 and caspase-8, respectively. In addition to TNFα, RB51-induced caspase-1 and IL-1β production was also driven by caspase-2-mediated mitochondrial dysfunction. Interestingly, pore formation, a phenomenon commonly associated with caspase-1-mediated pyroptosis, occurred; however, unlike its role in S. typhimurium-induced pyroptosis, pore formation did not contribute to RB51-induced proinflammatory cell death. Our data suggest that caspase-2 acts as an initiator caspase that mediates a novel RB51-induced hybrid cell death that simulates but differs from typical non-proinflammatory apoptosis and caspase-1-mediated proinflammatory pyroptosis. The initiator role of the caspase-2-mediated cell death was also conserved in cellular stress-induced cell death of macrophages treated with etoposide, naphthalene, or anti-Fas. Caspase-2 also

  11. Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors.

    Directory of Open Access Journals (Sweden)

    Fabio Bucchieri

    Full Text Available Epidemiologic studies have demonstrated important links between air pollution and asthma. Amongst these pollutants, environmental cigarette smoke is a risk factor both for asthma pathogenesis and exacerbation. As the barrier to the inhaled environment, the bronchial epithelium is a key structure that is exposed to cigarette smoke.Since primary bronchial epithelial cells (PBECs from asthmatic donors are more susceptible to oxidant-induced apoptosis, we hypothesized that they would be susceptible to cigarette smoke-induced cell death.PBECs from normal and asthmatic donors were exposed to cigarette smoke extract (CSE; cell survival and apoptosis were assessed by fluorescence-activated cell sorting, and protective effects of antioxidants evaluated. The mechanism of cell death was evaluated using caspase inhibitors and immunofluorescent staining for apoptosis-inducing factor (AIF.Exposure of PBEC cultures to CSE resulted in a dose-dependent increase in cell death. At 20% CSE, PBECs from asthmatic donors exhibited significantly more apoptosis than cells from non-asthmatic controls. Reduced glutathione (GSH, but not ascorbic acid (AA, protected against CSE-induced apoptosis. To investigate mechanisms of CSE-induced apoptosis, caspase-3 or -9 inhibitors were tested, but these failed to prevent apoptosis; in contrast, CSE promoted nuclear translocation of AIF from the mitochondria. GSH reduced the number of nuclear-AIF positive cells whereas AA was ineffective.Our results show that PBECs from asthmatic donors are more susceptible to CSE-induced apoptosis. This response involves AIF, which has been implicated in DNA damage and ROS-mediated cell-death. Epithelial susceptibility to CSE may contribute to the impact of environmental tobacco smoke in asthma.

  12. Prediction of proteasome cleavage motifs by neural networks

    DEFF Research Database (Denmark)

    Kesimir, C.; Nussbaum, A.K.; Schild, H.

    2002-01-01

    physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make...... the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks trained on MHC...... algorithms published so far were trained on data from in vitro digestion experiments with constitutive proteasomes. As a result, they did not take into account the characteristics of the structurally modified proteasomes-often called immunoproteasomes-found in cells stimulated by gamma-interferon under...

  13. Sequence specific inhibition of DNA restriction enzyme cleavage by PNA

    DEFF Research Database (Denmark)

    Nielsen, P.E.; Egholm, M.; Berg, R.H.

    1993-01-01

    Plasmids containing double-stranded 10-mer PNA (peptide nucleic acid chimera) targets proximally flanked by two restriction enzyme sites were challenged with the complementary PNA or PNAs having one or two mismatches, and the effect on the restriction enzyme cleavage of the flanking sites...... was assayed. The following PNAs were used: T10-LysNH2, T5CT4-LysNH2 and T2CT2CT4-LysNH2 and the corresponding targets cloned into pUC 19 were flanked by BamH1, Sal1 or Pstl sites, respectively. In all cases it was found that complete inhibition of restriction enzyme cleavage was obtained...

  14. Material grain size and crack size influences on cleavage fracturing.

    Science.gov (United States)

    Armstrong, Ronald W

    2015-03-28

    A review is given of the analogous dependence on reciprocal square root of grain size or crack size of fracture strength measurements reported for steel and other potentially brittle materials. The two dependencies have much in common. For onset of cleavage in steel, attention is focused on relationship of the essentially athermal fracture stress compared with a quite different viscoplastic yield stress behaviour. Both grain-size-dependent stresses are accounted for in terms of dislocation pile-up mechanics. Lowering of the cleavage stress occurs in steel because of carbide cracking. For crack size dependence, there is complication of localized crack tip plasticity in fracture mechanics measurements. Crack-size-dependent conventional and indentation fracture mechanics measurements are described also for results obtained on the diverse materials: polymethylmethacrylate, silicon crystals, alumina polycrystals and WC-Co (cermet) composites. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia.

    Science.gov (United States)

    Yan, W; Zhao, X; Chen, H; Zhong, D; Jin, J; Qin, Q; Zhang, H; Ma, S; Li, G

    2016-06-21

    Dystroglycan (DG) is widely expressed in various tissues, and throughout the cerebral microvasculature. It consists of two subunits, α-DG and β-DG, and the cleavage of the latter by matrix metalloproteinase (MMP)-2 and -9 underlies a number of physiological and pathological processes. However, the involvement of MMP-2/-9-mediated β-DG cleavage in cerebral ischemia remains uncertain. In astrocytes, DG is crucial for maintaining the polarization of aquaporin-4 (AQP4), which plays a role in the regulation of cytotoxic and vasogenic edema. The present study aimed to explore the effects of MMP-2/-9-mediated β-DG cleavage on AQP4 polarization and brain edema in acute cerebral ischemia. A model of cerebral ischemia was established via permanent middle cerebral artery occlusion (pMCAO) in male C57BL/6 mice. Western blotting, real-time polymerase chain reaction (PCR), immunohistochemical staining, immunofluorescent staining, electron microscopy, and light microscopy were used. Captopril was applied as a selective MMP-2/-9 inhibitor. Recombinant mouse MMP (rmMMP)-2 and -9 were used in an in vitro cleavage experiment. The present study demonstrated evidence of β-DG cleavage by MMP-2/-9 in pMCAO mouse brains; this cleavage was implicated in AQP4 redistribution and brain edema in cerebral ischemia. In addition, captopril exacerbated cytotoxic edema and ameliorated vasogenic edema at 24h after pMCAO, and alleviated brain edema and neurological deficit at 48h and 72h. In conclusion, this study provides novel insight into the effects of MMP-2/-9-mediated β-DG cleavage in acute cerebral ischemia. Such findings might facilitate the development of a therapeutic strategy for the optimization of MMP-2/-9 targeted treatment in cerebral ischemia. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Effects of Cysteamine on Sheep Embryo Cleavage Rates

    Directory of Open Access Journals (Sweden)

    Sinem Ö. ENGİNLER

    2015-01-01

    Full Text Available Oxidative stress during in vitro culture leads to defects in development of gametes and embryos. Several antioxidants such as cysteamine, L-ascorbic acid, beta mercaptoethanol, cysteine, glutathione, proteins, vitamins have been used to supplement culture media to counter the oxidative stress. This study was conducted to detect the effect of adding cysteamine to the maturation medium to subsequent cleavage rates of sheep embryos. Totally 604 ovaries were obtained by ten replica and 2060 oocytes were collected. The cumulus oocyte complexes were recovered by the slicing method. A total of 1818 selected oocytes were divided into two groups and used for maturation (88.25%. The first group was created as supplemented with cysteamine (Group A and second group (Group B, control without cysteamine in TCM-199. The two groups were incubated for 24 h at 38.8 °C in an atmosphere of 5% CO2 in humidified air for in vitro maturation (IVM. After IVM, oocytes were fertilized with 50 x 107 / mL fresh ram semen in BSOF medium for 18 h. After fertilization, maturation groups were divided into two subgroups with different culture media: Group AI-SOF (Synthetic Oviduct Fluid medium, Group AII-CR1aa (Charles Rosencrans medium, Group BI-SOF and Group BII-CR1aa were achieved. Cleavage rates were evaluated at day 2. post insemination. The rates of cleavage were detected as 59.54% (184/309, 55.44% (173/312, 65.34% (215/329, 59.34% (200/337 respectively, with showing no statistically significant difference between the groups at the level of P>0.05. In conclusion, supplementing cysteamine to maturation media in TCM-199 did not affect the cleavage rates of sheep embryos in SOF and CR1aa culture media.

  17. Fracture behaviour and cleavage initiation in hypoeutectoid pearlitic steel

    Czech Academy of Sciences Publication Activity Database

    Holzmann, Miloslav; Jurášek, L.; Dlouhý, Ivo

    2007-01-01

    Roč. 148, č. 1 (2007), s. 13-28 ISSN 0376-9429 R&D Projects: GA AV ČR IAA200410502; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : cleavage fracture * fracture initiation * pearlitic steel Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.003, year: 2007 http://www.springerlink.com/content/2h8167l167436165/fulltext.pdf

  18. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  19. Domainal cleavage as an Anisotropic Reaction-diffusion Process

    Science.gov (United States)

    Mulchrone, Kieran; Meere, Patrick

    2017-04-01

    Domainal cleavage comprises zones dominated by quartz and feldspar (QF-domains) and zones dominated by Mica (M-domains) which form at low metamorphic grades. The protolith is typically fairly homogeneous mudstone, siltstone, sandstone or limestone. Wet diffusion or pressure solution along grain boundaries is a key mechanism in the development of domanial cleavage. However, this does not explain why M-domains become sub-regularly spaced, visually evident in coarser-grained rocks, and take on an anastomising morphology. The ratio of M to QF-domains by volume can range from 1 to 0.1 and lower i.e. in extreme cases M-domains are intermittent but regularly spaced. It is suggested here that an anisotropic reaction-diffusion process model can explain these features. The imposed stress field instantaneously leads to anisotropy of diffusion by narrowing intergranular channels perpendicular to the principal stress. This leads to a preferred diffusion of chemicals parallel to the principal stress direction and lower diffusion rates in the normal direction. Combining this with the chemical reaction of pressure solution produces an anisotropic reaction-diffusion system. Both isotropic and anistropic reaction diffusion systems lead to pattern formation as discovered by Alan Turing on the 1950's as an explanation for patterns found in animal skins such as spots and stripes. Thus domanial cleavage is a striped pattern induced by diffusion anisotropy combined with a chemical reaction. Furthermore, rates of chemical reaction in intergranular fluids is likely to be many orders of magnitude greater that rates of deformation. Therefore we expect domanial cleavage to form relatively rapidly. As deformation progresses the M-domains behave less competently and may be the site of enhanced shearing. An example from Co. Cork, Ireland demonstrates shear folding in low-grade metasedimentary rocks with reverse shear along M-domains at a high angle to the maximum compressive stress.

  20. DNAzyme-Controlled Cleavage of Dimer and Trimer Origami Tiles.

    Science.gov (United States)

    Wu, Na; Willner, Itamar

    2016-04-13

    Dimers of origami tiles are bridged by the Pb(2+)-dependent DNAzyme sequence and its substrate or by the histidine-dependent DNAzyme sequence and its substrate to yield the dimers T1-T2 and T3-T4, respectively. The dimers are cleaved to monomer tiles in the presence of Pb(2+)-ions or histidine as triggers. Similarly, trimers of origami tiles are constructed by bridging the tiles with the Pb(2+)-ion-dependent DNAzyme sequence and the histidine-dependent DNAzyme sequence and their substrates yielding the trimer T1-T5-T4. In the presence of Pb(2+)-ions and/or histidine as triggers, the programmed cleavage of trimer proceeds. Using Pb(2+) or histidine as trigger cleaves the trimer to yield T5-T4 and T1 or the dimer T1-T5 and T4, respectively. In the presence of Pb(2+)-ions and histidine as triggers, the cleavage products are the monomer tiles T1, T5, and T4. The different cleavage products are identified by labeling the tiles with 0, 1, or 2 streptavidin labels and AFM imaging.

  1. Numerical modeling of ductile tearing effects on cleavage fracture toughness

    International Nuclear Information System (INIS)

    Dodds, R.H. Jr.; Tang, M.; Anderson, T.L.

    1994-05-01

    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J c ) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often c -values. Previous work by the authors described a micromechanics fracture model to correct measured J c -values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515)

  2. N-CADHERIN PRODOMAIN CLEAVAGE REGULATES SYNAPSE FORMATION IN VIVO

    Science.gov (United States)

    Latefi, Nazlie S.; Pedraza, Liliana; Schohl, Anne; Li, Ziwei; Ruthazer, Edward S.

    2009-01-01

    Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N-cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post-translational cleavage of the prodomain affects synapse formation, we imaged Rohon-Beard cells in zebrafish embryos expressing GFP-tagged wild-type N-cadherin (NCAD-GFP) or a GFP-tagged N-cadherin mutant expressing an uncleavable prodomain (PRON-GFP) rendering it non-adhesive. NCAD-GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON-GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N-cadherin serves to stabilize pre- to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N-cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. PMID:19365814

  3. PQ1, a Quinoline Derivative, Induces Apoptosis in T47D Breast Cancer Cells through Activation of Caspase-8 and Caspase-9

    Science.gov (United States)

    Ding, Ying; Nguyen, Thu Annelise

    2013-01-01

    Apoptosis, a programmed cell death, is an important control mechanism of cell homeostasis. Deficiency in apoptosis is one of the key features of cancer cells, allowing cells to escape from death. Activation of apoptotic signaling pathway has been a target of anti-cancer drugs in an induction of cytotoxicity. PQ1, 6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-trifluoromethylphenyloxy)quinoline, has been reported to decrease the viability of cancer cells and attenuate xenograft tumor growth. However, the mechanism of the anti-cancer effect is still unclear. To evaluate whether the cytotoxicity of PQ1 is related to induction of apoptosis, the effect of PQ1 on apoptotic pathways was investigated in T47D breast cancer cells. PQ1-treated cells had an elevation of cleaved caspase-3 compared to controls. Studies of intrinsic apoptotic pathway showed that PQ1 can activate the intrinsic checkpoint protein caspase-9, enhance the level of pro-apoptotic protein Bax, and release cytochrome c from mitochondria to cytosol; however, PQ1 has no effect on the level of anti-apoptotic protein Bcl-2. Further studies also demonstrated that PQ1 can activate the key extrinsic player, caspase-8. Pre-treatment of T47D cells with caspase-8 or caspase-9 inhibitor suppressed the cell death induced by PQ1, while pre-treatment with caspase-3 inhibitor completely counteracted the effect of PQ1 on cell viability. This report provides evidence that PQ1 induces cytotoxicity via activation of both caspase-8 and caspase-9 in T47D breast cancer cells. PMID:23677255

  4. PQ1, a quinoline derivative, induces apoptosis in T47D breast cancer cells through activation of caspase-8 and caspase-9.

    Science.gov (United States)

    Ding, Ying; Nguyen, Thu Annelise

    2013-09-01

    Apoptosis, a programmed cell death, is an important control mechanism of cell homeostasis. Deficiency in apoptosis is one of the key features of cancer cells, allowing cells to escape from death. Activation of apoptotic signaling pathway has been a target of anti-cancer drugs in an induction of cytotoxicity. PQ1, 6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-trifluoromethylphenyloxy)quinoline, has been reported to decrease the viability of cancer cells and attenuate xenograft tumor growth. However, the mechanism of the anti-cancer effect is still unclear. To evaluate whether the cytotoxicity of PQ1 is related to induction of apoptosis, the effect of PQ1 on apoptotic pathways was investigated in T47D breast cancer cells. PQ1-treated cells had an elevation of cleaved caspase-3 compared to controls. Studies of intrinsic apoptotic pathway showed that PQ1 can activate the intrinsic checkpoint protein caspase-9, enhance the level of pro-apoptotic protein Bax, and release cytochrome c from mitochondria to cytosol; however, PQ1 has no effect on the level of anti-apoptotic protein Bcl-2. Further studies also demonstrated that PQ1 can activate the key extrinsic player, caspase-8. Pre-treatment of T47D cells with caspase-8 or caspase-9 inhibitor suppressed the cell death induced by PQ1, while pre-treatment with caspase-3 inhibitor completely counteracted the effect of PQ1 on cell viability. This report provides evidence that PQ1 induces cytotoxicity via activation of both caspase-8 and caspase-9 in T47D breast cancer cells.

  5. Overexpression of Smac promotes Cisplatin-induced apoptosis by activating caspase-3 and caspase-9 in lung cancer A549 cells.

    Science.gov (United States)

    Qin, Sida; Yang, Chengcheng; Wang, Xifang; Xu, Chongwen; Li, Shuo; Zhang, Boxiang; Ren, Hong

    2013-03-01

    Second mitochondrial-derived activator of caspase (Smac) plays crucial roles in mitochondrial apoptosis pathways and promotes chemotherapy-induced apoptosis. In this study, Smac levels were examined in various lung cancer cell lines, and the effects of overexpressed Smac in the nonsmall-cell lung cancer cell line A549 were assayed by stable transfection of Smac. Subsequently, MTT assays, cell counting, and flow cytometry were applied to show that overexpression of Smac inhibits cell viability and cell growth and enhances apoptosis after cisplatin treatment. Western blotting was performed before and after cisplatin treatment to demonstrate that drug treatment could release Smac from mitochondria into the cytosol and promote apoptosis by activating caspase-3 and caspase-9. Promotion of apoptosis by cytosolic Smac could be blocked by pretreating cells with the caspase-9 inhibitor z-LEHD-FMK. Our findings indicate that overexpressed Smac significantly inhibited A549 cell growth and promoted apoptosis following cisplatin treatment due to the release of Smac from mitochondria into the cytosol, which increased the activities of caspase-3 and caspase-9.

  6. Alkali metal control over N-N cleavage in iron complexes.

    Science.gov (United States)

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L

    2014-12-03

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2.

  7. Cutting Edge in IFN Regulation: Inflammatory Caspases Cleave cGAS.

    Science.gov (United States)

    Heidegger, Simon; Haas, Tobias; Poeck, Hendrik

    2017-03-21

    Caspases have important functions beyond their established role in driving inflammation and apoptosis. In this issue of Immunity, Wang et al. (2017) demonstrate that inflammasome-triggered caspases cleave and inactivate the DNA sensor cGAS, thus restricting the type I interferon response to cytosolic DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A quantitative method for the specific assessment of caspase-6 activity in cell culture

    DEFF Research Database (Denmark)

    Ehrnhoefer, Dagmar E; Skotte, Niels H; Savill, Jane

    2011-01-01

    Aberrant activation of caspase-6 has recently emerged as a major contributor to the pathogeneses of neurodegenerative disorders such as Alzheimer's and Huntington disease. Commercially available assays to measure caspase-6 activity commonly use the VEID peptide as a substrate. However these methods...

  9. [Recent knowledge about intestinal absorption and cleavage of carotenoids].

    Science.gov (United States)

    Borel, P; Drai, J; Faure, H; Fayol, V; Galabert, C; Laromiguière, M; Le Moël, G

    2005-01-01

    Our knowledge about intestinal absorption and cleavage of carotenoids has rapidly grown during the last years. New facts about carotenoid absorption have emerged while some controversies about cleavage are close to end. The knowledge of the absorption and conversion processes is indispensable to understand and interpret the perturbations that can occur in the metabolism of carotenoids and vitamin A. Recently, it has been shown that the absorption of certain carotenoids is not passive - as believed for a long time - but is a facilitated process that requires, at least for lutein, the class B-type 1 scavenger receptor (SR-B1). Various epidemiological and clinical studies have shown wide variations in carotenoid absorption from one subject to another, such differences are now explained by the structure of the concerned carotenoid, by the nature of the food that is absorbed with the carotenoid, by diverse exogenous factors like the intake of medicines or interfering components, by diet factors, by genetic factors, and by the nutritional status of the subject. Recently, the precise mechanism of beta-carotene cleavage by betabeta-carotene 15,15' monooxygenase (EC 1.14.99.36) - formerly called beta-carotene 15,15' dioxygenase (ex EC 1.13.11.21) - has been discovered, and a second enzyme which cleaves asymmetrically the beta-carotene molecule has been found. beta-carotene 15,15' monooxygenase only acts on the 15,15' bond, thus forming two molecules of retinal from one molecule of beta-carotene by central cleavage. Even though the betabeta-carotene 15,15' monooxygenase is much more active on the beta-carotene molecule, a study has shown that it can act on all carotenoids. Searchers now agree that other enzymes that can catalyse an eccentric cleavage of carotenoids probably exist, but under physiological conditions the betabeta-carotene 15,15' monooxygenase is by far the most active, and it is mainly effective in the small bowel mucosa and in the liver. However the

  10. Determination of the protease cleavage site repertoire—The RNase H but not the RT domain is essential for foamy viral protease activity

    Energy Technology Data Exchange (ETDEWEB)

    Spannaus, Ralf; Bodem, Jochen, E-mail: Jochen.Bodem@vim.uni-wuerzburg.de

    2014-04-15

    In contrast to orthoretroviruses, the foamy virus protease is only active as a protease-reverse transcriptase fusion protein and requires viral RNA for activation. Maturation of foamy viral proteins seems to be restricted to a single cleavage site in Gag and Pol. We provide evidence that unprocessed Gag is required for optimal infectivity, which is unique among retroviruses. Analyses of the cleavage site sequences of the Gag and Pol cleavage sites revealed a high similarity compared to those of Lentiviruses. We show that positions P2' and P2 are invariant and that Gag and Pol cleavage sites are processed with similar efficiencies. The RNase H domain is essential for protease activity, but can functionally be substituted by RNase H domains of other retroviruses. Thus, the RNase H domain might be involved in the stabilization of the protease dimer, while the RT domain is essential for RNA dependent protease activation. - Highlights: • Unprocessed Gag is required for optimal infectivity of foamy viruses. • Positions P2 and P2' are invariant in the foamy viral cleavage sites. • The RNaseH domain is essential for protease activity. • The RNaseH domains of other retroviruses support foamy viral protease activity.

  11. Determination of the protease cleavage site repertoire—The RNase H but not the RT domain is essential for foamy viral protease activity

    International Nuclear Information System (INIS)

    Spannaus, Ralf; Bodem, Jochen

    2014-01-01

    In contrast to orthoretroviruses, the foamy virus protease is only active as a protease-reverse transcriptase fusion protein and requires viral RNA for activation. Maturation of foamy viral proteins seems to be restricted to a single cleavage site in Gag and Pol. We provide evidence that unprocessed Gag is required for optimal infectivity, which is unique among retroviruses. Analyses of the cleavage site sequences of the Gag and Pol cleavage sites revealed a high similarity compared to those of Lentiviruses. We show that positions P2' and P2 are invariant and that Gag and Pol cleavage sites are processed with similar efficiencies. The RNase H domain is essential for protease activity, but can functionally be substituted by RNase H domains of other retroviruses. Thus, the RNase H domain might be involved in the stabilization of the protease dimer, while the RT domain is essential for RNA dependent protease activation. - Highlights: • Unprocessed Gag is required for optimal infectivity of foamy viruses. • Positions P2 and P2' are invariant in the foamy viral cleavage sites. • The RNaseH domain is essential for protease activity. • The RNaseH domains of other retroviruses support foamy viral protease activity

  12. Caspase-11 Plays a Protective Role in Pulmonary Acinetobacter baumannii Infection.

    Science.gov (United States)

    Wang, Wei; Shao, Yue; Li, Shengjun; Xin, Na; Ma, Tingxian; Zhao, Chenghai; Song, Min

    2017-10-01

    Activation of caspase-11 by some Gram-negative bacteria triggers the caspase-1/interleukin 1β (IL-1β) pathway, independent of canonical inflammasomes. Acinetobacter baumannii is a Gram-negative, conditionally pathogenic bacterium that can cause severe pulmonary infection in hospitalized patients. A. baumannii was revealed to activate canonical and noncanonical inflammasome pathways in bone marrow-derived macrophages (BMDMs). Pulmonary infection of caspase-11 -/- mice with A. baumannii showed that caspase-11 deficiency impaired A. baumannii clearance, exacerbated pulmonary pathological changes, and enhanced susceptibility to A. baumannii These data indicate that the caspase-11-mediated innate immune response plays a crucial role in defending against A. baumannii . Copyright © 2017 American Society for Microbiology.

  13. The Caspase Pathway as a Possible Therapeutic Target in Experimental Pemphigus

    Directory of Open Access Journals (Sweden)

    Deyanira Pacheco-Tovar

    2011-01-01

    Full Text Available Apoptosis plays a role in pemphigus IgG-dependent acantholysis; theoretically, the blockade of the caspase pathway could prevent the blistering that is caused by pemphigus autoantibodies. Using this strategy, we attempted to block the pathogenic effect of pemphigus IgG in Balb/c mice by using the caspase inhibitor Ac-DEVD-CMK. This inhibitor was administrated before the injection of pemphigus IgG into neonatal mice. The main results of the present investigation are as follows: (1 pemphigus IgG induces intraepidermal blisters in Balb/c neonatal mice; (2 keratinocytes around the blister and acantholytic cells undergo apoptosis; (3 the caspases inhibitor Ac-DEVD-CMK prevents apoptosis; (4 the inhibition of the caspase pathway prevents blister formation. In conclusion, inhibition of the caspase pathway may be a promising therapeutic tool that can help in the treatment of pemphigus flare ups.

  14. γ-Secretase Modulators and APH1 Isoforms Modulate γ-Secretase Cleavage but Not Position of ε-Cleavage of the Amyloid Precursor Protein (APP.

    Directory of Open Access Journals (Sweden)

    Christian B Lessard

    Full Text Available The relative increase in Aβ42 peptides from familial Alzheimer disease (FAD linked APP and PSEN mutations can be related to changes in both ε-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ε-site releases the amyloid precursor protein (APP intracellular domain (AICD, and perturbations in the position of ε-cleavage are closely associated with changes in the profile of amyloid β-protein (Aβ species that are produced and secreted. The mechanisms by which γ-secretase modulators (GSMs or FAD mutations affect the various γ-secretase cleavages to alter the generation of Aβ peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ε-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ε-cleavage of APP under more native conditions. Our results confirmed the previous findings that ε-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM, did not alter the position or kinetics of ε-cleavage position in vitro. APH1A and APH1B, a subunit of the γ-secretase complex, also modulated Aβ42/Aβ40 ratio without any alterations in ε-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate γ-secretase activity and Aβ42 generation by altering processivity but not ε-cleavage site utilization.

  15. Geranylated 4-Phenylcoumarins Exhibit Anticancer Effects against Human Prostate Cancer Cells through Caspase-Independent Mechanism.

    Directory of Open Access Journals (Sweden)

    Noor Shahirah Suparji

    Full Text Available Geranylated 4-phenylcoumarins, DMDP-1 & -2 isolated from Mesua elegans were investigated for anticancer potential against human prostate cancer cells. Treatment with DMDP-1 & -2 resulted in cell death in a time and dose dependent manner in an MTT assay on all cancer cell lines tested with the exception of lung adenocarcinoma cells. DMDP-1 showed highest cytotoxic efficacy in PC-3 cells while DMDP-2 was most potent in DU 145 cells. Flow cytometry indicated that both coumarins were successful to induce programmed cell death after 24 h treatment. Elucidation on the mode-of-action via protein arrays and western blotting demonstrated death induced without any significant expressions of caspases, Bcl-2 family proteins and cleaved PARP, thus suggesting the involvement of caspase-independent pathways. In identifying autophagy, analysis of GFP-LC3 showed increased punctate in PC-3 cells pre-treated with CQ and treated with DMDP-1. In these cells decreased expression of autophagosome protein, p62 and cathepsin B further confirmed autophagy. In contrary, the DU 145 cells pre-treated with CQ and treated with DMDP-2 has reduced GFP-LC3 punctate although the number of cells with obvious GFP-LC3 puncta was significantly increased in the inhibitor-treated cells. The increase level of p62 suggested leakage of cathepsin B into the cytosol to trigger potential downstream death mediators. This correlated with increased expression of cathepsin B and reduced expression after treatment with its inhibitor, CA074. Also auto-degradation of calpain-2 upon treatment with DMDP-1 &-2 and its inhibitor alone, calpeptin compared with the combination treatment, further confirmed involvement of calpain-2 in PC-3 and DU 145 cells. Treatment with DMDP-1 & -2 also showed up-regulation of total and phosphorylated p53 levels in a time dependent manner. Hence, DMDP-1 & -2 showed ability to activate multiple death pathways involving autophagy, lysosomal and endoplasmic reticulum death

  16. PP128. Placental Caspase-3 gene polymorphisms is associated with preeclampsia.

    Science.gov (United States)

    Hsu, C-D; Polavarapu, S; Parton, L

    2012-07-01

    Increased placental trophoblastic apoptosis (programmed cell death) was previously reported in pregnancies complicated by preeclampsia. Caspase-3 is one of the key executioners of apoptosis. Caspase are expressed in many tissues including human placental trophoblast and other tissues. Variations in the promoter area of the Caspase genes may modulate apoptotic signaling, contributing to an increased risk of preeclampsia To determine if gene polymorphisms of Caspase 3 proteins differ between patient with and without preeclampsia. Forty-three singleton placentas were studied. Twenty-two placentas were with preeclampsia and 21 were normotensive controls. DNA was extracted from placentas using QIAAmp DNA Minikit. Genotyping of Caspase 3 +567 was determined by real-time PCR using the Applied Biosystems Prism 7900 HT SDS machine. Chi-square and Fisher's exact tests were used for statistical analysis. There were no significant differences in maternal age, parity or race between the two groups. Preeclamptic placentas had higher frequency of wild type TT of Caspase-3 SNP (+567) as compared with normotensive controls (59% versus 28.5%). Preeclamptic placentas expressed significantly more genotype of TT of Caspase-3 SNP (+567) than normotensive patients when compared to CC (p=0.02). The alle frequencies of the Caspase SNP (+567) in preeclampstic placentas were 0.77 and 0.23 for T and C, respectively, as compared to 0.52 and 0.48, respectively, in placentas from normotensive pregnancies. Immune intolerance of maternal and placental interaction plays an important role in the pathogenesis of preeclampsia. Increased of placental apoptosis was reported in pregnancy complicated with preeclamsia. Our findings indicate placental Caspase 3 (+567) gene polymorphisms is associated with preeclampsia. Altered placental alle frequencies and caspase-3 SNP (+567) in preeclampsia further suggests preeclampsia is a trophoblastic disorder. Copyright © 2012. Published by Elsevier B.V.

  17. NALP3 inflammasome up-regulation and CASP1 cleavage of the glucocorticoid receptor causes glucocorticoid resistance in leukemia cells

    Science.gov (United States)

    Paugh, Steven W.; Bonten, Erik J.; Savic, Daniel; Ramsey, Laura B.; Thierfelder, William E.; Gurung, Prajwal; Malireddi, R. K. Subbarao; Actis, Marcelo; Mayasundari, Anand; Min, Jaeki; Coss, David R.; Laudermilk, Lucas T.; Panetta, John C.; McCorkle, J. Robert; Fan, Yiping; Crews, Kristine R.; Stocco, Gabriele; Wilkinson, Mark R.; Ferreira, Antonio M.; Cheng, Cheng; Yang, Wenjian; Karol, Seth E.; Fernandez, Christian A.; Diouf, Barthelemy; Smith, Colton; Hicks, J. Kevin; Zanut, Alessandra; Giordanengo, Audrey; Crona, Daniel; Bianchi, Joy J.; Holmfeldt, Linda; Mullighan, Charles G.; den Boer, Monique L.; Pieters, Rob; Jeha, Sima; Dunwell, Thomas L.; Latif, Farida; Bhojwani, Deepa; Carroll, William L.; Pui, Ching-Hon; Myers, Richard M.; Guy, R. Kiplin; Kanneganti, Thirumala-Devi; Relling, Mary V.; Evans, William E.

    2015-01-01

    Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and leukemia cell resistant to glucocorticoids confers a poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the sensitivity to prednisolone of primary leukemia cells from 444 newly diagnosed ALL patients, revealing significantly higher expression of caspase 1 (CASP1) and its activator NLRP3 in glucocorticoid resistant leukemia cells, due to significantly lower somatic methylation of CASP1 and NLRP3 promoters. Over-expression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1 overexpressing ALL. Our findings establish a new mechanism by which the NLRP3/CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on glucocorticoid transcriptional response suggests this mechanism could also modify glucocorticoid effects in other diseases. PMID:25938942

  18. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    Science.gov (United States)

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  19. The caspase pathway of linoelaidic acid (9t, 12t-c18:2)-induced apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Bin, Qiu; Rao, Huan; Hu, Jiang-Ning; Liu, Rong; Fan, Ya-Wei; Li, Jing; Deng, Ze-Yuan; Zhong, Xianfeng; Du, Fang-Ling

    2013-02-01

    Trans fatty acids (TFA) are reported to contribute to inflammation and coronary heart disease. The study aim was to investigate the proapoptotic effects of two double bond TFA (TDTFA) on human umbilical vein endothelial cells (HUVEC). The HUVEC were grown in media supplied with linoelaidic acid (9t,12t-C18:2) at 50, 100, 200, 400 μmol/l for 24 or 48 h to examine the effects of TDTFA on the viability and apoptosis of these cells. Flow cytometry analysis and confocal scanning were used to measure apoptosis, cell binding of Annexin V and propidium iodide uptake. Colorimetric assay and RT-PCR were used to analyze enzyme activities and mRNA expression of caspase-3, -8 and -9 in HUVEC. Results showed that 9t,12t-C18:2 inhibited the viability of HUVEC in a dose-dependent and time-dependent manner. The percentages of 9t,12t-C18:2 induced apoptotic and necrotic cells significantly increased compared with that of the control. The activities and mRNA expression of caspase-8, -9 and -3 were significantly increased in 9t,12t-C18:2 treated cells compared to that of the control. Addition of specific inhibitors of caspase-8 (z-IETD-fmk) and caspase-9 (z-LEHD-fmk) to HUVEC was found to completely inhibit 9t,12t-C18:2-induced activation of caspase-3, and z-IETD-fmk inhibited the activation of caspase-9. Meanwhile, it was found that mRNA expression of Bid, Smac/DIABLO and the release of mitochondrial cytochrome c were significantly elevated by 9t,12t-C18:2 treatment. These results suggest that 9t,12t-C18:2 may induce apoptosis of HUVEC through activating caspase-8, -9 and -3. Both the death receptor pathway and the mitochondrial pathway may be involved in the apoptosis induced by 9t,12t-C18:2.

  20. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    Science.gov (United States)

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  1. Inhibition of Cellular Adhesion by Immunological Targeting of Osteopontin Neoepitopes Generated through Matrix Metalloproteinase and Thrombin Cleavage.

    Science.gov (United States)

    Jürets, Alexander; Le Bras, Marie; Staffler, Günther; Stein, Gesine; Leitner, Lukas; Neuhofer, Angelika; Tardelli, Matteo; Turkof, Edvin; Zeyda, Maximilian; Stulnig, Thomas M

    2016-01-01

    Osteopontin (OPN), a secreted protein involved in inflammatory processes and cancer, induces cell adhesion, migration, and activation of inflammatory pathways in various cell types. Cells bind OPN via integrins at a canonical RGD region in the full length form as well as to a contiguous cryptic site that some have shown is unmasked upon thrombin or matrix metalloproteinase cleavage. Thus, the adhesive capacity of osteopontin is enhanced by proteolytic cleavage that may occur in inflammatory conditions such as obesity, atherosclerosis, rheumatoid arthritis, tumor growth and metastasis. Our aim was to inhibit cellular adhesion to recombinant truncated proteins that correspond to the N-terminal cleavage products of thrombin- or matrix metalloproteinase-cleaved OPN in vitro. We specifically targeted the cryptic integrin binding site with monoclonal antibodies and antisera induced by peptide immunization of mice. HEK 293 cells adhered markedly stronger to truncated OPN proteins than to full length OPN. Without affecting cell binding to the full length form, the raised monoclonal antibodies specifically impeded cellular adhesion to the OPN fragments. Moreover, we show that the peptides used for immunization were able to induce antisera, which impeded adhesion either to all OPN forms, including the full-length form, or selectively to the corresponding truncated recombinant proteins. In conclusion, we developed immunological tools to selectively target functional properties of protease-cleaved OPN forms, which could find applications in treatment and prevention of various inflammatory diseases and cancers.

  2. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.

    Science.gov (United States)

    Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla

    2009-10-07

    The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.

  3. Bicaudal is a conserved substrate for Drosophila and mammalian caspases and is essential for cell survival.

    LENUS (Irish Health Repository)

    Creagh, Emma M

    2009-01-01

    Members of the caspase family of cysteine proteases coordinate cell death through restricted proteolysis of diverse protein substrates and play a conserved role in apoptosis from nematodes to man. However, while numerous substrates for the mammalian cell death-associated caspases have now been described, few caspase substrates have been identified in other organisms. Here, we have utilized a proteomics-based approach to identify proteins that are cleaved by caspases during apoptosis in Drosophila D-Mel2 cells, a subline of the Schneider S2 cell line. This approach identified multiple novel substrates for the fly caspases and revealed that bicaudal\\/betaNAC is a conserved substrate for Drosophila and mammalian caspases. RNAi-mediated silencing of bicaudal expression in Drosophila D-Mel2 cells resulted in a block to proliferation, followed by spontaneous apoptosis. Similarly, silencing of expression of the mammalian bicaudal homologue, betaNAC, in HeLa, HEK293T, MCF-7 and MRC5 cells also resulted in spontaneous apoptosis. These data suggest that bicaudal\\/betaNAC is essential for cell survival and is a conserved target of caspases from flies to man.

  4. Angelica sinensis polysaccharides promotes apoptosis in human breast cancer cells via CREB-regulated caspase-3 activation

    International Nuclear Information System (INIS)

    Zhou, Wei-Jie; Wang, Sheng; Hu, Zhuang; Zhou, Zhen-Yu; Song, Cai-Juan

    2015-01-01

    Angelica sinensis polysaccharide (ASP) is purified from the fresh roots of Angelica sinensis (AS). This traditional Chinese medicine has been used for thousands of years for treating gynecological diseases and used in functional foods for the prevention and treatment of various diseases, such as inflammation and cancer. The antitumor activity of ASP is related to its biological activities, because it suppresses a variety of pro-proliferative or anti-apoptotic factors that are dramatically expressed in cancer cells of given types. In this study, we show that angelica sinensis polysaccharide induced apoptosis in breast cancer cells of T47D over-expressing the Cyclic AMP response element binding protein (CREB), inducing apoptosis-related signaling pathway activity. The result also found that ASP caused cell death was linked to caspase activity, accompanied by the loss of mitochondrial membrane potential, cytochrome c release, and Bax translocation from the cytosol to the mitochondria. We found that ASP significantly affected the poly-ADP-ribose polymerase (PARP), Bcl-2 Associated X Protein (Bax), Bcl-2, Bcl-xL and apoptotic protease activating facter-1 (Apaf1) protein expression in a dose- and time-dependent manner. DAPI staining and Flow cytometry were used to analyze apoptosis. The nude mice xenograft model was used to evaluate the antitumor effect of ASP in vivo. ASP has profound antitumor effect on T47D cells, probably by inducing apoptosis through CREB signaling pathway. Thus, these results suggest that ASP would be a promising therapeutic agent for breast cancer. - Highlights: • CREB and Caspase-3 signaling pathways are involved in the ASP induced breast cancer cells apoptosis. • ROCK1/Mlc signaling pathway plays a critical role in this ASP-mediated apoptosis. • Angelica sinensis polysaccharide (ASP) affected the PARP, Bax, Bcl-2, Bcl-xL and Apaf1 protein expression. • The activation of CREB and ROCK1 promotes caspase-3 activation and apoptosis induced

  5. Angelica sinensis polysaccharides promotes apoptosis in human breast cancer cells via CREB-regulated caspase-3 activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei-Jie; Wang, Sheng [Department of Breast and Thyroid Surgery, Huaihe Hospital, Henan University, Kaifeng 475000 (China); Hu, Zhuang, E-mail: zhuanghu475000@sina.com [Department of Breast and Thyroid Surgery, Huaihe Hospital, Henan University, Kaifeng 475000 (China); Zhengzhou Center for Disease Control and Prevention, Zhengzhou 475000 (China); Zhou, Zhen-Yu; Song, Cai-Juan [Department of Breast and Thyroid Surgery, Huaihe Hospital, Henan University, Kaifeng 475000 (China); Zhengzhou Center for Disease Control and Prevention, Zhengzhou 475000 (China)

    2015-11-20

    Angelica sinensis polysaccharide (ASP) is purified from the fresh roots of Angelica sinensis (AS). This traditional Chinese medicine has been used for thousands of years for treating gynecological diseases and used in functional foods for the prevention and treatment of various diseases, such as inflammation and cancer. The antitumor activity of ASP is related to its biological activities, because it suppresses a variety of pro-proliferative or anti-apoptotic factors that are dramatically expressed in cancer cells of given types. In this study, we show that angelica sinensis polysaccharide induced apoptosis in breast cancer cells of T47D over-expressing the Cyclic AMP response element binding protein (CREB), inducing apoptosis-related signaling pathway activity. The result also found that ASP caused cell death was linked to caspase activity, accompanied by the loss of mitochondrial membrane potential, cytochrome c release, and Bax translocation from the cytosol to the mitochondria. We found that ASP significantly affected the poly-ADP-ribose polymerase (PARP), Bcl-2 Associated X Protein (Bax), Bcl-2, Bcl-xL and apoptotic protease activating facter-1 (Apaf1) protein expression in a dose- and time-dependent manner. DAPI staining and Flow cytometry were used to analyze apoptosis. The nude mice xenograft model was used to evaluate the antitumor effect of ASP in vivo. ASP has profound antitumor effect on T47D cells, probably by inducing apoptosis through CREB signaling pathway. Thus, these results suggest that ASP would be a promising therapeutic agent for breast cancer. - Highlights: • CREB and Caspase-3 signaling pathways are involved in the ASP induced breast cancer cells apoptosis. • ROCK1/Mlc signaling pathway plays a critical role in this ASP-mediated apoptosis. • Angelica sinensis polysaccharide (ASP) affected the PARP, Bax, Bcl-2, Bcl-xL and Apaf1 protein expression. • The activation of CREB and ROCK1 promotes caspase-3 activation and apoptosis induced

  6. Overexpression of caspase-1 in pancreatic disorders: implications for a function besides apoptosis.

    Science.gov (United States)

    Ramadani, M; Gansauge, F; Schlosser, S; Yang, Y; Beger, H G; Gansauge, S

    2001-01-01

    The caspases are known to play a crucial role in the triggering and execution of apoptosis in a variety of cell types. We assessed the expression of caspase-1 in 42 pancreatic cancer tissue samples, 38 chronic pancreatitis specimens, and nine normal pancreatic tissues by immunohistochemistry and Western blot analysis. We found a clear overexpression of caspase-1 in both disorders, but differences in the expression patterns in distinct morphologic compartments. Pancreatic cancer tissue showed a clear cytoplasmatic overexpression of caspase-1 in tumor cells in 71% of the tumors, whereas normal pancreatic tissue showed only occasional immunoreactivity. In chronic pancreatitis an overexpression of caspase-1 was found in atrophic acinar cells (89%), hyperplastic ducts (87%), and dedifferentiating acinar cells (84%). Although in atrophic cells a clear nuclear expression was found, hyperplastic ducts and dedifferentiating acinar cells showed clear cytoplasmic expression. Western blot analysis revealed a marked expression of the 45 kDa precursor of caspase-1 in pancreatic cancer and chronic pancreatitis (80% and 86%, respectively). Clear bands at 30 kDa, suggested to represent the p10-p20 heterodimer of active caspase-1, were found in 60% of the cancer tissue and 14% of the pancreatitis tissue specimens. Since we found a highly significant correlation between cytoplasm overexpression of caspase-1 in pancreatic cancer and overexpression of the known prognostic factors cyclin D1, epidermal growth factor, and epidermal growth factor receptor, it is plausible that caspase-1 has a yet unknown function in proliferative processes in addition to its well-known role in the apoptotic pathway.

  7. Cell-in-Cell Death Is Not Restricted by Caspase-3 Deficiency in MCF-7 Cells

    Science.gov (United States)

    Wang, Shan; He, Meifang; Li, Linmei; Liang, Zhihua; Zou, Zehong

    2016-01-01

    Purpose Cell-in-cell structures are created by one living cell entering another homotypic or heterotypic living cell, which usually leads to the death of the internalized cell, specifically through caspase-dependent cell death (emperitosis) or lysosome-dependent cell death (entosis). Although entosis has attracted great attention, its occurrence is controversial, because one cell line used in its study (MCF-7) is deficient in caspase-3. Methods We investigated this issue using MCF-7 and A431 cell lines, which often display cell-in-cell invasion, and have different levels of caspase-3 expression. Cell-in-cell death morphology, microstructures, and signaling pathways were compared in the two cell lines. Results Our results confirmed that MCF-7 cells are caspase-3 deficient with a partial deletion in the CASP-3 gene. These cells underwent cell death that lacked typical apoptotic properties after staurosporine treatment, whereas caspase-3-sufficient A431 cells displayed typical apoptosis. The presence of caspase-3 was related neither to the lysosome-dependent nor to the caspase-dependent cell-in-cell death pathway. However, the existence of caspase-3 was associated with a switch from lysosome-dependent cell-in-cell death to the apoptotic cell-in-cell death pathway during entosis. Moreover, cellular hypoxia, mitochondrial swelling, release of cytochrome C, and autophagy were observed in internalized cells during entosis. Conclusion The occurrence of caspase-independent entosis is not a cell-specific process. In addition, entosis actually represents a cellular self-repair system, functioning through autophagy, to degrade damaged mitochondria resulting from cellular hypoxia in cell-in-cell structures. However, sustained autophagy-associated signal activation, without reduction in cellular hypoxia, eventually leads to lysosome-dependent intracellular cell death. PMID:27721872

  8. Role of the inflammasome-caspase1/11-IL-1/18 axis in cigarette smoke driven airway inflammation: an insight into the pathogenesis of COPD.

    Directory of Open Access Journals (Sweden)

    Suffwan Eltom

    Full Text Available Chronic Obstructive Pulmonary Disease (COPD is an inflammatory airway disease often associated with cigarette smoke (CS exposure. The disease is increasing in global prevalence and there is no effective therapy. A major step forward would be to understand the disease pathogenesis. The ATP-P2X7 pathway plays a dominant role in murine models of CS induced airway inflammation, and markers of activation of this axis are upregulated in patients with COPD. This strongly suggests that the axis could be important in the pathogenesis of COPD. The aim of this study was to perform a detailed characterisation of the signalling pathway components involved in the CS-driven, P2X7 dependent airway inflammation.We used a murine model system, bioassays and a range of genetically modified mice to better understand this complex signalling pathway.The inflammasome-associated proteins NALP3 and ASC, but not IPAF and AIM2, are required for CS-induced IL-1β/IL-18 release, but not IL-1α. This was associated with a partial decrease in lung tissue caspase 1 activity and BALF neutrophilia. Mice missing caspase 1/11 or caspase 11 had markedly attenuated levels of all three cytokines and neutrophilia. Finally the mechanism by which these inflammatory proteins are involved in the CS-induced neutrophilia appeared to be via the induction of proteins involved in neutrophil transmigration e.g. E-Selectin.This data indicates a key role for the P2X7-NALP3/ASC-caspase1/11-IL-1β/IL-18 axis in CS induced airway inflammation, highlighting this pathway as a possible therapeutic target for the treatment of COPD.

  9. Acinetobacter calcoaceticus-baumannii complex strains induce caspase-dependent and caspase-independent death of human epithelial cells.

    Science.gov (United States)

    Krzymińska, Sylwia; Frąckowiak, Hanna; Kaznowski, Adam

    2012-09-01

    We investigated interactions of human isolates of Acinetobacter calcoaceticus-baumannii complex strains with epithelial cells. The results showed that bacterial contact with the cells as well as adhesion and invasion were required for induction of cytotoxicity. The infected cells revealed hallmarks of apoptosis characterized by cell shrinking, condensed chromatin, and internucleosomal fragmentation of nuclear DNA. The highest apoptotic index was observed for 4 of 10 A. calcoaceticus and 4 of 7 A. baumannii strains. Moreover, we observed oncotic changes: cellular swelling and blebbing, noncondensed chromatin, and the absence of DNA fragmentation. The highest oncotic index was observed in cells infected with 6 A. calcoaceticus isolates. Cell-contact cytotoxicity and cell death were not inhibited by the pan-caspase inhibitor z-VAD-fmk. Induction of oncosis was correlated with increased invasive ability of the strains. We demonstrated that the mitochondria of infected cells undergo structural and functional alterations which can lead to cell death. Infected apoptotic and oncotic cells exhibited loss of mitochondrial transmembrane potential (ΔΨ(m)). Bacterial infection caused generation of nitric oxide and reactive oxygen species. This study indicated that Acinetobacter spp. induced strain-dependent distinct types of epithelial cell death that may contribute to the pathogenesis of bacterial infection.

  10. [Copper-catalyzed cleavage of DNA by arenes].

    Science.gov (United States)

    Koval', O A; Boguslavskiĭ, E G; Oleĭnikova, S B; Chernolovskaia, E L; Litvak, V V; Nadolinnyĭ, V A; Blasov, V V

    2003-01-01

    DNA was found to be cleaved in neutral solutions containing arenes and copper (II) salts. The reaction is comparable in efficiency with the DNA cleavage by such systems as Cu(II)-phenanthroline and Cu(II)-ascorbic acid, but, in contrast to the latter, the system Cu(2+)-arene does not require the presence of an exogenous reducing agent or hydrogen peroxide. The system Cu(2+)-arene does not cleave DNA under anaerobic conditions. Catalase, sodium azide, and bathocuproine, which is a specific chelator of Cu(I), completely inhibit the reaction. The data obtained allow one to suppose that Cu(I) ions, superoxide radical, and singlet oxygen participate in the reaction. It has been shown by the EPR method using spin traps that the reaction proceeds with formation of alkoxyl radicals, which can insert breaks in the DNA molecule. For effective cleavage of DNA in the Cu(II)-o-bromobenzoic acid system, the radicals have to be generated by a specific copper-DNA-o-bromobenzoic acid complex, in which copper ions are most probably coordinated with oxygen atoms of the DNA phosphate groups. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2003, vol. 29, no. 6; see also http://www.maik.ru.

  11. Carotenoids biosynthesis and cleavage related genes from bacteria to plants.

    Science.gov (United States)

    Liang, Ming-Hua; Zhu, Jianhua; Jiang, Jian-Guo

    2017-06-13

    Carotenoids are essential for photosynthesis and photoprotection in photosynthetic organisms and beneficial for human health. Apocarotenoids derived from carotenoid degradation can serve critical functions including hormones, volatiles, and signals. They have been used commercially as food colorants, animal feed supplements, and nutraceuticals for cosmetic and pharmaceutical purposes. This review focuses on the molecular evolution of carotenogenic enzymes and carotenoid cleavage oxygenases (CCOs) from bacteria, fungi, cyanobacteria, algae, and plants. The diversity of carotenoids and apocarotenoids as well as their complicated biosynthetic pathway in different species can shed light on the history of early molecular evolution. Some carotenogenic genes (such as phytoene synthases) have high protein sequence similarity from bacteria to land plants, but some (such as phytoene desaturases, lycopene cyclases, carotenoid hydroxylases, and CCOs) have low similarity. The broad diversity of apocarotenoid volatile compounds can be attributed to large numbers of carotenoid precursors and the various cleavage sites catalyzed by CCOs enzymes. A variety of carotenogenic enzymes and CCOs indicate the functional diversification of carotenoids and apocrotenoids in different species. New carotenoids, new apocarotenoids, new carotenogenic enzymes, new CCOs, and new pathways still need to be explored.

  12. Stress-induced cleavage of Myc promotes cancer cell survival

    Science.gov (United States)

    Conacci-Sorrell, Maralice; Ngouenet, Celine; Anderson, Sarah; Brabletz, Thomas; Eisenman, Robert N.

    2014-01-01

    Evasion of apoptosis is critical in Myc-induced tumor progression. Here we report that cancer cells evade death under stress by activating calpain-mediated proteolysis of Myc. This generates Myc-nick, a cytoplasmic, transcriptionally inactive cleavage product of Myc. We found conversion of Myc into Myc-nick in cell lines and tissues derived from multiple cancers. In colon cancer, the production of Myc-nick is enhanced under stress conditions such as hypoxia and nutrient deprivation. Under these conditions, ectopic expression of Myc-nick promotes anchorage-independent growth and cell survival at least in part by promoting autophagy. Myc-nick also delays colon cancer cell death after treatment with chemotherapeutic drugs such as etoposide, cisplatin, and imatinib. Furthermore, colon cancer cells expressing a cleavage-resistant form of Myc undergo extensive apoptosis but are rescued by overexpression of Myc-nick. We also found that ectopic expression of Myc-nick results in the induction of the actin-bundling protein fascin, formation of filopodia, and increased cell motility—all mediators of tumor metastasis. Myc-nick-induced survival, autophagy, and motility require Myc box II (MBII), a region of Myc-nick that recruits acetyltransferases that in turn modify cytoplasmic proteins, including α-tubulin and ATG3. Our results suggest that Myc-nick-induced survival and motility contribute to colon cancer progression and metastasis. PMID:24696454

  13. Camalexin induces apoptosis in T-leukemia Jurkat cells by increased concentration of reactive oxygen species and activation of caspase-8 and caspase-9.

    Science.gov (United States)

    Mezencev, Roman; Updegrove, Taylor; Kutschy, Peter; Repovská, Mária; McDonald, John F

    2011-07-01

    Camalexin, a major indole phytoalexin of Arabidopsis thaliana, accumulates in various cruciferous plants in response to environmental stress and reportedly displays antimicrobial activities against various plant pathogens. However, its cytotoxicity against eukaryotic cells and potential as a prospective drug for human diseases has been examined only in a limited context. Our data demonstrate the time- and concentration-dependent cytotoxicity of camalexin on human T-leukemia Jurkat cells in the micromolar range, and the lower potency of cytotoxic effects on human lymphoblasts and primary fibroblasts. Cytotoxicity of camalexin is enhanced by the glutathione-depleting agent buthionine sulfoximine and completely blocked by pan-caspase inhibitor Z-VAD-FMK. Treatment of Jurkat cells with camalexin resulted in activation of caspase-8, caspase-9, caspases-3/7, and apoptosis that was detected by the presence of a sub-G1 population of cells, externalization of phosphatidyl serine and decreased mitochondrial membrane potential. Staining with 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium bromide displayed increased concentration of reactive oxygen species (ROS) early in camalexin-treated Jurkat cells, prior to the onset of apoptosis, while staining with MitoSOX(™) dye identified mitochondria as a source of increased ROS. Our data suggest that this phytochemical, which has a wide range of predicted pharmacological activities, induces apoptosis in Jurkat leukemia cells through increased ROS followed by dissipation of mitochondrial membrane potential and execution of caspase-9- and caspase-8-initiated apoptosis. This is, to the best of our knowledge, the first report on antileukemic activity and mode of action of this unique indole phytoalexin.

  14. In Vitro Antitumor Activity of Aloperine on Human Thyroid Cancer Cells through Caspase-Dependent Apoptosis

    Directory of Open Access Journals (Sweden)

    Ying-Ray Lee

    2018-01-01

    Full Text Available The global incidence of thyroid cancer, one of the most common endocrine malignancies, is especially high among women. Although most patients with thyroid cancers exhibit a good prognosis with standard treatment, there are no effective therapies for patients with anaplastic thyroid cancers or cancers that have reached an advanced or recurrent level. Therefore, it is important to develop highly effective compounds for treating such patients. Aloperine, a natural compound isolated from Sophora alopecuroides, has been reported to possess antioxidant, anti-inflammatory, anti-neuronal injury, anti-renal injury, antitumor, anti-allergic, and antiviral properties. In this study, we show that aloperine can inhibit cell growth in human anaplastic thyroid cancers and multidrug-resistant papillary thyroid cancers. Moreover, it could suppress in vitro tumorigenesis and promote cellular apoptosis. Further analysis demonstrated the involvement of caspase-dependent apoptosis, including intrinsic and/or extrinsic pathways, in aloperine-induced cellular apoptosis. However, cell cycle regulation was not detected with aloperine treatment. This study suggests the potential therapeutic use of aloperine in human anaplastic thyroid cancers and multidrug-resistant papillary thyroid cancers.

  15. Second mitochondria-derived activator of caspase (SMAC) mimetic potentiates tumor susceptibility toward natural killer cell-mediated killing.

    Science.gov (United States)

    Brinkmann, Kerstin; Hombach, Andreas; Seeger, Jens Michael; Wagner-Stippich, Diana; Klubertz, Daniela; Krönke, Martin; Abken, Hinrich; Kashkar, Hamid

    2014-03-01

    Resistance to apoptosis is a hallmark of cancer, and represents an important mechanism of how tumor cells resist immune cell destruction. Mitochondria are the central regulators of the apoptotic machinery by releasing pro-apoptotic factors including cytochrome c and second mitochondria-derived activator of caspase (SMAC) upon mitochondrial outer membrane permeabilization (MOMP). Small molecules activating MOMP such as BH3 mimetics or antagonizers of the inhibitor of apoptosis proteins (IAPs) such as SMAC mimetics have recently engendered new optimism for a more individualized and effective cancer therapy. Here we show that a SMAC mimetic potentiates cancer cell killing by natural killer (NK) cells through reactivation of tumor cell apoptosis. Specifically, the SMAC mimetic enhances the susceptibility of tumor cells toward NK cell-mediated effector mechanisms involving death receptors and cytolytic granules containing perforin and granzymes by relieving caspase activity. Our data highlight for the first time the specific use of SMAC mimetics for boosting immune cell-mediated immunotherapy, representing a novel and promising approach in the treatment of cancer.

  16. E-Cigarette Vapor Induces an Apoptotic Response in Human Gingival Epithelial Cells Through the Caspase-3 Pathway.

    Science.gov (United States)

    Rouabhia, Mahmoud; Park, Hyun Jin; Semlali, Abdelhabib; Zakrzewski, Andrew; Chmielewski, Witold; Chakir, Jamila

    2017-06-01

    Electronic cigarettes represent an increasingly significant proportion of today's consumable tobacco products. E-cigarettes contain several chemicals which may promote oral diseases. The aim of this study was to investigate the effect of e-cigarette vapor on human gingival epithelial cells. Results show that e-cigarette vapor altered the morphology of cells from small cuboidal form to large undefined shapes. Both single and multiple exposures to e-cigarette vapor led to a bulky morphology with large faint nuclei and an enlarged cytoplasm. E-cigarette vapor also increased L-lactate dehydrogenase (LDH) activity in the targeted cells. This activity was greater with repeated exposures. Furthermore, e-cigarette vapor increased apoptotic/necrotic epithelial cell percentages compared to that observed in the control. Epithelial cell apoptosis was confirmed by TUNEL assay showing that exposure to e-cigarette vapor increased apoptotic cell numbers, particularly after two and three exposures. This negative effect involved the caspase-3 pathway, the activity of which was greater with repeated exposure and which decreased following the use of caspase-3 inhibitor. The adverse effects of e-cigarette vapor on gingival epithelial cells may lead to dysregulated gingival cell function and result in oral disease. J. Cell. Physiol. 232: 1539-1547, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Cleavage leads to expansion of bacteriophage P4 procapsids in vitro

    International Nuclear Information System (INIS)

    Wang Sifang; Chandramouli, Preethi; Butcher, Sarah; Dokland, Terje

    2003-01-01

    Proteolytic cleavage of the structural proteins is an important part of the maturation process for most bacteriophages and other viruses. In the double-stranded DNA bacteriophages this cleavage is associated with DNA packaging, capsid expansion, and scaffold removal. To understand the role of protein cleavage in the expansion of bacteriophages P2 and P4, we have experimentally cleaved P4 procapsids produced by overexpression of the capsid and scaffolding proteins. The cleavage leads to particle expansion and scaffold removal in vitro. The resulting expanded capsid has a thin-shelled structure similar, but not identical, to that of mature virions

  18. Cleaved caspase-3 in lung epithelium of children who died with acute respiratory distress syndrome

    NARCIS (Netherlands)

    Bem, Reinout A.; van der Loos, Chris M.; van Woensel, Job B. M.; Bos, Albert P.

    2010-01-01

    OBJECTIVE: To investigate the extent of cleaved caspase-3 immunostaining in lung epithelial cells in children with acute respiratory distress syndrome. DESIGN: Observational study in sixteen children who died with acute respiratory distress syndrome and diffuse alveolar damage. SETTING: Pediatric

  19. Metabolic Regulation of CaMKII Protein and Caspases in Xenopus laevis Egg Extracts*

    Science.gov (United States)

    McCoy, Francis; Darbandi, Rashid; Chen, Si-Ing; Eckard, Laura; Dodd, Keela; Jones, Kelly; Baucum, Anthony J.; Gibbons, Jennifer A.; Lin, Sue-Hwa; Colbran, Roger J.; Nutt, Leta K.

    2013-01-01

    The metabolism of the Xenopus laevis egg provides a cell survival signal. We found previously that increased carbon flux from glucose-6-phosphate (G6P) through the pentose phosphate pathway in egg extracts maintains NADPH levels and calcium/calmodulin regulated protein kinase II (CaMKII) activity to phosphorylate caspase 2 and suppress cell death pathways. Here we show that the addition of G6P to oocyte extracts inhibits the dephosphorylation/inactivation of CaMKII bound to caspase 2 by protein phosphatase 1. Thus, G6P sustains the phosphorylation of caspase 2 by CaMKII at Ser-135, preventing the induction of caspase 2-mediated apoptotic pathways. These findings expand our understanding of oocyte biology and clarify mechanisms underlying the metabolic regulation of CaMKII and apoptosis. Furthermore, these findings suggest novel approaches to disrupt the suppressive effects of the abnormal metabolism on cell death pathways. PMID:23400775

  20. Tailoring Bond Cleavage in Gas-Phase Biomolecules by Low Energy Electrons

    Science.gov (United States)

    Ptasinska, Sylwia

    2014-10-01

    The high energy quanta of impinging radiation can generate a large number (about 5x104) of secondary electrons per 1 MeV of energy deposited. When ejected in condensed phase water, the kinetic energy distribution of these free or quasi-free electrons is peaked below 10 eV. Low energy electrons also dominate in the secondary emission from biomolecular targets exposed to different energies of primary radiation. Due to the complexity of the radiation-induced processes in the condensed-phase environment, mechanisms of secondary electrons induced damage in biomolecules (BM) still need to be investigated. However, based on results from theory and different experiments accumulated within the last decade, it is now possible to determine the fundamental mechanisms that are involved in many chemical reactions induced in isolated gas-phase biomolecules by low energy electrons. The central finding of earlier research was the discovery of the bond- and site- selectivity in the dissociative electron attachment (DEA) process to biomolecules. It has been demonstrated that by tuning the energy of the incoming electron we can gain control over the location of the bond cleavage. These studies showed the selectivity in single bond cleavage reactions leading to the formation of the dehydrogenated closed shell anion (BM-H)- or the complementary reaction leading to H-. The loss of a hydrogen atom or an anion is fast compared with ring cleavage and the excision of heavier fragments and, hence, this reaction can compete efficiently with autodetachment. Moreover, site selectivity has been also observed in the metastable anion formation via the DEA process. Such delayed fragmentation was studied recently for the dehydrogenated closed-shell anion conversion into NCO- upon DEA proceeded a few μ sec after electron attachment, indicating a rather slow unimolecular decomposition. Interestingly, site selectivity was observed in the prompt as well as the metastable NCO- formation in DEA. The

  1. Fludarabine inhibits STAT1-mediated up-regulation of caspase-3 expression in dexamethasone-induced osteoblasts apoptosis and slows the progression of steroid-induced avascular necrosis of the femoral head in rats.

    Science.gov (United States)

    Feng, Zhenhua; Zheng, Wenhao; Tang, Qian; Cheng, Liang; Li, Hang; Ni, Wenfei; Pan, Xiaoyun

    2017-08-01

    Steroid-induced avascular necrosis of the femoral head (SANFH) is a major limitation of long-term or excessive clinical administration of glucocorticoids. Fludarabine, which is a compound used to treat various hematological malignancies, such as chronic lymphocytic leukemia, acts by down-regulating signal transducer and activator of transcription 1 (STAT1) by inhibiting STAT1 phosphorylation in both normal and cancer cells. This study assessed the effects of fludarabine in vitro (primary murine osteoblasts) and in vivo (rat SANFH model). In vitro, pretreatment with fludarabine significantly inhibited Dexamethasone (Dex)-induced apoptosis in osteoblasts, which was examined by TUNEL staining. Treatment with Dex caused a remarkable decrease in the expression of Bcl-2; an increase in cytochrome c release; activation of BAX, caspase-9, and caspase-3; and an obvious enhancement in STAT1 phosphorylation. However, treatment resulted in the up-regulation of caspase-3 expression. Enhanced P-STAT1 activity and up-regulation of caspase-3 expression were also observed in osteoblasts. In vivo, the subchondral trabeculae in fludarabine-treated rats exhibited less bone loss and a lower ratio of empty lacunae. Taken together, our results suggest that STAT1-mediated up-regulation of caspase-3 is involved in osteoblast apoptosis induced by Dex and indicates that fludarabine may serve as a potential agent for the treatment of SANFH.

  2. Overexpression of Caspase-1 in adenocarcinoma of pancreas and chronic pancreatitis.

    Science.gov (United States)

    Yang, Yin-Mo; Ramadani, Marco; Huang, Yan-Ting

    2003-12-01

    To identify the expression of Caspase-1(interleukin-1beta converting enzyme) and its role in adenoma of the pancreas and chronic pancreatitis. The expression of Caspase-1 was assessed in 42 pancreatic cancer tissue samples, 38 chronic pancreatitis specimens, and 9 normal pancreatic tissues by immunohistochemistry and Western blot analysis. Overexpression of Caspase-1 was observed in both disorders, but there were differences in the expression patterns in distinct morphologic compartments. Pancreatic cancer tissues showed a clear cytoplasmatic overexpression of Caspase-1 in tumor cells of 71% of the tumors, whereas normal pancreatic tissues showed only occasional immunoreactivity. In chronic pancreatitis, overexpression of Caspase-1 was found in atrophic acinar cells (89%), hyperplastic ducts (87%), and dedifferentiating acinar cells (84%). Although in atrophic cells a clear nuclear expression was found, hyperplastic ducts and dedifferentiating acinar cells showed clear cytoplasmic expression. Western blot analysis revealed a marked expression of the 45 kDa precursor of Caspase-1 in pancreatic cancer and chronic pancreatitis (80% and 86%, respectively). Clear bands at 30 kDa, which suggested the p10-p20 heterodimer of active Caspase-1, were found in 60% of the cancer tissue and 14% of the pancreatitis tissue specimens, but not in normal pancreatic tissues. Overexpression of Caspase-1 is a frequent event in pancreatic disorders and its differential expression patterns may reflect two functions of the protease. One is its participation in the apoptotic pathway in atrophic acinar cells and tumor-surrounding pancreatitis tissue, the other is its possible role in proliferative processes in pancreatic cancer cells and hyperplastic duct cells and dedifferentiating acinar cells in chronic pancreatitis.

  3. New insights into the apoptotic process in mollusks: characterization of caspase genes in Mytilus galloprovincialis.

    Directory of Open Access Journals (Sweden)

    Alejandro Romero

    2011-02-01

    Full Text Available Apoptosis is an essential biological process in the development and maintenance of immune system homeostasis. Caspase proteins constitute the core of the apoptotic machinery and can be categorized as either initiators or effectors of apoptosis. Although the genes encoding caspase proteins have been described in vertebrates and in almost all invertebrate phyla, there are few reports describing the initiator and executioner caspases or the modulation of their expression by different stimuli in different apoptotic pathways in bivalves. In the present work, we characterized two initiator and four executioner caspases in the mussel Mytilus galloprovincialis. Both initiators and executioners showed structural features that make them different from other caspase proteins already described. Evaluation of the genes' tissue expression patterns revealed extremely high expression levels within the gland and gills, where the apoptotic process is highly active due to the clearance of damaged cells. Hemocytes also showed high expression values, probably due to of the role of apoptosis in the defense against pathogens. To understand the mechanisms of caspase gene regulation, hemocytes were treated with UV-light, environmental pollutants and pathogen-associated molecular patterns (PAMPs and apoptosis was evaluated by microscopy, flow cytometry and qPCR techniques. Our results suggest that the apoptotic process could be tightly regulated in bivalve mollusks by overexpression/suppression of caspase genes; additionally, there is evidence of caspase-specific responses to pathogens and pollutants. The apoptotic process in mollusks has a similar complexity to that of vertebrates, but presents unique features that may be related to recurrent exposure to environmental changes, pollutants and pathogens imposed by their sedentary nature.

  4. Caspases and osteogenic markers-in vitro screening of inhibition impact

    Czech Academy of Sciences Publication Activity Database

    Adamová, Eva; Janečková, Eva; Klepárník, Karel; Matalová, Eva

    2016-01-01

    Roč. 52, č. 2 (2016), s. 144-148 ISSN 1071-2690 R&D Projects: GA ČR(CZ) GB14-37368G; GA ČR(CZ) GA14-28254S Institutional support: RVO:67985904 ; RVO:68081715 Keywords : osteogenesis * chondrogenesis * caspases * caspase-3 * gene expression Subject RIV: EA - Cell Biology; CB - Analytical Chemistry, Separation (UIACH-O) Impact factor: 0.897, year: 2016

  5. Discovery of a highly active anticancer analogue of cardamonin that acts as an inducer of caspase-dependent apoptosis and modulator of the mTOR pathway.

    Science.gov (United States)

    Break, Mohammed Khaled Bin; Hossan, Md Shahadat; Khoo, Yivonn; Qazzaz, Mohannad Emad; Al-Hayali, Mohammed Z K; Chow, Sek Chuen; Wiart, Christophe; Bradshaw, Tracey D; Collins, Hilary; Khoo, Teng-Jin

    2018-03-01

    Cardamonin is a natural chalcone that has been shown to exhibit high anticancer activity. In an attempt to discover analogues of cardamonin with enhanced anticancer activity, 19 analogues were synthesized and tested against A549 and HK1 cell lines. Results of the MTS cell viability assay showed that several derivatives possessed cytotoxic activities that were several-fold more potent than cardamonin. SAR analysis showed the importance of the ketone and alkene groups for bioactivity, while substituting cardamonin's phenolic groups with more polar moieties resulted in activity enhancement. As part of the SAR study and further exploration of chemical space, the effect of metal coordination on cytotoxicity was also investigated, but it was only possible to successfully obtain the Cu (II) complex of cardamonin (19). Compound 19 was the most active analogue possessing IC 50 values of 13.2μM and 0.7μM against A549 and HK1 cells, corresponding to a 5- and 32-fold increase in activity, respectively. It was also able to significantly inhibit the migration of A549 and HK1 cells. Further mode of action studies have shown that the most active analogue, 19, induced DNA damage resulting in G2/M-phase cell- cycle arrest in both cell lines. These events further led to the induction of apoptosis by the compound via caspase-3/7 and caspase-9 activation, PARP cleavage and downregulation of Mcl-1 expression. Moreover, 19 inhibited the expression levels of p-mTOR and p-4EBP1, which indicated that it exerted its anticancer activity, at least in part, via inhibition of the mTOR signalling pathway. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  6. Apigenin induces caspase-dependent apoptosis by inhibiting signal transducer and activator of transcription 3 signaling in HER2-overexpressing SKBR3 breast cancer cells.

    Science.gov (United States)

    Seo, Hye-Sook; Ku, Jin Mo; Choi, Han-Seok; Woo, Jong-Kyu; Jang, Bo-Hyoung; Go, Hoyeon; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-08-01

    Phytoestrogens have been demonstrated to inhibit tumor induction; however, their molecular mechanisms of action have remained elusive. The present study aimed to investigate the effects of a phytoestrogen, apigenin, on proliferation and apoptosis of the human epidermal growth factor receptor 2 (HER2)-expressing breast cancer cell line SKBR3. Proliferation assay, MTT assay, fluorescence-activated cell sorting analysis, western blot analysis, immunocytochemistry, reverse transcription-polymerase chain reaction and ELISA assay were used in the present study. The results of the present study indicated that apigenin inhibited the proliferation of SKBR3 cells in a dose-and time-dependent manner. This inhibition of growth was accompanied by an increase in the sub-G0/G1 apoptotic population. Furthermore, apigenin enhanced the expression levels of cleaved caspase-8 and -3, and induced the cleavage of poly(adenosine diphosphate ribose) polymerase in SKBR3 cells, confirming that apigenin promotes apoptosis via a caspase-dependent pathway. Apigenin additionally reduced the expression of phosphorylated (p)-janus kinase 2 and p-signal transducer and activator of transcription 3 (STAT3), inhibited CoCl2-induced vascular endothelial growth factor (VEGF) secretion and decreased the nuclear localization of STAT3. The STAT3 inhibitor S31-201 decreased the cellular proliferation rate and reduced the expression of p-STAT3 and VEGF. Therefore, these results suggested that apigenin induced apoptosis via the inhibition of STAT3 signaling in SKBR3 cells. In conclusion, the results of the present study indicated that apigenin may be a potentially useful compound for the prevention or treatment of HER2-overexpressing breast cancer.

  7. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila.

    Directory of Open Access Journals (Sweden)

    Takahiro Chihara

    2014-06-01

    Full Text Available Sensory and cognitive performance decline with age. Neural dysfunction caused by nerve death in senile dementia and neurodegenerative disease has been intensively studied; however, functional changes in neural circuits during the normal aging process are not well understood. Caspases are key regulators of cell death, a hallmark of age-related neurodegeneration. Using a genetic probe for caspase-3-like activity (DEVDase activity, we have mapped age-dependent neuronal changes in the adult brain throughout the lifespan of Drosophila. Spatio-temporally restricted caspase activation was observed in the antennal lobe and ellipsoid body, brain structures required for olfaction and visual place memory, respectively. We also found that caspase was activated in an age-dependent manner in specific subsets of Drosophila olfactory receptor neurons (ORNs, Or42b and Or92a neurons. These neurons are essential for mediating innate attraction to food-related odors. Furthermore, age-induced impairments of neural transmission and attraction behavior could be reversed by specific inhibition of caspase in these ORNs, indicating that caspase activation in Or42b and Or92a neurons is responsible for altering animal behavior during normal aging.

  8. [The expression and significance of smac, XIAP, caspase-3 in nonnasal inverted papilloma].

    Science.gov (United States)

    Yang, Lihui; Shan, Chunguang; Huang, Hongmei; Xu, Qiurong; Zhao, Ying; Meng, Yajing; Zhang, Zhihong

    2012-07-01

    To explore the expression and significance of second mitochondria derived activator of caspase (Smac), X-linked inhibitor of apoptosis protein (XIAP)and cysteine containing aspartate specific protease 3 (caspase-3) in the growth, development and carcinogenesis of the nonnasal inverted papilloma (NIP). Immunohistochemical method was used to detect the expression of Smac, XIAP, caspase-3 in 10 cases of nasal cavity mucosae (NM) and 45 cases of NIP, the group of NIP including 25 cases of NIP without dysplasia, 11 cases of NIP with dysplasia, and 9 cases of NIP with malignant transformation to squamous cell carcinoma (SCC). The intensity of the positive expression of Smac, Caspase-3 in NIP were lower than NM, the intensity of the positive expression decreased with the decreasing degree of histological differentiation. There was a significant difference between NIP without dysplasia and SCC. It was presented with a progressive tendency for the expression of XIAP in the group of NM and NIP. The lower degree of histological differentiation, the higher intensity of the positive expression. The expression between NIP without dysplasia and SCC had a significant difference. Smac negatively correlated with XIAP (r(s) = -0.323, P Smac positively correlated with caspase 3 (r(s) = 0.424, P Smac, XIAP, caspase 3 might be associated with the growth and carcinogenesis of NIP.

  9. IMMUNOHISTOCHEMICAL ANALYSIS OF CASPASE-3 ACTIVITY IN LIVER BIOPSIES OF PATIENTS WITH MONO AND MIXED INFECTIONS

    Directory of Open Access Journals (Sweden)

    I. I. Tokin

    2015-01-01

    Full Text Available Objective: to study the activity of proapoptotic signal protein caspase-3 for determination of peculiarities of apoptosis regulation under liver chronic diseases.Subjects and methods. The immunohistochemical analysis of caspase-3 activity in 5 liver biopsies of the patients with mono infection of chronic hepatitis B and 5 liver biopsies of the patients with mixed infection of tuberculosis, chronic hepatitis C and human immunodeficiency virus was fulfilled. Morphological and morphometric analysis of serial microphotographs was performed using an image analysis system (microscope Leica DM 2500, digital camera Leica DFC320 R2 and a computer.Results. The activity of caspase-3 as dark brown granularity was revealed in all tis-sue components of liver (hepatocytes, epithelium of bile ducts, endotheliocytes, Kupffer cells of sinusoids, in compositions of lymphohistiocyte infiltrations. The maximal activity was discovered in hepatocytes nuclei. The expression of caspase-3 was significantly higher in liver biopsies of the patients with mixed infection. It is typical that the immunoreactive hepatocytes had not any morphological marks of apoptosis.Conclusion. The caspase-3 expression of proapoptotic signal protein caspase-3 may serve as an early marker of liver damage including the possibilities of apoptosis development.

  10. IMMUNOHISTOCHEMICAL ANALYSIS OF CASPASE-3 ACTIVITY IN LIVER BIOPSIES OF PATIENTS WITH MONO AND MIXED INFECTIONS

    Directory of Open Access Journals (Sweden)

    I. I. Tokin

    2014-01-01

    Full Text Available Objective: to study the activity of proapoptotic signal protein caspase-3 for determination of peculiarities of apoptosis regulation under liver chronic diseases.Subjects and methods. The immunohistochemical analysis of caspase-3 activity in 5 liver biopsies of the patients with mono infection of chronic hepatitis B and 5 liver biopsies of the patients with mixed infection of tuberculosis, chronic hepatitis C and human immunodeficiency virus was fulfilled. Morphological and morphometric analysis of serial microphotographs was performed using an image analysis system (microscope Leica DM 2500, digital camera Leica DFC320 R2 and a computer.Results. The activity of caspase-3 as dark brown granularity was revealed in all tis-sue components of liver (hepatocytes, epithelium of bile ducts, endotheliocytes, Kupffer cells of sinusoids, in compositions of lymphohistiocyte infiltrations. The maximal activity was discovered in hepatocytes nuclei. The expression of caspase-3 was significantly higher in liver biopsies of the patients with mixed infection. It is typical that the immunoreactive hepatocytes had not any morphological marks of apoptosis.Conclusion. The caspase-3 expression of proapoptotic signal protein caspase-3 may serve as an early marker of liver damage including the possibilities of apoptosis development.

  11. Caspase 3 in dying tumor cells mediates post-irradiation angiogenesis

    Science.gov (United States)

    Zhang, Zhengxiang; Yu, Yang; Cheng, Jin; Gong, Yanping; Li, Chuan-Yuan; Huang, Qian

    2015-01-01

    Cytotoxic radiotherapy unfavorably induces tumor cells to generate various proangiogenic substances, promoting post-irradiation angiogenesis (PIA), which is one of major causes of radiotherapy failure. Though several studies have reported some mechanisms behind PIA, they have not yet described the beginning proangiogenic motivator buried in the irradiated microenvironment. In this work, we revealed that dying tumor cells induced by irradiation prompted PIA via a caspase 3 dependent mechanism. Proteolytic inactivation of caspase 3 in dying tumor cells by transducing a dominant-negative version weakened proangiogenic effects in vitro and in vivo. In addition, inhibition of caspase 3 activity suppressed tumor angiogenesis and tumorigenesis in xenograft mouse model. Importantly, we identified vascular endothelial growth factor (VEGF)-A as a downstream proangiogenic factor regulated by caspase 3 possibly through Akt signaling. Collectively, these findings indicated that besides acting as a key executioner in apoptosis, caspase 3 in dying tumor cells may play a central role in driving proangiogenic response after irradiation. Thus, radiotherapy in combination with caspase 3 inhibitors may be a novel promising therapeutic strategy to reduce tumor recurrence due to restrained PIA. PMID:26431328

  12. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage.

    Science.gov (United States)

    Stella, Stefano; Alcón, Pablo; Montoya, Guillermo

    2017-06-22

    Cpf1 is an RNA-guided endonuclease that is emerging as a powerful genome-editing tool. Here we provide insight into its DNA-targeting mechanism by determining the structure of Francisella novicida Cpf1 with the triple-stranded R-loop generated after DNA cleavage. The structure reveals the machinery involved in DNA unwinding to form a CRISPR RNA (crRNA)-DNA hybrid and a displaced DNA strand. The protospacer adjacent motif (PAM) is recognized by the PAM-interacting domain. The loop-lysine helix-loop motif in this domain contains three conserved lysine residues that are inserted in a dentate manner into the double-stranded DNA. Unzipping of the double-stranded DNA occurs in a cleft arranged by acidic and hydrophobic residues facilitating the crRNA-DNA hybrid formation. The PAM single-stranded DNA is funnelled towards the nuclease site through a mixed hydrophobic and basic cavity. In this catalytic conformation, the PAM-interacting domain and the helix-loop-helix motif in the REC1 domain adopt a 'rail' shape and 'flap-on' conformations, respectively, channelling the PAM strand into the cavity. A steric barrier between the RuvC-II and REC1 domains forms the 'septum', separating the displaced PAM strand and the crRNA-DNA hybrid, avoiding DNA re-annealing. Mutations in key residues reveal a mechanism linking the PAM and DNA nuclease sites. Analysis of the Cpf1 structures proposes a singular working model of RNA-guided DNA cleavage, suggesting new avenues for redesign of Cpf1.

  13. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system.

    Directory of Open Access Journals (Sweden)

    Zuzana Zubáčová

    Full Text Available All eukaryotic organisms contain mitochondria or organelles that evolved from the same endosymbiotic event like classical mitochondria. Organisms inhabiting low oxygen environments often contain mitochondrial derivates known as hydrogenosomes, mitosomes or neutrally as mitochondrion-like organelles. The detailed investigation has shown unexpected evolutionary plasticity in the biochemistry and protein composition of these organelles in various protists. We investigated the mitochondrion-like organelle in Trimastix pyriformis, a free-living member of one of the three lineages of anaerobic group Metamonada. Using 454 sequencing we have obtained 7 037 contigs from its transcriptome and on the basis of sequence homology and presence of N-terminal extensions we have selected contigs coding for proteins that putatively function in the organelle. Together with the results of a previous transcriptome survey, the list now consists of 23 proteins - mostly enzymes involved in amino acid metabolism, transporters and maturases of proteins and transporters of metabolites. We have no evidence of the production of ATP in the mitochondrion-like organelle of Trimastix but we have obtained experimental evidence for the presence of enzymes of the glycine cleavage system (GCS, which is part of amino acid metabolism. Using homologous antibody we have shown that H-protein of GCS localizes into vesicles in the cell of Trimastix. When overexpressed in yeast, H- and P-protein of GCS and cpn60 were transported into mitochondrion. In case of H-protein we have demonstrated that the first 16 amino acids are necessary for this transport. Glycine cleavage system is at the moment the only experimentally localized pathway in the mitochondrial derivate of Trimastix pyriformis.

  14. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M. [Guy`s & St. Thomas`s Hospitals, London (United Kingdom)

    1995-12-10

    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  15. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes.

    Science.gov (United States)

    Huang, Fong-Chin; Molnár, Péter; Schwab, Wilfried

    2009-01-01

    Although a number of plant carotenoid cleavage dioxygenase (CCD) genes have been functionally characterized in different plant species, little is known about the biochemical role and enzymatic activities of members of the subclass 4 (CCD4). To gain insight into their biological function, CCD4 genes were isolated from apple (Malus x domestica, MdCCD4), chrysanthemum (Chrysanthemum x morifolium, CmCCD4a), rose (Rosa x damascena, RdCCD4), and osmanthus (Osmanthus fragrans, OfCCD4), and were expressed, together with AtCCD4, in Escherichia coli. In vivo assays showed that CmCCD4a and MdCCD4 cleaved beta-carotene well to yield beta-ionone, while OfCCD4, RdCCD4, and AtCCD4 were almost inactive towards this substrate. No cleavage products were found for any of the five CCD4 genes when they were co-expressed in E. coli strains that accumulated cis-zeta-carotene and lycopene. In vitro assays, however, demonstrated the breakdown of 8'-apo-beta-caroten-8'-al by AtCCD4 and RdCCD4 to beta-ionone, while this apocarotenal was almost not degraded by OfCCD4, CmCCD4a, and MdCCD4. Sequence analysis of genomic clones of CCD4 genes revealed that RdCCD4, like AtCCD4, contains no intron, while MdCCD, OfCCD4, and CmCCD4a contain introns. These results indicate that plants produce at least two different forms of CCD4 proteins. Although CCD4 enzymes cleave their substrates at the same position (9,10 and 9',10'), they might have different biochemical functions as they accept different (apo)-carotenoid substrates, show various expression patterns, and are genomically differently organized.

  16. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Yue, Grace G.L. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Lau, Clara B.S. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Sun, Handong [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS, Yunnan (China); Fung, Kwok Pui [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Leung, Ping Chung [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Han, Quanbin, E-mail: simonhan@hkbu.edu.hk [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); School of Chinese Medicine, The Hong Kong Baptist University, Hong Kong (China); Leung, Po Sing, E-mail: psleung@cuhk.edu.hk [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China)

    2012-07-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  17. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage.

    Directory of Open Access Journals (Sweden)

    Cheng Huang

    2011-12-01

    Full Text Available SARS coronavirus (SCoV nonstructural protein (nsp 1, a potent inhibitor of host gene expression, possesses a unique mode of action: it binds to 40S ribosomes to inactivate their translation functions and induces host mRNA degradation. Our previous study demonstrated that nsp1 induces RNA modification near the 5'-end of a reporter mRNA having a short 5' untranslated region and RNA cleavage in the encephalomyocarditis virus internal ribosome entry site (IRES region of a dicistronic RNA template, but not in those IRES elements from hepatitis C or cricket paralysis viruses. By using primarily cell-free, in vitro translation systems, the present study revealed that the nsp1 induced endonucleolytic RNA cleavage mainly near the 5' untranslated region of capped mRNA templates. Experiments using dicistronic mRNAs carrying different IRESes showed that nsp1 induced endonucleolytic RNA cleavage within the ribosome loading region of type I and type II picornavirus IRES elements, but not that of classical swine fever virus IRES, which is characterized as a hepatitis C virus-like IRES. The nsp1-induced RNA cleavage of template mRNAs exhibited no apparent preference for a specific nucleotide sequence at the RNA cleavage sites. Remarkably, SCoV mRNAs, which have a 5' cap structure and 3' poly A tail like those of typical host mRNAs, were not susceptible to nsp1-mediated RNA cleavage and importantly, the presence of the 5'-end leader sequence protected the SCoV mRNAs from nsp1-induced endonucleolytic RNA cleavage. The escape of viral mRNAs from nsp1-induced RNA cleavage may be an important strategy by which the virus circumvents the action of nsp1 leading to the efficient accumulation of viral mRNAs and viral proteins during infection.

  18. Experimental and computational investigations of Ser10 and Lys13 in the binding and cleavage of DNA substrates by Escherichia coli DNA topoisomerase I

    Science.gov (United States)

    Strahs, Daniel; Zhu, Chang-Xi; Cheng, Bokun; Chen, Jason; Tse-Dinh, Yuk-Ching

    2006-01-01

    Ser10 and Lys13 found near the active site tyrosine of Escherichia coli DNA topoisomerase I are conserved among the type IA topoisomerases. Site-directed mutagenesis of these two residues to Ala reduced the relaxation and DNA cleavage activity, with a more severe effect from the Lys13 mutation. Changing Ser10 to Thr or Lys13 to Arg also resulted in loss of DNA cleavage and relaxation activity of the enzyme. In simulations of the open form of the topoisomerase–DNA complex, Lys13 interacts directly with Glu9 (proposed to be important in the catalytic mechanism). This interaction is removed in the K13A mutant, suggesting the importance of lysine as either a proton donor or a stabilizing cation during strand cleavage, while the Lys to Arg mutation significantly distorts catalytic residues. Ser10 forms a direct hydrogen bond with a phosphate group near the active site and is involved in direct binding of the DNA substrate; this interaction is disturbed in the S10A and S10T mutants. This combination of a lysine and a serine residue conserved in the active site of type IA topoisomerases may be required for correct positioning of the scissile phosphate and coordination of catalytic residues relative to each other so that DNA cleavage and subsequent strand passage can take place. PMID:16582104

  19. Real-time analysis of cleavage and religation activity of human topoisomerase 1 based on ternary fluorescence resonance energy transfer DNA substrate.

    Science.gov (United States)

    Wang, Zhenxing; Ouyang, Hui; Tesauro, Cinzia; Ottaviani, Alessio; He, Yong; Fiorani, Paola; Xie, Hui; Desideri, Alessandro; Fu, Zhifeng

    2018-02-16

    Human topoisomerase 1B is a ubiquitous and essential enzyme involved in relaxing the topological state of supercoiled DNA to allow the progression of fundamental DNA metabolism. Its enzymatic catalytic cycle consists of cleavage and religation reaction. A ternary fluorescence resonance energy transfer biosensor based on a suicide DNA substrate conjugated with three fluorophores has been developed to monitor both cleavage and religation Topoisomerase I catalytic function. The presence of fluorophores does not alter the specificity of the enzyme catalysis on the DNA substrate. The enzyme-mediated reaction can be tracked in real-time by simple fluorescence measurement, avoiding the use of risky radioactive substrate labeling and time-consuming denaturing gel electrophoresis. The method is applied to monitor the perturbation brought by single mutation on the cleavage or religation reaction and to screen the effect of the camptothecin anticancer drug monitoring the energy transfer decrease during religation reaction. Pathological mutations usually affect only the cleavage or the religation reaction and the proposed approach represent a fast protocol for assessing chemotherapeutic drug efficacy and analyzing mutant's properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Ku-mediated coupling of DNA cleavage and repair during programmed genome rearrangements in the ciliate Paramecium tetraurelia.

    Directory of Open Access Journals (Sweden)

    Antoine Marmignon

    2014-08-01

    Full Text Available During somatic differentiation, physiological DNA double-strand breaks (DSB can drive programmed genome rearrangements (PGR, during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitted to the progeny, but the somatic nucleus, essential for gene expression, is destroyed and a new somatic nucleus differentiates from a copy of the germline nucleus. In Paramecium tetraurelia, the development of the somatic nucleus involves massive PGR, including the precise elimination of at least 45,000 germline sequences (Internal Eliminated Sequences, IES. IES excision proceeds through a cut-and-close mechanism: a domesticated transposase, PiggyMac, is essential for DNA cleavage, and DSB repair at excision sites involves the Ligase IV, a specific component of the non-homologous end-joining (NHEJ pathway. At the genome-wide level, a huge number of programmed DSBs must be repaired during this process to allow the assembly of functional somatic chromosomes. To understand how DNA cleavage and DSB repair are coordinated during PGR, we have focused on Ku, the earliest actor of NHEJ-mediated repair. Two Ku70 and three Ku80 paralogs are encoded in the genome of P. tetraurelia: Ku70a and Ku80c are produced during sexual processes and localize specifically in the developing new somatic nucleus. Using RNA interference, we show that the development-specific Ku70/Ku80c heterodimer is essential for the recovery of a functional somatic nucleus. Strikingly, at the molecular level, PiggyMac-dependent DNA cleavage is abolished at IES boundaries in cells depleted for Ku80c, resulting in IES retention in the somatic genome. PiggyMac and Ku70a/Ku80c co-purify as a complex when overproduced in a heterologous system. We conclude that Ku has been integrated in the Paramecium

  1. Copper(II) complex of methionine conjugated bis-pyrazole based ligand promotes dual pathway for DNA cleavage.

    Science.gov (United States)

    Bhattacharyya, Sudipta; Sarkar, Amrita; Dey, Suman Kr; Jose, Gregor P; Mukherjee, Arindam; Sengupta, Tapas K

    2013-08-28

    Three Cu(II) complexes of bis-pyrazole based ligands have been synthesized and structurally characterized by X-ray crystallography. One of the ligand (L2) contains a methionine ester conjugated to a bis-pyrazole carboxylate through an amide linkage. The binding constant for complexes 1-3 with CT DNA are of the order of 10(4) M(-1). The crystal structure suggests that the axial Cu-O bonds (ca. 2.31(4) Å) are relatively labile and hence during the redox cycle with ascorbic acid and oxygen one or both the axial Cu-O bonds might open to promote copper oxygen reaction and generate ROS. The chemical nuclease activity of complexes 1-3 in dark, show complete relaxation of supercoiled DNA at 100 μM concentration in presence of ascorbic acid (H2A). The mechanistic investigation suggests that the complexes 1 and 2 show involvement of peroxo species whereas 3 shows involvement of both singlet oxygen and peroxo species in DNA cleavage. The singlet oxygen formation in dark is otherwise unfavourable but the presence of methionine as pendant arm in L2 might activate the generation of singlet oxygen from the metal generated peroxo species. The results of DNA cleavage studies suggest that methionine based copper(II) complexes can promote dual pathway for DNA cleavage. Probing the cytotoxic activity of these complexes on MCF-7, human breast cancer cell line shows that 3 is the most effective one with an IC50 of 70(2) μM.

  2. Amine Oxidative N-Dealkylation via Cupric Hydroperoxide Cu–OOH Homolytic Cleavage Followed by Site-Specific Fenton Chemistry

    Science.gov (United States)

    Kim, Sunghee; Ginsbach, Jake W.; Lee, Jung Yoon; Peterson, Ryan L.; Liu, Jeffrey J.; Siegler, Maxime A.; Sarjeant, Amy A.; Solomon, Edward I.; Karlin, Kenneth D.

    2015-01-01

    Copper(II)-hydroperoxide species are significant intermediates in processes such as fuel cells and (bio)chemical oxidations, all involving stepwise reduction of molecular oxygen. We previously reported a CuII-OOH species that performs oxidative N-dealkylation on a dibenzylamino group that is appended to the 6-position of a pyridyl donor of a tripodal tetradentate ligand. To obtain insights into the mechanism of this process, reaction kinetics and products were determined employing ligand substrates with various para- substituent dibenzyl pairs (-H,-H; -H,-Cl; -H,-OMe and -Cl,-OMe), or with partially or fully deuterated dibenzyl N-(CH2Ph)2 moieties. A series of ligand-copper(II) bis-perchlorate complexes were synthesized, characterized, and the X-ray structures of the -H, -OMe analog was were determined. The corresponding metastable CuII-OOH species were generated by addition of H2O2/base in acetone at –90 °C. These convert (t1/2 ~ 53 s) to oxidatively N-dealkylated products, producing para-substituted benzaldehydes. Based on the experimental observations and supporting DFT calculations, a reaction mechanism involving dibenzylamine H-atom abstraction or electron-transfer oxidation by the CuII-OOH entity could be ruled out. It is concluded that the chemistry proceeds by rate limiting Cu–O homolytic cleavage of the CuII–(OOH) species, followed by site-specific copper Fenton chemistry. As a process of broad interest in copper as well as iron oxidative (bio)chemistries, a detailed computational analysis was performed, indicating that a CuIOOH species undergoes O–O homolytic cleavage to yield a hydroxyl radical and CuIIOH rather than heterolytic cleavage to yield water and a CuII-O•−. PMID:25706825

  3. Molecular dynamics-assisted pharmacophore modeling of caspase-3-isatin sulfonamide complex: Recognizing essential intermolecular contacts and features of sulfonamide inhibitor class for caspase-3 binding.

    Science.gov (United States)

    Kumar, Sivakumar Prasanth; Patel, Chirag N; Jha, Prakash C; Pandya, Himanshu A

    2017-12-01

    The identification of isatin sulfonamide as a potent small molecule inhibitor of caspase-3 had fuelled the synthesis and characterization of the numerous sulfonamide class of inhibitors to optimize for potency. Recent works that relied on the ligand-based approaches have successfully shown the regions of optimizations for sulfonamide scaffold. We present here molecular dynamics-based pharmacophore modeling of caspase-3-isatin sulfonamide crystal structure, to elucidate the essential non-covalent contacts and its associated pharmacophore features necessary to ensure caspase-3 optimal binding. We performed 20ns long dynamics of this crystal structure to extract global conformation states and converted into structure-based pharmacophore hypotheses which were rigorously validated using an exclusive focussed library of experimental actives and inactives of sulfonamide class by Receiver Operating Characteristic (ROC) statistic. Eighteen structure-based pharmacophore hypotheses with better sensitivity and specificity measures (>0.6) were chosen which collectively showed the role of pocket residues viz. Cys163 (S 1 sub-site; required for covalent and H bonding with Michael acceptor of inhibitors), His121 (S 1 ; π stack with bicyclic isatin moiety), Gly122 (S 1 ; H bond with carbonyl oxygen) and Tyr204 (S 2 ; π stack with phenyl group of the isatin sulfonamide molecule) as stringent binding entities for enabling caspase-3 optimal binding. The introduction of spatial pharmacophore site points obtained from dynamics-based pharmacophore models in a virtual screening strategy will be helpful to screen and optimize molecules belonging to sulfonamide class of caspase-3 inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. SOS Induction by Stabilized Topoisomerase IA Cleavage Complex Occurs via the RecBCD Pathway▿ †

    OpenAIRE

    Sutherland, Jeanette H.; Cheng, Bokun; Liu, I-Fen; Tse-Dinh, Yuk-Ching

    2008-01-01

    Accumulation of mutant topoisomerase I cleavage complex can lead to SOS induction and cell death in Escherichia coli. The single-stranded break associated with mutant topoisomerase I cleavage complex is converted to double-stranded break, which then is processed by the RecBCD pathway, followed by association of RecA with the single-stranded DNA.

  5. Ion beam modifications of defect sub-structure of calcite cleavages

    Indian Academy of Sciences (India)

    WINTEC

    (a) Optical micrograph of calcite cleavage chemically etched with propionic acid with water (1 : 100) (rhombic etch pits; time 30 s). Scanning electron micrographs of calcite cleavages chemically etched after ion bombardment with different ener- gies: (b) 100 KeV, (c) 120 KeV and (d) 140 KeV. connecting Keithley (Model ...

  6. DNA binding and cleavage activity by a mononuclear iron(II)Schiff ...

    Indian Academy of Sciences (India)

    Spectroscopic and hydrodynamic investigations revealed intercalative mode of binding of 1 with DNA. 1 is also found to induce oxidative cleavage of the supercoiled pUC 18 DNA to its nicked circular form in a concentration dependent manner. Keywords. Iron(II); Schiff base; X-ray structure; DNA binding; DNA cleavage. 1.

  7. DNA binding and cleavage activity by a mononuclear iron (II) Schiff ...

    Indian Academy of Sciences (India)

    DNA binding and cleavage activity by a mononuclear iron(II)Schiff base complex: Synthesis and structural characterization. Abhijit Pal Bhaskar ... Iron(II); Schiff base; X-ray structure; DNA binding; DNA cleavage. ... Spectroscopic and hydrodynamic investigations revealed intercalative mode of binding of 1 with DNA. 1 is also ...

  8. Comparative and phylogenetic perspectives of the cleavage process in tailed amphibians.

    Science.gov (United States)

    Desnitskiy, Alexey G; Litvinchuk, Spartak N

    2015-10-01

    The order Caudata includes about 660 species and displays a variety of important developmental traits such as cleavage pattern and egg size. However, the cleavage process of tailed amphibians has never been analyzed within a phylogenetic framework. We use published data on the embryos of 36 species concerning the character of the third cleavage furrow (latitudinal, longitudinal or variable) and the magnitude of synchronous cleavage period (up to 3-4 synchronous cell divisions in the animal hemisphere or a considerably longer series of synchronous divisions followed by midblastula transition). Several species from basal caudate families Cryptobranchidae (Andrias davidianus and Cryptobranchus alleganiensis) and Hynobiidae (Onychodactylus japonicus) as well as several representatives from derived families Plethodontidae (Desmognathus fuscus and Ensatina eschscholtzii) and Proteidae (Necturus maculosus) are characterized by longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-cell stage. By contrast, many representatives of derived families Ambystomatidae and Salamandridae have latitudinal furrows of the third cleavage and extensive period of synchronous divisions. Our analysis of these ontogenetic characters mapped onto a phylogenetic tree shows that the cleavage pattern of large, yolky eggs with short series of synchronous divisions is an ancestral trait for the tailed amphibians, while the data on the orientation of third cleavage furrows seem to be ambiguous with respect to phylogeny. Nevertheless, the midblastula transition, which is characteristic of the model species Ambystoma mexicanum (Caudata) and Xenopus laevis (Anura), might have evolved convergently in these two amphibian orders.

  9. Unexpected tolerance of alpha-cleavage of the prion protein to sequence variations.

    Directory of Open Access Journals (Sweden)

    José B Oliveira-Martins

    Full Text Available The cellular form of the prion protein, PrP(C, undergoes extensive proteolysis at the alpha site (109K [see text]H110. Expression of non-cleavable PrP(C mutants in transgenic mice correlates with neurotoxicity, suggesting that alpha-cleavage is important for PrP(C physiology. To gain insights into the mechanisms of alpha-cleavage, we generated a library of PrP(C mutants with mutations in the region neighbouring the alpha-cleavage site. The prevalence of C1, the carboxy adduct of alpha-cleavage, was determined for each mutant. In cell lines of disparate origin, C1 prevalence was unaffected by variations in charge and hydrophobicity of the region neighbouring the alpha-cleavage site, and by substitutions of the residues in the palindrome that flanks this site. Instead, alpha-cleavage was size-dependently impaired by deletions within the domain 106-119. Almost no cleavage was observed upon full deletion of this domain. These results suggest that alpha-cleavage is executed by an alpha-PrPase whose activity, despite surprisingly limited sequence specificity, is dependent on the size of the central region of PrP(C.

  10. Low-temperature side-chain cleavage and decarboxylation of polythiophene esters by acid catalysis

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Norrman, Kion; Krebs, Frederik C

    2012-01-01

    substituents have been examined by TGA‐MS using different sulphonic acids. A substantial lowering of the cleavage temperature is observed, and the ester cleavage can even be performed in situ on roll‐to‐roll‐coated films on polyethylene terephthalate (PET). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A...

  11. ATP Induces IL-1β Secretion in Neisseria gonorrhoeae-Infected Human Macrophages by a Mechanism Not Related to the NLRP3/ASC/Caspase-1 Axis

    Directory of Open Access Journals (Sweden)

    Killen García

    2016-01-01

    Full Text Available Neisseria gonorrhoeae (Ngo has developed multiple immune evasion mechanisms involving the innate and adaptive immune responses. Recent findings have reported that Ngo reduces the IL-1β secretion of infected human monocyte-derived macrophages (MDM. Here, we investigate the role of adenosine triphosphate (ATP in production and release of IL-1β in Ngo-infected MDM. We found that the exposure of Ngo-infected MDM to ATP increases IL-1β levels about ten times compared with unexposed Ngo-infected MDM (P0.05 and caspase-1 (CASP1, P>0.05. In addition, ATP was not able to modify caspase-1 activity in Ngo-infected MDM but was able to increase pyroptosis (P>0.01. Notably ATP treatment defined an increase of positive staining for IL-1β with a distinctive intracellular pattern of distribution. Collectively, these data demonstrate that ATP induces IL-1β secretion by a mechanism not related to the NLRP3/ASC/caspase-1 axis and likely is acting at the level of vesicle trafficking or pore formation.

  12. ATP Induces IL-1β Secretion in Neisseria gonorrhoeae-Infected Human Macrophages by a Mechanism Not Related to the NLRP3/ASC/Caspase-1 Axis

    Science.gov (United States)

    García, Killen; Escobar, Gisselle; Mendoza, Pablo; Beltran, Caroll; Perez, Claudio; Vernal, Rolando; Acuña-Castillo, Claudio

    2016-01-01

    Neisseria gonorrhoeae (Ngo) has developed multiple immune evasion mechanisms involving the innate and adaptive immune responses. Recent findings have reported that Ngo reduces the IL-1β secretion of infected human monocyte-derived macrophages (MDM). Here, we investigate the role of adenosine triphosphate (ATP) in production and release of IL-1β in Ngo-infected MDM. We found that the exposure of Ngo-infected MDM to ATP increases IL-1β levels about ten times compared with unexposed Ngo-infected MDM (P 0.05) and caspase-1 (CASP1, P > 0.05). In addition, ATP was not able to modify caspase-1 activity in Ngo-infected MDM but was able to increase pyroptosis (P > 0.01). Notably ATP treatment defined an increase of positive staining for IL-1β with a distinctive intracellular pattern of distribution. Collectively, these data demonstrate that ATP induces IL-1β secretion by a mechanism not related to the NLRP3/ASC/caspase-1 axis and likely is acting at the level of vesicle trafficking or pore formation. PMID:27803513

  13. Matrine induces caspase-independent program cell death in hepatocellular carcinoma through bid-mediated nuclear translocation of apoptosis inducing factor.

    Science.gov (United States)

    Zhou, Huan; Xu, Minying; Gao, Ya; Deng, Zhigang; Cao, Hanwei; Zhang, Wenqing; Wang, Qiao; Zhang, Bing; Song, Gang; Zhan, Yanyan; Hu, Tianhui

    2014-03-16

    Matrine, a clinical drug in China, has been used to treat viral hepatitis, cardiac arrhythmia and skin inflammations. Matrine also exhibits chemotherapeutic potential through its ability to trigger cancer cell death. However, the mechanisms involved are still largely unknown. The objective of this study was to investigate the major determinant for the cell death induced by matrine in human hepatocellular carcinoma. We use human hepatocellular carcinoma cell line HepG2 and human hepatocellular carcinoma xenograft in nude mice as models to study the action of matrine in hepatocellular cancers. We found that caspase-dependent and -independent Program Cell Death (PCD) occurred in matrine-treated HepG2 cells, accompanied by the decreasing of mitochondrial transmembrane potential and the increasing ROS production. Further studies showed that AIF released from the mitochondria to the nucleus, and silencing of AIF reduced the caspase-independent PCD induced by matrine. What's more, AIF nuclear translocation, and the subsequent cell death as well, was prevented by Bid inhibitor BI-6C9, Bid-targeted siRNA and ROS scavenger Tiron. In the in vivo study, matrine significantly attenuated tumor growth with AIF release from mitochondria into nucleus in nude mice. These data imply that matrine potently induce caspase-independent PCD in HepG2 cells through Bid-mediated AIF translocation.

  14. Induction of apoptosis by Uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells.

    Science.gov (United States)

    Cheng, An-Chin; Jian, Cheng-Bang; Huang, Yu-Ting; Lai, Ching-Shu; Hsu, Ping-Chi; Pan, Min-Hsiung

    2007-11-01

    Uncaria tomentosa (Wild.) DC., found in the Amazon rain forest in South-America and known commonly as cat's claw, has been used in traditional medicine to prevent and treat inflammation and cancer. Recently, it has been found to possess potent anti-inflammation activities. In this study, we extracted cat's claw using four different solvents of different polarities and compared their relative influence on proliferation in human premyelocytic leukemia HL-60 cell lines. Cat's claw n-hexane extracts (CC-H), ethyl acetate extracts (CC-EA) and n-butanol extracts (CC-B) had a greater anti-cancer effect on HL-60 cells than those extracted with methanol (CC-M). Furthermore, CC-EA induced DNA fragmentation in HL-60 cells in a clearly more a concentration- and time-dependent manner than the other extracts. CC-EA-induced cell death was characterized by cell body shrinkage and chromatin condensation. Further investigating the molecular mechanism behind CC-EA-induced apoptosis, sells treated with CC-EA underwent a rapid loss of mitochondrial transmembrane (DeltaPsi(m)) potential, stimulation of phosphatidylserine flip-flop, release of mitochondrial cytochrome c into cytosol, induction of caspase-3 activity in a time-dependent manner, and induced the cleavage of DNA fragmentation factor (DFF-45) and PARP poly-(ADP-ribose) polymerase (PARP). CC-EA promoted the up-regulation of Fas before the processing and activation of procaspase-8 and cleavage of Bid. In addition, the apoptosis induced by CC-EA was accompanied by up-regulation of Bax, down-regulation of Bcl-X(L) and cleavage of Mcl-1, suggesting that CC-EA may have some compounds that have anti-cancer activities and that further studies using cat's claw extracts need to be pursued. Taken together, the results of our studies show clearly that CC-EA's induction of apoptosis in HL-60 cells may make it very important in the development of medicine that can trigger chemopreventive actions in the body.

  15. Chemotherapy resistance of mouse WAP-SVT/t breast cancer cells is mediated by osteopontin, inhibiting apoptosis downstream of caspase-3.

    Science.gov (United States)

    Graessmann, M; Berg, B; Fuchs, B; Klein, A; Graessmann, A

    2007-05-03

    Impairment of the complex regulatory network of cell death and survival is frequently the reason for therapy resistance of breast cancer cells and a major cause of tumor progression. We established two independent cell lines from a fast growing mouse breast tumor (WAP-SVT/t transgenic animal). Cells from one line (ME-A cells) are sensitive to apoptotic stimuli such as growth factor depletion or treatment with antitumor agents (e.g. doxorubicin). Cells from the second line (ME-C cells), which carry a missense mutation at the p53 codon 242, are very insensitive to apoptotic stimuli. Co-cultivation experiments revealed that the ME-C cells mediate cell death resistance to the ME-A cells. Microarray and Western blot analysis showed that osteopontin (OPN) is selectively overexpressed by the ME-C cells. This glycoprotein is the most abundant protein secreted by the ME-C cells and we obtained strong indications that OPN is the main antiapoptotic factor. However, the OPN containing ME-C cell medium does not alter the expression level of pro- or antiapoptotic genes or known inhibitors of apoptosis (IAPs). Its signaling involves mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK)1/2 as the kinase inhibitor PD98059 restores apoptosis but not the Akt inhibitor. In the ME-A cells, mitochondrial cytochrome c release occurs with and without external apoptotic stimuli. OPN containing ME-C cell medium does not prevent the mitochondrial cytochrome c release and caspase-9 processing. In serum starved ME-A cells, the OPN containing ME-C cell medium prevents caspase-3 activation. However, in doxorubicin-treated cells, although apoptosis is blocked, it does not inhibit caspase-3. This indicates that the ME-A cells distinguish between the initial apoptotic stimuli and that the cells possess a further uncharacterized control element acting downstream from caspase-3.

  16. Cinnamomum cassia Suppresses Caspase-9 through Stimulation of AKT1 in MCF-7 Cells but Not in MDA-MB-231 Cells

    Science.gov (United States)

    Kianpour Rad, Sima; Kanthimathi, M. S.; Abd Malek, Sri Nurestri; Lee, Guan Serm; Looi, Chung Yeng; Wong, Won Fen

    2015-01-01

    Background Cinnamomum cassia bark is a popular culinary spice used for flavoring and in traditional medicine. C. cassia extract (CE) induces apoptosis in many cell lines. In the present study, particular differences in the mechanism of the anti-proliferative property of C. cassia on two breast cancer cell lines, MCF-7 and MDA-MB-231, were elucidated. Methodology/Principal Findings The hexane extract of C. cassia demonstrated high anti-proliferative activity against MCF-7 and MDA-MB-231 cells (IC50, 34±3.52 and 32.42 ±0.37 μg/ml, respectively). Oxidative stress due to disruption of antioxidant enzyme (SOD, GPx and CAT) activity is suggested as the probable cause for apoptosis initiation. Though the main apoptosis pathway in both cell lines was found to be through caspase-8 activation, caspase-9 was also activated in MDA-MB-231 cells but suppressed in MCF-7 cells. Gene expression studies revealed that AKT1, the caspase-9 suppressor, was up-regulated in MCF-7 cells while down-regulated in MDA-MB-231 cells. Although, AKT1 protein expression in both cell lines was down-regulated, a steady increase in MCF-7 cells was observed after a sharp decrease of suppression of AKT1. Trans-cinnamaldehyde and coumarin were isolated and identified and found to be mainly responsible for the observed anti-proliferative activity of CE (Cinnamomum cassia). Conclusion Activation of caspase-8 is reported for the first time to be involved as the main apoptosis pathway in breast cancer cell lines upon treatment with C. cassia. The double effects of C. cassia on AKT1 gene expression in MCF-7 cells is reported for the first time in this study. PMID:26700476

  17. Pathological phenotypes and in vivo DNA cleavage by unrestrained activity of a phosphorothioate-based restriction system in Salmonella

    Science.gov (United States)

    Cao, Bo; Cheng, Qiuxiang; Gu, Chen; Yao, Fen; DeMott, Michael S.; Zheng, Xiaoqing; Deng, Zixin; Dedon, Peter C.; You, Delin

    2015-01-01

    Summary Prokaryotes protect their genomes from foreign DNA with a diversity of defense mechanisms, including a widespread restriction-modification (R-M) system involving phosphorothioate (PT) modification of the DNA backbone. Unlike classical R-M systems, highly partial PT-modification of consensus motifs in bacterial genomes suggests an unusual mechanism of PT-dependent restriction. In Salmonella enterica, PT modification is mediated by four genes dptB-E, while restriction involves additional three genes dptF-H. Here, we performed a series of studies to characterize the PT-dependent restriction, and found that it presented several features distinct with traditional R-M systems. The presence of restriction genes in a PT-deficient mutant was not lethal, but instead resulted in several pathological phenotypes. Subsequent transcriptional profiling revealed the expression of >600 genes was affected by restriction enzymes in cells lacking PT, including induction of bacteriophage, SOS response and DNA repair-related genes. These transcriptional responses are consistent with the observation that restriction enzymes caused extensive DNA cleavage in the absence of PT modifications in vivo. However, over-expression of restriction genes was lethal to the host in spite of the presence PT modifications. These results point to an unusual mechanism of PT-dependent DNA cleavage by restriction enzymes in the face of partial PT modification. PMID:25040300

  18. Pathological phenotypes and in vivo DNA cleavage by unrestrained activity of a phosphorothioate-based restriction system in Salmonella.

    Science.gov (United States)

    Cao, Bo; Cheng, Qiuxiang; Gu, Chen; Yao, Fen; DeMott, Michael S; Zheng, Xiaoqing; Deng, Zixin; Dedon, Peter C; You, Delin

    2014-08-01

    Prokaryotes protect their genomes from foreign DNA with a diversity of defence mechanisms, including a widespread restriction-modification (R-M) system involving phosphorothioate (PT) modification of the DNA backbone. Unlike classical R-M systems, highly partial PT modification of consensus motifs in bacterial genomes suggests an unusual mechanism of PT-dependent restriction. In Salmonella enterica, PT modification is mediated by four genes dptB-E, while restriction involves additional three genes dptF-H. Here, we performed a series of studies to characterize the PT-dependent restriction, and found that it presented several features distinct with traditional R-M systems. The presence of restriction genes in a PT-deficient mutant was not lethal, but instead resulted in several pathological phenotypes. Subsequent transcriptional profiling revealed the expression of > 600 genes was affected by restriction enzymes in cells lacking PT, including induction of bacteriophage, SOS response and DNA repair-related genes. These transcriptional responses are consistent with the observation that restriction enzymes caused extensive DNA cleavage in the absence of PT modifications in vivo. However, overexpression of restriction genes was lethal to the host in spite of the presence PT modifications. These results point to an unusual mechanism of PT-dependent DNA cleavage by restriction enzymes in the face of partial PT modification. © 2014 John Wiley & Sons Ltd.

  19. Impacts of Bone Marrow Stem Cells on Caspase-3 Levels after Spinal Cord Injury in Mice.

    Science.gov (United States)

    Gashmardi, Noushin; Hosseini, Seyed Ebrahim; Mehrabani, Davood; Edalatmanesh, Mohammad Amin; Khodabandeh, Zahra

    2017-11-01

    Spinal cord injury (SCI) is a drastic disability that leads to spinal cord impairment. This study sought to determine the effects of bone marrow stem cells (BMSCs) on caspase-3 levels after acute SCI in mice. Forty-two mice were randomly divided into 3 groups: control (2 subcategories), subjected to no intervention; sham (3 subcategories), subjected to acute SCI; and experimental (2 subcategories), subjected to SCI and cell transplantation. In the experimental group, 2×10 5 BMSCs were injected intravenously 1 day after SCI. The mesenchymal property of the cells was assessed. The animals in the 3 groups were sacrificed 1, 21, and 35 days after the induction of injury and caspase-3 levels were evaluated using a caspase-3 assay kit. The obtained values were analyzed with ANOVA and Tukey tests using GraphPad and SPSS. Based on the assessments, the transplanted cells were spindle-shaped and were negative for the hematopoietic markers of CD34 and CD45 and positive for the expression of the mesenchymal marker of CD90 and osteogenic induction. The caspase-3 levels showed a significant increase in the sham and experimental groups in comparison to the control group. One day after SCI, the caspase-3 level was significantly higher in the sham group (1.157±0.117) than in the other groups (P<0.000). Twenty-one days after SCI, the caspase-3 level was significantly lower in the experimental group than in the sham group (0.4±0.095 vs. 0.793±0.076; P˂0.000). Thirty-five days following SCI, the caspase-3 level was lower in the experimental group than in the sham group (0.223±0.027 vs. 0.643±0.058; P˂0.000). We conclude that BMSC transplantation was able to downregulate the caspase-3 level after acute SCI, underscoring the role of caspase-3 as a marker for the assessment of treatment efficacy in acute SCI.

  20. Impacts of Bone Marrow Stem Cells on Caspase-3 Levels after Spinal Cord Injury in Mice

    Directory of Open Access Journals (Sweden)

    Noushin Gashmardi

    2017-11-01

    Full Text Available Spinal cord injury (SCI is a drastic disability that leads to spinal cord impairment. This study sought to determine the effects of bone marrow stem cells (BMSCs on caspase-3 levels after acute SCI in mice. Forty-two mice were randomly divided into 3 groups: control (2 subcategories, subjected to no intervention; sham (3 subcategories, subjected to acute SCI; and experimental (2 subcategories, subjected to SCI and cell transplantation. In the experimental group, 2×105 BMSCs were injected intravenously 1 day after SCI. The mesenchymal property of the cells was assessed. The animals in the 3 groups were sacrificed 1, 21, and 35 days after the induction of injury and caspase-3 levels were evaluated using a caspase-3 assay kit. The obtained values were analyzed with ANOVA and Tukey tests using GraphPad and SPSS. Based on the assessments, the transplanted cells were spindle-shaped and were negative for the hematopoietic markers of CD34 and CD45 and positive for the expression of the mesenchymal marker of CD90 and osteogenic induction. The caspase-3 levels showed a significant increase in the sham and experimental groups in comparison to the control group. One day after SCI, the caspase-3 level was significantly higher in the sham group (1.157±0.117 than in the other groups (P<0.000. Twenty-one days after SCI, the caspase-3 level was significantly lower in the experimental group than in the sham group (0.4±0.095 vs. 0.793±0.076; P˂0.000. Thirty-five days following SCI, the caspase-3 level was lower in the experimental group than in the sham group (0.223±0.027 vs. 0.643±0.058; P˂0.000. We conclude that BMSC transplantation was able to downregulate the caspase-3 level after acute SCI, underscoring the role of caspase-3 as a marker for the assessment of treatment efficacy in acute SCI.

  1. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Laura J Dixon

    Full Text Available Nonalcoholic steatohepatitis (NASH is associated with caspase activation. However, a role for pro-inflammatory caspases or inflammasomes has not been explored in diet-induced liver injury. Our aims were to examine the role of caspase-1 in high fat-induced NASH. C57BL/6 wild-type and caspase 1-knockout (Casp1(-/- mice were placed on a 12-week high fat diet. Wild-type mice on the high fat diet increased hepatic expression of pro-caspase-1 and IL-1β. Both wild-type and Casp1(-/- mice on the high fat diet gained more weight than mice on a control diet. Hepatic steatosis and TG levels were increased in wild-type mice on high fat diet, but were attenuated in the absence of caspase-1. Plasma cholesterol and free fatty acids were elevated in wild-type, but not Casp1(-/- mice, on high fat diet. ALT levels were elevated in both wild-type and Casp1(-/- mice on high fat diet compared to control. Hepatic mRNA expression for genes associated with lipogenesis was lower in Casp1(-/- mice on high fat diet compared to wild-type mice on high fat diet, while genes associated with fatty acid oxidation were not affected by diet or genotype. Hepatic Tnfα and Mcp-1 mRNA expression was increased in wild-type mice on high fat diet, but not in Casp1(-/- mice on high fat diet. αSMA positive cells, Sirius red staining, and Col1α1 mRNA were increased in wild-type mice on high fat diet compared to control. Deficiency of caspase-1 prevented those increases. In summary, the absence of caspase-1 ameliorates the injurious effects of high fat diet-induced obesity on the liver. Specifically, mice deficient in caspase-1 are protected from high fat-induced hepatic steatosis, inflammation and early fibrogenesis. These data point to the inflammasome as an important therapeutic target for NASH.

  2. Structural and functional basis for RNA cleavage by Ire1

    Directory of Open Access Journals (Sweden)

    Stroud Robert M

    2011-07-01

    Full Text Available Abstract Background The unfolded protein response (UPR controls the protein folding capacity of the endoplasmic reticulum (ER. Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. Results This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing ≥ 7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. Conclusions Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L.

  3. A Krebs Cycle Component Limits Caspase Activation Rate through Mitochondrial Surface Restriction of CRL Activation.

    Science.gov (United States)

    Aram, Lior; Braun, Tslil; Braverman, Carmel; Kaplan, Yosef; Ravid, Liat; Levin-Zaidman, Smadar; Arama, Eli

    2016-04-04

    How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sβ and the GTP-specific SCSβ (G-Sβ), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sβ in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Detergent sclerosants at sub-lytic concentrations induce endothelial cell apoptosis through a caspase dependent pathway.

    Science.gov (United States)

    Cooley-Andrade, Osvaldo; Cheung, Kelvin; Chew, An-Ning; Connor, David Ewan; Parsi, Kurosh

    2016-07-01

    To investigate the apoptotic effects of detergent sclerosants sodium tetradecylsulphate (STS) and polidocanol (POL) on endothelial cells at sub-lytic concentrations. Human umbilical vein endothelial cells (HUVECs) were isolated and labelled with antibodies to assess for apoptosis and examined with confocal microscopy and flow cytometry. Isolated HUVECs viability was assessed using propidium iodide staining. Early apoptosis was determined by increased phosphatidylserine exposure by lactadherin binding. Caspase 3, 8, 9 and Bax activation as well as inhibitory assays with Pan Caspase (Z-VAD-FMK) and Bax (BI-6C9) were assessed to identify apoptotic pathways. Porimin activation was used to assess cell membrane permeability. Cell lysis reached almost 100 % with STS at 0.3 % and with POL at 0.6 %. Apoptosis was seen with both STS and POL at concentrations ranging from 0.075 to 0.15 %. PS exposure increased with both STS and POL and exhibited a dose-dependent trend. Active Caspase 3, 8 and 9 but not Bax were increased in HUVECs stimulated with low concentrations of both STS and POL. Inhibitory assays demonstrated Caspase 3, 8, 9 inhibition at low concentrations (0.075 to 0.6 %) with both STS and POL. Both agents increased the activation of porimin at all concentrations. Both sclerosants induced endothelial cell (EC) apoptosis at sub-lytic concentrations through a caspase-dependant pathway. Both agents induced EC oncosis.

  5. Caspase-like proteins: Acanthamoeba castellanii metacaspase and Dictyostelium discoideum paracaspase, what are their functions?

    Science.gov (United States)

    Saheb, Entsar; Trzyna, Wendy; Bush, John

    2014-12-01

    Caspases are cysteine proteases that are important regulators of programmed cell death in animals. Two novel relatives to members of the caspase families metacaspases and paracaspase have been discovered. Metacaspase type-1 was identified in Acanthamoeba castellanii, an opportunistic protozoan parasite that causes severe diseases in humans. Paracaspase was found in the non-pathogenic protozoan Dictyostelium discoideum. Since their discovery in Acanthamoeba and Dictyostelium, metacaspases and paracaspases have remained poorly characterized. At present we do not have sufficient data about the molecular function of these caspase-like proteins or their role, if any, in programmed cell death. How these caspase proteins function at the molecular level is an important area of study that will provide insight into their potential for treatment therapies against Acanthamoeba infection and other similar parasitic protozoan. Additionally, finding the molecular functions of these caspase-like proteins will provide information concerning their role in more complex organisms.The aim of this article was to review recent discoveries about metacaspases and paracaspases as regulators of apoptotic and non-apoptotic processes.

  6. Caspase-8 inactivation in T cells increases necroptosis and suppresses autoimmunity in Bim−/− mice

    Science.gov (United States)

    Bohgaki, Toshiyuki; Mozo, Julien; Salmena, Leonardo; Matysiak-Zablocki, Elzbieta; Bohgaki, Miyuki; Sanchez, Otto; Strasser, Andreas

    2011-01-01

    Dysregulation of either the extrinsic or intrinsic apoptotic pathway can lead to various diseases including immune disorders and cancer. In addition to its role in the extrinsic apoptotic pathway, caspase-8 plays nonapoptotic functions and is essential for T cell homeostasis. The pro-apoptotic BH3-only Bcl-2 family member Bim is important for the intrinsic apoptotic pathway and its inactivation leads to autoimmunity that is further exacerbated by loss of function of the death receptor Fas. We report that inactivation of caspase-8 in T cells of Bim−/− mice restrained their autoimmunity and extended their life span. We show that, similar to caspase-8−/− T cells, Bim−/− T cells that also lack caspase-8 displayed elevated levels of necroptosis and that inhibition of this cell death process fully rescued the survival and proliferation of these cells. Collectively, our data demonstrate that inactivation of caspase-8 suppresses the survival and proliferative capacity of Bim−/− T cells and restrains autoimmunity in Bim−/− mice. PMID:22006951

  7. Intracellular antibody-caspase-mediated cell killing: An approach for application in cancer therapy

    Science.gov (United States)

    Tse, Eric; Rabbitts, Terence H.

    2000-10-01

    Antibodies have been expressed inside cells in an attempt to ablate the function of oncogene products. To make intracellular antibodies more generally applicable and effective in cancer therapy, we have devised a method in which programmed cell death or apoptosis can be triggered by specific antibody-antigen interaction. When intracellular antibodies are linked to caspase 3, the "executioner" in the apoptosis pathway, and bind to the target antigen, the caspase 3 moieties are self-activated and thereby induce cell killing. We have used this strategy in a model system with two pairs of intracellular antibodies and antigens. In vivo coexpression of an antibody-caspase 3 fusion with its antigenic target induced apoptosis that was specific for antibody, antigen, and active caspase 3. Moreover, the antibody-caspase 3 fusion protein was not toxic to cells in the absence of antigen. Therefore, intracellular antibody-mediated apoptosis should be useful as a specific therapeutic approach for the treatment of cancers, a situation where target cell killing is required.

  8. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    E K Radhakrishnan

    Full Text Available We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale, in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  9. Melatonin partially protects 661W cells from H2O2-induced death by inhibiting Fas/FasL-caspase-3.

    Science.gov (United States)

    Sánchez-Bretaño, Aída; Baba, Kenkichi; Janjua, Uzair; Piano, Ilaria; Gargini, Claudia; Tosini, Gianluca

    2017-01-01

    Previous studies have shown that melatonin (MEL) signaling is involved in the modulation of photoreceptor viability during aging. Recent work by our laboratory suggested that MEL may protect cones by modulating the Fas/FasL-caspase-3 pathway. In this study, we first investigated the presence of MEL receptors (MT 1 and MT 2 ) in 661W cells, then whether MEL can prevent H 2 O 2 -induced cell death, and last, through which pathway MEL confers protection. The mRNA and proteins of the MEL receptors were detected with quantitative PCR (q-PCR) and immunocytochemistry, respectively. To test the protective effect of MEL, 661W cells were treated with H 2 O 2 for 2 h in the presence or absence of MEL, a MEL agonist, and an antagonist. To study the pathways involved in H 2 O 2 -mediated cell death, a Fas/FasL antagonist was used before the exposure to H 2 O 2 . Finally, Fas/FasL and caspase-3 mRNA was analyzed with q-PCR and immunocytochemistry in cells treated with H 2 O 2 and/or MEL. Cell viability was analyzed by using Trypan Blue. Both MEL receptors (MT 1 and MT 2 ) were detected at the mRNA and protein levels in 661W cells. MEL partially prevented H 2 O 2 -mediated cell death (20-25%). This effect was replicated with IIK7 (a melatonin receptor agonist) when used at a concentration of 1 µM. Preincubation with luzindole (a melatonin receptor antagonist) blocked MEL protection. Kp7-6, an antagonist of Fas/FasL, blocked cell death caused by H 2 O 2 similarly to what was observed for MEL. Fas, FasL, and caspase-3 expression was increased in cells treated with H 2 O 2 , and this effect was prevented by MEL. Finally, MEL treatment partially prevented the activation of caspase-3 caused by H 2 O 2 . The results demonstrate that MEL receptors are present and functional in 661W cells. MEL can prevent photoreceptor cell death induced by H 2 O 2 via the inhibition of the proapoptotic pathway Fas/FasL-caspase-3.

  10. Huntingtin cleavage product A forms in neurons and is reduced by gamma-secretase inhibitors

    Directory of Open Access Journals (Sweden)

    Betschart Claudia

    2010-12-01

    Full Text Available Abstract Background The mutation in Huntington's disease is a polyglutamine expansion near the N-terminus of huntingtin. Huntingtin expressed in immortalized neurons is cleaved near the N-terminus to form N-terminal polypeptides known as cleavage products A and B (cpA and cpB. CpA and cpB with polyglutamine expansion form inclusions in the nucleus and cytoplasm, respectively. The formation of cpA and cpB in primary neurons has not been established and the proteases involved in the formation of these fragments are unknown. Results Delivery of htt cDNA into the mouse striatum using adeno-associated virus or into primary cortical neurons using lentivirus generated cpA and cpB, indicating that neurons in brain and in vitro can form these fragments. A screen of small molecule protease inhibitors introduced to clonal striatal X57 cells and HeLa cells identified compounds that reduced levels of cpA and are inhibitors of the aspartyl proteases cathepsin D and cathepsin E. The most effective compound, P1-N031, is a transition state mimetic for aspartyl proteases. By western blot analysis, cathepsin D was easily detected in clonal striatal X57 cells, mouse brain and primary neurons, whereas cathepsin E was only detectible in clonal striatal X57 cells. In primary neurons, levels of cleavage product A were not changed by the same compounds that were effective in clonal striatal cells or by mRNA silencing to partially reduce levels of cathepsin D. Instead, treating primary neurons with compounds that are known to inhibit gamma secretase activity either indirectly (Imatinib mesylate, Gleevec or selectively (LY-411,575 or DAPT reduced levels of cpA. LY-411,575 or DAPT also increased survival of primary neurons expressing endogenous full-length mutant huntingtin. Conclusion We show that cpA and cpB are produced from a larger huntingtin fragment in vivo in mouse brain and in primary neuron cultures. The aspartyl protease involved in forming cpA has cathepsin

  11. Huntingtin cleavage product A forms in neurons and is reduced by gamma-secretase inhibitors.

    Science.gov (United States)

    Kegel, Kimberly B; Sapp, Ellen; Alexander, Jonathan; Reeves, Patrick; Bleckmann, Dorothee; Sobin, Linsday; Masso, Nicholas; Valencia, Antonio; Jeong, Hyunkyung; Krainc, Dimitri; Palacino, James; Curtis, Daniel; Kuhn, Rainer; Betschart, Claudia; Sena-Esteves, Miguel; Aronin, Neil; Paganetti, Paolo; Difiglia, Marian

    2010-12-14

    The mutation in Huntington's disease is a polyglutamine expansion near the N-terminus of huntingtin. Huntingtin expressed in immortalized neurons is cleaved near the N-terminus to form N-terminal polypeptides known as cleavage products A and B (cpA and cpB). CpA and cpB with polyglutamine expansion form inclusions in the nucleus and cytoplasm, respectively. The formation of cpA and cpB in primary neurons has not been established and the proteases involved in the formation of these fragments are unknown. Delivery of htt cDNA into the mouse striatum using adeno-associated virus or into primary cortical neurons using lentivirus generated cpA and cpB, indicating that neurons in brain and in vitro can form these fragments. A screen of small molecule protease inhibitors introduced to clonal striatal X57 cells and HeLa cells identified compounds that reduced levels of cpA and are inhibitors of the aspartyl proteases cathepsin D and cathepsin E. The most effective compound, P1-N031, is a transition state mimetic for aspartyl proteases. By western blot analysis, cathepsin D was easily detected in clonal striatal X57 cells, mouse brain and primary neurons, whereas cathepsin E was only detectible in clonal striatal X57 cells. In primary neurons, levels of cleavage product A were not changed by the same compounds that were effective in clonal striatal cells or by mRNA silencing to partially reduce levels of cathepsin D. Instead, treating primary neurons with compounds that are known to inhibit gamma secretase activity either indirectly (Imatinib mesylate, Gleevec) or selectively (LY-411,575 or DAPT) reduced levels of cpA. LY-411,575 or DAPT also increased survival of primary neurons expressing endogenous full-length mutant huntingtin. We show that cpA and cpB are produced from a larger huntingtin fragment in vivo in mouse brain and in primary neuron cultures. The aspartyl protease involved in forming cpA has cathepsin-D like properties in immortalized neurons and gamma

  12. Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: the involvement of endoplasmic reticulum stress and the Nrf2 signaling pathway.

    Science.gov (United States)

    Jo, Guk Heui; Kim, Gi-Young; Kim, Wun-Jae; Park, Kun Young; Choi, Yung Hyun

    2014-10-01

    Sulforaphane, a naturally occurring isothiocyanate found in cruciferous vegetables, has received a great deal of attention because of its ability to inhibit cell proliferation and induce apoptosis in cancer cells. In this study, we investigated the anticancer activity of sulforaphane in the T24 human bladder cancer line, and explored its molecular mechanism of action. Our results showed that treatment with sulforaphane inhibited cell viability and induced apoptosis in T24 cells in a concentration-dependent manner. Sulforaphane-induced apoptosis was associated with mitochondria dysfunction, cytochrome c release and Bcl-2/Bax dysregulation. Furthermore, the increased activity of caspase-9 and -3, but not caspase-8, was accompanied by the cleavage of poly ADP-ribose polymerase, indicating the involvement of the mitochondria-mediated intrinsic apoptotic pathway. Concomitant with these changes, sulforaphane triggered reactive oxygen species (ROS) generation, which, along with the blockage of sulforaphane-induced loss of mitochondrial membrane potential and apoptosis, was strongly attenuated by the ROS scavenger N-acetyl-L-cysteine. Furthermore, sulforaphane was observed to activate endoplasmic reticulum (ER) stress and the nuclear factor-E2-related factor-2 (Nrf2) signaling pathway, as demonstrated by the upregulation of ER stress‑related proteins, including glucose-regulated protein 78 and C/EBP-homologous protein, and the accumulation of phosphorylated Nrf2 proteins in the nucleus and induction of heme oxygenase-1 expression, respectively. Taken together, these results demonstrate that sulforaphane has antitumor effects against bladder cancer cells through an ROS-mediated intrinsic apoptotic pathway, and suggest that ER stress and Nrf2 may represent strategic targets for sulforaphane-induced apoptosis.

  13. Molecular cloning and characterization of cDNAs encoding carotenoid cleavage dioxygenase in bitter melon (Momordica charantia).

    Science.gov (United States)

    Tuan, Pham Anh; Park, Sang Un

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are a family of enzymes that catalyze the oxidative cleavage of carotenoids at various chain positions to form a broad spectrum of apocarotenoids, including aromatic substances, pigments and phytohormones. Using the rapid amplification of cDNA ends (RACE) PCR method, we isolated three cDNA-encoding CCDs (McCCD1, McCCD4, and McNCED) from Momordica charantia. Amino acid sequence alignments showed that they share high sequence identity with other orthologous genes. Quantitative real-time RT PCR (reverse transcriptase PCR) analysis revealed that the expression of McCCD1 and McCCD4 was highest in flowers, and lowest in roots and old leaves (O-leaves). During fruit maturation, the two genes displayed differential expression, with McCCD1 peaking at mid-stage maturation while McCCD4 showed the lowest expression at that stage. The mRNA expression level of McNCED, a key enzyme involved in abscisic acid (ABA) biosynthesis, was high during fruit maturation and further increased at the beginning of seed germination. When first-leaf stage plants of M. charantia were exposed to dehydration stress, McNCED mRNA expression was induced primarily in the leaves and, to a lesser extend, in roots and stems. McNCED expression was also induced by high temperature and salinity, while treatment with exogenous ABA led to a decrease. These results should be helpful in determining the substrates and cleavage sites catalyzed by CCD genes in M. charantia, and also in defining the roles of CCDs in growth and development, and in the plant's response to environmental stress. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.

    Science.gov (United States)

    Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu

    2018-02-14

    Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

  15. Synthesis, characterization, plasmid cleavage and cytotoxicity of cancer cells by a copper(II) complex of anthracenyl-terpyridine.

    Science.gov (United States)

    Kumar, Amit; Chinta, Jugun Prakash; Ajay, Amrendra Kumar; Bhat, Manoj Kumar; Rao, Chebrolu P

    2011-11-07

    Metallo-organic compounds are interesting to study for their antitumor activity and related applications. This paper deals with the syntheses, characterization, structure determination of a copper complex of anthracenyl terpyridine (1) and its plasmid cleavage and cytotoxicity towards different cancer cell lines. The complex binds CT-DNA through partial intercalation mode. The plasmid cleavage studies carried out using pBR322 and pUC18 resulted in the formation of all the three forms of the plasmid DNA. Plasmid cleavage studies carried out with a non-redoxable Zn(2+) complex (2) supported the role of the redox activity of copper in 1. The complex 1 showed remarkable antiproliferative activity against cancer cell lines, viz., cervical (HeLa, SiHa, CaSki), breast (MCF-7), liver (HepG2) and lung (H1299). A considerable lowering was observed in the IC(50) values of HPV-infected (viz., HeLa, SiHa, CaSki) vs. non-HPV-infected cell lines (MCF-7, HepG2, H1299). Antiproliferative activity of 1 was found to be much higher than the carboplatin when treated with the same cell lines. Incubation of the cells with 1 results in granular structures only with the HPV-infected cells and not with others as studied by phase contrast and fluorescence microscopy. The lower IC(50) value observed in case of 1 with HPV-infected cell lines may be correlated with the involvement of HPV oncoprotein. The role of HPV has been further augmented by transfecting the MCF-7 cells (originally not possessing HPV copy) with e6 oncoprotein cDNA. To our knowledge this is the first copper complex that causes cell death by interacting with HPV oncoprotein followed by exhibition of remarkable antiproliferative activity.

  16. Copper complexes based on chiral Schiff-base ligands: DNA/BSA binding ability, DNA cleavage activity, cytotoxicity and mechanism of apoptosis.

    Science.gov (United States)

    Zhou, Xue-Quan; Li, Yang; Zhang, Dong-Yan; Nie, Yan; Li, Zong-Jin; Gu, Wen; Liu, Xin; Tian, Jin-Lei; Yan, Shi-Ping

    2016-05-23

    Four copper(II) complexes with chiral Schiff-base ligands, [Cu(R-L(1))2]·EtOAc (1) and [Cu(S-L(1))2]·EtOAc (2), [Cu(R-L(2))2]·EtOAc (3) and [Cu(S-L(2))2]·EtOAc (4), (R/S-HL(1) = (R/S)-(1-naththyl)-salicylaldimine, R/S-HL(2) = (R/S)-(1-naththyl)-3-methoxysalicylaldimine, EtOAc = ethyl acetate) were synthesized to serve as artificial nucleases and anticancer drugs. All complexes and R/S-HL(1) ligands were structurally characterized by X-ray crystallography. The interaction of these complexes with CT-DNA was researched via several spectroscopy methods, which indicates that complexes bind to CT-DNA by moderate intercalation binding mode. Moreover, DNA cleavage experiments revealed that the complexes exhibited remarkable DNA cleavage activities in the presence of H2O2via the generation of hydroxyl radical. Particularly, complex 4 also could nick DNA with the production of (1)O2. And all complexes exhibited excellent cytotoxicity to MDA-MB-231, A549 and Hela human cancer cells in micromole magnitude. Furthermore, complex 4 exhibited comparable cytotoxic effect to cisplatin against the proliferation of MDA-MB-231 and A549 cancer cells, as well as showed better anticancer ability to the three cancer cells than the other complexes. The results of cell cycle analysis indicated that complexes 3-4 could induce G2/M phase cell cycle arrest. Furthermore, MDA-MB-231 cells treated with 3 and 4 were subjected to apoptosis and death by generation of ROS and the activation of caspase-3. Interestingly, the chiral complexes 3 and 4 may induce cell apoptosis through extrinsic and mitochondrial intrinsic pathway, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Caspase-1 contributes to Chlamydia trachomatis-induced upper urogenital tract inflammatory pathologies without affecting the course of infection.

    Science.gov (United States)

    Cheng, Wen; Shivshankar, Pooja; Li, Zhongyu; Chen, Lili; Yeh, I-Tien; Zhong, Guangming

    2008-02-01

    Chlamydia trachomatis infection induces inflammatory pathologies in the upper genital tract, potentially leading to ectopic pregnancy and infertility in the affected women. Caspase-1 is required for processing and release of the inflammatory cytokines interleukin-1beta (IL-1beta), IL-18, and possibly IL-33. In the present study, we evaluated the role of caspase-1 in chlamydial infection and pathogenesis. Although chlamydial infection induced caspase-1 activation and processing of IL-1beta, mice competent and mice deficient in caspase-1 experienced similar courses of chlamydial infection in their urogenital tracts, suggesting that Chlamydia-activated caspase-1 did not play a significant role in resolution of chlamydial infection. However, when genital tract tissue pathologies were examined, the caspase-1-deficient mice displayed much reduced inflammatory damage. The reduction in inflammation was most obvious in the fallopian tube tissue. These observations demonstrated that although caspase-1 is not required for controlling chlamydial infection, caspase-1-mediated responses can exacerbate the Chlamydia-induced inflammatory pathologies in the upper genital tract, suggesting that the host caspase-1 may be targeted for selectively attenuating chlamydial pathogenicity without affecting the host defense against chlamydial infection.

  18. Caspase-like proteins: Acanthamoeba castellanii metacaspase and ...

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... cycles and differentiation/encystment (Koonin and Aravind. 2002). Theories have arisen from several studies reporting the involvement of metacaspases in PCD ..... Biochem. Parasitol. 145 18–28. Kroemer G, Mariño G and Levine B 2010 Autophagy and the integrated stress response. Mol. Cell 40 280–293.

  19. Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus.

    Science.gov (United States)

    Marincola, Gabriella; Wolz, Christiane

    2017-06-02

    In gram-positive bacteria, RNase J1, RNase J2 and RNase Y are thought to be major contributors to mRNA degradation and maturation. In Staphylococcus aureus, RNase Y activity is restricted to regulating the mRNA decay of only certain transcripts. Here the saePQRS operon was used as a model to analyze RNase Y specificity in living cells. A RNase Y cleavage site is located in an intergenic region between saeP and saeQ. This cleavage resulted in rapid degradation of the upstream fragment and stabilization of the downstream fragment. Thereby, the expression ratio of the different components of the operon was shifted towards saeRS, emphasizing the regulatory role of RNase Y activity. To assess cleavage specificity different regions surrounding the sae CS were cloned upstream of truncated gfp, and processing was analyzed in vivo using probes up- and downstream of CS. RNase Y cleavage was not determined by the cleavage site sequence. Instead a 24-bp double-stranded recognition structure was identified that was required to initiate cleavage 6 nt upstream. The results indicate that RNase Y activity is determined by secondary structure recognition determinants, which guide cleavage from a distance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. The co-chaperone p23 is degraded by caspases and the proteasome during apoptosis

    DEFF Research Database (Denmark)

    Mollerup, Jens; Berchtold, Martin Werner

    2005-01-01

    The heat shock protein 90 co-chaperone p23 has recently been shown to be up-regulated in cancer cells and down-regulated in atheroschlerotic plaques. We found that p23 is degraded during apoptosis induced by several stimuli, including Fas and TNFa-receptor activation as well as staurosporine...... treatment. Caspase inhibition protected p23 from degradation in several cell lines. In addition, recombinant caspase-3 and 8 cleaved p23 at Asp 142 generating a degradation product of 18 kDa as seen in apoptotic cells. Truncated p23 is further degraded in a proteasome dependent process during apoptosis....... Furthermore, we found that the anti-aggregating activity of truncated p23 was reduced compared to full length p23 indicating that caspase mediated p23 degradation contributes to protein destabilisation in apoptosis....

  1. Essential roles of Caspase-3 in facilitating Myc-induced genetic instability and carcinogenesis.

    Science.gov (United States)

    Cartwright, Ian M; Liu, Xinjian; Zhou, Min; Li, Fang; Li, Chuan-Yuan

    2017-07-10

    The mechanism for Myc-induced genetic instability is not well understood. Here we show that sublethal activation of Caspase-3 plays an essential, facilitative role in Myc-induced genomic instability and oncogenic transformation. Overexpression of Myc resulted in increased numbers of chromosome aberrations and γH2AX foci in non-transformed MCF10A human mammary epithelial cells. However, such increases were almost completely eliminated in isogenic cells with CASP3 gene ablation. Furthermore, we show that endonuclease G, an apoptotic nuclease downstream of Caspase-3, is directly responsible for Myc-induced genetic instability. Genetic ablation of either CASP3 or ENDOG prevented Myc-induced oncogenic transformation of MCF10A cells. Taken together, we believe that Caspase-3 plays a critical, unexpected role in mediating Myc-induced genetic instability and transformation in mammalian cells.

  2. Remarkable weakness against cleavage stress for YBCO-coated conductors and its effect on the YBCO coil performance

    International Nuclear Information System (INIS)

    Yanagisawa, Y.; Nakagome, H.; Takematsu, T.; Takao, T.; Sato, N.; Takahashi, M.; Maeda, H.

    2011-01-01

    Cleavage strength for YBCO-coated conductor is extremely low, typically 0.5 MPa. The remarkable weakness is due to cracks on the slit edge of the conductor. The cleavage stress appears on YBCO double pancake coils impregnated with epoxy. The cleavage stress should be avoided in the coil winding. Cleavage strength for an YBCO-coated conductor at 77 K was investigated with a model experiment. The nominal cleavage strength for an YBCO-coated conductor is extremely low, typically 0.5 MPa. This low nominal cleavage strength is due to stress concentration on a small part of the YBCO-coated conductor in cleavage fracture. Debonding by the cleavage stress occurs at the interface between the buffer layer and the Hastelloy substrate. The nominal cleavage strength for a slit edge of the conductor is 2.5-times lower than that for the original edge of the conductor; cracks and micro-peel existing over the slit edge reduce the cleavage strength for the slit edge. Cleavage stress and peel stress should be avoided in coil winding, as they easily delaminate the YBCO-coated conductor, resulting in substantial degradation of coil performance. These problems are especially important for epoxy impregnated YBCO-coated conductor coils. It appears that effect of cleavage stress and peel stress are mostly negligible for paraffin impregnated YBCO-coated conductor coils or dry wound YBCO-coated conductor coils.

  3. Molecular determinants of survival motor neuron (SMN protein cleavage by the calcium-activated protease, calpain.

    Directory of Open Access Journals (Sweden)

    Jennifer L Fuentes

    2010-12-01

    Full Text Available Spinal muscular atrophy (SMA is a leading genetic cause of childhood mortality, caused by reduced levels of survival motor neuron (SMN protein. SMN functions as part of a large complex in the biogenesis of small nuclear ribonucleoproteins (snRNPs. It is not clear if defects in snRNP biogenesis cause SMA or if loss of some tissue-specific function causes disease. We recently demonstrated that the SMN complex localizes to the Z-discs of skeletal and cardiac muscle sarcomeres, and that SMN is a proteolytic target of calpain. Calpains are implicated in muscle and neurodegenerative disorders, although their relationship to SMA is unclear. Using mass spectrometry, we identified two adjacent calpain cleavage sites in SMN, S192 and F193. Deletion of small motifs in the region surrounding these sites inhibited cleavage. Patient-derived SMA mutations within SMN reduced calpain cleavage. SMN(D44V, reported to impair Gemin2 binding and amino-terminal SMN association, drastically inhibited cleavage, suggesting a role for these interactions in regulating calpain cleavage. Deletion of A188, a residue mutated in SMA type I (A188S, abrogated calpain cleavage, highlighting the importance of this region. Conversely, SMA mutations that interfere with self-oligomerization of SMN, Y272C and SMNΔ7, had no effect on cleavage. Removal of the recently-identified SMN degron (Δ268-294 resulted in increased calpain sensitivity, suggesting that the C-terminus of SMN is important in dictating availability of the cleavage site. Investigation into the spatial determinants of SMN cleavage revealed that endogenous calpains can cleave cytosolic, but not nuclear, SMN. Collectively, the results provide insight into a novel aspect of the post-translation regulation of SMN.

  4. Q-VE-OPh, a Negative Control for O-Phenoxy-Conjugated Caspase Inhibitors

    Directory of Open Access Journals (Sweden)

    Benjamin Southerland

    2010-06-01

    Full Text Available The broad-spectrum apoptosis (caspase inhibitor, Q-VD-OPh, has been shown to have no side effects and is effective at a much lower concentration than other FMK-type caspase inhibitors. However, an appropriate negative control to use with this inhibi- tor has not been available. In this study, we developed and analyzed a new compound, based on the Q-VD-OPh backbone, which acts as a cognate negative control. To create the negative control, we substituted a glutamate residue for the aspartate residue to create Q-VE-OPh, thereby retaining the identical charge and molecular properties with only the addition of an extra –CH2 group. The purity and quality were assessed by ion trap mass spectrometry and verified by nuclear magnetic resonance. We determined the effectiveness of Q-VE-OPh, in comparison to Q-VD-OPh, to prevent DNA fragmentation in human Jurkat T leukemia cells that were induced to undergo apoptosis. DNA fragmentation was analyzed by agarose gel electrophoresis for the presence of DNA laddering, the hallmark indicator of apoptosis. Our results indicate that apoptosis was potently inhibited by Q-VD-OPh. In stark contrast, Q-VE-OPh did not inhibit apoptosis at a similar dose but required at least 20 times greater concentration than Q-VD-OPh to have any inhibitory effect. Western blot analysis showed that Q-VE-OPh was similarly less effective at inhibiting the activation of the extrinsic (caspase 8 and intrinsic (caspase 9 initiator caspases. Cell proliferation and viability studies further demonstrate that Q-VE-OPh is non-toxic, even at high concentration. Our data indicate that the specificity, effectiveness, and absence of toxicity of Q-VE-OPh provides the appropriate and superior negative control for in vitro and in vivo studies when analyzing the effects of o-phenoxy caspase inhibitors.

  5. Q-VE-OPh, a Negative Control for O-Phenoxy-Conjugated Caspase Inhibitors

    Directory of Open Access Journals (Sweden)

    Benjamin Southerland

    2010-01-01

    Full Text Available The broad-spectrum apoptosis (caspase inhibitor, Q-VD-OPh, has been shown to have no side effects and is effective at a much lower concentration than other FMK-type caspase inhibitors. However, an appropriate negative control to use with this inhibitor has not been available. In this study, we developed and analyzed a new compound, based on the Q-VD-OPh backbone, which acts as a cognate negative control. To create the negative control, we substituted a glutamate residue for the aspartate residue to create Q-VE-OPh , thereby retaining the identical charge and molecular properties with only the addition of an extra -CH2 group. The purity and quality were assessed by ion trap mass spectrometry and verified by nuclear magnetic resonance. We determined the effectiveness of Q-VE-OPh, in comparison to Q-VD-OPh, to prevent DNA fragmentation in human Jurkat T leukemia cells that were induced to undergo apoptosis. DNA fragmentation was analyzed by agarose gel electrophoresis for the presence of DNA laddering, the hallmark indicator of apoptosis. Our results indicate that apoptosis was potently inhibited by Q-VD-OPh. In stark contrast, Q-VE-OPh did not inhibit apoptosis at a similar dose but required at least 20 times greater concentration than Q-VD-OPh to have any inhibitory effect. Western blot analysis showed that Q-VE-OPh was similarly less effective at inhibiting the activation of the extrinsic (caspase 8 and intrinsic (caspase 9 initiator caspases. Cell proliferation and viability studies further demonstrate that Q-VE-OPh is non-toxic, even at high concentration. Our data indicate that the specificity, effectiveness, and absence of toxicity of Q-VE-OPh provides the appropriate and superior negative control for in vitro and in vivo studies when analyzing the effects of o-phenoxy caspase inhibitors.

  6. Dynamic propagation and cleavage crack arrest in bainitic steel

    International Nuclear Information System (INIS)

    Hajjaj, M.

    2006-06-01

    In complement of the studies of harmfulness of defects, generally realized in term of initiation, the concept of crack arrest could be used as complementary analyses to the studies of safety. The stop occurs when the stress intensity factor becomes lower than crack arrest toughness (KIa) calculated in elasto-statics (KI ≤ KIa). The aim of this thesis is to understand and predict the stop of a crack propagating at high speed in a 18MND5 steel used in the pressure water reactor (PWR). The test chosen to study crack arrest is the disc thermal shock test. The observations under the scanning electron microscope of the fracture surface showed that the crack arrest always occurs in cleavage mode and that the critical microstructural entity with respect to the propagation and crack arrest corresponds to at least the size of the prior austenitic grain. The numerical analyses in elasto-statics confirm the conservatism of the codified curve of the RCC-M with respect to the values of KIa. The dynamic numerical analyses show that the deceleration of the crack measured at the end of the propagation is related to the global dynamic of the structure (vibrations). The transferability to components of crack arrest toughness obtained from tests analysed in static is thus not assured. The disc thermal shock tests were also modelled by considering a criterion of propagation and arrest of the type 'RKR' characterized by a critical stress sc which depends on the temperature. The results obtained account well for the crack jump measured in experiments as well as the shape of the crack arrest front. (author)

  7. Synthesis and DNA cleavage activity of Bis-3-chloropiperidines as alkylating agents.

    Science.gov (United States)

    Zuravka, Ivonne; Roesmann, Rolf; Sosic, Alice; Wende, Wolfgang; Pingoud, Alfred; Gatto, Barbara; Göttlich, Richard

    2014-09-01

    Nitrogen mustards are an important class of bifunctional alkylating agents routinely used in chemotherapy. They react with DNA as electrophiles through the formation of highly reactive aziridinium ion intermediates. The antibiotic 593A, with potential antitumor activity, can be considered a naturally occurring piperidine mustard containing a unique 3-chloropiperidine ring. However, the total synthesis of this antibiotic proved to be rather challenging. With the aim of designing simplified analogues of this natural product, we developed an efficient bidirectional synthetic route to bis-3-chloropiperidines joined by flexible, conformationally restricted, or rigid diamine linkers. The key step involves an iodide-catalyzed double cyclization of unsaturated bis-N-chloroamines to simultaneously generate both piperidine rings. Herein we describe the synthesis and subsequent evaluation of a series of novel nitrogen-bridged bis-3-chloropiperidines, enabling the study of the impact of the linker structure on DNA alkylation properties. Our studies reveal that the synthesized compounds possess DNA alkylating abilities and induce strand cleavage, with a strong preference for guanine residues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Understanding in-line probing experiments by modeling cleavage of nonreactive RNA nucleotides.

    Science.gov (United States)

    Mlýnský, Vojtěch; Bussi, Giovanni

    2017-05-01

    Ribonucleic acid (RNA) is involved in many regulatory and catalytic processes in the cell. The function of any RNA molecule is intimately related with its structure. In-line probing experiments provide valuable structural data sets for a variety of RNAs and are used to characterize conformational changes in riboswitches. How