WorldWideScience

Sample records for invisible particle emission

  1. The 'Invisible' Metal Particles in Catalysis

    NARCIS (Netherlands)

    Koningsberger, D.C.; Diaz-Moreno, S.; Muñoz-Paez, A.

    1997-01-01

    An easy, reliable and straightforward method to determine the sizes of small metal particles in supported metal catalyst which are invisible for most techniques (chemisorption, XRD, HRTEM) is presented. The technique we consider more appropriate is EXAFS, because it detects metal metal bonds even

  2. Discovery Mondays - 'Particle tracks: Seeing the invisible'

    CERN Multimedia

    2007-01-01

    Simulation of particle tracks in the CMS detector. How can you 'see' something as infinitesimal and fleeting as an elementary particle that defeats even the most powerful microscope? Well, physicists have detectors to snoop on them. Unlike biologists looking at bacteria, physicists don't see the particles themselves. They study their impact on sensitive materials as they pass through them at ultra high speed, a bit like seeing plane vapour trails in a clear sky. At the next Discovery Monday you will be able to find out about the different methods used at CERN to detect particles. There will be demonstrations of the cloud chamber, where particles leave tell-tale evidence of their passage in tracks of droplets. You will also learn about past and current particle track detection techniques and how the tracks are reconstructed into magnificent composite images. Don't miss this opportunity to learn about the various ways of 'seeing' particles. The event will be conducted in French. Come along to the Microcosm ...

  3. A map of the invisible journeys into particle physics

    CERN Document Server

    Butterworth, Jon

    2017-01-01

    What is the universe really made of? How do we know? Follow the map of the invisible to find out... Over the last sixty years, scientists around the world have worked together to explore the fundamental constituents of matter, and the forces that govern their behaviour. The result, so far, is the ‘Standard Model’ of elementary particles: a theoretical map of the basic building blocks of the universe. With the discovery of the Higgs boson in 2012, the map as we know it was completed, but also extended into strange new territory. A Map of the Invisible is an explorer’s guide to the Standard Model and the extraordinary realms of particle physics. After shrinking us down to the size of a sub-atomic particle, pioneering physicist Jon Butterworth takes us on board his research vessel for a journey in search of atoms and quarks, electrons and neutrinos, and the forces that shape the universe. Step by step, discovery by discovery, we journey into the world of the unseen, from the atom to black holes and dark ...

  4. On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders

    International Nuclear Information System (INIS)

    Tovey, Daniel R.

    2008-01-01

    A straightforward new technique is introduced which enables measurement at hadron colliders of an analytical combination of the masses of pair-produced semi-invisibly decaying particles and their invisible decay products. The new technique makes use of the invariance under contra-linear Lorentz boosts of a simple combination of the transverse momentum components of the aggregate visible products of each decay chain. In the general case where the invariant masses of the visible decay products are non-zero it is shown that in principle the masses of both the initial particles from the hard scattering and the invisible particles produced in the decay chains can be determined independently. This application is likely to be difficult to realise in practice however due to the contamination of the final state with ISR jets. The technique may be of most use for measurements of SUSY particle masses at the LHC, however the technique should be applicable to any class of hadron collider events in which heavy particles of unknown mass are pair-produced and decay to semi-invisible final states

  5. Anti-Counterfeiting Quick Response Code with Emission Color of Invisible Metal-Organic Frameworks as Encoding Information.

    Science.gov (United States)

    Wang, Yong-Mei; Tian, Xue-Tao; Zhang, Hui; Yang, Zhong-Rui; Yin, Xue-Bo

    2018-06-08

    Counterfeiting is a global epidemic that is compelling the development of new anti-counterfeiting strategy. Herein, we report a novel multiple anti-counterfeiting encoding strategy of invisible fluorescent quick response (QR) codes with emission color as information storage unit. The strategy requires red, green, and blue (RGB) light-emitting materials for different emission colors as encrypting information, single excitation for all of the emission for practicability, and ultraviolet (UV) excitation for invisibility under slight. Therefore, RGB light-emitting nanoscale metal-organic frameworks (NMOFs) are designed as inks to construct the colorful light-emitting boxes for information encrypting, while three black vertex boxes were used for positioning. Full-color emissions are obtained by mixing the trichromatic NMOFs inks through inkjet printer. The encrypting information capacity is easily adjusted by the number of light-emitting boxes with the infinite emission colors. The information is decoded with specific excitation light at 275 nm, making the QR codes invisible under daylight. The composition of inks, invisibility, inkjet printing, and the abundant encrypting information all contribute to multiple anti-counterfeiting. The proposed QR codes pattern holds great potential for advanced anti-counterfeiting.

  6. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    particle number concentration increased slightly with increasing load, at the same time the fine mode particles became smaller. This was probably caused by different degree of particle coagulation as the residence time in the boiler was changed. The mean diameter during combustion of forest residue was around 100 nm compared to 70-80 nm for dry wood and pellets, while the total number was close to constant. This explains the differences in mass concentration found in the impactor measurements. The concentrations of CO and THC was highest for the dry wood fuel, the PAH concentration was highest for pellets combustion in boiler 4, however this boiler was poorly tuned at the time of measurement. The PAH concentration was 5 times higher during combustion of dry wood compared to forest residue. The concentration of CO, THC and PAH varied to a great extend. The high concentrations were measured in boilers running at a low load. The concentration of particle organic carbon was less than 15% of PMI for all fuels. However we used heated primary dilution, which inhibits the condensation of organic components into, the particle phase. A significant fraction of the emitted organic carbon may condense to the particle phase during dilution after the stack or after being oxidized in the atmosphere. We also measured elemental carbon in the particle phase. The contribution to PM1 was as high as 25-30% during pellets combustion at low load and 8% at low load during combustion of dry wood. In all other cases the EC-concentration was less than 3% of PMI. PIXE and lon-chromatography confirmed that alkali-salts were the dominant chemical species. PIXE analysis revealed that emitted amounts of heavy metals such as Zn, Cd and Pb are strongly dependent on the type of the fuel used. Forest residues gave high emissions of Zn, Cd and Pb, while pellets gave very high emissions of Cd and Zn. The fuel with the lowest emissions of heavy metals was dry wood. This again could be related to ash content in

  7. Revised constraints and Belle II sensitivity for visible and invisible axion-like particles

    International Nuclear Information System (INIS)

    Dolan, Matthew J.; Kahlhoefer, Felix

    2017-09-01

    Light pseudoscalars interacting pre-dominantly with Standard Model gauge bosons (so-called axion-like particles or ALPs) occur frequently in extensions of the Standard Model. In this work we review and update existing constraints on ALPs in the keV to GeV mass region from colliders, beam dump experiments and astrophysics. We furthermore provide a detailed calculation of the expected sensitivity of Belle II, which can search for visibly and invisibly decaying ALPs, as well as long-lived ALPs. The Belle II sensitivity is found to be substantially better than previously estimated, covering wide ranges of relevant parameter space. In particular, Belle II can explore an interesting class of dark matter models, in which ALPs mediate the interactions between the Standard Model and dark matter. In these models, the relic abundance can be set via resonant freeze-out, leading to a highly predictive scenario consistent with all existing constraints but testable with single-photon searches at Belle II in the near future.

  8. Revised constraints and Belle II sensitivity for visible and invisible axion-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Matthew J. [Melbourne Univ. (Australia). ARC Centre of Excellence for Particle Physics at the Terascale; Ferber, Torben [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy; Hearty, Christopher [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy; Institute of Particle Physics, Vancouver, BC (Canada); Kahlhoefer, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); RWTH Aachen Univ. (Germany). Inst. for Theoretical Particle Physics and Cosmology; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-09-15

    Light pseudoscalars interacting pre-dominantly with Standard Model gauge bosons (so-called axion-like particles or ALPs) occur frequently in extensions of the Standard Model. In this work we review and update existing constraints on ALPs in the keV to GeV mass region from colliders, beam dump experiments and astrophysics. We furthermore provide a detailed calculation of the expected sensitivity of Belle II, which can search for visibly and invisibly decaying ALPs, as well as long-lived ALPs. The Belle II sensitivity is found to be substantially better than previously estimated, covering wide ranges of relevant parameter space. In particular, Belle II can explore an interesting class of dark matter models, in which ALPs mediate the interactions between the Standard Model and dark matter. In these models, the relic abundance can be set via resonant freeze-out, leading to a highly predictive scenario consistent with all existing constraints but testable with single-photon searches at Belle II in the near future.

  9. Measuring the masses of a pair of semi-invisibly decaying particles in central exclusive production with forward proton tagging

    International Nuclear Information System (INIS)

    Harland-Lang, L.A.; Stirling, W.J.

    2011-10-01

    We discuss how the mass of new physics particles involved in a pair of short decay chains leading to two invisible particles, for example slepton pair production, followed by the decay into two leptons and two neutralinos, may be measured in central exclusive production (CEP) with forward proton tagging. We show how the existing mass measurement strategies in CEP may be improved by making full use of the mass-shell constraints, and demonstrate that, with around 30 signal events, the masses of the slepton and neutralino can be measured with an accuracy of a few GeV. (orig.)

  10. Continental anthropogenic primary particle number emissions

    Science.gov (United States)

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  11. Continental anthropogenic primary particle number emissions

    Directory of Open Access Journals (Sweden)

    P. Paasonen

    2016-06-01

    Full Text Available Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa, coke production (Russia and China, and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol–cloud interactions as well as particle number related adverse health effects, e.g. in response

  12. Sharpening m{sub T2} cusps. The mass determination of semi-invisibly decaying particles from a resonance

    Energy Technology Data Exchange (ETDEWEB)

    Harland-Lang, Lucian A. [Durham Univ. (United Kingdom). Dept. of Physics; Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Kom, Chun-Hay [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Sakurai, Kazuki [King' s College London (United Kingdom). Theoretical Particle Physics and Cosmology Group; Tonini, Marco [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-12-15

    We revisit mass determination techniques for the minimum symmetric event topology, namely X pair production followed by X{yields}lN, where X and N are unknown particles with the masses to be measured, and N is an invisible particle. We consider separate scenarios, with different initial constraints on the invisible particle momenta, and present a systematic method to identify the kinematically allowed mass regions in the (m{sub N},m{sub X}) plane. These allowed regions exhibit a cusp structure at the true mass point, which is equivalent to the one observed in the m{sub T2} endpoints in certain cases. By considering the boundary of the allowed mass region we systematically define kinematical variables which can be used in measuring the unknown masses, and find a new expression for the m{sub T2} variable as well as its inverse. We explicitly apply our method to the case that X is pair produced from a resonance, and as a case study, we consider the process pp {yields} A {yields} {chi}{sup +}{sub 1}{chi}{sup -}{sub 1}, followed by {chi}{sup {+-}}{sub 1} {yields} l{nu}, in the minimal supersymmetric standard model and show that our method provides a precise measurement of the chargino and sneutrino masses, m{sub X} and m{sub N}, at 14 TeV LHC with 300 fb{sup -1} luminosity.

  13. Particle emissions from compressed natural gas engines

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Morawska, L.; Hitchins, J.; Thomas, S.; Greenaway, C.; Gilbert, D.

    2000-01-01

    This paper presents the results of measurements conducted to determine particle and gas emissions from two large compressed natural gas (CNG) spark ignition (SI) engines. Particle size distributions in the range from 0.01-30 μm, and gas composition were measured for five power settings of the engines: 35, 50, 65, 80 and 100% of full power. Particle emissions in the size range between 0.5 and 30 μm, measured by the aerodynamic particle sizer (APS), were very low at a level below two particles cm -3 . These concentrations were comparable with average ambient concentration, and were not considered in the succeeding analysis. Both engines produce significant amounts of particles in the size range between 0.015 and 0.7 μm, measured by the scanning mobility particle size (SMPS). Maximum number of concentrations of about 1 x 10 7 particles cm -3 were very similar for both engines. The CMDs were in the range between 0.020 and 0.060 μm. The observed levels of particulate emission are in terms of number of the same order as emissions from heavy duty diesel engines (Morawska et al., Environ. Sci. Tech. 32, 2033-2042). On the other hand, emissions of CO and NO x of 5.53 and 3.33 g k W h -1 , respectively, for one of the tested engines, were considerably lower than set by the standards. According to the specifications for the gas emissions, provided by the US EPA (US EPA, 1997), this engine can be considered as a 'low-emission' engine, although emissions of submicrometer particles are of the same order as heavy-duty vehicles. (Author)

  14. Particle Emissions from Domestic Gas Cookers

    DEFF Research Database (Denmark)

    Glarborg, Peter; Livbjerg, Hans; Wagner, Ayten Yilmaz

    2010-01-01

    The authors experimentally studied the formation of submicron particles from a domestic gas cooker in a compartment free from external particle sources. The effects of fuel (methane, natural gas, odorant-free natural gas), primary aeration, flow rate, and fuel sulphur content on particle emissions...... of the emitted particles were found to have a mean value of about 7 nm for partially premixed flames, increasing to ∼10 nm for nonpremixed flames. The quantity of primary air had a strong impact on the particle emissions, showing a minimum at a primary aeration level of 60-65%. Presence of sulphur in small...... quantities may enhance particle formation under some conditions, but results were not conclusive....

  15. Emissions of soot particles from heat generators

    Science.gov (United States)

    Lyubov, V. K.; Popov, A. N.; Popova, E. I.

    2017-11-01

    «Soot carbon» or «Soot» - incomplete combustion or thermal decomposition particulate carbon product of hydrocarbons consisting of particles of various shapes and sizes. Soot particles are harmful substances Class 2 and like a dust dispersed by wind for thousands of kilometers. Soot have more powerful negative factor than carbon dioxide. Therefore, more strict requirements on ecological and economical performance for energy facilities at Arctic areas have to be developed to protect fragile Arctic ecosystems and global climate change from degradation and destruction. Quantity of soot particles in the flue gases of energy facilities is a criterion of effectiveness for organization of the burning process. Some of heat generators do not provide the required energy and environmental efficiency which results in irrational use of energy resources and acute pollution of environment. The paper summarizes the results of experimental study of solid particles emission from wide range of capacity boilers burning different organic fuels (natural gas, fuel oil, coal and biofuels). Special attention is paid to environmental and energy performance of the biofuels combustion. Emissions of soot particles PM2.5 are listed. Structure, composition and dimensions of entrained particles with the use of electronic scanning microscope Zeiss SIGMA VP were also studied. The results reveal an impact of several factors on soot particles emission.

  16. Beta delayed particle emission in light nuclei

    International Nuclear Information System (INIS)

    Riisager, K.; Gabelmann, H.

    1991-01-01

    A short discussion of theoretical treatments of beta delayed particle emission is followed by a presentation of data on the newly found beta delayed deuteron decay of 6 He. This decay cannot be described properly with existing theories. (author) 8 refs.; 3 figs

  17. Pre-equilibrium complex particle emission

    International Nuclear Information System (INIS)

    Bĕták, E.

    2002-01-01

    Semi-classical (phenomenological) pre-equilibrium emission of clusters of nucleons (complex particles) such as deuterons, tritons, helions and α particles from reactions induced by light projectiles (nucleons to α’s) is addressed. The main attention is given to the hard components in the emission energetic spectra, which play an increasing role at incident energies above 20 MeV, and are currently attributed to a presence of some kind of pre-equilibrium processes. In addition, the mechanisms of cluster reactions show special features such as the competition between pickup and knockout processes and the contributions of several successive steps in the reaction. The main frame used here to illustrate the processes and interplays of the competing mechanisms of pre-equilibrium cluster formation and emission, namely the coalescence, pick-up and knock-out, is the pre-equilibrium exciton model. It obviously contains the process of clusterization itself as its organic part. The most important case of complex particles with the largest amount of experimental data is that of alpha emission, which therefore naturally attracts most of the attention and where the widest range of possible mechanisms is available on the market. The loosely bound ejectiles, on the other side, are usually not able to demonstrate all features of the whole spectrum of contributing mechanisms, but they are nevertheless an important link between the nucleon emission and the cluster one.

  18. Search for production of heavy particles decaying to top quarks and invisible particles in pp collisions at √s = 1.96  TeV.

    Science.gov (United States)

    Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirby, M; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Lockyer, N S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Rao, K; Redondo, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rubbo, F; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shreyber, I; Simonenko, A; Sinervo, P; Sissakian, A; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stancari, M; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tu, Y; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamaoka, J; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zucchelli, S

    2011-05-13

    We present a search for a new particle T' decaying to top quark via T' → t + X, where X is an invisible particle. In a data sample with 4.8  fb(-1) of integrated luminosity collected by the CDF II detector at Fermilab in pp collisions with √s = 1.96  TeV, we search for pair production of T' in the lepton + jets channel, pp → tt + X + X → ℓνbqq'b + X + X. We interpret our results primarily in terms of a model where T' are exotic fourth generation quarks and X are dark matter particles. Current direct and indirect bounds on such exotic quarks restrict their masses to be between 300 and 600  GeV/c2, the dark matter particle mass being anywhere below m(T'). The data are consistent with standard model expectations, and we set 95% confidence level limits on the generic production of T'T' → tt + X + X. For the dark matter model we exclude T' at 95% confidence level up to m(T') = 360  GeV/c2 for m(X) ≤ 100  GeV/c2.

  19. Signatures de l'invisible

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    "Signatures of the Invisible" is an unique collaboration between contemporary artists and contemporary physicists which has the potential to help redefine the relationship between science and art. "Signatures of the Invisible" is jointly organised by the London Institute - the world's largest college of art and design and CERN*, the world's leading particle physics laboratory. 12 leading visual artists:

  20. Invisibility & Interpretation

    Directory of Open Access Journals (Sweden)

    Michael eHerzog

    2014-09-01

    Full Text Available Invisibility is often thought to occur because of the low-level limitations of the visual system. For example, it is often assumed that backward masking renders a target invisible because the visual system is simply too slow to resolve the target and the mask separately. Here, we propose an alternative explanation in which invisibility is a goal rather than a limitation and occurs naturally when making sense out of the plethora of incoming information. For example, we present evidence that (invisibility of an element can strongly depend on how it groups with other elements. Changing grouping changes visibility. In addition, we will show that features often just appear to be invisible but are in fact visible in a way the experimenter is not aware of.

  1. Invisibility Studies

    DEFF Research Database (Denmark)

    Invisibility Studies explores current changes in the relationship between what we consider visible and what invisible in different areas of contemporary culture. Contributions trace how these changes make their marks on various cultural fields and investigate the cultural significance of these de......Invisibility Studies explores current changes in the relationship between what we consider visible and what invisible in different areas of contemporary culture. Contributions trace how these changes make their marks on various cultural fields and investigate the cultural significance...... conditioned by physical and social settings that create certain possibilities for visibility and visuality, yet exclude others. The richness and complexity of this cultural framework means that no single discipline or interdisciplinary approach could capture it single-handedly. Invisibility Studies begins...

  2. Particle induced X-ray emission

    International Nuclear Information System (INIS)

    Cohen, D.D.

    1991-08-01

    The accelerator based ion beam technique of Particle Induced X-ray Emission (PIXE) is discussed in some detail. This report pulls together all major reviews and references over the last ten years and reports on PIXE in vacuum and using external beams. The advantages, limitations, costs and types of studies that may be undertaken using an accelerator based ion beam technique such as PIXE, are also discussed. 25 refs., 7 tabs., 40 figs

  3. Particle number emissions of gasoline hybrid electric vehicles; Partikelanzahl-Emission bei Hybridfahrzeugen mit Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Scott [Horiba Instruments Inc., Ann Arbor, MI (United States)

    2012-04-15

    Hybrid Electric Vehicles (HEV) are commonly reputed to be environmentally friendly. Different studies show that this assumption raises some questions in terms of particle number emissions. Against the background that upcoming emission standards will not only limit particle matter emissions but also particle number emissions for gasoline engines, the exhaust behaviour of downsized gasoline engines used in HEV should be investigated more extensively. A Horiba study compares the particle number emissions of a gasoline vehicle to those of a gasoline powered HEV. (orig.)

  4. Timescale of particle emission using nuclear interferometry

    International Nuclear Information System (INIS)

    Ardouin, D.; Goujdami, D.; Guilbault, F.; Lebrun, C.; Erazmus, B.; Dabrowski, H.; Durand, D.; Lautridou, P.; Boisgard, R.; Quebert, J.; Carjan, N.

    1989-01-01

    A review of meson and baryon correlations at various energies is presented. An attempt, to focus on possible lifetime effects contained in existing data,is made. Data at 94 and 44 MeV/u, where experimental conditions are chosen, trying to study the lifetime of light particle emission using two particle correlations, are discussed. The temperature of a thermalized system is obtained, using the relative population of cluster excited states. It is shown that either quantum statistical fluctuations or Coulomb interactions play an important role in the trends of the correlation-functions at very low relative momenta. In the case of 1 60 and Ar induced reactions on heavy targets, a lifetime of the order of 10 -21 seconds is estimated. Temperature measurements for Ar + Ag system show that part of the excitation energy is not converted into thermal energy

  5. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  6. Solar energetic particles and radio burst emission

    Czech Academy of Sciences Publication Activity Database

    Miteva, R.; Samwel, S. W.; Krupař, Vratislav

    2017-01-01

    Roč. 7 (2017), č. článku A37. ISSN 2115-7251 R&D Projects: GA ČR(CZ) GJ17-06818Y Institutional support: RVO:68378289 Keywords : solar energetic particles * solar radio burst emission * solar cycle Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.446, year: 2016 https://www.swsc-journal.org/ articles /swsc/abs/2017/01/swsc170028/swsc170028.html

  7. Transient particle emission measurement with optical techniques

    Science.gov (United States)

    Bermúdez, Vicente; Luján, José M.; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Particulate matter is responsible for some respiratory and cardiovascular diseases. In addition, it is one of the most important pollutants of high-speed direct injection (HSDI) passenger car engines. Current legislation requires particulate dilution tunnels for particulate matter measuring. However for development work, dilution tunnels are expensive and sometimes not useful since they are not able to quantify real-time particulate emissions during transient operation. In this study, the use of a continuous measurement opacimeter and a fast response HFID is proven to be a good alternative to obtain instantaneous particle mass emissions during transient operation (due to particulate matter consisting mainly of soot and SOF). Some methods and correlations available from literature, but developed for steady conditions, are evaluated during transient operation by comparing with mini-tunnel measurements during the entire MVEG-A transient cycle. A new correlation was also derived from this evaluation. Results for soot and SOF (obtained from the new correlation proposed) are compared with soot and SOF captured with particulate filters, which have been separated by means of an SOF extraction method. Finally, as an example of ECU design strategies using these sort of correlations, the EGR valve opening is optimized during transient operation. The optimization is performed while simultaneously taking into account instantaneous fuel consumption, particulate emissions (calculated with the proposed correlation) and other regulated engine pollutants.

  8. The fine particle emissions of energy production in Finland

    International Nuclear Information System (INIS)

    Ohlstroem, M.

    1998-01-01

    The main purpose of this master's thesis was to define the fine particle (PM2.5, diameter under 2,5 μm) emissions of the energy production and to compare the calculated emission factors between different energy production concepts. The purpose was also to define what is known about fine particle emissions and what should still be studied/measured. The purpose was also to compare briefly the fine particle emissions of energy production and vehicle traffic, and their correlations to the fine particle concentrations of urban air. In the theory part of this work a literature survey was made about fine particles in energy production, especially how they form and how they are separated from the flue gas. In addition, the health effects caused by fine particles, and different measuring instruments were presented briefly. In the experimental part of this work, the aim was to find out the fine particle emissions of different energy production processes by calculating specific emission factors (mg/MJ fuel ) from powerplants' annual total particulate matter emissions (t/a), which were obtained from VAHTI-database system maintained by the Finnish Environmental Institute, and by evaluating the share of fine particles from total emissions with the help of existing measurement results. Only those energy production processes which produce significantly direct emissions of solid particles have been treated (pulverised combustion and oil burners from burner combustion, fluidized bed combustion processes, grate boilers, recovery boilers and diesel engines). The processes have been classified according to boiler type, size category, main fuel and also according to dust separation devices. To be able to compare different energy production processes, shared specific emission factor have been calculated for the similar subprocesses. The fine particle emissions depend strongest on the boiler size category and dust separation devices used. Spent fuel or combustion technique does not have

  9. Positron emission particle tracking in pulsatile flow

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nitant; Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering, Knoxville, TN (United States); Wiggins, Cody [University of Tennessee-Knoxville, Department of Physics and Astronomy, Knoxville, TN (United States)

    2017-05-15

    Positron emission particle tracking (PEPT) is increasingly used to understand the flow characteristics in complex systems. This research utilizes PEPT to measure pulsatile flow of frequency 2.1 Hz in an elastic Masterkleer PVC tube of 19 mm inner diameter and 3.2 mm wall thickness. Anion exchange resin beads are labeled with {sup 18}F and delivered to a pump driven flow loop with motorized ball valve used to develop the pulsatile flow. Data are collected in the tube with circular cross section, and measurements are also collected with a section of the tube pinched. Nominal flow velocities are near 1 m/s and Reynolds numbers near 20,000. Many thousand PEPT particle traces are collected and synchronized with the flow pulsation. These Lagrangian data are presented as a series of 20 still frames depicting the 3-D velocity field present during each phase of the flow pulsation. Pressure data are also collected to resolve the pressure wave front moving through the open elastic tube at velocity 15.2 m/s. (orig.)

  10. Mechanically Invisible Polymer Coatings

    DEFF Research Database (Denmark)

    2014-01-01

    phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically......The present invention relates to a composition comprising encapsulated particles in a polymeric material. The composition comprises a continuous phase and a discontinuous phase incorporated therein, wherein the continuous phase comprises a first polymeric material and wherein the discontinuous...... invisible polymer coatings....

  11. Stimulated-emission effects in particle creation near black holes

    International Nuclear Information System (INIS)

    Wald, R.M.

    1976-01-01

    It has recently been shown that if a black hole is formed by gravitational collapse, spontaneous particle creation will occur and a thermal spectrum of all species of particles will be emitted to infinity if the quantum matter was initially in the vacuum state. In this paper we investigate the stimulated-emission effects which occur if particles are present initially. We show in general that for a Hermitian scalar field in an external potential or in curved, asymptotically flat spacetime, stimulated-emission effects can occur precisely in those modes for which there is spontaneous particle creation from the vacuum. For the case of a Schwarzschild black hole, this result appears paradoxical, since spontaneous emission occurs at late times but there is no classical analog of stimulated emission at late times. The resolution of this paradox is that in order to induce emission of particles which emerge at late times one must send in particles at early times, so that they reach the black hole very near the instant of its formation. However, enormous energy is required of these incoming particles in order to stimulate emission of particles which emerge at late times. Thus, for a Schwarzschild black hole, even if particles are initially present (with limited energy) they will induce emission only at early times; at late times one will see only the spontaneously emitted blackbody thermal radiation. For the case of a Kerr black hole stimulated emission can be induced by particles sent in at late times with the appropriate frequencies and angular dependence. If the number of incoming particles is large, this quantum stimulated emission just gives the classical superradiant scattering

  12. Positron emission zone plate holography for particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2006-01-15

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported.

  13. Positron emission zone plate holography for particle tracking

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2006-01-01

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported

  14. Geometry and dynamics of particle emission from strongly deformed nuclei

    International Nuclear Information System (INIS)

    Aleshin, V.P.

    1995-01-01

    By using our semiclassical approach to particle evaporation from deformed nuclei, we analyze the heuristic models of particle emission from deformed nuclei which are used in the codes GANES, ALICE, and EVAP. The calculations revealed that the heuristic models are reasonable for particle energy spectra but fail, at large deformations, to describe the angular distributions

  15. Particle emission in the hydrodynamical description of relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Grassi, F.; Hama, Y.; Kodama, T.

    1994-09-01

    Continuous particle emission during the whole expansion of thermalized matter is studied and a new formula for the observed transverse mass spectrum is derived. In some limit, the usual emission at freeze out scenario (Cooper-Frye formula) may be recovered. In a simplified description of expansion, it is shown that continuous particle emission can lead to a sizable curvature in the pion transverse mass spectrum and parallel slopes for the various particles. These results are compared to experimental data. (author). 26 refs, 3 figs

  16. Multiple photon emission in heavy particle decays

    International Nuclear Information System (INIS)

    Asakimori, K.; Burnett, T.H.; Cherry, M.L.

    1994-03-01

    Cosmic ray interactions, at energies above 1 TeV/nucleon, in emulsion chambers flown on high altitude balloons have yielded two events showing apparent decays of a heavy particle into one charged particle and four photons. The photons converted into electron pairs very close to the decay vertex. Attempts to explain this decay topology with known particle decays are presented. Unless both events represent a b → u transition, which is statistically unlikely, then other known decay modes for charmed or bottom particles do not account satisfactorily for these observations. This could indicate, possibly, a new decay channel. (author). 7 refs, 6 figs, 2 tabs

  17. SUBMICRON PARTICLES EMISSION CONTROL BY ELECTROSTATIC AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Andrzej Krupa

    2017-04-01

    Full Text Available The aim of the study was to develop a device for more effective treatment of flue gases from submicron particles emitted by power plants burning bituminous coal and by this way the reduction of environment pollution. Electrostatic processes were employed to this goal, as the most effective solution. The solutions hitherto applied in electrostatic precipitation techniques were designed for large particles, typically with sizes> 5 µm, which are easily removed by the action of electrostatic force on the electrically charged particles. In submicron size range (0.1-1 µm the collection efficiency of an ESP is minimal, because of the low value of electric charge on such particles. In order to avoid problems with the removal of submicron particles of fly ash from the flue gases electrostatic agglomeration has been used. In this process, by applying an alternating electric field, larger charged particles (> 1 µm oscillate, and the particles "collect" smaller uncharged particles. In the developed agglomerator with alternating electric field, the charging of particles and the coagulation takes place in one stage that greatly simplified the construction of the device, compared to other solutions. The scope of this study included measurements of fractional collection efficiency of particles in the system comprising of agglomerator and ESP for PM1 and PM2.5 ranges, in device made in pilot scale. The collection efficiency for PM2.5 was greater than 90% and PM1 slightly dropped below 90%. The mass collection efficiency for PM2.5 was greater than 95%. The agglomerator stage increases the collection efficiency for PM1 at a level of 5-10%.

  18. Invisible Engineers

    Science.gov (United States)

    Ohashi, Hideo

    Questionnaire to ask “mention three names of scientists you know” and “three names of engineers you know” was conducted and the answers from 140 adults were analyzed. The results indicated that the image of scientists is represented by Nobel laureates and that of engineers by great inventors like Thomas Edison and industry founders like Soichiro Honda. In order to reveal the image of engineers among young generation, questionnaire was conducted for pupils in middle and high schools. Answers from 1,230 pupils were analyzed and 226 names mentioned as engineers were classified. White votes reached 60%. Engineers who are neither big inventors nor company founders collected less than 1% of named votes. Engineers are astonishingly invisible from young generation. Countermeasures are proposed.

  19. Ethanol emission from loose corn silage and exposed silage particles

    Science.gov (United States)

    Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan; Mitloehner, Frank

    2010-11-01

    Silage on dairy farms has been identified as a major source of volatile organic compound (VOC) emissions. However, rates of VOC emission from silage are not accurately known. In this work, we measured ethanol (a dominant silage VOC) emission from loose corn silage and exposed corn silage particles using wind tunnel systems. Flux of ethanol was highest immediately after exposing loose silage samples to moving air (as high as 220 g m -2 h -1) and declined by as much as 76-fold over 12 h as ethanol was depleted from samples. Emission rate and cumulative 12 h emission increased with temperature, silage permeability, exposed surface area, and air velocity over silage samples. These responses suggest that VOC emission from silage on farms is sensitive to climate and management practices. Ethanol emission rates from loose silage were generally higher than previous estimates of total VOC emission rates from silage and mixed feed. For 15 cm deep loose samples, mean cumulative emission was as high as 170 g m -2 (80% of initial ethanol mass) after 12 h of exposure to an air velocity of 5 m s -1. Emission rates measured with an emission isolation flux chamber were lower than rates measured in a wind tunnel and in an open setting. Results show that the US EPA emission isolation flux chamber method is not appropriate for estimating VOC emission rates from silage in the field.

  20. Developing Particle Emission Inventories Using Remote Sensing (PEIRS)

    Science.gov (United States)

    Tang, Chia-Hsi; Coull, Brent A.; Schwartz, Joel; Lyapustin, Alexei I.; Di, Qian; Koutrakis, Petros

    2016-01-01

    Information regarding the magnitude and distribution of PM(sub 2.5) emissions is crucial in establishing effective PM regulations and assessing the associated risk to human health and the ecosystem. At present, emission data is obtained from measured or estimated emission factors of various source types. Collecting such information for every known source is costly and time consuming. For this reason, emission inventories are reported periodically and unknown or smaller sources are often omitted or aggregated at large spatial scale. To address these limitations, we have developed and evaluated a novel method that uses remote sensing data to construct spatially-resolved emission inventories for PM(sub 2.5). This approach enables us to account for all sources within a fixed area, which renders source classification unnecessary. We applied this method to predict emissions in the northeast United States during the period of 2002-2013 using high- resolution 1 km x 1 km Aerosol Optical Depth (AOD). Emission estimates moderately agreed with the EPA National Emission Inventory (R(sup2) = 0.66 approx. 0.71, CV = 17.7 approx. 20%). Predicted emissions are found to correlate with land use parameters suggesting that our method can capture emissions from land use-related sources. In addition, we distinguished small-scale intra-urban variation in emissions reflecting distribution of metropolitan sources. In essence, this study demonstrates the great potential of remote sensing data to predict particle source emissions cost-effectively.

  1. The Particle Number Emission Characteristics of the Diesel Engine with a Catalytic Diesel Particle Filter

    Directory of Open Access Journals (Sweden)

    Li Jia Qiang

    2016-01-01

    Full Text Available Due to their adverse health effects and their abundance in urban areas, diesel exhaust ultrafine particles caused by the aftertreatment devices have been of great concern in the past years. An experiment of particles number emissions was carried out on a high-pressure, common rail diesel engine with catalytic diesel particle filter (CDPF to investigate the impact of CDPF on the number emission characteristics of particles. The results indicated that the conversion rates of CDPF is over 97%. The size distributions of particles are bimodal lognormal distributions downstream CDPF at 1400 r/min and 2300 r/min. CDPF has a lower conversion rates on the nucleation mode particles. The geometric number mean diameters of particles downstream CDPF is smaller than that upstream CDPF.

  2. Positron Emission Tomography Particle tracking using cluster analysis

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2004-01-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method

  3. Positron Emission Tomography Particle tracking using cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham, B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2004-12-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method.

  4. Various light particles emissions accompaning light heavy ion collisions

    International Nuclear Information System (INIS)

    Billerey, R.

    1981-01-01

    In this work we have investigated light particles emission accompanying heavy-ion induced reactions. The experiments were performed at the isochronous cyclotron of the I.S.N. de Grenoble and we got in and out of plane correlations between solid state and gazeous detectors. In 14 N (100 MeV) + 27 Al we have chosen, light particles emitted in coincidence with deep inelastic fragments or evaporation residues have been measured. Likewise we observed the correlations between fragments and fragments. The particularities we found between protons and alpha emissions are to be assigned to differences in separation energies, but their relative energies and angular momenta have also a significant part [fr

  5. Modeling of Particle Emission During Dry Orthogonal Cutting

    Science.gov (United States)

    Khettabi, Riad; Songmene, Victor; Zaghbani, Imed; Masounave, Jacques

    2010-08-01

    Because of the risks associated with exposure to metallic particles, efforts are being put into controlling and reducing them during the metal working process. Recent studies by the authors involved in this project have presented the effects of cutting speeds, workpiece material, and tool geometry on particle emission during dry machining; the authors have also proposed a new parameter, named the dust unit ( D u), for use in evaluating the quantity of particle emissions relative to the quantity of chips produced during a machining operation. In this study, a model for predicting the particle emission (dust unit) during orthogonal turning is proposed. This model, which is based on the energy approach combined with the microfriction and the plastic deformation of the material, takes into account the tool geometry, the properties of the worked material, the cutting conditions, and the chip segmentation. The model is validated using experimental results obtained during the orthogonal turning of 6061-T6 aluminum alloy, AISI 1018, AISI 4140 steels, and grey cast iron. A good agreement was found with experimental results. This model can help in designing strategies for reducing particle emission during machining processes, at the source.

  6. Acoustic emission during the compaction of brittle UO2 particles

    International Nuclear Information System (INIS)

    Hegron, Lise

    2014-01-01

    One of the options considered for recycling minor actinides is to incorporate about 10% to UO 2 matrix. The presence of open pores interconnected within this fuel should allow the evacuation of helium and fission gases to prevent swelling of the pellet and ultimately its interaction with the fuel clad surrounding it. Implementation of minor actinides requires working in shielded cell, reducing their retention and outlawing additions of organic products. The use of fragmentable particles of several hundred micrometers seems a good solution to control the microstructure of the green compacts and thus control the open porosity after sintering. The goal of this study is to monitor the compaction of brittle UO 2 particles by acoustic emission and to link the particle characteristics to the open porosity obtained after the compact sintering. The signals acquired during tensile strength tests on individual granules and compacts show that the acoustic emission allows the detection of the mechanism of fragmentation and enables identification of a characteristic waveform of this fragmentation. The influences of compaction stress, of the initial particle size distribution and of the internal cohesion of the granules, on the mechanical strength of the compact and on the microstructure and open porosity of the sintered pellets, are analyzed. By its ability to identify the range of fragmentation of the granules during compaction, acoustic emission appears as a promising technique for monitoring the compaction of brittle particles in the manufacture of a controlled porosity fuel. (author) [fr

  7. Investigation of granular impact using positron emission particle tracking

    KAUST Repository

    Marston, Jeremy O.

    2015-04-01

    We present results from an experimental study of granular impact using a combination of high-speed video and positron emission particle tracking (PEPT). The PEPT technique exploits the annihilation of photons from positron decay to determine the position of tracer particles either inside a small granular bed or attached to the object which impacts the bed. We use dense spheres as impactors and the granular beds are comprised of glass beads which are fluidised to achieve a range of different initial packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed by the impacting sphere.

  8. Dirac Particles Emission from An Elliptical Black Hole

    Directory of Open Access Journals (Sweden)

    Yuant Tiandho

    2017-03-01

    Full Text Available According to the general theory of relativiy, a black hole is defined as a region of spacetime with super-strong gravitational effects and there is nothing can escape from it. So in the classical theory of relativity, it is safe to say that black hole is a "dead" thermodynamical object. However, by using quantum mechanics theory, Hawking has shown that a black hole may emit particles. In this paper, calculation of temperature of an elliptical black hole when emitting the Dirac particles was presented. By using the complexpath method, radiation can be described as emission process in the tunneling pictures. According to relationship between probability of outgoing particle with the spectrum of black body radiation for fermion particles, temperature of the elliptical black hole can be obtained and it depend on the azimuthal angle. This result also showed that condition on the surface of elliptical black hole is not in thermal equilibrium.

  9. Particle Morphology From Wood-Burning Cook Stoves Emissions

    Science.gov (United States)

    Peralta, O.; Carabali, G.; Castro, T.; Torres, R.; Ruiz, L. G.; Molina, L. T.; Saavedra, I.

    2013-12-01

    Emissions from three wood-burning cook stoves were sampled to collect particles. Transmission electron microscope (TEM) copper grids were placed on the last two stages of an 8-stage MOUDI cascade impactor (d50= 0.32, and 0.18 μm). Samples were obtained on two heating stages of cooking, the first is a quick heating process to boil 1 liter of water, and the second is to keep the water at 90 C. Absorption coefficient, scattering coefficients, and particles concentration (0.01 - 2.5 μm aerodynamic diameter) were measured simultaneously using an absorption photometer (operated at 550 nm), a portable integrating nephelometer (at 530 nm), and a condensation particle counter connected to a chamber to dilute the wood stoves emissions. Transmission electron micrographic images of soot particles were acquired at different magnifications using a High Resolution Transmission Electron Microscope (HRTEM) JEOL HRTEM 4000EX operating at 200 kV, equipped with a GATAN digital micrograph system for image acquisition. The morphology of soot particles was analyzed calculating the border-based fractal dimension (Df). Particles sampled on the first heating stage exhibit complex shapes with high values of Df, which are present as aggregates formed by carbon ceno-spheres. The presence of high numbers of carbon ceno-spheres can be attributed to pyrolysis, thermal degradation, and others processes prior to combustion. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of particles. EDS analysis in particles with d50= 0.18 μm showed a higher content of carbonaceous material and relevant amounts of Si, S and K.

  10. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  11. Size-resolved particle emission factors for individual ships

    Science.gov (United States)

    Jonsson, Åsa M.; Westerlund, Jonathan; Hallquist, Mattias

    2011-07-01

    In these experiments size-resolved emission factors for particle number (EFPN) and mass (EFPM) have been determined for 734 individual ship passages for real-world dilution. The method used is an extractive sampling method of the passing ship plumes where particle number/mass and CO2 were measured with high time resolution (1 Hz). The measurements were conducted on a small island located in the entrance to the port of Gothenburg (N57.6849, E11.838), the largest harbor in Scandinavia. This is an emission control area (ECA) and in close vicinity to populated areas. The average EFPN and EFPM were 2.55 ± 0.11 × 1016 (kg fuel)-1 and 2050 ± 110 mg (kg fuel)-1, respectively. The determined EF for ships with multiple passages showed a great reproducibility. Size-resolved EFPN were peaking at small particle sizes ˜35 nm. Smaller particle sizes and hence less mass were observed by a gas turbine equipped ship compared to diesel engine equipped ships. On average 36 to 46% of the emitted particles by number were non-volatile and 24% by mass (EFPN 1.16 ± 0.19 × 1016 [kg fuel]-1 and EFPM 488 ± 73 mg [kg fuel]-1, respectively). This study shows a great potential to gain large data-sets regarding ship emission determining parameters that can improve current dispersion modeling for health assessments on local and regional scales. The global contributions of total and non-volatile particle mass from shipping using this extensive data-set from an ECA were estimated to be at least 0.80 Tgy-1 and 0.19 Tgy-1.

  12. The pick-up mechanism in composite particle emission processes

    International Nuclear Information System (INIS)

    Zhang Jingshang; Yan Shiwei; Wang Cuilan

    1992-01-01

    The pick-up mechanism has been included in the exciton model for the light composite particle emissions. Based on the cluster phase space integration method the formation probabilities of α,d,t, 3 He are obtained. The calculation results of (n,t) cross sections indicate that this theoretical method can reproduce the experimental data nicely. For triton emissions in pre-equilibrium reaction processes, the semi-direct reactions are the dominant terms which are just omitted in the previous model calculation

  13. Description of light charged particle emission in ternary fission

    International Nuclear Information System (INIS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kuklin, S. N.; Scheid, W.

    2010-01-01

    We consider the motion of three fragments starting from the scission point of ternary system. In the alpha-accompanied ternary fission the initial conditions are not the free parameters and determined by minimization of potential energy at scission point. In the trajectory calculations the angular distribution and mean value of the kinetic energy of the alpha-particles are well described in the spontaneous ternary fission of 252 Cf. In the Be- and C-accompanied ternary fission we found that the emission of the third particle occurs from one of the heavy fragments after their separation. (authors)

  14. Particle and gaseous emissions from individual diesel and CNG buses

    Directory of Open Access Journals (Sweden)

    Å. M. Hallquist

    2013-05-01

    Full Text Available In this study size-resolved particle and gaseous emissions from 28 individual diesel-fuelled and 7 compressed natural gas (CNG-fuelled buses, selected from an in-use bus fleet, were characterised for real-world dilution scenarios. The method used was based on using CO2 as a tracer of exhaust gas dilution. The particles were sampled by using an extractive sampling method and analysed with high time resolution instrumentation EEPS (10 Hz and CO2 with a non-dispersive infrared gas analyser (LI-840, LI-COR Inc. 1 Hz. The gaseous constituents (CO, HC and NO were measured by using a remote sensing device (AccuScan RSD 3000, Environmental System Products Inc.. Nitrogen oxides, NOx, were estimated from NO by using default NO2/NOx ratios from the road vehicle emission model HBEFA3.1. The buses studied were diesel-fuelled Euro III–V and CNG-fuelled Enhanced Environmentally Friendly Vehicles (EEVs with different after-treatment, including selective catalytic reduction (SCR, exhaust gas recirculation (EGR and with and without diesel particulate filter (DPF. The primary driving mode applied in this study was accelerating mode. However, regarding the particle emissions also a constant speed mode was analysed. The investigated CNG buses emitted on average a higher number of particles but less mass compared to the diesel-fuelled buses. Emission factors for number of particles (EFPN were EFPN, DPF = 4.4 ± 3.5 × 1014, EFPN, no DPF = 2.1 ± 1.0 × 1015 and EFPN, CNG = 7.8 ± 5.7 ×1015 kg fuel−1. In the accelerating mode, size-resolved emission factors (EFs showed unimodal number size distributions with peak diameters of 70–90 nm and 10 nm for diesel and CNG buses, respectively. For the constant speed mode, bimodal average number size distributions were obtained for the diesel buses with peak modes of ~10 nm and ~60 nm. Emission factors for NOx expressed as NO2 equivalents for the diesel buses were on average 27 ± 7 g (kg fuel−1 and for the CNG buses 41

  15. Emission of complex particles from highly excited nuclei

    International Nuclear Information System (INIS)

    Gadioli, E.

    1984-01-01

    A great deal of work has been made to investigated experimentally and predict theoretically the continuous spectra of composite particles produced in reactions induced by nucleons with energy ranging from a few to several ten MeV. Some recent results in the field are summarized. In particular the exciton coalescence-pickup model and the exciton knock-on model, in the case of alpha emission, are reviewed and discussed

  16. [Size distribution of particle and polycyclic aromatic hydrocarbons in particle emissions from simulated emission sources].

    Science.gov (United States)

    Fu, Hai-Huan; Tian, Na; Shang, Hui-Bin; Zhang, Bin; Ye, Su-Fen; Chen, Xiao-Qiu; Wu, Shui-Ping

    2014-01-01

    Particles from cooking lampblack, biomass and plastics burning smoke, gasoline vehicular exhausts and gasoline generator exhausts were prepared in a resuspension test chamber and collected using a cascade MOUDI impactor. A total of 18 polycyclic aromatic hydrocarbons (PAHs) associated with particles were analyzed by GC-MS. The results showed that there were two peaks in the range of 0.44-1.0 microm and 2.5-10 microm for cooking lampblack, and only one peak in the range of 0.44-1.0 microm for straw and wood burning smoke. But there were no clear peak for plastics burning smoke. The peak for gasoline vehicular exhausts was found in the range of 2.5-10 microm due to the influence of water vapor associated with particles, while the particles from gasoline generator exhausts were mainly in the range of lampblack and gasoline vehicular exhausts. The peak in the range of 0.44-1.0 microm became more and more apparent with the increase of PAHs molecular weight. The fraction of PAH on particles less than 1.0 microm to that on the total particles increased along with PAH's molecular weight. Phenanthrene was the dominant compound for cooking lampblack and combustion smoke, while gasoline vehicular exhausts and generator exhausts were characterized with significantly high levels of naphthalene and benzo[g, h, i] perylene, respectively. The distribution of source characteristic ratios indicated that PAHs from cooking lampblack and biomass burning were close and they were different from those of vehicular exhausts and generator exhausts.

  17. Photon emission produced by particle-surface collisions

    International Nuclear Information System (INIS)

    White, C.W.; Tolk, N.H.

    1976-02-01

    Visible, ultraviolet, and infrared optical emission results from low-energy (20 eV-10 keV) particle-surface collisions. Several distinct kinds of collision induced optical radiation are discussed which provide fundamental information on particle-solid collision processes. Line radiation arises from excited states of sputtered surface constituents and backscattered beam particles. This radiation uniquely identifies the quantum state of sputtered or reflected particles, provides a method for identifying neutral atoms sputtered from the surface, and serves as the basis for a sensitive surface analysis technique. Broadband radiation from the bulk of the solid is attributed to the transfer of projectile energy to the electrons in the solid. Continuum emission observed well in front of transition metal targets is believed to arise from excited atom clusters (diatomic, triatomic, etc.) ejected from the solid in the sputtering process. Application of sputtered atom optical radiation for surface and depth profile analysis is demonstrated for the case of submonolayer quantities of chromium on silicon and aluminum implanted in SiO 2

  18. A model for particle emission from a fissioning system

    International Nuclear Information System (INIS)

    Milek, B.; Reif, R.; Revai, J.

    1987-04-01

    The differential emission probability for a neutron emitted in a binary fission process due to non-adiabatic effects in the coupling of the single particle degrees of freedom to the accelerated relative motion of the fragments is investigated wihtin a model, which represents each nucleus by a non-deformed one-term separable potential. The derivation of measurable quantities from the asymptotic solution of the time-dependent Schroedinger equation for the single particle wave function is examined. Numerical calculations were performed for parameter values, which correspond to 252 Cf(sf). The calculated energy spectra and angular distributions of the emitted particles are presented in dependence on the mass asymmetry. (author)

  19. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  20. Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective

    Directory of Open Access Journals (Sweden)

    Peter H. McMurry

    2011-06-01

    Full Text Available Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2− (m/z—46 in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate in the single particle spectra. These changes have potential

  1. In/visible Punctuation

    Science.gov (United States)

    Lennard, John

    2011-01-01

    This article offers two approaches to the question of "invisible punctuation," theoretical and critical. The first is a taxonomy of modes of punctuational invisibility, identifying "denial, repression, habituation, error" and "absence." Each is briefly discussed and some relations with technologies of reading are considered. The second considers…

  2. [Analysis on oil fume particles in catering industry cooking emission].

    Science.gov (United States)

    Tan, De-Sheng; Kuang, Yuan-Cheng; Liu, Xin; Dai, Fei-Hong

    2012-06-01

    By measuring the particulate matter of oil fume which is over 10 microm or below 10 microm separately and using microradiography and Electrical Low Pressure Impactor (ELPI), it is found out the distributing characteristic of oil fume particles in catering industry cooking emission. The result shows that the diameter of the oil fume particles which was sedimentated in the kitchen is between 10-400 microm, the concentration peak value is between 10-100 microm. The diameter of oil fume aerosol is mostly smaller than 1 microm, while the concentration peak value is between 0.063-0.109 microm. In addition, the mass concentration peak value is between 6.560-9.990 microm. Through the analysis to the physical characteristics of oil fume from catering industry cooking emissions, the eigenvalue of the oil fume has been found and the feature matter for monitoring the oil fume has been discovered to provide a reasonable standard for controlling and monitoring the catering industry cooking emission.

  3. Invisibility and interpretation.

    Science.gov (United States)

    Herzog, Michael H; Hermens, Frouke; Oğmen, Haluk

    2014-01-01

    Invisibility is often thought to occur because of the low-level limitations of the visual system. For example, it is often assumed that backward masking renders a target invisible because the visual system is simply too slow to resolve the target and the mask separately. Here, we propose an alternative explanation in which invisibility is a goal rather than a limitation and occurs naturally when making sense out of the plethora of incoming information. For example, we present evidence that (in)visibility of an element can strongly depend on how it groups with other elements. Changing grouping changes visibility. In addition, we will show that features often just appear to be invisible but are in fact visible in a way the experimenter is not aware of.

  4. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish for an integ......Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  5. [Emission characteristics of fine particles from grate firing boilers].

    Science.gov (United States)

    Wang, Shu-Xiao; Zhao, Xiu-Juan; Li, Xing-Hua; Wei, Wei; Hao, Ji-Ming

    2009-04-15

    Grate firing boilers are the main type of Chinese industrial boilers, which accounts for 85% of the industrial boilers and is one of the most important emission sources of primary air pollutants in China. In this study, five boilers in three cities were selected and tested to measure the emission characteristics of PM2.5, and gaseous pollutants were applied by a compact dilution sampling system, which was developed for this field study. Results showed that particles mass size distributions for the five industrial boilers presented single peak or double peak, former peaks near 0.14 microm and the later peaks after 1.0 microm; the cyclone dust remover and wet scrubber dust remover had effective removal efficiencies not only to PM2.5, but also to PM1.0; and under the condition of same control techniques, grate firing boiler with high capacity has less PM2.5 emission than the boiler with low capacity. In the PM2.5 collected from flue gases, SO4(2-) was the most abundant ion, accounted for 20%-40% of the PM2.5; and C was the most abundant element (7.5%-31.8%), followed by S (8.4%-18.7%). Carbon balance method was applied to calculate the emission factors of these pollutants. The emission factors of PM2.5, NO, and SO2 were in the range of 0.046-0.486 g x kg(-1), 1.63-2.47 g x kg(-1), 1.35-9.95 g x kg(-1) respectively. The results are useful for the emission inventory development of industrial boilers and the source analysis of PM2.5 in atmospheric environment.

  6. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  7. Invisible Higgs and Dark Matter

    DEFF Research Database (Denmark)

    Heikinheimo, Matti; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2012-01-01

    We investigate the possibility that a massive weakly interacting fermion simultaneously provides for a dominant component of the dark matter relic density and an invisible decay width of the Higgs boson at the LHC. As a concrete model realizing such dynamics we consider the minimal walking...... technicolor, although our results apply more generally. Taking into account the constraints from the electroweak precision measurements and current direct searches for dark matter particles, we find that such scenario is heavily constrained, and large portions of the parameter space are excluded....

  8. The ir emission features: Emission from PAH (Polycyclic Aromatic Hydrocarbons) molecules and amorphous carbon particles

    Energy Technology Data Exchange (ETDEWEB)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs.

  9. The ir emission features: Emission from PAH [Polycyclic Aromatic Hydrocarbons] molecules and amorphous carbon particles

    International Nuclear Information System (INIS)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs

  10. Performing Belonging, celebrating invisibility?

    DEFF Research Database (Denmark)

    Juul, Kristine

    2014-01-01

    Serbian migrants living transnational lives consciously or unconsciously move between visibility and invisibility in their performance of migrant success stories. A case in point are public festivals, performed to make visible migrants’ successful inclusion in Danish society, i.e. celebrating...... invisibility. Meanwhile, other celebrations are consciously relegated to the invisible confines of the Serbian homeland. This article analyses celebrations in Denmark and in Serbia and shows how visible displays of ethnicity and difference tend to turn into easily palatable heritage versions of Serbian culture...... when performed in a Danish context. In turn, the visibility acquired through celebrations of migrants’ belonging in their homeland is inclined to render invisible those who did not take part in the migration experience....

  11. Invisible and scrutinized bodies

    Directory of Open Access Journals (Sweden)

    Léopold Lambert

    2015-03-01

    Full Text Available The following text will attempt to demonstrate that both processes that aim at making bodies either invisible or, on the contrary, hyper-visible operates through the same mechanisms of a productive politics of visibility.

  12. Thermal imitators with single directional invisibility

    Science.gov (United States)

    Wang, Ruizhe; Xu, Liujun; Huang, Jiping

    2017-12-01

    Thermal metamaterials have been intensively studied during the past years to achieve the long-standing dream of invisibility, illusion, and other inconceivable thermal phenomena. However, many thermal metamaterials can only exhibit omnidirectional thermal response, which take on the distinct feature of geometrical isotropy. In this work, we theoretically design and experimentally fabricate a pair of thermal imitators by applying geometrical anisotropy provided by elliptical/ellipsoidal particles and layered structures. This pair of thermal imitators possesses thermal invisibility in one direction, while having thermal opacity in other directions. This work may open a gate in designing direction-dependent thermal metamaterials.

  13. On the unification of aircraft ultrafine particle emission data

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Busen, R. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Turco, R.P.; Yu Fangqun [California Univ., Los Angeles, CA (United States). Dept. of Atmospheric Sciences; Danilin, M.Y.; Weisenstein, D.K. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States); Miake-Lye, R.C. [Aerodyne Research, Inc., Billerica, MA (United States)

    2000-03-01

    To predict the environmental impacts of future commercial aviation, intensive studies have been launched to measure the properties and effects of aircraft emissions. These observations have revealed an extremely wide variance with respect to the number and sizes of the particles produced in the exhaust plumes. Aircraft aerosol ultimately contributes to the population of cloud-forming nuclei, and may lead to significant global radiative and chemical perturbations. In this paper, recent discoveries are coordinated and unified in the form of a physically consistent plume aerosol model that explains most of the observational variance. Using this new approach, it is now practical to carry out reliable global atmospheric simulations of aircraft effects, as demonstrated by a novel assessment of the perturbation of the stratospheric aerosol layer by a supersonic aircraft fleet. (orig.)

  14. Particle filtering based structural assessment with acoustic emission sensing

    Science.gov (United States)

    Yan, Wuzhao; Abdelrahman, Marwa; Zhang, Bin; Ziehl, Paul

    2017-02-01

    Nuclear structures are designed to withstand severe loading events under various stresses. Over time, aging of structural systems constructed with concrete and steel will occur. This deterioration may reduce service life of nuclear facilities and/or lead to unnecessary or untimely repairs. Therefore, online monitoring of structures in nuclear power plants and waste storage has drawn significant attention in recent years. Of many existing non-destructive evaluation and structural monitoring approaches, acoustic emission is promising for assessment of structural damage because it is non-intrusive and is sensitive to corrosion and crack growth in reinforced concrete elements. To provide a rapid, actionable, and graphical means for interpretation Intensity Analysis plots have been developed. This approach provides a means for classification of damage. Since the acoustic emission measurement is only an indirect indicator of structural damage, potentially corrupted by non-genuine data, it is more suitable to estimate the states of corrosion and cracking in a Bayesian estimation framework. In this paper, we will utilize the accelerated corrosion data from a specimen at the University of South Carolina to develop a particle filtering-based diagnosis and prognosis algorithm. Promising features of the proposed algorithm are described in terms of corrosion state estimation and prediction of degradation over time to a predefined threshold.

  15. Applications of particle induced X-ray emission

    International Nuclear Information System (INIS)

    Akselsson, K. R.

    1978-01-01

    In Particle Induced X-ray Emission (PIXE) analysis samples are bombarded by protons or α-particles of a few MeV/u. The induced characteristic x-rays are detected with a x-ray detector e.g. a Si(Li)-detector. The energies of the x-ray peaks are characteristic for the elements in the samples and the intensities of the x-ray transitions are proportional to the abundances of the elements. The research area which first attracted those of us working with PIXE was the study of sources, transport and deposition of airborne particulates. Sources, transport, wet deposition, other applications where PIXE is already known to be competitive are trace elemental analysis of water below the ppb-level and analyses requiring a space resolution of 1-10μ. However, there is still much to do for physicists in developing the full potential of low-energy accelerators as analytical tools in multidisciplinary teams. (JIW)

  16. Study the effect of beam energy spread and detector resolution on the search for Higgs boson decays to invisible particles at a future e{sup +}e{sup -} circular collider

    Energy Technology Data Exchange (ETDEWEB)

    Cerri, Olmo; Podo, Alessandro [Scuola Normale Superiore, Pisa (Italy); De Gruttola, Michele; Pierini, Maurizio [CERN, Geneva (Switzerland); Rolandi, Gigi [Scuola Normale Superiore, Pisa (Italy); CERN, Geneva (Switzerland)

    2017-02-15

    We study the expected sensitivity to measure the branching ratio of Higgs boson decays to invisible particles at a future circular e{sup +}e{sup -} collider (FCC-ee) in the process e{sup +}e{sup -} → HZ with Z → l{sup +}l{sup -} (l = e or μ) using an integrated luminosity of 3.5 ab{sup -1} at a center-of-mass energy √(s) = 240 GeV. The impact of the energy spread of the FCC-ee beam and of the resolution in the reconstruction of the leptons is discussed. The minimum branching ratio for a 5σ observation after 3.5 ab{sup -1} of data taking is 1.7±0.1%(stat+syst). The branching ratio exclusion limit at 95% CL is 0.63±0.22%((stat+syst)). (orig.)

  17. Invisible magnetic sensors

    Science.gov (United States)

    Mach-Batlle, Rosa; Navau, Carles; Sanchez, Alvaro

    2018-04-01

    Sensing magnetic fields is essential in many applications in biomedicine, transportation, or smart cities. The distortion magnetic sensors create in response to the field they are detecting may hinder their use, for example, in applications requiring dense packaging of sensors or accurately shaped field distributions. For sensing electromagnetic waves, cloaking shells that reduce the scattering of sensors have been introduced. However, the problem of making a magnetic sensor undetectable remains unsolved. Here, we present a general strategy on how to make a sensor magnetically invisible while keeping its ability to sense. The sensor is rendered undetectable by surrounding it with a spherical shell having a tailored magnetic permeability. Our method can be applied to arbitrary shaped magnetic sensors in arbitrary magnetic fields. The invisibility can be made exact when the sensor is spherical and the probed field is uniform. A metasurface composed of superconducting pieces is presented as a practical realization of the ideal invisibility shell.

  18. Challenges and Approaches for Developing Ultrafine Particle Emission Inventories for Motor Vehicle and Bus Fleets

    Directory of Open Access Journals (Sweden)

    Diane U. Keogh

    2011-03-01

    Full Text Available Motor vehicles in urban areas are the main source of ultrafine particles (diameters < 0.1 µm. Ultrafine particles are generally measured in terms of particle number because they have little mass and are prolific in terms of their numbers. These sized particles are of particular interest because of their ability to enter deep into the human respiratory system and contribute to negative health effects. Currently ultrafine particles are neither regularly monitored nor regulated by ambient air quality standards. Motor vehicle and bus fleet inventories, epidemiological studies and studies of the chemical composition of ultrafine particles are urgently needed to inform scientific debate and guide development of air quality standards and regulation to control this important pollution source. This article discusses some of the many challenges associated with modelling and quantifying ultrafine particle concentrations and emission rates for developing inventories and microscale modelling of motor vehicles and buses, including the challenge of understanding and quantifying secondary particle formation. Recommendations are made concerning the application of particle emission factors in developing ultrafine particle inventories for motor vehicle fleets. The article presents a précis of the first published inventory of ultrafine particles (particle number developed for the urban South-East Queensland motor vehicle and bus fleet in Australia, and comments on the applicability of the comprehensive set of average particle emission factors used in this inventory, for developing ultrafine particle (particle number and particle mass inventories in other developed countries.

  19. Making Invisible Histories Visible

    Science.gov (United States)

    Hanssen, Ana Maria

    2012-01-01

    This article features Omaha Public Schools' "Making Invisible Histories Visible" program, or MIHV. Omaha's schools have a low failure rate among 8th graders but a high one among high school freshmen. MIHV was created to help at-risk students "adjust to the increased demands of high school." By working alongside teachers and…

  20. The Invisible Cinema

    NARCIS (Netherlands)

    Hanich, Julian; Fossati, Giovanna; van den Oever, Annie

    The Invisible Cinema was an experimental movie theater designed by an experimental filmmaker. Devised by the Austrian avantgardist Peter Kubelka, it served as the first place of exhibition for the Anthology Film Archives in New York. Apart from the screen (and some exit signs and aisle lights

  1. Signatures of the Invisible

    CERN Multimedia

    Strom, D

    2003-01-01

    On the Net it is possible to take a look at art from afar via Virtual Museums. One such exhibition was recently in the New York Museum of Modern Art's branch, PS1. Entitled 'Signatures of the Invisible' it was a collaborative effort between artists and physicists (1/2 page).

  2. The Invisibility of Steam

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    Almost everyone "knows" that steam is visible. After all, one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality, steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature…

  3. Test Method for High β Particle Emission Rate of 63Ni Source Plate

    OpenAIRE

    ZHANG Li-feng

    2015-01-01

    For the problem of measurement difficulties of β particle emission rate of Ni-63 source plate used for Ni-63 betavoltaic battery, a relative test method of scintillation current method was erected according to the measurement principle of scintillation detector.β particle emission rate of homemade Ni-63 source plate was tested by the method, and the test results were analysed and evaluated, it was initially thought that scintillation current method was a feasible way of testing β particle emi...

  4. Light charged particle emission in heavy-ion reactions – What have ...

    Indian Academy of Sciences (India)

    coincidence with gamma rays, fission products, evaporation residues have yielded interesting results which bring out the influence of nuclear structure, nuclear mean field and dynamics on the emission of these particles. Keywords. Light charged particles; heavy-ion induced reactions; particle spectra and angular distri-.

  5. Determining size-specific emission factors for environmental tobacco smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  6. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3

    Science.gov (United States)

    Kinsey, John S.; Dong, Yuanji; Williams, D. Craig; Logan, Russell

    2010-06-01

    The fine particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine for PM mass and number concentration, particle size distribution, and total volatile matter using both time-integrated and continuous sampling techniques. The experimental results showed a PM mass emission index (EI) ranging from 10 to 550 mg kg -1 fuel depending on engine type and test parameters as well as a characteristic U-shaped curve of the mass EI with increasing fuel flow for the turbofan engines tested. Also, the Teflon filter sampling indicated that ˜40-80% of the total PM mass on a test-average basis was comprised of volatile matter (sulfur and organics) for most engines sampled. The number EIs, on the other hand, varied from ˜10 15 to 10 17 particles kg -1 fuel with the turbofan engines exhibiting a logarithmic decay with increasing fuel flow. Finally, the particle size distributions of the emissions exhibited a single primary mode that were lognormally distributed with a minor accumulation mode also observed at higher powers for all engines tested. The geometric (number) mean particle diameter ranged from 9.4 to 37 nm and the geometric standard deviation ranged from 1.3 to 2.3 depending on engine type, fuel flow, and test conditions.

  7. Time-resolved analysis of particle emissions from residential biomass combustion - Emissions of refractory black carbon, PAHs and organic tracers

    Science.gov (United States)

    Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim

    2017-09-01

    Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of

  8. A feature point identification method for positron emission particle tracking with multiple tracers

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Cody, E-mail: cwiggin2@vols.utk.edu [University of Tennessee-Knoxville, Department of Physics and Astronomy, 1408 Circle Drive, Knoxville, TN 37996 (United States); Santos, Roque [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States); Escuela Politécnica Nacional, Departamento de Ciencias Nucleares (Ecuador); Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States)

    2017-01-21

    A novel detection algorithm for Positron Emission Particle Tracking (PEPT) with multiple tracers based on optical feature point identification (FPI) methods is presented. This new method, the FPI method, is compared to a previous multiple PEPT method via analyses of experimental and simulated data. The FPI method outperforms the older method in cases of large particle numbers and fine time resolution. Simulated data show the FPI method to be capable of identifying 100 particles at 0.5 mm average spatial error. Detection error is seen to vary with the inverse square root of the number of lines of response (LORs) used for detection and increases as particle separation decreases. - Highlights: • A new approach to positron emission particle tracking is presented. • Using optical feature point identification analogs, multiple particle tracking is achieved. • Method is compared to previous multiple particle method. • Accuracy and applicability of method is explored.

  9. The Sun and its Planets as detectors for invisible matter

    Science.gov (United States)

    Bertolucci, Sergio; Zioutas, Konstantin; Hofmann, Sebastian; Maroudas, Marios

    2017-09-01

    Gravitational lensing of invisible streaming matter towards the Sun with speeds around 10-4 to 10-3 c could be the explanation of the puzzling solar flares and the unexplained solar emission in the EUV. Assuming that this invisible massive matter has some form of interaction with normal matter and that preferred directions exist in its flow, then one would expect a more pronounced solar activity at certain planetary heliocentric longitudes. This is best demonstrated in the case of the Earth and the two inner planets, considering their relatively short revolution time (365, 225 and 88 days) in comparison to a solar cycle of about 11 years. We have analyzed the solar flares as well as the EUV emission in the periods 1976-2015 and 1999-2015, respectively. The results derived from each data set mutually exclude systematics as the cause of the observed planetary correlations. We observe statistically significant signals when one or more planets have heliocentric longitudes mainly between 230° and 300°. We also analyzed daily data of the global ionization degree of the dynamic Earth atmosphere taken in the period 1995-2012. Again here, we observe a correlation between the total atmospheric electron content (TEC) and the orbital position of the inner three planets. Remarkably, the strongest correlation appears with the phase of the Moon. The broad velocity spectrum of the assumed constituents makes it difficult at this stage to identify its source(s) in space. More refined analyses might in the future increase the precision in the determination of the stream(s) direction and possibly allow to infer some properties of its constituents. Presently, no firmly established model of massive streaming particles exists, although in the literature there are abundant examples of hypotheses. Among them, the anti-quark nuggets model for dark matter seems the better suited to explain our observations and deserves further study.

  10. Monte Carlo calculation of secondary electron emission from carbon-surface by obliquely incident particles

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Kawata, Jun; Mori, Ichiro

    1990-01-01

    Incidence angle dependences of secondary electron emission from a carbon surface by low energy electron and hydrogen atom are calculated using Monte Carlo simulations on the kinetic emission model. The calculation shows very small increase or rather decrease of the secondary electron yield with oblique incidence. It is explained in terms of not only multiple elastic collisions of incident particles with the carbon atoms but also small penetration depth of the particles comparable with the escape depth of secondary electrons. In addition, the two types of secondary electron emission are distinguished by using the secondary electron yield statistics; one is the emission due to trapped particles in the carbon, and the other is that due to backscattered particles. The high-yield component of the statistics on oblique incidence is more suppressed than those on normal incidence. (author)

  11. Characterization of nuclear physics targets using Rutherford backscattering and particle induced X-ray emission

    International Nuclear Information System (INIS)

    Rubehn, T.; Wozniak, G.J.; Phair, L.; Moretto, L.G.; Yu, K.M.

    1997-01-01

    Rutherford backscattering and particle induced X-ray emission have been utilized to precisely characterize targets used in nuclear fission experiments. The method allows for a fast and non-destructive determination of target thickness, homogeneity and element composition. (orig.)

  12. Investigation of granular impact using positron emission particle tracking

    KAUST Repository

    Marston, Jeremy O.; Thoroddsen, Sigurdur T

    2015-01-01

    packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed

  13. Comprehensive decay law for emission of charged particles and ...

    Indian Academy of Sciences (India)

    2014-04-07

    life; general decay law. ... data of ground-state transition of nuclei emitting particles with zero angular momentum. (l), experimental data of half-lives of outgoing particles including proton and α with l-dependent Q-values have ...

  14. Exploring the academic invisible web

    OpenAIRE

    Lewandowski, Dirk

    2006-01-01

    The Invisible Web is often discussed in the academic context, where its contents (mainly in the form of databases) are of great importance. But this discussion is mainly based on some seminal research done by Sherman and Price (2001) and Bergman (2001), respectively. We focus on the types of Invisible Web content relevant for academics and the improvements made by search engines to deal with these content types. In addition, we question the volume of the Invisible Web as stated by Bergman. Ou...

  15. Exploring the academic invisible web

    OpenAIRE

    Lewandowski, Dirk; Mayr, Philipp

    2006-01-01

    Purpose: To provide a critical review of Bergman’s 2001 study on the Deep Web. In addition, we bring a new concept into the discussion, the Academic Invisible Web (AIW). We define the Academic Invisible Web as consisting of all databases and collections relevant to academia but not searchable by the general-purpose internet search engines. Indexing this part of the Invisible Web is central to scientific search engines. We provide an overview of approaches followed thus far. Design/methodol...

  16. In-Situ Characteristics of Particle Emissions from Biomass Combustion

    International Nuclear Information System (INIS)

    Pagels, Joakum; Wierzbicka, Aneta; Bohgard, Mats; Strand, Michael; Lillieblad, Lena; Sanati, Mehri; Swietlicki, Erik

    2005-01-01

    In this work we used a Scanning Mobility Particle Sizer and an Electrical Low-pressure Impactor to: a) Derive information of the particle morphology through air-borne analysis and b) Identify time and size variations of particle phase components from incomplete combustion and ash-components. The results presented here covers measurements in two moving grate boilers (12 MW operating on moist forest residue and 1.5 MW operating on wood pellets). We have previously shown that PM1 estimated from Electrical Low-Pressure Impactor (ELPI)-measurements consisted of a rather constant background with peaks correlating with CO and OGC peaks. In the 1.5 MW boiler EC contributed to 34% of PM1, while in the 12 MW boiler EC was below 0.5%. Figure 2 shows time variations in the 1.5 MW boiler as the current in three stages of the ELPI-impactor. Note that time-variations increase strongly with particle size. The fraction of the gravimetric mass detected as water-soluble ions (IC) decreased from ∼ 70% for dae= 78 and 133 nm to ∼ 25% for 322 and 510 nm particles and increased to around 50% for particles larger than 1 μm. In the 12 MW boiler time variations were as low as for 128 nm particles and IC recovery was high for all studied particle sizes. Based on these data we conclude that PM consisting of ash-components are formed with small time variations mainly in mobility-sizes below 250 nm, while Elemental Carbon is emitted at high concentrations during peaks on the time-scale 10-30 s, mainly in particle sizes larger than 150 nm. However, the detailed mixing status of these two particle types/materials is still not known

  17. Particle Reduction Strategies - PAREST. Agricultural emissions. Sub-report

    International Nuclear Information System (INIS)

    Daemmgen, Ulrich; Haenel, Hans-Dieter; Roesemann, Claus; Hahne, Jochen; Eurich-Menden, Brigitte; Grimm, Ewald; Doehler, Helmut

    2013-01-01

    The German agricultural emission inventory is designed as an instrument of policy advice. The essential aim is to describe the emitting processes so that options for reducing emissions can be quantified. The German agricultural emission model GAS-EM uses in the field of NH 3 emissions from soils and plants in the EMEP / CORINAIR Guidebook (EMEP / CORINAIR, 2002) proposed methods. These differ in emission factors between several types of fertilizers and their application to acre or grassland in function of the average spring temperature. In the field of emissions from animal husbandry GAS-EM follows a material flow approach, where initially the energy and nutrient requirements for a given power (here are weight, weight gain, milk yield, number of piglets, etc. involved) the excretion of metabolizable carbon compounds and the N excretion can be calculated with feces and urine. Subsequently, for all animal species emissions of nitrogen species NH 3 , NO, N 2 O and N 2 from the grazing, indoor housing, storage and distribution of farm fertilizers calculated. [de

  18. [Air Dielectric Barrier Discharge Emission Spectrum Measurement and Particle Analysis of Discharge Process].

    Science.gov (United States)

    Shen, Shuang-yan; Jin, Xing; Zhang, Peng

    2016-02-01

    The emission spectrum detection and diagnosis is one of the most common methods of application to the plasma. It provides wealth of information of the chemical and physical process of the plasma. The analysis of discharge plasma dynamic behavior plays an important role in the study of gas discharge mechanism and application. An air dielectric discharge spectrum measuring device was designed and the emission spectrum data was measured under the experimental condition. The plasma particles evolution was analyzed from the emission spectrum. The numerical calculation model was established and the density equation, energy transfer equation and the Boltzmann equation was coupled to analyze the change of the particle density to explain the emission spectrum characteristics. The results are that the particle density is growing with the increasing of reduced electric field. The particle density is one or two orders of magnitude difference for the same particle at the same moment for the reduced electric field of 40, 60 or 80 Td. A lot of N₂ (A³), N₂ (A³) and N₂ (C³) particles are generated by the electric field excitation. However, it transforms quickly due to the higher energy level. The transformation returns to the balance after the discharge of 10⁻⁶ s. The emission spectrometer measured in the experiments is mostly generated by the transition of excited nitrogen. The peak concentration of O₂ (A¹), O₂ (B¹) and O₂ (A³ ∑⁺u) is not low compared to the excited nitrogen molecules. These particles energy is relatively low and the transition spectral is longer. The spectrometer does not capture the oxygen emission spectrum. And the peak concentration of O particles is small, so the transition emission spectrum is weak. The calculation results of the stabled model can well explain the emission spectrum data.

  19. Influence of complex particle emission on properties of giant dipole resonance of hot nuclei

    International Nuclear Information System (INIS)

    Wen Wanxin; Jin Genming

    2003-01-01

    The possible reasons for the discrepancy between calculation results based on the statistical evaporation model and experimental data of giant dipole resonance of very hot nuclei are discussed. Both of simulations with the standard CASCADE code and the code coupling complex particle emission are carried out. It is shown that the complex particle emission affects the properties of giant dipole resonance of very hot nuclei

  20. Ion-induced emission of charged particles from solid hydrogen and deuterium

    International Nuclear Information System (INIS)

    Borgesen, P.; Schou, J.; Sorensen, H.

    1980-01-01

    Measurements have been made of the emission of both positive and negative particles from solid hydrogen and deuterium for normal incidence of H + , H + 2 , H + 3 , D 2 H + , D + 3 and He + ions up to 10 keV. For positive particles the emission coefficient increased with increasing energy of incidence to reach a value of 0.08 per atom for 10 keV H + onto hydrogen. Apparently the positive particles are sputtered ones. The negative particles emitted are predominantly electrons. The emission coefficient per incident atom as a function of the velocity of the incident particle agress fairly well with results published earlier for incidence of hydrogen and deuterium ions. However, systematic differences of up to 10% are now observed between the coefficients for the different types of ions. (orig.)

  1. Gaseous and particle emissions from an ethanol fumigated compression ignition engine

    International Nuclear Information System (INIS)

    Surawski, Nicholas C.; Ristovski, Zoran D.; Brown, Richard J.; Situ, Rong

    2012-01-01

    Highlights: ► Ethanol fumigation system fitted on a direct injection compression ignition engine. ► Ethanol substitutions up to 40% (by energy) were achieved. ► Gaseous and particle emissions were measured at intermediate speed. ► PM and NO emissions significantly reduced, whilst CO and HC increased. ► The number of particles emitted generally higher with ethanol fumigation. - Abstract: A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM 2.5 ) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10% to 40% (by energy). With ethanol fumigation, NO and PM 2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM 2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles

  2. Space-Charge-Limited Emission Models for Particle Simulation

    Science.gov (United States)

    Verboncoeur, J. P.; Cartwright, K. L.; Murphy, T.

    2004-11-01

    Space-charge-limited (SCL) emission of electrons from various materials is a common method of generating the high current beams required to drive high power microwave (HPM) sources. In the SCL emission process, sufficient space charge is extracted from a surface, often of complicated geometry, to drive the electric field normal to the surface close to zero. The emitted current is highly dominated by space charge effects as well as ambient fields near the surface. In this work, we consider computational models for the macroscopic SCL emission process including application of Gauss's law and the Child-Langmuir law for space-charge-limited emission. Models are described for ideal conductors, lossy conductors, and dielectrics. Also considered is the discretization of these models, and the implications for the emission physics. Previous work on primary and dual-cell emission models [Watrous et al., Phys. Plasmas 8, 289-296 (2001)] is reexamined, and aspects of the performance, including fidelity and noise properties, are improved. Models for one-dimensional diodes are considered, as well as multidimensional emitting surfaces, which include corners and transverse fields.

  3. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    Science.gov (United States)

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  4. Refinement of the Compton–Rayleigh scatter ratio method for use on the Mars Science Laboratory alpha particle X-ray spectrometer: II – Extraction of invisible element content

    Energy Technology Data Exchange (ETDEWEB)

    Perrett, Glynis M. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Campbell, John L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Gellert, Ralf [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); King, Penelope L. [Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Nield, Emily; O’Meara, Joanne M.; Pradler, Irina [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2016-02-01

    The intensity ratio C/R between Compton and Rayleigh scatter peaks of the exciting Pu L X-rays in the alpha particle X-ray spectrometer (APXS) is strongly affected by the presence of very light elements such as oxygen which cannot be detected directly by the APXS. C/R values are determined along with element concentrations by fitting APXS spectra of geochemical reference materials (GRMs) with the GUAPX code. A quantity K is defined as the ratio between the C/R value determined by Monte Carlo simulation based on the measured element concentrations and the fitted C/R value from the spectrum. To ensure optimally accurate K values, the choice of appropriate GRMs is explored in detail, with attention paid to Rb and Sr, whose characteristic Kα X-ray peaks overlap the Pu Lα scatter peaks. The resulting relationship between the ratio K and the overall oxygen fraction is linear. This provides a calibration from which the concentration of additional light invisible constituents (ALICs) such as water may be estimated in unknown rock and conglomerate samples. Several GRMs are used as ‘unknowns’ in order to evaluate the accuracy of ALIC concentrations derived in this manner.

  5. A memory particle model in study of pre-equilibrium emission

    International Nuclear Information System (INIS)

    Miao rongzhi

    1989-01-01

    Exciton of a composite system at high energy is divided into two subsystems which consist of memory particle m and non-memory particle r. After introducing α n , the collision factor of m-particle in state n, the coupled master equitions of the occupation probability of state-angle of m-particle and r-particle are established. The expression of state density, taking into account the distinqushability between m-particle and r-particle, and the formulas of the rate of β-particle emission of m-system and r-system in state n are also given. The calculation results show that the fit with experimental data is improved conspicuously and is much better than that obtained from the generalized exciton model

  6. Making Invisible Forces Visible

    DEFF Research Database (Denmark)

    Ratner, Helene Gad

    2013-01-01

    This paper investigates managerial tactics of visualisation when a need to know and manage employees' values and attitudes is expressed. Using the Danish public school as a case study, we explore how school managers use teachers' emotions to render visible presumably invisible information about...... their 'true' attitudes and values. The paper draws on theories of affect as well as actor-network theory to analyse three incidents where managers turn their interpretations of teachers' emotions into such information. These incidents suggest that the efforts to render employees' attitudes and values visible...

  7. Comparison Between Weisskopf and Thomas-Fermi Model for Particle Emission Widths from Hot Deformed Nuclei

    International Nuclear Information System (INIS)

    Surowiec, Aa.; Pomorski, K.; Schmitt, Ch.; Bartel, J.

    2002-01-01

    The emission widths Γ n and Γ p for emission of neutrons and protons are calculated within the Thomas-Fermi model, which we have recently developed, and are compared with those obtained in the usual Weisskopf approach for the case of zero angular momentum. Both methods yield quite similar results at small deformations, but rather important differences are observed for very deformed shapes, in particular for charged particles. A possible generalization of the model for emission of α-particles is also discussed. (author)

  8. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  9. Airborne emission measurements of SO2 , NOx and particles from individual ships using a sniffer technique

    Science.gov (United States)

    Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.

    2014-07-01

    A dedicated system for airborne ship emission measurements of SO2, NOx and particles has been developed and used from several small aircraft. The system has been adapted for fast response measurements at 1 Hz, and the use of several of the instruments is unique. The uncertainty of the given data is about 20% for SO2 and 24% for NOx emission factors. The mean values with one standard deviation for multiple measurements of 158 ships measured from the air on the Baltic and North Sea during 2011 and 2012 show emission factors of 18.8 ± 6.5 g kg-1 fuel , 66.6 ± 23.4 g kg-1 fuel and 1.8 ± 1.3 1016 particles kg-1 fuel for SO2, NOx and particle number, respectively. The particle size distributions were measured for particle diameters between 15 and 560 nm. The mean sizes of the particles are between 45 and 54 nm dependent on the distance to the source, and the number size distribution is monomodal. Concerning the sulfur fuel content, around 85% of the monitored ships comply with the International Maritime Organization (IMO) limits. The reduction of the sulfur emission control area (SECA) limit from 1.5 to 1% in 2010 appears to have contributed to reduction of sulfur emissions that were measured in earlier studies from 2007 to 2009. The presented method can be implemented for regular ship compliance monitoring.

  10. Transformation optics and invisibility cloaks

    DEFF Research Database (Denmark)

    Qiu, Min; Yan, Min; Yan, Wei

    2008-01-01

    In this paper, we briefly summarize the theory of transformation optics and introduce its application in achieving perfect invisibility cloaking. In particular, we theoretically show how the task of realizing cylindrical invisibility cloaks can be eased by using either structural approximation...

  11. A method for measuring particle number emissions from vehicles driving on the road.

    Science.gov (United States)

    Shi, J P; Harrison, R M; Evans, D E; Alam, A; Barnes, C; Carter, G

    2002-01-01

    Earlier research has demonstrated that the conditions of dilution of engine exhaust gases profoundly influence the size distribution and total number of particles emitted. Since real world dilution conditions are variable and therefore difficult to simulate, this research has sought to develop and validate a method for measuring particle number emissions from vehicles driving past on a road. This has been achieved successfully using carbon dioxide as a tracer of exhaust gas dilution. By subsequent adjustment of data to a constant dilution factor, it is possible to compare emissions from different vehicles using different technologies and fuels based upon real world emission data. Whilst further optimisation of the technique, especially in terms of matching the instrument response times is desirable, the measurements offer useful insights into emissions from gasoline and diesel vehicles, and the substantial proportion of particles emitted in the 3-7 nanometre size range.

  12. The influence of design and fuel parameters on the particle emissions from wood pellets combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiinikka, Henrik; Gebart, Rikard [Energy Technology Centre, Piteaa (Sweden)

    2005-02-01

    Combustion of solid biomass under fixed bed conditions is a common technique to generate heat and power in both small and large scale grate furnaces (domestic boilers, stoves, district heating plants). Unfortunately, combustion of biomass will generate particle emissions containing both large fly ash particles and fine particles that consist of fly ash and soot. The large fly ash particles have been produced from fusion of non-volatile ash-forming species in burning char particle. The inorganic fine particles have been produced from nucleation of volatilised ash elements (K, Na, S, Cl and Zn). If the combustion is incomplete, soot particles are also produced from secondary reaction of tar. The particles in the fine fraction grows by coagulation and coalescence to a particle diameter around 0.1 pm. Since the smallest particles are very hard to collect in ordinary cleaning devices they contribute to the ambient air pollution. Furthermore, fine airborne particles have been correlated to adverse effects on the human health. It is therefore essential to minimize particle formation from the combustion process and thereby reduce the emissions of particulates to the ambient air. The aim with this project is to study particle emissions from small scale combustion of wood pellets and to investigate the impact of different operating, construction and fuel parameters on the amount and characteristic of the combustion generated particles. To address these issues, experiments were carried out in a 10 kW updraft fired wood pellets reactor that has been custom designed for systematic investigations of particle emissions. In the flue gas stack, particle emissions were sampled on a filter. The particle mass and number size distributions were analysed by a low pressure cascade impactor and a SMPS (Scanning Electron Mobility Particle Sizer). The results showed that the temperature and the flow pattern in the combustion zone affect the particle emissions. Increasing combustion

  13. Control of spontaneous emission rate in luminescent resonant diamond particles

    Science.gov (United States)

    Savelev, R.; Zalogina, A.; Kudryashov, S.; Ivanova, A.; Levchenko, A.; Makarov, S.; Zuev, D.; Shadrivov, I.

    2018-01-01

    We study the properties of luminescent diamond particles of different sizes (up to ~1.5 μm) containing multiple NV-centers. We theoretically predict that the average liftetime in such particles is decreased by several times as compared to optically small subwavelength nanodiamonds. In our experiments, samples were obtained by milling the plasma-enhanced chemical vapor deposited diamond film, and characterized by Raman spectroscopy and dark- field spectroscopy methods. Time-resolved luminescence measurements of the excited state of NV-centers showed that their average lifetime varies from 10 to 17 ns in different samples. By comparing this data to the values of the lifetime of the NV-centers in optically small nanodiamonds, known from literature, we confirm a severalfold decrease of the lifetime in resonant particles.

  14. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  15. Use of GSR particle analysis program on an analytical SEM to identify sources of emission of airborne particles

    International Nuclear Information System (INIS)

    Chan, Y.C.; Trumper, J.; Bostrom, T.

    2002-01-01

    Full text: High concentrations of airborne particles, in particular PM 10 (particulate matter 10 , but has been little used in Australia for airborne particulates. Two sets of 15 mm PM 10 samples were collected in March and April 2000 from two sites in Brisbane, one within a suburb and one next to an arterial road. The particles were collected directly onto double-sided carbon tapes with a cascade impactor attached to a high-volume PM 10 sampler. The carbon tapes were analysed in a JEOL 840 SEM equipped with a Be-window energy-dispersive X-ray detector and Moran Scientific microanalysis system. An automated Gun Shot Residue (GSR) program was used together with backscattered electron imaging to characterise and analyse individual particulates. About 6,000 particles in total were analysed for each set of impactor samples. Due to limitations of useful pixel size, only particles larger than about 0.5 μm could be analysed. The size, shape and estimated elemental composition (from Na to Pb) of the particles were subjected to non-hierarchical cluster analysis and the characteristics of the clusters were related to their possible sources of emission. Both samples resulted in similar particle clusters. The particles could be classified into three main categories non-spherical (58% of the total number of analysed particles, shape factor >1 1), spherical (15%) and 'carbonaceous' (27%, ie with unexplained % of elemental mass >75%). Non-spherical particles were mainly sea salt and soil particles, and a small amount of iron, lead and mineral dust. The spherical particles were mainly sea salt particles and flyash, and a small amount of iron, lead and secondary sulphate dust. The carbonaceous particles included carbon material mixed with secondary aerosols, roadside dust, sea salt or industrial dust. The arterial road sample also contained more roadside dust and less secondary aerosols than the suburb sample. Current limitations with this method are the minimum particle size

  16. Energy deposition and GDR emission in inelastic alpha particle scattering

    CERN Document Server

    Viesti, G; Fabris, D; Nebbia, G; Cinausero, M; Fioretto, E; Napoli, D R; Prete, G; Hagel, K; Natowitz, J B; Wada, R; Gonthier, P; Majka, Z; Alfarro, R; Zhao, Y; Mdeiwayeh, N; Ho, T

    1999-01-01

    Neutron fold distributions measured for the reaction sup 2 sup 0 sup 9 Bi(alpha,alpha') at 240 MeV have been analyzed with the help of Statistical Model calculations to determine the distribution of excitation energy in the primary target fragments as a function of the projectile energy loss, EL. Results show that the distributions in excitation energy feature a plateau which extends from the kinematical limit E sub x =EL to very small excitations, suggesting a variety of interactions of the beam particles with the target nucleus. Requiring an additional coincidence with a light charged particle leads to selection of a significant higher average excitation energy. This effect is extrapolated to explore results of previous GDR decay measurements in the case of a sup 2 sup 0 sup 8 Pb target. Corrections of derived GDR parameters due to the partial transfer of excitation energy are suggested.

  17. Emission of particles in the 12 C + 12 C fusion

    International Nuclear Information System (INIS)

    Martinez Q, E.; Aguilera, E.F.; Rosales, P.

    2002-01-01

    A fusion process analysis of the 12 C + 12 C reaction is done, using the LILITA program. The analysis consisted mainly in varying the value of the Levels density parameter, determining on this way the value of such parameter which reproduces better the contribution of the different channels of fusion-evaporation of particles for this system at different energies. Moreover a comparison with measures done in the Instituto Nacional de Investigaciones Nucleares is realized. (Author)

  18. Measurement and Modeling of Volatile Particle Emissions from Military Aircraft

    Science.gov (United States)

    2011-10-01

    CMAQ – Community multiscale air quality model CMU – Carnegie Mellon University COA – organic aerosol concentration CPC - condensation particle...the aerosol phase when there is free ammonia (or another cation) available to neutralize it [36]. Therefore, we expect that nitrate aerosol...be a critical parameter, with greater nitrate expected during winter. Even less is known about the fate of the complex mixture of organics in the

  19. Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Jayaratne, E.R.; Morawska, L.; Ayoko, G.A.; Lim, M.

    2005-01-01

    A comprehensive study of the particle and carbon dioxide emissions from a fleet of six dedicated liquefied petroleum gas (LPG) powered and five unleaded petrol (ULP) powered new Ford Falcon Forte passenger vehicles was carried out on a chassis dynamometer at four different vehicle speeds-0 (idle), 40, 60, 80 and 100 km h -1 . Emission factors and their relative values between the two fuel types together with a statistical significance for any difference were estimated for each parameter. In general, LPG was found to be a 'cleaner' fuel, although in most cases, the differences were not statistically significant owing to the large variations between emissions from different vehicles. The particle number emission factors ranged from 10 11 to 10 13 km -1 and was over 70% less with LPG compared to ULP. Corresponding differences in particle mass emission factor between the two fuels were small and ranged from the order of 10 μg km -1 at 40 to about 1000 μg km -1 at 100 km h -1 . The count median particle diameter (CMD) ranged from 20 to 35 nm and was larger with LPG than with ULP in all modes except the idle mode. Carbon dioxide emission factors ranged from about 300 to 400 g km -1 at 40 km h -1 , falling with increasing speed to about 200 g km -1 at 100 km h -1 . At all speeds, the values were 10% to 18% greater with ULP than with LPG

  20. Improved field emission performance of carbon nanotube by introducing copper metallic particles

    Directory of Open Access Journals (Sweden)

    Chen Yiren

    2011-01-01

    Full Text Available Abstract To improve the field emission performance of carbon nanotubes (CNTs, a simple and low-cost method was adopted in this article. We introduced copper particles for decorating the CNTs so as to form copper particle-CNT composites. The composites were fabricated by electrophoretic deposition technique which produced copper metallic particles localized on the outer wall of CNTs and deposited them onto indium tin oxide (ITO electrode. The results showed that the conductivity increased from 10-5 to 4 × 10-5 S while the turn-on field was reduced from 3.4 to 2.2 V/μm. Moreover, the field emission current tended to be undiminished after continuous emission for 24 h. The reasons were summarized that introducing copper metallic particles to decorate CNTs could increase the surface roughness of the CNTs which was beneficial to field emission, restrain field emission current from saturating when the applied electric field was above the critical field. In addition, it could also improve the electrical contact by increasing the contact area between CNT and ITO electrode that was beneficial to the electron transport and avoided instable electron emission caused by thermal injury of CNTs.

  1. Airborne emission measurements of SO2, NOx and particles from individual ships using sniffer technique

    Science.gov (United States)

    Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.

    2013-12-01

    A dedicated system for airborne ship emission measurements of SO2, NOx and particles has been developed and used from several small aircrafts. The system has been adapted for fast response measurements at 1 Hz and the use of several of the instruments is unique. The uncertainty of the given data is about 20.3% for SO2 and 23.8% for NOx emission factors. Multiple measurements of 158 ships measured from the air on the Baltic and North Sea during 2011 and 2012 show emission factors of 18.8 ± 6.5 g kgfuel-1, 66.6 ± 23.4 g kgfuel-1, and 1.8 ± 1.3 × 1016 particles kgfuel-1 for SO2, NOx and particle number respectively. The particle size distributions were measured for particle diameters between 15 and 560 nm. The mean sizes of the particles are between 50 and 62 nm dependent on the distance to the source and the number size distribution is mono-modal. Concerning the sulfur fuel content 85% of the ships comply with the IMO limits. The sulfur emission has decreased compared to earlier measurements from 2007 to 2009. The presented method can be implemented for regular ship compliance monitoring.

  2. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    Science.gov (United States)

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  3. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains eight separate records on the role of the complanar emission of particles in nuclear interaction for E 0 >10 16 eV detected in the stratosphere, 10 B nucleus fragment yields, nuclear teleportation (proposal for an experiment), invisible 'glue' bosons in model field theory, calculation of the ionization differential effective cross sections in fast ion-atom collisions, interactions of ultracold neutrons near surface of solids, g factors as a probe for high-spin structure of neutron-rich Dy isotopes, search for periodicities in experimental data by the autoregressive model methods

  4. Charged particle emission: the Child-Langmuir model

    International Nuclear Information System (INIS)

    Degond, P.; Raviart, P.A.

    1993-01-01

    The recent mathematical results concerning boundary emission modelling are reviewed with a synthetical view. The plane diode case is first studied; the Child-Langmuir model is then characterized as the limit to an absolutely non standard singular perturbation problem and is associated with approximate models (constrained and penalized models) which may be easily generalized in more realistic cases; an iterative solution method for the penalized problem is studied. The derived Child-Langmuir model is extended to the cylindrical diode case and to an arbitrary geometry case: constrained and penalized models related to the stationary Vlasov-Poisson equations are studied and extended to the Vlasov-Maxwell evolution equation general case

  5. Particle Emission and Charging Effects Induced by Fracture

    Science.gov (United States)

    1989-06-15

    molecular nitrogen for both the initial bursts and those that follow in the next 0.1-100 ;is. Thus, the "after-emission" is not due to phosphorescence of...copious emitter of atomic Na and both I atomic and molecular oxygen. The phF, EE, and PIE from the two glasses share a number of properties. This work...appear in J. Vac. Sci. Tech. Electron Emision from Ahrasion of Polymers: In Section XV we examine previously claimed 3 detection of electrons during

  6. The multi-step prompt particle emission from fission fragments

    International Nuclear Information System (INIS)

    Zhivopistsev, A.; Oprea, C.; Oprea, I.

    2003-01-01

    The purpose of this work is the study of non-equilibrium high-energy gamma emission from 252 Cf. In the framework of the formalism of statistical multi-step compound processes in nuclear reactions. A relation was found between the shape of the high-energy part of the gamma spectrum and different mechanisms of excitation of the fission fragments. Agreement with experimental data for different groups of fission fragments was obtained. The analysis of the experimental high-energy part of gamma spectra yields information about the mechanism of excitation of fission fragments. The influence of dissipation of the deformation excess on intrinsic excitation of fission fragments was studied. (authors)

  7. ''Invisible'' axion detectors

    International Nuclear Information System (INIS)

    Sikivie, P.

    1985-01-01

    A brief review is given of various ideas which have been put forth to detect ''invisible'' axions, i.e., axions with f/sub a/ between 3 x 10 7 GeV and 2 x 10 12 GeV. These experiments would attempt to detect the axions which constitute the halo of our galaxy or axions which are emitted by our sun; or they would attempt to detect the force mediated by virtual axions. Various relevant axion parameters are given as f/sub a/. Among the experiments described are: galactic axion detector using a cavity; ''spin coupled'' axion detection; axion to photon conversion in an inhomogeneous static magnetic field; and macroscopic forces mediated by axions. 27 refs

  8. The Invisible Boy

    DEFF Research Database (Denmark)

    Perry, Kevin Anthony; Jensen, Iben

    , the participants agreed that all students in their class are part of the community. Following the participants, a good class community is when ‘you do lots of things together’. However, as the interview progressed (after eight minutes), it became apparent that at least one student was isolated and stood outside...... the participant’s definition of ‘good community’. It seemed almost as if they had forgotten a particular student in the class, until a question refreshed their collective memory. Participants suddenly became aware that there is at least one student in their class who does not participate in any joint activities......, either in or outside school. The question about how a group of students can collectively forget that one student is isolated in the class must be raised. The aim of this thinking note is to explore the mechanisms around social stigma and attempt to shed more light on the issue surrounding the ‘invisible...

  9. Multi-particle Emission from $^{31}$Ar at ISOLDE

    CERN Document Server

    Marroquin, I; Ciemny, A A; de Witte, H; Fraile, L M; Fynbo, H O U; Garzón-Camacho, A; Howard, A; Johansson, H; Jonson, B; Kirsebom, O S; Koldste, G T; Lica, R; Lund, M V; Madurga, M; Mazzocchi, C; Mihai, C; Munch, M; Nae, S A; Nacher, E; Negret, A; Nilsson, T; Perea, A; Refsgaard, J; Riisager, K; Rapisarda, E; Sotty, C; Stanoiu, M; Tengblad, O; Turturica, A E; Vedia, M V

    2016-01-01

    A multi-particle decay experiment was successfully performed at the ISOLDE Decay Station. In this new permanent station, devoted to\\break $\\beta$-decay studies, the novel MAGISOL Si-Plugin Chamber was installed to study the exotic decay modes of the proton drip-line nucleus ${^{31}}$Ar. The motivation was to search for $\\beta3p$ and $\\beta3p\\gamma$ channels, as well as to provide information on resonances in ${^{30}}$S and ${^{29}}$P relevant for the astrophysical\\break rp-process. Description of the experimental set-up and preliminary results are presented.

  10. On particle emission in the time-dependent Hartree-Fock approximation

    International Nuclear Information System (INIS)

    Maedler, P.

    1984-01-01

    Investigations of fast particle emission in the time-dependent Hartree-Fock mean-field approximation (TDHF) have been performed for one-dimensional slab collisions. For a fixed target mass number and incident velocity the total yields of PEP exhibit pronounced srtructures as a function of the pro ectile mass number, which strongly correcate with the binding energy of the last nucleon in the projectnle. This is in explicit disagreement with experiment. The conclusion has been drawn that the Fermi-jet mechanism cannot be responsible for most of the fast particles observed in experiment, even if quantum diffraction is taken into account (as in TDHF). After PEP emission large amplitude density oscillations, which are the only possible modes in the slab geometry, are found to be damped by further particle emission

  11. Cloaks with multiple invisible regions

    International Nuclear Information System (INIS)

    Luo, Yang; Zhu, Shouzheng; He, Lianxing; Wang, Yu

    2011-01-01

    This paper proposes a general method of extending the effective invisible regions for both the shell-like interior cloak and the complementary media exterior cloak, without affecting their original cloaking regions. The proposed method is based on layered spatial mapping instead of the intact mapping. Certain interior or exterior invisible regions can be obtained by properly using a compressed or folded transformation in each space layer. Therefore, the proposal enables the as-designed cloaks to provide multiple invisible regions of different types simultaneously. Thus objects can be hidden in the interior cavity and/or in the exterior space, or even be embedded between the cloaking shells

  12. Electromagnetic Detection of a Perfect Invisibility Cloak

    International Nuclear Information System (INIS)

    Zhang Baile; Wu, Bae-Ian

    2009-01-01

    A perfect invisibility cloak is commonly believed to be undetectable from electromagnetic (EM) detection because it is equivalent to a curved but empty EM space created from coordinate transformation. Based on the intrinsic asymmetry of coordinate transformation applied to motions of photons and charges, we propose a method to detect this curved EM space by shooting a fast-moving charged particle through it. A broadband radiation generated in this process makes a cloak visible. Our method is the only known EM mechanism so far to detect an ideal perfect cloak (curved EM space) within its working band.

  13. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement.

    Science.gov (United States)

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Tan, Piqiang; Yao, Di; Hu, Wei; Li, Peng; Ren, Jin; Chen, Changhong

    2012-01-01

    This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) x 10(8) cm(-3). The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 x 10(6) cm(-3) and 2.7 x 10(7) cm(-3) under decelerating and idling operations and as high as 5.0 x 10(8) cm(-3) under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.

  14. A new global particle swarm optimization for the economic emission dispatch with or without transmission losses

    International Nuclear Information System (INIS)

    Zou, Dexuan; Li, Steven; Li, Zongyan; Kong, Xiangyong

    2017-01-01

    Highlights: • A new global particle swarm optimization (NGPSO) is proposed. • NGPSO has strong convergence and desirable accuracy. • NGPSO is used to handle the economic emission dispatch with or without transmission losses. • The equality constraint can be satisfied by solving a quadratic equation. • The inequality constraints can be satisfied by using penalty function method. - Abstract: A new global particle swarm optimization (NGPSO) algorithm is proposed to solve the economic emission dispatch (EED) problems in this paper. NGPSO is different from the traditional particle swarm optimization (PSO) algorithm in two aspects. First, NGPSO uses a new position updating equation which relies on the global best particle to guide the searching activities of all particles. Second, it uses the randomization based on the uniform distribution to slightly disturb the flight trajectories of particles during the late evolutionary process. The two steps enable NGPSO to effectively execute a number of global searches, and thus they increase the chance of exploring promising solution space, and reduce the probabilities of getting trapped into local optima for all particles. On the other hand, the two objective functions of EED are normalized separately according to all candidate solutions, and then they are incorporated into one single objective function. The transformation steps are very helpful in eliminating the difference caused by the different dimensions of the two functions, and thus they strike a balance between the fuel cost and emission. In addition, a simple and common penalty function method is employed to facilitate the satisfactions of EED’s constraints. Based on these improvements in PSO, objective functions and constraints handling, high-quality solutions can be obtained for EED problems. Five examples are chosen to testify the performance of three improved PSOs on solving EED problems with or without transmission losses. Experimental results show that

  15. Influence of firebed temperature on inorganic particle emissions in a residential wood pellet boiler

    Science.gov (United States)

    Gehrig, Matthias; Jaeger, Dirk; Pelz, Stefan K.; Weissinger, Alexander; Groll, Andreas; Thorwarth, Harald; Haslinger, Walter

    2016-07-01

    The temperature-dependent release of inorganic elements is the first step of the main formation pathway of particle emissions in automatically fired biomass burners. To investigate this step, a residential pellet boiler with an underfeed-burner was equipped with a direct firebed cooling. This test setup enabled decreased firebed temperatures without affecting further parameters like air flow rates or oxygen content in the firebed. A reduction of particle emissions in PM1-fraction at activated firebed cooling was found by impactor measurement and by optical particle counter. The affected particles were found in the size range boiler ash showed no statistically significant differences due to the firebed cooling. Therefore, our results indicate that the direct firebed cooling influenced the release of potassium (K) without affecting other chemical reactions.

  16. General decay law for emission of charged particles and exotic cluster radioactivity

    International Nuclear Information System (INIS)

    Sahu, Basudeb; Paira, Ramkrishna; Rath, Biswanath

    2013-01-01

    For the emission of charged particles from metastable nuclei, a general decay formula is developed based on the basic phenomenon of resonances occurring in quantum scattering process under Coulomb-nuclear potential. It relates the half-lives of monopole radioactive decays with the Q-values of the outgoing elements in different angular momentum states as well as the masses and charges of the nuclei involved in the decay. The relation is found to be a generalization of the Geiger–Nuttall law in α radioactivity and it explains well all known emission of charged particles including clusters, alpha and proton carrying angular momenta

  17. Light absorption by primary particle emissions from a lignite burning plant

    International Nuclear Information System (INIS)

    Bond, T.C.; Bussemer, M.; Wehner, B.; Keller, S.; Charlson, R.J.; Heintzenberg, J.

    1999-01-01

    Anthropogenic aerosols from the burning of fossil fuels contribute to climate forcing by both scattering and absorbing solar radiation, and estimates of climate forcing by light-absorbing primary particles have recently been published. While the mass and optical properties of emissions are needed for these studies, the available measurements do not characterize the low-technology burning that is thought to contribute a large fraction of light-absorbing material to the global budget. The authors have measured characteristics of particulate matter (PM) emitted from a small, low-technology lignite-burning plant. The PM emission factor is comparable to those used to calculate emission inventories of light-absorbing particles. However, the fine fraction, the absorbing fraction, and the absorption efficiency of the emissions are substantially below assumptions that have been made in inventories of black carbon emissions and calculations of climate forcing. The measurements suggest that nonblack, light-absorbing particles are emitted from low-technology coal burning. As the burning rate increases, the emitted absorption cross-section decreases, and the wavelength dependence of absorption becomes closer to that of black particles

  18. Possibilities for the emissions reduction of smoke particles in the flue emissions of diesel motors

    International Nuclear Information System (INIS)

    Mikarovska Vesna; Stojanovski, Vasko

    2000-01-01

    Taking into consideration the fact that the traffic needs have been increased, the international committee through its associations make efforts in order to find more effective measures for the environmental protection. In this contest the international regulations are very rigorous towards the quality and quantity of the exhaust gases emission from the engines with internal combustion. In this paper the normative and limitations of the exhaust emission of compression ignition engines are presented. Also, the results from experimental investigations of transport vehicles with different time of exploitation and passed kilometers are given, as well as the factors that influent to the smoke component reduction in exhaust emission. (Authors)

  19. Particle and VOC emission factor measurements for anthropogenic sources in West Africa

    Directory of Open Access Journals (Sweden)

    S. Keita

    2018-06-01

    Full Text Available A number of campaigns have been carried out to establish the emission factors of pollutants from fuel combustion in West Africa, as part of work package 2 (Air Pollution and Health of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa FP7 program. Emission sources considered here include wood (hevea and iroko and charcoal burning, charcoal making, open trash burning, and vehicle emissions, including trucks, cars, buses and two-wheeled vehicles. Emission factors of total particulate matter (TPM, elemental carbon (EC, primary organic carbon (OC and volatile organic compounds (VOCs have been established. In addition, emission factor measurements were performed in combustion chambers in order to reproduce field burning conditions for a tropical hardwood (hevea, and obtain particulate emission factors by size (PM0.25, PM1, PM2.5 and PM10. Particle samples were collected on quartz fiber filters and analyzed using gravimetric method for TPM and thermal methods for EC and OC. The emission factors of 58 VOC species were determined using offline sampling on a sorbent tube. Emission factor results for two species of tropical hardwood burning of EC, OC and TPM are 0.98 ± 0.46 g kg−1 of fuel burned (g kg−1, 11.05 ± 4.55 and 41.12 ± 24.62 g kg−1, respectively. For traffic sources, the highest emission factors among particulate species are found for the two-wheeled vehicles with two-stroke engines (2.74 g kg−1 fuel for EC, 65.11 g kg−1 fuel for OC and 496 g kg−1 fuel for TPM. The largest VOC emissions are observed for two-stroke two-wheeled vehicles, which are up to 3 times higher than emissions from light-duty and heavy-duty vehicles. Isoprene and monoterpenes, which are usually associated with biogenic emissions, are present in almost all anthropogenic sources investigated during this work and could be as significant as aromatic emissions in wood burning (1 g kg−1 fuel. EC is

  20. Light-particle emission and heavy residues from nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Caplar, R.; Hoelbling, S.; Gentner, R.; Lassen, L.; Oberstedt, A.

    1991-01-01

    We have investigated the interrelation between light-particle multiplicities and mass resp. charge distributions of heavy residues from complete and incomplete fusion of heavy ions. We have shown that a simple statistical model provides the possibility of quantitatively correlating heavy-residue distributions and corresponding light-particle multiplicities both at the Coulomb barrier and at higher energies where preequilibrium emission occurs. (author). 8 refs, 4 figs, 1 tab

  1. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weijun [Environment Research Institute, Shandong University, Jinan, Shandong 250100 (China); State Key of Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029 (China); Shi, Zongbo [School of Geography, Earth and Environmental Sciences, University of Birmingham (United Kingdom); Yan, Chao; Yang, Lingxiao; Dong, Can; Wang, Wenxing [Environment Research Institute, Shandong University, Jinan, Shandong 250100 (China)

    2013-01-15

    Intensive firecracker/firework displays during Chinese New Year (CNY) release fine particles and gaseous pollutants into the atmosphere, which may lead to serious air pollution. We monitored ambient PM{sub 2.5} and black carbon (BC) concentrations at a regional background site in the Yellow River Delta region during the CNY in 2011. Our monitoring data and MOUDI images showed that there was a haze event during the CNY. Daily average PM{sub 2.5} concentration reached 183 μg m{sup −3} during the CNY, which was six times higher than that before and after the CNY. Similarly, the black carbon (BC) concentrations were elevated during the CNY. In order to confirm whether the firecracker/firework related emission is the main source of the haze particles, we further analyzed the morphology and chemical composition of individual airborne particles collected before, during and after the CNY by using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM/EDS). We found that sulfate and organic-rich particles were dominant in the atmosphere before and after the CNY. In contrast, K-rich sulfates and other metal (e.g., Ba-rich, Al-rich, Mg-rich, and Fe-rich) particles were much more abundant than ammoniated sulfate particles during the CNY. These data suggest that it was the aerosol particles from the firecracker/firework emissions that induced the regional haze episode during the CNY. In individual organic and K-rich particles, we often found more than two types of nano-metal particles. These metal-bearing particles also contained abundant S but not Cl. In contrast, fresh metal-bearing particles from firecrackers generated in the laboratory contained abundant Cl with minor amounts of S. This indicates that the firecracker/firework emissions during the CNY significantly changed the atmospheric transformation pathway of SO{sub 2} to sulfate. - Highlights: ► TEM was used to observe the aged individual particles from firecrackers

  2. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions

    International Nuclear Information System (INIS)

    Li, Weijun; Shi, Zongbo; Yan, Chao; Yang, Lingxiao; Dong, Can; Wang, Wenxing

    2013-01-01

    Intensive firecracker/firework displays during Chinese New Year (CNY) release fine particles and gaseous pollutants into the atmosphere, which may lead to serious air pollution. We monitored ambient PM 2.5 and black carbon (BC) concentrations at a regional background site in the Yellow River Delta region during the CNY in 2011. Our monitoring data and MOUDI images showed that there was a haze event during the CNY. Daily average PM 2.5 concentration reached 183 μg m −3 during the CNY, which was six times higher than that before and after the CNY. Similarly, the black carbon (BC) concentrations were elevated during the CNY. In order to confirm whether the firecracker/firework related emission is the main source of the haze particles, we further analyzed the morphology and chemical composition of individual airborne particles collected before, during and after the CNY by using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM/EDS). We found that sulfate and organic-rich particles were dominant in the atmosphere before and after the CNY. In contrast, K-rich sulfates and other metal (e.g., Ba-rich, Al-rich, Mg-rich, and Fe-rich) particles were much more abundant than ammoniated sulfate particles during the CNY. These data suggest that it was the aerosol particles from the firecracker/firework emissions that induced the regional haze episode during the CNY. In individual organic and K-rich particles, we often found more than two types of nano-metal particles. These metal-bearing particles also contained abundant S but not Cl. In contrast, fresh metal-bearing particles from firecrackers generated in the laboratory contained abundant Cl with minor amounts of S. This indicates that the firecracker/firework emissions during the CNY significantly changed the atmospheric transformation pathway of SO 2 to sulfate. - Highlights: ► TEM was used to observe the aged individual particles from firecrackers/fireworks during the Chinese New

  3. African Anthropogenic Emissions Inventories for gases and particles from 1990 to 2016

    Science.gov (United States)

    Liousse, Catherine; Keita, Sekou; N'Datchoch Touré, Evelyne 1; Doumbia, Thierno; Yoboué, Véronique; Assamoi, Eric; Haslett, Sophie; Roblou, Laurent; Léon, Jean-François; Galy-Lacaux, Corinne; Akpo, Aristide; Coe, Hugh

    2017-04-01

    Presently, there is one African regional inventory dealing with biofuel and fossil fuel emissions (Liousse et al., 2014) and only global emission inventories including Africa. Developing a regional inventory for gases and particles is not an easy task: the DACCIWA project has allowed to organize a framework suitable for this development through regrouping several investigators. The aim is to set an African database on fuel consumption and new emission factor measurements and to include other sources of pollution than biofuel and fossil fuel such as flaring and waste burning yet not negligible in Africa. The inclusion of these sources in the new inventory and also new emissions factor measurements will reduce the uncertainties on anthropogenic emissions in Africa. This work will present the first version of African fossil fuel (FF), biofuel (BF), gas flaring and waste burning emission inventories for the 1990-2016 period for the major atmospheric compounds (gases and particles) provides up to date emission fields at 0.125° x 0.125° spatial resolution and yearly temporal resolution that can be used to model atmospheric composition and impacts over West Africa. New emission factor measurements on ground and in combustion chambers will be discussed. Temporal variability of emissions from 1990 to 2016 will be scrutinized. In parallel, uncertainties on existing biomass burning emission inventories will be presented. New emission inventories based on MODIS burnt area products and AMMABB methodology have been developed for the period 2000-2012. They will be compared with GFED and GFAS products. Finally, tests on these inventories in Regional Climate Model (RegCM) at African scale will be presented for different years.

  4. An experimental study of electron transfer and emission during particle-surface interactions

    International Nuclear Information System (INIS)

    McGrath, C.T.

    2000-09-01

    A new coincidence technique has been developed and used to study the secondary electron emission that arises during the interaction of ions with surfaces. This coincidence technique allows the secondary electron emission statistics due to the impact of singly, doubly and multiply charged ions on surfaces to be measured in coincidence with reflected particles, in specific charge states and with specific post-collision trajectories. This system has been used to study the impact of 8 keV H + ions on polycrystalline copper and aluminium targets. Under these conditions the potential emission contribution is negligible and the electron emission is almost entirely due to kinetic emission processes. The sub-surface contribution to the observed electron emission has been isolated using two newly developed models. These models provide valuable information about the depth and amount of surface penetration and on the probability for subsequent electron transport to the surface. The impact of 2 - 100 keV Xe q+ (q = 1 - 10) ions on polycrystalline copper has also been studied using this system. From the subsequent data the potential and kinetic contributions to secondary electron emission have been separated using a previously established model for potential emission. The resulting kinetic emission yield increases with increasing ion impact energy, consistent with current concepts on quasimolecular ionisation. For ions impacting at large incident angles evidence for sub-surface emission has also been observed. The degree of penetration increases with ion impact energy, consistent with current concepts on this effect. The formation of H - ions from incident H + ions has also been studied by measuring the secondary electron emission statistics in coincidence with reflected particles in specific final charge states. This preliminary data is consistent with a two-step process of Auger neutralisation followed by resonant electron capture to the affinity level. However this mechanism

  5. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    Science.gov (United States)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  6. Climate effects of a hypothetical regional nuclear war: Sensitivity to emission duration and particle composition

    Science.gov (United States)

    Pausata, Francesco S. R.; Lindvall, Jenny; Ekman, Annica M. L.; Svensson, Gunilla

    2016-11-01

    Here, we use a coupled atmospheric-ocean-aerosol model to investigate the plume development and climate effects of the smoke generated by fires following a regional nuclear war between emerging third-world nuclear powers. We simulate a standard scenario where 5 Tg of black carbon (BC) is emitted over 1 day in the upper troposphere-lower stratosphere. However, it is likely that the emissions from the fires ignited by bomb detonations include a substantial amount of particulate organic matter (POM) and that they last more than 1 day. We therefore test the sensitivity of the aerosol plume and climate system to the BC/POM ratio (1:3, 1:9) and to the emission length (1 day, 1 week, 1 month). We find that in general, an emission length of 1 month substantially reduces the cooling compared to the 1-day case, whereas taking into account POM emissions notably increases the cooling and the reduction of precipitation associated with the nuclear war during the first year following the detonation. Accounting for POM emissions increases the particle size in the short-emission-length scenarios (1 day/1 week), reducing the residence time of the injected particle. While the initial cooling is more intense when including POM emission, the long-lasting effects, while still large, may be less extreme compared to the BC-only case. Our study highlights that the emission altitude reached by the plume is sensitive to both the particle type emitted by the fires and the emission duration. Consequently, the climate effects of a nuclear war are strongly dependent on these parameters.

  7. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion

    Science.gov (United States)

    Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma

    Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.

  8. Mass restricting variables in semi-invisible production at the LHC

    Indian Academy of Sciences (India)

    Partha Konar

    2017-10-05

    Oct 5, 2017 ... in reconstructing such events with the momenta of invisible particles. This feature is .... Exclusive methods – These variables are defined with the assumption that the ... ble independent invariant mass variables using the SM.

  9. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    Science.gov (United States)

    Kiendler-Scharr, A.; Andres, S.; Bachner, M.; Behnke, K.; Broch, S.; Hofzumahaus, A.; Holland, F.; Kleist, E.; Mentel, T. F.; Rubach, F.; Springer, M.; Steitz, B.; Tillmann, R.; Wahner, A.; Schnitzler, J.-P.; Wildt, J.

    2012-01-01

    Stress-induced volatile organic compound (VOC) emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA) formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m-2 s-1 in non-transgenic controls (wild type WT) and nearly zero (plants (line RA22), respectively. Nucleation rates of up to 3600 cm-3 s-1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8) was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  10. Late-time particle emission from laser-produced graphite plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Hassanein, A.; Polek, M. [School of Nuclear Engineering, Center for Materials Under Extreme Environment, Purdue University, West Lafayette, Indiana 47907 (United States)

    2011-09-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  11. Late-time particle emission from laser-produced graphite plasma

    International Nuclear Information System (INIS)

    Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  12. Housing and sustainable development: perspectives offered by thermal solar energy. Particle emissions: prospective investigation of primary particle emissions in France by 2030

    International Nuclear Information System (INIS)

    Brignon, J.M.; Cauret, L.; Sambat, S.

    2004-09-01

    This publication proposes two investigation reports. A first study proposes a prospective analysis of the housing 'stock' in France and the evolution of global energy consumptions and CO 2 emissions by the housing sector, a prospective study of space heating and hot water needs by defining reference scenarios as well as a target scenario for heating consumption (based on the factor 4 of reduction of emissions by 2050), and an assessment of the contribution of the thermal solar energy applied to winter comfort under the form of direct solar floors and passive solar contributions, and applied to hot water by 2050. The contribution of the thermal solar energy is studied within its regulatory context. An analysis of urban forms is also performed to assess the potential of integration of renewable energy solutions in the existing housing stock, and thus to assess the morphological limits of an attempt of generalized solarization of roofs. The second study proposes a detailed identification and assessment of the various sources of primary particles (combustion, industrial processes, mineral extraction and processing, road transport, waste processing and elimination, agriculture, natural sources, forest fires), providing more precise results and methodological complements for some sources. It also proposes a prospective assessment of emissions and identifies the main factors of particle concentrations in urban environment

  13. Battery condenser system particulate emission factors for cotton gins: Particle size distribution characteristics

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  14. Light particle and gamma ray emission measurements in heavy-ion reactions. Progress report

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1982-01-01

    The development of a position-sensitive neutron detector and a data acquisition system at HHIRF for studying light particle emission in heavy ion reactions is described. Results are presented and discussed for the reactions 12 C + 158 Gd, 13 C + 157 Gd, and 20 Ne + 150 Nd

  15. Qualitative analysis of a powdered diamond sample by particle induced X-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Mabida, C.; Annegarn, H.J.; Renan, M.J.; Sellschop, J.P.F.

    The main purpose of this analysis was to determine whether nickel is present in diamond powder as a trace element. Particle induced X-ray emission (PIXE) showed unambiguously that nickel was present. Due to the convenience of PIXE in multielemental analysis, the investigations also include a number of other trace elements in the sample

  16. 14th International Conference on Particle Induced X-ray Emission ("PIXE 2015")

    Science.gov (United States)

    Przybyłowicz, Wojciech Józef; Pineda-Vargas, Carlos

    2015-11-01

    This special issue of Nuclear Instruments and Methods in Physics Research B contains the proceedings of the 14th International Conference on Particle Induced X-ray Emission ("PIXE 2015") that was held in Somerset West (South Africa) from 25th February to 3rd March 2015.

  17. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    Science.gov (United States)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  18. Particle number and particulate mass emissions of heavy duty vehicles in real operating conditions

    Directory of Open Access Journals (Sweden)

    Rymaniak Lukasz

    2017-01-01

    Full Text Available The article investigates the issue of PM emissions from HDV vehicles. The theoretical part discusses the problem of emission of this toxic compound in terms of particle structure taking into account the mass and dimensions of PM. Next, the methodology of the research and the results of the measurements performed under the conditions of actual operation were presented. The test drive routes were chosen in accordance with the operational purpose of the selected test vehicles. Two heavy vehicles were used for the study: a tractor with trailer and an eighteen meter long city bus. The test vehicles complied with the Euro V standard, with the second vehicle additionally complying with the EEV standard and being equipped with a DPF. The analysis of the research results was performed in the aspect of determining the operating time densities of vehicles and their drive systems as well as defining their emission characteristics and ecological indicators. PM and PN emissions were measured in the tests and particle size distribution was determined. It was shown that the exhaust gas after treatment system used in the city bus had a positive influence on the ecological indicators and had contributed to the reduction of PN emissions for heavier particles.

  19. Blind intercomparison of nuclear models for predicting charged particle emission

    International Nuclear Information System (INIS)

    Shibata, K.; Cierjacks, S.

    1994-01-01

    Neutron activation data are important for dosimetry, radiation-damage and production of long-lived activities. For fusion energy applications, it is required to develop 'low-activation materials' from the viewpoints of safety, maintenance and waste disposal. Existing evaluated activation cross-section libraries are to a large extent based on nuclear-model calculations. The former Nuclear Energy Agency Nuclear Data Committee, NEANDC, (presently replaced by the NEA Nuclear Science Committee) organized the working group on activation cross sections. The first meeting of the group was held in 1989, and it was then agreed that a blind intercomparison of nuclear-model calculations should be undertaken in order to test the predictive power of the theoretical calculations. As a first stage the working group selected the reactions 60g Co(n,p) 60 Fe and 60m Co(n,p) 60 Fe, for which no experimental data were available, in the energy range from 1 to 20 MeV. The preliminary results compiled at the NEA Data Bank were sent to each participant and a meeting was held during the International Conference on Nuclear Data for Science and Technology in Julich 1991 to discuss the results. Following the outcome of the discussion in Julich, it was decided to extend this intercomparison. In the second-stage calculation, the same optical-model parameters were employed for neutrons, protons and α-particles, i.e., V = 50 MeV, W = 10 MeV, r = 1.25 fm and a = 0.6 fm with the Woods-Saxon volume-type form factors. No spin-orbit interaction was considered. Concerning the level density, the Fermi gas model with a = A/8 MeV -1 was assumed without pairing corrections. Moreover, gamma-ray competition was neglected to simplify the calculation. This report describes the final results of the blind comparison. Section 2 deals with a survey of the received contributions. The final results are graphically presented in section 3. 67 figs., 1 tab., 12 refs

  20. INVISIBLE MURDERER: NEONATAL TETANUS

    Directory of Open Access Journals (Sweden)

    Yonca SONMEZ

    2006-06-01

    Full Text Available Neonatal tetanus (NNT has been secondary in the whole world in the death list of diseases which can be protected by the help of vaccine. It’s an important community health problem in the less-developed countries in which pre-birth care services are limited, assisting a mother at childbirth by uneducated people in dirty atmosphere and the immunity against tetanus is not enough. Studies have shown that minor part of the cases have been expressed in most of the countries. Because of that NNT have been called as “silent/invisible murderer”. In Turkey, in the year of 2003 it has been seen 15 cases, and 12 of them have been resulted in death. The methods which will be applied to carry out the elimination of NNT are; the vaccination of pregnant women with at least two doses tetanus toxoid and providing clean birth conditions for all of the pregnant women. However, in Turkey the proportion of the women who have two doses of tetanus vaccine is 41%. To eliminate NNT in our country, all the pregnant women must be attained, the ones who are attained must be presented with qualified pre-birth care service which also includes tetanus immunity and the births must be carried out under healty conditions. As smallpox and polio eradication, NNT elimination will also be accomplished by self-sacrificing works of personnel in primary health care. [TAF Prev Med Bull 2006; 5(3.000: 229-233

  1. The ''invisible'' radioactive scale

    International Nuclear Information System (INIS)

    Bjoernstad, T.; Ramsoey, T.

    1999-04-01

    Production and up-concentration of naturally occurring radioactive material (NORM) in the petroleum industry has attracted steadily increasing attention during the last 15 years. Most production engineers today associate this radioactivity with precipitates (scales) and sludges in production tubing, pumps, valves, separators, settling tanks etc., wherever water is being transported or treated. 226 Ra and 228 Ra are the most well known radioactive constituents in scale. Surprisingly little known is the radioactive contamination by 210 Pb and progeny 210 Bi and 210 Po. These are found in combination with 226 Ra in ordinary scale, often in layer of non-radioactive metallic lead in water transportation systems, but also in pure gas and condensate handling systems ''unsupported'' by 226 Ra, but due to transportation and decay of the noble gas 222 Rn in NG/LNG. This latter contamination may be rather thin, in some cases virtually invisible. When, in addition, the radiation energies are low enough for not being detectable on the equipment outer surface, its existence has for most people in the industry been a secret. The report discusses transportation and deposition mechanisms, detection methods and provides some examples of measured results from the North Sea on equipment sent for maintenance. It is concluded that a regular measurement program for this type of contamination should be mandatory under all dismantling processes of transportation and fluid handling equipment for fluids and gases offshore and onshore

  2. The Invisible Web

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    There is an invisible web beneath CERN that keeps the entire system going. It often goes unnoticed, yet is responsible for transmitting the vast amounts of data produced at CERN: the optical fibre network.   CERN’s 35,000 km of optical fibres are also used to synchronise the accelerators, take measurements of the beams and to send controls to the LHC. The network is maintained by a team of seven specialists working in the Cabling and Optical Fibres Section of the Engineering Department, while another eight specialists are responsible for copper control and direct current (DC) power cabling (412,000 cables at CERN). Although their work is essential to keep the LHC running, their record-breaking developments often go unspoken. In a recent seminar held on 14 October, the Optical Fibre team had the opportunity to present their exceptional work with radiation-resistant optical fibres. Daniel Ricci at the CCC optical fibre “starpoint”, which serves the LHC installation...

  3. Alpha-particle emission probabilities of ²³⁶U obtained by alpha spectrometry.

    Science.gov (United States)

    Marouli, M; Pommé, S; Jobbágy, V; Van Ammel, R; Paepen, J; Stroh, H; Benedik, L

    2014-05-01

    High-resolution alpha-particle spectrometry was performed with an ion-implanted silicon detector in vacuum on a homogeneously electrodeposited (236)U source. The source was measured at different solid angles subtended by the detector, varying between 0.8% and 2.4% of 4π sr, to assess the influence of coincidental detection of alpha-particles and conversion electrons on the measured alpha-particle emission probabilities. Additional measurements were performed using a bending magnet to eliminate conversion electrons, the results of which coincide with normal measurements extrapolated to an infinitely small solid angle. The measured alpha emission probabilities for the three main peaks - 74.20 (5)%, 25.68 (5)% and 0.123 (5)%, respectively - are consistent with literature data, but their precision has been improved by at least one order of magnitude in this work. © 2013 Published by Elsevier Ltd.

  4. Investigation of p,π+- charged particle correlations in π-C interactions at 5 GeV/c with emission of a particle in the backward direction

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Bayaramov, A.A.; Dzhelepov, V.P.; Dvornik, A.M.; Efremov, A.V.; Flyagin, V.B.; Lomakin, Yu.F.; Valkar, S.; Volodko, A.G.

    1976-01-01

    The π-C interactions at 5 GeV/c are studied. Angle correlation between two charged particles when a particle is emitted to the backward hemisphere has been investigated. Noticeable correlation appears if the angle between the two particles is 180 deg (lab.s.). It follows from this behaviour that the backward emission of a particle is due to the hard collision mechanism

  5. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions

    Science.gov (United States)

    Saari, Sampo; Karjalainen, Panu; Ntziachristos, Leonidas; Pirjola, Liisa; Matilainen, Pekka; Keskinen, Jorma; Rönkkö, Topi

    2016-02-01

    Particle and NOx emissions of an SCR equipped HDD truck were studied in real-world driving conditions using the "Sniffer" mobile laboratory. Real-time CO2 measurement enables emission factor calculation for NOx and particles. In this study, we compared three different emission factor calculation methods and characterised their suitability for real-world chasing experiments. The particle number emission was bimodal and dominated by the nucleation mode particles (diameter below 23 nm) having emission factor up to 1 × 1015 #/kgfuel whereas emission factor for soot (diameter above 23 nm that is consistent with the PMP standard) was typically 1 × 1014 #/kgfuel. The effect of thermodenuder on the exhaust particles indicated that the nucleation particles consisted mainly of volatile compounds, but sometimes there also existed a non-volatile core. The nucleation mode particles are not controlled by current regulations in Europe. However, these particles consistently form under atmospheric dilution in the plume of the truck and constitute a health risk for the human population that is exposed to those. Average NOx emission was 3.55 g/kWh during the test, whereas the Euro IV emission limit over transient testing is 3.5 g NOx/kWh. The on-road emission performance of the vehicle was very close to the expected levels, confirming the successful operation of the SCR system of the tested vehicle. Heavy driving conditions such as uphill driving increased both the NOx and particle number emission factors whereas the emission factor for soot particle number remains rather constant.

  6. Dilution effects on ultrafine particle emissions from Euro 5 and Euro 6 diesel and gasoline vehicles

    Science.gov (United States)

    Louis, Cédric; Liu, Yao; Martinet, Simon; D'Anna, Barbara; Valiente, Alvaro Martinez; Boreave, Antoinette; R'Mili, Badr; Tassel, Patrick; Perret, Pascal; André, Michel

    2017-11-01

    Dilution and temperature used during sampling of vehicle exhaust can modify particle number concentration and size distribution. Two experiments were performed on a chassis dynamometer to assess exhaust dilution and temperature on particle number and particle size distribution for Euro 5 and Euro 6 vehicles. In the first experiment, the effects of dilution (ratio from 8 to 4 000) and temperature (ranging from 50 °C to 150 °C) on particle quantification were investigated directly from tailpipe for a diesel and a gasoline Euro 5 vehicles. In the second experiment, particle emissions from Euro 6 diesel and gasoline vehicles directly sampled from the tailpipe were compared to the constant volume sampling (CVS) measurements under similar sampling conditions. Low primary dilutions (3-5) induced an increase in particle number concentration by a factor of 2 compared to high primary dilutions (12-20). Low dilution temperatures (50 °C) induced 1.4-3 times higher particle number concentration than high dilution temperatures (150 °C). For the Euro 6 gasoline vehicle with direct injection, constant volume sampling (CVS) particle number concentrations were higher than after the tailpipe by a factor of 6, 80 and 22 for Artemis urban, road and motorway, respectively. For the same vehicle, particle size distribution measured after the tailpipe was centred on 10 nm, and particles were smaller than the ones measured after CVS that was centred between 50 nm and 70 nm. The high particle concentration (≈106 #/cm3) and the growth of diameter, measured in the CVS, highlighted aerosol transformations, such as nucleation, condensation and coagulation occurring in the sampling system and this might have biased the particle measurements.

  7. Influence of suspended particles on the emission of organophosphate flame retardant from insulation boards.

    Science.gov (United States)

    Lazarov, Borislav; Swinnen, Rudi; Poelmans, David; Spruyt, Maarten; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2016-09-01

    The influence of the presence of the so-called seed particles on the emission rate of Tris (1-chloroisopropyl) phosphate (TCIPP) from polyisocyanurate (PIR) insulation boards was investigated in this study. Two Field and Laboratory Emission Test cells (FLEC) were placed on the surface of the same PIR board and respectively supplied with clean air (reference FLEC) and air containing laboratory-generated soot particles (test FLEC). The behavior of the area-specific emission rates (SER A ) over a time period of 10 days was studied by measuring the total (gas + particles) concentrations of TCIPP at the exhaust of each FLEC. The estimated SER A of TCIPP from the PIR board at the quasi-static equilibrium were found to be 0.82 μg m(-2) h(-1) in the absence of seed particles, while the addition of soot particles led to SER A of 2.16 μg m(-2) h(-1). This indicates an increase of the SER A of TCIPP from the PIR board with a factor of 3 in the presence of soot particles. The TCIPP partition coefficient to soot particles at the quasi-static equilibrium was 0.022 ± 0.012 m(3) μg(-1). In the next step, the influence of real-life particles on TCIPP emission rates was investigated by supplying the test FLEC with air from a professional kitchen where mainly frying and baking activities took place. Similar to the reference FLEC outcomes, SER A was also found to increase in this real-life experiment over a time period of 20 days by a factor 3 in the presence of particles generated during cooking activities. The median value of estimated particle-gas coefficient for this test was 0.062 ± 0.037 m(3) μg(-1).

  8. Diesel passenger car PM emissions: From Euro 1 to Euro 4 with particle filter

    Science.gov (United States)

    Tzamkiozis, Theodoros; Ntziachristos, Leonidas; Samaras, Zissis

    2010-03-01

    This paper examines the impact of the emission control and fuel technology development on the emissions of gaseous and, in particular, PM pollutants from diesel passenger cars. Three cars in five configurations in total were measured, and covered the range from Euro 1 to Euro 4 standards. The emission control ranged from no aftertreatment in the Euro 1 case, an oxidation catalyst in Euro 2, two oxidation catalysts and exhaust gas recirculation in Euro 3 and Euro 4, while a catalyzed diesel particle filter (DPF) fitted in the Euro 4 car led to a Euro 4 + DPF configuration. Both certification test and real-world driving cycles were employed. The results showed that CO and HC emissions were much lower than the emission standard over the hot-start real-world cycles. However, vehicle technologies from Euro 2 to Euro 4 exceeded the NOx and PM emission levels over at least one real-world cycle. The NOx emission level reached up to 3.6 times the certification level in case of the Euro 4 car. PM were up to 40% and 60% higher than certification level for the Euro 2 and Euro 3 cars, while the Euro 4 car emitted close or slightly below the certification level over the real-world driving cycles. PM mass reductions from Euro 1 to Euro 4 were associated with a relevant decrease in the total particle number, in particular over the certification test. This was not followed by a respective reduction in the solid particle number which remained rather constant between the four technologies at 0.86 × 10 14 km -1 (coefficient of variation 9%). As a result, the ratio of solid vs. total particle number ranged from ˜50% in Euro 1-100% in Euro 4. A significant reduction of more than three orders of magnitude in solid particle number is achieved with the introduction of the DPF. However, the potential for nucleation mode formation at high speed from the DPF car is an issue that needs to be considered in the over all assessment of its environmental benefit. Finally, comparison of the

  9. Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization.

    Science.gov (United States)

    Domínguez-Sáez, Aida; Viana, Mar; Barrios, Carmen C; Rubio, Jose R; Amato, Fulvio; Pujadas, Manuel; Querol, Xavier

    2012-10-16

    A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source apportionment by Positive Matrix Factorization (PMF) was carried out to interpret the real-world driving conditions. Three emission patterns were identified: (F1) cruise conditions, with medium-high speeds, contributing in this circuit with 60% of total particle number and a particle size distribution dominated by particles >52 nm and around 60 nm; (F2) transient conditions, stop-and-go conditions at medium-high speed, contributing with 25% of the particle number and mainly emitting particles in the nucleation mode; and (F3) creep-idle conditions, representing traffic congestion and frequent idling periods, contributing with 14% to the total particle number and with particles in the nucleation mode (emissions depending on particle size and driving conditions. Differences between real-world emission patterns and regulatory cycles (NEDC) are also presented, which evidence that detecting particle number emissions real-world driving conditions.

  10. Invisible Colleges: A Literature Review

    Directory of Open Access Journals (Sweden)

    Rassoul Zavaraqi

    2010-09-01

    Full Text Available Generation and consumption of information are among the functions unique to higher education. Scholarly communication plays an essential role in this process to such a degree that some consider it as being the cornerstone of science. Thus it could be said that no education could be realized without communication. Scientometrists analyze and assess formal scientific communications by studying the level of citation of such scientific outputs as books, journals and etc. Nevertheless, there is a special type of communication that lacks any external manifestation such as citations. Informal learning and education are indebted to such communication. This kind of informal communication for generating knowledge leads to an informal association among the scholars, which is called as "The invisible college". There are various definitions and interpretations concerning an invisible college. According to Price’s opinion, an invisible college is comprised of over a hundred colleagues that are engaged in communication with one another. He believed that members in such an association are reasonably in touch with and could consult and influence one another. The present paper, by reacquainting with the concept of invisible college, would review the role of informal links in the production of knowledge and higher education system, various assessment methods and critical notes, as well as the impact of modern ICT tools on the concept of invisible college.

  11. Measurement of particle emission in automobil exhaust - application of continuous radiometric aerosol measurement to the emission of diesel engines

    International Nuclear Information System (INIS)

    Krasenbrink, A.; Georgi, B.

    1989-01-01

    The well-known method of measuring continuously dust by β-absorption is transferred to the problem of particle emission in automobile exhaust. With two similar dust-monitors FH62 having different sampling air flow rates and two low-pressure impactors the reliability of radiometric mass determination was verified. First static experiments with diesel soot showed the necessity of a dilution system, a new mass calibration with regard to the changed β-absorptivity and a quicker calculation of concentration for realtime measurements. (orig.) [de

  12. African Anthropogenic Combustion Emissions: Estimate of Regional Mortality Attributable to Fine Particle Concentrations in 2030

    Science.gov (United States)

    Liousse, C.; Roblou, L.; Assamoi, E.; Criqui, P.; Galy-Lacaux, C.; Rosset, R.

    2014-12-01

    Fossil fuel (traffic, industries) and biofuel (domestic fires) emissions of gases and particles in Africa are expected to significantly increase in the near future, particularly due to rapid growth of African cities and megacities. In this study, we will present the most recent developments of African combustion emission inventories, including African specificities. Indeed, a regional fossil fuel and biofuel inventory for gases and particulates described in Liousse et al. (2014) has been developed for Africa at a resolution of 0.25° x 0.25° for the years 2005 and 2030. For 2005, the original database of Junker and Liousse (2008) was used after modification for updated regional fuel consumption and emission factors. Two prospective inventories for 2030 are derived based on Prospective Outlook on Long-term Energy Systems (POLES) model (Criqui, 2001). The first is a reference scenario (2030ref) with no emission controls and the second is for a "clean" scenario (2030ccc*) including Kyoto policy and African specific emission control. This inventory predicts very large increases of pollutant emissions in 2030 (e.g. contributing to 50% of global anthropogenic organic particles), if no emission regulations are implemented. These inventories have been introduced in RegCM4 model. In this paper we will focus on aerosol modelled concentrations in 2005, 2030ref and 2030ccc*. Spatial distribution of aerosol concentrations will be presented with a zoom at a few urban and rural sites. Finally mortality rates (respiratory, cardiovascular) caused by anthropogenic PM2.5 increase from 2005 to 2030, calculated following Lelieveld et al. (2013), will be shown for each scenarios. To conclude, this paper will discuss the effectiveness of scenarios to reduce emissions, aerosol concentrations and mortality rates, underlining the need for further measurements scheduled in the frame of the new DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions) program.

  13. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    Science.gov (United States)

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model

    OpenAIRE

    J. T. Kelly; P. V. Bhave; C. G. Nolte; U. Shankar; K. M. Foley

    2009-01-01

    Chemical processing of sea-salt particles in coastal environments significantly impacts concentrations of particle components and gas-phase species and has implications for human exposure to particulate matter and nitrogen deposition to sensitive ecosystems. Emission of sea-salt particles from the coastal surf zone is known to be elevated compared to that from the open ocean. Despite the importance of sea-salt emissions and chemical processing, the US EPA's Community Multiscale Air Quality (C...

  15. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles

    Science.gov (United States)

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Feng, Qian; Chen, Yiran; Chen, Changhong; Tan, Piqiang; Yao, Di

    2013-10-01

    On-road emission measurements of gasoline- and diesel-fueled vehicles were conducted by a portable emission measurement system (PEMS) in Shanghai, China. Horiba OBS 2200 and TSI EEPS 3090 were employed to detect gaseous and ultrafine particle emissions during the tests. The driving-based emission factors of gaseous pollutants and particle mass and number were obtained on various road types. The average NOx emission factors of the diesel bus, diesel car, and gasoline car were 8.86, 0.68, and 0.17 g km-1, all of which were in excess of their emission limits. The particle number emission factors were 7.06 × 1014, 6.08 × 1014, and 1.57 × 1014 km-1, generally higher than the results for similar vehicle types reported in the previous studies. The size distributions of the particles emitted from the diesel vehicles were mainly concentrated in the accumulation mode, while those emitted from the gasoline car were mainly distributed in the nucleation mode. Both gaseous and particle emission rates exhibit significant correlations with the change in vehicle speed and power demand. The lowest emission rates for each vehicle type were produced during idling. The highest emission rates for each vehicle type were generally found in high-VSP bins. The particle number emission rates of the gasoline car show the strongest growth trend with increasing VSP and speed. The particle number emission for the gasoline car increased by 3 orders of magnitude from idling to the highest VSP and driving speed conditions. High engine power caused by aggressive driving or heavy loads is the main contributor to high emissions for these vehicles in real-world situations.

  16. Temperature and burning history affect emissions of greenhouse gases and aerosol particles from tropical peatland fire

    Science.gov (United States)

    Kuwata, Mikinori; Kai, Fuu Ming; Yang, Liudongqing; Itoh, Masayuki; Gunawan, Haris; Harvey, Charles F.

    2017-01-01

    Tropical peatland burning in Asia has been intensifying over the last decades, emitting huge amounts of gas species and aerosol particles. Both laboratory and field studies have been conducted to investigate emission from peat burning, yet a significant variability in data still exists. We conducted a series of experiments to characterize the gas and particulate matter emitted during burning of a peat sample from Sumatra in Indonesia. Heating temperature of peat was found to regulate the ratio of CH4 to CO2 in emissions (ΔCH4/ΔCO2) as well as the chemical composition of particulate matter. The ΔCH4/ΔCO2 ratio was larger for higher temperatures, meaning that CH4 emission is more pronounced at these conditions. Mass spectrometric analysis of organic components indicated that aerosol particles emitted at higher temperatures had more unsaturated bonds and ring structures than that emitted from cooler fires. The result was consistently confirmed by nuclear magnetic resonance analysis. In addition, CH4 emitted by burning charcoal, which is derived from previously burned peat, was lower by at least an order of magnitude than that from fresh peat. These results highlight the importance of both fire history and heating temperature for the composition of tropical peat-fire emissions. They suggest that remote sensing technologies that map fire histories and temperatures could provide improved estimates of emissions.

  17. Particle correlation based measurement of the mean time between the deuteron and proton emissions

    International Nuclear Information System (INIS)

    Ghisalberti, C.; Lebrun, C.; Sezac, L.; Ardouin, D.; Erazmus, B.; Eudes, P.; Ghuilbault, F.; Lautridou, P.; Rahmani, J.A.; Reposeur, T.; Chbihi, A.; Galin, J.; Guerreau, D.; Morjean, M.; Peghaire, A.; Lednicky, R.; Pluta, J.; Quebert, J.; Siemssen, R.

    1997-01-01

    Proton-deuteron correlations at small relative momenta have been measured with the reaction 208 Pb + 93 Nb at 29 MeV per nucleon at GANIL using the ORION neutron calorimeter. By selecting the proton-deuteron pairs according to the angle between their relative velocity and the pair center of mass velocity of the emitting source one can determine the average value of the time delay between the emission of these particles. The results reported in this paper for the first time at GANIL energies agree with the values published before in the literature i.e. 600 and 1500 fm/c for deuteron and proton emission times, respectively, as obtained in the reactions Ar + Ag at E/A = 17 MeV. At higher energies measurements with a B.U.U. calorimeter recording the collisions 14 N + 27 Al at E/A = 75 MeV show that in this case the proton emission begins at 15 fm/c and decreases slowly in time, while the deuterons are emitted at 50 fm/c and present a steep falling. This result agrees with a negative average value of d - t p >. Thus, the method presented in this report for determining the order of emission is of great interest for checking the theoretical description of the particle emission all the way in the collision dynamical process

  18. GAMMA-RAY EMISSION OF ACCELERATED PARTICLES ESCAPING A SUPERNOVA REMNANT IN A MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Ellison, Donald C.; Bykov, Andrei M.

    2011-01-01

    We present a model of gamma-ray emission from core-collapse supernovae (SNe) originating from the explosions of massive young stars. The fast forward shock of the supernova remnant (SNR) can accelerate particles by diffusive shock acceleration (DSA) in a cavern blown by a strong, pre-SN stellar wind. As a fundamental part of nonlinear DSA, some fraction of the accelerated particles escape the shock and interact with a surrounding massive dense shell producing hard photon emission. To calculate this emission, we have developed a new Monte Carlo technique for propagating the cosmic rays (CRs) produced by the forward shock of the SNR, into the dense, external material. This technique is incorporated in a hydrodynamic model of an evolving SNR which includes the nonlinear feedback of CRs on the SNR evolution, the production of escaping CRs along with those that remain trapped within the remnant, and the broadband emission of radiation from trapped and escaping CRs. While our combined CR-hydro-escape model is quite general and applies to both core collapse and thermonuclear SNe, the parameters we choose for our discussion here are more typical of SNRs from very massive stars whose emission spectra differ somewhat from those produced by lower mass progenitors directly interacting with a molecular cloud.

  19. Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating.

    Science.gov (United States)

    Koivisto, Antti J; Jensen, Alexander C Ø; Kling, Kirsten I; Kling, Jens; Budtz, Hans Christian; Koponen, Ismo K; Tuinman, Ilse; Hussein, Tareq; Jensen, Keld A; Nørgaard, Asger; Levin, Marcus

    2018-01-05

    Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO 2 )-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m 3 test chamber while measuring concentrations of 5.6nm to 31μm-size particles and volatile organic compounds (VOC), as well as particle deposition onto room surfaces and on the spray gun user hand. The particle emission and deposition rates were quantified using aerosol mass balance modelling. The geometric mean particle number emission rate was 1.9×10 10 s -1 and the mean mass emission rate was 381μgs -1 . The respirable mass emission-rate was 65% lower than observed for the entire measured size-range. The mass emission rates were linearly scalable (±ca. 20%) to the process duration. The particle deposition rates were up to 15h -1 for deposited particles consisted of mainly TiO 2 , TiO 2 mixed with Cl and/or Ag, TiO 2 particles coated with carbon, and Ag particles with size ranging from 60nm to ca. 5μm. As expected, no significant VOC emissions were observed as a result of spraying. Finally, we provide recommendations for exposure model parameterization. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation.

    Science.gov (United States)

    Jung, Heejung; Kittelson, David B; Zachariah, Michael R

    2006-08-15

    Biodiesel is one of the most promising alternative diesel fuels. As diesel emission regulations have become more stringent, the diesel particulate filter (DPF) has become an essential part of the aftertreatment system. Knowledge of kinetics of exhaust particle oxidation for alternative diesel fuels is useful in estimating the change in regeneration behavior of a DPF with such fuels. This study examines the characteristics of diesel particulate emissions as well as kinetics of particle oxidation using a 1996 John Deere T04045TF250 off-highway engine and 100% soy methyl ester (SME) biodiesel (B100) as fuel. Compared to standard D2 fuel, this B100 reduced particle size, number, and volume in the accumulation mode where most of the particle mass is found. At 75% load, number decreased by 38%, DGN decreased from 80 to 62 nm, and volume decreased by 82%. Part of this decrease is likely associated with the fact that the particles were more easily oxidized. Arrhenius parameters for the biodiesel fuel showed a 2-3times greater frequency factor and approximately 6 times higher oxidation rate compared to regular diesel fuel in the range of 700-825 degrees C. The faster oxidation kinetics should facilitate regeneration when used with a DPF.

  1. A study of complex particle emission in the pre-equilibrium statistical model

    International Nuclear Information System (INIS)

    Miao Rongzhi; Wu Guohua

    1986-01-01

    A concept of the quasi-composite system in the process of the pre-equilibrium emission is presented in this paper. On the basis of the principle of detailed balance, the existence of the factor, [γ β ω(π β , 0, ν β , 0, E-U)g π,ν ], has been proved with an account of the distinguishabllity between protons and neutrons. A formula for the rate of the complex particle emission in the pre-equilibrium process can be obtained. The theoretical calculation results fit the experimental data quite well, especially in the high energy part of the energy spectrum the agreement are much better than ever before

  2. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    Directory of Open Access Journals (Sweden)

    A. Kiendler-Scharr

    2012-01-01

    Full Text Available Stress-induced volatile organic compound (VOC emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m−2 s−1 in non-transgenic controls (wild type WT and nearly zero (<0.5 nmol m−2 s−1 in isoprene emission-repressed plants (line RA22, respectively. Nucleation rates of up to 3600 cm−3 s−1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8 was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  3. Reducing field emission in the superconducting rf cavities for the next generation of particle accelerators

    International Nuclear Information System (INIS)

    Shu, Q.S.; Hartung, W.; Leibovich, A.; Kirchgessner, J.; Moffat, D.; Padamsee, H.; Rubin, D.; Sears, J.

    1991-01-01

    This paper reports on field emission, which is an obstacle to reaching the higher fields called for in future applications of superconducting radio frequency cavities to particle accelerators. The authors used heat treatment up to 1500 degrees C in an ultra-high vacuum furnace, along with processing of cavities and temperature mapping, to suppress field emission and analyze emitter properties. In 27 tests of 1-cell 1500 MHz fired accelerating cavities, on the average the accelerating field E acc increased to 24 MV/m (H pk = 1250 Oe) from 13 MV/m with chemical treatment alone; the highest E acc reached was 30.5 MV/m

  4. Characterization of particle bound organic carbon from diesel vehicles equipped with advanced emission control technologies.

    Science.gov (United States)

    Pakbin, Payam; Ning, Zhi; Schauer, James J; Sioutas, Constantinos

    2009-07-01

    A chassis dynamometer study was carried out by the University of Southern California in collaboration with the Air Resources Board (CARB) to investigate the physical, chemical, and toxicological characteristics of diesel emissions of particulate matter (PM) from heavy-duty vehicles. These heavy-duty diesel vehicles (HDDV) were equipped with advanced emission control technologies, designed to meet CARB retrofit regulations. A HDDV without any emission control devices was used as the baseline vehicle. Three advanced emission control technologies; continuously regenerating technology (CRT), zeolite- and vanadium-based selective catalytic reduction technologies (Z-SCRT and V-SCRT), were tested under transient (UDDS) (1) and cruise (80 kmph) driving cycles to simulate real-world driving conditions. This paper focuses on the characterization of the particle bound organic species from the vehicle exhaust. Physical and chemical properties of PM emissions have been reported by Biswas et al. Atmos. Environ. 2008, 42, 5622-5634) and Hu et al. (Atmos. Environ. 2008, submitted) Significant reductions in the emission factors (microg/mile) of particle bound organic compounds were observed in HDDV equipped with advanced emission control technologies. V-SCRT and Z-SCRT effectively reduced PAHs, hopanes and steranes, n-alkanes and acids by more than 99%, and often to levels below detection limits for both cruise and UDDS cycles. The CRT technology also showed similar reductions with SCRT for medium and high molecular weight PAHs, acids, but with slightly lower removal efficiencies for other organic compounds. Ratios of particle bound organics-to-OC mass (microg/g) from the baseline exhaust were compared with their respective ratios in diesel fuel and lubricating oil, which revealed that hopanes and steranes originate from lubricating oil, whereas PAHs can either form during the combustion process or originate from diesel fuel itself. With the introduction of emission control

  5. Alpha-particle emission probabilities in the decay of 239Pu

    International Nuclear Information System (INIS)

    Garcia-Torano, E.; Acena, M.L.; Bortels, G.; Mouchel, D.

    1993-01-01

    The alpha-particle emission probabilities (P α ) of 239 Pu have been measured using material of highest enrichment and radiochemical purity, thin sources produced by vacuum sublimation, and high-resolution α spectroscopy with ion-implanted Si detectors (PIPS). The results for the major emissions are P α0.07 =0.7077±0.0014, P α13 =0.1711±0.0014 and P α51 =0.1194±0.0007, which for the P α0.07 is about 3.6% lower than the recent evaluated value in the literature. (orig.)

  6. Dynamical decay of nuclei at high temperature: competition between particle emission and fission decay

    International Nuclear Information System (INIS)

    Delagrange, H.; Gregoire, C.; Scheuter, F.; Abe, Y.

    1985-06-01

    A generalized diffusion equation is propounded to follow the time evolution of an excited nucleus towards fission including along the particle decay. This theoretical model is built in order to try to analyse the anomalous behaviour of particle emission observed in many experimental data for heavy-ion induced reactions. Some calculations for the systems 194 Hg, 170 Yb and 248 Cf are presented. A possible extension of this generalized formalism is suggested to deal more consistently with the experimental data. 52 refs. 10 figs.

  7. Energy spectra and asymmetry of charged particle emission in the muon minus capture by nuclei

    International Nuclear Information System (INIS)

    Balandin, M.P.; Grebenyuk, V.M.; Sinov, V.G.; Konin, A.D.

    1978-01-01

    Energy spectra of separated-by-mass single-charged particles at the capture of 130 MeV negative muons by carbon, oxygen, magnesium and sulphur have been measured. The experimental results are compared with the theoretical calculations at the assumption of preequilibrium decay of collective states described by the hydrodynamical model. The measurement of asymmetry of charged particle emission in sulphur and megnesium was carried out by hte method of muon spin precession in a magnetic field. Theoretical curves describe correctly the exponential spectra character, but the yields obtained are 2-3 times less than the experimental results

  8. Charged particle emission effects on the characteristics of glow discharges with oscillating electrons

    CERN Document Server

    Nikulin, S P

    2001-01-01

    One discusses the effect of selection of charged particles on conditions to maintain and the characteristics of a glow discharge with oscillating electrons. It is shown that there is a pressure dependent optimal level of ion selection when the energy efficiency of ion source reaches its maximum value. It is determined that departure of fast ionizing electrons affects negatively the discharge maintenance wile emission of slow plasma electrons may promote maintenance of a discharge high current shape. It is shown that high efficient electron emission without violation of a discharge stability may take place in a magnetic field due to different nature of spatial distributions of fast and slow particles in discharges with electron oscillation

  9. Particle induced X-ray emission and complementary nuclear methods for trace element determination; Plenary lecture

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, S A.E. [Lund Univ. (Sweden). Dept. of Nuclear Physics

    1992-03-01

    In this review the state-of-the-art of particle induced X-ray emission (PIXE) methods for the determination of trace elements is described. The developmental work has mostly been carried out in nuclear physics laboratories, where accelerators are available, but now the increased interest has led to the establishment of other dedicated PIXE facilities. The reason for this interest is the versatility, high sensitivity and multi-element capability of PIXE analysis. A further very important advantage is that PIXE can be combined with the microbeam technique, which makes elemental mapping with a spatial resolution of about 1 {mu}m possible. As a technique, PIXE can also be combined with other nuclear reactions such as elastic scattering and particle-induced gamma emission, so that light elements can be determined. The usefulness of PIXE is illustrated by a number of typical applications in biology, medicine, geology, air pollution research, archaeology and the arts. (author).

  10. Dynamical aspects of particle emission in binary dissipative collisions -effects on hot-nuclei formation

    International Nuclear Information System (INIS)

    Eudes, Ph.; Basrak, Z.; Sebille, F.

    1997-01-01

    Characteristics of charged-particle emission in heavy-ion reactions have been studied in the framework of the semiclassical Landau-Vlasov approach for the 40 Ar + 27 Al collisions at 65 MeV/u. The reaction mechanism is dominated by binary dissipative collisions. After an abundant prompt emission coming from the overlapping region between the target and the projectile, two excited nuclei, the quasi-target and the quasi-projectile, emerge from the collision. To shed some light on the role played by dynamical effects, light-charged particle observables, which are currently used as an experimental signature a of hot equilibrated nucleus, have been carefully investigated. (K.A.)

  11. Particles and emissions from a diesel engine equipped with a humid air motor system

    Energy Technology Data Exchange (ETDEWEB)

    Nord, Kent; Zurita, Grover; Tingvall, Bror; Haupt, Dan [Luleaa Univ. of Technology (Sweden). Div. of Environmental Technology

    2002-02-01

    A system for reduction of NO{sub x}, humid air motor system (HAM), has been connected to an eleven liters diesel engine. Earlier studies have demonstrated the system's capacity to lower NO{sub x}-emissions from diesel engines. The present study is directed to investigate their influence of the system on the emissions of particles, aldehydes and noise while at the same time monitoring essential engine parameters, water consumption and verifying the NO{sub x} reducing ability. The system has been tested under the various conditions stated in 13-mode cycle ECE R-49. Additional tests have been necessary for sampling and measurements of particles and noise. The results show that HAM caused a large reduction of the NO{sub x} emissions while the engine performance was almost unaffected. Average reduction of NO{sub x} during the different modes of ECE R-49 was 51,1%. The reduction was directly related to the humidity of the inlet air and a further reduction can be anticipated with higher humidity. Samples have also been taken for acetaldehydes and formaldehyde. The results suggest a large reduction of aldehydes, in the range of 78 to 100%, when using HAM. Unfortunately it cannot be excluded that the results obtained are a result of a combination of high air humidity and the sampling technique used. The influence of the system on the emission of hydrocarbons was negligible while a moderate increase in the emission of carbon monoxide was noticed. No confident relationship between air humidity and the observed effects could be detected. Particle number concentrations and size distribution have also been measured. The measurements showed that the particle number concentrations was usually increased when HAM was coupled to the engine. The increase in particle number concentration, observed in five out of six running modes, varied between 46 and 148%. There was no trend indicating a shift in mean particle diameter when using HAM. Noise level and cylinder pressure have also

  12. Light particle and gamma ray emission measurements in heavy ion reactions. Progress report

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1983-01-01

    Studies of neutron and charged particle emission in heavy ion reactions using the facilities at the HHIRF and the new computer facilities at Georgia State are briefly described. A progress report for 1982 to 1983 is combined with a proposal for work to be performed during 1983 to 1984. Present activities and immediate plans for a run already approved by the Program Advisory Committee of the HHIRF are discussed

  13. Pre-scission particle and gamma-ray emission in heavy-ion induced fission

    International Nuclear Information System (INIS)

    Newton, J.O.

    1989-02-01

    An introduction is given to the physics of the equilibrium transition model and of dissipative nuclear dynamics. Experimental data on pre-scission particle and gamma-ray emission and their interpretation are reviewed. They appear to indicate overdamped motion of the nuclear fluid. A time scale for compound-nucleus fission of about 30x10 -21 sec or greater is indicated, whilst that for quasi- or fast-fission is somewhat shorter. 99 refs., 28 figs

  14. Particle induced X-ray emission for quantitative trace-element analysis using the Eindhoven cyclotron

    International Nuclear Information System (INIS)

    Kivits, H.

    1980-01-01

    Development of a multi-elemental trace analysis technique using PIXE (Particle Induced X-ray Emission), was started almost five years ago at the Eindhoven University of Technology, in the Cyclotron Applications Group of the Physics Department. The aim of the work presented is to improve the quantitative aspects of trace-element analysis with PIXE, as well as versatility, speed and simplicity. (Auth.)

  15. Eddy covariance measurements and parameterisation of traffic related particle emissions in an urban environment

    Directory of Open Access Journals (Sweden)

    E. M. Mårtensson

    2006-01-01

    Full Text Available Urban aerosol sources are important due to the health effects of particles and their potential impact on climate. Our aim has been to quantify and parameterise the urban aerosol source number flux F (particles m−2 s−1, in order to help improve how this source is represented in air quality and climate models. We applied an aerosol eddy covariance flux system 118.0 m above the city of Stockholm. This allowed us to measure the aerosol number flux for particles with diameters >11 nm. Upward source fluxes dominated completely over deposition fluxes in the collected dataset. Therefore, the measured fluxes were regarded as a good approximation of the aerosol surface sources. Upward fluxes were parameterised using a traffic activity (TA database, which is based on traffic intensity measurements. The footprint (area on the surface from which sources and sinks affect flux measurements, located at one point in space of the eddy system covered road and building construction areas, forests and residential areas, as well as roads with high traffic density and smaller streets. We found pronounced diurnal cycles in the particle flux data, which were well correlated with the diurnal cycles in traffic activities, strongly supporting the conclusion that the major part of the aerosol fluxes was due to traffic emissions. The emission factor for the fleet mix in the measurement area EFfm=1.4±0.1×1014 veh−1 km−1 was deduced. This agrees fairly well with other studies, although this study has an advantage of representing the actual effective emission from a mixed vehicle fleet. Emission from other sources, not traffic related, account for a F0=15±18×106 m−2 s−1. The urban aerosol source flux can then be written as F=EFfmTA+F0. In a second attempt to find a parameterisation, the friction velocity U* normalised with the average friction velocity has been included, F=EF . This parameterisation results in a somewhat reduced emission factor, 1.3×1014 veh

  16. Indoor emission, dispersion and exposure of total particle-bound polycyclic aromatic hydrocarbons during cooking

    Science.gov (United States)

    Gao, Jun; Jian, Yating; Cao, Changsheng; Chen, Lei; Zhang, Xu

    2015-11-01

    Cooking processes highly contribute to indoor polycyclic aromatic hydrocarbon (PAH) pollution. High molecular weight and potentially carcinogenic PAHs are generally found attached to small particles, i.e., particulate phase PAHs (PPAHs). Due to the fact that indoor particle dynamics have been clear, describing the indoor dynamics of cooking-generated PPAHs within a specific time span is possible. This paper attempted to quantify the dynamic emission rate, simultaneous spatial dispersion and individual exposure of PPAHs using a cooking source. Experiments were conducted in a real-scale kitchen chamber to elucidate the time-resolved emission and effect of edible oil temperature and mass. Numerical simulations based on indoor particle dynamics were performed to obtain the spatial dispersion and individual inhalation intake of PPAHs under different emission and ventilation conditions. The present work examined the preheating cooking stage, at which edible oil is heated up to beyond its smoke point. The dynamic emission rate peak point occurred much earlier than the oil heating temperature. The total PPAH emission ranged from 2258 to 6578 ng upon heating 40-85 g of edible oil. The overall intake fraction by an individual within a period of 10 min, including 3 min for heating and 7 min for natural cooling, was generally ∼1/10,000. An important outcome of this work was that the overall intake fraction could be represented by multiplying the range hood escape efficiency by the inhalation-to-ventilation rate ratio, which would be no greater than the same ratio. The methodology and results of this work were extendible for the number-based assessment of PPAHs. This work is expected to help us understand the health risks due to inhalation exposure to cooking-generated PPAHs in the kitchen.

  17. Effects of fibre-form nanostructures on particle emissions from a tungsten surface in plasmas

    International Nuclear Information System (INIS)

    Takamura, S.; Miyamoto, T.; Ohno, N.

    2012-01-01

    The effects of fibre-form nanostructure of a tungsten surface on both electron emission and sputtering in helium/argon plasmas are represented. Generally, a nano-fibre forest, the so-called ‘fuzz’, made of tungsten with helium gas inside is found to have the tendency of suppressing the particle emission substantially. The electron emission comes from the impact of high-energy primary electrons. In addition, a deeply biased tungsten target, which inhibits the influx of even energetic primary electrons, seems to produce an electron emission, and it may be suppressed on the way to nanostructure formation on the surface of the W target. Such an emission process is discussed here. The sputtering yield of the He-damaged tungsten surface with the fibre-form nanostructure depends on the surface morphology while the sputtering itself changes the surface morphology, so that the time evolutions of sputtering yield from the W surface with an originally well-developed nanostructure are found to show a minimum in sputtering yield, which is about a half for the fresh nanostructured tungsten and roughly one-fifth of the yield for the original flat normal tungsten surface. The surface morphology at that time is, for the first time, made clear with field emission scanning electron microscopy observation. The physical mechanism for the appearance of such a minimum in sputtering yield is discussed. (paper)

  18. Variability in the primary emissions and secondary gas and particle formation from vehicles using bioethanol mixtures.

    Science.gov (United States)

    Gramsch, E; Papapostolou, V; Reyes, F; Vásquez, Y; Castillo, M; Oyola, P; López, G; Cádiz, A; Ferguson, S; Wolfson, M; Lawrence, J; Koutrakis, P

    2018-04-01

    Bioethanol for use in vehicles is becoming a substantial part of global energy infrastructure because it is renewable and some emissions are reduced. Carbon monoxide (CO) emissions and total hydrocarbons (THC) are reduced, but there is still controversy regarding emissions of nitrogen oxides (NO x ), aldehydes, and ethanol; this may be a concern because all these compounds are precursors of ozone and secondary organic aerosol (SOA). The amount of emissions depends on the ethanol content, but it also may depend on the engine quality and ethanol origin. Thus, a photochemical chamber was used to study secondary gas and aerosol formation from two flex-fueled vehicles using different ethanol blends in gasoline. One vehicle and the fuel used were made in the United States, and the others were made in Brazil. Primary emissions of THC, CO, carbon dioxide (CO 2 ), and nonmethane hydrocarbons (NMHC) from both vehicles decreased as the amount of ethanol in gasoline increased. NO x emissions in the U.S. and Brazilian cars decreased with ethanol content. However, emissions of THC, CO, and NO x from the Brazilian car were markedly higher than those from the U.S. car, showing high variability between vehicle technologies. In the Brazilian car, formation of secondary nitrogen dioxide (NO 2 ) and ozone (O 3 ) was lower for higher ethanol content in the fuel. In the U.S. car, NO 2 and O 3 had a small increase. Secondary particle (particulate matter [PM]) formation in the chamber decreased for both vehicles as the fraction of ethanol in fuel increased, consistent with previous studies. Secondary to primary PM ratios for pure gasoline is 11, also consistent with previous studies. In addition, the time required to form secondary PM is longer for higher ethanol blends. These results indicate that using higher ethanol blends may have a positive impact on air quality. The use of bioethanol can significantly reduce petroleum use and greenhouse gas emissions worldwide. Given the extent of

  19. Particle and NO{sub x} Emissions from a HVO-Fueled Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    Happonen, M.

    2012-10-15

    Concerns about oil price, the strengthening climate change and traffic related health effects are all reasons which have promoted the research of renewable fuels. One renewable fuel candidate is diesel consisting of hydrotreated vegetable oils (HVO). The fuel is essentially paraffinic, has high cetane number (>80) and contains practically no oxygen, aromatics or sulphur. Furthermore, HVO fuel can be produced from various feedstocks including palm, soybean and rapeseed oils as well as animal fats. HVO has also been observed to reduce all regulated engine exhaust emissions compared to conventional diesel fuel. In this thesis, the effect of HVO fuel on engine exhaust emissions has been studied further. The thesis is roughly divided into two parts. The first part explores the emission reductions associated with the fuel and studies techniques which could be applied to achieve further emission reductions. One of the studied techniques was adjusting engine settings to better suit HVO fuel. The settings chosen for adjustments were injection pressure, injection timing, the amount of EGR and the timing of inlet valve closing (with constant inlet air mass flow, i.e. Miller timing). The engine adjustments were also successfully targeted to reduce either NO{sub x} or particulate emissions or both. The other applied emission reduction technique was the addition of oxygenate to HVO fuel. The chosen oxygenate was di-n-pentyl ether (DNPE), and tested fuel blend included 20 wt-% DNPE and 80 wt-% HVO. Thus, the oxygen content of the resulting blend was 2 wt-%. Reductions of over 25 % were observed in particulate emissions with the blend compared to pure HVO while NOx emissions altered under 5 %. On the second part of this thesis, the effect of the studied fuels on chosen surface properties of exhaust particles were studied using tandem differential mobility analyzer (TDMA) techniques and transmission electron microscopy (TEM). The studied surface properties were oxidizability and

  20. Effects of a catalytic volatile particle remover (VPR) on the particulate matter emissions from a direct injection spark ignition engine.

    Science.gov (United States)

    Xu, Fan; Chen, Longfei; Stone, Richard

    2011-10-15

    Emissions of fine particles have been shown to have a large impact on the atmospheric environment and human health. Researchers have shown that gasoline engines, especially direct injection spark ignition (DISI) engines, tend to emit large amounts of small size particles compared to diesel engines fitted with diesel particulate filters (DPFs). As a result, the particle number emissions of DISI engines will be restricted by the forthcoming EU6 legislation. The particulate emission level of DISI engines means that they could face some challenges in meeting the EU6 requirement. This paper is an experimental study on the size-resolved particle number emissions from a spray guided DISI engine and the performance of a catalytic volatile particle remover (VPR), as the EU legislation seeks to exclude volatile particles. The performance of the catalytic VPR was evaluated by varying its temperature and the exhaust residence time. The effect of the catalytic VPR acting as an oxidation catalyst on particle emissions was also tested. The results show that the catalytic VPR led to a marked reduction in the number of particles, especially the smaller size (nucleation mode) particles. The catalytic VPR is essentially an oxidation catalyst, and when post three-way catalyst (TWC) exhaust was introduced to the catalytic VPR, the performance of the catalytic VPR was not affected much by the use of additional air, i.e., no significant oxidation of the PM was observed.

  1. Quantum 1/f noise in non-degerate semiconductors and emission statistics of alpha particles

    International Nuclear Information System (INIS)

    Kousik, G.S.

    1985-01-01

    Charged particle scattering is accompanied by the emission of soft photons. Handel's theory of 1/f noise, based on the infrared divergent coupling of the system to the electromagnetic field or other elementary excitations, states that the current associated with a beam of scattered particles will exhibit 1/f noise. The fraction of the particles scattered with an energy loss epsilon to soft photon emission is proportional to 1/epsilon and herein lies the origin of the quantum theory of 1/f noise. The 1/f noise caused by mobility fluctuations in semiconductors is related to the scattering cross section fluctuation given by Handel's theory, through the relaxation time. Chapters Two through Five of this dissertation presents the results of the detailed calculation of mobility fluctuation 1/f noise and Hooge parameter in nondegenerate semiconductors. Numerical results are given for silicon and gallium arsenide. Data obtained from extensive measurements on counting techniques for alpha-particles radioactive decay from a source containing 94 Pu 239 , 95 Am 241 and 96 Cm 244 are presented in Chapters Six and Seven of this dissertation. These data show that the statistics are non-Poissonian for large counting times (of the order of 1000 minutes) contrary to the popular belief that alpha-decay is an example of Poissonian statistics. Measurements of the Allan variance indicated the presence of a slow Lorentzian flicker noise and 1/f noise and the magnitude of the noise for large counting times is considerably larger than that predicted by Poissonian statistics

  2. Ab-initio Pulsar Magnetosphere: Particle Acceleration in Oblique Rotators and High-energy Emission Modeling

    Science.gov (United States)

    Philippov, Alexander A.; Spitkovsky, Anatoly

    2018-03-01

    We perform global particle-in-cell simulations of pulsar magnetospheres, including pair production, ion extraction from the surface, frame-dragging corrections, and high-energy photon emission and propagation. In the case of oblique rotators, the effects of general relativity increase the fraction of the open field lines that support active pair discharge. We find that the plasma density and particle energy flux in the pulsar wind are highly non-uniform with latitude. A significant fraction of the outgoing particle energy flux is carried by energetic ions, which are extracted from the stellar surface. Their energies may extend up to a large fraction of the open field line voltage, making them interesting candidates for ultra-high-energy cosmic rays. We show that pulsar gamma-ray radiation is dominated by synchrotron emission, produced by particles that are energized by relativistic magnetic reconnection close to the Y-point and in the equatorial current sheet. In most cases, the calculated light curves contain two strong peaks, which is in general agreement with Fermi observations. The radiative efficiency decreases with increasing pulsar inclination and increasing efficiency of pair production in the current sheet, which explains the observed scatter in L γ versus \\dot{E}. We find that the high-frequency cutoff in the spectra is regulated by the pair-loading of the current sheet. Our findings lay the foundation for quantitative interpretation of Fermi observations of gamma-ray pulsars.

  3. Invisible Trojan-horse attack

    DEFF Research Database (Denmark)

    Sajeed, Shihan; Minshull, Carter; Jain, Nitin

    2017-01-01

    We demonstrate the experimental feasibility of a Trojan-horse attack that remains nearly invisible to the single-photon detectors employed in practical quantum key distribution (QKD) systems, such as Clavis2 from ID Quantique. We perform a detailed numerical comparison of the attack performance...

  4. It's About Making Surfaces Invisible

    Indian Academy of Sciences (India)

    It's About Making Surfaces Invisible ... light is reflected from the surface between two media. The in- tensity of ... The reflection from each new interface and the combined reflec- .... Let us see the requirements of a material for a good stamp. The.

  5. Catapult mechanism for fast particle emission in fission and heavy ion reactions

    International Nuclear Information System (INIS)

    Maedler, P.

    1984-01-01

    The fission processes of slabs of nuclear matter is modelled in the Hartree-Fock time dependence approximation by adding an initial collective velocity field to the static self-consistent solution. In dependence on its amplitude either large amplitude density oscillations are excited or fission occurs. The final disintegration of the slab proceeds on a time scale 10 -22 s and is characterized by a sharp peak in the actual velocity field in the region of the ''snatching'' inner low density tails. A characteristic time later a low density lump correlated with a peak in the velocity field energies in front of the fragments. These particles are called ''catapult particles''. Recent experimental results possibly provide evidence for catapult neutrons in low-energy fission. The significance of the catapult mechanism for fast particle emission in the exit channel of heavy ion reactions is discussed

  6. Emission of high-energy charged particles at 00 in Ne-induced reactions

    International Nuclear Information System (INIS)

    Borcea, C.; Gierlik, E.; Kalinin, A.M.; Kalpakchieva, R.; Oganessia, Yu.Ts.; Pawlat, T.; Penionzhkevich, Yu.E.; Ryakhlyuk, A.V.

    1982-01-01

    Inclusive energy spectra have been measured for light charged particles emitted in the bombardment of 232 Th, 181 Ta, sup(nat)Ti and 12 C targets by 22 Ne ions at 178 MeV and sup(nat)Ti target by 20 Ne ions at 196 MeV. The reaction products were analysed and detected by means of a ΔE-E telescope placed in the focal plane of a magnetic spectrometer located at an angle of 0 deg with respect to the beam direction. In all the reactions studied light charged particles with an energy close to the respective calculated kinematic limit for a two-body exit channel are produced with relatively great probability. The results obtained make it possible to draw some conclusions about the reaction mechanism involving the emission of light charged particles

  7. Search for invisible particles produced in association with single-top-quarks in proton-proton collisions at √(s) = 8 TeV with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G. [CPPM, Aix-Marseille Universite et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Abdallah, J. [Academia Sinica, Taipei (China). Inst. of Physics; Collaboration: ATLAS Collaboration; and others

    2015-02-01

    A search for the production of single-top-quarks in association with missing energy is performed in proton. proton collisions at a centre-of-mass energy of √(s) = 8 TeV with the ATLAS experiment at the large hadron collider using data collected in 2012, corresponding to an integrated luminosity of 20.3 fb{sup -1}. In this search, the W boson from the top quark is required to decay into an electron or a muon and a neutrino. No deviation from the standard model prediction is observed, and upper limits are set on the production cross-section for resonant and non-resonant production of an invisible exotic state in association with a right-handed top quark. In the case of resonant production, for a spin-0 resonance with a mass of 500 GeV, an effective coupling strength above 0.15 is excluded at 95% confidence level for the top quark and an invisible spin-1/2 state with mass between 0 and 100 GeV. In the case of non-resonant production, an effective coupling strength above 0.2 is excluded at 95% confidence level for the top quark and an invisible spin-1 state with mass between 0 and 657 GeV. (orig.)

  8. Search for invisible particles produced in association with single-top-quarks in proton-proton collisions at √(s) = 8 TeV with the ATLAS detector

    International Nuclear Information System (INIS)

    Aad, G.; Abbott, B.; Abdallah, J.

    2015-01-01

    A search for the production of single-top-quarks in association with missing energy is performed in proton. proton collisions at a centre-of-mass energy of √(s) = 8 TeV with the ATLAS experiment at the large hadron collider using data collected in 2012, corresponding to an integrated luminosity of 20.3 fb -1 . In this search, the W boson from the top quark is required to decay into an electron or a muon and a neutrino. No deviation from the standard model prediction is observed, and upper limits are set on the production cross-section for resonant and non-resonant production of an invisible exotic state in association with a right-handed top quark. In the case of resonant production, for a spin-0 resonance with a mass of 500 GeV, an effective coupling strength above 0.15 is excluded at 95% confidence level for the top quark and an invisible spin-1/2 state with mass between 0 and 100 GeV. In the case of non-resonant production, an effective coupling strength above 0.2 is excluded at 95% confidence level for the top quark and an invisible spin-1 state with mass between 0 and 657 GeV. (orig.)

  9. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, A.G.; Miley, G.H. [University of Illinois at Urbana - Champaign, lL (United States); Lipson, A.G.; Lyakhov, B.F. [lnstitute of Physical Chemistry, The Russian Academy of Sciences, Moscow (Russian Federation); Roussetski, A.S. [P. N. Lebedev Physics Institute, The Russian Academy of Sciences Moscow (Russian Federation)

    2006-07-01

    In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that, {sup 4}He doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by {sup 4}He doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals. (authors)

  10. Energetic Charged Particle Emission from Hydrogen-Loaded pd and ti Cathodes and its Enhancement by He-4 Implantation

    Science.gov (United States)

    Lipson, A. G.; Miley, G. H.; Lipson, A. G.; Lyakhov, B. F.; Roussetski, A. S.

    2006-02-01

    In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that He4 doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by He4 doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals.

  11. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation

    International Nuclear Information System (INIS)

    Lipson, A.G.; Miley, G.H.; Lipson, A.G.; Lyakhov, B.F.; Roussetski, A.S.

    2006-01-01

    In this paper, we demonstrate reproducible emissions of energetic alphas and protons appearing in an energy range where both cosmic ray interference and possible alpha emissions from contamination (e.g., radon) is assumed to be negligible. We also show that, 4 He doping of Pd and Ti cathodes leads to a significant enhancement of the energetic charged particles emission (ECPE). This measurement of the emissions of energetic (MeV) particles, in a region of low background interference plus their enhancement by 4 He doping provides very strong support for the existence of LENR processes in the crystalline lattice of deuterated metals. (authors)

  12. Spontaneous photon emission from a non-relativistic free charged particle in collapse models: A case study

    International Nuclear Information System (INIS)

    Bassi, A.; Donadi, S.

    2014-01-01

    We study the photon emission rate of a non-relativistic charged particle interacting with an external classical noise through its position. Both the particle and the electromagnetic field are quantized. Under only the dipole approximation, the equations of motion can be solved exactly for a free particle, or a particle bounded by an harmonic potential. The physical quantity we will be interested in is the spectrum of the radiation emitted by the particle, due to the interaction with the noise. We will highlight several properties of the spectrum and clarify some issues appearing in the literature, regarding the exact mathematical formula of a spectrum for a free particle.

  13. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2010-05-01

    Full Text Available We synthesised observations of total particle number (CN concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT and 1000–10 000 cm−3 in the continental boundary layer (BL. Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46 but fail to explain the observed seasonal cycle (R2=0.1. The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88% unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%. Simulated CN concentrations in the continental BL were also biased low (NMB=−74% unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one or kinetic-type mechanism (J proportional to sulfuric acid to the power two with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3 than by increasing the number emission from primary anthropogenic sources (R2=0.18. The nucleation constants that resulted in best overall match between model and observed CN concentrations were

  14. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Science.gov (United States)

    Spracklen, D. V.; Carslaw, K. S.; Merikanto, J.; Mann, G. W.; Reddington, C. L.; Pickering, S.; Ogren, J. A.; Andrews, E.; Baltensperger, U.; Weingartner, E.; Boy, M.; Kulmala, M.; Laakso, L.; Lihavainen, H.; Kivekäs, N.; Komppula, M.; Mihalopoulos, N.; Kouvarakis, G.; Jennings, S. G.; O'Dowd, C.; Birmili, W.; Wiedensohler, A.; Weller, R.; Gras, J.; Laj, P.; Sellegri, K.; Bonn, B.; Krejci, R.; Laaksonen, A.; Hamed, A.; Minikin, A.; Harrison, R. M.; Talbot, R.; Sun, J.

    2010-05-01

    We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300-2000 cm-3 in the marine boundary layer and free troposphere (FT) and 1000-10 000 cm-3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2-10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=-88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=-25%). Simulated CN concentrations in the continental BL were also biased low (NMB=-74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation

  15. Investigating the Origins of Two Extreme Solar Particle Events: Proton Source Profile and Associated Electromagnetic Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon; Usoskin, Ilya [Sodankylä Geophysical Observatory/Oulu Unit, University of Oulu, P.O.B. 3000, Oulu FI-90014 (Finland); Pohjolainen, Silja [Tuorla Observatory, University of Turku, Piikkiö FI-21500 (Finland); Mishev, Alexander [Space Climate Research Unit, University of Oulu, Oulu FI-90014 (Finland); Reiner, Mike J. [The Catholic University of America, Washington, DC, and NASA/Goddard Space Flight Center, Greenbelt, MD (United States); Lee, Jeongwoo [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Didkovsky, Leonid V. [University of Southern California Space Sciences Center, 835 Bloom Walk, Los Angeles CA 90089 (United States); Pizzo, Victor J. [NOAA Space Weather Prediction Center, Boulder, CO 80305 (United States); Kim, Roksoon; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Klassen, Andreas [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, Kiel D-24118 (Germany); Karlicky, Marian [Astronomical Institute of the Czech Academy of Sciences, Fričova 258, Ondřejov 251 65 (Czech Republic); Gary, Dale E. [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark NJ 07102-1982 (United States); Valtonen, Eino; Vainio, Rami [Space Research Laboratory, University of Turku, Turku FI-20014 (Finland)

    2017-04-20

    We analyze the high-energy particle emission from the Sun in two extreme solar particle events in which protons are accelerated to relativistic energies and can cause a significant signal even in the ground-based particle detectors. Analysis of a relativistic proton event is based on modeling of the particle transport and interaction, from a near-Sun source through the solar wind and the Earth’s magnetosphere and atmosphere to a detector on the ground. This allows us to deduce the time profile of the proton source at the Sun and compare it with observed electromagnetic emissions. The 1998 May 2 event is associated with a flare and a coronal mass ejection (CME), which were well observed by the Nançay Radioheliograph, thus the images of the radio sources are available. For the 2003 November 2 event, the low corona images of the CME liftoff obtained at the Mauna Loa Solar Observatory are available. Those complementary data sets are analyzed jointly with the broadband dynamic radio spectra, EUV images, and other data available for both events. We find a common scenario for both eruptions, including the flare’s dual impulsive phase, the CME-launch-associated decimetric-continuum burst, and the late, low-frequency type III radio bursts at the time of the relativistic proton injection into the interplanetary medium. The analysis supports the idea that the two considered events start with emission of relativistic protons previously accelerated during the flare and CME launch, then trapped in large-scale magnetic loops and later released by the expanding CME.

  16. Discovering the invisible universe

    International Nuclear Information System (INIS)

    Friedman, H.

    1991-01-01

    The history of astronomical observations outside the visible range is surveyed in a review for general readers. Consideration is given to Jansky's discovery of cosmic radio emission, the pioneering radio observers of the 1940s, the larger radio telescopes built since 1950, aperture synthesis and the Very Large Array, terrestrial and space VLBI networks, ground-based and satellite observations in the IR band, the discovery and early laboratory characterization of X-rays, and X-ray observations from sounding rockets and satellites. Extensive photographs, drawings, diagrams, and sample images are provided

  17. Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions

    Science.gov (United States)

    Lee, Alex K. Y.; Chen, Chia-Li; Liu, Jun; Price, Derek J.; Betha, Raghu; Russell, Lynn M.; Zhang, Xiaolu; Cappa, Christopher D.

    2017-12-01

    Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC) particles and their coatings. Using the -log(NOx / NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7-20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurement suggests that at least a portion of SOA materials condensed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA) particles that were externally mixed with rBC, although they could both be generated from local photochemistry.

  18. Delayed Proton Emission in the A=70 Region, a Strobe for Level Density and Particle Width

    CERN Multimedia

    2002-01-01

    The delayed particle emission, which is a characteristic signature of the most exotic nuclei decay, provides a wide variety of spectroscopic information among which level density, and gives in some cases access to selected microscopic structures. In regard to these two aspects the $\\beta^+$-EC delayed proton emission in the A=70 neutron deficient mass region is of special interest to be investigated. Indeed, in this area located close to the proton drip line and along the N=Z line, the delayed proton emission constitutes an access to level density in the Q$_{EC}$-S$_p$ window of the emitting nucleus. Moreover, the unbound states populated by the EC process are expected to exhibit lifetimes in the vicinity of the K electronic shell filling time ($\\tau\\!\\sim\\!2\\times10^{-16}$s) and so the particle widths can be reached via proton X-ray coincidence measurements (PXCT). From theoretical approaches strongly deformed low-spin proton unbound levels which may be populated in the T$_Z$ = 1/2 precursors decay are predi...

  19. Dark matter from late invisible decays to and of gravitinos

    Science.gov (United States)

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Queiroz, Farinaldo S.; Strigari, Louis E.; Wang, Mei-Yu

    2015-03-01

    In this work, we sift a simple supersymmetric framework of late invisible decays to and of the gravitino. We study a simple extension of the minimal supersymmetric standard model that includes isosinglet color-triplet superfields and a singlet superfield. We investigate two cases where the gravitino is the lightest supersymmetric particle or the next-to-lightest supersymmetric particle. The next-to-lightest supersymmetric particle decays into two dark matter candidates and has a long lifetime due to gravitationally suppressed interactions. However, because of the absence of any hadronic or electromagnetic products, it satisfies the tight bounds set by big bang nucleosynthesis and the cosmic microwave background. One or both of the dark matter candidates produced in invisible decays can contribute to the amount of dark radiation and suppress perturbations at scales that are being probed by the galaxy power spectrum and the Lyman-alpha forest data. We show that these constraints are satisfied in large regions of the parameter space and, as a result, the late invisible decays to and of the gravitino can be responsible for the entire dark matter relic abundance.

  20. Emission temperatures from the decay of particle-unstable complex nuclei

    International Nuclear Information System (INIS)

    Nayak, T.K.

    1990-01-01

    Relative populations of particle-unstable states were measured for complex fragments emitted in the reaction 14 N + Ag at E/A = 35 MeV by using a position sensitive high resolution hodoscope. Experimental population probabilities of particle-unstable states were extracted by fitting the coincidence spectra of the decay products by an appropriate R-matrix or Breit-Wigner formalism. According to thermal models, the populations of excited states at freezeout are expected to follow a Boltzmann distribution weighted by the emission temperature of the system. Tests of this freezeout assumption were made by comparing the experimental population to the predictions of statistical calculations. Extensive statistical calculation which include the effect of sequential feeding from heavier particle unstable nuclei were performed to estimate the population probabilities and the ratios of population probabilities indicate emission temperatures of about 3-4 MeV. But a detailed comparison for individual fragments for a calculation with T em = 4 MeV reveals that about half of the measured population probabilities and one third of the ratios of the population probabilities differ significantly from the predictions of statistical calculations. Calculations which include rotational effects could not satisfactorily account for this discrepancy. These results suggest a possible breakdown of the assumption of local thermal equilibrium at freezeout

  1. Emission from small dust particles in diffuse and molecular cloud medium

    International Nuclear Information System (INIS)

    Bernard, J.P.; Desert, X.

    1990-01-01

    Infrared Astronomy Satellite (IRAS) observations of the whole galaxy has shown that long wavelength emission (100 and 60 micron bands) can be explained by thermal emission from big grains (approx 0.1 micron) radiating at their equilibrium temperature when heated by the InterStellar Radiation Field (ISRF). This conclusion has been confirmed by continuum sub-millimeter observations of the galactic plane made by the EMILIE experiment at 870 microns (Pajot et al. 1986). Nevertheless, shorter wavelength observations like 12 and 25 micron IRAS bands, show an emission from the galactic plane in excess with the long wavelength measurements which can only be explained by a much hotter particles population. Because dust at equilibrium cannot easily reach high temperatures required to explain this excess, this component is thought to be composed of very small dust grains or big molecules encompassing thermal fluctuations. Researchers present here a numerical model that computes emission, from Near Infrared Radiation (NIR) to Sub-mm wavelengths, from a non-homogeneous spherical cloud heated by the ISRF. This model fully takes into account the heating of dust by multi-photon processes and back-heating of dust in the Visual/Infrared Radiation (VIS-IR) so that it is likely to describe correctly emission from molecular clouds up to large A sub v and emission from dust experiencing temperature fluctuations. The dust is a three component mixture of polycyclic aromatic hydrocarbons, very small grains, and classical big grains with independent size distributions (cut-off and power law index) and abundances

  2. Invisible Trojan-horse attack.

    Science.gov (United States)

    Sajeed, Shihan; Minshull, Carter; Jain, Nitin; Makarov, Vadim

    2017-08-21

    We demonstrate the experimental feasibility of a Trojan-horse attack that remains nearly invisible to the single-photon detectors employed in practical quantum key distribution (QKD) systems, such as Clavis2 from ID Quantique. We perform a detailed numerical comparison of the attack performance against Scarani-Ac´ın-Ribordy-Gisin (SARG04) QKD protocol at 1924 nm versus that at 1536 nm. The attack strategy was proposed earlier but found to be unsuccessful at the latter wavelength, as reported in N. Jain et al., New J. Phys. 16, 123030 (2014). However at 1924 nm, we show experimentally that the noise response of the detectors to bright pulses is greatly reduced, and show by modeling that the same attack will succeed. The invisible nature of the attack poses a threat to the security of practical QKD if proper countermeasures are not adopted.

  3. Time dependent emission line profiles in the radially streaming particle model of Seyfert galaxy nuclei and quasi-stellar objects

    Science.gov (United States)

    Hubbard, R.

    1974-01-01

    The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.

  4. Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization

    NARCIS (Netherlands)

    Domínguez-Sáez, A.; Viana, M.; Barrios, C.C.; Rubio, J.R.; Amato, F.; Pujadas, M.; Querol, X.

    2012-01-01

    A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source

  5. Light particle emission measurements in heavy ion reactions: Progress report, June 1, 1986-May 31, 1987

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1987-01-01

    During the past year we have completed our work on neutron emission in coincidence with fission fragments from the 158 Er system. In addition to this we have completed preliminary analysis of our results on neutron emission from products of damped reactions between 58 Ni and 165 Ho at 930 MeV. Two experiments were planned for the present contract period as discussed in our proposal for 1986-87. One of these, to measure the mass and charge distributions from projectile-like fragments (PLF) in the reactions 58 Ni + 165 Ho and 58 Ni + 58 Ni using the time-of-flight facility at the HHIRF has been successfully completed. The other, to measure momentum correlations between neutrons and charged particles produced in central collisions between 32 S + 197 Au is scheduled to be run in mid-February. 14 refs., 4 figs

  6. Particle-in-cell modeling of the nanosecond field emission driven discharge in pressurized hydrogen

    Science.gov (United States)

    Levko, Dmitry; Yatom, Shurik; Krasik, Yakov E.

    2018-02-01

    The high-voltage field-emission driven nanosecond discharge in pressurized hydrogen is studied using the one-dimensional Particle-in-Cell Monte Carlo collision model. It is obtained that the main part of the field-emitted electrons becomes runaway in the thin cathode sheath. These runaway electrons propagate the entire cathode-anode gap, creating rather dense (˜1012 cm-3) seeding plasma electrons. In addition, these electrons initiate a streamer propagating through this background plasma with a speed ˜30% of the speed of light. Such a high streamer speed allows the self-acceleration mechanism of runaway electrons present between the streamer head and the anode to be realized. As a consequence, the energy of runaway electrons exceeds the cathode-anode gap voltage. In addition, the influence of the field emission switching-off time is analyzed. It is obtained that this time significantly influences the discharge dynamics.

  7. Effects of bluff-body burner and coal particle size on NOx emissions and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.S.; Cheng, J.F.; Zeng, H.C. [Huazhong University of Science and Technology, Wuhan (China). National Coal Combustion Lab.

    1999-12-01

    Investigations on air staging have been carried out using various coals with different degrees of fineness and a variety of burners with a 92.9 kw h{sup -1} tunnel furnace burning pulverized coal. It has been observed that using the bluff-body burner can reduce both the unburned carbon in fly ash and NOx emissions in the case of air staging. The experimental results show that air-staging combustion has a more remarkable effect on NOx reduction for higher-volatile coal than for lower-volatile coal. The results also show that there is a strong influence of coal particle size on NOx emissions and unburned carbon in the fly ash in the case of air staging. 13 refs., 12 figs., 2 tabs.

  8. How to observe the invisible

    International Nuclear Information System (INIS)

    Destefanis, G.; Peyret, O.; Darier, P.

    2000-01-01

    The observation of events and objects by images resulted from the detection of invisible radiation (infrared, X and gamma ray) emitted from these objects, is now more possible. This is mainly due to the progress in the microelectronics and semiconductors devices. With these advanced devices, it is possible to manufacture cameras with TV display size image and high resolution, which have many applications in military, medical and industrial sectors. (author)

  9. Why Information Literacy Is Invisible

    OpenAIRE

    William Badke

    2011-01-01

    Despite the many information literacy programs on higher education campuses, the literature of information literacy and the concept of information literacy as a viable academic subject remain hidden to most professors and academic administrators. Information literacy is invisible to academia because it is misunderstood, academic administrators have not put it on their institutions' agendas, the literature of information literacy remains in the library silo, there is a false belief that infor...

  10. IN VIVO EVIDENCE OF FREE RADICAL FORMATION IN THE RAT LUNG AFTER EXPOSURE TO AN EMISSION SOURCE AIR POLLUTION PARTICLE

    Science.gov (United States)

    Exposure to air pollution particles can be associated with increased human morbidity and mortality. The mechanism(s) of lung injury remains unknown. We tested the hypothesis that lung exposure to oil fly ash (an emission source air pollution particle) causes in vivo free radical ...

  11. Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature.

    Science.gov (United States)

    Stabile, L; Scungio, M; Buonanno, G; Arpino, F; Ficco, G

    2017-03-01

    The knowledge of exposure to the airborne particle emitted from three-dimensional (3D) printing activities is becoming a crucial issue due to the relevant spreading of such devices in recent years. To this end, a low-cost desktop 3D printer based on fused deposition modeling (FDM) principle was used. Particle number, alveolar-deposited surface area, and mass concentrations were measured continuously during printing processes to evaluate particle emission rates (ERs) and factors. Particle number distribution measurements were also performed to characterize the size of the emitted particles. Ten different materials and different extrusion temperatures were considered in the survey. Results showed that all the investigated materials emit particles in the ultrafine range (with a mode in the 10-30-nm range), whereas no emission of super-micron particles was detected for all the materials under investigation. The emission was affected strongly by the extrusion temperature. In fact, the ERs increase as the extrusion temperature increases. Emission rates up to 1×10 12  particles min -1 were calculated. Such high ERs were estimated to cause large alveolar surface area dose in workers when 3D activities run. In fact, a 40-min-long 3D printing was found to cause doses up to 200 mm 2 . © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Compaction of a Bed of Fragmentable Particles and Associated Acoustic Emission

    International Nuclear Information System (INIS)

    Hegron, L.; Sornay, P.; Favretto-Cristini, N.

    2013-06-01

    The nuclear fuel of light water power reactors are manufactured by powder metallurgy. This is also the method that is used for the production of fuels containing minor actinides that have high activity and long life. Given their radiotoxicity, it is necessary to simplify the manufacturing process to the maximum, limiting dissemination and retention of matter. In addition, the fuel must have a mostly open porosity. Implementation of particles of a few hundred micrometers and controlled cohesion could meet this dual objective. However, it should be ensured that the mechanical strength of compacts before sintering is sufficient without adding binder. The phenomena that occur during the manufacture of compact are thus analyzed and quantified. It is shown that only a portion of the particles breaks upon application of a stress up to 600 MPa and it is possible to detect this fragmentation by acoustic emission (AE). (authors)

  13. Multiplicity of pre-scission charged particle emission by a statistical model

    International Nuclear Information System (INIS)

    Matsuse, Takehiro

    1996-01-01

    With introducing the limitation (E cut-off ) not to excite all statistically permitted scission parts in the phase integral at the scission point, we try to reproduce the multiplicity of pre-scission charged particle emission of 86 Kr (E lab =890 MeV)+ 27 Al by the cascade calculation of the extended Hauser-Feshbach method (EHM). The physical image is explained from a point of view of the life time for the statistical model of the compound nuclei. When E cut-off parameter is bout 80 MeV, the cross section of scission and the loss of pre-scission charged particle seemed to be reproduced. The average pre-scission time is about 1.7 x 10 -20 sec. The essential problem of the life time of compound nuclei is explained. (S.Y.)

  14. Light particle emission as a probe of reaction mechanism and nuclear excitation

    International Nuclear Information System (INIS)

    Guerreau, D.

    1989-01-01

    The central part of these lectures will be dealing with the problem of energy dissipation. A good understanding of the mechanisms for the dissipation requires to study both peripheral and central collisions or, in other words, to look at the impact paramenter dependence. This should also provide valuable information on the time scale. In order to probe the reaction mechanism and nuclear excitation, one of the most powerful tool is unquestionably the observation of light particle emission, including neutrons and charged particles. Several examples will be discussed related to peripheral collisions (the fate of transfer reactions, the excitation energy generation, the production of projectile-like fragments) as well as inner collisions for which extensive studies have demonstrated the strength of intermediate energy heavy ions for the production of very hot nuclei and detailed study of their decay properties

  15. Alpha particle emission as a probe of the level density in highly excited A∼200 nuclei

    International Nuclear Information System (INIS)

    Fabris, D.; Fioretto, E.; Viesti, G.; Cinausero, M.; Gelli, N.; Hagel, K.; Lucarelli, F.; Natowitz, J.B.; Nebbia, G.; Prete, G.; Wada, R.

    1994-01-01

    The alpha particle emission from 90 to 140 MeV 19 F+ 181 Ta fusion-evaporation reactions has been studied. The comparisons of the experimental spectral shapes and multiplicities with statistical model predictions indicate a need to use an excitation energy dependent level-density parameter a=A/K in which K increases with excitation energy. This increase is more rapid than that in lower mass nuclei. The effect of this change in level density on the prescission multiplicities in fission is significant

  16. Fluorine determination in human and animal bones by particle-induced gamma-ray emission

    International Nuclear Information System (INIS)

    Sastri, Chaturvedula S.; Hoffmann, Peter; Ortner, Hugo M.; Iyengar, Venkatesh; Blondiaux, Gilbert; Tessier, Yves; Petri, Hermann; Aras, Namik K.; Zaichick, Vladimir

    2002-01-01

    Fluorine was determined in the iliac crest bones of patients and in ribs collected from postmortem investigations by particle-induced gamma-ray emission based on the 19 F(p,pγ) 19 F reaction, using 20/2.5 MeV protons. The results indicate that for 68% of the human samples the F concentration is in the range 500-1999 μg g -1 . For comparison purposes fluorine was also determined in some animal bones; in some animal tissues lateral profiles of fluorine were measured. (abstract)

  17. Development of a Reference Database for Particle Induced Gamma Ray Emission (PIGE) Spectroscopy

    International Nuclear Information System (INIS)

    2017-09-01

    Ion beam analysis techniques are non-destructive analytical techniques used to identify the composition and structure of surface layers of materials. The applications of these techniques span environmental control, cultural heritage and conservation, materials and fusion technologies. The particle-induced gamma-ray emission (PIGE) spectroscopy technique in particular, is a powerful tool for detecting light elements in certain depths of surface layers. This publication describes the coordinated effort to measure and compile cross section data relevant to PIGE analysis and make these data available to the community of practice through a comprehensive online database.

  18. Particle induced X-ray emission: a valuable tool for the analysis of metalpoint drawings

    International Nuclear Information System (INIS)

    Duval, A.; Guicharnaud, H.; Dran, J.C.

    2004-01-01

    For several years, we carry out a research on metalpoint drawings, a graphic technique mainly employed by European artists during the 15th and 16th centuries. As a non-destructive and very sensitive analytical technique is required, particle induced X-ray emission (PIXE) analysis with an external beam has been used for this purpose. More than 70 artworks drawn by Italian, Flemish and German artists have been analysed, including leadpoint and silverpoint drawings. Following a short description of the metalpoint technique, the results are compared with the recipes written by Cennino Cennini at the beginning of the 15th century and specific examples are presented

  19. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  20. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Science.gov (United States)

    Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

    2008-05-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  1. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-01-01

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed. PMID:29425174

  2. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Directory of Open Access Journals (Sweden)

    Barouch Giechaskiel

    2018-02-01

    Full Text Available Particulate matter (PM, and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG, or Liquefied Natural Gas (LNG. Urban, rural and motorway (highway emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS. Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  3. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory.

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-02-09

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  4. Time evolution and emission factors of aerosol particles from day and night time savannah fires

    Science.gov (United States)

    Vakkari, Ville; Beukes, Johan Paul; Tiitta, Petri; Venter, Andrew; Jaars, Kerneels; Josipovic, Miroslav; van Zyl, Pieter; Kulmala, Markku; Laakso, Lauri

    2013-04-01

    The largest uncertainties in the current global climate models originate from aerosol particle effects (IPCC, 2007) and at the same time aerosol particles also pose a threat to human health (Pope and Dockery, 2006). In southern Africa wild fires and prescribed burning are one of the most important sources of aerosol particles, especially during the dry season from June to September (e.g. Swap et al., 2003; Vakkari et al., 2012). The aerosol particle emissions from savannah fires in southern Africa have been studied in several intensive campaigns such as SAFARI 1992 and 2000 (Swap et al., 2003). However, all previous measurements have been carried out during the daytime, whereas most of the prescribed fires in southern Africa are lit up only after sunset. Furthermore, the previous campaigns followed the plume evolution for up to one hour after emission only. In this study, combining remote sensing fire observations to ground-based long-term measurements of aerosol particle and trace gas properties at the Welgegund measurement station (www.welgegund.org), we have been able to follow the time evolution of savannah fire plumes up to several hours in the atmosphere. For the first time the aerosol particle size distribution measurements in savannah fire plumes cover both day and night time plumes and also the ultrafine size range below 100 nm. During the period from May 20th 2010 to April 15th 2012 altogether 61 savannah fire plumes were observed at Welgegund. The evolution of the aerosol size distribution remained rapid for at least five hours after the fire: during this period the growth rate of the aerosol particle count mean diameter (size range 12 to 840 nm) was 24 nm h-1 for daytime plumes and 8 nm h-1 for night time plumes. The difference in the day and night time growth rate shows that photochemical reactions significantly increase the condensable vapour concentration in the plume. Furthermore, the condensable vapour concentration was found to affect both the

  5. Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types

    Science.gov (United States)

    Alves, Célia; Gonçalves, Cátia; Fernandes, Ana Patrícia; Tarelho, Luís; Pio, Casimiro

    2011-08-01

    Wood from seven species of trees grown in the Portuguese forest ( Pinus pinaster, Eucalyptus globulus, Quercus suber, Acacia longifolia, Quercus faginea, Olea europea and Quercus ilex rotundifolia), and briquettes produced from forest biomass waste were burned in a fireplace and in a woodstove to determine the chemical composition of fine particle (PM 2.5) emissions. Samples were analysed for organic and elemental carbon (OC/EC), water soluble ions (Na +, NH 4+, K +, Mg 2+, Ca 2+, Cl -, NO 3- and SO 42-) and 67 elements. The PM 2.5 emission factors (g kg - 1 fuel burned, dry basis) were in the ranges 9.9-20.2 and 4.2-16.3, respectively, for the fireplace and the woodstove. Organic carbon contributed to about 50% of the fine particle mass in the emissions from every wood species studied in both burning appliances. The carbonaceous component of PM 2.5 was dominated by organic carbon, accounting for more than 85% of the total carbon (TC): OC/TC ranged from 0.85 to 0.96 (avg. 0.92) for the fireplace and from 0.86 to 0.97 (avg. 0.93) for the woodstove. The water-soluble ions accounted for 0.64 to 11.3% of the PM 2.5 mass emitted from the fireplace, whereas mass fractions between 0.53 and 13.6% were obtained for the woodstove. The golden wattle wood smoke showed a much higher ionic content than the emissions from the other wood types. Trace elements represented 0.4 to 2.5% and 0.2 to 2.2% of the PM 2.5 mass emitted, respectively, from the fireplace and the woodstove, which corresponded to average total emissions of 132 ± 77.3 mg kg - 1 and 93.4 ± 60.8 mg kg - 1 of wood burned. Among these, K, Pb, Al, Mn and Sr were present in all samples. From the emission profiles of the individual experiments, composite wood combustion profiles are suggested with the aid of a cluster analysis.

  6. Search for invisible particles produced in association with single-top-quarks in proton-proton collisions at $\\sqrt{s}$ = 8 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffmann, Dirk; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morton, Alexander; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-02-18

    A search for the production of single-top-quarks in association with missing energy is performed in proton--proton collisions at a centre-of-mass energy of $\\sqrt{s}$ = 8 TeV with the ATLAS experiment at the Large Hadron Collider using data collected in 2012, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. In this search, the $W$ boson from the top quark is required to decay into an electron or a muon and a neutrino. No deviation from the Standard Model prediction is observed, and upper limits are set on the production cross-section for resonant and non-resonant production of an invisible exotic state in association with a right-handed top quark. In the case of resonant production, for a spin-$0$ resonance with a mass of 500 GeV, an effective coupling strength above 0.15 is excluded at 95% confidence level for the top quark and an invisible spin-$1/2$ state with mass between 0 GeV and 100 GeV. In the case of non-resonant production, an effective coupling strength above 0.2 is excluded at 95% conf...

  7. Sn-doped polyhedral In2O3 particles: Synthesis, characterization, and origins of luminous emission in wide visible range

    International Nuclear Information System (INIS)

    Zhu Yunqing; Chen Yiqing

    2012-01-01

    Sn-doped octahedronal and tetrakaidecahedronal In 2 O 3 particles were successfully synthesized by simple thermal evaporation of indium grains using SnO as dopant. Structural characterization results demonstrated that the Sn-doped tetrakaidecahedronal In 2 O 3 particle had additional six {001} crystal surfaces compared with the octahedronal one. The luminous properties of both samples were characterized by photoluminescence (PL) and cathodoluminescence (CL) spectroscopy. A broad visible luminous emission around 570 nm was observed. Studies revealed that the emission consisted of three peaks of 511 nm, 564 nm, and 622 nm, which were attributed to radioactive recombination centers such as single ionized oxygen vacancy, indium interstitial, and antisite oxygen, respectively. We believe that the Sn donor level plays an important role in the visible luminous emission. - Graphical abstract: With more oxygen vacancies and tin doping. ITO particles can exhibit a better CL performance. Sn donor level near the conduction band edge plays an important role in luminous emission in wide visible range. Highlights: ► Polyhedral ITO particles synthesized by thermal evaporation using SnO as dopant. ► Broad visible luminous emission around 570 nm. ► Sn donor level plays an important role in the visible emission. ► ITO particles with more oxygen vacancies have better CL performance in visible range.

  8. Retrospectives: Ethics and the Invisible Hand

    OpenAIRE

    Jerry Evensky

    1993-01-01

    As modern economists, we use Adam Smith's "invisible hand" metaphor confident that we all know what it means in our discourse: it reflects our admiration for the elegant and smooth functioning of the market system as a coordinator of autonomous individual choices in an interdependent world. But in Adam Smith's moral philosophy, the invisible hand has a much broader responsibility: if individuals are to enjoy the fruits of a classical liberal society, the invisible hand must not only coordinat...

  9. In seach of the invisible (audiences)

    DEFF Research Database (Denmark)

    Hartley, Jannie Møller

    The paper shows need to distinguish between: ignored audiences (invisible in the literature, in our case very young children and ) and post-communist audiences Literally or actual invisible (online lurking and unintended) audiences the unintended or lurking audiences are invisible in a two-fold way...... : both as cases of study, but also as actual audiences. a lack of historical contextualization in the studies...

  10. Energy Awareness Displays - Making the Invisible Visible

    NARCIS (Netherlands)

    Börner, Dirk

    2011-01-01

    Börner, D. (2011). Energy Awareness Displays - Making the Invisible Visible. Presentation given at the Startbijeenkomst SURFnet Innovatieregeling Duurzaamheid & ICT. May, 13, 2011, Utrecht, The Netherlands.

  11. Evaluation of methods for the physical characterization of the fine particle emissions from two residential wood combustion appliances

    Science.gov (United States)

    Kinsey, John S.; Kariher, Peter H.; Dong, Yuanji

    The fine particle emissions from a U. S. certified non-catalytic wood stove and a zero-clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission testing was performed using both time-integrated and continuous instrumentation for total particle mass, particle number, particle size distribution, and fixed combustion gases using an atmospheric wind tunnel, full-flow laboratory dilution tunnel, and dilution stack sampler with a comparison made between the three dilution systems and two sampling filter types. The total mass emission factors (EFs) for all dilution systems and filter media are extremely variable ranging from fireplace emissions burning wet oak averaged 11 g kg -1. A substantial number of ultrafine particles in the accumulation size range were also observed during all tests as determined by an Electrical Low Pressure Impactor (ELPI) and Scanning Mobility Particle Sizer. The PM-2.5 (particles ≤2.5 μm in aerodynamic diameter) fractions determined from the ELPI electrometer data ranged from 93 to 98% (mass) depending on appliance type as reported previously by Hays et al. (Aerosol Science, 34, 1061, 2003).

  12. Light particle emission measurements in heavy ion reactions: Progress report, June 1, 1988--May 31, 1989

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1989-01-01

    We have completed another successful year of experimental work at the Heavy Ion Research Facility (HHIRF) and at Georgia State University (GSU). Since submitting our previous progress report we have completed our paper on neutron emission from products of the reaction 58 Ni + 165 Ho and it has been submitted to Physical Review C. Some of the details of these results are discussed below. We have installed the Vaxstation computer system for which we received supplemental funding from DOE during 1988-89 and it is being used to analyze the Ni + Ho data using the codes Pace and a modified version of Lilita, both of which we have been able to transfer to our Vaxstation systems from the Vax at ORNL with very minimal modification. The Exabyte tape drive which we ordered with the computer system was finally delivered at the end of January after months of delays. It is now being used to scan data tapes from our experiment to study neutron-neutron and neutron-charged-particle momentum correlations using the reaction 32 S + 197 Au at 25 MeV/nucleon. This data analysis can now proceed at a fast pace. Finally, we have continued our developmental work on the Hili detector system at ORNL, and have participated in experiments to study the predictions of the Dyabatic Dynamics model of particle emission using the Ni + Ni system and the HILI detector system

  13. An optimised set-up for total reflection particle induced X-ray emission

    International Nuclear Information System (INIS)

    Kan, J.A. van; Vis, R.D.

    1997-01-01

    MeV proton beams at small angles of incidence (0-35 mrad) are used to analyse trace elements on flat surfaces such as Si wafers or quartz substrates. In these experiments, the particle induced X-ray emission (PIXE) signal is used in a new optimized set-up. This set-up is constructed in such a way that the X-ray detector can reach very large solid angles, larger than 1 sr. Use of these large detector solid angles, combined with the reduction of bremsstrahlung background, affords limits of detection (LOD) of the order of 10 10 at cm -2 using total reflection particle induced X-ray emission (TPIXE). The LODs from earlier TPIXE measurements in a non-optimized set-up are used to estimate LODs in the new TPIXE set-up. Si wafers with low surface concentrations of V, Ni, Cu and Ag are used as standards to calibrate the LODs found with this set-up. The metal concentrations are determined by total reflection X-ray fluorescence (TXRF). The TPIXE measurements are compared with TXRF measurements on the same wafers. (Author)

  14. Modeling particle emission and power flow in pulsed-power driven, nonuniform transmission lines

    Directory of Open Access Journals (Sweden)

    Nichelle Bruner

    2008-04-01

    Full Text Available Pulsed-power driven x-ray radiographic systems are being developed to operate at higher power in an effort to increase source brightness and penetration power. Essential to the design of these systems is a thorough understanding of electron power flow in the transmission line that couples the pulsed-power driver to the load. In this paper, analytic theory and fully relativistic particle-in-cell simulations are used to model power flow in several experimental transmission-line geometries fielded on Sandia National Laboratories’ upgraded Radiographic Integrated Test Stand [IEEE Trans. Plasma Sci. 28, 1653 (2000ITPSBD0093-381310.1109/27.901250]. Good agreement with measured electrical currents is demonstrated on a shot-by-shot basis for simulations which include detailed models accounting for space-charge-limited electron emission, surface heating, and stimulated particle emission. Resonant cavity modes related to the transmission-line impedance transitions are also shown to be excited by electron power flow. These modes can drive oscillations in the output power of the system, degrading radiographic resolution.

  15. Search for an invisibly-decaying Higgs boson at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kraber, M; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2005-01-01

    A search for a Higgs boson produced in e^+e^- collisions in association with a Z boson and decaying into invisible particles is performed. Data collected at LEP with the L3 detector at centre-of-mass energies from 189 GeV to 209 GeV are used, corresponding to an integrated luminosity of 0.63/fb. Events with hadrons, electrons or muons with visible masses compatible with a Z boson and missing energy and momentum are selected. They are consistent with the Standard Model expectations. A lower limit of 112.3 GeV is set at 95% confidence level on the mass of the invisibly-decaying Higgs boson in the hypothesis that its production cross section equals that of the Standard Model Higgs boson. Relaxing this hypothesis, upper limits on the production cross section are derived.

  16. Measurement of double differential cross sections of charged particle emission reactions by incident DT neutrons. Correction for energy loss of charged particle in sample materials

    International Nuclear Information System (INIS)

    Takagi, Hiroyuki; Terada, Yasuaki; Murata, Isao; Takahashi, Akito

    2000-01-01

    In the measurement of charged particle emission spectrum induced by neutrons, correcting the energy loss of charged particle in sample materials becomes a very important inverse problem. To deal with this inverse problem, we have applied the Bayesian unfolding method to correct the energy loss, and tested the performance of the method. Although this method is very simple, it was confirmed from the test that the performance was not inferior to other methods at all, and therefore the method could be a powerful tool for charged particle spectrum measurement. (author)

  17. Aerosol and NOx emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes

    Directory of Open Access Journals (Sweden)

    D. Imhof

    2006-01-01

    Full Text Available Measurements of aerosol particle number size distributions (18–700 nm, mass concentrations (PM2.5 and PM10 and NOx were performed in the Plabutsch tunnel, Austria, and in the Kingsway tunnel, United Kingdom. These two tunnels show different characteristics regarding the roadway gradient, the composition of the vehicle fleet and the traffic frequency. The submicron particle size distributions contained a soot mode in the diameter range D=80–100 nm and a nucleation mode in the range of D=20–40 nm. In the Kingsway tunnel with a significantly lower particle number and volume concentration level than in the Plabutsch tunnel, a clear diurnal variation of nucleation and soot mode particles correlated to the traffic density was observed. In the Plabutsch tunnel, soot mode particles also revealed a diurnal variation, whereas no substantial variation was found for the nucleation mode particles. During the night a higher number concentration of nucleation mode particles were measured than soot mode particles and vice versa during the day. In this tunnel with very high soot emissions during daytime due to the heavy-duty vehicle (HDV share of 18% and another 40% of diesel driven light-duty vehicles (LDV semivolatile species condense on the pre-existing soot surface area rather than forming new particles by homogeneous nucleation. With the low concentration of soot mode particles in the Kingsway tunnel, also the nucleation mode particles exhibit a diurnal variation. From the measured parameters real-world traffic emission factors were estimated for the whole vehicle fleet as well as differentiated into the two categories LDV and HDV. In the particle size range D=18–700 nm, each vehicle of the mixed fleet emits (1.50±0.08×1014 particles km-1 (Plabutsch and (1.26±0.10×1014 particles km-1 (Kingsway, while particle volume emission factors of 0.209±0.008 cm3 km-1 and 0.036±0.004 cm3 km-1, respectively, were obtained. PM1 emission factors of 104±4 mg

  18. Development of a Reference Database for Particle-Induced Gamma-ray Emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriou, P., E-mail: P.Dimitriou@iaea.org [International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna (Austria); Becker, H.-W. [Ruhr Universität Bochum, Gebäude NT05/130, Postfach 102148, Bochum 44721 (Germany); Bogdanović-Radović, I. [Department of Experimental Physics, Institute Rudjer Boskovic, Bijenicka Cesta 54, 10000 Zagreb (Croatia); Chiari, M. [Istituto Nazionale di Fisica Nucleare, Via Sansone 1, Sesto Fiorentino, 50019 Firenze (Italy); Goncharov, A. [Kharkov Institute of Physics and Technology, National Science Center, Akademicheskaya Str.1, Kharkov 61108 (Ukraine); Jesus, A.P. [Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (Portugal); Kakuee, O. [Nuclear Science and Technology Research Institute, End of North Karegar Ave., PO Box 14395-836, Tehran (Iran, Islamic Republic of); Kiss, A.Z. [Institute of Nuclear Research (ATOMKI), Bem ter 18/c, PO Box 51, 4001 Debrecen (Hungary); Lagoyannis, A. [National Center of Scientific Research “Demokritos”, Agia Paraskevi, P.O. Box 60228, 15310 Athens (Greece); Räisänen, J. [Division of Materials Physics, Department of Physics, University of Helsinki, PO Box 43, 00014 University of Helsinki (Finland); Strivay, D. [Institut de Physique Nucleaire, Atomique et de Spectroscopie, Universite de Liège, Sart Tilman, B15 4000 Liège (Belgium); Zucchiatti, A. [Centro de Micro Análisis de Materiales, Universidad Autónoma de Madrid, Faraday 3, Madrid 28049 (Spain)

    2016-03-15

    Particle-Induced Gamma-ray Emission (PIGE) is a powerful analytical technique that exploits the interactions of rapid charged particles with nuclei located near a sample surface to determine the composition and structure of the surface regions of solids by measurement of characteristic prompt γ rays. The potential for depth profiling of this technique has long been recognized, however, the implementation has been limited owing to insufficient knowledge of the physical data and lack of suitable user-friendly computer codes for the applications. Although a considerable body of published data exists in the nuclear physics literature for nuclear reaction cross sections with γ rays in the exit channel, there is no up-to-date, comprehensive compilation specifically dedicated to IBA applications. A number of PIGE cross-section data had already been uploaded to the Ion Beam Analysis Nuclear Data Library (IBANDL) ( (http://www-nds.iaea.org/ibandl)) by members of the IBA community by 2011, however a preliminary survey of this body of unevaluated experimental data has revealed numerous discrepancies beyond the uncertainty limits reported by the authors. Using the resources and coordination provided by the IAEA, a concerted effort to improve the situation was made within the Coordinated Research Project on the Development of a Reference Database for PIGE spectroscopy, from 2011 to 2015. The aim of the CRP was to create a data library for Ion Beam Analysis that contains reliable and usable data on charged particle γ-ray emission cross sections that would be made freely available to the user community. As the CRP has reached its completion, we shall present its main achievements, including the results of nuclear cross-section evaluations and the development of a computer code that will become available to the public allowing for the implementation of a standardless PIGE technique.

  19. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    International Nuclear Information System (INIS)

    Vink, Jacco

    2009-01-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification.The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations.Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  20. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    Science.gov (United States)

    Vink, Jacco

    2009-05-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification. The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations. Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  1. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    International Nuclear Information System (INIS)

    Kocharov, Leon; Laitinen, Timo; Vainio, Rami

    2013-01-01

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit

  2. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon [Sodankylä Geophysical Observatory (Oulu Unit), P.O. Box 3000, University of Oulu, FI-90014 Oulu (Finland); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Vainio, Rami [Department of Physics, P.O. Box 64, University of Helsinki, FI-00014 Helsinki (Finland)

    2013-11-20

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit.

  3. Reduced Ultrafine Particle Concentration in Urban Air: Changes in Nucleation and Anthropogenic Emissions.

    Science.gov (United States)

    Saha, Provat K; Robinson, Ellis S; Shah, Rishabh U; Zimmerman, Naomi; Apte, Joshua S; Robinson, Allen L; Presto, Albert A

    2018-06-19

    Nucleation is an important source of ambient ultrafine particles (UFP). We present observational evidence of the changes in the frequency and intensity of nucleation events in urban air by analyzing long-term particle size distribution measurements at an urban background site in Pittsburgh, Pennsylvania during 2001-2002 and 2016-2017. We find that both frequency and intensity of nucleation events have been reduced by 40-50% over the past 15 years, resulting in a 70% reduction in UFP concentrations from nucleation. On average, the particle growth rates are 30% slower than 15 years ago. We attribute these changes to dramatic reductions in SO 2 (more than 90%) and other pollutant concentrations. Overall, UFP concentrations in Pittsburgh have been reduced by ∼48% in the past 15 years, with a ∼70% reduction in nucleation, ∼27% in weekday local sources (e.g., weekday traffic), and 49% in the regional background. Our results highlight that a reduction in anthropogenic emissions can considerably reduce nucleation events and UFP concentrations in a polluted urban environment.

  4. Enhanced emission of non-compound light particles in the reaction plane

    International Nuclear Information System (INIS)

    Tsang, M.B.

    1984-01-01

    In an experiment performed at the K500 cyclotron at Michigan State University, light particles in coincidence with two fission fragments for 14 N induced reactions on 197 Au at 420 MeV incident energy have been measured. The fission fragments were detected with two large area position sensitive parallel plate avalanche detectors. Light particle telescopes consisting of silicon-ΔE and Nal-E detectors were placed both in and out of the plane defined by the centers of the two fission detectors and the beam axis. The momentum transferred to the composite system was determined by measuring the folding angle between the two outgoing fission fragments. Unlike observations with more fissile targets, however, transfer and inelastic reactions characterized by small linear momentum transfers contribute negligibly to the fission cross section for reactions on the 197 Au target. For events which lead to fission, the most probable linear momentum transfer corresponded to about 85% of the beam momentum. This is similar to the most probable momentum transfer observed for fusion-like reactions on 238 U at the same beam energy. Much of the missing momentum is carried away by non-equilibrium light particle emission

  5. Particle acceleration and wave emissions associated with the formation of auroral cavities and enhancements

    International Nuclear Information System (INIS)

    Winglee, R.M.; Pritchett, P.L.; Dusenbery, P.B.

    1988-01-01

    Observations from DE 1 and electrostatic particle simulations are combined in an effort to provide a unified model for (nightside) auroral particle acceleration and wave emissions and their association with plasma cavities and enhancements. The observations show that enhanced electron precipitation during inverted-V events is associated with broadband electrostatic bursts (BEB), increased upward field-aligned currents, and density enhancements. These regions are flanked by return current regions where the density is depleted (i.e., by plasma cavities). Perpendicular acceleration of ambient plasma ions can occur in both upward and return current regions. It is shown through the simulations that these processes are integrally related and are not independent of each other. The free energy for the auroral particle acceleration can be provided by energetic ion beams in the plasma sheet boundary layer with nonzero perpendicular energy. The perpendicular energy allows charge separation between the beam ions and costreaming electrons to occur. The resultant space charge fields accelerate electrons on the same field lines as the costreaming electrons downward toward the ionosphere, without the beam ions actually propagating down to auroral altitudes. Ambient plasma electrons on adjacent field lines are accelerated upward, forming a return current

  6. Estimation of Fine and Oversize Particle Ratio in a Heterogeneous Compound with Acoustic Emissions

    Directory of Open Access Journals (Sweden)

    Ejay Nsugbe

    2018-03-01

    Full Text Available The final phase of powder production typically involves a mixing process where all of the particles are combined and agglomerated with a binder to form a single compound. The traditional means of inspecting the physical properties of the final product involves an inspection of the particle sizes using an offline sieving and weighing process. The main downside of this technique, in addition to being an offline-only measurement procedure, is its inability to characterise large agglomerates of powders due to sieve blockage. This work assesses the feasibility of a real-time monitoring approach using a benchtop test rig and a prototype acoustic-based measurement approach to provide information that can be correlated to product quality and provide the opportunity for future process optimisation. Acoustic emission (AE was chosen as the sensing method due to its low cost, simple setup process, and ease of implementation. The performance of the proposed method was assessed in a series of experiments where the offline quality check results were compared to the AE-based real-time estimations using data acquired from a benchtop powder free flow rig. A designed time domain based signal processing method was used to extract particle size information from the acquired AE signal and the results show that this technique is capable of estimating the required ratio in the washing powder compound with an average absolute error of 6%.

  7. Emissions from carpet combustion in a pilot-scale rotary kiln: comparison with coal and particle-board combustion

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie Lucero Konopa; James A. Mulholland; Matthew J. Realff; Paul M. Lemieux [Georgia Institute of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering

    2008-08-15

    The use of post-consumer carpet as a potential fuel substitute in cement kilns and other high-temperature processes is being considered to address the problem of huge volumes of carpet waste and the opportunity of waste-to-energy recovery. Carpet represents a high volume waste stream, provides high energy value, and contains other recoverable materials for the production of cement. This research studied the emission characteristics of burning 0.46-kg charges of chopped nylon carpet squares, pulverized coal, and particle-board pellets in a pilot-scale natural gas-fired rotary kiln. Carpet was tested with different amounts of water added. Emissions of oxygen, carbon dioxide, nitric oxide (NO), sulfur dioxide (SO{sub 2}), carbon monoxide (CO), and total hydrocarbons and temperatures were continuously monitored. It was found that carpet burned faster and more completely than coal and particle board, with a rapid volatile release that resulted in large and variable transient emission peaks. NO emissions from carpet combustion ranged from 0.06 to 0.15 g/MJ and were inversely related to CO emissions. Carpet combustion yielded higher NO emissions than coal and particleboard combustion, consistent with its higher nitrogen content. S{sub 2} emissions were highest for coal combustion, consistent with its higher sulfur content than carpet or particle board. Adding water to carpet slowed its burn time and reduced variability in the emission transients, reducing the CO peak but increasing NO emissions. Results of this study indicate that carpet waste can be used as an effective alternative fuel, with the caveats that it might be necessary to wet carpet or chop it finely to avoid excessive transient puff emissions due to its high volatility compared with other solid fuels, and that controlled mixing of combustion air might be used to control NO emissions from nylon carpet. 13 refs., 5 figs., 1 tab.

  8. X-ray emission of the hot gas and of accelerated particles in supernova remnants

    International Nuclear Information System (INIS)

    Acero, F.

    2008-09-01

    The current observations seem to support the theory that the shock wave of supernova remnants accelerate electrons (representing about 1% of cosmic rays) of the interstellar medium up to energies of about 10 15 eV. However there is still no solid evidence that supernova remnants also accelerate protons (major component of cosmic rays). The X-ray observations of those supernova remnants with the satellite XMM-Newton can provide crucial information on the acceleration mechanisms and on this population of accelerated particles. This thesis presents the X-ray analysis of the supernova remnants RX J1713.7-3946 and SN 1006 for which it has been shown that they accelerate electrons efficiently. As a result, these objects are very good targets to compare the theoretical models of acceleration to the observation. For the first object, I constructed through new XMM-Newton observations, the first high-angular resolution mosaic of the entire supernova remnant. I then compared the X- and gamma-ray emission of this object in order to understand the nature of the gamma-ray emission. This spectral and morphological comparison allowed me to discuss the two possible origins of the gamma-ray radiation (issued by electrons or by protons). For SN 1006, I studied the density of the ambient medium in which the shock wave propagates. This density is a key parameter for the hydrodynamical evolution of the remnant and for studying a future gamma-ray emission. The study of X-ray emission of the gas heated by the shock wave allowed me to better estimate of the value of the density so far poorly constrained for this object. (author)

  9. Experimental investigation of tread wear and particle emission from tyres with different treadwear marking

    Science.gov (United States)

    Grigoratos, Theodoros; Gustafsson, Mats; Eriksson, Olle; Martini, Giorgio

    2018-06-01

    The Treadwear Rating (TWR) provided on the sidewall of the tyre is a marking intended to inform the customer about the expected durability of the tyre. The current study explores whether there is a correlation between the TWR and tyres' tread mass loss. Furthermore, it explores the possible correlation between the TWR and tyre wear dust emitted in the form of PM10 and PM2.5. For that reason, two tyres of the same brand (B) but with different TWR and three tyres of different brands (C and D with the same TWR as one of the B tyres and A with a lower TWR) were tested at a constant speed of 70 km/h by means of the Swedish National Road and Transport Research Institute (VTI) road simulator. Tyres of the same TWR but of different brands showed different behaviour in terms of material loss, PM, and PN emissions under the selected testing conditions. This means that it is not feasible to categorize tyres of different brands in terms of their emissions based on their TWR. The test performed on the two tyres of the same brand but with different TWR showed instead a substantial (not statistically significant) difference in both total wear and PM10 emissions. The tyre with the higher TWR (B2) showed less wear and PM10 emissions compared to the B1 tyre having a lower TWR. Since only two tyres of the same brand and with different TWR were tested, this result cannot be generalized and more tests are necessary to confirm the relation within the same brand. In general, the tyre tread mass loss showed no obvious statistical relation to PM10, PM2.5 or PN concentration. In all cases approximately 50% (by mass) of emitted PM10 fall within the size range of fine particles, while PN size distribution is dominated by nanoparticles most often peaking at 20-30 nm.

  10. Simultaneous coastal measurements of ozone deposition fluxes and iodine-mediated particle emission fluxes with subsequent CCN formation

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2010-01-01

    Full Text Available Here we present the first observations of simultaneous ozone deposition fluxes and ultrafine particle emission fluxes over an extensive infra-littoral zone. Fluxes were measured by the eddy covariance technique at the Station Biologique de Roscoff, on the coast of Brittany, north-west France. This site overlooks a very wide (3 km littoral zone controlled by very deep tides (9.6 m exposing extensive macroalgae beds available for significant iodine mediated photochemical production of ultrafine particles. The aspect at the Station Biologique de Roscoff provides an extensive and relatively flat, uniform fetch within which micrometeorological techniques may be utilized to study links between ozone deposition to macroalgae (and sea water and ultrafine particle production.

    Ozone deposition to seawater at high tide was significantly slower (vd[O3]=0.302±0.095 mm s−1 than low tidal deposition. A statistically significant difference in the deposition velocities to macroalgae at low tide was observed between night time (vd[O3]=1.00±0.10 mm s−1 and daytime (vd[O3]=2.05±0.16 mm s−1 when ultrafine particle formation results in apparent particle emission. Very high emission fluxes of ultrafine particles were observed during daytime periods at low tides ranging from 50 000 particles cm−2 s−1 to greater than 200 000 particles cm−2 s−1 during some of the lowest tides. These emission fluxes exhibited a significant relationship with particle number concentrations comparable with previous observations at another location. Apparent particle growth rates were estimated to be in the range 17–150 nm h−1 for particles in the size range 3–10 nm. Under certain conditions, particle growth may be inferred to continue to greater than 120 nm over tens

  11. Soot, unburned carbon and ultrafine particle emissions from air- and oxy-coal flames

    International Nuclear Information System (INIS)

    Morris, W.J.; Yu, Dunxi; Wendt, J.O.L.

    2010-01-01

    Oxy-coal combustion is one possible solution for the mitigation of greenhouse gases. In this process coal is burned in oxygen, rather than air, and the temperatures in the boiler are mitigated by recycling flue gases, so that the inlet mixture may contain either 27 % O 2 to match adiabatic flame temperatures, or 32 % O 2 to match gaseous radiation heat fluxes in the combustion chamber. However, a major issue for heat transfer from coal combustion is the radiative heat transmission from soot. For this research, air and oxy coal firing were compared regarding the emission of soot. A 100 kW down-fired laboratory combustor was used to determine effects of switching from air to oxy-firing on soot, unburned carbon and ultrafine particle emissions from practical pulverized coal flames. Of interest here were potential chemical effects of substitution of the N 2 in air by CO 2 in practical pulverized coal flames. The oxy-coal configuration investigated used once-through CO 2 , simulating cleaned flue gas recycle with all contaminants and water removed. Three coals were each burned in: a) air, b) 27 % O 2 / 73 % CO 2 , c) 32 % O 2 / 68 % CO 2 . Tests were conducted at (nominally) 3 %, 2 %, 1 % and 0 % O 2 in the exhaust (dry basis). For each condition, particulate samples were iso kinetically withdrawn far from the radiant zone, and analyzed using a photoacoustic analyzer (PA) for black carbon, a scanning mobility particle sizer (SMPS) for ultrafine particles, and a total sample loss on ignition (LOI) method for unburned carbon in ash. Data suggest that at low stoichiometric ratios, ultrafine particles consist primarily of black carbon, which, for the bituminous coal, is produced in lesser amounts under oxy-fired conditions than under the air-fired condition, even when adiabatic flame temperatures are matched. However, significant changes in mineral matter vaporization were not observed unless the flames were hotter. These and other results are interpreted in the light of

  12. Helium burning: a further measurement of the beta-delayed alpha-particle emission of 16 Na

    International Nuclear Information System (INIS)

    Gai, Moshe

    1997-01-01

    The 12 C (α,γ) 16 O is a key (but still unknown) reaction in helium burning. Several attempts to constrain the p-wave S-factor at Helium burning temperatures (200 M K) using the beta-delayed alpha-particle emission of 16 N have been made. However, some discrepancy exists between the spectra measured at Settle and that of TRIUMF. We have improved our previous study of the beta-delayed alpha-particle emission of 16 N by improving our statistical sample (by more than a factor of 5), improving the energy resolution of the experiment (by 20%), and in understanding our line shape, deduced from measured quantities. Our newly measured spectrum of the beta-delayed alpha-particle emission of 16 N is consistent with the Seattle ('95) data, as well as an earlier experiment performed at Mains ('71) and is not consistent with the TRIUMF ('94) data. (author)

  13. Current Sheets in Pulsar Magnetospheres and Winds: Particle Acceleration and Pulsed Gamma Ray Emission

    Science.gov (United States)

    Arons, Jonathan

    The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of

  14. Trace element determination in tomato puree using particle induced X-ray emission and Rutherford backscattering

    International Nuclear Information System (INIS)

    Romero-Davila, E.; Miranda, J.

    2004-01-01

    Particle induced X-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) were used to determine the concentrations of trace elements in samples of 12 tomato puree brands sold in the Mexican market. While RBS offered information about the main elements present in the matrix, PIXE gave results on trace elements. As a whole, data for 17 elements (C, N, O, Na, Mg, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn) were obtained. To evaluate the results, a comparison with brands from USA, Japan, Colombia, and Chile was carried out, using tomato purees produced following the domestic technology recipe. Additionally, the results were considered in the light of the Codex Alimentarius and the Mexican standard. It was found that all of the brands fall within the limits established by these standards, being of the same order of magnitude as the foreign brands. (author)

  15. Particle induced x-ray emission (PIXE) measurement of the Cd content in animal tissues

    International Nuclear Information System (INIS)

    Le Huong Quynh; Demeter, I.; Hollos-Nagy, K.; Szoekefalvi-Nagy, Z.

    1989-12-01

    Particle induced x-ray emission (PIXE) measurements were performed on thin samples prepared from different rabbit tissues, using 3 MeV proton beam for inducing x-rays from the animal tissues. This method is very sensitive and very small amounts of trace elements can be detected. Cadmium, one of the most toxic elements which can be concentrated in animal and human tissues due to environmental pollution, was detected with a limit of 0.7 ppm. The trace element concentrations obtained by PIXE were compared to those measured by atomic absorption spectrometry. PIXE method is proposed for routine analysis at the Veterinary and Food Investigating Service, Budapest, Hungary. (D.Gy.) 6 refs.; 3 figs

  16. Detection of halogenated flame retardants in polyurethane foam by particle induced X-ray emission

    International Nuclear Information System (INIS)

    Maley, Adam M.; Falk, Kyle A.; Hoover, Luke; Earlywine, Elly B.; Seymour, Michael D.; DeYoung, Paul A.; Blum, Arlene; Stapleton, Heather M.; Peaslee, Graham F.

    2015-01-01

    A novel application of particle-induced X-ray emission (PIXE) has been developed to detect the presence of chlorinated and brominated flame retardant chemicals in polyurethane foams. Traditional Gas Chromatography–Mass Spectrometry (GC–MS) methods for the detection and identification of halogenated flame retardants in foams require extensive sample preparation and data acquisition time. The elemental analysis of the halogens in polyurethane foam performed by PIXE offers the opportunity to identify the presence of halogenated flame retardants in a fraction of the time and sample preparation cost. Through comparative GC–MS and PIXE analysis of 215 foam samples, excellent agreement between the two methods was obtained. These results suggest that PIXE could be an ideal rapid screening method for the presence of chlorinated and brominated flame retardants in polyurethane foams

  17. Particle induced x-ray emission studies of some Indian medicinal plants

    International Nuclear Information System (INIS)

    Nomita Devi, K.; Nandakumar Sarma, H.; Kumar, Sanjiv

    2007-01-01

    Medicinal herbs have been used from antiquity by humanity. This paper discusses the elemental composition and concentration of ten Indian medicinal plants investigated by particle induced X-ray emission (PIXE) technique. The accuracy and precision of the technique were assured by analyzing three Certified Standard Reference Materials -cabbage- (GBW 08504, China), wheat flour (NIST-8436) and bovine liver (NIST-1577b). The element K, Ca, Mn, Fe, Cu and Zn were found to be present in all the samples in varying concentrations. No toxic heavy metals such as As, Pb and Hg were detected in the studied plants. The range of the elemental concentrations in dry weight has been found to vary from 4.69x10 4 mg/kg to 1.81 mg/kg in the plants. The results also show that these plants contain elements of vital importance in man's metabolism and that are needed for growth and developments, prevention and heating of diseases. (author)

  18. Quantification of arsenic in activated carbon using particle induced X-ray emission

    International Nuclear Information System (INIS)

    Yadav, Nirbhay N.; Maheswaran, Saravanamuthu; Shutthanandan, Vaithiyalingam; Thevuthasan, Suntharampillai; Ngo, Huu H.; Vigneswaran, Saravanamuth

    2006-01-01

    To date, the trace elemental analysis of solids with inhomogeneous internal structure has been limited, particularly in the case of adsorbents. High-energy ion beam based particle induced X-ray emission (PIXE) is an ideal analytical tool suitable for simultaneous quantification of trace elements with high accuracy. In this study, PIXE was used to quantify arsenic in the adsorbents, granular activated carbon (GAC) and powder activated carbon (PAC). Pelletized and unmodified GAC and PAC samples were analyzed along with powder samples deposited on thin teflon filters. These sample preparation methods resulted in samples of various thicknesses and densities. PIXE measurements taken from these samples were compared to results from neutron activation analysis (NAA) and atomic absorption spectroscopy (AAS). There is a good agreement between the values from the NAA and pelletized PIXE measurements and some AAS measurements

  19. Particle Induced X-ray Emission (PIXE) Approach for the Quantification of Thin Al Films

    International Nuclear Information System (INIS)

    Younes, G; Zahraman, K; Nsouli, B; Soueidan, M; Ferro, G

    2008-01-01

    Particle Induced X-ray Emission (PIXE) has been used as a fast and non-destructive technique for sensitive characterization of ultra thin Al films deposited by evaporation onto Si substrate. In this work the PIXE technique was optimized, using proton beam at different energies and different angles of incidence, for the characterization of ultra thin Al films (few nanometers) deposited onto Si substrate. The PIXE results showed that a proton beam of 300 keV under tilting angle of 80 degree permits an accurate determination of Al with high sensitivity within few minutes of acquisition time and a LOD of less than 0.2 nm. The LOD versus energy and tilting angle will be presented and discussed. (author)

  20. Detection of halogenated flame retardants in polyurethane foam by particle induced X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Maley, Adam M.; Falk, Kyle A.; Hoover, Luke; Earlywine, Elly B.; Seymour, Michael D. [Department of Chemistry, Hope College, 35 E. 12th Street, Holland, MI 49423 (United States); DeYoung, Paul A. [Department of Physics, Hope College, 27 Graves Place, Holland, MI 49423 (United States); Blum, Arlene [Green Science Policy Institute, Box 5455, Berkeley, CA 94705 (United States); Stapleton, Heather M. [Nicholas School of the Environment, Duke University, LSRC Box 90328, Durham, NC 27708 (United States); Peaslee, Graham F., E-mail: peaslee@hope.edu [Department of Chemistry, Hope College, 35 E. 12th Street, Holland, MI 49423 (United States)

    2015-09-01

    A novel application of particle-induced X-ray emission (PIXE) has been developed to detect the presence of chlorinated and brominated flame retardant chemicals in polyurethane foams. Traditional Gas Chromatography–Mass Spectrometry (GC–MS) methods for the detection and identification of halogenated flame retardants in foams require extensive sample preparation and data acquisition time. The elemental analysis of the halogens in polyurethane foam performed by PIXE offers the opportunity to identify the presence of halogenated flame retardants in a fraction of the time and sample preparation cost. Through comparative GC–MS and PIXE analysis of 215 foam samples, excellent agreement between the two methods was obtained. These results suggest that PIXE could be an ideal rapid screening method for the presence of chlorinated and brominated flame retardants in polyurethane foams.

  1. Emissions and measure analysis of fine particles 2000-2020; Emissionen und Massnahmenanalyse Feinstaub 2000-2020

    Energy Technology Data Exchange (ETDEWEB)

    Joerss, Wolfram; Handke, Volker [Institut fuer Zukunftsstudien und Technologiebewertung gGmbH (IZT), Berlin (Germany)

    2007-08-15

    With this study, the Federal Environmental Agency's emission inventory on total suspended particles and the fine fractions PM{sub 1}0 and PM{sub 2}.5 was updated. On that basis, a reference scenario was developed for anthropogenic emissions of particulate matter up to the years 2010, 2015 and 2020. In addition, potential additional emission reduction measures were systematically collected and quantified. At the source groups which contribute most strongly to the emissions there are clear differences between the fine fractions and in the course of time. In particular, with the total fine the emission freight is very broadly distributed over many source groups. With PM{sub 2}.5, the emissions are more strongly concentrated on a limited number of source groups. The decrease of the emissions in the years between 2000 and 2020 in the reference scenario takes place in source groups with high portions of PM{sub 2}.5 of the emissions of total fine particles.

  2. Emissions and measure analysis of fine particles 2000-2020; Emissionen und Massnahmenanalyse Feinstaub 2000-2020

    Energy Technology Data Exchange (ETDEWEB)

    Joerss, Wolfram; Handke, Volker [Institut fuer Zukunftsstudien und Technologiebewertung gGmbH (IZT), Berlin (Germany)

    2007-08-15

    With this study, the Federal Environmental Agency's emission inventory on total suspended particles and the fine fractions PM{sub 1}0 and PM{sub 2}.5 was updated. On that basis, a reference scenario was developed for anthropogenic emissions of particulate matter up to the years 2010, 2015 and 2020. In addition, potential additional emission reduction measures were systematically collected and quantified. At the source groups which contribute most strongly to the emissions there are clear differences between the fine fractions and in the course of time. In particular, with the total fine the emission freight is very broadly distributed over many source groups. With PM{sub 2}.5, the emissions are more strongly concentrated on a limited number of source groups. The decrease of the emissions in the years between 2000 and 2020 in the reference scenario takes place in source groups with high portions of PM{sub 2}.5 of the emissions of total fine particles.

  3. Particle emissions from ventilation equipment: health hazards, measurement and product development; Ilmanvaihtolaitteiden hiukkaspaeaestoet: terveyshaitat, mittaaminen ja tuotekehitys

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, A.; Tuovila, H.; Riala, R.; Harju, R.; Tuomi, T.; Voutilainen, R. [Tyoeterv.l, Helsinki (Finland); Laamanen, J.; Ismo Heimonen, I.; Kovanen, K. [VTT, Espoo (Finland)

    2006-10-15

    The project aimed to develop the design, structure and materials of ventilation equipment for the improvement of indoor air quality in office- type buildings. Particle emissions from commercial sound silencers were measured by laboratory tests. In ten buildings, the dust and fibre levels were surveyed in relation to the product design and operation. Direct-reading particle counters and filter sampling methods combined with optical and electron microscopy analyses were the main methods in these surveys. Nasal lavage was used for the estimation of inhalation exposure to coarse man-made mineral fibres. Technical criteria were drafted for the design and testing of fibre emissions from various ventilation equipment. (orig.)

  4. Electromagnetic scattering and emission by a fixed multi-particle object in local thermal equilibrium: General formalism.

    Science.gov (United States)

    Mishchenko, Michael I

    2017-10-01

    The majority of previous studies of the interaction of individual particles and multi-particle groups with electromagnetic field have focused on either elastic scattering in the presence of an external field or self-emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromagnetic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in maximally rigorous mathematical terms the general scattering-emission problem for a fixed object, and derive such fundamental corollaries as the scattering-emission volume integral equation, the Lippmann-Schwinger equation for the dyadic transition operator, the multi-particle scattering-emission equations, and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computation of the self-emitted component of the total field is completely separated from that of the elastically scattered field. The same is true of the computation of the emitted and elastically scattered components of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical computation of relevant optical observables.

  5. Effects of fresh lubricant oils on particle emissions emitted by a modern gasoline direct injection passenger car.

    Science.gov (United States)

    Pirjola, Liisa; Karjalainen, Panu; Heikkilä, Juha; Saari, Sampo; Tzamkiozis, Theodoros; Ntziachristos, Leonidas; Kulmala, Kari; Keskinen, Jorma; Rönkkö, Topi

    2015-03-17

    Particle emissions from a modern turbocharged gasoline direct injection passenger car equipped with a three-way catalyst and an exhaust gas recirculation system were studied while the vehicle was running on low-sulfur gasoline and, consecutively, with five different lubrication oils. Exhaust particle number concentration, size distribution, and volatility were determined both at laboratory and on-road conditions. The results indicated that the choice of lubricant affected particle emissions both during the cold start and warm driving cycles. However, the contribution of engine oil depended on driving conditions being higher during acceleration and steady state driving than during deceleration. The highest emission factors were found with two oils that had the highest metal content. The results indicate that a 10% decrease in the Zn content of engine oils is linked with an 11-13% decrease to the nonvolatile particle number emissions in steady driving conditions and a 5% decrease over the New European Driving Cycle. The effect of lubricant on volatile particles was even higher, on the order of 20%.

  6. Forensic analysis of tempered sheet glass by particle induced X-ray emission (PIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jisonna, L.J. [Department of Chemistry and Department of Physics, Hope College, Holland, MI 49422-9000 (United States); DeYoung, P.A., E-mail: deyoung@hope.ed [Department of Chemistry and Department of Physics, Hope College, Holland, MI 49422-9000 (United States); Ferens, J.; Hall, C.; Lunderberg, J.M.; Mears, P. [Department of Chemistry and Department of Physics, Hope College, Holland, MI 49422-9000 (United States); Padilla, D. [Department of Physics, San Diego State University, San Diego, CA 92182-1233 (United States); Peaslee, G.F. [Department of Chemistry and Department of Physics, Hope College, Holland, MI 49422-9000 (United States); Sampson, R. [Department of Physics, Columbia University, New York, NY 10027 (United States)

    2011-05-15

    Highlights: {yields} PIXE was found to give the same results for trace elements in glass as ICP. {yields} PIXE can non-destructively determine trace element concentrations in auto glass. {yields} Measured Ca, Fe, Ti, Mn, and Sr in auto glass with PIXE. -- Abstract: The elemental concentrations of five trace elements in tempered sheet glass fragments were determined using particle-induced X-ray emission (PIXE) spectrometry. The trace element concentrations for calcium, iron, manganese, strontium, and titanium are compared to those obtained by inductively-coupled plasma-atomic emission spectrometry (ICP-AES) following complete digestion by hydrofluoric acid. For these five elements, the absolute concentrations obtained by both methods are shown to agree well over a wide range of concentrations. The limits of detection for trace elements are typically lower for the ICP-AES method. However, we show that the concentrations of these five elements can be accurately measured by the PIXE method. Since PIXE is an entirely non-destructive method, there exists a niche for this technique to be used as a complement to the more sensitive ICP-AES technique in the forensic analysis of sheet glass.

  7. Determination of impurities in silicon nitride by particle induced x-ray emission analysis

    International Nuclear Information System (INIS)

    Miyagawa, Yoshiko; Saito, Kazuo; Niwa, Hiroaki; Ishizuka, Toshio; Miyagawa, Soji

    1985-01-01

    A method is presented for quantitative particle induced X-ray emission (PIXE) analysis of impurities in the thick samples of silicon nitride. In the analysis of ceramic materials such as silicon nitride, chemical treatments are required to prepare thin enough samples. However, the chemical treatments are undesirable for the PIXE analysis, because another complications are brought about. Our method does not need any chemical treatments and thick samples can be subjected to the measurements. The determination of impurities were made by on-line use of a personal computer in which standard X-ray intensity data were stored. The method and procedures are as follows: After subtracting a buckground spectrum from an observed PIXE spectrum, the resultant peaks are assigned to individual elements. Then, in order to determine the contents of the impurities, the intensity of each peak is compared with a Gaussian curve which is generated from the standard X-ray intensity data. The latter data were determined theoretically. The results were in satisfactory agreement with those obtained by ICP emission spectrometry. (author)

  8. Applications of particle induced X-ray emission analysis to ambient aerosol studies

    International Nuclear Information System (INIS)

    Lannefors, H.

    1982-01-01

    The characteristics of Particle Induced X-ray Emission (PIXE) analysis in conjunction with different ambient aerosol samplers have been studied. Correction factors have been calculated for homogeneous and inhomogeneous rural and urban aerosol samples. The Nuclepore two stage filter sampler provided the most useful combination of the resolution and particle size fractionation in urban, rural and remote environments. The PIXE-analysis technique in combination with different samplers was employed in aerosol composition studies in rural and remote environments. Particular emphasis was laid on studies of aerosol long range transport. Based on air mass trajectory analysis and aerosol composition measurements the foreign contribution in southern Sweden was estimated to be 70 - 80% for S and Pb but only 30 - 50% for V and Ni. The spatial and temporal extension of a long range transport episode was studied using high time resolution continuous filter samplers in a network in southern Sweden. The variation in the concentration levels of sulphur agreed well with changes in the air mass history. Arctic summer elemental concentration levels as measured during the Swedish YMER-80 icebreaker expedition were typically one order of magnitude lower than Arctic winter levels. The combination of chemical information, optical properties and size distribution data supports the hypothesis of long range transport of air pollution into the Arctic especially during the winter. This takes place during the winter season because the Polar front is further south making conditions for long range transport up to the Arctic more favourable. (Auth.)

  9. High-energy particle emission from galena and pyrite bombarded with Cs and O ions

    International Nuclear Information System (INIS)

    Karpuzov, D.S.; McIntyre, N.S.

    2002-01-01

    The ejection of energetic particles during steady-state ion surface bombardment has been investigated by means of a dynamic computer simulation as well as in a secondary ion mass spectrometry (SIMS)/low-energy ion scattering from surfaces (LEIS) experiment. The emphasis of this comparative study is on the mass dependence of high-energy tails in sputtering and backscattering for the bombardment of galena (PbS) and pyrite (FeS 2 ) with keV energy ion beam of cesium and oxygen. In the experiment, kinetic energy distributions of sputtered secondary ions (S + , Fe + , Pb + , S - ), as well as backscattered or re-sputtered primary ions (Cs + , O + , O - ), have been measured on a modified Cameca IMS-3f magnetic sector mass spectrometer for keV cesium (Cs + ) and oxygen (O 2 + , O - ) bombardment of galena and pyrite. Ejection of high-energy particles, with emission energies of up to ∼40% or up to ∼60% of the bombarding energy for sputtering of the lighter component (S ± ) with cesium or oxygen, respectively, and of up to ∼40% (Cs + ) and ∼80% (O ± ) for backscattering, has been observed for PbS. The computer simulations were based on the well-known MARLOWE code. In order to model the change of the stoichiometry of the binary compounds, dynamic modification of the target composition in the near-surface region was introduced. Cs incorporation was included, and a relative enrichment of the metallic component (Pb, Fe) in the top few layers due to preferential sputtering of sulfur was allowed. The computer simulations provide information on the formation of altered layer under sputter equilibrium as well as on the energy and angular emission distributions of sputtered and backscattered particles in steady-state conditions. Multiple scattering of Cs projectiles and dynamic re-sputtering of cesium that was previously incorporated in the altered near-surface region can be distinguished in the simulation, and matched with the experimental observations. In addition

  10. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    A. Petzold

    2008-05-01

    Full Text Available Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel−1 by number for non-volatile particles and 174±43 mg (kg fuel−1 by mass for Black Carbon (BC. Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  11. Real-world emission factors of fine and ultrafine aerosol particles for different traffic situations in Switzerland.

    Science.gov (United States)

    Imhof, David; Weingartner, Ernest; Ordónez, Carlos; Gehrig, Robert; Hill, Matz; Buchmann, Brigitte; Baltensperger, Urs

    2005-11-01

    Extended field measurements of particle number (size distribution of particle diameters, D, in the range between 18 nm and 10 microm), surface area concentrations, and PM1 and PM10 mass concentrations were performed in Switzerland to determine traffic emissions using a comprehensive set of instruments. Measurements took place at roads with representative traffic regimes: at the kerbside of a motorway (120 km h(-1)), a highway (80-100 km h(-1)), and in an urban area with stop-and-go traffic (0-50 km h(-1)) regulated by light signals. Mean diurnal variations showed that the highest pollutant concentrations were during the morning rush hours, especially of the number density in the nanoparticle size range (D real-life" emission factors were derived using NOx concentrations to calculate dilution factors. Particle number and volume emission factors of different size ranges (18-50 nm, 18-100 nm, and 18-300 nm) were derived for the total vehicle fleet and separated into a light-duty (LDV) and a heavy-duty vehicle (HDV) contribution. The total particle number emissions per vehicle were found to be about 11.7-13.5 x 10(14) particles km(-1) for constant speed (80-120 km h(-1) and 3.9 x 10(14) particles km(-1) for urban driving conditions. LDVs showed higher emission factors at constant high speed than under urban disturbed traffic flow. In contrast, HDVs emitted more air pollutants during deceleration and acceleration processes in stop-and-go traffic than with constant speed of about 80 km h(-1). On average, one HDV emits a 10-30 times higher amount of particulate air pollutants (in terms of both number and volume) than one LDV.

  12. Determination of time- and size-dependent fine particle emission with varied oil heating in an experimental kitchen.

    Science.gov (United States)

    Li, Shuangde; Gao, Jiajia; He, Yiqing; Cao, Liuxu; Li, Ang; Mo, Shengpeng; Chen, Yunfa; Cao, Yaqun

    2017-01-01

    Particulate matter (PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health. It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics, especially ultrafine particles (UFP<100nm) and accumulation mode particles (AMP 100-665nm). Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 265°C to investigate PM emission and decay features between 0.03 and 10μm size dimension by electrical low pressure impactor (ELPI) without ventilation. Rapeseed and sunflower produced high PM 2.5 around 6.1mg/m 3 , in comparison with those of soybean and corn (5.87 and 4.65mg/m 3 , respectively) at peak emission time between 340 and 460sec since heating oil, but with the same level of particle numbers 6-9×10 5 /cm 3 . Mean values of PM 1.0 /PM 2.5 and PM 2.5 /PM 10 at peak emission time are around 0.51-0.66 and 0.23-0.29. After 15min naturally deposition, decay rates of PM 1.0 , PM 2.5 and PM 10 are 13.3%-29.8%, 20.1%-33.9% and 41.2%-54.7%, which manifest that PM 1.0 is quite hard to decay than larger particles, PM 2.5 and PM 10 . The majority of the particle emission locates at 43nm with the largest decay rate at 75%, and shifts to a larger size between 137 and 655nm after 15min decay. The decay rates of the particles are sensitive to the oil type. Copyright © 2016. Published by Elsevier B.V.

  13. Why Information Literacy Is Invisible

    Directory of Open Access Journals (Sweden)

    William Badke

    2011-03-01

    Full Text Available Despite the many information literacy programs on higher education campuses, the literature of information literacy and the concept of information literacy as a viable academic subject remain hidden to most professors and academic administrators. Information literacy is invisible to academia because it is misunderstood, academic administrators have not put it on their institutions' agendas, the literature of information literacy remains in the library silo, there is a false belief that information literacy is acquired only by experience, there is a false assumption that technological ability is the same as information literacy, faculty culture makes information literacy less significant than other educational pursuits, faculty have a limited perception of the ability of librarians. and accrediting bodies have not yet advanced information literacy to a viable position in higher education. The new information age demands that these barriers be overcome and information literacy take a prominent place within the academic experience.

  14. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls.

    Science.gov (United States)

    Oliveira, Marcos L S; Navarro, Orlando G; Crissien, Tito J; Tutikian, Bernardo F; da Boit, Kátia; Teixeira, Elba C; Cabello, Juan J; Agudelo-Castañeda, Dayana M; Silva, Luis F O

    2017-10-01

    There are multiple elements which enable coal geochemistry: (1) boiler and pollution control system design parameters, (2) temperature of flue gas at collection point, (3) feed coal and also other fuels like petroleum coke, tires and biomass geochemistry and (4) fuel feed particle size distribution homogeneity distribution, maintenance of pulverisers, etc. Even though there is a large number of hazardous element pollutants in the coal-processing industry, investigations on micrometer and nanometer-sized particles including their aqueous colloids formation reactions and their behaviour entering the environment are relatively few in numbers. X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/ (Energy Dispersive Spectroscopy) EDS/ (selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis were used as an integrated characterization techniques tool box to determine both geochemistry and nanomineralogy for coal fly ashes (CFAs) from Brazil´s largest coal power plant. Ultrafine/nano-particles size distribution from coal combustion emissions was estimated during the tests. In addition the iron and silicon content was determined as 54.6% of the total 390 different particles observed by electron bean, results aimed that these two particles represent major minerals in the environment particles normally. These data may help in future investigations to asses human health actions related with nano-particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ model

    Directory of Open Access Journals (Sweden)

    J. T. Kelly

    2010-04-01

    Full Text Available Chemical processing of sea-salt particles in coastal environments significantly impacts concentrations of particle components and gas-phase species and has implications for human exposure to particulate matter and nitrogen deposition to sensitive ecosystems. Emission of sea-salt particles from the coastal surf zone is known to be elevated compared to that from the open ocean. Despite the importance of sea-salt emissions and chemical processing, the US EPA's Community Multiscale Air Quality (CMAQ model has traditionally treated coarse sea-salt particles as chemically inert and has not accounted for enhanced surf-zone emissions. In this article, updates to CMAQ are described that enhance sea-salt emissions from the coastal surf zone and allow dynamic transfer of HNO3, H2SO4, HCl, and NH3 between coarse particles and the gas phase. Predictions of updated CMAQ models and the previous release version, CMAQv4.6, are evaluated using observations from three coastal sites during the Bay Regional Atmospheric Chemistry Experiment (BRACE in Tampa, FL in May 2002. Model updates improve predictions of NO3, SO42−, NH4+, Na+, and Cl concentrations at these sites with only a 8% increase in run time. In particular, the chemically interactive coarse particle mode dramatically improves predictions of nitrate concentration and size distributions as well as the fraction of total nitrate in the particle phase. Also, the surf-zone emission parameterization improves predictions of total sodium and chloride concentration. Results of a separate study indicate that the model updates reduce the mean absolute error of nitrate predictions at coastal CASTNET and SEARCH sites in the eastern US. Although the new model features improve performance relative to CMAQv4.6, some persistent differences exist between observations and predictions

  16. Geometry and light the science of invisibility

    CERN Document Server

    Leonhardt, Ulf

    2010-01-01

    The science of invisibility combines two of physics' greatest concepts: Einstein's general relativity and Maxwell's principles of electromagnetism. Recent years have witnessed major breakthroughs in the area, and the authors of this volume - Ulf Leonhardt and Thomas Philbin of Scotland's University of St. Andrews - have been active in the transformation of invisibility from fiction into science. Their work on designing invisibility devices is based on modern metamaterials, inspired by Fermat's principle, analogies between mechanics and optics, and the geometry of curved space. Suitable for gra

  17. Broadband invisibility by non-Euclidean cloaking.

    Science.gov (United States)

    Leonhardt, Ulf; Tyc, Tomás

    2009-01-02

    Invisibility and negative refraction are both applications of transformation optics where the material of a device performs a coordinate transformation for electromagnetic fields. The device creates the illusion that light propagates through empty flat space, whereas in physical space, light is bent around a hidden interior or seems to run backward in space or time. All of the previous proposals for invisibility require materials with extreme properties. Here we show that transformation optics of a curved, non-Euclidean space (such as the surface of a virtual sphere) relax these requirements and can lead to invisibility in a broad band of the spectrum.

  18. The ammonium nitrate particle equivalent of NOx emissions for wintertime conditions in Central California's San Joaquin Valley

    International Nuclear Information System (INIS)

    Stockwell, W.R.; Watson, J.G.; Robinson, N.F.; Sylte, W.W.

    2000-01-01

    A new method has been developed to assess the aerosol particle formation reactivity of nitrogen oxide (NO x ) emissions. The method involves using a photochemical box model with gas-phase photochemistry, aerosol production and deposition to calculate the ammonium nitrate particle equivalent of NO x emissions. The yields of ammonium nitrate particles used in the box model were determined from parametric simulations made with an equilibrium model that calculated the fraction of nitric acid that reacts to produce ammonium nitrate from the temperature, relative humidity and ammonium-to-nitrate ratios. For the wintertime conditions of emissions and meteorology in the San Joaquin Valley of central California, approximately 80% of the moles of nitric acid produced was found to be in the particulate nitrate phase and about 33% of the moles of emitted NO x was converted to particulate nitrate. The particle equivalent of NO x emissions was found to be on the order of 0.6 g of ammonium nitrate for each gram of NO x emitted (the mass of NO x calculated as NO 2 ). This estimate is in reasonable agreement with an analysis of field measurements made in central California. (author)

  19. The quantitative determination of trace elements in giant unicellular plants by particle-induced X-ray emission

    International Nuclear Information System (INIS)

    Navarrete-Dominguez, V.R.; Yoshihara, K.; Tanaka, N.

    1982-01-01

    Particle-induced X-ray emission (PIXE) was applied for the determination of trace elements in biologically interesting materials, giant unicellular plants. It was found that the PIXE method had advantages in multi-element trace analysis of a single cell of the sample plant. (author)

  20. Ultrafine particle emissions by in-use diesel buses of various generations at low-load regimes

    Science.gov (United States)

    Tartakovsky, L.; Baibikov, V.; Comte, P.; Czerwinski, J.; Mayer, A.; Veinblat, M.; Zimmerli, Y.

    2015-04-01

    Ultrafine particles (UFP) are major contributors to air pollution due to their easy gas-like penetration into the human organism, causing adverse health effects. This study analyzes UFP emissions by buses of different technologies (from Euro II till Euro V EEV - Enhanced Environmentally-friendly Vehicle) at low-load regimes. Additionally, the emission-reduction potential of retrofitting with a diesel particle filter (DPF) is demonstrated. A comparison of the measured, engine-out, particle number concentrations (PNC) for buses of different technological generations shows that no substantial reduction of engine-out emissions at low-load operating modes is observed for newer bus generations. Retrofitting the in-use urban and interurban buses of Euro II till Euro IV technologies by the VERT-certified DPF confirmed its high efficiency in reduction of UFP emissions. Particle-count filtration efficiency values of the retrofit DPF were found to be extremely high - greater than 99.8%, similar to that of the OEM filter in the Euro V bus.

  1. Comprehensive Characterization Of Ultrafine Particulate Emission From 2007 Diesel Engines: PM Size Distribution, Loading And Indidividual Particle Size And Composition.

    Science.gov (United States)

    Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.

    2006-12-01

    The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized

  2. Wood burning stoves and small boilers - particle emissions and reduction initiatives; Braendeovne og smae kedler - partikelemissioner og reduktionstiltag

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J B; Capral Henriksen, T; Lundhede, T [Danmarks Miljoeundersoegelser, Aarhus Universitet, Aarhus (Denmark); Breugel, C van; Zoellner Jensen, N [Miljoestyrelsen, Copenhagen (Denmark)

    2007-06-15

    Pollution from burning wood in private households, and the environmental and health consequences of this is determined in practice by a complicated interaction between a number of factors, including firing habits, fuel, type of stove/boiler, chimney and location of the chimney in relation to the surroundings. This report maps out the technologies used today for burning wood in private households, how these technologies contribute to particle emissions and which technologies may potentially reduce emissions of particles from burning wood in households in Denmark. Moreover, the possible emissions reductions and the financial costs incurred by consumers from different initiatives have been estimated. This report does not deal with possible initiatives for improvement of firing habits, fuel quality and chimneys. (au)

  3. Enhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell

    International Nuclear Information System (INIS)

    Li, Ling; Green, Kory; Hallen, Hans; Lim, Shuang Fang

    2015-01-01

    Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF 4 : Yb, Er based upconverting nanoparticles coated with a gold nanoshell through surface plasmon resonance. The single gold-shell coated nanoparticles show enhanced absorption in the near infrared, enhanced total emission intensity, and increased green relative to red emission. We also show differences in enhancement between single and aggregated gold shell nanoparticles. The surface plasmon resonance of the gold-shell coated nanoparticle is shown to be dependent on the shell thickness. In contrast to other reported results, our single particle experimental observations are corroborated by finite element calculations that show where the green/red emission enhancement occurs, and what portion of the enhancement is due to electromagnetic effects. We find that the excitation enhancement and green/red emission ratio enhancement occurs at the corners and edges of the doped emissive core. (paper)

  4. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    Science.gov (United States)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  5. Characterization of Delayed-Particle Emission Signatures for Pyroprocessing. Part 1: ABTR Fuel Assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Jr., Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-19

    A three-part study is conducted using the MCNP6 Monte Carlo radiation-transport code to calculate delayed-neutron (DN) and delayed-gamma (DG) emission signatures for nondestructive assay (NDA) metal-fuel pyroprocessing. In Part 1, MCNP6 is used to produce irradiation-induced used nuclear fuel (UNF) isotopic inventories for an Argonne National Laboratory (ANL) Advanced Burner Test Reactor (ABTR) preconceptual design fuel assembly (FA) model. The initial fuel inventory consists of uranium mixed with light-water-reactor transuranic (TRU) waste and 10 wt% zirconium (U-LWR-SFTRU-10%Zr). To facilitate understanding, parametric evaluation is done using models for 3% and 5% initial 235U a% enrichments, burnups of 5, 10, 15, 20, 30, …, 120 GWd/MTIHM, and 3-, 5-, 10-, 20-, and 30- year cooling times. Detailed delayed-particle radioisotope source terms for the irradiate FA are created using BAMF-DRT and SOURCES3A. Using simulation tallies, DG activity ratios (DGARs) are developed for 134Cs/137Cs 134Cs/154Eu, and 154Eu/137Cs markers as a function of (1) burnup and (2) actinide mass, including elemental uranium, neptunium, plutonium, americium, and curium. Spectral-integrated DN emission is also tallied. The study reveals a rich assortment of DGAR behavior as a function of DGAR type, enrichment, burnup, and cooling time. Similarly, DN emission plots show variation as a function of burnup and of actinide mass. Sensitivity of DGAR and DN signatures to initial 235U enrichment, burnup, and cooling time is evident. Comparisons of the ABTR radiation signatures and radiation signatures previously reported for a generic Westinghouse oxide-fuel assembly indicate that there are pronounced differences in the ABTR and Westinghouse oxide-fuel DN and DG signatures. These differences are largely attributable to the initial TRU inventory in the ABTR fuel. The actinide and nonactinide inventories for the

  6. Theoretical model of Orion gamma emission: acceleration, propagation and interaction of energetic particles in the interstellar medium

    International Nuclear Information System (INIS)

    Parizot, Etienne

    1997-01-01

    This research thesis reports the development of a general model for the study of the propagation and interaction of energetic particles (cosmic rays, and so on) in the interstellar medium (ISM). The first part addresses the development of theoretical and numerical tools. The author presents cosmic rays and energetic particles, presents and describes the various processes related to high-energy particles (matter ionisation, synchrotron and Bremsstrahlung radiation, Compton scattering, nuclear processes), addresses the transport and acceleration of energetic particles (plasmas, magnetic fields and energetic particles, elements of kinetic theory, transport and acceleration of energetic particles), and describes the general model of production of γ nuclear lines and of secondary nuclei. The second part addresses the gamma signature of a massive star in a dense medium: presentation and description of massive stars and of the circumstellar medium, life, death and gamma resurrection of a massive star at the heart of a cloud. The third part addresses the case of the gamma emission by Orion, and more particularly presents a theoretical model of this emission. Some generalities and perspectives (theoretical as well as observational) are then stated [fr

  7. Reduction of particle emissions from light duty vehicles and from taxies; Reduktion af partikelelemissioner fra varebiler og taxier

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Johan; Henriques, M.; Weibel, T.G. [TetraPlan A/S (Denmark)

    2006-11-03

    This project, 'Reduction of particle emissions from light duty vehicles and from taxies', analyses different strategies to reduce the particle emission, their effect for particle emissions, and the resulting cost for the society and for the companies. The project describes the EU regulation of emissions, the possibilities of reducing the emissions via special requirements in environmental zones and the Danish taxation of light duty vehicles. Further, the project includes interviews with owners of light duty vehicles and taxies and also with Danish producers of particle filters. The strategies analysed in the scenarios include: 1) Promotion of particle filters; 2) Shift from diesel to gasoline and; 3) Downsizing. The effects for particle emissions and for mortality are described. Further, the costs and benefits for the society and the cost for the companies are evaluated. The effects of the scenarios are analysed, both for initiatives implemented at a national level and for implementation in an environmental zone in the municipality of Copenhagen. The main results are that the socioeconomic benefits in the year 2012 are greater than the costs, if taxis and light duty vehicles have filters installed and if they are driving in the Copenhagen area. For light duty vehicles it is only profitable, if the prices of the filters fall to the price level that is expected in the future in the study. Further, the analysis shows that for light duty vehicles and taxies driving all over the country, the socioeconomic benefits achieved by installing particle filters are too small to cover the costs. The analysis shows that it is also profitable socio-economically to change from diesel to petrol for light duty vehicles and for taxies (except taxies driving nationally). The analysis is based on the producer prices including the general net tax level, while the specific taxes are not included. From the point of view of the companies it is not profitable to change to petrol

  8. Monitoring and Quantifying Particles Emissions around Industrial Sites with Scanning Doppler Lidar

    Science.gov (United States)

    Thobois, L.; Royer, P.; Parmentier, R.; Brooks, M.; Knoepfle, A.; Alexander, J.; Stidwell, P.; Kumar, R.

    2018-04-01

    Scanning Coherent Doppler Lidars have been used over the last decade for measuring wind for applications in wind energy [1], meteorology [2] and aviation [3]. They allow for accurate measurements of wind speeds up to a distance of 10 km based on the Doppler shift effect of aerosols. The signal reflectivity (CNR or Carrier-to-Noise Ratio) profiles can also be retrieved from the strength of the Lidar signal. In this study, we will present the developments of algorithm for retrieving aerosol optical properties like the relative attenuated backscatter coefficient and the mass concentration of particles. The use of these algorithms during one operational trial in Point Samson, Western Australia to monitor fugitive emissions over a mine will be presented. This project has been initiated by the Australian Department of Environment Regulations to better determine the impact of the Port on the neighboring town. During the trial in Summer, the strong impact of turbulence refractive index on Lidar performances has been observed. Multiple methodologies have been applied to reduce this impact with more or less success. At the end, a dedicated setup and configuration have been established that allow to properly observe the plumes of the mine with the scanning Lidar. The Lidar data has also been coupled to beta attenuation in-situ sensors for retrieving mass concentration maps. A few case of dispersion of plumes will be presented showing the necessity to combine both the wind and aerosol data.

  9. Ultrafast detection in particle physics and positron emission tomography using SiPMs

    Science.gov (United States)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2017-12-01

    Silicon photomultiplier (SiPM) photodetectors perform well in many particle and medical physics applications, especially where good efficiency, insensitivity to magnetic field and precise timing are required. In Cherenkov time-of-flight positron emission tomography the requirements for photodetector performance are especially high. On average only a couple of photons are available for detection and the best possible timing resolution is needed. Using SiPMs as photodetectors enables good detection efficiency, but the large sensitive area devices needed have somewhat limited time resolution for single photons. We have observed an additional degradation of the timing at very low light intensities due to delayed events in distribution of signals resulting from multiple fired micro cells. In this work we present the timing properties of AdvanSiD ASD-NUV3S-P-40 SiPM at single photon level picosecond laser illumination and a simple modification of the time-walk correction algorithm, that resulted in reduced degradation of timing resolution due to the delayed events.

  10. β-particle energy-summing correction for β-delayed proton emission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, Z., E-mail: meisel@ohio.edu [Institute of Nuclear and Particle Physics, Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements (United States); Santo, M. del [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Crawford, H.L. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Cyburt, R.H. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Grinyer, G.F. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Bvd Henri Becquerel, Caen 14076 (France); Langer, C. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, Institute for Applied Physics, Goethe University Frankfurt am Main, 60438 Frankfurt am Main (Germany); Montes, F. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Schatz, H. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Smith, K. [Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements, Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)

    2017-02-01

    A common approach to studying β-delayed proton emission is to measure the energy of the emitted proton and corresponding nuclear recoil in a double-sided silicon-strip detector (DSSD) after implanting the β-delayed proton-emitting (βp) nucleus. However, in order to extract the proton-decay energy, the measured energy must be corrected for the additional energy implanted in the DSSD by the β-particle emitted from the βp nucleus, an effect referred to here as β-summing. We present an approach to determine an accurate correction for β-summing. Our method relies on the determination of the mean implantation depth of the βp nucleus within the DSSD by analyzing the shape of the total (proton + recoil + β) decay energy distribution shape. We validate this approach with other mean implantation depth measurement techniques that take advantage of energy deposition within DSSDs upstream and downstream of the implantation DSSD.

  11. Composition of Renaissance paint layers: simultaneous particle induced X-ray emission and backscattering spectrometry.

    Science.gov (United States)

    de Viguerie, L; Beck, L; Salomon, J; Pichon, L; Walter, Ph

    2009-10-01

    Particle induced X-ray emission spectroscopy (PIXE) is now routinely used in the field of cultural heritage. Various setups have been developed to investigate the elemental composition of wood/canvas paintings or of cross-section samples. However, it is not possible to obtain information concerning the quantity of organic binder. Backscattering spectrometry (BS) can be a useful complementary method to overcome this limitation. In the case of paint layers, PIXE brings the elemental composition (major elements to traces) and the BS spectrum can give access to the proportion of pigment and binder. With the use of 3 MeV protons for PIXE and BS simultaneously, it was possible to perform quantitative analysis including C and O for which the non-Rutherford cross sections are intense. Furthermore, with the use of the same conditions for PIXE and BS, the experiment time and the potential damage by the ion beam were reduced. The results obtained with the external beam of the Accélérateur Grand Louvre pour l'Analyse Elementaire (AGLAE) facility on various test painting samples and on cross sections from Italian Renaissance masterpieces are shown. Simultaneous combination of PIXE and BS leads to a complete characterization of the paint layers: elemental composition and proportion of the organic binder have been determined and thus provide useful information about ancient oil painting recipes.

  12. Particle-Induced Gamma-ray Emission Spectroscopy Over a Broad Range of Elements

    Science.gov (United States)

    Olds, Hannah; Wilkinson, John; Tighe, Meghanne; McLallen, Walter; McGuire, Patrick

    2017-09-01

    Ion beam analysis is a common application of nuclear physics that allows elemental and isotopic information about materials to be determined from accelerated light ion beams One of the best know ion beam analysis techniques is Particle-Induced Gamma-ray Emission (PIGE) spectroscopy, which can be used ex vacuo to identify the elements of interest in almost any solid target. The energies of the gamma-rays emitted by excited nuclei will be unique to each element and depend on its nuclear structure. For the most sensitivity, the accelerated ions should exceed the Coulomb barrier of the target, but many isotopes are known to be accessible to PIGE even below the Coulomb barrier. To explore the sensitivity of PIGE across the periodic table, PIGE measurements were made on elements with Z = 5, 9, 11-15, 17, 19-35, 37, 42, 44-48, 53, 56, 60, 62, 73, and 74 using 3.4 MeV protons. These measurements will be compared with literature values and be used as a basis for comparison with higher-energy proton beams available at the University of Notre Dame's St. Andre accelerator when it comes online this Fall. The beam normalization technique of using atmospheric argon and its 1459 keV gamma-ray to better estimate the integrated beam on target will also be discussed. Funded by the NSF REU program and the University of Notre Dame.

  13. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission

    International Nuclear Information System (INIS)

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-01-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. - Highlights: • PIGE was evaluated for measuring blood boron concentration during clinical BNCT. • PIGE detected 18 μgB/mL f-BPA in culture medium. • All measurements of any given sample were taken within 20 min. • Two hours of f-BPA exposure is required to create boron distribution image by PIGE. • Boron on the cell membrane could not be distinguished from boron in the cytoplasm.

  14. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    Science.gov (United States)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  15. Environmental Particle Emissions due to Automated Drilling of Polypropylene Composites and Nanocomposites Reinforced with Talc, Montmorillonite and Wollastonite

    Science.gov (United States)

    Starost, K.; Frijns, E.; Laer, J. V.; Faisal, N.; Egizabal, A.; Elizextea, C.; Nelissen, I.; Blazquez, M.; Njuguna, J.

    2017-05-01

    In this study, the effect on nanoparticle emissions due to drilling on Polypropylene (PP) reinforced with 20% talc, 5% montmorillonite (MMT) and 5% Wollastonite (WO) is investigated. The study is the first to explore the nanoparticle release from WO and talc reinforced composites and compares the results to previously researched MMT. With 5% WO, equivalent tensile properties with a 10 % weight reduction were obtained relative to the reference 20% talc sample. The materials were fabricated through injection moulding. The nanorelease studies were undertaken using the controlled drilling methodology for nanoparticle exposure assessment developed within the European Commission funded SIRENA Life 11 ENV/ES/506 project. Measurements were taken using CPC and DMS50 equipment for real-time characterization and measurements. The particle number concentration (of particles <1000nm) and particle size distribution (4.87nm - 562.34nm) of the particles emitted during drilling were evaluated to investigate the effect of the silicate fillers on the particles released. The nano-filled samples exhibited a 33% decrease (MMT sample) or a 30% increase (WO sample) on the average particle number concentration released in comparison to the neat polypropylene sample. The size distribution data displayed a substantial percentage of the particles released from the PP, PP/WO and PP/MMT samples to be between 5-20nm, whereas the PP/talc sample emitted larger particle diameters.

  16. From Nonradiating Sources to Directionally Invisible Objects

    Science.gov (United States)

    Hurwitz, Elisa

    The goal of this dissertation is to extend the understanding of invisible objects, in particular nonradiating sources and directional nonscattering scatterers. First, variations of null-field nonradiating sources are derived from Maxwell's equations. Next, it is shown how to design a nonscattering scatterer by applying the boundary conditions for nonradiating sources to the scalar wave equation, referred to here as the "field cloak method". This technique is used to demonstrate directionally invisible scatterers for an incident field with one direction of incidence, and the influence of symmetry on the directionality is explored. This technique, when applied to the scalar wave equation, is extended to show that a directionally invisible object may be invisible for multiple directions of incidence simultaneously. This opens the door to the creation of optically switchable, directionally invisible objects which could be implemented in couplers and other novel optical devices. Next, a version of the "field cloak method" is extended to the Maxwell's electro-magnetic vector equations, allowing more flexibility in the variety of directionally invisible objects that can be designed. This thesis concludes with examples of such objects and future applications.

  17. Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines

    Science.gov (United States)

    Kecorius, Simonas; Madueño, Leizel; Vallar, Edgar; Alas, Honey; Betito, Grace; Birmili, Wolfram; Cambaliza, Maria Obiminda; Catipay, Grethyl; Gonzaga-Cayetano, Mylene; Galvez, Maria Cecilia; Lorenzo, Genie; Müller, Thomas; Simpas, James B.; Tamayo, Everlyn Gayle; Wiedensohler, Alfred

    2017-12-01

    Ultrafine soot particles (black carbon, BC) in urban environments are related to adverse respiratory and cardiovascular effects, increased cases of asthma and premature deaths. These problems are especially pronounced in developing megacities in South-East Asia, Latin America, and Africa, where unsustainable urbanization ant outdated environmental protection legislation resulted in severe degradation of urban air quality in terms of black carbon emission. Since ultrafine soot particles do often not lead to enhanced PM10 and PM2.5 mass concentration, the risks related to ultrafine particle pollution may therefore be significantly underestimated compared to the contribution of secondary aerosol constituents. To increase the awareness of the potential toxicological relevant problems of ultrafine black carbon particles, we conducted a case study in Metro Manila, the capital of the Philippines. Here, we present a part of the results from a detailed field campaign, called Manila Aerosol Characterization Experiment (MACE, 2015). Measurements took place from May to June 2015 with the focus on the state of mixing of aerosol particles. The results were alarming, showing the abundance of externally mixed refractory particles (soot proxy) at street site with a maximum daily number concentration of approximately 15000 #/cm3. That is up to 10 times higher than in cities of Western countries. We also found that the soot particle mass contributed from 55 to 75% of total street site PM2.5. The retrieved refractory particle number size distribution appeared to be a superposition of 2 ultrafine modes at 20 and 80 nm with a corresponding contribution to the total refractory particle number of 45 and 55%, respectively. The particles in the 20 nm mode were most likely ash from metallic additives in lubricating oil, tiny carbonaceous particles and/or nucleated and oxidized organic polymers, while bigger ones (80 nm) were soot agglomerates. To the best of the authors' knowledge, no other

  18. Effects of Particle Filters and Selective Catalytic Reduction on In-Use Heavy-Duty Diesel Truck Emissions

    Science.gov (United States)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2016-12-01

    Heavy-duty diesel trucks (HDDT) are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Diesel particle filters (DPFs) and selective catalytic reduction (SCR) systems that target PM and NOx emissions, respectively, have recently become standard equipment on new HDDT. DPFs can also be installed on older engines as a retrofit device. Previous work has shown that DPF and SCR systems can reduce NOx and BC emissions by up to 70% and 90%, respectively, compared to modern trucks without these after-treatment controls (Preble et al., ES&T 2015). DPFs can have the undesirable side-effect of increasing ultrafine particle (UFP) and nitrogen dioxide (NO2) emissions. While SCR systems can partially mitigate DPF-related NO2 increases, these systems can emit nitrous oxide (N2O), a potent greenhouse gas. We report new results from a study of HDDT emissions conducted in fall 2015 at the Port of Oakland and Caldecott Tunnel in California's San Francisco Bay Area. We report pollutant emission factors (g kg-1) for emitted NOx, NO2, BC, PM2.5, UFP, and N2O on a truck-by-truck basis. Using a roadside license plate recognition system, we categorize each truck by its engine model year and installed after-treatment controls. From this, we develop emissions profiles for trucks with and without DPF and SCR. We evaluate the effectiveness of these devices as a function of their age to determine whether degradation is an issue. We also compare the emission profiles of trucks traveling at low speeds along a level, arterial road en route to the port and at high speeds up a 4% grade highway approaching the tunnel. Given the climate impacts of BC and N2O, we also examine the global warming potential of emissions from trucks with and without DPF and SCR.

  19. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    Science.gov (United States)

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  20. Particle Reduction Strategies - PAREST. Traffic emission modelling. Model comparision and alternative scenarios. Sub-report

    International Nuclear Information System (INIS)

    Kugler, Ulrike; Theloke, Jochen; Joerss, Wolfram

    2013-01-01

    The modeling of the reference scenario and the various reduction scenarios in PAREST was based on the Central System of Emissions (CSE) (CSE, 2007). Emissions from road traffic were calculated by using the traffic emission model TREMOD (Knoerr et al., 2005) and fed into the CSE. The version TREMOD 4.17 has been used. The resulting emission levels in PAREST reference scenario were supplemented by the emission-reducing effect of the implementation of the future Euro 5 and 6 emission standards for cars and light commercial vehicles and Euro VI for heavy commercial vehicles in combination with the truck toll extension. [de

  1. Take-off engine particle emission indices for in-service aircraft at Los Angeles International Airport.

    Science.gov (United States)

    Moore, Richard H; Shook, Michael A; Ziemba, Luke D; DiGangi, Joshua P; Winstead, Edward L; Rauch, Bastian; Jurkat, Tina; Thornhill, Kenneth L; Crosbie, Ewan C; Robinson, Claire; Shingler, Taylor J; Anderson, Bruce E

    2017-12-19

    We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO 2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 10 16 -10 17 kg -1 and 10 14 -10 16 kg -1 , respectively. Black-carbon-equivalent particle mass EIs vary between 175-941 mg kg -1 (except for the GE GEnx engines at 46 mg kg -1 ). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.

  2. Take-off engine particle emission indices for in-service aircraft at Los Angeles International Airport

    Science.gov (United States)

    Moore, Richard H.; Shook, Michael A.; Ziemba, Luke D.; Digangi, Joshua P.; Winstead, Edward L.; Rauch, Bastian; Jurkat, Tina; Thornhill, Kenneth L.; Crosbie, Ewan C.; Robinson, Claire; Shingler, Taylor J.; Anderson, Bruce E.

    2017-12-01

    We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 1016-1017 kg-1 and 1014-1016 kg-1, respectively. Black-carbon-equivalent particle mass EIs vary between 175-941 mg kg-1 (except for the GE GEnx engines at 46 mg kg-1). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.

  3. Making the Invisible Visible: Negotiating (In)Visibility and Transparency for LGBT Issues in Education

    Science.gov (United States)

    Reilly, Cole

    2007-01-01

    Historically, schooling has been a point of contention and restless agitation for many lesbian, gay, bisexual, and transgender (LGBT) individuals in North America who may feel trapped in prisons of invisibility. Traditionally, queer people's existence in educational settings has been denied or made invisible, not just physically (in school…

  4. Total Particle Number Emissions from Modern Diesel, Natural Gas, and Hybrid Heavy-Duty Vehicles During On-Road Operation.

    Science.gov (United States)

    Wang, Tianyang; Quiros, David C; Thiruvengadam, Arvind; Pradhan, Saroj; Hu, Shaohua; Huai, Tao; Lee, Eon S; Zhu, Yifang

    2017-06-20

    Particle emissions from heavy-duty vehicles (HDVs) have significant environmental and public health impacts. This study measured total particle number emission factors (PNEFs) from six newly certified HDVs powered by diesel and compressed natural gas totaling over 6800 miles of on-road operation in California. Distance-, fuel- and work-based PNEFs were calculated for each vehicle. Distance-based PNEFs of vehicles equipped with original equipment manufacturer (OEM) diesel particulate filters (DPFs) in this study have decreased by 355-3200 times compared to a previous retrofit DPF dynamometer study. Fuel-based PNEFs were consistent with previous studies measuring plume exhaust in the ambient air. Meanwhile, on-road PNEF shows route and technology dependence. For vehicles with OEM DPFs and Selective Catalytic Reduction Systems, PNEFs under highway driving (i.e., 3.34 × 10 12 to 2.29 × 10 13 particles/mile) were larger than those measured on urban and drayage routes (i.e., 5.06 × 10 11 to 1.31 × 10 13 particles/mile). This is likely because a significant amount of nucleation mode volatile particles were formed when the DPF outlet temperature reached a critical value, usually over 310 °C, which was commonly achieved when vehicle speed sustained over 45 mph. A model year 2013 diesel HDV produced approximately 10 times higher PNEFs during DPF active regeneration events than nonactive regeneration.

  5. Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Ki; Seo, Seung-Jun [Biomedical Engineering and Radiology, School of Medicine, Catholic University of Daegu, Daegu 705-034 (Korea, Republic of); Kim, Ki-Hong [Department of Optometry and Visual Sciences, Catholic University of Daegu, Kyungsan 712-702 (Korea, Republic of); Kim, Tae-Jeong [Applied Chemical Engineering, College of Engineering, Kyungpuk National University, Daegu 702-701 (Korea, Republic of); Chung, Myung-Hwan; Kim, Kye-Ryung [Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Yang, Tae-Keun, E-mail: jkkim@cu.ac.kr [Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2010-10-22

    Metallic nanoparticles (MNP) are able to release localized x-rays when activated with a high energy proton beam by the particle-induced x-ray emission (PIXE) effect. The exploitation of this phenomenon in the therapeutic irradiation of tumors has been investigated. PIXE-based x-ray emission directed at CT26 tumor cells in vitro, when administered with either gold (average diameter 2 and 13 nm) or iron (average diameter 14 nm) nanoparticles (GNP or SNP), increased with MNP solution concentration over the range of 0.1-2 mg ml{sup -1}. With irradiation by a 45 MeV proton therapy (PT) beam, higher concentrations had a decreased cell survival fraction. An in vivo study in CT26 mouse tumor models with tumor regression assay demonstrated significant tumor dose enhancement, thought to be a result of the PIXE effect when compared to conventional PT without MNP (radiation-only group) using a 45 MeV proton beam (p < 0.02). Those receiving GNP or SNP injection doses of 300 mg kg{sup -1} body weight before proton beam therapy demonstrated 90% or 75% tumor volume reduction (TVR) in 20 days post-PT while the radiation-only group showed only 18% TVR and re-growth of tumor volume after 20 days. Higher complete tumor regression (CTR) was observed in 14-24 days after a single treatment of PT with an average rate of 33-65% for those receiving MNP compared with 25% for the radiation-only group. A lower bound of therapeutic effective MNP concentration range, in vivo, was estimated as 30-79 {mu}g g{sup -1} tissue for both gold and iron nanoparticles. The tumor dose enhancement may compensate for an increase in entrance dose associated with conventional PT when treating large, solid tumors with a spread-out Bragg peak (SOBP) technique. The use of a combined high energy Bragg peak PT with PIXE generated by MNP, or PIXE alone, may result in new treatment options for infiltrative metastatic tumors and other diffuse inflammatory diseases.

  6. A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Meinerzhagen, F.; Breuer, L.; Bukowska, H.; Herder, M.; Schleberger, M.; Wucher, A. [Fakultät für Physik, Universität Duisburg-Essen and Cenide, 47057 Duisburg (Germany); Bender, M.; Severin, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Lebius, H. [CIMAP (CEA-CNRS-ENSICAEN-UCN), 14070 Caen Cedex 5 (France)

    2016-01-15

    The irradiation with fast ions with kinetic energies of >10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations, which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion, and neutral mass spectrometry, as well as low energy electron diffraction under ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in situ analysis of different types of sample systems ranging from metals to insulators. Time-of-flight secondary ion mass spectrometry enables us to study the chemical composition of the surface, while scanning probe microscopy allows a detailed view into the local electrical and morphological conditions of the sample surface down to atomic scales. With the new setup, particle emission during irradiation as well as persistent modifications of the surface after irradiation can thus be studied. We present first data obtained with the new setup, including a novel measuring protocol for time-of-flight mass spectrometry with the GSI UNILAC accelerator.

  7. Quantitative autoradiography of alpha particle emission in geo-materials using the Beaver™ system

    Energy Technology Data Exchange (ETDEWEB)

    Sardini, Paul; Angileri, Axel [IC2MP Equipe HydrASA, 6 Rue Michel Brunet, B35, TSA 51106 Poitiers Cedex 9 (France); Descostes, Michael [AREVA Mines, R& D Department, Paris (France); Duval, Samuel; Oger, Tugdual [AI4R SAS, Nantes (France); Patrier, Patricia [IC2MP Equipe HydrASA, 6 Rue Michel Brunet, B35, TSA 51106 Poitiers Cedex 9 (France); Rividi, Nicolas [Service Camparis, Université Pierre et Marie Curie, Paris (France); Siitari-Kauppi, Marja [Radiochemistry Laboratory, University of Helsinki, Helsinki (Finland); Toubon, Hervé [AREVA Mines, R& D Department, Paris (France); Donnard, Jérôme [AI4R SAS, Nantes (France)

    2016-10-11

    In rocks or artificial geo-materials, radioactive isotopes emitting alpha particles are dispersed according to the mineralogy. At hand specimen scale, the achievement of quantitative chemical mapping of these isotopes takes on a specific importance. Knowledge of the distribution of the uranium and thorium series radionuclides is of prime interest to several disciplines, from the geochemistry of uranium deposits, to the dispersion of uranium mill tailings in the biosphere. The disequilibrium of these disintegration chains is also commonly used for dating. However, some prime importance isotopes, such as {sup 226}Ra, are complicated to localize in geo-materials. Because of its high specific activity, {sup 226}Ra is found in very low concentrations (~ppq), preventing its accurate localization in rock forming minerals. This paper formulates a quantitative answer to the following question: at hand specimen scale, how can alpha emitters in geo-materials be mapped quantitatively? In this study, we tested a new digital autoradiographic method (called the Beaver™) based on a Micro Patterned Gaseous Detector (MPGD) in order to quantitatively map alpha emission at the centimeter scale rock section. Firstly, for two thin sections containing U-bearing minerals at secular equilibrium, we compared the experimental and theoretical alpha count rates, measured by the Beaver™ and calculated from the uranium content, respectively. We found that they are very similar. Secondly, for a set of eight homemade standards made up of a mixture of inactive sand and low-radioactivity mud, we compared the count rates obtained by the Beaver™ and by an alpha spectrometer. The results indicate (i) a linearity between both count rates, and (ii) that the count obtained by the Beaver™ can be estimated from the count obtained by the alpha spectrometry using a factor of 0.82.

  8. Quantitative autoradiography of alpha particle emission in geo-materials using the Beaver™ system

    International Nuclear Information System (INIS)

    Sardini, Paul; Angileri, Axel; Descostes, Michael; Duval, Samuel; Oger, Tugdual; Patrier, Patricia; Rividi, Nicolas; Siitari-Kauppi, Marja; Toubon, Hervé; Donnard, Jérôme

    2016-01-01

    In rocks or artificial geo-materials, radioactive isotopes emitting alpha particles are dispersed according to the mineralogy. At hand specimen scale, the achievement of quantitative chemical mapping of these isotopes takes on a specific importance. Knowledge of the distribution of the uranium and thorium series radionuclides is of prime interest to several disciplines, from the geochemistry of uranium deposits, to the dispersion of uranium mill tailings in the biosphere. The disequilibrium of these disintegration chains is also commonly used for dating. However, some prime importance isotopes, such as 226 Ra, are complicated to localize in geo-materials. Because of its high specific activity, 226 Ra is found in very low concentrations (~ppq), preventing its accurate localization in rock forming minerals. This paper formulates a quantitative answer to the following question: at hand specimen scale, how can alpha emitters in geo-materials be mapped quantitatively? In this study, we tested a new digital autoradiographic method (called the Beaver™) based on a Micro Patterned Gaseous Detector (MPGD) in order to quantitatively map alpha emission at the centimeter scale rock section. Firstly, for two thin sections containing U-bearing minerals at secular equilibrium, we compared the experimental and theoretical alpha count rates, measured by the Beaver™ and calculated from the uranium content, respectively. We found that they are very similar. Secondly, for a set of eight homemade standards made up of a mixture of inactive sand and low-radioactivity mud, we compared the count rates obtained by the Beaver™ and by an alpha spectrometer. The results indicate (i) a linearity between both count rates, and (ii) that the count obtained by the Beaver™ can be estimated from the count obtained by the alpha spectrometry using a factor of 0.82.

  9. Particle emissions from ventilation equipment: health hazards, measurement and product development; Ilmanvaihtolaitteiden hiukkaspaeaestoet: terveyshaitat, mittaaminen ja tuotekehitys - ILMI

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, A.; Paananen, H.; Riala, R.; Tuomi, T.; Voutilainen, R. [Finnish Institute of Occupational Health, Helsinki (Finland); Heimonen, I.; Kovanen, K. [VTT Building and Transport, Espoo (Finland)

    2004-07-01

    The project will develop the design, structure and materials of ventilation equipment for the improvement of indoor air quality in office-type buildings. Particle emissions from commercial products are measured by laboratory tests. In ten buildings, the dust and fibre levels will be surveyed in relation to the design and operation of the ventilation equipment. Direct-reading particle counters and filter sampling method combined with optical and electron microscopy analyses are the main methods in these surveys. Nasal lavage is used for the estimation of inhalation exposure to coarse man-made mineral fibres. Technical criteria will be drafted for the design and testing of fibre emissions from various ventilation equipment. (orig.)

  10. α particle induced scintillation in dense gaseous argon: emission spectra and temporal behavior of its ionic component

    International Nuclear Information System (INIS)

    Carvalho, M.J.; Klein, G.

    1980-01-01

    The scintillation induced by α particles in dense gaseous argon (above 1 atm) has been studied. The electric field dependence of the scintillation, shows that the second continuum (centred around 1270A) stems from the neutral as well as from the ionic species, initially created by the impinging particle. Intensity decay curves and emission spectra of these neutral excitation and ionic components were determined. Time constants suggest that the recombination mechanism is responsible for a delayed formation of the second continuum states, 1 Σ + sub(u) and 3 Σ + sub(u). The third continuum of the emission spectra, which spreads at longer wavelengths, from 1600A to 2800A, is field independent

  11. In-situ studies on volatile jet exhaust particle emissions - impacts of fuel sulfur content and environmental conditions on nuclei-mode aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F.; Baumann, R.; Petzold, A.; Busen, R.; Schulte, P.; Fiebig, M. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Brock, C.A. [Denver Univ., CO (United States). Dept. of Engineering

    2000-02-01

    In-situ measurements of ultrafine aerosol particle emissions were performed at cruise altitudes behind the DLR ATTAS research jet (RR M45H M501 engines) and a B737-300 aircraft (CFM56-3B1 engines). Measurements were made 0.15-20 seconds after emission as the source aircraft burned fuel with sulfur contents (FSC) of 2.6, 56 or 118 mg kg{sup -1}. Particle size distributions of from 3 to 60 nm diameter were determined using CN-counters with varying lower size detection limits. Volatile particle concentrations in the aircraft plumes strongly increased as diameter decreased toward the sizes of large molecular clusters, illustrating that apparent particle emissions are extremely sensitive to the smallest particle size detectable by the instrument used. Environmental conditions and plume age alone could influence the number of detected ultrafine (volatile) aerosols within an order of magnitude, as well. The observed volatile particle emissions decreased nonlinearly as FSC decreased to 60 mg kg{sup -1}, reaching minimum values of about 2 x 10{sup 17} kg{sup -1} and 2 x 10{sup 16} kg{sup -1} for particles >3 nm and >5 nm, respectively. Volatile particle emissions did not change significantly as FSCs were further reduced below 60 mg kg{sup -1}. Volatile particle emissions did not differ significantly between the two studied engine types. In contrast, soot particle emissions from the modern CFM56-3B1 engines were 4-5 times less (4 x 10{sup 14} kg{sup -1}) than from the older RR M45H M501 engines (1.8 x 10{sup 15} kg{sup -1}). Contrail processing has been identified as an efficient sink/quenching parameter for ultrafine particles and reduces the remaining interstitial aerosol by factors 2-10 depending on particle size.

  12. Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra

    Science.gov (United States)

    2009-02-01

    35 Figure 29. EEM spectra of kaolin particles, dry...Warrington, PA. Glass beads were obtained from Peirce Chemical Co., Rockford, IL. Kaolin particles were obtained from Particle Information Services...solution concentration of 1 mg/ml. The samples were vortexed and pipetted vigorously to disperse aggregates. Stock bacteria solutions were diluted to a

  13. Applications of Beta Particle Detection for Synthesis and Usage of Radiotracers Developed for Positron Emission Tomography

    Science.gov (United States)

    Dooraghi, Alex Abreu

    Positron Emission Tomography (PET) is a noninvasive molecular imaging tool that requires the use of a radioactive compound or radiotracer which targets a molecular pathway of interest. We have developed and employed three beta particle radiation detection systems to advance PET. Specifically, the goals of these systems are to: 1. Automate dispensing of solutions containing a positron emitting isotope. 2. Monitor radioactivity on-chip during synthesis of a positron emitting radiotracer. 3. Assay cellular uptake on-chip of a positron emitting radiotracer. Automated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing an optimum environment for radiation workers, but also to ensure a quantitatively accurate workflow. For the first project, we describe the development and performance of a system for automated radioactivity distribution of beta particle emitting radioisotopes such as fluorine-18 (F-18). Key to the system is a radiation detector in-line with a peristaltic pump. The system demonstrates volume accuracy within 5 % for volumes of 20 muL or greater. When considering volumes of 20 muL or greater, delivered radioactivity is in agreement with the requested radioactivity as measured with the dose calibrator. The integration of the detector and pump leads to a flexible system that can accurately dispense solutions containing F-18 in radioactivity concentrations directly produced from a cyclotron (~ 0.1-1 mCi/muL), to low activity concentrations intended for preclinical mouse scans (~ 1-10 muCi/muL), and anywhere in between. Electrowetting on dielectric (EWOD) is an attractive microfluidic platform for batch synthesis of PET radiotracers. Visualization of radioisotopes on-chip is critical for synthesis optimization and technological development. For the second project, we describe the development and performance of a Cerenkov/real-time imaging system for PET radiotracer synthesis on EWOD. We also investigate

  14. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    OpenAIRE

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-01-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as d...

  15. Ideas and perspectives: on the emission of amines from terrestrial vegetation in the context of new atmospheric particle formation

    Directory of Open Access Journals (Sweden)

    J. Sintermann

    2015-06-01

    Full Text Available In this article we summarise recent science which shows how airborne amines, specifically methylamines (MAs, play a key role in new atmospheric particle formation (NPF by stabilising small molecule clusters. Agricultural emissions are assumed to constitute the most important MA source, but given the short atmospheric residence time of MAs, they can hardly have a direct impact on NPF events observed in remote regions. This leads us to the presentation of existing knowledge focussing on natural vegetation-related MA sources. High MA contents as well as emissions by plants was already described in the 19th century. Strong MA emissions predominantly occur during flowering as part of a pollination strategy. The behaviour is species-specific, but examples of such species are common and widespread. In addition, vegetative plant tissue exhibiting high amounts of MAs might potentially lead to significant emissions. The decomposition of organic material constitutes another, potentially ubiquitous, source of airborne MAs. These mechanisms would provide sources, which could be crucial for the amine's role in NPF, especially in remote regions. Knowledge about vegetation-related amine emissions is, however, very limited, and thus it is also an open question how global change and the intensified cycling of reactive nitrogen over the last 200 years have altered amine emissions from vegetation with a corresponding effect on NPF.

  16. Experimental investigations of the influence from different operating conditions on the particle emissions from a small-scale pellets combustor

    International Nuclear Information System (INIS)

    Wiinikka, Henrik; Gebart, Rikard

    2004-01-01

    The purpose of this study is to determine how different design parameters in an idealised small-scale combustor affect the emission of particulates in the flue gas and to provide insight that can be used for design optimisation. The design parameters are the primary air factor, the total air factor and the magnitude of swirling flow in the combustion chamber. Particles from the reactor were collected from two different sampling lines, one located in the combustion zone, just above the fuel bed, and the other in the flue stack after the reactor. The measurements show that this burner gives very low emissions of particulates and CO in the flue gas. Furthermore, the concentration of particles in the flue gas is uncoupled to the concentration of particles immediately above the fuel bed, probably as a result of a well-designed secondary air supply. The variable that had the strongest effect on the total particulate emission from the combustor was the total air factor. In order to understand the qualitative differences in the flow nature between different operating conditions, CFD simulations of the flow field were also performed

  17. Invisible the dangerous allure of the unseen

    CERN Document Server

    Ball, Philip

    2015-01-01

    If you could be invisible, what would you do? The chances are that it would have something to do with power, wealth or sex. Perhaps all three. But there's no need to feel guilty. Impulses like these have always been at the heart of our fascination with invisibility: it points to realms beyond our senses, serves as a receptacle for fears and dreams, and hints at worlds where other rules apply. Invisibility is a mighty power and a terrible curse, a sexual promise, a spiritual condition. This is a history of humanity's turbulent relationship with the invisible. It takes on the myths and morals of Plato, the occult obsessions of the Middle Ages, the trickeries and illusions of stage magic, the auras and ethers of Victorian physics, military strategies to camouflage armies and ships and the discovery of invisibly small worlds. From the medieval to the cutting-edge, fairy tales to telecommunications, from beliefs about the supernatural to the discovery of dark energy, Philip Ball reveals the universe of the invi...

  18. Effects of aromatics, olefins and distillation temperatures (T50 & T90) on particle mass and number emissions from gasoline direct injection (GDI) vehicles

    International Nuclear Information System (INIS)

    Zhu, Rencheng; Hu, Jingnan; Bao, Xiaofeng; He, Liqiang; Zu, Lei

    2017-01-01

    Abstratct: Fuel quality is among the primary reasons for severe vehicle pollution. A limited understanding of the effects of gasoline properties on modern vehicle emissions is one obstacle for the establishment of stricter fuel standards in China. The goal of this study was to evaluate the effects of aromatic and olefin contents and T50 and T90 (defined as the 50%v and 90%v distillation temperatures) on tailpipe emissions from gasoline direct injection (GDI) vehicles compliant with China 4 standards. Both gaseous and particle emissions using different types of gasoline were measured. Changing aromatic and olefin contents had relatively small impacts on fuel consumption. Compared with olefins and T90, the regulated gaseous emissions were impacted more by aromatics and T50. Evident decreases of the particle mass (PM) and particle number (PN) emissions were noticed when the aromatic content and T90 decreased. Reducing the olefin content slightly decreased the PM emissions and increased the PN emissions. With decreasing T50, the PM emissions increased and the PN emissions slightly decreased. These results suggest that aromatic content and T90 should be decreased to reduce particle emissions from GDI vehicles. The information presented in this study provides some suggestions for how to improve gasoline quality in China. - Highlights: • Effect of aromatics, olefins, T50 and T90 on GDI vehicle emissions was investigated. • Aromatics and olefins had little impact on fuel consumption and CO 2 emissions. • Reducing the aromatic content and T90 significantly decreased PM and PN emissions. • Changing the olefin content and T50 had a minor impact on particle emissions. • Thresholds of aromatics and T90 should be tightened in future gasoline regulations.

  19. Cuidados invisibles: ¿son suficientemente reconocidos?

    Directory of Open Access Journals (Sweden)

    Rosanna de la Rosa Eduardo

    Full Text Available Los cuidados invisibles son un elemento central y fundamental de la práctica de la Enfermería y son la base de su identidad profesional. La Enfermería ha sufrido un importante y positivo proceso de profesionalización en los últimos 150 años, sin embargo, los cuidados invisibles siguen siendo poco reconocidos, a pesar de su importancia en la recuperación y en la calidad de vida de los usuarios. En este trabajo se analizan brevemente las grandes transformaciones sociales actuales que obligan a replantearse la necesidad de visibilizar los cuidados invisibles, se plantean interrogantes clave para abordar esta discusión y se proponen una serie de acciones concretas para avanzar en este reconocimiento.

  20. Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra

    National Research Council Canada - National Science Library

    Hill, Steven C; Mayo, Michael W; Chang, Richard K

    2009-01-01

    The fluorescence intensity as a function of excitation and emission wavelengths (EEM spectra) was measured for different species of bacteria, biochemical constituents of cells, pollens, and vegetation...

  1. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    Science.gov (United States)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method

  2. Light-particle emission as a probe of the rotational degrees of freedom in deep-inelastic reactions

    International Nuclear Information System (INIS)

    Sobotka, L.G.

    1982-05-01

    The emission of alpha particles in coincidence with the most deeply inelastic heavy-ion reactions has been studied for 181 Ta + 165 Ho at 1354 MeV laboratory energy and /sup nat/Ag + 84 Kr at 664 MeV. Alpha particle energy spectra and angular distributions, in coincidence with a projectile-like fragment, were acquired both in the reaction plane and out of the reaction plane at a fixed in-plane angle. The in-plane data for both systems are employed to show that the bulk of the alpha particles in coincidence with the deep-inelastic exit channel can be explained by evaporation from the fully accelerated fragments. Average velocity diagrams, α-particle energy spectra as a function of angle in several rest frames, and α-particle angular distributions are presented. The out-of-plane alpha particle angular distributions and the gamma-ray multiplicities are used to study the transfer and partitioning of angular momentum between the two fragments. For the /sup nat/Ag + 84 Kr system, individual fragment spins are extracted form the alpha particle angular distributions as a function of mass asymmetry while the sum of the fragment spins is derived from the gamma-ray multiplicities. These data, together with the fragment kinetic energies, are consistent with rigid rotation of an intermediate complex consisting of two substantially deformed spheroids in near proximity. These data also indicate that some angular momentum fractionation exists at the largest asymmetries examined. Out-of-plane alpha particle distributions, gamma-ray multiplicities, fragment spins as well as the formalism for the spin evaluation at various levels of sophistication are presented

  3. Light-particle emission as a probe of the rotational degrees of freedom in deep-inelastic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sobotka, L.G.

    1982-05-01

    The emission of alpha particles in coincidence with the most deeply inelastic heavy-ion reactions has been studied for /sup 181/Ta/sup +/ /sup 165/Ho at 1354 MeV laboratory energy and /sup nat/Ag + /sup 84/Kr at 664 MeV. Alpha particle energy spectra and angular distributions, in coincidence with a projectile-like fragment, were acquired both in the reaction plane and out of the reaction plane at a fixed in-plane angle. The in-plane data for both systems are employed to show that the bulk of the alpha particles in coincidence with the deep-inelastic exit channel can be explained by evaporation from the fully accelerated fragments. Average velocity diagrams, ..cap alpha..-particle energy spectra as a function of angle in several rest frames, and ..cap alpha..-particle angular distributions are presented. The out-of-plane alpha particle angular distributions and the gamma-ray multiplicities are used to study the transfer and partitioning of angular momentum between the two fragments. For the /sup nat/Ag + /sup 84/Kr system, individual fragment spins are extracted form the alpha particle angular distributions as a function of mass asymmetry while the sum of the fragment spins is derived from the gamma-ray multiplicities. These data, together with the fragment kinetic energies, are consistent with rigid rotation of an intermediate complex consisting of two substantially deformed spheroids in near proximity. These data also indicate that some angular momentum fractionation exists at the largest asymmetries examined. Out-of-plane alpha particle distributions, gamma-ray multiplicities, fragment spins as well as the formalism for the spin evaluation at various levels of sophistication are presented.

  4. Entrance channel dependent light-charged particle emission of the 156Er compound

    International Nuclear Information System (INIS)

    Liang, J.F.; Bierman, J.D.; Kelly, M.P.; Sonzogni, A.A.; Vandenbosch, R.; van Schagen, J.P.S.

    1996-01-01

    Light-charged particle decay from the 156 Er compound nucleus, populated by 12 C+ 144 Sm and 60 Ni+ 96 Zr at the same excitation energy, were measured in coincidence with the evaporation residues. The high energy slope of charged particle spectra for the 60 Ni-induced reaction is steeper than for the 12 C-induced reaction. Model calculations including particle evaporation during compound nucleus formation result in good agreement with the data. This suggests that the difference in the charged particle spectra between the two entrance channels is due to a longer formation time in the 60 Ni-induced reaction. 14 refs., 3 figs

  5. Real-time particle monitor calibration factors and PM2.5 emission factors for multiple indoor sources.

    Science.gov (United States)

    Dacunto, Philip J; Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Repace, James L; Ott, Wayne R; Hildemann, Lynn M

    2013-08-01

    Indoor sources can greatly contribute to personal exposure to particulate matter less than 2.5 μm in diameter (PM2.5). To accurately assess PM2.5 mass emission factors and concentrations, real-time particle monitors must be calibrated for individual sources. Sixty-six experiments were conducted with a common, real-time laser photometer (TSI SidePak™ Model AM510 Personal Aerosol Monitor) and a filter-based PM2.5 gravimetric sampler to quantify the monitor calibration factors (CFs), and to estimate emission factors for common indoor sources including cigarettes, incense, cooking, candles, and fireplaces. Calibration factors for these indoor sources were all significantly less than the factory-set CF of 1.0, ranging from 0.32 (cigarette smoke) to 0.70 (hamburger). Stick incense had a CF of 0.35, while fireplace emissions ranged from 0.44-0.47. Cooking source CFs ranged from 0.41 (fried bacon) to 0.65-0.70 (fried pork chops, salmon, and hamburger). The CFs of combined sources (e.g., cooking and cigarette emissions mixed) were linear combinations of the CFs of the component sources. The highest PM2.5 emission factors per time period were from burned foods and fireplaces (15-16 mg min(-1)), and the lowest from cooking foods such as pizza and ground beef (0.1-0.2 mg min(-1)).

  6. Invisible Higgs boson decay with B→Kνν constraint

    International Nuclear Information System (INIS)

    Kim, C. S.; Park, Seong Chan; Wang Kai; Zhu Guohuai

    2010-01-01

    If the Higgs boson were the only particle within the LHC accessible range, precision measurement of the Higgs's properties would play a unique role in studying electroweak symmetry breaking as well as possible new physics. We try to use low energy experiments such as rare B decay to constrain a challenging decay mode of Higgs, in which a Higgs decays to a pair of light (≅1∼2 GeV) SM singlet S and becomes invisible. By using the current experimental bound of rare decay B→Kνν and computing the contribution of B→KSS to (the) B→K+Ee, we obtain an upper bound on the Higgs coupling to such light singlet. It is interesting that the partial width of the invisible decay mode h→SS by taking the upper bound value of coupling is at a comparable level with h→WW/ZZ or WW ( * ) decay modes, making the Higgs identifiable but with a different predicted decay branching ratio from [the] standard model Higgs decay. It will then have an impact on precision measurement of the Higgs's properties. We also study the implication for cosmology from such a light singlet and propose a solution to the potential problem.

  7. Effect of flow characteristics on ultrafine particle emissions from range hoods.

    Science.gov (United States)

    Tseng, Li-Ching; Chen, Chih-Chieh

    2013-08-01

    In order to understand the physical mechanisms of the production of nanometer-sized particulate generated from cooking oils, the ventilation of kitchen hoods was studied by determining the particle concentration, particle size distribution, particle dimensions, and hood's flow characteristics under several cooking scenarios. This research varied the temperature of the frying operation on one cooking operation, with three kinds of commercial cooking oils including soybean oil, olive oil, and sunflower oil. The variations of particle concentration and size distributions with the elevated cooking oil temperatures were presented. The particle concentration increases as a function of temperature. For oil temperatures ranging between 180°C and 210°C, a 5°C increase in temperature increased the number concentration of ultrafine particles by 20-50%. The maximum concentration of ultrafine particles was found to be approximately 6 × 10(6) particles per cm(3) at 260°C. Flow visualization techniques and particle distribution measurement were performed for two types of hood designs, a wall-mounted range hood and an island hood, at a suction flow rate of 15 m(3) min(-1). The flow visualization results showed that different configurations of kitchen hoods induce different aerodynamic characteristics. By comparing the results of flow visualizations and nanoparticle measurements, it was found that the areas with large-scale turbulent vortices are more prone to dispersion of ultrafine particle leakage because of the complex interaction between the shear layers and the suction movement that results from turbulent dispersion. We conclude that the evolution of ultrafine particle concentration fluctuations is strongly affected by the location of the hood, which can alter the aerodynamic features. We suggest that there is a correlation between flow characteristics and amount of contaminant leakage. This provides a comprehensive strategy to evaluate the effectiveness of kitchen hoods

  8. Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH in Brisbane, Queensland (Australia: Study Design and Implementation

    Directory of Open Access Journals (Sweden)

    Wafaa Nabil Ezz

    2015-02-01

    Full Text Available Ultrafine particles are particles that are less than 0.1 micrometres (µm in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT and multiple breath nitrogen washout test (MBNW (to assess airway function, fraction of exhaled nitric oxide (FeNO, to assess airway inflammation, blood cotinine levels (to assess exposure to second-hand tobacco smoke, and serum C-reactive protein (CRP levels (to measure systemic inflammation. A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.

  9. Emission of Gas and Al2O3 Smoke in Gas-Al Particle Deflagration: Experiments and Emission Modeling for Explosive Fireballs

    Science.gov (United States)

    Ranc-Darbord, Isabelle; Baudin, Gérard; Genetier, Marc; Ramel, David; Vasseur, Pierre; Legrand, Julien; Pina, Vincent

    2018-03-01

    Emission of gas and Al2O3 smoke within the deflagration of H2{-}O2-{N2{-}CO2}-Al particles has been studied in a closed combustion chamber at pressures of up to 18 bar and at gas temperatures of up to 3700 K. Measurements of radiance intensity were taken using a five wavelength pyrometer (0.660 μ m, 0.850 μ m, 1.083 μ m, 1.260 μ m, 1.481 μ m) and a grating spectrometer in the range (4.10 μ m to 4.30 μ m). In order to characterize the aluminum oxide smoke size and temperature, an inversion method has been developed based on the radiation transfer equation and using pyrometer measurements and thermochemical calculations of Al2O3 smoke volume fractions. Temperatures in combustion gas have been determined using a method based on the assumed blackbody head of the 4.26 μ m CO2 emission line and on its spectral shift with pressure and temperature. For validation purpose, this method has been applied to measurements obtained when calibrated alumina particles are injected in a combustion chamber prior to gaseous deflagrations. This mathematical inversion method was developed to investigate explosive fireballs.

  10. Chemical characterzation of fine particle emissions from the fireplace combustion of woods grown in the Southern United States.

    Science.gov (United States)

    Fine, Philip M; Cass, Glen R; Simoneit, Bernd R T

    2002-04-01

    The fireplace combustion of wood is a significant and largely unregulated source of fine particle pollution in the United States. Source apportionment techniques that use particulate organic compounds as tracers have been successful in determining the contribution of wood smoke to ambient fine particle levels in specific areas in California. To apply these techniques to the rest of the United States, the differences in emissions profiles between different wood smoke sources and fuel types should be resolved. To this end, a series of fireplace source tests was conducted on six fuel wood species found in the Southern United States to determine fine particulate emission factors for total mass, ionic and elemental species, elemental and organic carbon, and over 250 individual organic compounds. The wood species tested, chosen for their high abundance and availability in the Southern U.S. region, were yellow poplar, white ash, sweetgum, mockernut hickory, loblolly pine, and slash pine. The differences in the emissions of compounds such as substituted phenols and resin acids help to distinguish between the smoke from hardwood and softwood combustion. Levoglucosan, a cellulose pyrolysis product which may serve as a tracer for wood smoke in general, was quantified in the emissions from all the wood species burned. The furofuran lignan, yangambin, which was emitted in significant quantities from yellow poplar combustion and not detected in any of the other North American wood smokes, is a potential species-specific molecular tracer which may be useful in qualitatively identifying particulate emissions from a specific geographical area where yellow poplar is being burned.

  11. Formation and emission of fine particles from two coal-fired power plants

    DEFF Research Database (Denmark)

    Nielsen, M.T.; Livbjerg, H.; Fogh, C.L.

    2002-01-01

    , before the desulfurisation plant, and in the stack. The following sampling techniques are used: scanning mobility particle sizer, low pressure cascade impactor, dichotomous PM2.5 sampler, and total particle filter. The so-called multi-platform method used in this work Proves useful for gaining insight...

  12. Light particle emission measurements in heavy ion reactions: Progress report, June 1, 1987-May 31, 1988

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1988-01-01

    This paper discusses work on heavy ion reactions done at Georgia State University. Topics and experiments discussed are: energy division in damped reactions between 58 Ni projectiles and 165 Ho and 58 Ni targets using time-of-flight methods; particle-particle correlations; and development works on the Hili detector system. 10 refs., 9 figs

  13. Intelligent Heat System - High-Energy Efficient Wood Stoves with Low Emissions. Emissions of Gases and Particles

    DEFF Research Database (Denmark)

    Illerup, Jytte Boll; Hansen, Brian Brun; Lin, Weigang

    2015-01-01

    performance has been verified by field tests in private homes. The main components of an Autopilot IHS wood stove are: a modern wood stove with three separate combustion air inlets, and a control system composing of measuring devices for vital process parameters and a system of controlling valves to regulate...... combustion charges and phases. The experiments showed that the digital control of the combustion process ensures constant and optimal temperatures and overall oxygen concentrations in the combustion chamber resulting in low PM and CO emissions.......A collaboration project between the CHEC research Centre, at DTU Chemical Engineering, and the stove manufacturing company HWAM A/S has been established during the last years and has led to development and marketing of wood stoves (Autopilot IHS) equipped with a digital control system. The improved...

  14. Evaluation of nanoparticle emissions from a laser printer in an experimental chamber and estimation of the human particle dose.

    Science.gov (United States)

    Serfozo, Norbert; Ondráček, Jakub; Glytsos, Thodoros; Lazaridis, Mihalis

    2018-05-01

    The aim of this study was to evaluate the nanoparticle emissions from a laser printer in a chamber in conjunction with emissions from printers in a print room (PR) and to characterize the processes that lead to increased nanoparticle concentrations, as well as to estimate the human particle dose of the printers' users. Measurements were conducted in a small stainless steel environmental chamber under controlled conditions, where the evolution of particle size distributions (PSDs) with time and printed pages was studied in detail. Printer was generating nanoparticles (vast majority ˂ 50 nm with mode on ~ 15 nm) primarily during cold startup. Previously, 1-week sampling was also done in a PR at the Technical University of Crete, where the tested laser printer is installed along with three other printers. Similarly, as it was observed in the chamber study, printers' startup on any given day was characterized by a sharp increase in particle number (PN) concentrations. Average measured PN concentrations during printing hours in PR (5.4 × 10 3 #/cm 3 ) is similar to the one observed in chamber measurements (6.7 × 10 3 #/cm 3 ). The ExDoM2 dosimetry model was further applied to calculate the deposition of particles in the human respiratory tract. More precisely, the increase in particle dose for an adult Caucasian male was 14.6- and 24.1-fold at printers' startup, and 1.2- and 5.2-fold during printing in the PR and experimental chamber, respectively, compared to the exposure dose at background concentrations (BCs).

  15. Combined particle emission reduction and heat recovery from combustion exhaust-A novel approach for small wood-fired appliances

    International Nuclear Information System (INIS)

    Messerer, A.; Schmatloch, V.; Poeschl, U.; Niessner, R.

    2007-01-01

    Replacing fossil fuels by renewable sources of energy is one approach to address the problem of global warming due to anthropogenic emissions of greenhouse gases. Wood combustion can help to replace fuel oil or gas. It is advisable, however, to use modern technology for combustion and exhaust gas after-treatment in order to achieve best efficiency and avoid air quality problems due to high emission levels often related to small scale wood combustion. In this study, simultaneous combustion particle deposition and heat recovery from the exhaust of two commercially available wood-fired appliances has been investigated. The experiments were performed with a miniature pipe bundle heat exchanger operating in the exhaust gas lines of a fully automated pellet burner or a closed fireplace. The system has been characterised for a wide range of aerosol inlet temperatures (135-295 deg. C) and flow velocities (0.13-1.0ms -1 ), and particle deposition efficiencies up to 95% have been achieved. Deposition was dominated by thermophoresis and diffusion and increased with the average temperature difference and retention time in the heat exchanger. The aerosols from the two different appliances exhibited different deposition characteristics, which can be attributed to enhanced deposition of the nucleation mode particles generated in the closed fire place. The measured deposition efficiencies can be described by simple linear parameterisations derived from laboratory studies. The results of this study demonstrate the feasibility of thermophoretic particle removal from biomass burning flue gas and support the development of modified heat exchanger systems with enhanced capability for simultaneous heat recovery and particle deposition

  16. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective.

    Science.gov (United States)

    Liati, Anthi; Schreiber, Daniel; Arroyo Rojas Dasilva, Yadira; Dimopoulos Eggenschwiler, Panayotis

    2018-08-01

    Ultrafine (electron microscopy (TEM) is applied to obtain a concrete picture on the nature, morphology and chemical composition of non-volatile ultrafine particles in the exhaust of state-of-the-art, Euro 6b, Gasoline and Diesel vehicles. The particles were collected directly on TEM grids, at the tailpipe, downstream of the after-treatment system, during the entire duration of typical driving cycles on the chassis dynamometer. Based on TEM imaging coupled with Energy Dispersive X-ray (EDX) analysis, numerous ultrafine particles could be identified, imaged and analyzed chemically. Particles vehicles and driving cycles. The present TEM study gives information also on the imaging and chemical composition of the solid fraction of the unregulated sub-23 nm size category particles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. PAH, BTEX, carbonyl compound, black-carbon, NO2 and ultrafine particle dynamometer bench emissions for Euro 4 and Euro 5 diesel and gasoline passenger cars

    Science.gov (United States)

    Louis, Cédric; Liu, Yao; Tassel, Patrick; Perret, Pascal; Chaumond, Agnès; André, Michel

    2016-09-01

    Although implementing Diesel particulate filters (DPF) and other novel aftertreatment technologies makes it possible to achieve significant reductions in particle mass emissions, it may induce the release of ultrafine particles and emissions of many other unregulated compounds. This paper focuses on (i) ultrafine particles, black carbon, BTEX, PAH, carbonyl compounds, and NO2 emissions from Euro 4 and Euro 5 Diesel and gasoline passenger cars, (ii) the influence of driving conditions (e.g., cold start, urban, rural and motorway conditions), and (iii) the impact of additive and catalysed DPF devices on vehicle emissions. Chassis dynamometer tests were conducted on four Euro 5 vehicles and two Euro 4 vehicles: gasoline vehicles with and without direct injection system and Diesel vehicles equipped with additive and catalysed particulate filters. The results showed that compared to hot-start cycles, cold-start urban cycles increased all pollutant emissions by a factor of two. The sole exception was NO2, which was reduced by a factor of 1.3-6. Particulate and black carbon emissions from the gasoline engines were significantly higher than those from the Diesel engines equipped with DPF. Moreover, the catalysed DPF emitted about 3-10 times more carbonyl compounds and particles than additive DPF, respectively, during urban driving cycles, while the additive DPF vehicles emitted 2 and 5 times more BTEX and carbonyl compounds during motorway driving cycles. Regarding particle number distribution, the motorway driving cycle induced the emission of particles smaller in diameter (mode at 15 nm) than the urban cold-start cycle (mode at 80-100 nm). The results showed a clear positive correlation between particle, black carbon, and BTEX emissions, and a negative correlation between particles and NO2.

  18. Evaluation of solid particle number and black carbon for very low particulate matter emissions standards in light-duty vehicles.

    Science.gov (United States)

    Chang, M-C Oliver; Shields, J Erin

    2017-06-01

    To reliably measure at the low particulate matter (PM) levels needed to meet California's Low Emission Vehicle (LEV III) 3- and 1-mg/mile particulate matter (PM) standards, various approaches other than gravimetric measurement have been suggested for testing purposes. In this work, a feasibility study of solid particle number (SPN, d50 = 23 nm) and black carbon (BC) as alternatives to gravimetric PM mass was conducted, based on the relationship of these two metrics to gravimetric PM mass, as well as the variability of each of these metrics. More than 150 Federal Test Procedure (FTP-75) or Supplemental Federal Test Procedure (US06) tests were conducted on 46 light-duty vehicles, including port-fuel-injected and direct-injected gasoline vehicles, as well as several light-duty diesel vehicles equipped with diesel particle filters (LDD/DPF). For FTP tests, emission variability of gravimetric PM mass was found to be slightly less than that of either SPN or BC, whereas the opposite was observed for US06 tests. Emission variability of PM mass for LDD/DPF was higher than that of both SPN and BC, primarily because of higher PM mass measurement uncertainties (background and precision) near or below 0.1 mg/mile. While strong correlations were observed from both SPN and BC to PM mass, the slopes are dependent on engine technologies and driving cycles, and the proportionality between the metrics can vary over the course of the test. Replacement of the LEV III PM mass emission standard with one other measurement metric may imperil the effectiveness of emission reduction, as a correlation-based relationship may evolve over future technologies for meeting stringent greenhouse standards. Solid particle number and black carbon were suggested in place of PM mass for the California LEV III 1-mg/mile FTP standard. Their equivalence, proportionality, and emission variability in comparison to PM mass, based on a large light-duty vehicle fleet examined, are dependent on engine

  19. α-cluster model for the multiple emission of particles in the reaction 90Zr (e, α)

    International Nuclear Information System (INIS)

    Guevara, Y.M.; Garcia, C.; Hoyos, O.E.R.; Rodriguez, T. E.; Arruda-Neto, J.D.T.

    2011-01-01

    We present a methodology based on the model of photoabsorption by a cluster N- α for a better understanding of the puzzling steady increase behavior of the 90 Zr (e, α) yield obtained experimentally in the energy range of the giant dipole resonance (RDG) and the quasi-deuteron (QD).The calculation takes into account the emission of protons, neutrons and alpha particles in the framework of the reaction (which was used for the Intranuclear Cascade model (MCMC)). The statistical decay of the compound nucleus is described by Monte Carlo techniques in terms of competition between evaporation of particles (p, n, d, α, 3 He t) and nuclear fission, but for our specific case (the reaction and + Zr 90 in an energy range between 20 and 140 MeV) the fission channel does not have a high probability of occurrence. The results reproduce quite successfully the experimental data, suggesting that pre-equilibrium emission of alpha particles are essential for the interpretation of this exotic increase of the cross sections. (Author)

  20. The Treatment of Smith's Invisible Hand

    Science.gov (United States)

    Wight, Jonathan B.

    2007-01-01

    Adam Smith used the metaphor of an invisible hand to represent the instincts of human nature that direct behavior. Moderated by self-control and guided by proper institutional incentives, actions grounded in instincts can be shown to generate a beneficial social order even if not intended. Smith's concept, however, has been diluted and distorted…

  1. A feeling of being (in)visible

    DEFF Research Database (Denmark)

    Damsgaard, Janne Brammer; Bastrup, Lene; Norlyk, Annelise

    Abstract PhD Day 2015 The illness trajectory of spine fusion patients. A feeling of being (in)visible Background Research shows that being a back patient is associated with great personal cost, and that back patients who undergo so-called spine fusion often experience particularly long...

  2. Invisible marker based augmented reality system

    Science.gov (United States)

    Park, Hanhoon; Park, Jong-Il

    2005-07-01

    Augmented reality (AR) has recently gained significant attention. The previous AR techniques usually need a fiducial marker with known geometry or objects of which the structure can be easily estimated such as cube. Placing a marker in the workspace of the user can be intrusive. To overcome this limitation, we present an AR system using invisible markers which are created/drawn with an infrared (IR) fluorescent pen. Two cameras are used: an IR camera and a visible camera, which are positioned in each side of a cold mirror so that their optical centers coincide with each other. We track the invisible markers using IR camera and visualize AR in the view of visible camera. Additional algorithms are employed for the system to have a reliable performance in the cluttered background. Experimental results are given to demonstrate the viability of the proposed system. As an application of the proposed system, the invisible marker can act as a Vision-Based Identity and Geometry (VBIG) tag, which can significantly extend the functionality of RFID. The invisible tag is the same as RFID in that it is not perceivable while more powerful in that the tag information can be presented to the user by direct projection using a mobile projector or by visualizing AR on the screen of mobile PDA.

  3. Axions: on the way to invisibility

    International Nuclear Information System (INIS)

    Girardi, G.

    1982-01-01

    We present a survey of the theoretical motivation which lead to the axion and we summarize its properties. A brief account of the experimental situation is given, which in addition to cosmological constraints imposes to the axion the way of invisibility in Grand Unified Theories

  4. Neutron-induced charged-particle emission studies below 100 MeV at WNR

    Energy Technology Data Exchange (ETDEWEB)

    Haight, R.C.; Lee, T.M.; Sterbenz, S.M. [and others

    1994-07-01

    Charged-particles produced by neutron bombardment of selected targets with Z=5 through 53 have been studied for neutron energies from 1 MeV to about 100 MeV using the spallation neutron source at WNR/LAMPF. Particle detection with energy measurement and particle identification is accomplished by two-element {Delta}E-E counters, three-element {Delta}E{sub l}-{Delta}E{sub 2}-E counters or with pulse-shape discrimination using scintillators directly in the neutron beam. The experimental techniques for these measurements are described and comparisons made among the different approaches. This presentation introduces five papers contributed to this conference.

  5. Neutron-induced charged-particle emission studies below 100 MeV at WNR

    International Nuclear Information System (INIS)

    Haight, R.C.; Lee, T.M.; Sterbenz, S.M.

    1994-01-01

    Charged-particles produced by neutron bombardment of selected targets with Z=5 through 53 have been studied for neutron energies from 1 MeV to about 100 MeV using the spallation neutron source at WNR/LAMPF. Particle detection with energy measurement and particle identification is accomplished by two-element ΔE-E counters, three-element ΔE l -ΔE 2 -E counters or with pulse-shape discrimination using scintillators directly in the neutron beam. The experimental techniques for these measurements are described and comparisons made among the different approaches. This presentation introduces five papers contributed to this conference

  6. Effects of Aftermarket Control Technologies on Gas and Particle Phase Oxidative Potential from Diesel Engine Emissions

    Science.gov (United States)

    Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) with var...

  7. Light particle emission measurements in heavy ion reactions. Final report, June 1, 1981-May 31, 1984

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1984-01-01

    Progress in instrumentation development reported includes improvements in the design of position sensitive neutron detectors, design of a thin-walled, spherical, aluminum target chamber, and use of thin silicon detectors to detect and identify evaporation residues from fusion reactions. The problem of the short lifetime of evaporation residue detectors is addressed by using a pair of large area, multi-wire proportional counters followed by a thin sheet of plastic scintillator. Neutron emission associated with fission has been studied, as well as nonequilibrium emission associated with inelastic products and evaporation residue. An experiment was performed to study neutron emission associated with fission and fission-like events in the case of the Er composite system. Other work in progress includes neutron emissions from the C + Gd and Ne + Nd reactions. 9 refs

  8. Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico

    Science.gov (United States)

    Christian, T. J.; Yokelson, R. J.; Cárdenas, B.; Molina, L. T.; Engling, G.; Hsu, S.-C.

    2010-01-01

    In central Mexico during the spring of 2007 we measured the initial emissions of 12 gases and the aerosol speciation for elemental and organic carbon (EC, OC), anhydrosugars, Cl-, NO3-, and 20 metals from 10 cooking fires, four garbage fires, three brick making kilns, three charcoal making kilns, and two crop residue fires. Global biofuel use has been estimated at over 2600 Tg/y. With several simple case studies we show that cooking fires can be a major, or the major, source of several gases and fine particles in developing countries. Insulated cook stoves with chimneys were earlier shown to reduce indoor air pollution and the fuel use per cooking task. We confirm that they also reduce the emissions of VOC pollutants per mass of fuel burned by about half. We did not detect HCN emissions from cooking fires in Mexico or Africa. Thus, if regional source attribution is based on HCN emissions typical for other types of biomass burning (BB), then biofuel use and total BB will be underestimated in much of the developing world. This is also significant because cooking fires are not detected from space. We estimate that ~2000 Tg/y of garbage are generated globally and about half may be burned, making this a commonly overlooked major global source of emissions. We estimate a fine particle emission factor (EFPM2.5) for garbage burning of ~10.5±8.8 g/kg, which is in reasonable agreement with very limited previous work. We observe large HCl emission factors in the range 2-10 g/kg. Consideration of the Cl content of the global waste stream suggests that garbage burning may generate as much as 6-9 Tg/yr of HCl, which would make it a major source of this compound. HCl generated by garbage burning in dry environments may have a relatively greater atmospheric impact than HCl generated in humid areas. Garbage burning PM2.5 was found to contain levoglucosan and K in concentrations similar to those for biomass burning, so it could be a source of interference in some areas when using

  9. Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico

    Directory of Open Access Journals (Sweden)

    T. J. Christian

    2010-01-01

    Full Text Available In central Mexico during the spring of 2007 we measured the initial emissions of 12 gases and the aerosol speciation for elemental and organic carbon (EC, OC, anhydrosugars, Cl, NO3, and 20 metals from 10 cooking fires, four garbage fires, three brick making kilns, three charcoal making kilns, and two crop residue fires. Global biofuel use has been estimated at over 2600 Tg/y. With several simple case studies we show that cooking fires can be a major, or the major, source of several gases and fine particles in developing countries. Insulated cook stoves with chimneys were earlier shown to reduce indoor air pollution and the fuel use per cooking task. We confirm that they also reduce the emissions of VOC pollutants per mass of fuel burned by about half. We did not detect HCN emissions from cooking fires in Mexico or Africa. Thus, if regional source attribution is based on HCN emissions typical for other types of biomass burning (BB, then biofuel use and total BB will be underestimated in much of the developing world. This is also significant because cooking fires are not detected from space. We estimate that ~2000 Tg/y of garbage are generated globally and about half may be burned, making this a commonly overlooked major global source of emissions. We estimate a fine particle emission factor (EFPM2.5 for garbage burning of ~10.5±8.8 g/kg, which is in reasonable agreement with very limited previous work. We observe large HCl emission factors in the range 2–10 g/kg. Consideration of the Cl content of the global waste stream suggests that garbage burning may generate as much as 6–9 Tg/yr of HCl, which would make it a major source of this compound. HCl generated by garbage burning in dry environments may have a relatively greater atmospheric impact than HCl generated in humid areas. Garbage burning PM2.5 was found to contain levoglucosan and K in concentrations similar to those for

  10. The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

    Directory of Open Access Journals (Sweden)

    Hyungmin Lee

    2012-12-01

    Full Text Available This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from 25 °C to 300 °C, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

  11. Black carbon aerosol properties measured by a single particle soot photometer in emissions from biomass burning in the laboratory and field

    Science.gov (United States)

    G. R. McMeeking; J. W. Taylor; A. P. Sullivan; M. J. Flynn; S. K. Akagi; C. M. Carrico; J. L. Collett; E. Fortner; T. B. Onasch; S. M. Kreidenweis; R. J. Yokelson; C. Hennigan; A. L. Robinson; H. Coe

    2010-01-01

    We present SP2 observations of BC mass, size distributions and mixing state in emissions from laboratory and field biomass fires in California, USA. Biomass burning is the primary global black carbon (BC) source, but understanding of the amount emitted and its physical properties at and following emission are limited. The single particle soot photometer (SP2) uses a...

  12. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles.

    Science.gov (United States)

    Riccobono, Francesco; Schobesberger, Siegfried; Scott, Catherine E; Dommen, Josef; Ortega, Ismael K; Rondo, Linda; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Downard, Andrew; Dunne, Eimear M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hansel, Armin; Junninen, Heikki; Kajos, Maija; Keskinen, Helmi; Kupc, Agnieszka; Kürten, Andreas; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Santos, Filipe D; Schallhart, Simon; Seinfeld, John H; Sipilä, Mikko; Spracklen, Dominick V; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjö; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Wimmer, Daniela; Carslaw, Kenneth S; Curtius, Joachim; Donahue, Neil M; Kirkby, Jasper; Kulmala, Markku; Worsnop, Douglas R; Baltensperger, Urs

    2014-05-16

    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations. Copyright © 2014, American Association for the Advancement of Science.

  13. Aerosol-Fluorescence Spectrum Analyzer: Real-Time Measurement of Emission Spectra of Airborne Biological Particles

    National Research Council Canada - National Science Library

    Hill, Steven

    1997-01-01

    ...) made from various biological materials (e.g., Bacillus subtilis spores, B. anthrasis spores, riboflavin, and tree leaves). The AFS may be useful in detecting and characterizing airborne bacteria and other airborne particles of biological origin.

  14. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles

    CERN Document Server

    Riccobono, Francesco; Baltensperger, Urs; Worsnop, Douglas R; Curtius, Joachim; Carslaw, Kenneth S; Wimmer, Daniela; Wex, Heike; Weingartner, Ernest; Wagner, Paul E; Vrtala, Aron; Viisanen, Yrjö; Vaattovaara, Petri; Tsagkogeorgas, Georgios; Tomé, Antonio; Stratmann, Frank; Stozhkov, Yuri; Spracklen, Dominick V; Sipilä, Mikko; Praplan, Arnaud P; Petäjä, Tuukka; Onnela, Antti; Nieminen, Tuomo; Mathot, Serge; Makhmutov, Vladimir; Lehtipalo, Katrianne; Laaksonen, Ari; Kvashin, Alexander N.; Kürten, Andreas; Kupc, Agnieszka; Keskinen, Helmi; Kajos, Maija; Junninen, Heikki; Hansel, Armin; Franchin, Alessandro; Flagan, Richard C; Ehrhart, Sebastian; Duplissy, Jonathan; Dunne, Eimear M; Downard, Andrew; David, André; Breitenlechner, Martin; Bianchi, Federico; Amorim, Antonio; Almeida, João; Rondo, Linda; Ortega, Ismael K; Dommen, Josef; Scott, Catherine E; Vrtala, Aron; Santos, Filipe D; Schallhart, Simon; Seinfeld, John H; Sipila, Mikko; Donahue, Neil M; Kirkby, Jasper; Kulmala, Markku

    2014-01-01

    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.

  15. Application of Gauss's law space-charge limited emission model in iterative particle tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Altsybeyev, V.V., E-mail: v.altsybeev@spbu.ru; Ponomarev, V.A.

    2016-11-01

    The particle tracking method with a so-called gun iteration for modeling the space charge is discussed in the following paper. We suggest to apply the emission model based on the Gauss's law for the calculation of the space charge limited current density distribution using considered method. Based on the presented emission model we have developed a numerical algorithm for this calculations. This approach allows us to perform accurate and low time consumpting numerical simulations for different vacuum sources with the curved emitting surfaces and also in the presence of additional physical effects such as bipolar flows and backscattered electrons. The results of the simulations of the cylindrical diode and diode with elliptical emitter with the use of axysimmetric coordinates are presented. The high efficiency and accuracy of the suggested approach are confirmed by the obtained results and comparisons with the analytical solutions.

  16. Experimental Investigation of Performance and emission characteristics of Various Nano Particles with Bio-Diesel blend on Di Diesel Engine

    Science.gov (United States)

    Karthik, N.; Goldwin Xavier, X.; Rajasekar, R.; Ganesh Bairavan, P.; Dhanseelan, S.

    2017-05-01

    Present study provides the effect of Zinc Oxide (ZnO) and Cerium Oxide (CeO2) nanoparticles additives on the Performance and emission uniqueness of Jatropha. Jatropha blended fuel is prepared by the emulsification technique with assist of mechanical agitator. Nano particles (Zinc Oxide (ZnO)) and Cerium Oxide (CeO2)) mixed with Jatropha blended fuel in mass fraction (100 ppm) with assist of an ultrasonicator. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Performance results revealed that Brake Thermal Efficiency (BTE) of Jatropha blended Cerium Oxide (B20CE) is 3% and 11% higher than Jatropha blended zinc oxide (B20ZO) and Jatropha blended fuel (B20) and 4% lower than diesel fuel (D100) at full load conditions. Emission result shows that HC and CO emissions of Jatropha blended Cerium Oxide (B20CE) are (6%, 22%, 11% and 6%, 15%, 12%) less compared with Jatropha blended Zinc Oxide (B20ZO), diesel (D100) and Jatropha blended fuel (B20) at full load conditions. NOx emissions of Jatropha blended Cerium Oxide is 1 % higher than diesel fuel (D100) and 2% and 5% lower than Jatropha blended Zinc Oxide, and jatropha blended fuel.

  17. Airborne Wear Particles Emissions fromCommercial Disc Brake Materials– Passenger Car Field Test

    OpenAIRE

    Wahlström, Jens; Olofsson, Ulf; Jansson, Anders; Olander, Lars

    2008-01-01

    Most modern passenger cars have disc brakes on the front wheels, which unlike drum brakes are not sealed off to the ambient air. During braking, there is wear to both the rotor and the pads. This wear process generates particles, which may become airborne. In field tests it is difficult to distinguish these particles from others in the surrounding environment. It may be preferable to use laboratory test stands where the cleanness of the surrounding air can be controlled. The validity of these...

  18. Verification of nuclear data for DT neutron induced charged-particle emission reaction of light nuclei

    International Nuclear Information System (INIS)

    Kondo, K.; Murata, I.; Ochiai, K.; Kubota, N.; Miyamaru, H.; Takagi, S.; Shido, S.; Konno, C.; Nishitani, T.

    2007-01-01

    Double-differential cross-section (DDX) for emitted charged particles is necessary to estimate material damage, gas production and nuclear heating in a fusion reactor. Detailed measurements of the cross-sections for beryllium, carbon and fluorine, which are among the composition materials of expected fusion blankets and first walls, were carried out with a charged-particle spectrometer using a pencil-beam DT neutron source. As verification of the cross-sections evaluated in three nuclear libraries (JENDL-3.3, ENDF/B-VI and JEFF-3.1), our measured data were compared with the data evaluated in the libraries. From the comparison, the following problems were pointed out: Beryllium: Remarkable differences in energy and angular distribution for α-particles were observed between the measured data and the libraries. The estimated total cross-section for α-particle production well agreed with the libraries. Carbon: There was a discrepancy of about 20% between JENDL-3.3 and ENDF/B-VI (JEFF-3.1) for α-particle production cross-section, and no DDX for α-particles is given in the libraries. Our obtained total cross-section for α-particle production was rather consistent with ENDF/B-VI (JEFF-3.1), and the value evaluated in JENDL-3.3 seemed too large. Fluorine: The remarkable differences for DDX of protons and α-particles were observed between the obtained result and JENDL-3.3, although detailed DDX was stored only in JENDL. The obtained total cross-sections mostly supported the evaluation of ENDF/B-VI (JEFF-3.1)

  19. Preequilibrium particle emissions and in-medium effects on the pion production in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhao-Qing [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-02-15

    Within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model, pion dynamics in heavy-ion collisions near threshold energies and the emission of preequilibrium particles (nucleons and light complex fragments) have been investigated. A density, momentum and isospin-dependent pion-nucleon potential based on the Δ-hole model is implemented in the transport approach, which slightly leads to the increase of the π{sup -}/π{sup +} ratio, but reduces the total pion yields. It is found that a bump structure of the π{sup -}/π{sup +} ratio in the kinetic energy spectra appears at the pion energy close to the Δ(1232) resonance region. The yield ratios of neutrons to protons from the squeeze-out particles perpendicular to the reaction plane are sensitive to the stiffness of nuclear symmetry energy, in particular at the high-momentum (kinetic energy) tails. (orig.)

  20. Particle-induced X-ray emission: thick-target analysis of inorganic materials in the determination of light elements

    International Nuclear Information System (INIS)

    Perez-Arantegui, J.; Castillo, J.R.; Querre, G.

    1994-01-01

    Particle-induced X-ray emission (PIXE) has been applied to the analysis of inorganic materials to determine some elements with Z < 27: Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe, in thick-target analysis. A PIXE method has been developed for the analysis of geological materials, ceramics and pottery. Work has been carried out with an ion beam analytical system, using a low particle beam energy. Relative sensitivity, detection limits, reproducibility and accuracy of the method were calculated based on the analysis of geological standard materials (river sediments, argillaceous limestone, basalt, diorite and granite). Analysis using PIXE offers a number of advantages, such as short analysis time, multi-elemental and nondestructive determinations, and the results are similar to those obtained with other instrumental techniques of analysis. (Author)

  1. Study of the emission of a light particle charged during the fission of 235U by thermal neutron

    International Nuclear Information System (INIS)

    Carles, Claude

    1969-01-01

    In a first part, this research thesis discusses the existing theories of the mechanism of emission of light particles charged of tri-partition (tri-partition is defined as an event involving two big fragments of masses comparable with those obtained in binary fission, and a charged light particle). Then, the author presents and reports an experiment performed by suing nuclear emulsions. Another type of experiment is then presented which allows the measurement of masses and energies of tri-partition fragments. The author then presents theoretical calculations which have been performed in order to find again some characteristics of tri-partition. These calculations are mainly based on Coulomb repulsion between various fragments

  2. Development of a PIXE (Particle Induced X-ray Emission) analysis device using an extracted proton beam

    International Nuclear Information System (INIS)

    Saidi, A.

    1989-01-01

    The experimental device described allows the extention of the PIXE (Particle Induced X-ray Emission) method to the analysis, by means of proton beams, of solid or liquid samples, which can not be analyzed under vacuum conditions. The homogeneity of the surfaces to be analysed and elements (in the atmosphere) which absorb X-rays must be taken into account. Liquid samples do not need special care. The results show that: at high energies, the extracted beam sensibility is of the same order of magnitude as those obtained under vacuum; at low energies, the performance under vacuum conditions is better. The particles energy losses, at the exit membrane and in the outer atmosphere, decrease the X-rays production efficiency [fr

  3. Identification of emission sources of particle-bound polycyclic aromatic hydrocarbons in the vicinity of the industrial zone of the city of Novi Sad

    OpenAIRE

    Jovčić Nataša S.; Radonić Jelena R.; Turk-Sekulić Maja M.; Vojinović-Miloradov Mirjana B.; Popov Srđan B.

    2013-01-01

    Data on polycyclic aromatic hydrocarbons (PAHs) in ambient air accessed at selected locations in the vicinity of the industrial zone of the city of Novi Sad, Serbia, have been presented and analyzed in order to determine seasonal and spatial variations and to identify emission sources of particle-bound PAHs. Previous studies have demonstrated that the major contributors of PAHs in urban areas are the emissions from vehicle exhaust, and emissions releases from industrial processes like a...

  4. Switching mechanism due to the spontaneous emission cancellation in photonic band gap materials doped with nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Canada N6A 3K7 (Canada)]. E-mail: msingh@uwo.ca

    2007-03-26

    We have investigated the switching mechanism due to the spontaneous emission cancellation in a photonic band gap (PBG) material doped with an ensemble of four-level nano-particles. The effect of the dipole-dipole interaction has also been studied. The linear susceptibility has been calculated in the mean field theory. Numerical simulations for the imaginary susceptibility are performed for a PBG material which is made from periodic dielectric spheres. It is predicted that the system can be switched between the absorbing state and the non-absorbing state by changing the resonance energy within the energy bands of the photonic band gap material.0.

  5. Influence of small metallic particles on the absorption and emission in amorphous materials doped with rare earths

    International Nuclear Information System (INIS)

    Malta, O.L.; Santa Cruz, P.A.; Sa, G.F. de

    1987-01-01

    The influence of small metallic clusters on the absorption and emission processes in molecular species shows a great interest as well the fundamental as the pratical point of view. This subject, which has been recently developed, covers several aspects related to the kinetics of formation of these chusters and to theirs optical properties in amorphous media. A study of this problem developed by the first time for the case of one volumetric distribution of metallic particles is presented. With this aim, fluoborate glasses doped with Eu 3+ ion which fluorescence is well known in several materials are used. (L.C.) [pt

  6. Composite-particle emission in the reaction p+Au at 2.5 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, A.; Bohm, A.; Galin, J.; Lott, B.; Peghaire, A. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Enke, M.; Herbach, C.M.; Hilscher, D.; Jahnke, U.; Tishchenko, V. [Hahn Meitner Institute, Berlin (Germany); Filges, D.; Goldenbaum, F.; Neef, R.D.; Nunighoff, K.; Paul, N.; Sterzenbach, G. [Institut fur Kernphysik, Julich (Germany); Pienkowski, L. [Warsaw Universitaire, Heavy Ion Lab. (Poland); Toke, J.; Schroder, U. [Rochester, University, New York (United States)

    2002-06-01

    The emission of composite-particles is studied in the reaction p+Au at E{sub p} = 2.5 GeV, in addition to neutrons and protons. Most particle energy spectra feature an evaporation spectrum superimposed on an exponential high-energy, non-statistical component. Comparisons are first made with the predictions by a two-stage hybrid reaction model, where an intra-nuclear cascade (INC) simulation is followed by a statistical evaporation process. The high-energy proton component is identified as product of the fast pre-equilibrium INC, since it is rather well reproduced by the INCL2.0 intra-nuclear cascade calculations simulating the first reaction stage. The low-energy spectral components are well understood in terms of sequential particle evaporation from the hot nuclear target remnants of the fast INC. Evaporation is modeled using the statistical code GEMINI. Implementation of a simple coalescence model in the INC code can provide a reasonable description of the multiplicities of high-energy composite particles such as {sup 2-3}H and {sup 3}He. However, this is done at the expense of {sup 1}H which then fails to reproduce the experimental energy spectra. (authors)

  7. Direct evidence for coastal iodine particles from Laminaria macroalgae – linkage to emissions of molecular iodine

    Directory of Open Access Journals (Sweden)

    G. McFiggans

    2004-01-01

    Full Text Available Renewal of ultrafine aerosols in the marine boundary layer may lead to repopulation of the marine distribution and ultimately determine the concentration of cloud condensation nuclei (CCN. Thus the formation of nanometre-scale particles can lead to enhanced scattering of incoming radiation and a net cooling of the atmosphere. The recent demonstration of the chamber formation of new particles from the photolytic production of condensable iodine-containing compounds from diiodomethane (CH2I2, (O'Dowd et al., 2002; Kolb, 2002; Jimenez et al., 2003a; Burkholder and Ravishankara, 2003, provides an additional mechanism to the gas-to-particle conversion of sulphuric acid formed in the photo-oxidation of dimethylsulphide for marine aerosol repopulation. CH2I2 is emitted from seaweeds (Carpenter et al., 1999, 2000 and has been suggested as an initiator of particle formation. We demonstrate here for the first time that ultrafine iodine-containing particles are produced by intertidal macroalgae exposed to ambient levels of ozone. The particle composition is very similar both to those formed in the chamber photo-oxidation of diiodomethane and in the oxidation of molecular iodine by ozone. The particles formed in all three systems are similarly aspherical. When small, those formed in the molecular iodine system swell only moderately when exposed to increased humidity environments, and swell progressively less with increasing size; this behaviour occurs whether they are formed in dry or humid environments, in contrast to those in the CH2I2 system. Direct coastal boundary layer observations of molecular iodine, ultrafine particle production and iodocarbons are reported. Using a newly measured molecular iodine photolysis rate, it is shown that, if atomic iodine is involved in the observed particle bursts, it is of the order of at least 1000 times more likely to result from molecular iodine photolysis than diiodomethane photolysis. A hypothesis for molecular

  8. Asymmetric Invisibility Cloaking Theory Based on the Concept of Effective Electromagnetic Fields for Photons

    Science.gov (United States)

    Amemiya, Tomo; Taki, Masato; Kanazawa, Toru; Arai, Shigehisa

    2014-03-01

    The asymmetric invisibility cloak is a special cloak with unidirectional transparency; that is, a person in the cloak should not be seen from the outside but should be able to see the outside. Existing theories of designing invisibility cloaks cannot be used for asymmetric cloaking because they are based on the transformation optics that uses Riemannian metric tensor independent of direction. To overcome this problem, we propose introducing directionality into invisibility cloaking. Our theory is based on ``the theory of effective magnetic field for photons'' proposed by Stanford University.[2] To realize asymmetric cloaking, we have extended the Stanford's theory to add the concept of ``effective electric field for photons.'' The effective electric and the magnetic field can be generated using a photonc resonator lattice, which is a kind of metamaterial. The Hamiltonian for photons in these fields has a similar form to that of the Hamiltonian for a charged particle in an electromagnetic field. An incident photon therefore experiences a ``Lorentz-like'' and a ``Coulomb-like'' force and shows asymmetric movement depending of its travelling direction.We show the procedure of designing actual invisibility cloaks using the photonc resonator lattice and confirm their operation with the aid of computer simulation. This work was supported in part by the MEXT; JSPS KAKENHI Grant Numbers #24246061, #24656046, #25420321, #25420322.

  9. Motivation and detectability of an invisibly decaying Higgs boson at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Martin, S.P.; Wells, J.D.

    1999-01-01

    A Higgs boson with a mass below 150 GeV has a total decay width of less than 20 MeV into accessible standard model states. This narrow width means that the usual branching fractions for such a light Higgs boson are highly susceptible to any new particles to which it has unsuppressed couplings. In particular, there are many reasonable and interesting theoretical ideas that naturally imply an invisibly decaying Higgs boson. The motivations include models with light supersymmetric neutralinos, spontaneously broken lepton number, radiatively generated neutrino masses, additional singlet scalar(s), or right-handed neutrinos in the extra dimensions of TeV gravity. We discuss these approaches to model building and their implications for Higgs boson phenomenology in future Fermilab Tevatron runs. We find, for example, that the Tevatron with 30 fb -1 integrated luminosity can make a 3σ observation in the l + l - +E/ T channel for a 125 GeV Higgs boson that is produced with the same strength as the standard model Higgs boson but always decays invisibly. We also analyze the b bar b+E/ T final state signal and conclude that it is not as sensitive, but it may assist in excluding the possibility of an invisibly decaying Higgs boson or enable confirmation of an observed signal in the dilepton channel. We argue that a comprehensive Higgs boson search at the Tevatron should include the possibility that the Higgs boson decays invisibly. copyright 1999 The American Physical Society

  10. Determination of the shapes and sizes of the regions in which in hadron-nucleus collisions reactions leading to the nucleon emission, particle production, and fragment evaporation occur

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1985-01-01

    Shapes and sizes of the regions in target-nuclei in which reactions leading to the nucleon emission, particle production and fragment evaporation occur are determined. The region of nucleon emission is of cylindrical shape, with the diameter as large as two nucleon diameters, centered on the incident hadron course. The reactions leading to the particle production happen predominantly along the incident hadron course in nuclear matter. The fragment evaporation goes from the surface layer of the part of the target-nucleus damaged in nucleon emission process

  11. Correction of Doppler broadening of {gamma}-ray lines induced by particle emission in heavy-ion induced fusion-evaporation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, J; Seweryniak, D; Fahlander, C; Insua-Cao, P [Uppsala Univ. (Sweden). Dept. of Radiation Sciences; Johnson, A; Cederwall, B [Manne Siegbahn Inst. of Physics, Stockholm (Sweden); [Royal Inst. of Tech., Stockholm (Sweden); Adamides, E; Piiparinen, M [National Centre for Scientific Research, Ag. Paraskevi, Attiki (Greece); Atac, A; Norlin, L O [Niels Bohr Inst., Copenhagen (Denmark); Ideguchi, E; Mitarai, S [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Julin, R; Juutinen, S; Tormanen, S; Virtanen, A [Jyvaeskylae Univ. (Finland). Dept. of Physics; Karczmarczyk, W; Kownacki, J [Warsaw Univ. (Poland); Schubart, R [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1992-08-01

    The effect of particle emission on the peak shape of {gamma}-ray lines have been investigated using the NORDBALL detector system. By detecting neutrons, protons and {alpha} particles emitted in the {sup 32}S (95 MeV) + {sup 27}Al reaction, the energy and direction of emission of the residual nuclei could be determined and subsequently used for an event-by -event Doppler correction of the detected {gamma} rays. Extensive Monte Carlo simulations were performed to study how the different Doppler phenomena influence the peak shape and in particular which particle detector properties are important for the Doppler correction. (author). 2 refs., 1 tab., 4 figs.

  12. Factors that determine the emission of gaseous and particle pollutants for the combustion of fossil fuels

    International Nuclear Information System (INIS)

    Bobadilla Edgar; Gomez Elias; Ramirez Beatriz

    1997-01-01

    The effect of physical-chemical, kinetic, estequiometric factors and of the mixture conditions on the emissions of five main classes of pollutants produced by the combustion equipments is analyzed. The emissions of monoxide of carbon (CO) are ruled by temperature and the proportion air - fuel. The production of nitrogen oxides (NOx) is determined by operation conditions (mainly temperature) and the composition of the fuel. The oxides of sulfur (SOx) are highly influenced by the temperature; in general, the formation of SO2 is faster than the oxidation of SO3. The temperature and the degree of homogenization of the mixture are decisive in the formation of organic volatile compounds. The emission of soot and fine ashes depends basically on the temperature, ratio air - fuel and conditions of homogenization of the mixture

  13. Indoor fine particles: the role of terpene emissions from consumer products.

    Science.gov (United States)

    Sarwar, Golam; Olson, David A; Corsi, Richard L; Weschler, Charles J

    2004-03-01

    Consumer products can emit significant quantities of terpenes, which can react with ozone (O3). Resulting byproducts include compounds with low vapor pressures that contribute to the growth of secondary organic aerosols (SOAs). The focus of this study was to evaluate the potential for SOA growth, in the presence of O3, following the use of a lime-scented liquid air freshener, a pine-scented solid air freshener, a lemon-scented general-purpose cleaner, a wood floor cleaner, and a perfume. Two chamber experiments were performed for each of these five terpene-containing agents, one at an elevated O3 concentration and-the other at a lower O3 concentration. Particle number and mass concentrations increased and O3 concentrations decreased during each experiment. Experiments with terpene-based air fresheners produced the highest increases in particle number and mass concentrations. The results of this study clearly demonstrate that homogeneous reactions between O3 and terpenes from various consumer products can lead to increases in fine particle mass concentrations when these products are used indoors. Particle increases can occur during periods of elevated outdoor O3 concentrations or indoor O3 generation, coupled with elevated terpene releases. Human exposure to fine particles can be reduced by minimizing indoor terpene concentrations or O3 concentrations.

  14. Environmental atmospheric impact assessment by the emission of particles in an industrial area

    International Nuclear Information System (INIS)

    Gomez, Dario R.; Ledesma, Ariel G.; Vazquez, Cristina; Smichowski, Patricia N.; Romero, Carlos A.; Dawidowski, Laura E.; Ortiz, Maria; Marrero, Julieta G.

    1999-01-01

    The content of metals present in suspended particulate matter was evaluated using analytical related nuclear techniques, in order to discriminate the contribution of different emission sources to the atmospheric concentration in the area of Campana, located in the Province of Buenos Aires. The levels of Ti, V, Cr, Mn, Ni, Cu, Zn, Sr, Ag, Cd y Pb were quantified by Wave Dispersion X-Ray Florescence spectrometry (WDXRF), Total Reflection X-Ray Fluorescence spectrometry (TRXRF) and Inducted Coupled Plasma Absorption Emission spectroscopy (ICP-AES). (author)

  15. Correlation of A-particles emission with the speed of light

    International Nuclear Information System (INIS)

    Abbas, M.

    2004-01-01

    In this phenomenological research, a relation connecting α-particle energy and α-decay half-life for all isotopes emitting α-particles have been achieved, and the experimental data affirmed this tight correlation. Also a relation connecting α-decay rate with the speed of light has been established. Depending on this last relation and the hypothesis of increasing light speed as we go back in time, some mysterious phenomena discovered recently, concerning α-decay radioactivity, have also been interpreted. Thus, the increase of radioactivity as we go back in time was approved; which interpreted the enormous amount of α-particles in some positions on the earth that cannot be interpreted using known laws of radioactivity. (Author)

  16. Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.

    Science.gov (United States)

    Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L

    2013-12-17

    Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.

  17. Multiple particle emission after 11Li beta-decay: exploring new decay channels

    International Nuclear Information System (INIS)

    Madurga, M.; Borge, M. J. G.; Fynbo, H. O. U.; Prezado, Y.; Tengblad, O.; Jonson, B.; Nyman, G.; Riisager, K.

    2007-01-01

    We present here a study of the three-body, nα 6 He particle break-up of 11 Be(10.6) following 11 Li β-decay. The emitted charged particles were detected in coincidence using a cubic set-up of highly segmented silicon detectors, allowing us to measure simultaneously energy and trajectory. The three body break-up of 11 Be(10.5) through the intermediate state 10 Be(9.6) was modeled using the multiple-level single-channel R-Matrix formalism

  18. An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Songfeng; Sun, Chengfu; Lu, Zhengding [School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-03-15

    This paper presents a modified quantum-behaved particle swarm optimization (QPSO) for short-term combined economic emission scheduling (CEES) of hydrothermal power systems with several equality and inequality constraints. The hydrothermal scheduling is formulated as a bi-objective problem: (i) minimizing fuel cost and (ii) minimizing pollutant emission. The bi-objective problem is converted into a single objective one by price penalty factor. The proposed method, denoted as QPSO-DM, combines the QPSO algorithm with differential mutation operation to enhance the global search ability. In this study, heuristic strategies are proposed to handle the equality constraints especially water dynamic balance constraints and active power balance constraints. A feasibility-based selection technique is also employed to meet the reservoir storage volumes constraints. To show the efficiency of the proposed method, different case studies are carried out and QPSO-DM is compared with the differential evolution (DE), the particle swarm optimization (PSO) with same heuristic strategies in terms of the solution quality, robustness and convergence property. The simulation results show that the proposed method is capable of yielding higher-quality solutions stably and efficiently in the short-term hydrothermal scheduling than any other tested optimization algorithms. (author)

  19. An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Lu Songfeng [School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Sun Chengfu, E-mail: ajason_369@sina.co [School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu Zhengding [School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-03-15

    This paper presents a modified quantum-behaved particle swarm optimization (QPSO) for short-term combined economic emission scheduling (CEES) of hydrothermal power systems with several equality and inequality constraints. The hydrothermal scheduling is formulated as a bi-objective problem: (i) minimizing fuel cost and (ii) minimizing pollutant emission. The bi-objective problem is converted into a single objective one by price penalty factor. The proposed method, denoted as QPSO-DM, combines the QPSO algorithm with differential mutation operation to enhance the global search ability. In this study, heuristic strategies are proposed to handle the equality constraints especially water dynamic balance constraints and active power balance constraints. A feasibility-based selection technique is also employed to meet the reservoir storage volumes constraints. To show the efficiency of the proposed method, different case studies are carried out and QPSO-DM is compared with the differential evolution (DE), the particle swarm optimization (PSO) with same heuristic strategies in terms of the solution quality, robustness and convergence property. The simulation results show that the proposed method is capable of yielding higher-quality solutions stably and efficiently in the short-term hydrothermal scheduling than any other tested optimization algorithms.

  20. An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling

    International Nuclear Information System (INIS)

    Lu Songfeng; Sun Chengfu; Lu Zhengding

    2010-01-01

    This paper presents a modified quantum-behaved particle swarm optimization (QPSO) for short-term combined economic emission scheduling (CEES) of hydrothermal power systems with several equality and inequality constraints. The hydrothermal scheduling is formulated as a bi-objective problem: (i) minimizing fuel cost and (ii) minimizing pollutant emission. The bi-objective problem is converted into a single objective one by price penalty factor. The proposed method, denoted as QPSO-DM, combines the QPSO algorithm with differential mutation operation to enhance the global search ability. In this study, heuristic strategies are proposed to handle the equality constraints especially water dynamic balance constraints and active power balance constraints. A feasibility-based selection technique is also employed to meet the reservoir storage volumes constraints. To show the efficiency of the proposed method, different case studies are carried out and QPSO-DM is compared with the differential evolution (DE), the particle swarm optimization (PSO) with same heuristic strategies in terms of the solution quality, robustness and convergence property. The simulation results show that the proposed method is capable of yielding higher-quality solutions stably and efficiently in the short-term hydrothermal scheduling than any other tested optimization algorithms.

  1. Effects of Low Sulfur Fuel and a Catalyzed Particle Trap on the Composition and Toxicity of Diesel Emissions

    Science.gov (United States)

    McDonald, Jacob D.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.

    2004-01-01

    In this study we compared a “baseline” condition of uncontrolled diesel engine exhaust (DEE) emissions generated with current (circa 2003) certification fuel to an emissions-reduction (ER) case with low sulfur fuel and a catalyzed particle trap. Lung toxicity assessments (resistance to respiratory viral infection, lung inflammation, and oxidative stress) were performed on mice (C57Bl/6) exposed by inhalation (6 hr/day for 7 days). The engine was operated identically (same engine load) in both cases, and the inhalation exposures were conducted at the same exhaust dilution rate. For baseline DEE, this dilution resulted in a particle mass (PM) concentration of approximately 200 μg/m3 PM, whereas the ER reduced the PM and almost every other measured constituent [except nitrogen oxides (NOx)] to near background levels in the exposure atmospheres. These measurements included PM, PM size distribution, PM composition (carbon, ions, elements), NOx, carbon monoxide, speciated/total volatile hydrocarbons, and several classes of semi-volatile organic compounds. After exposure concluded, one group of mice was immediately sacrificed and assessed for inflammation and oxidative stress in lung homogenate. Another group of mice were intratracheally instilled with respiratory syncytial virus (RSV), and RSV lung clearance and inflammation was assessed 4 days later. Baseline DEE produced statistically significant biological effects for all measured parameters. The use of low sulfur fuel and a catalyzed trap either completely or nearly eliminated the effects. PMID:15345344

  2. Health aspects of wood particles in fugitive emission during professional exposition

    International Nuclear Information System (INIS)

    Vlckova, H.; Schwarz, M.; Lalik, V.

    2008-01-01

    Fugitive emission of wood dust can constitute serious menace to health of worker in wood industry. Present paper describes not only influence of unaccompanied wood which develops allergic reactions, respire diseases, dermatosis, cancer etc., but also additional effects of natural wood components as endotoxins, microbial spores, amoebas, fungus, animal and proteins, volatile components wood resins, respectively. (authors)

  3. Fine and Coarse Particle Mass Concentrations and Emission Rates in the Workplace of a Detergent Industry

    Czech Academy of Sciences Publication Activity Database

    Glytsos, T.; Ondráček, Jakub; Džumbová, Lucie; Eleftheriadis, K.; Lazaridis, M.

    2014-01-01

    Roč. 23, č. 6 (2014), s. 881-889 ISSN 1420-326X Institutional support: RVO:67985858 Keywords : emission rates * PM 10 * PM2,5 * mass balance model Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.225, year: 2014

  4. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    Science.gov (United States)

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  5. Measurement of invisible Z decays

    International Nuclear Information System (INIS)

    Raven, H.G.

    1995-01-01

    The measurement of the cross section of the process e + e - →ν anti νγ has been performed at the LEP e + e - collider using the data gathered by the L 3 detector during the 1992 and 1993 running periods. It is shown how ther number of neutrino species is obtained from a binned likelihood fit to the energy spectrum of the observed photon. The number of neutrino generations, N ν is determined to be N ν =3.01±0.10(stat)±0.07(sys). The possible contribution of other particles to the production of the ''Single Photon'' final state has been used to constrain the parameter space available for new particles. The measurement rules out (at 95% confidence level) a massive fourth neutrino with couplings to the Z and a mass of less than 42.8 GeV. In addition, the existence of one generation of the proposed supersymmetric partner of the neutrino, the sneutrino, has been excluded at 95% confidence level if its mass is less than 40.1 GeV. Three generations of mass degenerate sneutrinos are ruled out if their mass is less than 44.1 GeV. (orig./HSI)

  6. Measurement of invisible Z decays

    Energy Technology Data Exchange (ETDEWEB)

    Raven, H G

    1995-11-27

    The measurement of the cross section of the process e{sup +}e{sup -}{yields}{nu} anti {nu}{gamma} has been performed at the LEP e{sup +}e{sup -} collider using the data gathered by the L{sub 3} detector during the 1992 and 1993 running periods. It is shown how ther number of neutrino species is obtained from a binned likelihood fit to the energy spectrum of the observed photon. The number of neutrino generations, N{sub {nu}} is determined to be N{sub {nu}}=3.01{+-}0.10(stat){+-}0.07(sys). The possible contribution of other particles to the production of the ``Single Photon`` final state has been used to constrain the parameter space available for new particles. The measurement rules out (at 95% confidence level) a massive fourth neutrino with couplings to the Z and a mass of less than 42.8 GeV. In addition, the existence of one generation of the proposed supersymmetric partner of the neutrino, the sneutrino, has been excluded at 95% confidence level if its mass is less than 40.1 GeV. Three generations of mass degenerate sneutrinos are ruled out if their mass is less than 44.1 GeV. (orig./HSI).

  7. High-frequency asymptotics of the emission spectrum of moving charged particles in classical electrodynamics

    International Nuclear Information System (INIS)

    Abbasov, I.I.; Bolotovskij, B.M.; Davydov, V.A.

    1986-01-01

    Electromagnetic radiation appears as a result of a charged particle movement in free space and also in heterogeneous and non-stationary medium. The radiation spectrum depends on the charged particle motion law, as well as on the law of the medium property chage in space and time. The asymptotics of radiation spectrum, i.e. behaviour of spectral intensity at high frequencies, is studied. It is shown that if a charged particle moves along smooth trajectory or if the change in the medium properties takes place accordng to the law described by a smooth function, the radiation spectrum at high frequencies decreases according to exponential law. Thus, radiation spectrum of a charged particle moving along a smooth trajectory in the medium with gradual heterogeneity and (or) instability is rapidly cut, starting from a certain frequency value. The smooth trajectory means that the charge moves according to the law r = r(t), where vector-function r(t) is continuous with all its derivatives. In much the same way the medium with gradual heterogeneities (or with gradual instability) is described by the functions which are continuous with all their derivatives of any order. The method permitting to determine the upper boundary of radiation spectra is presented

  8. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  9. An alternative to the plasma emission model: Particle-in-cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts

    International Nuclear Information System (INIS)

    Tsiklauri, David

    2011-01-01

    High-resolution (sub-Debye length grid size and 10 000 particle species per cell), 1.5D particle-in-cell, relativistic, fully electromagnetic simulations are used to model electromagnetic wave emission generation in the context of solar type III radio bursts. The model studies generation of electromagnetic waves by a super-thermal, hot beam of electrons injected into a plasma thread that contains uniform longitudinal magnetic field and a parabolic density gradient. In effect, a single magnetic line connecting Sun to Earth is considered, for which five cases are studied. (i) We find that the physical system without a beam is stable and only low amplitude level electromagnetic drift waves (noise) are excited. (ii) The beam injection direction is controlled by setting either longitudinal or oblique electron initial drift speed, i.e., by setting the beam pitch angle (the angle between the beam velocity vector and the direction of background magnetic field). In the case of zero pitch angle, i.e., when v-vector b ·E-vector perpendicular =0, the beam excites only electrostatic, standing waves, oscillating at local plasma frequency, in the beam injection spatial location, and only low level electromagnetic drift wave noise is also generated. (iii) In the case of oblique beam pitch angles, i.e., when v-vector b ·E-vector perpendicular =0, again electrostatic waves with same properties are excited. However, now the beam also generates the electromagnetic waves with the properties commensurate to type III radio bursts. The latter is evidenced by the wavelet analysis of transverse electric field component, which shows that as the beam moves to the regions of lower density and hence lower plasma frequency, frequency of the electromagnetic waves drops accordingly. (iv) When the density gradient is removed, an electron beam with an oblique pitch angle still generates the electromagnetic radiation. However, in the latter case no frequency decrease is seen. (v) Since in most of

  10. Witnessing violence: making the invisible visible.

    Science.gov (United States)

    Holton, J K

    1995-01-01

    In his novel of Black life circa the 1950s, Invisible Man, Ralph Ellison laid bare the wasteful, destructive societal consequences of racism. At the close of the 20th century, we are faced with the phenomenon of another social problem, likewise unresolved and likely to haunt us similarly: urban violence. Following Ellison's example, this paper seeks to explore the impact of violence's stark invisibility by discussing a research strategy that better explains the terrifying phenomenon of violence. In order to comprehend the totality of violence, macro- and micro-level variables have to be introduced into the research design and measured over time. Therefore, research might best address violence if it was designed to include variables of poverty and racism, and was more inclusive of research from a broader range of scientific disciplines.

  11. Digital/Commercial (In)visibility

    DEFF Research Database (Denmark)

    Leander, Anna

    2017-01-01

    an argument demonstrating specifically how digital and commercial logics characterize the aesthetic, circulatory, and infrastructuring practices re-producing the regime of (in)visibility. It shows that digital/commercial logics are at the heart of the combinatorial marketing of multiple, contradictory images......This article explores one aspect of digital politics, the politics of videos and more spe- cifically of DAESH recruitment videos. It proposes a practice theoretical approach to the politics of DAESH recruitment videos focused on the re-production of regimes of (in)visibility. The article develops...... on the internet. The theoretical and political cost of overlooking these digital and commercial characteristics of DAESH visibility practices are high. It perpetuates misconceptions of how the videos work and what their politics are and it reinforces the digital Orientalism/Occidentalism in which...

  12. Heidegger’s phenomenology of the invisible

    Directory of Open Access Journals (Sweden)

    Andrzej SERAFIN

    2016-12-01

    Full Text Available Martin Heidegger has retrospectively characterized his philosophy as “phenomenology of the invisible”. This paradoxical formula suggests that the aim of his thinking was to examine the origin of the phenomena. Furthermore, Heidegger has also stated that his philosophy is ultimately motivated by a theological interest, namely the question of God’s absence. Following the guiding thread of those remarks, this essay analyzes the essential traits of Heidegger’s thought by interpreting them as an attempt to develop a phenomenology of the invisible. Heidegger’s attitude towards physics and metaphysics, his theory of truth, his reading of Aristotle, his concept of Dasein, his understanding of nothingness are all situated within the problematic context of the relation between the invisible and the revealed. Heidegger’s thought is thereby posited at the point of intersection of phenomenology, ontology, and theology.

  13. Comparison between particulate matter and ultrafine particle emission by electronic and normal cigarettes in real-life conditions.

    Science.gov (United States)

    Ruprecht, Ario Alberto; De Marco, Cinzia; Pozzi, Paolo; Munarini, Elena; Mazza, Roberto; Angellotti, Giorgia; Turla, Francesca; Boffi, Roberto

    2014-01-01

    Electronic cigarettes may be safer than conventional cigarettes as they generate less indoor pollution in terms of particulate matter (PM); however, recent findings in experimental conditions demonstrated that secondhand exposure to PM may be expected from e-cigarette smoking. The aim of the present study was to investigate the emission of PM generated by e-cigarettes and normal cigarettes under real-life conditions. Real-time measurement and comparison of PM and ultrafine particles (UFP) generated by electronic cigarettes with and without nicotine and by normal cigarettes in a 50 m3 office of an Italian comprehensive cancer center was performed. PM mass as PM1, PM2.5, PM7, PM10, total suspended particles (TSP) in μg/m³ and UFP in number of particles per cubic centimeter from 10 to 1,000 nanometers were measured. Outdoor concentrations were measured contemporaneously to compensate for urban background changes. Regardless of their nicotine content, e-cigarettes generated lower PM levels than conventional cigarettes. Notably, nicotine-enriched e-cigarettes produced lower PM levels than their nicotine-free counterparts. E-cigarettes appear to generate less indoor pollution than normal cigarettes and may therefore be safer. Further studies are required to investigate the long-term health-related effects of secondhand e-cigarette exposure.

  14. Invisible excess of sense in social interaction

    Czech Academy of Sciences Publication Activity Database

    Koubová, Alice

    Roč. 5, September /article 1081 (2014), s. 1-11 ISSN 1664-1078 R&D Projects: GA ČR GAP401/10/1164 Institutional support: RVO:67985955 Keywords : participatory sense-making * enactive theory * Merleau-Ponty * invisibility * opacity * (Inter)acting with the inner partner * performativity * dramaturgical analysis Subject RIV: AA - Philosophy ; Religion Impact factor: 2.560, year: 2014 http://journal.frontiersin.org/Journal/10.3389/fpsyg.2014.01081/abstract

  15. From Invisibility to Transparency: Identifying the Implications

    Directory of Open Access Journals (Sweden)

    Nancy J. Turner

    2008-12-01

    Full Text Available This paper explores the need for a broader and more inclusive approach to decisions about land and resources, one that recognizes the legitimacy of cultural values and traditional knowledge in environmental decision making and policy. Invisible losses are those not widely recognized or accounted for in decisions about resource planning and decision making in resource- and land-use negotiations precisely because they involve considerations that tend to be ignored by managers and scientists or because they are often indirect or cumulative, resulting from a complex, often cumulative series of events, decisions, choices, or policies. First Nations communities in western North America have experienced many such losses that, together, have resulted in a decline in the overall resilience of individuals and communities. We have identified eight types invisible losses that are often overlapping and cumulative: cultural/lifestyle losses, loss of identity, health losses, loss of self-determination and influence, emotional and psychological losses, loss of order in the world, knowledge losses, and indirect economic losses and lost opportunities. To render such invisible losses more transparent, which represents the first step in developing a more positive and equitable basis for decision making and negotiations around land and resources, we recommend six processes: focusing on what matters to the people affected, describing what matters in meaningful ways, making a place for these concerns in decision making, evaluating future losses and gains from a historical baseline, recognizing culturally derived values as relevant, and creating better alternatives for decision making so that invisible losses will be diminished or eliminated in the future.

  16. Through the Wormhole: Tracking Invisible MPLS Tunnels

    OpenAIRE

    Vanaubel, Yves; Mérindol, Pascal; Pansiot, Jean-Jacques; Donnet, Benoît

    2017-01-01

    For years, Internet topology research has been conducted through active measurement. For instance, CAIDA builds router level topologies on top of IP level traces obtained with traceroute. The resulting graphs contain a significant amount of nodes with a very large degree, often exceeding the actual number of interfaces of a router. Although this property may result from inaccurate alias resolution, we believe that opaque MPLS clouds made of invisible tunnels are the main cause. Using Layer-2...

  17. Monitoring of heavy metal particle emission in the exhaust duct of a foundry using LIBS

    International Nuclear Information System (INIS)

    Dutouquet, C.; Le Bihan, O.; Dermigny, A.; Frejafon, E.; Gallou, G.; Sirven, J.B.; Torralba, B.

    2014-01-01

    Heavy metals have long been known to be detrimental to human health and the environment.Their emission is mainly considered to occur via the atmospheric route. Most of airborne heavy metals are of anthropogenic origin and produced through combustion processes at industrial sites such as incinerators and foundries. Current regulations impose threshold limits on heavy metal emissions. The reference method currently implemented for quantitative measurements at exhaust stacks consists of on-site sampling of heavy metals on filters for the particulate phase (the most prominent and only fraction considered in this study) prior to subsequent laboratory analysis. Results are therefore known only a few days after sampling. Stiffer regulations require the development of adapted tools allowing automatic, on-site or even in-situ measurements with temporal resolutions. The Laser-Induced Breakdown Spectroscopy (LIBS) technique was deemed as a potential candidate to meet these requirements. On site experiments were run by melting copper bars and monitoring emission of this element in an exhaust duct at a pilot-scale furnace in a French research center dedicated to metal casting. Two approaches designated as indirect and direct analysis were broached in these experiments. The former corresponds to filter enrichment prior to subsequent LIBS interrogation whereas the latter entails laser focusing right through the aerosol for detection. On-site calibration curves were built and compared with those obtained at laboratory scale in order to investigate possible matrix and analyte effects. Eventually, the obtained results in terms of detection limits and quantitative temporal monitoring of copper emission clearly emphasize the potentialities of the direct LIBS measurements. (authors)

  18. Monitoring of heavy metal particle emission in the exhaust duct of a foundry using LIBS.

    Science.gov (United States)

    Dutouquet, C; Gallou, G; Le Bihan, O; Sirven, J B; Dermigny, A; Torralba, B; Frejafon, E

    2014-09-01

    Heavy metals have long been known to be detrimental to human health and the environment. Their emission is mainly considered to occur via the atmospheric route. Most of airborne heavy metals are of anthropogenic origin and produced through combustion processes at industrial sites such as incinerators and foundries. Current regulations impose threshold limits on heavy metal emissions. The reference method currently implemented for quantitative measurements at exhaust stacks consists of on-site sampling of heavy metals on filters for the particulate phase (the most prominent and only fraction considered in this study) prior to subsequent laboratory analysis. Results are therefore known only a few days after sampling. Stiffer regulations require the development of adapted tools allowing automatic, on-site or even in-situ measurements with temporal resolutions. The Laser-Induced Breakdown Spectroscopy (LIBS) technique was deemed as a potential candidate to meet these requirements. On site experiments were run by melting copper bars and monitoring emission of this element in an exhaust duct at a pilot-scale furnace in a French research center dedicated to metal casting. Two approaches designated as indirect and direct analysis were broached in these experiments. The former corresponds to filter enrichment prior to subsequent LIBS interrogation whereas the latter entails laser focusing right through the aerosol for detection. On-site calibration curves were built and compared with those obtained at laboratory scale in order to investigate possible matrix and analyte effects. Eventually, the obtained results in terms of detection limits and quantitative temporal monitoring of copper emission clearly emphasize the potentialities of the direct LIBS measurements. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Material analysis with the aid of particle induced X-ray emission

    International Nuclear Information System (INIS)

    Stadler, E.

    1984-12-01

    Material analysis are discussed on the basis of PIXE and Rutherford scattering spectroscopy. Various problems including cross-section changes, energy changes, count rate and deadtime, background, escape peaks and perturbations and overlap are discussed in relation to PIXE, while the influence of the energy loss of the projectile, the mass of the projectile, the cinematic factor, projectile energy, the scattering angle and the solid angle are discussed in terms of Rutherford scattering spectroscopy. X-ray production theory and x-ray detectors are also briefly discussed. The effect of elastically scattered protons on the energy resolution of the x-ray detector is discussed. The application of PIXE and Rutherford scattering spectroscopy to the analysis of air particle samples, and to the determination of the efficiency of the filters used for the collection of air-particle samples is also discussed

  20. Study of the $\\beta$-delayed Particle Emission of $^{17}$Ne

    CERN Multimedia

    2002-01-01

    We intend to investigate the charged particle decay modes from the excited states of $^{17}$F populated in the $\\beta^+$- decay of $^{17}$Ne. In particular, we propose to study the proton decay branches to $^{16}$O states which are unstable to $\\alpha$- decay. We plan to use the recently developed ISOLDE Si-ball detector array in order to efficiently detect the charged particles in a wide solid angle. We ask for a total of 12 shifts, including 9 shifts for $^{17}$Ne and 3 shifts for stable beam and calibrations. We request the use of a Mg oxide target coupled to a plasma ion source with cooled transfer line or, if possible, to the new MINIMONOECRIS. We would like to make use of the ISOLDE VME DAQ and CERN data storage system.

  1. Detection of Bioaerosols Using Single Particle Thermal Emission Spectroscopy (First-year Report)

    Science.gov (United States)

    2012-02-01

    radiance is focused into 190-mm Horiba spectrometer where the radiance is dispersed onto an ultrafast, time-gated, liquid nitrogen (LN2) cooled 32...techniques were examined, i.e., methods that rely on acoustic levitation , radiative pressure, and suspension of small particles using the photophoretic...field of view HeNe helium-neon LN2 liquid nitrogen MCT mercury cadmium telluride NA numeric aperture Nd:YAG neodymium-doped yttrium aluminum

  2. Investigating the Origins of Two Extreme Solar Particle Events: Proton Source Profile and Associated Electromagnetic Emissions

    Czech Academy of Sciences Publication Activity Database

    Kocharov, L.; Pohjolainen, S.; Mishev, A.; Reiner, M. J.; Lee, J.; Laitinen, T.; Didkovsky, L. V.; Pizzo, V. J.; Kim, R.; Klassen, A.; Karlický, Marian; Cho, K.; Gary, D. E.; Usoskin, I.; Valtonen, E. T.; Vainio, R.

    2017-01-01

    Roč. 839, č. 2 (2017), 79/1-79/21 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/0103 Institutional support: RVO:67985815 Keywords : coronal mass ejections * energetic charged-particles * magnetic-fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  3. Design, implementation, and extension of thermal invisibility cloaks

    Science.gov (United States)

    Zhang, Youming; Xu, Hongyi; Zhang, Baile

    2015-05-01

    A thermal invisibility cloak, as inspired by optical invisibility cloaks, is a device which can steer the conductive heat flux around an isolated object without changing the ambient temperature distribution so that the object can be "invisible" to external thermal environment. While designs of thermal invisibility cloaks inherit previous theories from optical cloaks, the uniqueness of heat diffusion leads to more achievable implementations. Thermal invisibility cloaks, as well as the variations including thermal concentrator, rotator, and illusion devices, have potentials to be applied in thermal management, sensing and imaging applications. Here, we review the current knowledge of thermal invisibility cloaks in terms of their design and implementation in cloaking studies, and their extension as other functional devices.

  4. Assessment of particle emissions inventories in northeastern U.S., using remote sensing, Lidar technology, air pollution sensors, and a Lagrangian particle dispersion model

    Science.gov (United States)

    Barrera, Y.; Swofsy, S. C.; Li, L.; Hegarty, J. D.; Nehrkorn, T.; Koutrakis, P.

    2017-12-01

    In the most recent issue of the New England Journal of Medicine, a new study found that 95% of Medicare beneficiaries over the age of 65 showed an increased risk of mortality, even at fine particulate matter (PM2.5) levels below the National Ambient Air Quality Standards (NAAQS). This new finding suggests that although a state may be designated under attainment for meeting the primary and secondary PM2.5 NAAQS, sensitive populations dispersed throughout the region may still be experiencing adverse health effects. To conduct accurate public health impact assessments, reliable information regarding PM2.5 concentrations in cities are required at high spatial and temporal resolutions. A newly developed particle emissions inventory using remote sensing (PEIRS) captured both primary and secondary formation in northeastern U.S. at a 1km x 1km spatial resolution during the period 2002-2014 (Tang et al., 2017). The PEIRS annual emissions inventory used the MODIS satellite to fill-in the spatial gaps where, EPA monitoring stations were not available. However, simulations of the planetary boundary layer (PBL) were a key factor in estimating PM2.5 concentrations on the ground and hence, testing PEIRS products with observationally based quantifications are critical. Recent advances in light ranging and detection (Lidar) technology allow us to estimate PBL heights in cities. This study combines information from a network of Mini Micropulse Lidar (MPL) instruments, meteorological and air pollution measuring sensors, and a Lagrangian particle dispersion model to test the performance of PEIRS at the neighborhood and urban scale. MPL observations were processed using image recognition and fuzzy logic to estimate PBL heights that were inputted into PEIRS to predict daily PM2.5 concentrations. To compare vertical distribution of aerosols, we use our LPDM model "footprints" to predict vertical profiles of PM2.5 distribution at our Lidar locations. Our model-data assimilation improved

  5. Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abajyan, T.; Abbott, B.; Böhm, Jan; Chudoba, Jiří; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Dos Santos, D.R.; Růžička, P.; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Vrba, Václav

    2014-01-01

    Roč. 112, č. 20 (2014), "201802-1"-"201802-20" ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : Higgs particle * invisible decay * p p scattering * channel cross section * branching ratio * upper limit * ATLAS * CERN LHC Coll * dark matter Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.512, year: 2014

  6. Genotoxic potential of organic extracts from particle emissions of diesel and rapeseed oil powered engines

    Czech Academy of Sciences Publication Activity Database

    Topinka, Jan; Milcová, Alena; Schmuczerová, Jana; Mazac, M.; Pechout, M.; Vojtíšek-Lom, M.

    2012-01-01

    Roč. 212, č. 1 (2012), s. 11-17 ISSN 0378-4274 R&D Projects: GA ČR GAP503/11/0142; GA ČR(CZ) GBP503/12/G147 Grant - others:project MEDETOX(XE) LIFE10ENV/CZ/651 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:68378041 Keywords : biodiesel * diesel emissions * DNA adducts Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.145, year: 2012

  7. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.

    Science.gov (United States)

    Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M

    2014-05-15

    In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The infrared emission of carbonaceous particles around C-rich IRAS sources

    International Nuclear Information System (INIS)

    Blanco, A.; Borghesi, A.; Fonti, S.; Orofino, V.; Strafella, F.

    1997-01-01

    The IRAS spectra of 23 carbon-rich sources have been fitted by means of an improved theoretical model based on the Leung-Spagna radiative transfer code and using extinction data obtained in their laboratory for different types of amorphous carbon and silicon carbide submicron particles. The agreement between observations and theoretical spectra is rather good. A comparison between the IRAS spectrum of the object 12447 + 0425 (RU Vir) and that recently obtained at UKIRT, for the same object but with higher resolution, seems to open new problems

  9. Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study.

    Science.gov (United States)

    Liati, Anthi; Schreiber, Daniel; Dimopoulos Eggenschwiler, Panayotis; Arroyo Rojas Dasilva, Yadira

    2013-12-17

    Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (1-5 μm, exceptionally 13 μm), rarely engine wear and escape into the atmosphere.

  10. Multiparticle correlations and identical particle effects in the independent cluster emission model

    International Nuclear Information System (INIS)

    Ranft, J.

    1977-01-01

    In the nucleon approach to phenomenological applications, the model is compared to many different kinds of experimental data. The comparison indicates, that the model is qualitatively consistent with all available data. Analysis indicates, that identical particle effects due to the Bose statistics are present in data on joint rapidity-asimuthal correlations near Δy=ΔPHI=0. A new approach to this problem is the uncorrelated jet model with the Bose statistics. This model confirms the previous results. Furthermore, taking isospin conservation into account, the Bose correlations are predicted in π + π - channels, which should be most easily detectable in the decay of heavy resonances J/PSI

  11. Testing invisible momentum ansatze in missing energy events at the LHC

    Science.gov (United States)

    Kim, Doojin; Matchev, Konstantin T.; Moortgat, Filip; Pape, Luc

    2017-08-01

    We consider SUSY-like events with two decay chains, each terminating in an invisible particle, whose true energy and momentum are not measured in the detector. Nevertheless, a useful educated guess about the invisible momenta can still be obtained by optimizing a suitable invariant mass function. We review and contrast several proposals in the literature for such ansatze: four versions of the M T 2-assisted on-shell reconstruction (MAOS), as well as several variants of the on-shell constrained M 2 variables. We compare the performance of these methods with regards to the mass determination of a new particle resonance along the decay chain from the peak of the reconstructed invariant mass distribution. For concreteness, we consider the event topology of dilepton t\\overline{t} events and study each of the three possible subsystems, in both a t\\overline{t} and a SUSY example. We find that the M 2 variables generally provide sharper peaks and therefore better ansatze for the invisible momenta. We show that the performance can be further improved by preselecting events near the kinematic endpoint of the corresponding variable from which the momentum ansatz originates.

  12. Increased sensitivity in thick-target particle induced X-ray emission analyses using dry ashing for preconcentration

    International Nuclear Information System (INIS)

    Lill, J.-O.; Harju, L.; Saarela, K.-E.; Lindroos, A.; Heselius, S.-J.

    1999-01-01

    The sensitivity in thick-target particle induced X-ray emission (PIXE) analyses of biological materials can be enhanced by dry ashing. The gain depends mainly on the mass reduction factor and the composition of the residual ash. The enhancement factor was 7 for the certified reference material Pine Needles and the limits of detection (LODs) were below 0.2 μg/g for Zn, Cu, Rb and Sr. When ashing biological materials with low ash contents such as wood of pine or spruce (0.3% of dry weight) and honey (0.1% of wet weight) the gain was far greater. The LODs for these materials were 30 ng/g for wood and below 10 ng/g for honey. In addition, the ashed samples were more homogenous and more resistant to changes during the irradiation than the original biological samples. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Impact of Wildfire Emissions on Chloride and Bromide Depletion in Marine Aerosol Particles.

    Science.gov (United States)

    Braun, Rachel A; Dadashazar, Hossein; MacDonald, Alexander B; Aldhaif, Abdulamonam M; Maudlin, Lindsay C; Crosbie, Ewan; Aghdam, Mojtaba Azadi; Hossein Mardi, Ali; Sorooshian, Armin

    2017-08-15

    This work examines particulate chloride (Cl - ) and bromide (Br - ) depletion in marine aerosol particles influenced by wildfires at a coastal California site in the summers of 2013 and 2016. Chloride exhibited a dominant coarse mode due to sea salt influence, with substantially diminished concentrations during fire periods as compared to nonfire periods. Bromide exhibited a peak in the submicrometer range during fire and nonfire periods, with an additional supermicrometer peak in the latter periods. Chloride and Br - depletions were enhanced during fire periods as compared to nonfire periods. The highest observed %Cl - depletion occurred in the submicrometer range, with maximum values of 98.9% (0.32-0.56 μm) and 85.6% (0.56-1 μm) during fire and nonfire periods, respectively. The highest %Br - depletion occurred in the supermicrometer range during fire and nonfire periods with peak depletion between 1.8-3.2 μm (78.8% and 58.6%, respectively). When accounting for the neutralization of sulfate by ammonium, organic acid particles showed the greatest influence on Cl - depletion in the submicrometer range. These results have implications for aerosol hygroscopicity and radiative forcing in areas with wildfire influence owing to depletion effects on composition.

  14. Size-segregated emissions and metal content of vehicle-emitted particles as a function of mileage: Implications to population exposure

    International Nuclear Information System (INIS)

    Golokhvast, Kirill S.; Chernyshev, Valery V.; Chaika, Vladimir V.; Ugay, Sergey M.; Zelinskaya, Elena V.; Tsatsakis, Aristidis M.; Karakitsios, Spyros P.; Sarigiannis, Denis A.

    2015-01-01

    The study aims at investigating the characteristics (size distribution, active surface and metal content) of particles emitted by cars as a function of mileage using a novel methodology for characterizing particulate emissions captured by Exhaust Gas Suspension (EGS). EGS was obtained by passing the exhaust gases through a container of deionized water. EGS analysis was performed using laser granulometry, electron scanning microscopy, and high resolution mass spectrometry. Implications of the differences in key features of the emitted particles on population exposure were investigated using numerical simulation for estimating size-segregated PM deposition across human respiratory tract (HRT). It was found that vehicle mileage, age and the respective emissions class have almost no effect on the size distribution of the exhaust gas particulate released into the environment; about half of the examined vehicles with low mileage were found to release particles of aerodynamic diameter above 10 μm. The exhaust gas particulate detected in the EGS of all cars can be classified into three major size classes: (1) 0.1–5 µm – soot and ash particles, metals (Au, Pt, Pd, Ir); (2) 10–30 µm – metal (Cr, Fe, Cu, Zr, Ni) and ash particles; (3) 400–1,000 µm – metal (Fe, Cr, Pb) and ash particles. Newer vehicles with low mileage are substantial sources of soot and metal particles with median diameter of 200 nm with a higher surface area (up to 89,871.16 cm 2 /cm 3 ). These tend to deposit in the lower part of the human respiratory tract. - Highlights: • Car mileage has virtually no effect on the size of the solid particles released. • Newer diesel vehicles emit particles of lower aerodynamic diameter. • Particle active surface emitted by newer vehicles is on average 3 times higher. • Real-life emissions were translated into actual internal PM exposure.

  15. Size-segregated emissions and metal content of vehicle-emitted particles as a function of mileage: Implications to population exposure

    Energy Technology Data Exchange (ETDEWEB)

    Golokhvast, Kirill S.; Chernyshev, Valery V.; Chaika, Vladimir V.; Ugay, Sergey M. [Far Eastern Federal University, Vladivostok (Russian Federation); Zelinskaya, Elena V. [National Research Irkutsk State Technical University, Irkutsk (Russian Federation); Tsatsakis, Aristidis M. [University of Crete, Medical School, Department of Toxicology and Forensic Science, Heraklion, Crete (Greece); Karakitsios, Spyros P. [Aristotle University of Thessaloniki, Department of Chemical Engineering, Thessaloniki (Greece); Sarigiannis, Denis A., E-mail: denis@eng.auth.gr [Aristotle University of Thessaloniki, Department of Chemical Engineering, Thessaloniki (Greece)

    2015-10-15

    The study aims at investigating the characteristics (size distribution, active surface and metal content) of particles emitted by cars as a function of mileage using a novel methodology for characterizing particulate emissions captured by Exhaust Gas Suspension (EGS). EGS was obtained by passing the exhaust gases through a container of deionized water. EGS analysis was performed using laser granulometry, electron scanning microscopy, and high resolution mass spectrometry. Implications of the differences in key features of the emitted particles on population exposure were investigated using numerical simulation for estimating size-segregated PM deposition across human respiratory tract (HRT). It was found that vehicle mileage, age and the respective emissions class have almost no effect on the size distribution of the exhaust gas particulate released into the environment; about half of the examined vehicles with low mileage were found to release particles of aerodynamic diameter above 10 μm. The exhaust gas particulate detected in the EGS of all cars can be classified into three major size classes: (1) 0.1–5 µm – soot and ash particles, metals (Au, Pt, Pd, Ir); (2) 10–30 µm – metal (Cr, Fe, Cu, Zr, Ni) and ash particles; (3) 400–1,000 µm – metal (Fe, Cr, Pb) and ash particles. Newer vehicles with low mileage are substantial sources of soot and metal particles with median diameter of 200 nm with a higher surface area (up to 89,871.16 cm{sup 2}/cm{sup 3}). These tend to deposit in the lower part of the human respiratory tract. - Highlights: • Car mileage has virtually no effect on the size of the solid particles released. • Newer diesel vehicles emit particles of lower aerodynamic diameter. • Particle active surface emitted by newer vehicles is on average 3 times higher. • Real-life emissions were translated into actual internal PM exposure.

  16. Characterization of low-energy nuclear reactions involving emission of few non-relativistic particles

    International Nuclear Information System (INIS)

    Martinez Heimann, D.; Pacheco, A.J.; Capurro, O.A.

    2010-01-01

    We present a general procedure and the associated computational tool for the kinematical description and characterization of nuclear reactions with several fragments in the exit channel. For such processes the emphasis is placed on the purely experimental extraction of the most physically relevant magnitudes and their distributions, which can eventually be compared with the results of generic model calculations. The general capabilities of the approach are illustrated through the results of the application to selected examples, for which various aspects related to inclusive and exclusive measurements are discussed. For the particular case of sequential emission or non-capture breakup we analyze the general problem involved in the determination of intrinsic angular distributions in the rest frame of the decaying nucleus and the design of a specific experiment for a full and uniform coverage of the whole solid angle.

  17. Reconnection, Particle Acceleration, and Hard X-ray Emission in Eruptive Solar Flares

    Science.gov (United States)

    Martens, Petrus C.

    1998-11-01

    The frequent occurrence of Hard X-ray emission from the top of flaring loops was one of the discoveries by the Hard X-ray telescope on board the Japanese Yohkoh satellite. I will show how the combined effect of magnetic field convergence and pitch- angle scattering of non-thermal electrons injected at the top of the loop results in the generation of looptop sources with properties akin to those observed by Yohkoh. In addition it is shown that the injection of proton beams in the loop legs, expected from theory, reproduces the observed high temperature ``ridges" in the loop legs by mirroring and energy loss through collisions. I will interpret these numerical results as supporting the now widely accepted model of an erupting magnetic flux tube generating a reconnecting current sheet in its wake, where most of the energy release takes place. The strong similarity with the reconnection observed in the MRX experiment in Princeton will be analyzed in detail.

  18. Films with discrete nano-DLC-particles as the field emission cascade

    International Nuclear Information System (INIS)

    Song Fengqi; Bu Haijun; Wan Jianguo; Wang Guanghou; Zhou Feng; He Longbing; Han Min; Zhou Jianfeng; Wang Xiaoshu

    2008-01-01

    Films with discrete diamond-like-carbon (DLC) nanoparticles were prepared by the deposition of the carbon nanoparticle beam. Their morphologies were imaged by scanning electron microscopy and atomic force microscopy (AFM). The nanoparticles were found to be distributed on the silicon (1 0 0) substrate discretely. Hemispherical shapes of the nanoparticles were demonstrated by the AFM line profile. Electron energy loss spectra were measured and an sp 3 ratio as high as 86% was found. Field-induced electron emission of the as-prepared cascade (nanoDLC/ Si) was tested and a current density of 1 mA cm -2 was achieved at 10.2 V μm -1 . (fast track communication)

  19. Numerical simulation of DPF filter for selected regimes with deposited soot particles

    Science.gov (United States)

    Lávička, David; Kovařík, Petr

    2012-04-01

    For the purpose of accumulation of particulate matter from Diesel engine exhaust gas, particle filters are used (referred to as DPF or FAP filters in the automotive industry). However, the cost of these filters is quite high. As the emission limits become stricter, the requirements for PM collection are rising accordingly. Particulate matters are very dangerous for human health and these are not invisible for human eye. They can often cause various diseases of the respiratory tract, even what can cause lung cancer. Performed numerical simulations were used to analyze particle filter behavior under various operating modes. The simulations were especially focused on selected critical states of particle filter, when engine is switched to emergency regime. The aim was to prevent and avoid critical situations due the filter behavior understanding. The numerical simulations were based on experimental analysis of used diesel particle filters.

  20. Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

    2005-11-01

    A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

  1. Evidence for nonequilibrium particle emission before symmetric disintegration of a composite system formed in the 16O+40Ca reaction at 230 MeV

    International Nuclear Information System (INIS)

    Brzychczyk, J.; Grotowski, K.; Majka, Z.; Micek, S.; Planeta, R.; Fabris, D.; Hagel, K.; Natowitz, J.B.; Nebbia, G.; Belery, P.; Cohilis, P.; El Masri, Y.; Gregoire, G.

    1987-01-01

    Measurement of fragment-fragment correlations in the reaction of 230 MeV 16 O with 40 Ca and of 280 MeV 32 S with 24 Mg have been used to isolate processes in which symmetric decay follows nonequilibrium emission of one or two alpha particles. At the higher energy per nucleon, in contrast to previous observations for lower velocity projectiles, nonequilibrium emission followed by symmetric decay has approximately the same probability as the symmetric fission following complete fusion. (orig.)

  2. Investigation of wave emission phenomena in dual frequency capacitive discharges using particle-in-cell simulation

    International Nuclear Information System (INIS)

    Sharma, S; Turner, M M

    2014-01-01

    Dual frequency capacitively coupled discharges are widely used during fabrication of modern-day integrated circuits, because of low cost and robust uniformity over broad areas. At low pressure, stochastic or collisionless electron heating is important in such discharges. The stochastic heating occurs adjacent to the sheath edge due to energy transfer from the oscillating high voltage electron sheath to electrons. The present research discusses evidence of wave emission from the sheath in such discharges, with a frequency near the electron plasma frequency. These waves are damped very promptly as they propagate away from the sheath towards the bulk plasma, by Landau damping or some related mechanism. In this work, the occurrence of strong wave phenomena during the expanding and collapsing phase of the low frequency sheath has been investigated. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. The characteristics of waves in the dual-frequency case are entirely different from the single-frequency case studied in earlier works. The existence of a field reversal phenomenon, occurring several times within a lower frequency period in the proximity of the sheath is also reported. Electron trapping near to the field reversal regions also occurs many times during a lower frequency period. The emission of waves is associated with these field reversal regions. It is observed that the field reversal and electron trapping effects appear under conditions typical of many recent experiments, and are consequently of much greater practical interest than similar effects in single frequency discharges, which occur only under extreme conditions that are not usually realized in experiments. (paper)

  3. Traffic generated non-exhaust particulate emissions from concrete pavement: A mass and particle size study for two-wheelers and small cars

    Science.gov (United States)

    Aatmeeyata; Kaul, D. S.; Sharma, Mukesh

    This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM 10 and PM 2.5 increased with increasing load. The LPNE was 3.5 mg tire -1 km -1 for a two wheeler and 6.4 mg tire -1 km -1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM 10 and PM 2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM 10 was present below 1 μm. The number as well as mass size distribution for PM 10 was observed to be bi-modal with peaks at 0.3 μm and 4-5 μm. The NE emissions did not show any significant trend with change in tire pressure.

  4. Impulse transfer and light particles emission during the reaction α + 232Th at 70 MeV/u

    International Nuclear Information System (INIS)

    Nguyen, M.S.

    1988-02-01

    We have measured during the reaction 4 He + 232 Th at 70 MeV/u the angular correlation of heavy fragments of fission, the inclusive energy spectra of light particles (p, d, t, 3 He and α) and triple coincidence between two fission fragments and a light ejectile. Energy spectra show an evaporation component at low energy, a component of projectile fragmentation at energy equivalent to beam velocity and an intermediate component attributed to pre-equilibrium emission. The analysis of the correlation between linear momentum transfer to the fissioning nucleus and the characteristics of the ejectile in coincidence shows a phenomenon of incomplete massive transfer. We run an Intra-Nuclear Cascade (INC) computation to reproduce ejectile energy spectra, but the agreement with experiment was very bad. We conclude to the impossibility to apply INC computation at intermediate energy of 70 MeV/u. We also applied Distorted Wave Born Approximation (DWBA) for direct transfer reaction extended to continuum states: but the agreement with experiment was again deceiving. Finally, we used an analysis by moving sources for which we propose a model of generalized fragmentation giving a continuous representation of the emission source phenomenon from low energy up to high energy [fr

  5. Particle emission induced by the interaction of highly charged slow Xe-ions with a SiO2 surface

    International Nuclear Information System (INIS)

    Schiwietz, G.; Skogvall, B.; Schneider, D.; Clark, M.; DeWitt, D.; McDonald, J.

    1991-01-01

    Sputtering of surface atoms by low energy (a few keV) heavy ions is a commonly used technique in material science and applied physics. In general, sputtering occurs via nuclear energy transfer processes and is determined mainly by the atom-atom interaction potentials. In the energy range of interest these potentials depend only slightly on the charge state of one collision partner if the other is neutral. The development of new ion-sources, however, allows for the use of ions with charged states of q > 50. For these highly charged ions it is conceivable that electronic processes come into play as well. If, for example, the density of charged surface atoms exceeds a certain limit, then particle emission can occur via the electrostatic repulsion of target atoms, the so-called Coulomb explosion. Indications for such electronic effects have been found in a few investigations of ion-induced sputtering Si (q q+ ). However, the order of magnitude of this effect is not clear until now. In this work we present preliminary data on sputtering, ion backscattering, electron and photon emission from SiO 2 surface induced by incident Xe ions of very high charge states (q=30--50). The experiment was performed at the electron beam ion trap (EBIT) of the Lawrence Livermore National Laboratory using a time-of-flight (TOF) ion analyzer-system from the Hahn-Meitner-Institute, Berlin

  6. Consistent interpretation of neutron-induced charged-particle emission in silicon

    International Nuclear Information System (INIS)

    Hermsdorf, D.

    1982-06-01

    Users requesting gas production cross sections for Silicon will be confronted with serious discrepancies taking evaluated data as well as experimental ones. To clarify the accuracies achieved at present in experiments and evaluations in this paper an intercomparison of different evaluated nuclear data files has been carried out resulting in recommendations for improvements of these files. The analysis of the experimental data base also shows contradictory measurements or in most cases a lack of data. So an interpretation of reliable measured data in terms of nuclear reaction theories has been done using statistical and direct reaction mechanism models. This study results in a consistent and comprehensive evaluated data set for neutron-induced charged-particle production in Silicon which will be incorporated in file 2015 of the SOKRATOR library. (author)

  7. Particle transport in a He-microchip plasma atomic emission system with an ultrasonic nebulizer for aqueous sample introduction

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Joosuck [Department of Chemistry, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of); Lim, H.B. [Department of Chemistry, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of)], E-mail: plasma@dankook.ac.kr

    2008-11-15

    The transport efficiency of dried particles generated from an ultrasonic nebulizer (USN) was studied to improve the analytical performance of a lab-made, He-microchip plasma system, in which a quartz tube ({approx} 1 mm i.d.) was positioned inside the central channel of a poly(dimethylsiloxane) (PDMS) polymer chip. The polymer microchip plasma has the advantages of low cost, small size, easy handling and design, and self-ignition with long stabilization (> 24 h). However, direct introduction of aqueous solution into the microplasma for the detection of metals remains problematic due to plasma instability. In addition, the much smaller size of the system can cause signal suppression due to low transport efficiency. Therefore, knowledge of particle transport efficiency in this microplasma system is required to enhance the sensitivity and stability. The weight of transported particles in the range of 0.02 to 10 mg m{sup -3} was measured using a piezobalance with a precision of 0.4-17.8%, depending on the operating conditions. The significant effects of the USN operating conditions and the physical properties of the tubing, namely, length, inner diameter and surface characteristics, on the number of particles transported from the nebulizer to the microplasma were studied. When selected metals, such as Na, Mg and Pb, at a concentration of 5 mg L{sup -1} were nebulized, transported particles were obtained with a mass range of 0.5-5 mg m{sup -3}, depending on atomic weights. For application of the He-rf-microplasma, the atomic emission system was optimized by changing both the radio frequency (rf) power (60-200 W) and cooling temperature of the USN (- 12-9 deg. C). The limits of detection obtained for K, Na and Cu were 0.26, 0.22, and 0.28 mg L{sup -1}, respectively. These results confirmed the suitable stability and sensitivity of the He-rf-PDMS microchip plasma for application as an atomization source.

  8. Signature of intermittent behavior in the emission spectra of target associated particles from 84Kr-AgBr interactions at 0.95 GeV/A

    International Nuclear Information System (INIS)

    Bhattacharjee, B.

    2005-01-01

    Intermittency and fractal behavior have been studied for emission spectra of target associated fast and slow particles from 84 Kr-AgBr interactions at 0.95 GeV/A. Intermittent behavior is observed for both knocked out and slow target fragments. In both the cases anomalous dimensions are seen to increase with the order of moments thereby indicating the association of multifractility with production mechanism of both fast and slow target associated particles

  9. Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Je Ha; Kwon, Oh Yang; Seo, Seong Wook [Inha University, Incheon (Korea, Republic of)

    2011-02-15

    Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10{approx}40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terns of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes

  10. PIXE in 1980: Summary of the second international conference on particle induced x-ray emission and its analytical applications

    International Nuclear Information System (INIS)

    Akselsson, K.R.

    1981-01-01

    The Second International Conference on Particle Induced X-ray Emission (PIXE) and its analytical applications was held in Lund, Sweden, June 9-12, 1980. About a hundred papers were presented, including seven invited talks (PIXE and particle scattering, microbeam analysis, applications to aerosols and biological samples). The main impression left by the conference was that both the PIXE method and its applications are in a phase of fast development. Considerable effort has successfully been devoted to optimizing the basic PIXE technique. Also the great advantage of simultaneously getting information about lighter elements and sample mass was reported to have been successfully employed in routine analyses. PIXE, which was initially considered to be a method mainly for thin samples, has also been shown to be competitive for a variety of thick samples. Data from aerosol studies was presented. With the PIXE-method, it is feasible to perform series of measurements over a long period of time, many samples in parallel and/or samples from sites of poor accessibility. However, the advantages of PIXE may be further exploited in aerosol investigations and some promising lines of sampler development were reported. Sample preparation techniques are crucial for applications to biological samples and several laboratories are engaged in such developmental work. However, it was also evident that PIXE is already giving significant contributions to research in biology and medicine

  11. Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization.

    Science.gov (United States)

    Li, Dongsheng; Yang, Wei; Zhang, Wenyao

    2017-05-01

    Stress corrosion is the major failure type of bridge cable damage. The acoustic emission (AE) technique was applied to monitor the stress corrosion process of steel wires used in bridge cable structures. The damage evolution of stress corrosion in bridge cables was obtained according to the AE characteristic parameter figure. A particle swarm optimization cluster method was developed to determine the relationship between the AE signal and stress corrosion mechanisms. Results indicate that the main AE sources of stress corrosion in bridge cables included four types: passive film breakdown and detachment of the corrosion product, crack initiation, crack extension, and cable fracture. By analyzing different types of clustering data, the mean value of each damage pattern's AE characteristic parameters was determined. Different corrosion damage source AE waveforms and the peak frequency were extracted. AE particle swarm optimization cluster analysis based on principal component analysis was also proposed. This method can completely distinguish the four types of damage sources and simplifies the determination of the evolution process of corrosion damage and broken wire signals. Copyright © 2017. Published by Elsevier B.V.

  12. Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes

    International Nuclear Information System (INIS)

    Shin, Je Ha; Kwon, Oh Yang; Seo, Seong Wook

    2011-01-01

    Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10∼40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terns of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes

  13. Particle Acceleration in Mildly Relativistic Shearing Flows: The Interplay of Systematic and Stochastic Effects, and the Origin of the Extended High-energy Emission in AGN Jets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruo-Yu; Rieger, F. M.; Aharonian, F. A., E-mail: ruoyu@mpi-hd.mpg.de, E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: aharon@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2017-06-10

    The origin of the extended X-ray emission in the large-scale jets of active galactic nuclei (AGNs) poses challenges to conventional models of acceleration and emission. Although electron synchrotron radiation is considered the most feasible radiation mechanism, the formation of the continuous large-scale X-ray structure remains an open issue. As astrophysical jets are expected to exhibit some turbulence and shearing motion, we here investigate the potential of shearing flows to facilitate an extended acceleration of particles and evaluate its impact on the resultant particle distribution. Our treatment incorporates systematic shear and stochastic second-order Fermi effects. We show that for typical parameters applicable to large-scale AGN jets, stochastic second-order Fermi acceleration, which always accompanies shear particle acceleration, can play an important role in facilitating the whole process of particle energization. We study the time-dependent evolution of the resultant particle distribution in the presence of second-order Fermi acceleration, shear acceleration, and synchrotron losses using a simple Fokker–Planck approach and provide illustrations for the possible emergence of a complex (multicomponent) particle energy distribution with different spectral branches. We present examples for typical parameters applicable to large-scale AGN jets, indicating the relevance of the underlying processes for understanding the extended X-ray emission and the origin of ultrahigh-energy cosmic rays.

  14. Laboratory and modeling studies on the effects of water and soot emissions and ambient conditions on the properties of contrail ice particles in the jet regime

    Directory of Open Access Journals (Sweden)

    H.-W. Wong

    2013-10-01

    Full Text Available Contrails and contrail-induced cirrus clouds are identified as the most uncertain components in determining aviation impacts on global climate change. Parameters affecting contrail ice particle formation immediately after the engine exit plane (< 5 s in plume age may be critical to ice particle properties used in large-scale models predicting contrail radiative forcing. Despite this, detailed understanding of these parametric effects is still limited. In this paper, we present results from recent laboratory and modeling studies conducted to investigate the effects of water and soot emissions and ambient conditions on near-field formation of contrail ice particles and ice particle properties. The Particle Aerosol Laboratory (PAL at the NASA Glenn Research Center and the Aerodyne microphysical parcel model for contrail ice particle formation were employed. Our studies show that exhaust water concentration has a significant impact on contrail ice particle formation and properties. When soot particles were introduced, ice particle formation was observed only when exhaust water concentration was above a critical level. When no soot or sulfuric acid was introduced, no ice particle formation was observed, suggesting that ice particle formation from homogeneous nucleation followed by homogeneous freezing of liquid water was unfavorable. Soot particles were found to compete for water vapor condensation, and higher soot concentrations emitted into the chamber resulted in smaller ice particles being formed. Chamber conditions corresponding to higher cruising altitudes were found to favor ice particle formation. The microphysical model captures trends of particle extinction measurements well, but discrepancies between the model and the optical particle counter measurements exist as the model predicts narrower ice particle size distributions and ice particle sizes nearly a factor of two larger than measured. These discrepancies are likely due to particle

  15. Inverse problems, invisibility, and artificial wormholes

    International Nuclear Information System (INIS)

    Greenleaf, A; Kurylev, Y; Lassas, M; Uhlmann, G

    2008-01-01

    We will describe recent theoretical and experimental progress on making objects invisible to electromagnetic waves. Maxwell's equations have transformation laws that allow for design of electromagnetic parameters that would steer light around a hidden region, returning it to its original path on the far side. Not only would observers be unaware of the contents of the hidden region, they would not even be aware that something was hidden. The object would have no shadow. New advances in metamaterials have given some experimental evidence that this indeed can be made possible at certain frequencies

  16. Electromagnetic Invisibility of Elliptic Cylinder Cloaks

    International Nuclear Information System (INIS)

    Kan, Yao; Chao, Li; Fang, Li

    2008-01-01

    Structures with unique electromagnetic properties are designed based on the approach of spatial coordinate transformations of Maxwell's equations. This approach is applied to scheme out invisible elliptic cylinder cloaks, which provide more feasibility for cloaking arbitrarily shaped objects. The transformation expressions for the anisotropic material parameters and the field distribution are derived. The cloaking performances of ideal and lossy elliptic cylinder cloaks are investigated by finite element simulations. It is found that the cloaking performance will degrade in the forward direction with increasing loss. (fundamental areas of phenomenology (including applications))

  17. Ortodoncia estética invisible

    OpenAIRE

    Chávez Sevillano, Manuel Gustavo; Soldevilla Galarza, Luciano

    2014-01-01

    El adulto suele ofrecer resistencia a los convencionales tratamientos ortodóncicos, debido a la necesidad de llevar brackets visibles, tanto metálicos como estéticos de porcelana. El concepto de Ortodoncia Estética Invisible u Ortodoncia Lingual cubre las expectativas de este tipo de pacientes. La técnica multibrackets con aparatología lingual tiene aproximadamente 25 años de desarrollo y con la experiencia de los casos tratados, se ha llegado a la concepción de una técnica completamente prot...

  18. L'invisible invité

    OpenAIRE

    Frémy, Anne

    2012-01-01

    Tiré du site Internet de Onestar Press: ""They’re a kind of cabin or hut, very basic and awkwardly assembled, wedged into the space of the balcony between the guardrail and the wall of the building.The vertical sides are made of plywood, canvas or tarp, and are topped by a vegetal roofing that is more or less dry, more or less green, threaded with palm wattle. These huts are opaque and seem to communicate with apartments…" Excerpt from L’Invisible invité by Anne Frémy, english by Bruce Bender...

  19. (In)Visible Hand(s)

    OpenAIRE

    Predrag Zima

    2007-01-01

    In this paper, the author discusses the regulatory role of the state and legal norms, in market economy, especially in so-called transition countries. Legal policy, and other questions of the state and free market economy are here closely connected, because the state must ensure with legal norms that economic processes are not interrupted: only the state can establish the legal basis for a market economy. The free market’s invisible hand is acting in questions such as: what is to be produced,...

  20. Mujeres invisibles en el Perú

    OpenAIRE

    Sköld, Luz Marina

    2007-01-01

    En el Perú, actualmente existen aproximadamente un millón de personas que no tienen un documento de identidad y no figuran en los registros del Estado. Son consideradas personas invisibles porque no existen le-galmente. De acuerdo a estudios realizados, este grupo de personas tiene un rostro específico; se trata de una población pobre, rural y principal-mente de mujeres. El 53% de las mujeres indocumentadas residen en el área rural. Las causas que originan la indocumentación son varias, entre...

  1. The invisible accounting side of ERP systems

    Directory of Open Access Journals (Sweden)

    Iliyan Dimitrov

    2017-12-01

    Full Text Available ERP (Enterprise Resource planning systems are widely used in many organizations, including companies in Bulgaria. Depending of the point of view statistical results of their implementation in recent years are contradictory (Infostat, 2017, (Eurostat, 2017. This paper reveals an overview of researchers and practitioners’ interpretations, who express opinion for an essence and advantages of adopting ERP systems. In academic and professional discussions one potential benefit stays invisible. The purpose of this publication is to provide new sight of essence and potential benefits which are given with ERP implementation. Some advantages of ERP systems are discussed. Some aspects of the links between ERP systems, management accounting and financial accounting are described.

  2. Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust

    Science.gov (United States)

    Schill, G. P.; Jathar, S. H.; Kodros, J. K.; Levin, E. J. T.; Galang, A. M.; Friedman, B.; Link, M. F.; Farmer, D. K.; Pierce, J. R.; Kreidenweis, S. M.; DeMott, P. J.

    2016-05-01

    Immersion-mode ice-nucleating particle (INP) concentrations from an off-road diesel engine were measured using a continuous-flow diffusion chamber at -30°C. Both petrodiesel and biodiesel were utilized, and the exhaust was aged up to 1.5 photochemically equivalent days using an oxidative flow reactor. We found that aged and unaged diesel exhaust of both fuels is not likely to contribute to atmospheric INP concentrations at mixed-phase cloud conditions. To explore this further, a new limit-of-detection parameterization for ice nucleation on diesel exhaust was developed. Using a global-chemical transport model, potential black carbon INP (INPBC) concentrations were determined using a current literature INPBC parameterization and the limit-of-detection parameterization. Model outputs indicate that the current literature parameterization likely overemphasizes INPBC concentrations, especially in the Northern Hemisphere. These results highlight the need to integrate new INPBC parameterizations into global climate models as generalized INPBC parameterizations are not valid for diesel exhaust.

  3. Field measurement and estimate of gaseous and particle pollutant emissions from cooking and space heating processes in rural households, northern China

    Science.gov (United States)

    Chen, Yuanchen; Shen, Guofeng; Liu, Weijian; Du, Wei; Su, Shu; Duan, Yonghong; Lin, Nan; Zhuo, Shaojie; Wang, Xilong; Xing, Baoshan; Tao, Shu

    2016-01-01

    Pollutant emissions into outdoor air from cooking and space heating processes with various solid fuels were measured, and daily household emissions were estimated from the kitchen performance tests. The burning of honeycomb briquette had the lowest emission factors, while the use of wood produced the highest pollutants. Daily emissions from space heating were significantly higher than those from cooking, and the use of honeycomb briquette for cooking and raw coal chunk for space heating reduces 28%, 24% and 25% for CO, PM10 and PM2.5, compared to wood for cooking and peat for space heating. Much higher emissions were observed during the initial phase than the stable phase due to insufficient air supply and lower combustion temperature at the beginning of burning processes. However, more mass percent of fine particles formed in the later high temperature stable burning phase may increase potential inhalation exposure risks.

  4. Learning or Lurking?: Tracking the "Invisible" Online Student.

    Science.gov (United States)

    Beaudoin, Michael F.

    2002-01-01

    This case study of inactive, or invisible, students enrolled in an online graduate course identifies how much time is spent in course-related activity, what the reasons are for students' invisibility, and if their preferred learning styles influence online behavior. Preliminary analysis of grades indicate that grades are better for high-visibility…

  5. Search for invisibly decaying Higgs boson at Large Hadron Collider

    Indian Academy of Sciences (India)

    In several scenarios of Beyond Standard Model physics, the invisible decay mode of the Higgs boson is an interesting possibility. The search strategy for an invisible Higgs boson at the Large Hadron Collider (LHC), using weak boson fusion process, has been studied in detail, by taking into account all possible ...

  6. Invisible Web and Academic Research: A Partnership for Quality

    Science.gov (United States)

    Alyami, Huda Y.; Assiri, Eman A.

    2018-01-01

    The present study aims to identify the most significant roles of the invisible web in improving academic research and the main obstacles and challenges facing the use of the invisible web in improving academic research from the perspective of academics in Saudi universities. The descriptive analytical approach was utilized in this study. It…

  7. Rare particles

    International Nuclear Information System (INIS)

    Kutschera, W.

    1984-01-01

    The use of Accelerator Mass Spectrometry (AMS) to search for hypothetical particles and known particles of rare processes is discussed. The hypothetical particles considered include fractionally charged particles, anomalously heavy isotopes, and superheavy elements. The known particles produced in rare processes discussed include doubly-charged negative ions, counting neutrino-produced atoms in detectors for solar neutrino detection, and the spontaneous emission of 14 C from 223 Ra. 35 references

  8. Signature of intermittent behavior in the emission spectra of target associated particles from 84Kr-AgBr interactions at 0.95 GeV/A

    International Nuclear Information System (INIS)

    Bhattacharjee, B.; Sengupta, S.; Mukhopadhyay, A.; Singh, V.

    2004-01-01

    In this report an attempt has been made to study, by studying the fluctuation in spatial distribution in χ(cosθ) space, the intermittent behaviour and fractal properties of emission spectra of fast and slow target associated particles from 84 Kr-AgBr interactions at 0.95 GeV/A

  9. ADAM SMITH: THE INVISIBLE HAND OR CONFIDENCE

    Directory of Open Access Journals (Sweden)

    Fernando Luis, Gache

    2010-01-01

    Full Text Available In 1776 Adam Smith raised the matter that an invisible hand was the one which moved the markets to obtain its efficiency. Despite in the present paper we are going to raise the hypothesis, that this invisible hand is in fact the confidence that each person feels when he is going to do business. That in addition it is unique, because it is different from the confidence of the others and that is a variable nonlinear that essentially is ligatured to respective personal histories. For that we are going to take as its bases the paper by Leopoldo Abadía (2009, with respect to the financial economy crisis that happened in 2007-2008, to evidence the form in which confidence operates. Therefore the contribution that we hope to do with this paper is to emphasize that, the level of confidence of the different actors, is the one which really moves the markets, (therefore the economy and that the crisis of the subprime mortgages is a confidence crisis at world-wide level.

  10. Invisible Axions and Large-Radius Compactifications

    CERN Document Server

    Dienes, Keith R.; Gherghetta, Tony; Dienes, Keith R.; Dudas, Emilian; Gherghetta, Tony

    2000-01-01

    We study some of the novel effects that arise when the QCD axion is placed in the ``bulk'' of large extra spacetime dimensions. First, we find that the mass of the axion can become independent of the energy scale associated with the breaking of the Peccei-Quinn symmetry. This implies that the mass of the axion can be adjusted independently of its couplings to ordinary matter, thereby providing a new method of rendering the axion invisible. Second, we discuss the new phenomenon of laboratory axion oscillations (analogous to neutrino oscillations), and show that these oscillations cause laboratory axions to ``decohere'' extremely rapidly as a result of Kaluza-Klein mixing. This decoherence may also be a contributing factor to axion invisibility. Third, we discuss the role of Kaluza-Klein axions in axion-mediated processes and decays, and propose several experimental tests of the higher-dimensional nature of the axion. Finally, we show that under certain circumstances, the presence of an infinite tower of Kaluza...

  11. Discussion of the origin of secondary photon and secondary ion emission during energetic particle irradiation of solids. I. The collision cascade

    International Nuclear Information System (INIS)

    Wright, R.B.; Gruen, D.M.

    1980-01-01

    Secondary photon and secondary ion emission during energetic particle irradiation of solid surfaces is assumed to arise due to excitation and de-excitation of sputtered particles originating from a collision cascad