WorldWideScience

Sample records for investigation of structure

  1. Investigations of Nuclear Structure

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, Demetrios [Washington Univ., St. Louis, MO (United States); Reviol, W. [Washington Univ., St. Louis, MO (United States)

    2015-07-15

    The proposal addresses studies of nuclear structure at low-energies and development of instrumentation for that purpose. The structure studies deal with features of neutron-rich nuclei with unexplored shapes (football- or pear-shaped nuclei). The regions of interest are: neutron rich nuclei like 132-138Sn, or 48-54Ca, and the Zr, Mo, and Ru isotopes. The tools used can be grouped as follows: either Gammasphere or Gretina multi-gamma detector arrays and auxiliary detectors (Microball, Neutron Shell, and the newly completed Phoswich Wall).The neutron-rich nuclei are accessed by radioactive-beam binary reactions or by 252Cf spontaneous fission. The experiments with heavy radioactive beams aim at exciting the beam nuclei by pick-up or transfer a neutron or a proton from a light target like 13C, 9Be, 11B or 14N .For these binary-reaction studies the Phoswich Wall detector system is essential. It is based on four multi-anode photomultiplier tubes on which CsI and thin fast-timing plastic scintillators are attached. Their signals are digitized with a high density microchip system.

  2. Structure investigations of electrodeposited nickel

    Energy Technology Data Exchange (ETDEWEB)

    Vertes, A.; Czako-Nagy, I.; Lakatos-Varsani, M. (Eoetvoes Lorand Tudomanyegyetem, Budapest (Hungary). Dept. of Physical Chemistry); Kajcsos, Z. (Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics); Csordas, L. (Eoetvoes Lorand Tudomanyegyetem, Budapest (Hungary). Dept. of Solid State Physics); Brauer, G. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic)); Leidheiser, H. Jr. (Lehigh Univ., Bethlehem, PA (USA). Center for Surface and Coatings Research)

    1982-08-01

    Nickel, electrodeposited under different conditions and yielding different values of stress, was investigated by positron annihilation (lifetime and Doppler-broadening), Moessbauer effect and X-ray diffraction measurements. Two-component positron lifetime spectra were obtained. The first component is thought to result from bulk annihilation and trapping at single trapping centres (TC). Estimations of TC-concentrations are obtained by means of the trapping model. The second one possibly denotes annihilation at voids, the number of which is dependent on the stress in the deposit. Results of Doppler-broadening measurements support this interpretation. The Moessbauer results show differences in the magnetic orientation in the three samples examined.

  3. Preparation and investigation of optical, structural, and ...

    Indian Academy of Sciences (India)

    331–341. Preparation and investigation of optical, structural, and morphological properties of nanostructured. ZnO:Mn thin films. E AMOUPOUR1,∗. , F E GHODSI2, H ANDARVA2 and. A ABDOLAHZADEH ZIABARI3. 1Department of Electronic Engineering, Roudsar & Amlash Branch,. Islamic Azad University, Roudsar, Iran.

  4. Experimental investigations of the nuclear structure

    International Nuclear Information System (INIS)

    Gromov, K.Ya.

    1989-01-01

    The problem of experimental investigation into atomic nucleus structure is discussed. Examples of studying the properties of low-lying nucleus states using cyclotron-type accelerators for their production are presented. The consideration is conducted on the base of the Idisol experimental complex created at the Finland. Results of measuring masses of neutron-redundant rubidium nuclei are presented. Schemes of 160 Er and 108 In decay are presented. 12 refs.; 6 figs

  5. Modified structure of graphene oxide by investigation of structure ...

    Indian Academy of Sciences (India)

    erated in some regions due to hydrogen bonding between functional groups. Trapped water molecules were shown between the GO sheets which strongly affected the distribution of OFGs and their aggregation by hydrogen bonding. Keywords. Graphene oxide; oxygen functional groups; structure investigation; modified ...

  6. Investigating Student Understanding of the Universe: Structure

    Science.gov (United States)

    Hayes, Virginia; Coble, K.; Nickerson, M.; Cochran, G.; Camarillo, C. T.; Bailey, J. M.; McLin, K. M.; Cominsky, L. R.

    2011-05-01

    Chicago State University (CSU) offers an introductory astronomy course that services students from a variety of majors including pre-service teachers. At CSU, we have been investigating methods and tools that will improve student conceptual understanding in astronomy for this diverse group of students. We have analyzed pre-course surveys, pre-course essays, exams, and interviews in an effort to better understand the ideas and difficulties in understanding that students have in regards to the structure of the universe. Analysis of written essays has revealed that our students do have some knowledge of the objects in the universe, but interviews inform us that their understanding of the structure of the universe is superficial. This project is a part of a larger study; also see our posters on student ideas about dark matter, the age and expansion of the universe, and perceptions of astronomical sizes and distances. This work was supported by NASA ROSES E/PO Grant #NNXlOAC89G, as well as by the Illinois Space Grant Consortium and National Science Foundation CCLI Grant #0632563 at Chicago State University and the Fermi E/PO program at Sonoma State University.

  7. Investigations of the Structure of Titanate Nanoscrolls

    International Nuclear Information System (INIS)

    Sheppard, D.A.; Buckley, C.E.

    2005-01-01

    Full text: Nanosized materials have attracted much research lately due to their unique properties and their potential application in nanoelectronic and optoelectronic devices. Nanostructured materials have also sparked interest as possible hydrogen storage candidates. Research at Curtin University has shown titanate nanoscrolls to absorb modest amounts of hydrogen at low temperatures. Whether or not this capacity can be improved will be dependent on a thorough understanding of the structure and the way it interacts with hydrogen. Titanate nanoscrolls are made via a soft chemical process that involves ageing TiO 2 powder in a concentrated NaOH solution. The resultant nanoscrolls, once filtered and washed, are typically 8-10 nm in diameter and hundreds of nanometers long. The walls consist of 3-5 layers and the diameter of the hollow centre is typically 5 nm. A number of different structures have been assigned to nanoscrolls produced via the soft chemical process. These include anatase, H 2 Ti 3 O 7 , lepidocrocite-type structure and H 2 Ti 4 O 9 .H 2 O. Many of these structures are similar, consisting of titanate type layers, and qualitatively reproduce the X-ray diffraction data. However, preliminary data suggests that these structures are inconsistent with neutron diffraction data. Here we attempt a more quantitative analysis of the structure than those published previously using neutron and X-ray diffraction. (authors)

  8. Investigation of the relationship between structural empowerment ...

    African Journals Online (AJOL)

    satisfaction, and organizational commitment. These re- sults strengthen those of previous studies reporting work place structures/processes/contributions leading to su- perior care environments12. Modifying the work place structure and improving nurs- es access to opportunities (organizational support, in- formation and ...

  9. Modified structure of graphene oxide by investigation of structure ...

    Indian Academy of Sciences (India)

    The structure of graphite oxide and graphene oxide (GO) has been studied previously using various analyses and computer simulations. Although some oxygen functional groups (OFGs) are accepted as the main functionalities in GO, the structure of GO has remained elusive. In this regard, GO was produced using the ...

  10. Structural investigation of a new composite process

    Science.gov (United States)

    Mayer, Philippe; Becker, Eric; Bigot, Régis; Kaïci, Bruno

    2017-10-01

    This work presents a study done on a new patented forming process, created to produce massive composite parts used for structural applications in automotive and aeronautics industries. The study presented in this paper deals with an experimental setup, used to characterize thick composite cylinders. The author presents the characterization of these cylinders and a new analysis method, in order to understand the consolidation steps of the composite in this forming process. The structural health of the part is illustrated by the analysis of the intra-bundle and inter-bundle porosities, by micrographs characterizations.

  11. Structure investigations of some beryllium materials

    International Nuclear Information System (INIS)

    Faeldt, I.; Lagerberg, G.

    1960-05-01

    Metallographic structure, microhardness and texture have been studied on various types of beryllium metal including hot pressed powder, a rolled strip and an extruded tube It was found that beryllium exhibits its highest hardness in directions perpendicular to the basal plane. Good ideas of the prevailing textures were obtained with an ordinary X-ray diffractometer

  12. Investigation of the relationship between structural empowerment ...

    African Journals Online (AJOL)

    Specifically in health care settings, nurse leaders play an essential role in creating supportive work environments to avert these negative trends and increase nurse job satisfaction. Objective: The purpose of this study was to examine the relationship between structural empowerment and organizational commitment of ...

  13. Experimental investigation of bubble plume structure instability

    Energy Technology Data Exchange (ETDEWEB)

    Marco Simiano; Robert Zboray; Francois de Cachard [Thermal-Hydraulics Laboratory, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Djamel Lakehal; George Yadigaroglu [Institute of Energy Technology, Swiss Federal Institute of Technology, ETH-Zentrum/CLT, 8092 Zurich (Switzerland)

    2005-07-01

    Full text of publication follows: The hydrodynamic properties of a 3D bubble plume in a large water pool are investigated experimentally. Bubble plumes are present in various industrial processes, including chemical plants, stirred reactors, and nuclear power plants, e.g. in BWR suppression pools. In these applications, the main issue is to predict the currents induced by the bubbles in the liquid phase, and to determine the consequent mixing. Bubble plumes, especially large and unconfined ones, present strong 3D effects and a superposition of different characteristic length scales. Thus, they represent relevant test cases for assessment and verification of 3D models in thermal-hydraulic codes. Bubble plumes are often unsteady, with fluctuations in size and shape of the bubble swarm, and global movements of the plume. In this case, local time-averaged data are not sufficient to characterize the flow. Additional information regarding changes in plume shape and position is required. The effect of scale on the 3D flow structure and stability being complex, there was a need to conduct studies in a fairly large facility, closer to industrial applications. Air bubble plumes, up to 30 cm in base diameter and 2 m in height were extensively studied in a 2 m diameter water pool. Homogeneously sized bubbles were obtained using a particular injector. The main hydrodynamic parameters. i.e., gas and liquid velocities, void fraction, bubble shape and size, plume shape and position, were determined experimentally. Photographic and image processing techniques were used to characterize the bubble shape, and double-tip optical probes to measure bubble size and void fraction. Electromagnetic probes measured the recirculation velocity in the pool. Simultaneous two-phase flow particle image velocimetry (STPFPIV) in a vertical plane containing the vessel axis provided instantaneous velocity fields for both phases and therefore the relative velocity field. Video recording using two CCD

  14. Investigation of Vibration Reduction through Structural Optimization.

    Science.gov (United States)

    1980-07-01

    energy calculations (Equation 13) were beyond the scope of this study. However, by using the Direct Mctrix Abstraction Program ( DMAP ) capability in NASTRAN ...Fuselage vertical bending 26.96 29.47 6th Skid mode 29.04 - 25 The AH-lG elastic-line NASTRAN model (including the DMAP ALTER procedure developed for...energy method for reducing vibration response, primarily via structural stiffness changes, using NASTRAN beam-element repre- sentation of the WI-G with

  15. Synthesis, structures and theoretical investigation of

    Science.gov (United States)

    Weigend; Wirth; Ahlrichs; Fenske

    2000-02-04

    The silylated derivative of thiophosphoric acid (S)P(SSiMe3)3 is used as a convenient starting compound for the synthesis of multinuclear Cu and Au cluster complexes. (S)P(SSiMe3)3 reacts with CuCI/PPh3 and [AuCClPPh3] to give the following compounds: [Cu4(P2S6)(PPh3)4] (1), [Cu6(P2S6)Cl2-(PPh3)6] (2) and [Au4(P2S6)(PPh3)4](3). According to X-ray structure determination, these compounds contain P2S6(4-) ions, in which S atoms act as ligands for Cu+ and Au+ ions. Although 1 and 3 have the same stoichiometry, bonding of the metal ions to the P2S6 skeleton displays small but remarkable differences. Au is twofold coordinated, whereas Cu shows a threefold coordination. Ab initio calculations have been carried out to rationalise these structural differences. The theoretical treatment of the corresponding Ag compound indicates the latter to be less stable.

  16. Investigation of IFMIF target assembly structure design

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hiroo; Sugimoto, Masayoshi; Yamamura, Toshio

    2006-10-01

    In the International Fusion Materials Irradiation Facility (IFMIF), the back-wall of target assembly is the part suffered the highest neutron-flux. The back-wall and the assembly are designed to have lips for cutting/welding at the back-wall replacement. To reduce thermal stress and deformation of the back-wall under neutron irradiation, contact pressure between the back-wall and the assembly is one of dominant factors. Therefore, an investigation was performed for feasible clamping pressure of a mechanical clamp set in limited space around the back-wall. It was clarified that the clamp can give a pressure difference up to 0.4 MPa between the contact pressure and atmosphere pressure in the test cell room. Also a research was performed for the dissimilar metal welding in the back-wall. Use of 309 steel was found adequate as the intermediate filler metal through the research of previous welding. Maintaining a temperature of the target assembly so as to avoid a freezing of liquid lithium is needed at the lithium charge into the loop before the beam injection. The assembly is covered with thermal insulation. Therefore, a research and an investigation were performed for compact and light thermal-insulation effective even under helium (i.e. high heat-conduction) condition of the test cell room. The result was as follows; in the case that a thermal conductivity 0.008 W/m·K of one of found insulation materials is available in the temperature range up to 300degC of the IFMIF target assembly, needed thickness and weight of the insulation were respectively only 8.2 mm and 32 kg. Also a research was performed for high-heat-density heaters to maintain temperature of the back-wall which can not be cover with insulation due to limited space. A heater made of silicon-nitride was found to be adequate. Total heat of 8.4 kW on the back-wall was found to be achievable through an investigations of heater arrange. Also an investigation was performed for remote-handling device to

  17. Investigation of Nuclear Partonic Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Henry J. [Univ. of California, Berkeley, CA (United States); Engelage, J. M.

    2016-08-30

    Our research program had two primary goals during the period of this grant, to search for new and rare particles produced in high-energy nuclear collisions and to understand the internal structure of nuclear matter. We have developed electronics to pursue these goals at the Relativistic Heavy Ion Collider (RHIC) in the Solenoidal Tracker at RHIC (STAR) experiment and the AnDY experiment. Our results include discovery of the anti-hyper-triton, anti- 3Λ-barH, which opened a new branch on the chart of the nuclides, and the anti-alpha, anti- 4He, the heaviest form of anti-matter yet seen, as well as uncovering hints of gluon saturation in cold nuclear matter and observation of jets in polarized proton-proton collisions that will be used to probe orbital motion inside protons.

  18. Investigating the Lithospheric Structure of Southern Madagascar

    Science.gov (United States)

    Tilmann, Frederik; Yuan, Xiaohui; Rümpker, Georg; Gerard, Rambolamana; Elisa, Rindraharisaona; Priestley, Keith

    2014-05-01

    there is some so-far poorly characterised seismicity. We present preliminary results on the lithospheric crust and mantle structure based on surface wave dispersion and waveform modelling, focussing on the contrast between the metamorphic areas in the east and the presumably stretched regions in the west. Interstation Green's functions have been obtained from all pairs of vertical broadband records, with coherent Rayleigh waves being identifiable for periods of 3-40 s. In addition, two-station phase dispersion measurements have allowed us to determine phase dispersion between 25 and 60 s. The ambient noise and earthquake data both indicate a slow-down of surface propagation in the western part of the array for periods 45 s.

  19. Preparation and investigation of optical, structural, and ...

    Indian Academy of Sciences (India)

    ZnO:Mn; nanocrystalline thin film; sol–gel; optical properties. ... Azad University, Roudsar, Iran; Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 413351914, Rasht, Iran; Department of Physics, Faculty of Science, Lahijan Branch, Islamic Azad University, P.O. Box 1616, Lahijan, Iran ...

  20. STRUCTURAL STUDY AND INVESTIGATION OF NMR TENSORS ...

    African Journals Online (AJOL)

    The etiology of Parkinson's disease [2-7] and its underlying mechanism of loss of DA neurons are unknown. There is evidence, however, that DA is involved in the etiology of this disease, based on the observation by Graham et al. [8] DA is oxidized to the corresponding quinone. Covalent binding of DA to DNA occurs upon ...

  1. Magnetotelluric investigations for imaging electrical structure of ...

    Indian Academy of Sciences (India)

    the depth of 6 km near MCT zone coincides with the intense micro-seismic activity in the region. The zone is interpreted as the partial melting or .... in the seismic survey, related to the presence of the fluid phase. Low resistivity crust in ..... Bahr K 1988 Interpretation of the magnetotelluric impedance tensor: regional induction ...

  2. STRUCTURAL STUDY AND INVESTIGATION OF NMR TENSORS ...

    African Journals Online (AJOL)

    NBO studies were performed to the second-order and perturbative estimates of donor-acceptor interaction have been done. The procedures of gauge-invariant atomic orbital (GIAO) and continuous-set-of-gauge-transformation (CSGT) were employed to calculate isotropic shielding, chemical shifts anisotropy and chemical ...

  3. seismic refraction investigation of the subsurface structure

    African Journals Online (AJOL)

    DR. AMINU

    hidden from direct view by measuring their physical properties with appropriate instruments, usually on ... academic institution with large students population which depend only on pipe water. The water supply is .... thickness of the weathered layer across the survey area. This is an indication of the heterogeneous nature of ...

  4. Magnetotelluric investigations for imaging electrical structure of ...

    Indian Academy of Sciences (India)

    ing sandstones, conglomerates, clay and silt, which were deposited in brackish and ... Vozoff (1984) conducted theoretical modeling for the possible magnetotelluric (MT) traverse ..... 2D resistivity models of Roorkee-Gangotri profile in Garhwal Himalaya corridor with (i) elevation profile on the top, (ii) 2D smooth geoelectric ...

  5. Preparation and investigation of optical, structural, and ...

    Indian Academy of Sciences (India)

    determined using point-wise unconstrained minimization approach (PUMA) and fitting the data to the Cauchy formula for thin films [25]. Infrared spectrum of the samples was measured by using Fourier transform infrared (FTIR) spectrophotometer (Bruker model. Vertex 70) for identifying the molecular composition.

  6. Magnetotelluric investigations for imaging electrical structure of ...

    Indian Academy of Sciences (India)

    Journal of Earth System Science. Current Issue : Vol. 127, Issue 1 · Current Issue Volume 127 | Issue 1. February 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  7. Investigations on structural, optical and magnetic properties of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Investigations on structural, optical and magnetic properties of solution-combustion-synthesized nanocrystalline iron molybdate. KRITHIKADEVI RAMACHANDRAN SIVA CHIDAMBARAM BALRAJ BASKARAN ARULMOZHI MUTHUKUMARASAMY JOHN ...

  8. Spectral investigations of structural peculiarities in some compound ethers

    Science.gov (United States)

    Pogorelov, Valerii E.; Astashkin, Yuri; Bukalo, Vyacheslav; Kutulya, Lidiya A.; Semenova, Galina N.

    2000-02-01

    The results of spectral investigation of two liquid crystalline isomers at different temperature pre-history are reported. The temperature depended transformations of vibrational Raman spectra and their connections with the change of structure of these substances were investigated. Spectral region was 1100-1760 cm-1, temperature interval was from 203 K to 398 K. Both general and special regularities under thermo-structural transformations were noted.

  9. Durability of marine concrete structures - field investigations and modelling

    NARCIS (Netherlands)

    Polder, R.B.; Rooij, M.R. de

    2005-01-01

    This article presents a series of investigations on six concrete structures along the North Sea coast in The Netherlands. They had ages between 18 and 41 years and most of them were made using Blast Furnace Slag cement. Visual inspections showed corrosion damage in only one structure, related to

  10. Durability of marine concrete structures - field investigations and modelling

    NARCIS (Netherlands)

    Polder, R.B.; Rooij, M.R. de

    2006-01-01

    This article presents a series of investigations on six concrete structures along the North Sea coast in The Netherlands. They had ages between 18 and 41 years and most of them were made using Blast Furnace Slag cement. Visual inspections showed corrosion damage in only one structure, related to

  11. electronic and structural investigations

    Indian Academy of Sciences (India)

    2018-03-30

    Mar 30, 2018 ... Indian Academy of Sciences https://doi.org/10.1007/s12034-018-1572-8. Milling effect on the photo-activated properties of TiO2 nanoparticles: electronic and structural investigations. YOUCEF MESSAI1,2, BERTRAND VILENO2,4, DAVID MARTEL3, PHILIPPE TUREK2,4 and. DJAMEL EDDINE MEKKI1,∗.

  12. Performance based investigations of structural systems under fire

    DEFF Research Database (Denmark)

    Gentili, Filippo; Crosti, Chiara; Giuliani, Luisa

    2010-01-01

    Prescriptive measures and procedures developed over the past here are mostly aimed at preventing structural failures of single elements for the time required for the evacuation. The response to fire and fire effects of the structural system as a whole remains often unknown and the survival of the...... structures are presented and discussed, with particular attention to methodological aspects. The effects of different assumptions in the modeling and in the definition of the collapse are highlighted, as critical aspects of a performance-based investigation....... these kinds of events, the mitigation of possible collapse induced by fire should be achieved. In this respect, a performance-based investigation of the structure aimed at highlight fire effects and fire-induced collapse mechanisms becomes of interest. In the paper collapse mechanisms of some simple...

  13. On-line system for investigation of atomic structure

    International Nuclear Information System (INIS)

    Amus'ya, M.Ya.; Chernysheva, L.V.

    1983-01-01

    A description of the on-line ATOM system is presented that enables to investigate the structure of atomic electron shells and their interactions with different scattering particles-electrons, positronse photons, mesons - with the use of computerized numerical solutions. The problem is stated along with mathematical description of atomic properties including theoretical and numerical models for each investigated physical process. The ATOM system structure is considered. The Hartree-Fock method is used to determine the wave functions of the ground and excited atomic states. The programs are written in the ALGOL langauge. Different atomic characteristics were possible to be calculated for the first time with an accuracy exceeding an experimental one

  14. INVESTIGATION OF STRUCTURAL AND MECHANICAL PROPERTIES OF FOUNDRY WASTES

    Directory of Open Access Journals (Sweden)

    D. N. Shabanov

    2006-01-01

    Full Text Available The purpose of the paper is to investigate utilization of foundry wastes for production of building materials. The paper shows how to solve the problem concerning recycling of wastes and economy of natural resources. Waste moulding sand and granulated cupola slag are considered in the paper. The paper has studied structural and mechanical properties of the investigated powders. Optimal ratios of the used material fi*actions ensuring obtaining of silicate brick that meets the requirements of the current standards have been determined in the paper. 

  15. Structural appraisal of the Gadag schist belt from gravity investigations

    Indian Academy of Sciences (India)

    Semi-detailed gravity investigations were carried out over an area of approximately 2750 sq km with maximum N-S and E-W extents of 55 and 50km respectively in the Gadag region in the Dharwar craton with a view to obtain a clearer perception of the structural configuration of the region. From qualitative analysis of the ...

  16. First principles investigation of the structure of a bacteriochlorophyll crystal

    Energy Technology Data Exchange (ETDEWEB)

    Marchi, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)]|[Centre d`Etudes Saclay, Gif-sur-Yvette (France); Hutter, J.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1996-08-21

    In this communication we present an ab initio study of the crystal of methyl bacteriophorbide (MeBPheo) a, a bacteriochlorophyll derivative, and high-precision structure of which is available. Our main purpose has been to investigate the viability of the technique toward complex molecular systems relevant to biologically important phenomena, in this particular case photosynthesis. Here we present the following results: First, we show that DFT is capable of calculating nuclear positions in excellent agreement with the experimental X-ray structure. Second, the calculated electronic density of the HOMO orbital reveals a {pi} type bond between rings I and III, consistent with the one-dimensional chain structure of the MeBPheo a molecules in the crystal. Finally, after performing the optimization of the molecular geometry with one electron in the LUMO state, we find localized bond length changes near the ring II of the MeBPheo a. 19 refs., 3 figs.

  17. MICRO-STRUCTURAL INVESTIGATION OF SOME ARTIFACTS DISCOVERED AT POROLISSUM

    Directory of Open Access Journals (Sweden)

    MUNTEANU Mihai

    2014-09-01

    Full Text Available the paper presents the investigation of two fragments of roman bronze artefacts, discovered during archaeological works performed at Porolissum, an important military and economical point on the northern limes of Dacia Province. One of the analyzed fragments (Mi1 was taken from a consistent fragment of a Roman bronze statue, while the second (Mi2 was among a lot of small metal pieces, discovered in the same investigated area. Using highly sophisticated micro-structural analysing techniques – X-Ray diffraction, the paper investigates the possibility that the Mi2 fragment may have belonged to the same statue from which the sample Mi1 was taken

  18. The Latent Structure of Psychopathy in Youth: A Taxometric Investigation

    Science.gov (United States)

    Vasey, Michael W.; Kotov, Roman; Frick, Paul J.; Loney, Bryan R.

    2005-01-01

    Using taxometric procedures, the latent structure of psychopathy was investigated in two studies of children and adolescents. Prior studies have identified a taxon (i.e., a natural category) associated with antisocial behavior in adults as well as children and adolescents. However, features of this taxon suggest that it is not psychopathy but…

  19. Population structure of Salmonella investigated by amplified fragment length polymorphism

    DEFF Research Database (Denmark)

    Torpdahl, M.; Ahrens, Peter

    2004-01-01

    Aims: This study was undertaken to investigate the usefulness of amplified fragment length polymorphism (AFLP) in determining the population structure of Salmonella. Methods and Results: A total of 89 strains were subjected to AFLP analysis using the enzymes BglII and BspDI, a combination...

  20. INVESTIGATION OF THERMAL BEHAVIOR OF MULTILAYERED FIRE RESISTANT STRUCTURE

    Directory of Open Access Journals (Sweden)

    R. GUOBYS

    2016-09-01

    Full Text Available This paper presents experimental and numerical investigations of thermal behavior under real fire conditions of new generation multilayered fire resistant structure (fire door, dimensions H × W × D: 2090 × 980 × 52 mm combining high strength and fire safety. This fire door consists of two steel sheets (thickness 1.5 and 0.7 mm with stone wool ( = 33 kg/m3, k = 0.037 W/mK, E = 5000 N/m2,  = 0.2 insulating layer in between. One surface of the structure was heated in fire furnace for specified period of time of 60 min. Temperature and deformation of opposite surface were measured from outside at selected measuring points during fire resistance test. Results are presented as temperature-time and thermal deformation-time graphs. Experimental results were compared with numerical temperature field simulation results obtained from SolidWorks®Simulation software. Numerical results were found to be in good agreement with experimental data. The percent differences between door temperatures from simulation and fire resistance test don’t exceed 8%. This shows that thermal behaviour of such multilayered structures can be investigated numerically, thus avoiding costly and time-consuming fire resistance tests. It is established that investigated structure should be installed in a way that places thicker steel sheet closer to the potential heat source than thinner one. It is also obtained that stone wool layer of higher density should be used to improve fire resistance of the structure.

  1. Investigation of optical properties of Ag: PMMA nanocomposite structures

    Science.gov (United States)

    Ponelyte, S.; Palevicius, A.; Guobiene, A.; Puiso, J.; Prosycevas, I.

    2010-05-01

    In the recent years fundamental research involving the nanodimensional materials has received enormous momentum for observing and understanding new types of plasmonic materials and their physical phenomena occurring in the nanoscale. Mechanical and optical properties of these polymer based nanocomposite structures depend not only on type, dimensions and concentration of filler material, but also on a kind of polymer matrix used. By proper selection of polymer matrix and nanofillers, it is possible to engineer nanocomposite materials with certain favorable properties. One of the most striking features of nanocomposite materials is that they can expose unique optical properties that are not intrinsic to natural materials. In these researches, nanocomposite structures were formed using polymer (PMMA) as a matrix, and silver nanoparticles as fillers. By hot embossing procedure a diffraction grating was imprinted on formed layers. The effect of UV exposure time on nanocomposite structures morphology, optical (diffraction effectiveness, absorbance) and mechanical properties was investigated. Results were confirmed by UV-VIS spectrometer, Laser Diffractometer, PMT- 3 and AFM. Investigations proposed new nanocomposite structures as plasmonic materials with improved optical and mechanical properties, which may be applied for a number of technological applications: micro-electro-mechanical devices, optical devices, various plasmonic sensors, or even in DNA nanotechnology.

  2. Variable temperature investigation of the atomic structure of gold nanoparticles

    International Nuclear Information System (INIS)

    Young, N P; Kirkland, A I; Huis, M A van; Zandbergen, H W; Xu, H

    2010-01-01

    The characterisation of nanoparticle structures is the first step towards understanding and optimising their utility in important technological applications such as catalysis. Using newly developed in-situ transmission electron microscopy (TEM) specimen holders, the temperature dependent atomic structure of gold nanoparticles in the size range 5-12 nm has been investigated. In this size interval, the decahedral morphology has been identified as the most favourable structure at or above room temperature, while particle surface roughening becomes evident above 600 0 C. An icosahedral transition has also been identified at low temperature in particles under 9 nm in diameter. These experimental results are consistent with recently published temperature dependent equilibrium phase maps for gold nanoparticles.

  3. Spectral investigation of a complex space charge structure in plasma

    International Nuclear Information System (INIS)

    Gurlui, S.; Dimitriu, D. G.; Ionita, C.; Schrittwieser, R. W.

    2009-01-01

    Complex space charge structures bordered by electrical double layers were spectrally investigated in argon plasma in the domain 400-1000 nm, identifying the lines corresponding to the transitions from different excited states of argon. The electron excitation temperature in the argon atoms was estimated from the spectral lines intensity ratio. (authors)

  4. The Investigation of Structure Heterogeneous Joint Welds in Pipelines

    Directory of Open Access Journals (Sweden)

    Lyubimova Lyudmila

    2016-01-01

    Full Text Available Welding joints of dissimilar steels don’t withstand design life. One of the important causes of premature destructions can be the acceleration of steel structural degradation due to cyclic mechanical and thermal gradients. Two zones of tube from steel 12H18N9T, exhibiting the structural instability at early stages of the decomposition of a supersaturated solid austenite solution, were subjected to investigation. Methods of x-ray spectral and structure analysis, micro hardnessmetry were applied for the research. Made the following conclusions, inside and outside tube wall surfaces of hazardous zones in welding joint have different technological and resource characteristics. The microhardness very sensitive to changes of metal structure and can be regarded as integral characteristic of strength and ductility. The welding processes are responsible for the further fibering of tube wall structure, they impact to the characteristics of hot-resistance and long-term strength due to development of ring cracks in the welding joint of pipeline. The monitoring of microhardness and structural phase conversions can be used for control by changes of mechanical properties in result of post welding and reductive heat treatment of welding joints.

  5. Application of ellipsometric and interference methods in MOS structures investigations

    Energy Technology Data Exchange (ETDEWEB)

    Rzodkiewicz, W; Borowicz, L; Piskorski, K [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2007-04-15

    Changes in some electrical and photoelectric parameters in the plane of aluminum gate, particularly in the effective contact potential difference (ECPD or {phi}{sub MS} factor) have been observed in MOS System Studies Department of Institute of Electron Technology for the first time. It has been found that the MS distribution over the gate area has a characteristic domelike shape, with the highest values ate the center of the gate, lower at the gate edges and still lower at gate corners. In order to find out why these values were changed in such way, we have investigated optical properties of the dielectric in the neighborhood of metal gate. Hence, in this work, interferometry and spectroscopic ellipsometry as well as scattered Raman radiation analysis have been used in the investigation of metal-oxide-semiconductor (MOS) structures. The above mentioned methods turned out to be very useful for the possible explanation of changes in photoelectric characteristics of MOS structures with aluminum gate.

  6. Application of ellipsometric and interference methods in MOS structures investigations

    Science.gov (United States)

    Rzodkiewicz, W.; Borowicz, L.; Piskorski, K.

    2007-04-01

    Changes in some electrical and photoelectric parameters in the plane of aluminum gate, particularly in the effective contact potential difference (ECPD or phiMS factor) have been observed in MOS System Studies Department of Institute of Electron Technology for the first time. It has been found that the MS distribution over the gate area has a characteristic domelike shape, with the highest values ate the center of the gate, lower at the gate edges and still lower at gate corners. In order to find out why these values were changed in such way, we have investigated optical properties of the dielectric in the neighborhood of metal gate. Hence, in this work, interferometry and spectroscopic ellipsometry as well as scattered Raman radiation analysis have been used in the investigation of metal-oxide-semiconductor (MOS) structures. The above mentioned methods turned out to be very useful for the possible explanation of changes in photoelectric characteristics of MOS structures with aluminum gate.

  7. Optical investigation of functional structures in isolated perfused pig heart

    Science.gov (United States)

    Rauh, Robert; Boehnert, Markus; Mahlke, Christine; Kessler, Manfred D.

    2000-11-01

    Light scattering in tissue of mammals and humans is affected by subcellular structures. Since these structures correlate well with the status of cells and tissue, light scattering seems to be ideal for monitoring of functional tissue state. By use of EMPHO SSK Oxyscan we investigated functional parameters in a novel kind of isolated perfused pig heart model. In this perfusion model we use organs obtained by the local slaughterhouse that are reanimated at our institute by application of a heart-lung machine. By creating 3D-images of tissue scattering we found an interesting relation between anatomical structures of myocardium and the 3D-images. Additionally, we detected coherence between backscattered light intensity and functional tissue status. Furthermore, we got a sight into the redox state of cytochrome aa3, b and c by creating difference spectra. We believe that this new kind of tissue imaging method will give us the opportunity to get new insights into myocardial function.

  8. Investigation of knowledge structure of nuclear data evaluation code

    International Nuclear Information System (INIS)

    Uenaka, Junji; Kambayashi, Shaw

    1988-08-01

    In this report, investigation results of knowledge structure in a nuclear data evaluation code are described. This investigation is related to the natural language processing and the knowledge base in the research theme of Human Acts Simulation Program (HASP) begun at the Computing Center of JAERI in 1987. By using a machine translation system, an attempt has been made to extract a deep knowledge from Japanese sentences which are equivalent to a FORTRAN program CASTHY for nuclear data evaluation. With the knowledge extraction method used by the authors, the verification of knowledge is more difficult than that of the prototyping method in an ordinary AI technique. In the early stage of building up a knowledge base system, it seems effective to extract and examine knowledge fragments of limited objects. (author)

  9. Investigating the dynamic properties of an MOS-transistor structure

    OpenAIRE

    Likhobabin, N. P.; Politanskii, L. F.; Vatamanyuk, P. P.

    1990-01-01

    The literature provides practically no information on the operation of MOS-transistor switches in the low-temperature range. The purpose of the present work was to study the dynamic parameters in the temperature range from 77 to 400 K. The investigations were carried out on horizontal high-voltage MOS structures having a drift region and a polysilicon gate, which had been fabricated on KDB80 plates.

  10. An empirical investigation of governance structures in the hotel industry

    OpenAIRE

    Dahlstrom, Robert; Haugland, Sven Arne; Nygaard, Arne; Rokkan, Aksel Ivar

    2002-01-01

    The study investigates alternative governance forms in the hotel industry. We analyze the choice among independently owned firms, voluntary chains, franchising, and vertically integrated chains. Based on agency theory, we argue that the need for control over service quality, financial risk, and the market environment affect the choice of governance form. Prior agency research emphasizes alternative governance structures employed by principals given local market conditions, agent incentives, a...

  11. Investigation of the disc-and-washer structure

    International Nuclear Information System (INIS)

    Mavrogenes, G.; Gallagher, W.J.

    1981-01-01

    About 1971 a proposed accelerating structure was described by the radiotechnical Institute, Moscow, which was intended for proton acceleration in a planned meson factory linac. The structure has several quite useful features and has been subsequently investigated by AECL (Chalk River, Canada), LASL (UC Los Alamos, NM) and Argonne National Laboratory. A sketch of the structure is shown which reveals the origin of the name disc-and-washer structure (DAW). The origin and development of the concept upon which the structure is founded is provided from considerations of a chain of individual TM-01 cavities designed to produce kinetic energy gain to a bunched beam transiting their common axis. It is assumed the cavities are individually excited without inter-coupling; so that for maximum energy gain there is a specific phasing requirement based on the transit time from the previous cavity. Such a system would be very complex to operate and would only be considered in the special case of a few cavities as, for example, the LASL PHERMEX

  12. Advanced Helicopter Structural Design Investigation. Volume I. Investigation of Advanced Structural Component Design Concepts

    Science.gov (United States)

    1976-03-01

    tion Box. Forward of Pilots Station. Solid Slug 5052 Aluminum Alloy "Cross Core", Honeycomb Material. Core Stroke, 21 in. Weight 30 lb. High En...basically of aluminum alloy skins, stringers, and frames. Stainless steel and/or titanium is used where feasible (e.g., in firewalls and fittings...supports the tail rotor, gearbox, and shafting. Construction is basically aluminum alloy two-spar, rib, skin, stringer type. The spars extend into the

  13. Investigation on the thermographic detection of corrosion in RC structures

    Science.gov (United States)

    Tantele, Elia A.; Votsis, Renos A.; Kyriakides, Nicholas; Georgiou, Panagiota G.; Ioannou, Fotia G.

    2017-09-01

    Corrosion of the steel reinforcement is the main problem of reinforced concrete (RC) structures. Over the past decades, several methods have been developed aiming to detect the corrosion process early in order to minimise the structural damage and consequently the repairing costs. Emphasis was given in developing methods and techniques of non-destructive nature providing fast on-the-spot detection and covering large areas rather that concentrating on single locations. This study, investigates a non-destructive corrosion detection technique for reinforced concrete, which is based on infrared thermography and the difference in thermal characteristics of corroded and non-corroded steel rebars. The technique is based on the principle that corrosion products have poor heat conductivity, and they inhibit the diffusion of heat that is generated in the reinforcing bar due to heating. For the investigation RC specimens, have been constructed in the laboratory using embedded steel bars of different corrosion states. Afterward, one surface of the specimens was heated using an electric device while thermal images were captured at predefined time instants on the opposite surface with an IR camera. The test results showed a clear difference between the thermal characteristics of the corroded and the non-corroded samples, which demonstrates the potential of using thermography in corrosion detection in RC structures.

  14. Investigation of thermal conduction in symmetric and asymmetric nanoporous structures

    Science.gov (United States)

    Yu, Ziqi; Ferrer-Argemi, Laia; Lee, Jaeho

    2017-12-01

    Nanoporous structures with a critical dimension comparable to or smaller than the phonon mean free path have demonstrated significant thermal conductivity reductions that are attractive for thermoelectric applications, but the presence of various geometric parameters complicates the understanding of governing mechanisms. Here, we use a ray tracing technique to investigate phonon boundary scattering phenomena in Si nanoporous structures of varying pore shapes, pore alignments, and pore size distributions, and identify mechanisms that are primarily responsible for thermal conductivity reductions. Our simulation results show that the neck size, or the smallest distance between nearest pores, is the key parameter in understanding nanoporous structures of varying pore shapes and the same porosities. When the neck size and the porosity are both identical, asymmetric pore shapes provide a lower thermal conductivity compared with symmetric pore shapes, due to localized heat fluxes. Asymmetric nanoporous structures show possibilities of realizing thermal rectification even with fully diffuse surface boundaries, in which optimal arrangements of triangular pores show a rectification ratio up to 13 when the injection angles are optimally controlled. For symmetric nanoporous structures, hexagonal-lattice pores achieve larger thermal conductivity reductions than square-lattice pores due to the limited line of sight for phonons. We also show that nanoporous structures of alternating pore size distributions from large to small pores yield a lower thermal conductivity compared with those of uniform pore size distributions in the given porosity. These findings advance the understanding of phonon boundary scattering phenomena in complex geometries and enable optimal designs of artificial nanostructures for thermoelectric energy harvesting and solid-state cooling systems.

  15. Nuclear structure of the transactinides – investigated by decay spectroscopy

    Directory of Open Access Journals (Sweden)

    Heßberger Fritz Peter

    2016-01-01

    Full Text Available Superheavy elements owe their stability due to a subtle balance between the disruptive Coulomb force and the attractive nuclear forces. Thus they represent an ideal laboratory to study basic interactions. The essential tools are detailed investigations of radioactive decay properties and nuclear structure of superheavy nuclei. The results of those studies will deliver valuable input to improve theoretical models. To fulfill this demand conclusive data of high quality are necessary, which is presently not so easy to meet due to small production cross sections and technical limitations (beam intensities, detection probabilities. Possibilities and problems concerning extraction of decay properties and nuclear structure information on the basis of a low number of observed decay events will be discussed for three illustrative examples, 257Rf, 257Lr, and 288Fl.

  16. Multi-Probe Investigation of Proteomic Structure of Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Plomp, M; Leighton, T J; Vogelstein, B; Wheeler, K E

    2008-01-24

    Complete genome sequences are available for understanding biotransformation, environmental resistance and pathogenesis of microbial, cellular and pathogen systems. The present technological and scientific challenges are to unravel the relationships between the organization and function of protein complexes at cell, microbial and pathogens surfaces, to understand how these complexes evolve during the bacterial, cellular and pathogen life cycles, and how they respond to environmental changes, chemical stimulants and therapeutics. In particular, elucidating the molecular structure and architecture of human pathogen surfaces is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance and development of countermeasures against bioterrorist agents. The objective of this project was to investigate the architecture, proteomic structure, and function of bacterial spores through a combination of high-resolution in vitro atomic force microscopy (AFM) and AFM-based immunolabeling with threat-specific antibodies. Particular attention in this project was focused on spore forming Bacillus species including the Sterne vaccine strain of Bacillus anthracis and the spore forming near-neighbor of Clostridium botulinum, C. novyi-NT. Bacillus species, including B. anthracis, the causative agent of inhalation anthrax are laboratory models for elucidating spore structure/function. Even though the complete genome sequence is available for B. subtilis, cereus, anthracis and other species, the determination and composition of spore structure/function is not understood. Prof. B. Vogelstein and colleagues at the John Hopkins University have recently developed a breakthrough bacteriolytic therapy for cancer treatment (1). They discovered that intravenously injected Clostridium novyi-NT spores germinate exclusively within the avascular regions of tumors in mice and destroy advanced cancerous lesions. The bacteria were also

  17. Structural investigation of carbon/carbon composites by neutron scattering

    International Nuclear Information System (INIS)

    Prem, Manfred; Krexner, Gerhard; Peterlik, Herwig

    2006-01-01

    Carbon/carbon (C/C) composite material was investigated by means of small-angle as well as wide-angle elastic neutron scattering. The C/C-composites were built up from bi-directionally woven fabrics from PAN-based carbon fibers. Pre-impregnation with phenolic resin was followed by pressure curing and carbonization at 1000 deg. C and a final heat treatment at either 1800 or 2400 deg. C. Measurements of the samples were performed in orientations arranging the carbon fibers, respectively, parallel and perpendicular to the incoming beam. Structural features of the fibers as well as the inherently existing pores are presented and the influence of the heat treatment is discussed. The results are compared to earlier X-ray investigations of carbon fibers and C/C-composites

  18. Structural investigations of sodium caseinate micelles in complex environments

    Energy Technology Data Exchange (ETDEWEB)

    Huck Iriart, C.; Herrera, M.L.; Candal, R. [Universidad de Buenos Aires, Buenos Aires (Argentina); Oliveira, C.L.P. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil); Torriani, I. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The most frequent destabilization mechanisms in Sodium Caseinate (NaCas) emulsions are creaming and flocculation. Coarse or fine emulsions with low protein con- tent destabilize mainly by creaming. If migration mechanism is suppressed, flocculation may become the main mechanism of destabilization. Small Angle X-Ray Scattering (SAXS) technique was applied to investigate sodium caseinate micelles structure in different environments. As many natural products, Sodium Caseinate samples have large polydisperse size distribution. The experimental data was analyzed using advanced modeling approaches. The Form Factor for the Caseinate micelle subunits was described by an ellipsoidal core shell model and the structure factor was split into two contributions, one corresponding to the particle-particle interactions and another one for the long range correlation of the subunits in the supramolecular structure. For the first term the hard sphere structure factor using the Percus-Yevick approximation for closure relation was used and for the second term a fractal model was applied. Three concentrations of sodium Caseinate (2, 5 and 7.5 %wt.) were measured in pure water, sugar solutions (20 %wt.) and in three different lipid phase emulsions containing 10 %wt. sunflower seed, olive and fish oils. Data analysis provided an average casein subunit radius of 4 nm, an average distance between the subunits of around 20nm and a fractal dimension value of around 3 for all samples. As indicated by the values of the correlation lengths for the set of studied samples, the casein aggregation is strongly affected by simple sugar additions and it is enhanced by emulsion droplets hydrophobic interaction. As will be presented, these nanoscale structural results provided by scattering experiments is consistent with macroscopic results obtained from several techniques, providing a new understanding of NaCas emulsions. (author)

  19. Structural and Electronic Investigations of Complex Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Hyunjin [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  20. Investigation of Wireless Sensor Networks for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2012-01-01

    Full Text Available Wireless sensor networks (WSNs are one of the most able technologies in the structural health monitoring (SHM field. Through intelligent, self-organising means, the contents of this paper will test a variety of different objects and different working principles of sensor nodes connected into a network and integrated with data processing functions. In this paper the key issues of WSN applied in SHM are discussed, including the integration of different types of sensors with different operational modalities, sampling frequencies, issues of transmission bandwidth, real-time ability, and wireless transmitter frequency. Furthermore, the topology, data fusion, integration, energy saving, and self-powering nature of different systems will be investigated. In the FP7 project “Health Monitoring of Offshore Wind Farms,” the above issues are explored.

  1. Mechanical and Structural Investigation of Porous Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Baran Sarac

    2015-06-01

    Full Text Available The intrinsic properties of advanced alloy systems can be altered by changing their microstructural features. Here, we present a highly efficient method to produce and characterize structures with systematically-designed pores embedded inside. The fabrication stage involves a combination of photolithography and deep reactive ion etching of a Si template replicated using the concept of thermoplastic forming. Pt- and Zr-based bulk metallic glasses (BMGs were evaluated through uniaxial tensile test, followed by scanning electron microscope (SEM fractographic and shear band analysis. Compositional investigation of the fracture surface performed via energy dispersive X-ray spectroscopy (EDX, as well as Auger spectroscopy (AES shows a moderate amount of interdiffusion (5 at.% maximum of the constituent elements between the deformed and undeformed regions. Furthermore, length-scale effects on the mechanical behavior of porous BMGs were explored through molecular dynamics (MD simulations, where shear band formation is observed for a material width of 18 nm.

  2. The Monotonicity Puzzle: An Experimental Investigation of Incentive Structures

    Directory of Open Access Journals (Sweden)

    Jeannette Brosig

    2010-05-01

    Full Text Available Non-monotone incentive structures, which - according to theory - are able to induce optimal behavior, are often regarded as empirically less relevant for labor relationships. We compare the performance of a theoretically optimal non-monotone contract with a monotone one under controlled laboratory conditions. Implementing some features relevant to real-world employment relationships, our paper demonstrates that, in fact, the frequency of income-maximizing decisions made by agents is higher under the monotone contract. Although this observed behavior does not change the superiority of the non-monotone contract for principals, they do not choose this contract type in a significant way. This is what we call the monotonicity puzzle. Detailed investigations of decisions provide a clue for solving the puzzle and a possible explanation for the popularity of monotone contracts.

  3. Structural investigation of a new antimicrobial thiazolidine compound

    Energy Technology Data Exchange (ETDEWEB)

    Cozar, I. B.; Pîrnău, A. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, RO-400293 Cluj-Napoca (Romania); Vedeanu, N.; Nastasă, C. [Iuliu Hatieganu University of Medicine and Pharmacy, Faculty of Pharmacy, RO-400023 Cluj-Napoca (Romania)

    2013-11-13

    Thiazoles and their derivatives have attracted the interest over the last decades because of their varied biological activities: antibacterial, antiviral, antifungal, inflammation or in the treatment of allergies. A new synthesized compound 3-[2-(4-Methyl-2-phenyl-thiazol-5-yl)-2-oxo-ethyl]-thazolidine-2,4-dione was investigated by FT-IR, FT-Raman, {sup 1}H, {sup 13}C NMR spectroscopies and also by DFT calculations at B3LYP/6-31G(d) level of theory. The very good correlation found between the experimental and theoretical data shows that the optimized molecular structure is very close to reality. Also the NMR spectra show a monomeric behaviour of this compound in solutions.

  4. Structures of the lovozerite type - a quantitative investigation

    International Nuclear Information System (INIS)

    Malinovsky, Yu.A.; Burzlaff, H.; Rothammel, W.

    1993-01-01

    The structure of lovozerite is derived from perovskite. For 24 members of the lovozerite family an aristotype is postulated. The method of quantitative comparison using the concept of mappings is applied to the lovozerite family using the aristotype as a 'structural unit'. The method is extended to relationships of symmetry-type II, i.e. the derived structure and the aristotype have only a common subgroup, the remaining non-common symmetry of the derived structure is used as 'distribution' symmetry for the structural unit. The numerical results are discussed in detail. (orig.)

  5. Investigation on the vibrational and structural properties of a self-structured bridged silsesquioxane.

    Science.gov (United States)

    Creff, Gaëlle; Arrachart, Guilhem; Hermet, Patrick; Wadepohl, Hubert; Almairac, Robert; Maurin, David; Sauvajol, Jean-Louis; Carcel, Carole; Moreau, Joël J E; Dieudonné, Philippe; Man, Michel Wong Chi; Bantignies, Jean-Louis

    2012-04-28

    The crystalline structure of ureidopyrimidinone-based silane (UPY) has been determined. The local and long range order structuring of the bridged silsesquioxane (MUPY) resulting from the sol-gel hydrolysis-condensation of the former precursor has been investigated by MFTIR (Mid Fourier Transform InfraRed) combined with DFT (Density Functional Theory) and XRD (X-ray diffraction) studies. These studies showed that a long range structuring exists within the organic fragments with the transcription of the DDAA (Donor-Donor-Acceptor-Acceptor) H-bonding array from UPY to MUPY whereas a disordered siloxane network was revealed in the hybrid material. This journal is © the Owner Societies 2012

  6. Taking action: A cross-modal investigation of discourse structure

    Directory of Open Access Journals (Sweden)

    Elsi eKaiser

    2012-06-01

    Full Text Available Segmenting stimuli into events and understanding the relations between those events is crucial for understanding the world. For example, on the linguistic level, successful language use requires the ability to recognize semantic coherence relations between events (e.g. causality, similarity. However, relatively little is known about the mental representation of discourse structure. We report two experiments that used a cross-modal priming paradigm to investigate how humans represent the relations between events. Participants repeated a motor action modeled by the experimenter (e.g. rolled a ball towards mini bowling pins to knock them over, and then completed an unrelated sentence-continuation task (e.g. provided a continuation for Peter scratched John. …. In two experiments, we tested whether and how the coherence relations represented by the motor actions (e.g., causal events vs. non-causal events influence participants’ performance in the linguistic task. Our analyses focused on the coherence relations between the prompt sentences and participants’ continuations, as well as the referential shifts in the continuations. As a whole, the results suggest that the mental representations activated by motor actions overlap with the mental representations used during linguistic discourse-level processing, but nevertheless contain fine-grained information about sub-types of causality (reaction vs. consequence. In addition, the findings point to parallels between shifting one’s attention from one event to another and shifting one’s attention from one referent to another, and indicate that the event structure of causal sequences is conceptualized more like single events than like two distinct events. As a whole, the results point towards common representations activated by motor sequences and discourse-semantic relations, and further our understanding of the mental representation of discourse structure, an area that is still not yet well-understood.

  7. Electronic Structure Investigation of Doping C60 with Metal Oxide

    Science.gov (United States)

    Wang, Chenggong; Gao, Yongli

    2014-03-01

    Fullerene (C60) has been used extensively as an acceptor material in organic photovoltaic (OPV) cells. Other applications including n-channel organic thin film transistors (OTFT) and C60 based organic superconductors have been reported more than a decade ago. We have investigated p-doping of C60 with molybdenum oxide (MoOx) with ultra-violet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IPES) and atomic force microscopy (AFM). Both surface doping and bulk doping by MoOx are studied. It was found that the thermally evaporated MoOx inter-layer substantially increased the surface workfunction. This increased surface workfunction strongly attract electrons towards the MoOx layer at the C60/MoOx interface, resulting in strong inversion of C60. Energy levels of C60 relax gradually as the thickness of C60 increases. An exceptionally long (greater than 400 Angstrom) band bending is observed during this relaxation in C60. Such a long band bending has not been observed for other organic/MoOx interface. For the bulk doping, MoOx doping ratios from 1% to over 100% were investigated. The saturation occurs at approximately 20 %, when the highest occupied molecular level (HOMO) of C60 starts to be pinned at the Fermi level. These studies demonstrate effective ways to manipulate the electronic structures of the fullerene. This work is supported by the National Science Foundation Grant No. DMR-1303742.

  8. An investigation of the structure of rotational discontinuities

    International Nuclear Information System (INIS)

    Goodrich, C.C.; Cargill, P.J.

    1991-01-01

    The structure of rotational discontinuities (RDs) has been studied through hybrid simulations for a range of propagation angle Θ bn between the discontinuity normal and the upstream magnetic field and plasma β. For sufficiently narrow initial states, the simulations produce quasi-steady reverse rotation magnetic field structures for 30 degree ≤ Θ bn ≤ 60 degree and 0 i -1 . This structure is characterized by a right handed field rotation upstream joined smoothly to a left handed field rotation downstream; its width decreases from 60-70 c/ω pi at Θ bn = 30 degree to less than 25 c/ω pi at Θ bn = 60 degree. The magnetic field hodograms of the RD results have a distinctive S-shape which is most pronounced in simulations with small Θ bn and initially right handed rotations. The reverse rotation structure is the net result of the expansion of the initial current layer via the fast and intermediate wave modes

  9. Investigation of structural responses of breakwaters for green water based on fluid-structure interaction analysis

    Directory of Open Access Journals (Sweden)

    Chi-Seung Lee

    2012-06-01

    Full Text Available In the present study, the structural response of breakwaters installed on container carriers against green water impact loads was numerically investigated on the basis of the fluid-structure interaction analysis. A series of numerical studies is carried out to induce breakwater collapse under such conditions, whereby a widely accepted fluid-structure interaction analysis technique is adopted to realistically consider the phenomenon of green water impact loads. In addition, the structural behaviour of these breakwaters under green water impact loads is investigated simultaneously throughout the transient analysis. A verification study of the numerical results is performed using data from actual collapse incidents of breakwaters on container carriers. On the basis of the results of a series of numerical analyses, the pressure distribution of green water was accurately predicted with respect to wave mass and velocity. It is expected that the proposed analytical methodology and predicted pressure distribution could be used as a practical guideline for the design of breakwaters on container carriers.

  10. High-Throughput Sequencing Based Methods of RNA Structure Investigation

    DEFF Research Database (Denmark)

    Kielpinski, Lukasz Jan

    In this thesis we describe the development of four related methods for RNA structure probing that utilize massive parallel sequencing. Using them, we were able to gather structural data for multiple, long molecules simultaneously. First, we have established an easy to follow experimental and comp......In this thesis we describe the development of four related methods for RNA structure probing that utilize massive parallel sequencing. Using them, we were able to gather structural data for multiple, long molecules simultaneously. First, we have established an easy to follow experimental...... with known priming sites....

  11. The microscopic investigation of structures of moving flux lines by ...

    Indian Academy of Sciences (India)

    of moving flux lines by neutron and muon techniques. E M FORGAN. ∗. , D CHARALAMBOUS and P G KEALEY. School of Physics and Astronomy, University of Birmingham B15 2TT, UK. ∗. Email: emf@thsun7.ph.bham.ac.uk. Abstract. We have used a variety of microscopic techniques to reveal the structure and motion of.

  12. Structural investigations of the regio- and enantioselectivity of lipases

    NARCIS (Netherlands)

    Lang, Dietmar A.; Dijkstra, Bauke W.

    Although lipases are widely applied for the stereospecific resolution of racemic mixtures of esters, the atomic details of the factors that are responsible for their stereospecificity are largely obscure. We determined the X-ray structures of Pseudomonas cepacia lipase in complex with two

  13. The microscopic investigation of structures of moving flux lines by ...

    Indian Academy of Sciences (India)

    Abstract. We have used a variety of microscopic techniques to reveal the structure and motion of flux line arrangements, when the flux lines in low Tc type II superconductors are caused to move by a transport current. Using small-angle neutron scattering by the flux line lattice (FLL), we are able to demonstrate directly the ...

  14. Investigation of stresses in facetted glass shell structures

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Wester, Ture

    2007-01-01

    system, while the glass merely serves as a separation of the inside environment from the outside. In this paper facetted glass shell structures with three way vertices, i.e. with three adjoining edges in each vertex are considered, since the load carrying ability of such a structure is achieved primarily......The typical use of triangular and quadrangular facets in doubly curved facetted shells requires the use of triangulated truss systems or quadrangular truss framing with diagonals or cross tension cabling. In such a structure, the load carrying ability is based on concentrated forces in the framing...... by in-plane forces in the facets and the transfer of distributed in-plane forces across the joints. It is described how these facets work structurally, specifically how bending moments develop and cause possible stress concentrations in the corners, which are subjected to uplift. Apart from local...

  15. Investigation of optical, structural and morphological properties of ...

    Indian Academy of Sciences (India)

    Pure and different ratios (1, 3, 5, 7 and 10%) of boron doped TiO2 thin films were grown on the glass substrate by using sol–gel dip coating method having some benefits such as basic and easy applicability compared to other thin film production methods. To investigate the effect of boron doped on the physical properties of ...

  16. Local Structure Investigation of ReMn2O5

    Science.gov (United States)

    Masadeh, A.; Tyson, T.; Cheong, S.-W.

    2009-03-01

    The temperature dependent structure of the ReMn2O5 (Re=rare earth) system has been examined by the x-ray pair distribution function method based on high-q data. Temperature dependent measurements reveal anomalies in the short range structure involving oxygen atoms. Comparison with Rietveld and XAFS analysis will be made. The detailed temperature dependent structure on multiple length scales will be presented with implications for the observed low temperature ferroelectric properties. This work is supported by DOE Grant DE-FG02-07ER46402.

  17. Structural investigations of substituted indolizine derivatives by NMR studies

    International Nuclear Information System (INIS)

    Furdui, Bianca; Dinica, Rodica; Demeunynck, Martine; Druta, Ioan

    2008-01-01

    Owing to the increasing importance of indolizine heterocycles in the field of biology and pharmacology we have synthesized and investigated the obtained heterocycles by NMR techniques. In order to investigate the substituent effects on the spectroscopic properties, a series of indolizine derivatives were studied by 1 H-NMR, 13 C-NMR and 2D NMR (GCOSY, GHMBC and GHMQC spectra). (authors)

  18. An Investigation of Generic Structures of Pakistani Doctoral Thesis Acknowledgements

    Science.gov (United States)

    Rofess, Sakander; Mahmood, Muhammad Asim

    2015-01-01

    This paper investigates Pakistani doctoral thesis acknowledgements from genre analysis perspective. A corpus of 235 PhD thesis acknowledgements written in English was taken from Pakistani doctoral theses collected from eight different disciplines. HEC Research Repository of Pakistan was used as a data sources. The theses written by Pakistani…

  19. A quantum chemical investigation of the electronic structure of thionine.

    Science.gov (United States)

    Rodriguez-Serrano, Angela; Daza, Martha C; Doerr, Markus; Marian, Christel M

    2012-02-01

    We have examined the electronic and molecular structure of 3,7-diaminophenothiazin-5-ium dye (thionine) in the electronic ground state and in the lowest excited states. The electronic structure was calculated using a combination of density functional theory and multi-reference configuration interaction (DFT/MRCI). Equilibrium geometries were optimized employing (time-dependent) density functional theory (B3LYP functional) combined with the TZVP basis set. Solvent effects were estimated using the COSMO model and micro-hydration with up to five explicit water molecules. Our calculated electronic energies are in good agreement with experimental data. We find the lowest excited singlet and triplet states at the ground state geometry to be of π→π* (S(1), S(2), T(1), T(2)) and n→π* (S(3), T(3)) character. This order changes when the molecular structure in the electronically excited states is relaxed. Geometry relaxation has almost no effect on the energy of the S(1) and T(1) states (~0.02 eV). The relaxation effects on the energies of S(2) and T(2) are moderate (0.14-0.20 eV). The very small emission energy results in a very low fluorescence rate. While we were not able to locate the energetic minimum of the S(3) state, we found a non-planar minimum for the T(3) state with an energy which is very close to the energy of the S(1) minimum in the gas phase (0.04 eV above). When hydration effects are taken into account, the n→π* states S(3) and T(3) are strongly blueshifted (0.33 and 0.46 eV), while the π→π* states are only slightly affected (<0.06 eV). This journal is © The Royal Society of Chemistry and Owner Societies 2012

  20. Structure investigation of lyocell fibres by in situ USANS measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jericha, E.; Villa, M.; Baron, M.; Loidl, R.; Biganska, O.; Navard, P.; Patlazhan, S.; Aldred, P.; Ruef, H.; Schuster, K.C

    2004-07-15

    Lyocell fibres nowadays are widely used in textile production and have an enormous potential for various technical applications. The structure of these fibres, however, is a pending research issue. Particularly, the process of fibrillation is still to be understood and a major issue for the optimisation of the production process. Now, first experiments with neutrons using USANS technique have revealed indications about the fibre structure in the micrometer range. We observed clear ultra-small-angle scattering patterns from even small numbers of fibres after spinning and even from inside the spinning bath during the spinning process. The outer diameter of the fibres is well reproduced in the scattering patterns which also indicate the presence of smaller internal structure. First experimental results obtained at the S18 instrument at the ILL are presented.

  1. Structure investigation of lyocell fibres by in situ USANS measurements

    International Nuclear Information System (INIS)

    Jericha, E.; Villa, M.; Baron, M.; Loidl, R.; Biganska, O.; Navard, P.; Patlazhan, S.; Aldred, P.; Ruef, H.; Schuster, K.C.

    2004-01-01

    Lyocell fibres nowadays are widely used in textile production and have an enormous potential for various technical applications. The structure of these fibres, however, is a pending research issue. Particularly, the process of fibrillation is still to be understood and a major issue for the optimisation of the production process. Now, first experiments with neutrons using USANS technique have revealed indications about the fibre structure in the micrometer range. We observed clear ultra-small-angle scattering patterns from even small numbers of fibres after spinning and even from inside the spinning bath during the spinning process. The outer diameter of the fibres is well reproduced in the scattering patterns which also indicate the presence of smaller internal structure. First experimental results obtained at the S18 instrument at the ILL are presented

  2. Investigation of niobium structures for micro-SQUIDs

    Energy Technology Data Exchange (ETDEWEB)

    Gottwals, Sandra [Institut fuer Physik, Martin-Luther-Universitaet Halle-Wittenberg (Germany); Heyroth, Frank [Interdisziplinaeres Zentrum fuer Materialwissenschaften, MLU Halle-Wittenberg (Germany); Schmidt, Georg [Institut fuer Physik, Martin-Luther-Universitaet Halle-Wittenberg (Germany); Interdisziplinaeres Zentrum fuer Materialwissenschaften, MLU Halle-Wittenberg (Germany)

    2016-07-01

    In the presence of the Spin-Nernst-Effect a temperature gradient generates spin accumulations in a metal film. The magnetic moment of these accumulations causes a magnetic field. We intend to measure these low magnetic fields using Nb-based micro-SQUIDs. Superconducting Niobium layers are deposited by e-beam evaporation and protected by capping layers either from Ru or Si. The Niobium layers are patterned by e-beam lithography. We have fabricated test stripes with different width varying from 1000 nm to 20 nm. We will present structural and electrical characterization of Nb stripes patterned by different etching processes. Most of the structures show Ohmic behavior at room temperature. At low temperature a transition to the superconducting state is observed with a transition temperature depending on layer thickness and structures size.

  3. Structural Investigations of Nanowires Using X-Ray Diffraction

    DEFF Research Database (Denmark)

    Stankevic, Tomas

    Advancements in growth of the nanowire-based devices opened another dimension of possible structures and material combinations, which nd their applications in a wide variety of elds, including everyday life. Characterization of such devices brings its own challenges and here we show that X-rays oer...

  4. Quantum chemical investigation on structures and energetics of ...

    Indian Academy of Sciences (India)

    The present work deals with a systematic study on WF species using ab initio density functional method. The geometrical features related to the equilibrium structures of WF species up to = 5 are highlighted and the effect of addition as well as removal of an electron is discussed. The chemical stability of these species ...

  5. Structural investigations of biogenic iron oxide samples. Preliminary results

    International Nuclear Information System (INIS)

    Balasoiu, M.; Kuklin, A.I.; Orelovich, O.L.; Kovalev, Yu.S.; Arzumanyan, G.M.; Kurkin, T.S.; Stolyar, S.V.; Iskhakov, R.S.; Rajkher, Yu.L.

    2008-01-01

    Some preliminary results on morphology and structure of iron oxide particles formed inside Klebsiella oxytoca bacteria are presented. In particular, by means of optical microscopy, scanning electron microscopy and small-angle X-ray scattering the effect of the bacteria age (the duration of growth) on the nanoparticles properties is studied

  6. A Non-Structural Investigation of VIX Risk Neutral Density

    DEFF Research Database (Denmark)

    Barletta, Andrea; Santucci de Magistris, Paolo; Violante, Francesco

    behavior of the risk neutral moments, the probabilities of volatility tail-events are priced in the options as jumps under the risk-neutral measure, and the variance swap term structure depends on two factors, one accounting for the slope and one for the mean-reverting behavior of the VIX....

  7. Structural and spectroscopic investigation of lanthanum-substituted ...

    Indian Academy of Sciences (India)

    Administrator

    Si MAS NMR spectroscopies. The refinements of powder XRD patterns of the substituted compounds by the Rietveld method showed that the lanthanum occupied the two metal sites, i.e. (4f) and. (6h) sites into the apatite structure, with a clear preference for the (6h) sites. A progressive shift of the free oxygen O(4) towards ...

  8. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  9. Electronic and structural investigation of buckled antimonene using ...

    Indian Academy of Sciences (India)

    2017-06-20

    Jun 20, 2017 ... Electronic and structural analysis of buckled antimonene has been performed using density functional theory-based a b − i n i t i o approach. Geometrical parameters such as bond length and bond angle are very close to the single ruffle layer of rhombohedral antimony. Phonon dispersion along the high ...

  10. Electronic and structural investigation of buckled antimonene using ...

    Indian Academy of Sciences (India)

    Md Shahzad Khan

    Published online 20 June 2017. Abstract. Electronic and structural analysis of buckled antimonene has been performed using density functional theory-based ab-initio approach. Geometrical parameters such as bond length and bond angle are very close to the single ruffle layer of rhombohedral antimony. Phonon ...

  11. Structural investigation of Zn doped sodium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, V., E-mail: vijetabhatia0712@gmail.com; Kumar, D. [Department of Physics, Punjabi University Patiala (India); Singh, D.; Singh, S. P. [Department of Physics, SGGSW University, Fatehgarh Sahib (India)

    2016-05-06

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na{sub 2}O:15Bi{sub 2}O{sub 3}:70B{sub 2}O{sub 3} (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained by these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO{sub 3} & BO{sub 4} structural units) have been observed.

  12. Investigations of the Band Structure and Morphology of Nanostructured Surfaces

    Science.gov (United States)

    Knox, Kevin R.

    2011-12-01

    In this dissertation, I examine the electronic structure of two very different types of two-dimensional systems: valence band electrons in single layer graphene and electronic states created at the vacuum interface of single crystal copper surfaces. The characteristics of both electronic systems depend intimately on the morphology of the surfaces they inhabit. Thus, in addition to discussing the respective band structures of these systems, a significant portion of this dissertation will be devoted to measurements of the surface morphology of these systems. Free-standing exfoliated monolayer graphene is an ultra-thin flexible membrane and, as such, is known to exhibit large out-of-plane deformation due to substrate and adsorbate interaction as well as thermal vibrations and, possibly, intrinsic buckling. Such crystal deformation is known to limit mobility and increase local chemical reactivity. Additionally, deformations present a measurement challenge to researchers wishing to determine the band structure by angle-resolved photoemission since they limit electron coherence in such measurements. In this dissertation, I present low energy electron microscopy and micro probe diffraction measurements, which are used to image and characterize corrugation in SiO2-supported and suspended exfoliated graphene at nanometer length scales. Diffraction line-shape analysis reveals quantitative differences in surface roughness on length scales below 20 nm which depend on film thickness and interaction with the substrate. Corrugation decreases with increasing film thickness, reflecting the increased stiffness of multilayer films. Specifically, single-layer graphene shows a markedly larger short range roughness than multilayer graphene. Due to the absence of interactions with the substrate, suspended graphene displays a smoother morphology and texture than supported graphene. A specific feature of suspended single-layer films is the dependence of corrugation on both adsorbate load

  13. Molecular structure investigation and tautomerism aspects of (E)-3 ...

    Indian Academy of Sciences (India)

    calculations. The effect of the intermolecular N-H—. O H-bonding interactions on the calculated geometric parameters has been tested. The electronic spectra were assigned with the aid of the TD-DFT calculations. 2. Experimental. 2.1 Synthesis and spectral investigations. A mixture of indolin-2-one 1 (1.5 mmol, 200 mg), ...

  14. Investigations on the structure of Pb-Ge-Se glasses

    International Nuclear Information System (INIS)

    Kalra, G.; Upadhyay, M.; Sharma, Y.; Murugavel, S.; Abhaya, S.; Amarendra, G.

    2016-01-01

    Chalcogenide glasses have attracted much attention because of their potential application in various solid state devices. In the present work, we report here the detailed thermal, structural, microstructural studies on Pb x Ge 42-x Se 58 with (0 ≤ x ≤ 20) glasses. The influence of Pb content on the glass transition temperature, specific heat, and non-reversing enthalpy is observed and discussed qualitatively The Raman spectroscopic studies on the all the glass compositions are carried out and deconvoluted into different structural units. The positron annihilation life-time spectroscopy (PALS) studies helped to understand the nature of defect states present in the glassy system and its variation with Pb content. The concentration of charged defect centers is found to increase, whereas the open volume defect concentration decreases with Pb content in these glasses.

  15. Investigations of the structure of a-C:H films

    Energy Technology Data Exchange (ETDEWEB)

    Kleber, R.; Dworschak, W.; Gerber, J.; Krueger, A.; Jung, K.; Ehrhardt, H. (Fachbereich Physik, Univ. Kaiserslautern (Germany)); Schulze, S.; Muehling, I.; Deutschmann, S.; Scharff, W. (Technische Univ. Chemnitz, Sektion Physik/Elektronische Bauelemente (Germany)); Engelke, F.; Metz, H. (Sektion Physik, Leipzig Univ. (Germany))

    1991-07-07

    Amorphous hydrogenated carbon films were prepared in an inductively-coupled 13.56 MHz r.f.-glow discharge. The C{sub 2}H{sub 2} pressure varied between 4x10{sup -4} mbar and 8.2x10{sup -3} mbar. The average ion energies were in the range of about 30-350 eV. The films were characterized by measuring the hardness, stress, density and hydrogen content. Additional investigations were made by visible ion spectroscopy-infrared spectroscopy, electron energy loss spectroscopy and electron diffraction. Magnetic resonance methods like {sup 13}C nuclear magnetic resonance and electron spin resonance have been used to determine the ratio of sp{sup 2}- to sp{sup 3}-hybridized C atoms and the spin density. (orig.).

  16. Structural Analysis of Character Education: A Crosscultural Investigation

    Science.gov (United States)

    Sivo, Stephen; Karl, Shannon; Fox, Jesse; Taub, Gordon; Robinson, Edward

    2017-01-01

    The primary objective of this cross-cultural investigation is to compare patterns in student responses to an empirically scrutinized character education measure administered to students in four school districts in Florida with students in a school in Kenya. In this way, the generalizability of findings for scale scores could be compared across…

  17. Structural investigation of aroylhydrazones in dimethylsulphoxide/water mixtures

    Science.gov (United States)

    Galić, Nives; Dijanošić, Adriana; Kontrec, Darko; Miljanić, Snežana

    Molecular structures of aroylhydrazones derived from salicylaldehyde, o-vanilin and nicotinic acid hydrazide in DMSO and DMSO/H2O mixtures have been studied by NMR, UV-Vis, ATR and Raman spectroscopy. The addition of water to the system did not induce the tautomeric conversion of the existing form constituted of the ketoamino hydrazide part and the enolimino aldehyde part, but it was involved in the formation of hydrated molecules. Vibrational spectra (ATR and Raman) clearly indicated hydrogen bonding of the studied hydrazones through the carbonyl, amino and hydroxyl groups with water molecules. Increasing the water content conversion from E to Z isomer was not observed.

  18. Lattice investigations of nucleon structure at light quark masses

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M.; Nakamura, Y.; Schaefer, A. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB) (Germany)

    2009-12-15

    Lattice simulations of hadronic structure are now reaching a level where they are able to not only complement, but also provide guidance to current and forthcoming experimental programmes at, e.g. Jefferson Lab, COMPASS/CERN and FAIR/GSI. By considering new simulations at low quark masses and on large volumes, we review the recent progress that has been made in this exciting area by the QCDSF/UKQCD collaboration. In particular, results obtained close to the physical point for several quantities, including electromagnetic form factors and moments of ordinary parton distribution functions, show some indication of approaching their phenomenological values. (orig.)

  19. INVESTIGATING THE FACTOR STRUCTURE OF THE BLOG ATTITUDE SCALE

    Directory of Open Access Journals (Sweden)

    Zahra SHAHSAVAR

    2010-10-01

    Full Text Available Due to the wide application of advanced technology in education, many attitude scales have been developed to evaluate learners’ attitudes toward educational tools. However, with the rapid development of emerging technologies, using blogs as one of the Web 2.0 tools is still in its infancy and few blog attitude scales have been developed yet. In view of this need, a lot of researchers like to design a new scale based on their conceptual and theoretical framework of their own study rather than using available scales. The present study reports the design and development of a blog attitude scale (BAS. The researchers developed a pool of items to capture the complexity of the blog attitude trait, selected 29 items in the content analysis, and assigned the scale comprising 29 items to 216 undergraduate students to explore the underlying structure of the BAS. In exploratory factor analysis, three factors were discovered: blog anxiety, blog desirability, and blog self-efficacy; 14 items were excluded. The extracted items were subjected to a confirmatory factor analysis which lent further support to the BAS underpinning structure.

  20. Differential PIXE for investigating the layer structure of paintings

    International Nuclear Information System (INIS)

    Mando, P.A.; Fedi, M.E.; Grassi, N.; Migliori, A.

    2005-01-01

    This paper reports an example of how the differential PIXE technique can be successfully applied to the investigation of wood or canvas paintings. The work analysed is a famous wood painting by Leonardo da Vinci, the 'Madonna dei fusi' (ex-Reford version, 1501), chosen for a pilot study in a wide international project aimed at analysing Leonardo's works of art by means of non-destructive techniques. While illustrating the results obtained concerning the identification of pigments and the discrimination of the stratigraphy of layers, the merits and limits of differential PIXE in general are pointed out

  1. Magnetic and Structural Investigations of Nanocrystalline Cobalt-Ferrite

    Directory of Open Access Journals (Sweden)

    I. Sharifi

    2012-10-01

    Full Text Available Cobalt ferrite is an important magnetic material due to their large magneto-crystalline anisotropy, high cohercivity, moderate saturation magnetization and chemical stability.In this study, cobalt ferrites Nanoparticles have been synthesized by the co-precipitation method and a new microemulsion route. We examined the cation occupancy in the spinel structure based on the “Rietveld with energies” method. The Xray measurements revealed the production of a broad single ferrite cubic phase with the average particle sizes of about 12 nm and 7nm, for co-precipitation and micro-emulsion methods, respectively. The FTIR measurements between 400 and 4000 cm-1 confirmed the intrinsic cation vibrations of the spinelstructure for the two methods. Furthermore, the Vibrating Sample Magnetometer (VSM was carried out at room temperature to study the structural and magnetic properties. The results revealed that by changing the method from co-precipitation to the reverse micelle the material exhibits a softer magnetic behavior in such a way that both saturation magnetization and coercivity decrease from 58 to 29 emu/g and from 286 to 25 Oe, respectively.

  2. Investigation of ferromagnetic domain structures by neutron small angle scattering

    International Nuclear Information System (INIS)

    Schild, L.

    1984-01-01

    The magnetic small angle scattering of thermal neutrons caused by magnetic refraction at domain walls of ferromagnetic materials without texture has been investigated. Experiments on Fe-Si alloys with a twin crystal diffractometer were carried out. It is shown that the mean extension of magnetic basic units (domains as well as parallel wall systems) can be determined. A comparison of grain sizes determined metallographically with domain sizes obtained by neutron small-angle scattering has shown that neither mean grain size nor domain size can be assessed by small-angle scattering experiments

  3. Production and Structural Investigation of Polyethylene Composites with Modified Kaolin

    International Nuclear Information System (INIS)

    Domka, L.; Malicka, A.; Stachowiak, N.

    2008-01-01

    The study was undertaken to evaluate the effect of the filler (kaolin) modification with silane coupling agents on the properties of the polyethylene (HDPE Hostalen ACP 5831) composites. Powder mineral fillers are added to polymers to modify the properties of the latter and to reduce the cost of their production. A very important factor is the filler dispersion in the polymer matrix. Kaolin modified with 3-methacryloxypropyltrimethoxysilane and pure kaolin were characterised by surface area, pore size, water absorbing capacity, paraffin oil absorbing capacity, bulk density, scanning electron microscopy observations and X-ray diffraction measurements. Their performance was characterised by determination of the mechanical resistance upon static stretching and tearing, and their structure was observed in scanning electron microscopy images. The results were compared to those obtained for the composites with unmodified filler and pure HDPE. (authors)

  4. geoelectric investigation of subsurface structure of academic area of ...

    African Journals Online (AJOL)

    DR. AMIN

    2011-12-02

    Dec 2, 2011 ... around Sports Complex for groundwater exploitation activities. Keywords: Apparent ... Migmite is composite gneiss produced by injection of .... East of the MSS mosque entrance, behind the kiosk. Table 3: Derived Resistivity Values. Layer. Resistivity Range (m). Type of Material. 1. 10-100. Top Soil (Silty ...

  5. Structural integrity investigations of feeder pipe ice plugging procedures

    International Nuclear Information System (INIS)

    Flaman, M.T.; Shah, N.N.

    1985-03-01

    A procedure involving the use of a liquid nitrogen cooled heat exchanger to form internal ice plugs in feeder pipes is routinely used in nuclear generating stations. The use of this procedure has caused concerns with regard to the safety of station maintenance personnel, and in regard to the integrity of the feeder pipes. This report describes the results of laboratory stress and pressure measurements which were performed on a feeder pipe section during ice plugging operations to investigate these concerns. From the results of this study, and from the results of previous studies of material behaviour at low temperatures, it has been determined that the ice plugging procedure can be performed on feeder pipes in a safe and effective manner

  6. Nuclear structure investigations with inclusion of continuum states

    International Nuclear Information System (INIS)

    Rotter, I.

    1983-09-01

    The influence of the continuum on the properties of discrete nuclear states is reviewed. It is described on the basis of a continuum shell model. The coupling of the discrete states to the continuum results in an additional term to the Hamiltonian, commonly used in the study of nuclear structure, and an additional term to the wavefunction of the discrete state. These additional terms characterise finite nuclei in contrast to nuclear matter. They result in some symmetry violation of the residual nuclear interaction such as charge symmetry violation, and describe the nuclear surface, respectively. The energies and widths of resonance states result from the complex eigenvalues of the Hamiltonian. The partial widths are shown to be factorisable into a spectroscopic factor and into a penetration factor if the spectroscopic factor is large. An expression for the S-matrix is derived in which instead of the so-called resonance parameters, functions appear which are calculated in the framework of the model. The line shape of resonances is also influenced by these functions. As an extreme case, a resonance may have the appearance of a cusp. The conclusions drawn are supported by the results of numerical calculations performed in the continuum shell model for light nuclei with realistic shell model wavefunctions. (author)

  7. Investigation of Stability Alarming for Retaining Wall Structures with Damage

    Directory of Open Access Journals (Sweden)

    Qian Xu

    2017-01-01

    Full Text Available To warn of the stability of retaining wall structures with damage, a simplified mechanical model and a finite element model of this retaining wall-soil coupling system are established. Via finite element model updating, a baseline finite element model of the wall-soil system is acquired. A damage alarming index ERSD (Energy Ratio Standard Deviation is proposed via the wavelet packet analysis of a virtual impulse response function of dynamic responses to this baseline finite element model. The internal relationships among the alarming index, earth pressure, and damage stability of the wall are analyzed. Then, a damage stability alarming method for the retaining walls is advanced. To verify the feasibility and validity of this alarming method, vibration tests on the baseline finite element model of a pile plate retaining wall are performed. The ERSD is used as an alarm for the damage stability of the wall. Analysis results show that, with an increase in the ERSD, the stability of the wall changes from a stable state to an unstable one. The wall reaches a critical stable state when the alarming index reaches its threshold value. Thus, the damage stability of this pile plate retaining wall can be alarmed via ERSD.

  8. Experimental investigation of tearing-instability phenomena for structural materials

    International Nuclear Information System (INIS)

    Vassilaros, M.G.; Gudas, J.P.; Joyce, J.A.

    1982-08-01

    The objective of this investigation was to extend the range of tearing-instability validation experiments utilizing the compact specimen to include high-toughness alloys. J-Integral tests of ASTM A106; ASTM A516, Grade 70; ASTM A533B; HY-80; and HY-130 steels were performed in a variably compliant screw-driven test machine. Results were analyzed with respect to the materials J/sub I/-R curves and various models of T/sub applied/ for the compact specimen. Tearing instability theory was validated for these high-toughess materials. For the cases of highly curved J/sub I/-R curves, it was shown that the actual value of T/sub material/ at the point of instability should be employed rather than the average T/sub material/ value. The T/sub applied/ analysis of Paris and coworkers applied to the compact specimen appears to be nonconservative in predicting the point of instability; whereas, the T/sub applied/ analysis of Ernst and coworkers appears to be accurate, but requires precision beyond that displayed in this program. The generalized Paris analysis applied to the compact specimen and evaluated at maximum load was most consistent in predicting instability. 16 figures, 3 tables

  9. Geoelectric Investigation of Subsurface Structure of Academic Area ...

    African Journals Online (AJOL)

    Apparent Resistivity and Self Potential data were acquired from the study area using vertical electrical sounding technique about square grid of 100m size within the academic area of Old Campus of Bayero University, Kano, Nigeria. The area is located between Latitude 11059'00.7"N to 11058'49.2" N and Longitude ...

  10. electronic and structural investigations.

    Indian Academy of Sciences (India)

    43

    + H2Oads. →. OH•. Eq. (7) e−. + h. +. → hν (recombination) Eq. (8). Worthy of note, other ROS can arise from the reactions described above (Eq. 5-7) such as ..... [25] Kim C, Park H, Cha S and Yoon J 2013 Chemosphere 93 2011. [26] You ... Swierczewska M, Lee S, Pomper M G, Kwon I C, Kim K and Park J H 2016 Sci. Rep ...

  11. Investigation of Chemical Durability Mechanisms and Structure of Fluoride Glasses.

    Science.gov (United States)

    1988-03-01

    coated with diamond-like carbon: (B) without *’ WAVENUMBER (CMU" ) coating. dance of the dissolution of ZrF is supported by its appearance as ; r , ~ ~~10...It will be shown in a subsequent publication that large 7M Robinson and M. G. Drexhage. "A Phenomenological Comparison of Some increases in leach...a minimal surface -OH concentration, while a short C-53 (1981).’M. Robinson and M.G. Drexhage, "A Phenomenological Comparison of Some exposure (15

  12. Investigation of optical, structural and morphological properties of ...

    Indian Academy of Sciences (India)

    fferent physical and chemical deposition techniques such as spray pyrolysis (Oja et al 2004), sol–gel (Pleneta et al ... techniques, sol–gel is simple, inexpensive, non-vacuum and low temperature technique for synthesizing films. .... is found to be lower than that of those obtained before in the literature (Bass et al 2009).

  13. Investigation of optical, structural and morphological properties of ...

    Indian Academy of Sciences (India)

    researchers worldwide, especially due to its unique proper- ties such as high transparency .... index (n) and extinction coefficient (k) of thin films at differ- ... 1242. Savas Sönmezoglu et al. 300 400 500 600 700 800 900 10001100. 0.0. 0.2. 0.4. 0.6. 0.8. 1.0. Extinction coefficient, k. Wavelength (nm). ___. Pure TiO2. _ _. 1% B: ...

  14. Synthesis, structural investigation and kinetic studies of uranyl (VI ...

    Indian Academy of Sciences (India)

    Uranyl schiff base complexes; kinetic study; X-ray crystallography; kinetics of thermal decomposition; cyclic voltammetry. ... Chemistry Department, College of Sciences, Shiraz University, Shiraz 71454, I. R. Iran; Institute of Physics ASCR, v.v.i, Na Slovance 2, 182 21 Praha, Czech Republic; Department of Chemistry, Faculty ...

  15. NMR methods for the investigation of structure and transport

    CERN Document Server

    Hardy, Edme H

    2011-01-01

    Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating

  16. Investigations of Crustal Structures beneath Dronning Maud Land

    OpenAIRE

    Hoffmann, Maike; Eckstaller, Alfons; Jokat, Wilfried; Miller, Heinrich

    2003-01-01

    The western part of Dronning Maud Land (DML), Antarctica, principally consistof the Archean Grunehogna Craton and the Grenville-age (1.1 Ga) Maud Province(Jacobs, 1991). Most of the area is covered by ice. Outcrops are the mountainranges Heimefrontfjella, Kirvanveggen and Sverdrupfjella. These are the westernparts of the East Antarctic Orogen, the southern continuation of the EastAfrican Orogen, formed during the collision of East and West Gondwana(Pan-African orogenesis, ca 550. Ma).The Heim...

  17. Biorobotic investigation on the muscle structure of an octopus tentacle.

    Science.gov (United States)

    Mazzolai, Barbara; Laschi, Cecilia; Cianchetti, Matteo; Patanè, Francesco; Bassi-Luciani, Lorenzo; Izzo, Ivano; Dario, Paolo

    2007-01-01

    The present paper aims at understanding the biomechanics of an octopus tentacle as preliminary work for designing and developing a new robotic octopus tentacle. The biomechanical characterization of the biological material has been carried out on samples of Octopus vulgaris tentacles with engineering methods and tools, i.e. by biomechanical measurements of the tentacle elasticity and tension-compression stress/stretch curves. Another part of the activities has been devoted to the study of materials that can reproduce the viscoelastic behavior of the tentacle. The work presented here is part of the ongoing study and analysis on new design principles for actuation, sensing, and manipulation control, for robots with increased performance, in terms of dexterity, control, flexibility, applicability.

  18. Structural appraisal of the Gadag schist belt from gravity investigations

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    course of geological evolution (Naqvi and Rogers. 1987; Rajamani 1990; Chadwick et al 2000). The three major rock constituents of the craton in chronological order of decreasing age are penin- sular gneisses, schist belts and younger granites. Peninsular gneisses formed 3400–3000 million years before present (Ma) ...

  19. Electronic and structural investigation of buckled antimonene using ...

    Indian Academy of Sciences (India)

    2017-06-20

    Jun 20, 2017 ... Phonon dispersion along the high symmetry point of the Brillouin zone does not signify any soft mode. Electronic indirect band gap of 1.61 eV is observed for the single-layer antimonene. However, the occurrence of bilayered quasi-2D sheet consequent to metallic behaviour is due to significant electronic ...

  20. Investigations on structural, optical and magnetic properties of ...

    Indian Academy of Sciences (India)

    of Fe3+ and Mo6+ in β-Fe2(MoO4)3 is authenticated with the aid of electron paramagnetic resonance spectrum measurements. The obtained nanoparticles have showed methylene blue dye degradation of 98.4% under sunlight irradiation. Keywords. Hexamine; iron molybdate; nanocrystalline; solution combustion; ...

  1. Structural investigation of membrane proteins by electron microscopy

    NARCIS (Netherlands)

    Moscicka, Katarzyna Beata

    2009-01-01

    Biological membranes are vital components of all living systems, forming the boundaries of cells and their organelles. They consist of a lipid bilayer and embedded proteins, which are nanomachines that fulfill key functions such as energy conversion, solute transport, secretion, and signal

  2. Experimental investigation of tearing-instability phenomena for structural materials

    International Nuclear Information System (INIS)

    Vassilaros, M.G.; Gudas, J.P.; Joyce, J.A.

    1982-04-01

    Objective was to extend the range of tearing instability validation experiments utilizing the compact specimen to include high toughness alloys. J-Integral tests of ASTM A106; ASTM A516, Grade 70; ASTM A533B; HY-80; and HY-130 steels were performed in a variably compliant screw-driven test machine. Results were analyzed with respect to the materials J/sub I/-R curves and various models of T/sub applied/ for the compact specimen. Tearing instability theory was validated for these high toughness materials. For the cases of highly curved J/sub I/-R curves, it was shown that the actual value of T/sub material/ at the point of instability should be employed rather than the average of T/sub material/ value. The T/sub applied/ analysis of Paris and coworkers applied to the compact specimen appears to be nonconservative in predicting the point of instability; whereas, the T/sub applied/ analysis of Ernst and coworkers appears to be accurate, but requires precision beyond that displayed in this program. The generalized Paris analysis applied to the compact specimen and evaluated at maximum load was most consistent in predicting instability. 16 figures, 3 tables

  3. An investigation of fossil bone mineral structure with neutron scattering

    International Nuclear Information System (INIS)

    Batdehmbehrehl, G.; Chultehm, D.; Sangaa, D.

    1999-01-01

    Using the neutron diffraction method a domination of low crystal syngonic (sp. gr. P63/m) phase Ca 5 [PO 4 ] 3 (OH, F, Cl) in the fossil dinosaur bone has been established. It is shown that the neutron diffraction method has large advantages in apatite phase of any vertebrates studies and in the case of carbonate phase x-ray method it becomes to be preferable. (author)

  4. Investigations on structural, optical and magnetic properties of ...

    Indian Academy of Sciences (India)

    visible absorption spectrum of the nanomaterial was obtained from the spectrophotometer of JASCO model 7800. The. X-ray photoelectron spectroscopy (XPS) analysis was per- formed with a MULTILAB 2000 Base system model with. X-ray, Auger and ISS attachments. The electron param- agnetic resonance (EPR) ...

  5. Investigation of annealing-treatment on structural and optical ...

    Indian Academy of Sciences (India)

    Administrator

    This conforms to the results already reported by Moustaghfir et al (2003). A higher annealing tempera- ture enhances the formation of larger and more closely packed crystals. The increase of the refractive index with increasing annealing temperature can be partly attributed to improvement in film quality with the reduction in.

  6. Electronic and structural investigation of buckled antimonene using ...

    Indian Academy of Sciences (India)

    Md Shahzad Khan

    2017-06-20

    Jun 20, 2017 ... Geometrical parameters such as bond length and bond angle are very close to the single ruffle layer of rhombohedral antimony. Phonon ... However, the occurrence of bilayered quasi-2D sheet consequent to metallic behaviour is due to significant electronic charge dispersion between interlayer region.

  7. An investigation of the structure beneath Magadi area in southern ...

    African Journals Online (AJOL)

    Magadi area is located in the southern part of the Kenyan rift, an active continental rift that is part of the East African Rift system. Local seismic activity monitored previously around Lake Magadi revealed an earthquake cluster caused by swarm activity in the rift centre at shallow depths, which was probably triggered by ...

  8. Simulation and experimental investigation of structural dynamic frequency characteristics control.

    Science.gov (United States)

    Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing

    2012-01-01

    In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results.

  9. Investigation of the porous structure of glassy carbon by SAXS - an application of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Braun, A.; Baertsch, M.; Schnyder, B.; Koetz, R.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The porous structure of Electrochemical Double Layer Capacitor (EDC) Electrodes was investigated using Small Angle X-ray Scattering (SAXS), assuming logarithmically normal distributed micropores. (author) 2 figs., 1 ref.

  10. Experimental investigation of a double-diffused MOS structure

    Science.gov (United States)

    Lin, H. C.; Halsor, J. L.

    1976-01-01

    Self-aligned polysilicon gate technology was applied to double-diffused MOS (DMOS) construction in a manner that retains processing simplicity and effectively eliminates parasitic overlap capacitance because of the self-aligning feature. Depletion mode load devices with the same dimensions as the DMOS transistors were integrated. The ratioless feature results in smaller dimension load devices, allowing for higher density integration with no increase in the processing complexity of standard MOS technology. A number of inverters connected as ring oscillators were used as a vehicle to test the performance and to verify the anticipated benefits. The propagation time-power dissipation product and process related parameters were measured and evaluated. This report includes (1) details of the process; (2) test data and design details for the DMOS transistor, the load device, the inverter, the ring oscillator, and a shift register with a novel tapered geometry for the output stages; and (3) an analytical treatment of the effect of the distributed silicon gate resistance and capacitance on the speed of DMOS transistors.

  11. Structural and spectroscopic investigation of lanthanum-substituted ...

    Indian Academy of Sciences (India)

    Administrator

    and one Y atom form two alternated equilateral triangles at level 1/4 and 3/4 centred on ..... Carpena et al observed that the localization of Nd. 3+ ions in the cationic sites depended ... Atomic coordinates, occupancy factors and thermal parameters after Rietveld refinement of Sr10–xLax(PO4)6–x. (SiO4)xO samples. Wyckoff.

  12. Investigation of annealing-treatment on structural and optical ...

    Indian Academy of Sciences (India)

    Administrator

    ; Logothetidis et al 2008; ... films were dried at 300°C for 10 min on a hotplate to evaporate the solvent and remove organic residuals. The procedures from coating to drying were repeated many times until the desired thickness of the films was ...

  13. An Investigation of Airblast Diffraction Loading on Simple Structural Shapes

    Science.gov (United States)

    1976-01-01

    25 ^sic IF OTf 03F 06T 09T IST I7T 2IT POSITION 275,1»« — • — 2B7 5^MC — 500uS»c IIF 07F 03F 05T 09T 13T...ATTN: TD -BTA Library HQUSAF/IN ATTN: INATA ATTN: IN CJNCUSAFE ATTN: DOA CINCPACAF ATTN: DOA DEPARTMENT OF THE AIR FORCE (Continued

  14. Investigating the Theoretical Structure of the DAS-II Core Battery at School Age Using Bayesian Structural Equation Modeling

    Science.gov (United States)

    Dombrowski, Stefan C.; Golay, Philippe; McGill, Ryan J.; Canivez, Gary L.

    2018-01-01

    Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the Differential Ability Scales-Second Edition core battery using the standardization sample normative data for ages 7-17. Results revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either a higher-order (HO) or a…

  15. An investigation of the structure and function of antistaphylococcal endolysins using kinetic methods

    Science.gov (United States)

    Peculiarities of the structures and functions of phage phi11 and phi80a antistaphylococcal endolysins were investigated by kinetic measurements. In spite of the high level of homology in their primary structures, both enzymes possess some differences in their optimal conditions for functioning. As...

  16. Numerical Investigation of Structural Response of Corrugated Blast Wall Depending on Blast Load Pulse Shapes

    Directory of Open Access Journals (Sweden)

    Jung Min Sohn

    Full Text Available Abstract Hydrocarbon explosions are one of most hazardous events for workers on offshore platforms. To protect structures against explosion loads, corrugated blast walls are typically installed. However, the profiles of real explosion loads are quite different depending on the congestion and confinement of Topside structures. As the level of congestion and confinement increases, the explosion load increases by up to 8 bar, and the rising time of the load decreases. This study primarily aims to investigate the structural behavior characteristics of corrugated blast walls under different types of explosion loadings. Four loading shapes were applied in the structural response analysis, which utilized a dynamic nonlinear finite element method.

  17. Investigation of structural transition of regenerated silk fibroin aqueous solution by Rheo-NMR spectroscopy.

    Science.gov (United States)

    Ohgo, Kosuke; Bagusat, Frank; Asakura, Tetsuo; Scheler, Ulrich

    2008-03-26

    In this study we applied Rheo-NMR to investigate the structural change of Bombyx mori silk fibroin in aqueous solution under shear. Monitoring the time dependence of 1H solution NMR spectra of silk fibroin subjected to constant shear strain, signal intensities of random coil decreased suddenly during shear while peaks from beta-sheet structure did not arise in the solution spectra. After these experiments, an aggregate of silk was found in the Couette flow cell and its secondary structure was determined as beta-sheet by 13C solid-state NMR. In conclusion the moderate shear applied here triggered the change in the secondary structure.

  18. Investigations of the electronic structure and superconductivity in newly predicted metallic crystalline carbon

    International Nuclear Information System (INIS)

    Suresh C Sharma

    2007-01-01

    This project investigated the electronic, structural, and optical properties of fullerene-based materials under high pressure/temperature conditions. It involved: (1) Raman spectroscopy and X-ray diffraction measurements on C-60 fullerenes compressed in diamond anvil cell, (2) synthesis of C-60 thin films and determination of their electronic structure by photoemission spectroscopy, and (3) investigations of the adsorption of water molecules into single-walled carbon nanotubes

  19. Investigation of RNA Structure by High-Throughput SHAPE-Based Probing Methods

    DEFF Research Database (Denmark)

    Poulsen, Line Dahl

    of highthroughput SHAPE-based approaches to investigate RNA structure based on novel SHAPE reagents that permit selection of full-length cDNAs. The SHAPE Selection (SHAPES) method is applied to the foot-and-mouth disease virus (FMDV) plus strand RNA genome, and the data is used to construct a genome-wide structural...

  20. The investigation of dynamic behaviour of a structure using wave-based substructuring method

    Directory of Open Access Journals (Sweden)

    Ahmad Basri Ahmad Burhani

    2017-01-01

    Full Text Available There is an increasing need for accurate, efficient and economical methods for the investigation of the dynamic behaviour of large complex structures within the engineering community. The component mode synthesis (CMS has been perceived by the community to be an attractive efficient method for the investigation. However, the method has substantial shortcomings, particularly in analysing a structure having a large number of interface degrees of freedom (DOFs between substructures. This paper puts forward a method, based upon the wave-based substructuring (WBS for the investigation of the dynamic behaviour of a structure with a large number of interface DOFs. The finite element method is used to construct the full finite element model of the structure and NASTRAN 103 is used for the normal modes analysis. A new finite element model of the structure with reduced interface DOFs is constructed based on the WBS. The measurement of the dynamic behaviour of the structure is carried out using free-free boundary conditions and an impact hammer test. The predicted results of the proposed method are then compared with those from the full finite element model and experimental counterparts. The accuracy and efficiency of the proposed method are discussed and illustrated with two different case studies.

  1. Investigation of structural integrity for turbine generator foundation affected by alkali-silica reaction

    International Nuclear Information System (INIS)

    Ryo Fujimoto; Hiroshi Shimizu; Hisashi Sekimoto; Yuichi Watanabe; Tatsuya Ishikawa

    2005-01-01

    Turbine Generator Foundation is a reinforced concrete structure having a table deck to support equipments and columns to support the table deck. After operation of the plant, the expansion of the table deck in turbine longitudinal axis in the structure has been observed. By investigation of concrete material property, it is found that the expansion has been caused by alkali-silica reaction (ASR). In this study, we evaluate the material properties of the structure affected by ASR and safety margin of capacity of the structure by nonlinear analysis using beam element model with those material properties. (authors)

  2. Method of investigating the structures of observed groups of objects of the Galaxy and Metagalaxy

    International Nuclear Information System (INIS)

    Kudryavtsev, S.M.

    1985-01-01

    The random quantities-geometrical characteristics of a group of objects are proposed for estimating the reality and investigating the visible structure features of galactic and metagalactic fields. The method was applied for solving the problem of reality of the stellar Orion and Aquila rings. One comes to the conclusion: the Orion ring is real and the Aquila ring can be a consequense of illusion

  3. Fine- and hyperfine structure investigations of the even-parity configuration system of the atomic holmium

    Science.gov (United States)

    Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.

    2018-04-01

    In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.

  4. Asynchronous Communication: Investigating the Influences of Relational Elements and Background on the Framing Structure of Emails

    Science.gov (United States)

    AlAfnan, Mohammad Awad

    2015-01-01

    This study explored the influences of relational elements and the background of communicators on the framing structure of email messages that were exchanged in an educational Institute in Malaysia. The investigation revealed that social distance played a more significant role than power relations as Malaysian respondents are, generally, more…

  5. Investigation of structural properties associated with alkali-silica reaction by means of macro- and micro-structural analysis

    International Nuclear Information System (INIS)

    Mo Xiangyin; Fournier, Benoit

    2007-01-01

    Structural properties associated with alkali-silica reaction were systematically investigated by means of macro-structural accelerated mortar prism expansion levels testing, combined with micro-structural analysis. One part of this study is to determine the reactivity of the aggregate by means of accelerated mortar bar tests, and also to evaluate perlite aggregate constituents, especially the presence of deleterious components and find main causes of the alkali-silica reaction, which was based on the petrographic studies by optical microscope and the implication of X-ray diffraction on the aggregate. Results implied that the aggregate was highly alkali-silica reactive and the main micro-crystalline quartz-intermediate character and matrix that is mainly composed of chalcedony are potentially suitable for alkali-silica reaction. The other part is to study the long-term effect of lithium salts against alkali-silica reaction by testing accelerated mortar prism expansion levels. The macro-structural results were also consistent with the micro-structural mechanisms of alkali-silica reaction of mortar prisms containing this aggregate and the effect of chemical admixtures by means of the methods of scanning electron microscope-X-ray energy-dispersive spectroscopy and X-ray diffraction. It was indicated by these techniques that lithium salts, which were introduced into concrete containing reactive aggregate at the mixing stage, suppressed the alkali-silica reaction by producing non-expansive crystalline materials

  6. Structure of ion-plated amorphous hydrogenated carbon films investigated by electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muehling, I.; Bewilogua, K.; Breuer, K. (Sektion Physik/Elektronische Bauelemente, Technische Univ., Karl-Marx-Stadt (German Democratic Republic))

    1990-05-15

    Thin ion-plated amorphous hydrogenated carbon films were investigated by electron energy loss spectroscopy. From an analysis of the dielectric function, information on the film structure could be obtained. The results will be compared with those of electron diffraction studies. Differences between insulating and conducting substrates could be verified in the film structure and are related to surface charging effects. From an analysis of the oscillator strength sum rule the content of C sp{sup 2} atoms was estimated. (orig.).

  7. Investigation of UH-60A Rotor Structural Loads from Flight and Wind Tunnel Tests

    Science.gov (United States)

    2016-05-19

    Investigation of UH-60A Rotor Structural Loads From Flight and Wind Tunnel Tests Hyeonsoo Yeo Mark Potsdam US Army Aviation Development Directorate...NFAC) 40- by 80-Foot Wind Tunnel (Ref. 14) provides an- other set of airloads and structural loads measurements. Fig- ure 2 shows the UH-60A rotor ...blades installed on the NFAC Large Rotor Test Apparatus (LRTA) in the wind tunnel test section. One of the objectives of the wind tunnel test was to

  8. Investigation of candidate data structures and search algorithms to support a knowledge based fault diagnosis system

    Science.gov (United States)

    Bosworth, Edward L., Jr.

    1987-01-01

    The focus of this research is the investigation of data structures and associated search algorithms for automated fault diagnosis of complex systems such as the Hubble Space Telescope. Such data structures and algorithms will form the basis of a more sophisticated Knowledge Based Fault Diagnosis System. As a part of the research, several prototypes were written in VAXLISP and implemented on one of the VAX-11/780's at the Marshall Space Flight Center. This report describes and gives the rationale for both the data structures and algorithms selected. A brief discussion of a user interface is also included.

  9. An NMR Investigation of Phase Structure and Chain Dynamics in the Polyethylene/Montmorillonite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-01-01

    Full Text Available Novel exfoliated and interacted polyethylene (PE/montmorillonite (MMT nanocomposites prepared by in situ polymerization were characterized by solid-state nuclear magnetic resonance (NMR. The phase structure and molecular mobility were investigated by proton and carbon NMR under static and magic-angle spinning (MAS conditions. The results showed that incorporation of MMT layer enhanced the polyethylene crystallinity behavior. The chain mobility of crystalline phase, interphase and amorphous phase was hindered in the nanocomposites. The phase structure and chain dynamics were also investigated upon changing the temperature. The orthorhombic and monoclinic phases were detected according to the 13CP/MAS NMR. Quantitative characterization of the phase structure was also conducted by 13C DP/MAS upon changing the temperature. Finally, the difference in the phase structure and chain dynamics in each phase of PE/nanocomposites was compared based on the NMR results when fiber filler was introduced.

  10. Investigation of Carbon-Polymer Structures with Embedded Fiber-Optic Bragg Gratings

    Science.gov (United States)

    Grant, Joseph; Kaul, R.; Taylor, S.; Myers, G.; Sharma, A.

    2003-01-01

    Several Bragg-grating sensors fabricated within the same optical fiber are buried within multiple-ply carbon-epoxy planar and cylindrical structures. Effect of different orientation of fiber-sensors with respect to carbon fibers in the composite structure is investigated. This is done for both fabric and uni-tape material samples. Response of planar structures to axial and transverse strain up to 1 millistrain is investigated with distributed Bragg-grating sensors. Material properties like Young's Modulus and Poisson ratio is measured. A comparison is made between response measured by sensors in different ply-layers and those bonded on the surface. The results from buried fiber- sensors do not completely agree with surface bonded conventional strain gauges. A plausible explanation is given for observed differences. The planar structures are subjected to impacts with energies up to 10 ft-lb. Effect of this impact on the material stiffness is also investigated with buried fiber-optic Bragg sensors. The strain response of such optical sensors is also measured for cylindrical carbon-epoxy composite structures. The sensors are buried within the walls of the cylinder as well as surface bonded in both the axial as well as hoop directions. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 1500 psi. This is done at both room temperature as well as cryogenic temperatures. The recorded response is compared with that from a conventional strain gauge.

  11. Radiative acoustic investigation of metals in the area of structural phase transition

    International Nuclear Information System (INIS)

    Kalinichenko, A.I.; Popov, G.F.

    1989-01-01

    Consideration is given to results of experimental investigations of temperature dependences of Grueneisen parameter (GP) and sound velocity for alloys with the effect of shape memory (Cu-Al-Ni and Ni-Ti) and gadolinium in the region of their structural phase transformations. Effect of thermal and spatial GP nonlinearity on the type of excited acoustic wave, as well as possibility of determining function of GP dependence with respect to nonlinear thermoacoustic response of irradiated substance are discussed

  12. Dye-sensitized solar cells: Atomic scale investigation of interface structure and dynamics

    International Nuclear Information System (INIS)

    Ma Wei; Zhang Fan; Meng Sheng

    2014-01-01

    Recent progress in dye-sensitized solar cells (DSC) research is reviewed, focusing on atomic-scale investigations of the interface electronic structures and dynamical processes, including the structure of dye adsorption onto TiO 2 , ultrafast electron injection, hot-electron injection, multiple-exciton generation, and electron—hole recombination. Advanced experimental techniques and theoretical approaches are briefly summarized, and then progressive achievements in photovoltaic device optimization based on insights from atomic scale investigations are introduced. Finally, some challenges and opportunities for further improvement of dye solar cells are presented. (invited review — international conference on nanoscience and technology, china 2013)

  13. Investigation of structure and characteristics of soil for foundation design of gamma irradiators capacity 2 MCi

    International Nuclear Information System (INIS)

    Kukuh Prayogo; Hasriyasti Saptowati

    2016-01-01

    Soil investigation conducted before the work of irradiator building structural foundation design is initiated. Intake of sample was set at some point drill at Irradiator facility site to the disturbed soil layer or not disturbed. From the results of this soil investigation will be selected as alternative / types, the depth and dimensions of the foundation of the most economical but still safe. Soil investigation method used was Deep Boring, undisturbed and disturbed sampling, SPT ( Standard Penetration Test ), CPT ( Cone Penetration Test / Sondir ). Testing conducted in the field and in the laboratory of soil mechanics to determine the mechanical properties, soil layer thickness and other physical properties for calculation of the bearing capacity of the foundation. The results of the soil investigation at the three-point drill showed the average depth of the bedrock -19.33 m and adhesion 3163.88 kg / cm’. Test boring at point BH1 found the depth of the bedrock -19.33 m and adhesion 3163.88 kg / cm’. Test boring at point BH1 found the bedrock at a depth of 32 m with a maximum SPT value 16. from the data can be determined the appropriate type of foundation is bored pile. The foundation is the upper structure support which can lead to a reduction / settlement if its bearing capacity is not able to withstand the load on it. (author)

  14. Investigation on Mechanical Properties’ Anisotropy of Rod Units in Lattice Structures Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Jing Chenchen

    2017-01-01

    Full Text Available Lattice structure with high strength and low mass using selective laser melting (SLM has been a hot topic. However, there are some problems in the fabrication of lattice structure by SLM. Rod unit is the basic component of lattice structure and its performance affects the whole structure. It is necessary to investigate the influence of selective laser melting on rod unit’s mechanical properties. A series of rod units with different inclination angle and diameter were fabricated by SLM in this research. And the mechanical properties of these units were measured by tensile test. The results show that the rod units with different diameters and inclination angles have good mechanical properties and show no difference. It is a good news for lattice structure designing for there is no necessary to consider the mechanical properties’ anisotropy of rod units.

  15. Electron-topological investigation of the structure-antitumor activity relationship of thiosemicarbazone derivatives.

    Science.gov (United States)

    Dimoglo, A S; Chumakov, Y M; Dobrova, B N; Saracoglu, M

    1997-04-01

    In the frameworks of the electron-topological method (ETM) the structure-antitumor activity relationship was investigated for a series of thiosemicarbazone derivatives. The series included 70 compounds. Conformational analysis and quantum-chemical calculations were carried out for each compound. The revealed activity feature showed a satisfactory description of the class of active compounds according to two different parameters P and alpha estimating the probabilities of the feature realization in the class of active compounds (they are equal to 0.94 and 0.86, correspondingly). The results of testing demonstrated the high ability of ETM in predicting the activity investigated.

  16. An investigation into the factor structure of the Ryff Scales of Psychological Well-Being

    Directory of Open Access Journals (Sweden)

    Carolina M. Henn

    2016-04-01

    Full Text Available Orientation: South African studies investigating the factor structure of the Ryff Scales of Psychological Well-being (RPWB are needed to ensure that the instrument is valid and reliable within the South African context.Research purpose: The objective of this study was to investigate the factor structure of the RPWB within two South African samples. Motivation for the study: Although a substantial number of studies have been undertaken, results regarding the factor structure of the Ryff Scales of Psychological Well-Being are inconclusive. There is a dearth of information in relation to South African studies examining the scales’ factor structure.Research design, approach and method: A quantitative research approach using a crosssectional field survey design was utilised. An adult working group (n = 202 was selected using convenience sampling, and a student group (n = 226 was selected by means of purposive non-probability sampling. An Exploratory Factor Analysis and a Confirmatory Factor Analysis were conducted to examine the factor structure.Main findings: The preferred model was a two-factor model where all the positively worded items were grouped in the first factor and all the negatively worded items were grouped in the second factor.Practical/managerial implications: The factor structure of the original RPWB was not satisfactorily replicated and remains seemingly unsettled. The utility of negatively worded items should be considered carefully, and alternatives such as mixed response options and phrase completion should be explored. The scales should be used with caution.Contribution/value-add: The study contributes to the literature concerning the factor structure of the RPWB with an emphasis on the South African context. It contributes to ensuring that researchers and practitioners use a valid and reliable instrument when measuring psychological well-being.

  17. Structural investigation of HIV-1 nonnucleoside reverse transcriptase inhibitors: 2-Aryl-substituted benzimidazoles

    Science.gov (United States)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-11-01

    Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.

  18. Total scattering investigation of materials for clean energy applications: the importance of the local structure.

    Science.gov (United States)

    Malavasi, Lorenzo

    2011-04-21

    In this Perspective article we give an account of the application of total scattering methods and pair distribution function (PDF) analysis to the investigation of materials for clean energy applications such as materials for solid oxide fuel cells and lithium batteries, in order to show the power of this technique in providing new insights into the structure-property correlation in this class of materials.

  19. Acoustic investigation of structure of magnetic fluids based on transformer oil mogul

    International Nuclear Information System (INIS)

    Kudelcik, J.; Bury, P.; Kopcansky, P.; Timko, M.

    2013-01-01

    In this paper the authors study the influence of temperature on the changes of the acoustic attenuation in magnetic fluids based on transformer oil MOGUL caused by an external magnetic field measured. The influences of both magnetic field and temperature on the structures of investigated magnetic fluids based on the transformer oil MOGUL were observed using acoustic spectroscopy. The effect of external magnetic field on the creation of clusters of nanoparticles in magnetic fluids was confirmed and their influence on the development of attenuation was described. In this type of magnetic fluid complicated structures of clusters at magnetic field over 100 mT are created. These structures are than at higher magnetic field almost stable. This state of equilibrium is not function of time. Measurements also confirmed that the lifetime of these structures or clusters is very short. The further investigation of the time and temperature dependences of the acoustic attenuation on the magnetic field at different concentrations of magnetic nanoparticles and various direction of magnetic field are necessary to understand all processes in this magnetic fluid. (authors)

  20. Investigation of the field dependent spin structure of exchange coupled magnetic heterostructures

    International Nuclear Information System (INIS)

    Gurieva, Tatiana

    2016-05-01

    This thesis describes the investigation of the field dependent magnetic spin structure of an antiferromagnetically (AF) coupled Fe/Cr heterostructure sandwiched between a hardmagnetic FePt buffer layer and a softmagnetic Fe top layer. The depth-resolved experimental studies of this system were performed via Magneto-optical Kerr effect (MOKE), Vibrating Sample Magnetometry (VSM) and various measuring methods based on nuclear resonant scattering (NRS) technique. Nucleation and evolution of the magnetic spiral structure in the AF coupled Fe/Cr multilayer structure in an azimuthally rotating external magnetic field were observed using NRS. During the experiment a number of time-dependent magnetic side effects (magnetic after-effect, domain-wall creep effect) caused by the non-ideal structure of a real sample were observed and later explained. Creation of the magnetic spiral structure in rotating external magnetic field was simulated using a one-dimensional micromagnetic model.The cross-sectional magnetic X-ray diffraction technique was conceived and is theoretically described in the present work. This method allows to determine the magnetization state of an individual layer in the magnetic heterostructure. It is also applicable in studies of the magnetic structure of tiny samples where conventional x-ray reflectometry fails.

  1. The Method for Investigating the Structurization of Water-Organic Mixtures

    International Nuclear Information System (INIS)

    Karitskaya, S

    2013-01-01

    The investigation of the properties of micellar systems is of great practical importance, since the microheterogeneous structure, in particular, of aqueous-organic solutions can be used to create reaction centers with designed properties, which will make it possible to increase the efficiency of processes associated with the intramolecular conversion of the electronic excitation energy of a molecule. In the present paper, model systems to stimulate chemical reactions are the spatial-temporal structures (STS) formed as a result of photophysical and photochemical reactions, whose time characteristics are highly sensitive to a change in the solvent compositions. The STS evolution processes are slow and the structures formed have macroscopic sizes, which makes the system under consideration a convenient object for experimental studies. The spectral and time characteristics of the spatial-temporal structures luminescing when exposed to UV radiation in aqueous alcohol solutions of anthraquinone are investigated experimentally depending on the volume content of alcohol in a mixture. It is shown that the microheterogeneous structure of aqueous alcohol solutions considerably influences the behavior of the dissipative structures formed

  2. Methodological Principles of Investigating Semantic Structure of Ukrainian Axionomens of the Danube Region

    Directory of Open Access Journals (Sweden)

    Tetyana Soroka

    2015-08-01

    Full Text Available The article is dedicated to the description of the procedure of axionomens’ formalized analysis. Matrix method of investigating words denoting spiritual values in the modern Ukrainian language is proposed. Matrix is defined to be a two-dimensional structure which replaces oversimplified notation systems used in componential analysis. Matrix enables a researcher to study all the interconnections between the related meanings of different lexical units as well as between different meanings of a specific lexical unit. It consists of two axes – a vertical one indicates a lexical stock and a horizontal one means a seme stock of the collected language material. The application of matrix method in practice proves that the structural organization of axiovocabulary considerably becomes complicated; internal mechanisms and dynamics of semantic cooperations of axionomens are revealed under the influence of extra-linguistic factors. Matrix presentation of non-material values gives an opportunity to describe in detail the structure of axionouns’ lexical meanings which are not in chaotic order, but clearly organized, to distinguish the degree of their related semantics, to expose the functional character of semes forming definite structures within the framework of analyzed words. The proposed methodology of researching the relations between lexico-semantic groups is considered to be perspective in studying all lexical sub-systems of the value paradigms of the English and French language societies.

  3. The photoluminescence technique applied to the investigation of structural imperfections in quantum wells of semiconducting material

    Directory of Open Access Journals (Sweden)

    Eliermes Arraes Meneses

    2005-02-01

    Full Text Available Photoluminescence is one of the most used spectroscopy techniques for the study of the optical properties of semiconducting materials and heterostructures. In this work the potentiality of this technique is explored through the investigation and characterization of structural imperfections originated from fluctuations in the chemical composition of ternary and quaternary alloys, from interface roughnesses, and from unintentional compounds formed by the chemical elements intermixing at the interfaces. Samples of GaAs/AlGaAs, GaAsSb/GaAs, GaAsSbN/GaAs and GaAs/GaInP quantum well structures are analyzed to verify the influence of the structural imperfections on the PL spectra

  4. Students' Personal Connection with Science: Investigating the Multidimensional Phenomenological Structure of Self-Relevance

    Science.gov (United States)

    Hartwell, Matthew; Kaplan, Avi

    2018-01-01

    This paper presents findings from a two-phase mixed methods study investigating the phenomenological structure of self-relevance among ninth-grade junior high school biology students (Phase 1: N = 118; Phase 2: N = 139). We begin with a phenomenological multidimensional definition of self-relevance as comprising three dimensions: the academic…

  5. Investigating Move Structure of English Applied Linguistics Research Article Discussions Published in International and Thai Journals

    Science.gov (United States)

    Amnuai, Wirada; Wannaruk, Anchalee

    2013-01-01

    This study investigates the rhetorical move structure of English applied linguistic research article Discussions published in Thai and international journals. Two corpora comprising of 30 Thai Discussions and 30 international Discussions were analyzed using Yang & Allison's (2003) move model. Based on the analysis, both similarities and…

  6. Investigation of the redox-dependent modulation of structure and dynamics in human cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Mizue [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810 (Japan); Saio, Tomohide [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kumeta, Hiroyuki [Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Uchida, Takeshi [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Inagaki, Fuyuhiko [Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Ishimori, Koichiro, E-mail: koichiro@sci.hokudai.ac.jp [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810 (Japan); Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2016-01-22

    Redox-dependent changes in the structure and dynamics of human cytochrome c (Cyt c) were investigated by solution NMR. We found significant structural changes in several regions, including residues 23–28 (loop 3), which were further corroborated by chemical shift differences between the reduced and oxidized states of Cyt c. These differences are essential for discriminating redox states in Cyt c by cytochrome c oxidase (CcO) during electron transfer reactions. Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments identified that the region around His33 undergoes conformational exchanges on the μs-ms timescale, indicating significant redox-dependent structural changes. Because His33 is not part of the interaction site for CcO, our data suggest that the dynamic properties of the region, which is far from the interaction site for CcO, contribute to conformational changes during electron transfer to CcO. - Highlights: • Solution structure and dynamics analysis for human Cyt c by NMR. • Structural changes responsible for the discrimination of the redox state in Cyt c. • Conformational exchange in the region outside of the interaction site for CcO. • Less flexibility and rigid structure of the interaction site on Cyt c for CcO.

  7. Structural investigation of the (010) surface of the Al13 Fe4 catalyst.

    Science.gov (United States)

    Ledieu, J; Gaudry, É; Loli, L N Serkovic; Villaseca, S Alarcón; de Weerd, M-C; Hahne, M; Gille, P; Grin, Y; Dubois, J-M; Fournée, V

    2013-02-15

    We have investigated the structure of the Al(13)Fe(4)(010) surface using both experimental and ab initio computational methods. The results indicate that the topmost surface layers correspond to incomplete puckered (P) planes present in the bulk crystal structure. The main building block of the corrugated termination consists of two adjacent pentagons of Al atoms, each centered by a protruding Fe atom. These motifs are interconnected via additional Al atoms referred to as "glue" atoms which partially desorb above 873 K. The surface structure of lower atomic density compared to the bulk P plane is explained by a strong Fe-Al-Fe covalent polar interaction that preserves intact clusters at the surface. The proposed surface model with identified Fe-containing atomic ensembles could explain the Al(13)Fe(4) catalytic properties recently reported in line with the site-isolation concept [M. Armbrüster et al., Nat. Mater. 11, 690 (2012)].

  8. An investigation of structural design methodology for HTGR reactor internals with ceramic materials (Contract research)

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Nakagawa, Shigeaki; Iyoku, Tatsuo; Sawa, Kazuhiro

    2008-03-01

    To advance the performance and safety of HTGR, heat-resistant ceramic materials are expected to be used as reactor internals of HTGR. C/C composite and superplastic zirconia are the promising materials for this purpose. In order to use these new materials as reactor internals in HTGR, it is necessary to establish a structure design method to guarantee the structural integrity under environmental and load conditions. Therefore, C/C composite expected as reactor internals of VHTR is focused and an investigation on the structural design method applicable to the C/C composite and a basic applicability of the C/C composite to representative structures of HTGR were carried out in this report. As the results, it is found that the competing risk theory for the strength evaluation of the C/C composite is applicable to design method and C/C composite is expected to be used as reactor internals of HTGR. (author)

  9. Investigation of the effect of different structural parameters of cotton woven fabrics on their air permeability

    Science.gov (United States)

    Tastan, E.; Akgun, M.; Gurarda, A.; Omeroglu, S.

    2017-10-01

    This study presents an investigation of the effect of different structural parameters of cotton woven fabrics on their air permeability. For this purpose, 24 fabric samples having different structural properties were obtained by using three different weave types (plain, 1/3 twill and 1/7 sateen), two different weft yarn counts (Ne 20/2 and Ne 70/2) and four different yarn twist levels (120, 360, 600, and 840 turns/m). Cotton Ne 50/1; 150 turns/m warp yarns and 40 threads/cm warp density were used in all fabric samples. The relationship between the fabrics structural parameters like weft yarn count, weave type, yarn twist number and air permeability behavior are investigated. It has been shown that the increase of yarn counts and yarn twist led to an increase in air permeability values of cotton woven fabrics. Also, cotton woven fabrics with 1/7 sateen weave have the maximum air permeability value; these fabrics are followed by the fabrics having weave types of plain and 1/3 twill in spite of high weft density.

  10. Structural investigation of an extracellular polysaccharide produced by the cariogenic bacterium Streptococcus mutans strain UA159

    NARCIS (Netherlands)

    Li, Bo; Dobruchowska, Justyna M.; Hoogenkamp, Michel A.; Gerwig, Gerrit J.

    2012-01-01

    The structure of an extracellular polysaccharide EPS159 produced from sucrose by Streptococcus mutans UA159 was investigated through the main oligosaccharides obtained from partial acid hydrolysis, monosaccharide/methylation analysis, and 1D/2D H-1 NMR spectroscopy. The results showed that EPS159

  11. A Self-Ethnographic Investigation of Continuing Education Program in Engineering Arising from Economic Structural Change

    Science.gov (United States)

    Kaihlavirta, Auri; Isomöttönen, Ville; Kärkkäinen, Tommi

    2015-01-01

    This paper provides a self-ethnographic investigation of a continuing education program in engineering in Central Finland. The program was initiated as a response to local economic structural change, in order to offer re-education possibilities for a higher educated workforce currently under unemployment threat. We encountered considerable…

  12. Using Multilevel Factor Analysis with Clustered Data: Investigating the Factor Structure of the Positive Values Scale

    Science.gov (United States)

    Huang, Francis L.; Cornell, Dewey G.

    2016-01-01

    Advances in multilevel modeling techniques now make it possible to investigate the psychometric properties of instruments using clustered data. Factor models that overlook the clustering effect can lead to underestimated standard errors, incorrect parameter estimates, and model fit indices. In addition, factor structures may differ depending on…

  13. Structural Investigation of Biological and Semiconductor Nanostructures with Nonlinear Multicontrast Microscopy

    Science.gov (United States)

    Cisek, Richard

    Physical and functional properties of advanced nano-composite materials and biological structures are determined by self-organized atoms and molecules into nanostructures and in turn by microscopic organization of the nanostructures into assemblies of higher structural complexity. Therefore, microscopes are indispensable tools for structural investigations at various levels of organization. In this work, novel nonlinear optical microscopy methods were developed to non-invasively study structural organization at the nanoscopic and microscopic levels. Atomic organization of semiconductor nanowires, molecular organization of amylose biocrystallites in starch granules, and microscopic organization of several photosynthetic organisms was elucidated. The structure of ZnSe nanowires, key components in many modern nanodevices, was investigated using polarization harmonic generation microscopy. Based on nonlinear optical properties of the different crystal lattices, zinc blende and wurtzite nanowires were differentiated, and the three-dimensional orientation of the zinc blende nanowires could be found. The structure of starch granules, a model biocrystal, important in food as well as health sciences, was also investigated using polarization harmonic microscopy. The study was combined with ab initio calculations using the crystal structures of amylose A and B, revealing that second harmonic signals originate from the hydroxide and hydrogen bonds in the starch granules. Visualization of several photosynthetic organisms including the green algae, Chlamydomonas reinhardtii, two species of cyanobacteria, Leptolyngbya sp. and Anabaena sp., aggregates of light-harvesting pigment-protein complexes as well as chloroplasts from green plants were also explored, revealing that future nonlinear microscopy applications could include structural studies of cell walls, the Chlamydomonas eyespot, and photosynthetic membranes. In this study, several nonlinear optical microscopy modalities

  14. Structural Investigation in Solution of a series of five-Coordinate Bisphosphinoaryl Ruthenium(II) Complexes

    NARCIS (Netherlands)

    Koten, G. van; Dani, P.; Kink, G. van

    2000-01-01

    The structure of the ruthenium(II) complexes [RuCl{C6H2(CH2PPh2)2-2,6-R-4}(PPh3)] [R = H (1), Ph (2) or Br (3)] was investigated in solution using two-dimensional NMR techniques (1H-1H-, 13C-1H- and 31P-1H-correlation NMR spectroscopy and 1H NOESY). The 1H and 13C NMR spectra of the complexes 1-3

  15. An investigation on a production company via the scope of Mintzberg’s adhocratic organization structure

    Directory of Open Access Journals (Sweden)

    Kerem Toker

    2013-01-01

    Full Text Available Today, the importance of innovation for enterprises, increase each passing day. As a result of globalization, enterprises are under intense competitive pressure. They have to make innovation for increasing to market share or for protecting to it at least. Non-innovative firms lose their customers and their existence is face to threat from other innovative actors in the market. Therefore firms have to design their organization structure that encourage to innovation. Mintzberg’s adhocratic organization structure was investigated in this article.  Thus, its aim of this study leads to resemblance and diversity between theory and practice via of the theoretical knowledge.  As a result of study; high degree of similarity between the application and Mintzberg’s theory, which is related to adhocratic organization structure, has been identified.Keywords: Innovation, Organizational Structure, Mintzberg, Adhocracy, Media Sector

  16. INVESTIGATION OF DYNAMIC CHARACTERISTICS OF ELEMENTS OF AUTOMATICS OF A SMART HOUSE IN PARAMETRICAL STRUCTURAL SCHEMES

    Directory of Open Access Journals (Sweden)

    Petrova Irina Yur’evna

    2018-01-01

    Full Text Available Subject: automation of calculation of dynamic characteristics of the device being designed in the system of conceptual design of sensor equipment, structurally-parametric models of dynamic processes and algorithms for the automated calculation of the qualitative characteristics of elements of the information-measuring and control systems (IMCS. The stage of conceptual design most fully determines the operational characteristics of technical systems. However, none of the information support systems of this stage provides an opportunity to evaluate the performance characteristics of the element being designed taking into account its dynamic characteristics. Research objectives: increasing the effectiveness of the evaluation of dynamic characteristics of sensitive elements of the information-measuring and control systems of a smart house. Materials and methods: when solving the problems posed, the mathematical apparatus of system modeling was used (in particular, the energy-information method of modeling processes of various physical nature that occur in the sensor equipment; the main provisions of the theory of automatic control, the theory of constructing computer-aided design systems, the theory of operational calculus; basics of conceptual design of elements of the information-measuring and control systems. Results: we compared the known automated systems for conceptual design of sensors, highlighted their advantages and disadvantages and we showed that none of these systems allows us to investigate dynamic characteristics of the element being designed in a simple and understandable for engineer form. The authors proposed using energy-information method of modeling for the synthesis of operation principles of sensors and analysis of their dynamic characteristics. We considered elementary dynamic chains and issues of synthesis of parametrical structural schemes that reflect the dynamics of the process with the use of mathematical apparatus of

  17. Structural investigations on semiconductor nanostructures: wet chemical approaches for the synthesis of novel functional structures

    NARCIS (Netherlands)

    Kozhummal, Rajeevan

    2014-01-01

    Recently nanotechnology is experiencing a flourishing progress in a variety of arenas from science to engineering and to biology. The fabrication of nanoscale building blocks, understanding their properties, and organizing these building blocks in to devices for various applications are the main

  18. Investigation of structure formation mechanism of a mesoporous ZSM-5 zeolite by mesoscopic simulation

    Science.gov (United States)

    Ren, Yanqun; Liu, Baoyu; Kiryutina, Tatyana; Xi, Hongxia; Qian, Yu

    2015-02-01

    Amphiphilic surfactant molecules have a profound influence in directing zeolite crystallization, while the self-assembly process between the functionalized surfactant and aluminosilicate species is the key factor in determining the structure of zeolites. However, such a complex process is extremely difficult to be characterized experimentally. A novel mesoporous ZSM-5 zeolite with hexagonal mesostructures and crystalline microporous frameworks has been synthesized in our previous work. In present research, dissipative particle dynamics (DPD), a mesoscopic simulation method, has been used to investigate the self-assembly process of a surfactant/tetraethylorthosilicate (TEOS)/water system in order to explore the structure formation mechanism of a mesoporous ZSM-5 zeolite. The simulation results show that under a certain composition, the specially designed bifunctional triquaternary ammonium-type surfactant and TEOS can form spherical core-shell micelles. The core (inner section) of a spherical micelle is occupied by hydrophobic beads, while the shell (outer section) is formed by hydrophilic beads. Besides, an ordered, uniform mesophase can be formed under a constant shear rate and transformed into mesoscale structure. The simulation results are consistent with the corresponding experimental results. Overall, the DPD simulation is a valuable tool to investigate the porogenic mechanism of surfactants. The present approach may open a window for investigating the formation mechanism of mesoporous zeolites that involves the surfactant-driven synthesis process.

  19. An investigation of the structure of disordered materials by using neutron diffraction

    International Nuclear Information System (INIS)

    Petri, I.

    1999-01-01

    The structure of several semiconducting, metallic and ionic disordered materials was investigated using neutron diffraction and the results were compared with those obtained from recent ab initio molecular dynamics methods. The method of isotopic substitution was applied to measure the full set of partial structure factors, S αβ (Q), for the liquid semiconductor GeSe and the covalent network glass GeSe 2 . Their short range ordering and for GeSe 2 also the intermediate range ordering were identified and a substantial number of 'defects' such as homopolar bonds were detected in both systems. Further, the structure of liquid GeSe 2 with increasing temperature was studied at the total structure factor level. Also, changes in the topology of Ge x Se 1-x glasses in the range 0 ≤ x ≤ 0.4 were observed and investigated by measuring the total structure factors. As far as possible our results were compared with those from molecular dynamics studies. The Ge-Se system was found to serve as a sensitive test-system for these studies, giving an insight into the strengths and limitations of them. For instance, problems are found in the region of the homopolar bonds for g GeGe (r) and for the first sharp diffraction peak in the Bhatia-Thornton concentration-concentration structure factor that could not be reproduced. The structure of liquid lithium was measured and particular attention was paid to the inelasticity and resolution function corrections. The ion-ion and ion-valence electron partial structure factors were obtained and found to be in good agreement with ab initio molecular dynamics studies. The method of first order difference functions in neutron diffraction in combination with H/D substitution was applied to 2 molal solutions of Cu(ClO 4 ) 2 in perchloric acid to measure the Cu-H and, to a first order approximation, the Cu-O partial structure factor. A (4 + 1) distortion of the hydration shell around the Cu 2+ ion was measured. (author)

  20. Metallographic and autoradiographic investigation of the structure of centrifugally cast steel

    International Nuclear Information System (INIS)

    Singh, K.N.; Krishna Rao, P.

    1981-01-01

    Metallographic and autoradiographic investigations were carried out on the structure of steel tubes cast in a horizontal axis centrifugal casting machine. In chill castings the chill and columnar zones showed significantly lower sulphur contents than the equiaxed zone. Mould rotational speed was found to have an important influence on sulphur segregation. Sulphur-depleted bands, which were often observed in the castings were found to arise due to minor variations in the mould rotational speed. (auth.)

  1. Investigating the Joint Effects of Strategy, Environment and Control Structure on Performance

    Directory of Open Access Journals (Sweden)

    Lindawati Gani

    2011-09-01

    Full Text Available The purpose of this study is to investigate the effects of misfit between competitive environment, business strategy and control structure on performance. We argue that the misfit between competitive environment, business strategy and control structure has significant negative implications on shareholder value creation associated with firms’ Joint Venture formation. Based on data of publicly-traded US manufacturing firms that announce a joint venture formation, we found that firms that have perfect fit are valued higher than those with both strategy and structural misfits and also those with structural misfit. Contradictory results were found when comparing firms with perfect fit with those that have strategy misfit. Further analyses indicate that all those strategy misfit firms operate in high entry barriers, where firms can compete effectively using either innovation or cost efficiency strategy due to the fact that they possess resources that are difficult to be imitated by their competitors.

  2. Theoretical analysis, infrared and structural investigations of energy dissipation in metals under cyclic loading

    International Nuclear Information System (INIS)

    Plekhov, O.A.; Saintier, N.; Palin-Luc, T.; Uvarov, S.V.; Naimark, O.B.

    2007-01-01

    The infrared and structural investigations of energy dissipation processes in metals subjected to cyclic loading have given impetus to the development of a new thermodynamic model with the capability of describing the energy balance under plastic deformation. The model is based on the statistical description of the mesodefect ensemble evolution and its influence on the dissipation ability of the material. Constitutive equations have been formulated for plastic and structural strains, which allow us to describe the stored and dissipated parts of energy under plastic flow. Numerical results indicate that theoretical predictions are in good agreement with the experimentally observed temperature data

  3. High-pressure crystal structure investigation of synthetic Fe2SiO4 spinel

    DEFF Research Database (Denmark)

    Nestola, F.; Balic Zunic, Tonci; Koch-Müller, M.

    2011-01-01

    The crystal structure of Fe2SiO4 spinel at room temperature was investigated at seven different pressures by X-ray diffraction, using a diamond anvil cell to examine the influence of Fe substitution on ringwoodite behaviour at high pressure. The results compared with those of a pure Mg endmember...... show that the substitution of Fe into the spinel structure causes only small changes in the compression rate of coordination polyhedra and the distortion of the octahedron. The data show that the compression rate for the octahedron and tetrahedron in (Mg,Fe)2SiO4 can be considered statistically equal...

  4. Fine- and hyperfine structure investigations of even configuration system of atomic terbium

    Science.gov (United States)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.

    2017-03-01

    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  5. Investigating the Nanoporous Structure of Aluminosilicate Geopolymers with Small Angle Scattering and Imaging Techniques

    International Nuclear Information System (INIS)

    Maitland, C.F.; Buckley, C.E.; O'Connor, B.H.; Rowles, M.R.; Hart, R.D.; Gilbert, E.P.; Connolly, J.

    2005-01-01

    Full text: Rowles and O'Connor optimised the compressive strength of a geopolymer produced by sodium silicate-activation of metakaolinite, and found that this material may have a greater compressive strength than ordinary Portland cement. It has been observed that similar metakaolin-based geopolymers have a multiscale structure that consists of partially dissolved metakaolinite embedded in a nanoporous matrix. The characteristics of the nanostructure within this matrix influence the physical properties of the geopolymer. An investigation, using small-angle neutron scattering and imaging techniques, into how the matrix nanostructure varies with chemical composition of the starting material has been undertaken. The results of this investigation will be reported. (authors)

  6. Statistics and geostatistics: Kriging and use of hemivariogram functions in the structural investigation of uranium deposits

    International Nuclear Information System (INIS)

    Lucero Michaut, H.N.

    1980-01-01

    After presenting some general conceptual considerations regarding the theory of regionalized variables, the paper deals with specific applications of the intrinsic dispersion law to the determination, description and quantification of structures. It then briefly describes two uranium deposits in Cordoba province, the study of which yielded the basic data and parameters for compiling the geostatistical results presented. Before taking up the matter of structural interpretations, it refers briefly to the mathematical relationship between the number of sampling points available and the number of directions that can be investigated by the variogram method and also emphasizes the need for quantifying regionalization concepts on the basis of a table of absolute dimensionalities. In the case of the ''Rodolfo'' deposit it presents and comments on the hemivariograms for concentrations, thicknesses and accumulations, drawing attention at the same time to the existence of significant nest-like phenomena (gigogne structures). In this connection there is also a discussion of the case of iterative lenticular mineralization on a natural and a simulated model. The ''Schlagintweit'' deposit is dealt with in the same way, with descriptions and evaluations of the subjacent structures revealed by the hemivariographic analysis of grades, mineralization thicknesses and accumulations. This is followed by some considerations on the possibility of applying Krige and Matheron correctors in the moderation of anomalous mineralized thicknesses. In conclusion, the paper presents a ''range ellipse'' for grades; this is designed to supplement the grid of sampling points for the ''Rodolfo'' deposit by means of Matheronian kriging techniques. (author)

  7. Investigation of lunar maria structure from cross-analysis of GRAIL gravity and Kaguya radar data

    Science.gov (United States)

    Zuber, M. T.; Ermakov, A.; Smith, D. E.; Mastroguiseppe, M.; Raguso, M.

    2016-12-01

    The Lunar Radar Sounder (LRS) on JAXA's Kaguya spacecraft investigated the subsurface structure of the Moon to a depth of a few km. GRAIL gravity models are potentially sensitive to subsurface structure at such depths. GRAIL gravity and LRS radar data are complementary since both are sensitive to density/compositional heterogeneities. Cross-correlation of GRAIL and LRS data has the potential to produce new constraints on the structure and evolution of the lunar maria. Originally, subsurface reflections within the lunar maria were detected with Lunar Sounder Experiment aboard Apollo 17. Subsurface layering was attributed to multiple episodes of volcanism. Later, Kaguya's LRS produced similar measurements but with global-scale coverage. Laboratory measurements show that density variations among mare basalts can be up to 200 kg m-3 or 7%. The LRS measurements have detected subsurface reflection in the upper 1 km of the crust. Combining these two estimates and using the Bouguer slab approximation, we estimate that anomalies of order 1-10 mGal are expected due to potentially varying density of surface and/or subsurface horizons. This accuracy is achievable with the latest GRAIL gravity models. The LRS surface backscattering power is indicative of surface and near sub-surface dielectric properties, which are sensitive to target density and roughness. We investigate the northwestern part of the Procellarum basin because it is the region with the strongest signal-to-noise ratios in gravity models within maria. To examine shallow subsurface structure, we map the surface received power by tracking the first return of radar echoes and compare it with gravity gradients, which are particularly sensitive to small-scale structures.

  8. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems

    Science.gov (United States)

    Bumanis, G.; Bajare, D.; Dembovska, L.

    2015-11-01

    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  9. A structural investigation of the capsular antigens of some Klebsiella and E. coli serotypes

    International Nuclear Information System (INIS)

    Parolis, L.A.S.

    1985-11-01

    The work described in this thesis forms part of a program concerned with the study of exocellular capsular polysaccharides of some Enterobacteriaceae. 1 H- and 13 C-n.m.r. spectroscopy have been used in this study. Klebsiella and Escherichia coli are of interest because they are often pathogenic to man; E. coli are commensal bacteria as well as opportunistic pathogens. The bacterial capsule is the first line of defence of the bacterial cell against attack by the host's immunological defences and administered antibiotics, and thus knowledge of its composition and characteristics is of importance in devising ways of combating infection by these organisms. The structure of the capsular polysaccharide has been investigated employing a combination of chemical and spectroscopic methods. Several oligo-saccharides were isolated and characterized by high resolution 1 H-n.m.r. spectroscopy and methylation analysis. The E. coli group of bacteria possesses seventy-four recognized polysaccharide capsules and the structures of approximately twenty percent of these have been reported. The emphasis of this research group is centered on the elucidation of the structures of E. coli capsules. The acidic capsular polysaccharide isolated from E. coli K9 has been investigated using the techniques of methylation analysis periodate oxidation, bacteriophage degradation and n.m.r. spectroscopy. This thesis however represents a transition period in the study of Enterobacteriaceae capsular polysaccharides and so includes the structure elucidation of two Klebsiella polysaccharides, that of the K14 and K68 serotypes, and one E. coli polysaccharide, that of the K9 serotype. Bacteriophage-borne enzyme degradations of Klebsiella K14 and E. coli K9 polysaccharides have been performed and are presented. The thesis also includes a comparative study of the 0-specific side-chains of the lipo-polysaccharides of E. coli 09 and 09a serogroups

  10. Structural investigation of e-beam cured epoxy resins through solid state NMR

    International Nuclear Information System (INIS)

    Alessi, Sabina; Spinella, Alberto; Caponetti, Eugenio; Dispenza, Clelia; Spadaro, Giuseppe

    2012-01-01

    In this paper the network structure of e-beam cured DGEBF based epoxy resins is investigated. Two epoxy systems, having different reactivity and cured in different process conditions, were analyzed through solid state NMR spectroscopy. The analysis shows that the more reactive system has higher cross-linking density and higher uniformity of network distribution. Similar information were obtained, in a previous work, on the same systems through dynamic mechanical thermal analysis. It is worth noting that unlike DMTA tests, which interfere with the molecular structure of the analyzed material, due to the heating during the analysis itself, more reliable information, without any artefact, are obtained by solid state NMR, carried out at constant room temperature. - Highlights: ► The structure of two e-beam cured epoxy systems is investigated through solid state NMR. ► The aim is to have direct information about the structure without inducing modifications. ► The different molecular structures are able to emphasize the response of solid state NMR. ► T 1 H, T 1ρ H and T CH measurements indicate different cross-linking degrees. ► The NMR results are in agreement with DMTA analysis performed in a previous paper.

  11. Raman spectroscopy used for structural investigations of anodically formed ZrO2

    International Nuclear Information System (INIS)

    Koneska, Zagorka; Arsova, Irena

    2003-01-01

    The structure of the oxide formed on Zr(99% + Hf) with anodic oxidation at different potentials in 1 mol/dm 3 H 3 PO 4 and 2 mol/dm 3 KOH solutions were investigated using Raman spectroscopy. Normally the anodic oxides of Zr form only crystals. Under certain circumstances, amorphous anodic ZrO 2 can be observed. Amorphous phase is observed for the anodically formed zirconium oxides in H 3 PO 4 . The oxide formed in KOH at potential of 80 V, where sparks appears on the Zr electrode showed crystalline structure. (Original)

  12. Investigation of Reliabilities of Bolt Distances for Bolted Structural Steel Connections by Monte Carlo Simulation Method

    Directory of Open Access Journals (Sweden)

    Ertekin Öztekin Öztekin

    2015-12-01

    Full Text Available Design of the distance of bolts to each other and design of the distance of bolts to the edge of connection plates are made based on minimum and maximum boundary values proposed by structural codes. In this study, reliabilities of those distances were investigated. For this purpose, loading types, bolt types and plate thicknesses were taken as variable parameters. Monte Carlo Simulation (MCS method was used in the reliability computations performed for all combination of those parameters. At the end of study, all reliability index values for all those distances were presented in graphics and tables. Results obtained from this study compared with the values proposed by some structural codes and finally some evaluations were made about those comparisons. Finally, It was emphasized in the end of study that, it would be incorrect of the usage of the same bolt distances in the both traditional designs and the higher reliability level designs.

  13. Design and 4D Printing of Cross-Folded Origami Structures: A Preliminary Investigation

    Directory of Open Access Journals (Sweden)

    Joanne Ee Mei Teoh

    2018-03-01

    Full Text Available In 4D printing research, different types of complex structure folding and unfolding have been investigated. However, research on cross-folding of origami structures (defined as a folding structure with at least two overlapping folds has not been reported. This research focuses on the investigation of cross-folding structures using multi-material components along different axes and different horizontal hinge thickness with single homogeneous material. Tensile tests were conducted to determine the impact of multi-material components and horizontal hinge thickness. In the case of multi-material structures, the hybrid material composition has a significant impact on the overall maximum strain and Young’s modulus properties. In the case of single material structures, the shape recovery speed is inversely proportional to the horizontal hinge thickness, while the flexural or bending strength is proportional to the horizontal hinge thickness. A hinge with a thickness of 0.5 mm could be folded three times prior to fracture whilst a hinge with a thickness of 0.3 mm could be folded only once prior to fracture. A hinge with a thickness of 0.1 mm could not even be folded without cracking. The introduction of a physical hole in the center of the folding/unfolding line provided stress relief and prevented fracture. A complex flower petal shape was used to successfully demonstrate the implementation of overlapping and non-overlapping folding lines using both single material segments and multi-material segments. Design guidelines for establishing cross-folding structures using multi-material components along different axes and different horizontal hinge thicknesses with single or homogeneous material were established. These guidelines can be used to design and implement complex origami structures with overlapping and non-overlapping folding lines. Combined overlapping folding structures could be implemented and allocating specific hole locations in the overall

  14. Fabrication and structural investigation of pulse-plating Co-Cu/Cu multilayers on Ti

    International Nuclear Information System (INIS)

    Kazeminezhad, I.; Zakerin, M.; Parham, H.

    2006-01-01

    Electrodeposited Co-Cu/Cu multilayers were prepared from a bath of CuSo 4 and CoSo 4 in presence of H 3 BO 3 on Ti polycrystalline substrates. Their structures were studied using a high-angle X-ray diffractometer. The existence of satellite peaks in the spectrum indicates a sharp interface between the double layers of Cu and Co-Cu. The surface properties of the samples were also investigated by scanning electron microscope.

  15. Neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO

    International Nuclear Information System (INIS)

    Kuklin, A I; Rogachev, A V; Soloviov, D V; Ivankov, O I; Kovalev, Yu S; Kutuzov, S A; Soloviev, A G; Rulev, M I; Gordeliy, V I; Utrobin, P K

    2017-01-01

    Abstract.The work is a review of neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO. Here, key parameters of small-angle spectrometers are considered. It is shown that two-detector system is the basis of YuMO upgrade. It allows to widen the dynamic q-range twice. In result, the available q-range is widened and dynamic q-range and data collection rate are doubled. The detailed description of YuMO spectrometer is given.The short review of experimental researches made on the spectrometer in the polymers field, biology, material science and physical chemistry is given. The current investigations also have a methodological aspect. It is shown that upgraded spectrometer provides advanced world level of research of supramolecular structures. (paper)

  16. Theoretical investigations of the effect of vacancies on the geometric and electronic structures of zinc sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Yao Jinhuan, E-mail: yaojinhuan@126.com [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangi 541004 (China); Li Yanwei, E-mail: lywhit@glite.edu.cn [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangi 541004 (China); GuangXi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, Guilin, Guangxi 541004 (China); Li Ning [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangi 541004 (China); Le Shiru [Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2012-09-15

    The effects of S-vacancy and Zn-vacancy on the geometric and electronic structures of zinc blende ZnS are investigated by the first-principles calculation of the plane wave ultrasoft pseudopotential method based on the density functional theory. The results demonstrate that both S-vacancy and Zn-vacancy decrease the cell volume and induce slight deformation of the perfect ZnS. Furthermore, this change of geometric structure caused by Zn-vacancy is more obvious than the one due to the S-vacancy. The formation energy of S-vacancy is higher than that of Zn-vacancy, indicating that Zn-vacancy is easier to form than S-vacancy in ZnS crystal. Electronic structure analysis shows that Zn-vacancy increases the band-gap of ZnS from 2.03 eV to 2.15 eV, while the S-vacancy has almost no effect on the band-gap of ZnS. Bond population analysis shows that Zn-vacancy increases covalence character of the Zn-S bonds around Zn-vacancy, while S-vacancy shows a relatively weak effect on the covalence character of Zn-S bonds.

  17. An investigation of the development of the topological spatial structures in elementary school students

    Science.gov (United States)

    Everett, Susan Ann

    1999-09-01

    In this study the relationships among the topological spatial structures were examined in students in kindergarten, second, and fourth grades. These topological spatial structures are part of the three major types of spatial thinking: topological, projective, and Euclidean (as defined by Jean Piaget and associates). According to Piaget's model of spatial thinking, the spatial structures enable humans to think about spatial relationships at a conceptual or representational level rather than only at a simpler, perceptual level. The clinical interview technique was used to interact individually with 72 children to assess the presence of each of the different topological spatial structures. This was accomplished through the use of seven task protocols and simple objects which are familiar to young children. These task protocols allowed the investigator to interact with each child in a consistent manner. The results showed that most of the children in this study (97.2%) had not developed all of the topological spatial structures. The task scores, were analyzed using non-parametric statistical tests due to the ordinal nature of the data. From the data the following results were obtained: (1) the spatial structures did not develop in random order based on the task scores but developed in the sequence expected from Piaget's model, (2) task performance improved with grade level with fourth grade students outperforming second graders and kindergartners on each of the seven tasks, and (3) no significant differences on task performance due to gender were found. Based on these results, young elementary children are beginning to develop topological spatial thinking. This is critical since it provides the foundation for the other types of spatial thinking, projective and Euclidean. Since spatial thinking is not a "gift" but can be developed, educators need to provide more opportunities for students to increase their level of spatial thinking since it is necessary for conceptual

  18. Reliability study of Piezoelectric Structures Dedicated to Energy Harvesting by the Way of Blocking Force Investigation

    International Nuclear Information System (INIS)

    Maaroufi, S; Parrain, F; Lefeuvre, E; Boutaud, B; Molin, R Dal

    2015-01-01

    In this paper we propose an approach to study the reliability of piezoelectric structures and more precisely energy harvesting micro-devices dedicated to autonomous active medical implants (new generation pacemakers). The structure under test is designed as a bimorph piezoelectric cantilever with a seismic mass at its tip. Good understanding of material aging and mechanical failure is critical for this kind of system. To study the reliability and durability of the piezoelectric part we propose to establish a new accelerated methodology and an associated test bench where the environment and stimuli can be precisely controlled over a wide period of time. This will allow the identification of potential failure modes and the study of their impacts by the way of direct mechanical investigation based on stiffness and blocking force measurements performed periodically. (paper)

  19. Investigation of Internal Amplification Effect at Planar ($p^{+}nn^{+}$) Structures Made of High Resistivity Silicon

    CERN Document Server

    Golubkov, S A; Gusev, K N; Egorov, N N; Zamiatin, N I; Katulina, S L; Kozlov, Yu F; Konkov, K A; Sandukovsky, V G; Sidorov, A I; Starostin, A S

    2004-01-01

    The first results of investigations of special strip and pixel silicon detectors are presented. The detector structures allow creating the high electric field (about 5\\cdot 10^{5} V/cm) near p-n junction. This field is high enough for avalanche multiplication of charge carriers. The possibility of internal amplification in the semiconductor detector similar to proportional amplification in gaseous counters is shown. The spectrum of -particles of the ^{238}Pu (E_{a}=5.5 MeV) demonstrates the "amplifying" peak at the energy of 70.2 MeV and energy resolution FWHM = 10.2 MeV

  20. Re-investigation of the crystal structure of enstatite under high-pressure conditions

    DEFF Research Database (Denmark)

    Periotto, Benedetta; Balic Zunic, Tonci; Nestola, Fabrizio

    2012-01-01

    is mostly governed by significant volume decrease of the Mg1 and Mg2 octahedra, affecting in turn the kink of the tetrahedral chains, especially the TB chain of larger SiO4 tetrahedra. The Mg2 polyhedron undergoes the largest volume variation, 8.7%, due especially to the strong contraction of the longest...... in the pressure range investigated. Using the data on the pure orthoenstatite as reference, we can confirm the basic influences of element substitutions on the evolution of the crystal structure with pressure....

  1. SUSTAINABLE STRUCTURAL LIGHTWEIGHT CONCRETE DESIGN AND THE INVESTIGATION OF THE MECHANICAL PROPERTIES

    OpenAIRE

    Bozkurt, Nusret; yazıcıoğlu, Salih

    2015-01-01

    This paper reports an experimental investigation and statistical analysis carried out to evaluate sustainable structural lightweight concrete (SSLWC) design and the mechanical properties of SSLWC. CEM I 42,5 N cement was partially replaced with silica fume (SF) 10% and fly ash (FA) 30% by weight, respectively. The tests of compressive, split tensile strength and ultrasonic pulse velocity were performed on the specimens prepared with admixtures at ages of 3, 28 and 90 days. From the results it...

  2. Investigation of nanoscale structures by small-angle X-ray scattering in a radiochromic dosimeter

    DEFF Research Database (Denmark)

    Skyt, Peter Sandegaard; Jensen, Grethe Vestergaard; Wahlstedt, Isak Hannes

    2014-01-01

    This study examines the nanoscale structures in a radiochromic dosimeter that was based on leuco-malachite-green dye and the surfactant sodium dodecyl sulfate (SDS) suspended in a gelatin matrix. Small-angle X-ray scattering was used to investigate the structures of a range of compositions...... of the dosimeter. When omitting gelatin, ellipsoidal micelles of SDS were formed with a core radius near 15 Å, an eccentricity of 1.6, and a head-group shell thickness near 7 Å. Gelatin significantly changed the micelles to a cylindrical shape with around three times lower core radius and four times larger shell...... thickness, which shows that the gelatin is present in the shell and the outer part of the core. Insight into the detailed structure might help to improve the dosimeter performance and increase the dose response to clinically relevant dose levels....

  3. UPS and DFT investigation of the electronic structure of gas-phase trimesic acid

    Energy Technology Data Exchange (ETDEWEB)

    Reisberg, L., E-mail: rebban@ut.ee [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia); Pärna, R. [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia); MAX IV Laboratory, Lund University, Fotongatan 2, 225 94 Lund (Sweden); Kikas, A.; Kuusik, I.; Kisand, V. [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia); Hirsimäki, M.; Valden, M. [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, FIN-33101 Tampere (Finland); Nõmmiste, E. [Institute of Physics, University of Tartu, W. Oswaldi 1, EE-50411 Tartu (Estonia)

    2016-11-15

    Highlights: • In the current study outer valence band electronic structure of benzene-1,3,5-tricarboxylic acid was interpreted. • Experimental and calculated trimesic acid (TMA) spectrum were compared to ones of benzene and benzoic acid. • It is shown that similarities between MO energies and shapes for benzene and TMA exists. • Addition of carboxyl groups to the benzene ring clearly correlates with increasing binding energy of HOMO. - Abstract: Benzene-1,3,5-tricarboxylic acid (trimesic acid, TMA) molecules in gas-phase have been investigated by using valence band photoemission. The photoelectron spectrum in the binding energy region from 9 to 22 eV is interpreted by using density functional theory calculations. The electronic structure of TMA is compared with benzene and benzoic acid in order to demonstrate changes in molecular orbital energies induced by addition of carboxyl groups to benzene ring.

  4. Investigation of two-phase transport phenomena in microchannels using a microfabricated experimental structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fumin [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States)]. E-mail: fuminmems@gmail.com; Steinbrenner, Julie E. [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Hidrovo, Carlos H. [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Kramer, Theresa A. [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Lee, Eon Soo [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Vigneron, Sebastien [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Cheng, Ching-Hsiang [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Eaton, John K. [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States); Goodson, Kenneth E. [Mechanical Engineering Department, Stanford University, Room 224, Building 530, Stanford, CA 94305-3030 (United States)

    2007-07-15

    Microchannels (0.05-1 mm) improve gas routing in proton exchange membrane fuel cells, but add to the complexities of water management. This work microfabricates experimental structures with distributed water injection as well as with heating and temperature sensing capabilities to study water formation and transport. The samples feature optical access to allow visualization and distributed thermometry for investigation of two-phase flow transport phenomena in the microchannels. The temperature evolution along the channel is observed that the temperature downstream of the distributed water injection decreases as the pressure drop increases. As the water injection rate is lower than 200 {mu}l/min, there exists a turning point where temperature increases as the pressure drop increases further. These micromachined structures with integrated temperature sensors and heaters are key to the experimental investigation as well as visualization of two-phase flow and water transport phenomena in microchannels for fuel cell applications.

  5. Investigation of the phase structure of a chirally-invariant Higgs-Yukawa model

    CERN Document Server

    Bulava, John; Hou, George W.-S.; Jansen, Karl; Knippschild, Bastian; Lin, C.-J.David; Nagai, Kei-Ichi; Nagy, Attila; Ogawa, Kenji

    2012-01-01

    We present new data on our ongoing project on the investigation of the phase structure of the Higgs-Yukawa model at large bare Yukawa couplings. The data presented last year are extended in terms of statistics, the number of bare Yukawa couplings at existing, and new larger volumes. In addition, this study is extended by a finite temperature project at the physical top quark mass m_t =175 GeV and a hypothetical fourth generation top quark with a mass of m_t' =700 GeV .

  6. The USANS technique for the investigation of structure from hydrated gels to porous rock

    International Nuclear Information System (INIS)

    Crompton, Kylie; Forsythe, John; Bertram, Willem; Knott, R.B.; Barker, John

    2005-01-01

    Full text: The Ultra Small Angle Neutron Scattering (USANS) technique extends the range of the Small Angle Neutron Scattering (SANS) technique into the tens of micron size range. This is extremely useful for many systems particularly those where sample preparation for optical or electron microscopy can cause major changes to the microstructure under investigation. Two examples will be presented to highlight different aspects of the technique. Firstly, the structure was investigated of a full hydrated polymer scaffold for stem cells constructed from chitosan. Stem cells interact with the scaffold on the micron scale however information on the nanoscale (i e individual chitosan polymer chains) is also required in order the tailor the scaffold structure. The soft, hydrated gel is unsuitable for optical or electron microscopy. Secondly, the structure was investigated of natural oil-bearing and synthetic rock. The scattering data from different thickness of rock was analysed using a Fourier Transform method to remove multiple scattering effects and to simulate scattering from a thin rock. In this case bulk properties such as porosity are of interest. (authors)

  7. Investigations in the area of thermonuclear structural material science in the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Tazhibayeva, I.; Shestakov, V.; Cherepnin, Yu.S.

    2001-01-01

    The investigations in the area of structural materials for fusion program initiated within the framework of ITER project in the Republic of Kazakhstan are devoted basically in the following direction: to studying the behaviour of hydrogen isotopes in structural elements of the first wall and the divertor in conditions simulating real conditions of material operation, accident situations arising during steam interaction with the beryllium armour of the first wall during accidental coolant loss, to establish an experimental facility for study aspects of tritium safety of thermonuclear installations, for example, levels of tritium accumulation and release; efficiency of barrier layers and protective coating; influence of brazing and welding zones on tritium permeation. The work on determination of tritium release from lead/lithium eutectic alloy by mass-spectrometry method and the development of permeation barriers has begun. At present, work has begun to create Kazakhstan's own tokamak type reactor for investigation of the behaviour of various first wall materials and divertor plates during normal and accident conditions. The concept of spherical tokamak will be used in the construction of KTM reactor. (author)

  8. Investigation and Estimation of Structure of Web from Electro spun Nano fibres

    International Nuclear Information System (INIS)

    Malasauskiene, J.; Milasius, R.

    2013-01-01

    During the electro spinning process the web of nano fibres is manufactured by means of electrostatic forces between two electrodes. The diameters of nano fibres usually differ and they depend on various parameters. The different fineness of fibres influences the structure of the web and herewith the end-use properties of such kind of nano material. Analysis of nano fibres diameters distribution also shows big differences; even more, the distributions are not spread along the normal distribution. Understanding the influence of electro spinning parameters and the reason why the shapes of distributions are so sophisticated is very important. The goal of this paper is to analyse the distribution of diameter and to propose the new criterion for nano fibres diameter comparison and web of nano fibres estimation. In this paper the influence of covering time of support material on structure of PA6.6 nano fibre web has been investigated. It was estimated that this parameter does not have a significant influence on the average diameter of nano fibres, and only the structure of web has been influenced by the changes in covering time. According to the results provided the phenomena of nano fibres sticking on the support material at the time of electro spinning can be proved and explained.

  9. Investigation of structural transformations in surface layer of phosphate glasses incorporating radiactive wastes

    International Nuclear Information System (INIS)

    Aloj, A.S.; Kolycheva, T.I.; Trofimenko, A.V.; Shashukov, E.A.

    1985-01-01

    The objective of the paper was to clarify possibilities of detection of structural transformations initial stages on the surface of phosphate glasses using the method of infrared reflection spectroscopy. Phase composition of crystalline compounds formed in surface glass layer is determined by the method of X-ray diffraction. All experiments were performed using sodium alumophosphate glass comprising the model mixture of fission product of the following compostion (mass%): Na 2 O-22.0, Al 2 O 3 -14.0, P 2 O 5 -50.0, Fe 2 O 3 -3.5, Cs 2 O-3.5, SrO-3.0, Ln 2 O 3 -4.0, where Ln 2 O 3 is a mixture of cerium, lanthanum and europium oxides. Sample preparation were carried out by molten glass deposition on platinum forms 15mm in diameter and 4mm thick. Glasses were treated within the 600-400deg.C temperature range. Fixing of processes accompanied by structural transformations was accomplished the method of rapid cooling. It has been shown that phase transformations, taking place in investigated phosphate glasses under the action of heat, result in deterioration of chemical properties. Analysis of IR spectra has revealed that emergence of structural transformations in surface layer of investigated glasses results in variation of a ratio of 1060 and 1140cm - 1 reflection band intensities. Experimental dependences of the time of beginning of variation of 1060 and 1140cm - 1 bands relative intensity on temperature are presented. Insemilogarithmic coordinates this dependence has a straight line form within the 600-400 deg C temperature range and is desc ribed by the following formular: lg r=-7.41+5.70x10 3 x1/T, where r is the time of process beginning, h. Extrapolation of established to the region of low temperature is shown. Competence of such extrapolation may be confirmed in the course of further experiments

  10. Investigation of structural and electronic properties of double walled Zn O nano tube bundle

    International Nuclear Information System (INIS)

    Moradian, R.; Amjadian, S.; Shahrokhi, M.

    2012-01-01

    We have investigated the structural and electronic properties of isolated double walled Zn O nano tube and its bundle by the first principles calculations in the framework of the density functional theory based on the full-potential augmented plane-wave within the generalized gradient approximation. Our results show that bundle nano tube is more stable than isolated nano tube. In the bundle the inter-tube interaction between each wall with its nearest neighbors causes, band splitting and reduction of semiconducting energy gap.

  11. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    International Nuclear Information System (INIS)

    Mishra, P; Lohani, H; Sekhar, B R; Kundu, A K; Menon, Krishnakumar S R; Patel, R; Solanki, G K

    2015-01-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ–Z, Γ–Y and Γ–T symmetry directions. The valence band maximum occurs nearly midway along the Γ–Z direction, at a binding energy of −0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4p z orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ–T direction. Detailed electronic structure analysis reveals the significance of the cation–anion 4p orbitals hybridization in the valence band dispersion of IV–VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis. (paper)

  12. Theoretical investigation of the structure of κ-Al2O3

    DEFF Research Database (Denmark)

    Yourdshahyan, Y.; Engberg, U.; Bengtsson, L.

    1997-01-01

    Using plane-wave pseudopotential calculations based on density-functional theory at the local-density-approximation level we investigate all the possible kappa-Al2O3 structures which are permitted by the known crystal symmetry. We find that structures with sixfold coordinated Al atoms...

  13. A structural equation modeling investigation of the emotional value of immersive virtual reality in education

    DEFF Research Database (Denmark)

    Makransky, Guido; Lilleholt, Lau

    2018-01-01

    Virtual reality (VR) is projected to play an important role in education by increasing student engagement and motivation. However, little is known about the impact and utility of immersive VR for administering e-learning tools, or the underlying mechanisms that impact learners’ emotional processes...... while learning. This paper explores whether differences exist with regard to using either immersive or desktop VR to administer a virtual science learning simulation. We also investigate how the level of immersion impacts perceived learning outcomes using structural equation modeling. The sample...

  14. Molecular dynamics investigation into the structural features and transport properties of C60 in liquid argon.

    Science.gov (United States)

    Fang, Kuan-Chuan; Weng, Cheng-I

    2007-07-05

    Molecular dynamics (MD) simulations were performed to investigate the structural features and transport properties of C60 in liquid argon. The results reveal that an organized structure shell of liquid argon is formed close to the surface of a C60 fullerene molecule, thereby changing the solid/liquid interfacial structure. Furthermore, the simulation indicates that the C60-liquid argon fluid becomes structurally more stable as the C60 molecule volume fraction and the temperature increase. The viscosity of the fluid increases significantly as the C60 molecule loading is increased, particularly at a lower temperature. The thermal conductivity enhancement of the fluid in the present simulations is anomalously an order of magnitude higher than the theoretical predictions from either the Maxwell or the Lu and Liu models, and is found to vary approximately linearly with the C60 molecule volume fraction. The increased thermal conductivity is attributed to the nature of heat conduction in C60 molecule suspensions and an organized structure at the solid/liquid interface.

  15. Sorption of uranium (VI) species on zircon: structural investigation of the solid/solution interface.

    Science.gov (United States)

    Lomenech, C; Simoni, E; Drot, R; Ehrhardt, J-J; Mielczarski, J

    2003-05-15

    This work is an investigation of the mechanisms of interaction between uranium (VI) ions and zirconium silicate. The speciation of uranium (VI) sorbed on zircon was studied using four complementary techniques as probes of the local structure around the uranium atom: laser spectrofluorimetry, X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier-transformed (DRIFT) spectroscopy, and EXAFS spectroscopy. The sorption of uranyl on zirconium oxide was also studied to allow structural comparisons. Spectrofluorimetry and XPS results allowed an identification of the silicate sorption sites on the solid. These methods associated with spectrofluorimetry and DRIFT led to a characterization of the sorbed surface complexes, taking into account the influence of the nature of the background salt and of the pH on the structure of the U(VI) surface species. EXAFS measurements, either on air-dried samples or in situ, were then carried out on well-characterized samples and allowed identification of the sorption mechanism on zircon as the formation of an inner-sphere polydentate surface complex.

  16. Investigation on strain sensing properties of carbon-based nanocomposites for structural aircraft applications

    Science.gov (United States)

    Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi; Russo, Salvatore

    2016-05-01

    The mechanical and electrical properties of a thermosetting epoxy resin particularly indicated for the realization of structural aeronautic components and reinforced with multiwalled carbon nanotubes (MWCNTs, at 0.3 wt%) are investigated for specimens subjected to cycles and different levels of applied strain (i.e. ɛ) loaded both in axial tension and flexural mode. It is found that the piezoresistive behavior of the resulting nanocomposite evaluated in terms of variation of the electrical resistance is strongly affected by the applied mechanical stress mainly due to the high sensibility and consequent rearrangement of the electrical percolating network formed by MWCNTs in the composite at rest or even under a small strain. In fact, the variations in electrical resistance that occur during the mechanical stress are correlated to the deformation exhibited by the nanocomposites. In particular, the overall response of electrical resistance of the composite is characterized by a linear increase with the strain at least in the region of elastic deformation of the material in which the gauge factor (i.e. G.F.) of the sensor is usually evaluated. Therefore, the present study aims at investigating the possible use of the nanotechnology for application of embedded sensor systems in composite structures thus having capability of self-sensing and of responding to the surrounding environmental changes, which are some fundamental requirements especially for structural aircraft monitoring applications.

  17. Investigations of the Electronic Properties and Surface Structures of Aluminium-Rich Quasicrystalline Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, Jason A. [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The work presented in this dissertation has investigated three distinct areas of interest in the field of quasicrystals: bulk structure, transport properties, and electronic structure. First, they have described the results of a study which explored the fundamental interactions between the atomic species of the icosahedral Al-Pd-Mn quasicrystal. The goal of this work was to determine whether the pseudo-MacKay or Bergman type clusters have a special stability or are merely a geometric coincidence. This was carried out by using laser vaporization to produce gas-phase metal clusters, which were analyzed using time-of-flight mass spectrometry. Both the kinetic and thermodynamic stabilities of the clusters were probed. The data indicated no special stability for either pseudo-MacKay or Bergman type clusters as isolated units. This, however, is not proof that these clusters are simply a geometric coincidence. It is possible that such clusters only have stability in the framework of the bulk matrix and do not exist as isolated units. Next, they have reported their investigations of the bulk thermal transport properties of a decagonal Al-Ni-Co two dimensional quasicrystal in the temperature range 373K-873K. The properties of a sample oriented along the periodic axis and another oriented along the aperiodic axis were measured. A high degree of anisotropy was observed between the aperiodic and periodic directions. Additionally, the properties were measured for a sample miscut to an orientation 45° off-axis. The properties of the miscut sample were shown to have good agreement with a theoretical model used to describe thermal transport in metallic single crystals. This model only considers thermal transport by a free-electron gas; therefore, agreement with experimental data suggests the validity of the Drude free-electron model for the decagonal Al-Ni-Co at these temperatures. Consequently, the observed anisotropy may be adequately described using classical transport

  18. Structure investigation of organic molecules on Au(111) surfaces; Strukturuntersuchung organischer Molekuele auf Au(111)-Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kazempoor, Michel

    2009-02-02

    The present work covers two topics namely the coadsorption of formic acid and water on Au(111) and the structure of biphenylalkanthiole SAMs on Au(111) surfaces. The coadsorption of formic acid and water on Au(111) surfaces has been investigated by means of vibrational and photoelectron spectroscopy (HREELS, XPS). Formic acid adsorbs at 90 K molecularly with vibrational modes characteristic for flat lying zig-zag chains in the mono- and multilayer regime, like in solid formic acid. The structure of the flat lying formic acid chains was determined by low energy electron diffraction (LEED) as a (2r3 x r19) unit cell. Annealing results in a complete desorption at 190 K. Sequential adsorption of formic acid and water at 90 K shows no significant chemical interaction. Upon annealing the coadsorbed layer to 140 K a hydrogenbonded cyclic complex of formic acid with one water molecule could be identified using isotopically labelled adsorbates. Upon further annealing this complex decomposes leaving molecularly adsorbed formic acid on the surface at 160 K, accompanied by a proton exchange between formic acid and water. The influence of the alkane spacer chain length on the structure of biphenylalkanethiols on Au(111) surfaces was investigated as well. A systematic study was done on BPn-SAMs deposited from the gas phase. For every chain length a structure was found by LEED. Furthermore the influence of temperature on the structure was investigated in the range from room temperature up to about 400 K. To obviate influences from different preparation methods BP3 and BP4 was deposited from gas phase and from solution. No LEED spots were observed on BP4 SAMs deposited from solution. For BP3 an influence of the preparation could be excluded. For all BPn-SAMs a good agreement between LEED and STM data's was found. Nevertheless different unit cells were determined by LEED and STM consistent structures could be suggested considering the unit cell size given by LEED and the

  19. Structural, elastic, mechanical and thermodynamic properties of Terbium oxide: First-principles investigations

    Directory of Open Access Journals (Sweden)

    Samah Al-Qaisi

    Full Text Available First-principles investigations of the Terbium oxide TbO are performed on structural, elastic, mechanical and thermodynamic properties. The investigations are accomplished by employing full potential augmented plane wave FP-LAPW method framed within density functional theory DFT as implemented in the WIEN2k package. The exchange-correlation energy functional, a part of the total energy functional, is treated through Perdew Burke Ernzerhof scheme of the Generalized Gradient Approximation PBEGGA. The calculations of the ground state structural parameters, like lattice constants a0, bulk moduli B and their pressure derivative B′ values, are done for the rock-salt RS, zinc-blende ZB, cesium chloride CsCl, wurtzite WZ and nickel arsenide NiAs polymorphs of the TbO compound. The elastic constants (C11, C12, C13, C33, and C44 and mechanical properties (Young’s modulus Y, Shear modulus S, Poisson’s ratio σ, Anisotropic ratio A and compressibility β, were also calculated to comprehend its potential for valuable applications. From our calculations, the RS phase of TbO compound was found strongest one mechanically amongst the studied cubic structures whereas from hexagonal phases, the NiAs type structure was found stronger than WZ phase of the TbO. To analyze the ductility of the different structures of the TbO, Pugh’s rule (B/SH and Cauchy pressure (C12–C44 approaches are used. It was found that ZB, CsCl and WZ type structures of the TbO were of ductile nature with the obvious dominance of the ionic bonding while RS and NiAs structures exhibited brittle nature with the covalent bonding dominance. Moreover, Debye temperature was calculated for both cubic and hexagonal structures of TbO in question by averaging the computed sound velocities. Keywords: DFT, TbO, Elastic properties, Thermodynamic properties

  20. Experimental Investigation of the Effects of Concrete Alkalinity on Tensile Properties of Preheated Structural GFRP Rebar

    Directory of Open Access Journals (Sweden)

    Hwasung Roh

    2017-01-01

    Full Text Available The combined effects of preexposure to high temperature and alkalinity on the tensile performance of structural GFRP reinforcing bars are experimentally investigated. A total of 105 GFRP bar specimens are preexposed to high temperature between 120°C and 200°C and then immersed into pH of 12.6 alkaline solution for 100, 300, and 660 days. From the test results, the elastic modulus obtained at 300 immersion days is almost the same as those of 660 immersion days. For all alkali immersion days considered in the test, the preheated specimens provide slightly lower elastic modulus than the unpreheated specimens, showing only 8% maximum difference. The tensile strength decreases for all testing cases as the increase of the alkaline immersing time, regardless of the prehearing levels. The tensile strength of the preheated specimens is about 90% of the unpreheated specimen for 300 alkali immersion days. However, after 300 alkali immersion days the tensile strengths are almost identical to each other. Such results indicate that the tensile strength and elastic modulus of the structural GFRP reinforcing bars are closely related to alkali immersion days, not much related to the preheating levels. The specimens show a typical tensile failure around the preheated location.

  1. Structural Investigation of (U0.7Pu0.3)O2-x Mixed Oxides.

    Science.gov (United States)

    Vigier, Jean-François; Martin, Philippe M; Martel, Laura; Prieur, Damien; Scheinost, Andreas C; Somers, Joseph

    2015-06-01

    Uranium-plutonium mixed oxide containing 30% of plutonium is a candidate fuel for several fast neutron and accelerator driven reactor systems. In this work, a detailed structural investigation on sol-gel synthesized stoichiometric U0.7Pu0.3O2.00 and substoichiometric U0.7Pu0.3O2-x, using X-ray diffraction (XRD), oxygen 17 magic angle spinning nuclear magnetic resonance ((17)O MAS NMR) and X-ray absorption spectroscopy is described. As observed by XRD, the stoichiometric U0.7Pu0.3O2.00 is monophasic with a lattice parameter in good agreement with Vegard's law, while the substoichiometric U0.7Pu0.3O2-x material is biphasic. Solid solution ideality in terms of a random distribution of metal atoms is proven for U0.7Pu0.3O2.00 with (17)O MAS NMR. X-ray absorption near-edge structure (XANES) spectroscopy shows the presence of plutonium(III) in U0.7Pu0.3O2-x. Extended X-ray absorption fine-structure (EXAFS) spectroscopy indicates a similar local structure around both cations, and comparison with XRD indicates a close similarity between uranium and plutonium local structures and the long-range ordering.

  2. Investigation of prescribed movement in fluid–structure interaction simulation for the human phonation process☆

    Science.gov (United States)

    Zörner, S.; Kaltenbacher, M.; Döllinger, M.

    2013-01-01

    In a partitioned approach for computational fluid–structure interaction (FSI) the coupling between fluid and structure causes substantial computational resources. Therefore, a convenient alternative is to reduce the problem to a pure flow simulation with preset movement and applying appropriate boundary conditions. This work investigates the impact of replacing the fully-coupled interface condition with a one-way coupling. To continue to capture structural movement and its effect onto the flow field, prescribed wall movements from separate simulations and/or measurements are used. As an appropriate test case, we apply the different coupling strategies to the human phonation process, which is a highly complex interaction of airflow through the larynx and structural vibration of the vocal folds (VF). We obtain vocal fold vibrations from a fully-coupled simulation and use them as input data for the simplified simulation, i.e. just solving the fluid flow. All computations are performed with our research code CFS++, which is based on the finite element (FE) method. The presented results show that a pure fluid simulation with prescribed structural movement can substitute the fully-coupled approach. However, caution must be used to ensure accurate boundary conditions on the interface, and we found that only a pressure driven flow correctly responds to the physical effects when using specified motion. PMID:24204083

  3. Preparation and investigation of structural, magnetic and microwave absorption properties of cerium doped barium hexaferrite

    Directory of Open Access Journals (Sweden)

    P Kameli

    2015-01-01

    Full Text Available In this study the structure, magnetic and microwave absorption properties of cerium (Ce doped barium hexaferrite with general formulae BaCexFe12-xO19 (x=0.0, 0.05, 0.1, 0.15, 0.2 have been investigated. These samples have been prepared by sol- gel method. Influence of replacing Fe+3 ion by rare- earth Ce+3 ion on the structural, magnetic and microwave absorption properties have been investigated by X- ray diffraction (XRD, Fourier transform infrared (FT-IR, Vibrating sample magnetometer (VSM and vector network analyzer (VNA. X-ray diffraction analysis indicated that the samples are of single phase with space group p63/mmc. The magnetic properties of samples indicated that with the Ce doping the saturation magnetization show no regular behavior. Moreover, coercivity (Hc first decreased and reached to the minimum value for x=0.1 sample and then increased with Ce content increasing. Also, measurement of electromagnetic wave absorption in X and Ku frequency bands indicated that the maximum of reflection loss obtained for x=0.15 sample. Moreover, result indicated that absorption peak shifted toward a lower frequency when thickness was increased.

  4. Investigation of heat treatment conditions of structural material for blanket fabrication process

    International Nuclear Information System (INIS)

    Hirose, Takanori; Suzuki, Satoshi; Akiba, Masato; Shiba, Kiyoyuki; Sawai, Tomotsugu; Jitsukawa, Shiro

    2004-01-01

    This paper presents recent results of thermal hysteresis effects on ceramic breeder blanket structural material. Reduced activation ferritic/martensitic (RAF) steel is the leading candidates for the first wall structural materials of breeding blankets. RAF steel demonstrates superior resistance to high dose neutron irradiation, because the steel has tempered martensite structure which contains the number of sink site for radiation defects. This microstructure obtained by two-step heat treatment, first is normalizing at temperature above 1200 K and the second is tempering at temperature below 1100 K. Recent study revealed the thermal hysteresis has significant impacts on the post-irradiation mechanical properties. The breeding blanket has complicated structure, which consists of tungsten armor and thin first wall with cooling pipe. The blanket fabrication requires some high temperature joining processes. Especially hot isostatic pressing (HIP) is examined as a near-net-shape fabrication process for this structure. The process consists of heating above 1300 K and isostatic pressing at the pressure above 150 MPa followed by tempering. Moreover ceramics pebbles are packed into blanket module and the module is to be seamed by welding followed by post weld heat treatment in the final assemble process. Therefore the final microstructural features of RAFs strongly depend on the blanket fabrication process. The objective of this work is to evaluate the effects of thermal hysteresis corresponding to blanket fabrication process on RAFs microstructure in order to establish appropriate blanket fabrication process. Japanese RAFs F82H (Fe-0.1C-8Cr-2W-0.2V-0.05Ta) was investigated by metallurgical method after isochronal heat treatment up to 1473 K simulating high temperature bonding process. Although F82H showed significant grain growth after conventional solid HIP conditions (1313 K x 2 hr.), this coarse grained microstructure was refined by the post HIP normalizing at

  5. Investigation of high burnup structures in uranium dioxide applying cellular automata: algorithms and codes

    International Nuclear Information System (INIS)

    Akishina, E.P.; Kostenko, B.F.; Ivanov, V.V.

    2003-01-01

    A new method of research in spatial structures that result from uranium dioxide burning in nuclear reactors of modern atomic plants is suggested. The method is based on the presentation of images of the mentioned structures in the form of the working field of a cellular automaton (CA). First, it has allowed one to extract some important quantitative characteristics of the structures directly from the micrographs of the uranium fuel surface. Secondly, the CA has been found out to allow one to formulate easily the dynamics of the evolution of the studied structures in terms of such micrograph elements as spots, spots' boundaries, cracks, etc. Relation has been found between the dynamics and some exactly solvable models of the theory of cellular automata, in particular, the Ising model and the vote model. This investigation gives a detailed description of some CA algorithms which allow one to perform the fuel surface image processing and to model its evolution caused by burnup or chemical etching. (author)

  6. Experimental Investigation on Pore Structure Characterization of Concrete Exposed to Water and Chlorides.

    Science.gov (United States)

    Liu, Jun; Tang, Kaifeng; Qiu, Qiwen; Pan, Dong; Lei, Zongru; Xing, Feng

    2014-09-16

    In this paper, the pore structure characterization of concrete exposed to deionised water and 5% NaCl solution was evaluated using mercury intrusion porosity (MIP), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of calcium leaching, fly ash incorporation, and chloride ions on the evolution of pore structure characteristics were investigated. The results demonstrate that: (i) in ordinary concrete without any fly ash, the leaching effect of the cement products is more evident than the cement hydration effect. From the experimental data, Ca(OH)₂ is leached considerably with the increase in immersion time. The pore structure of concrete can also be affected by the formation of an oriented structure of water in concrete materials; (ii) incorporation of fly ash makes a difference for the performance of concrete submersed in solutions as the total porosity and the pore connectivity can be lower. Especially when the dosage of fly ash is up to 30%, the pores with the diameter of larger than 100 nm show significant decrease. It demonstrates that the pore properties are improved by fly ash, which enhances the resistance against the calcium leaching; (iii) chlorides have a significant impact on microstructure of concrete materials because of the chemical interactions between the chlorides and cement hydrates.

  7. Theoretical and experimental investigation of the nonlinear structural dynamics of Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Liebe, R.

    1978-04-01

    This study describes theoretical and experimental investigations of the dynamic deformation behavior of single and clustered fuel elements under local fault conditions in a Fast Breeder Reactor core. In particular an energetic molten-fuel-coolant-interaction (FCI) is assumed in one subassembly with corresponding pressure pulses, which may rupture the wrapper and load the adjacent fuel elements impulsively. Associated coherent structural deformation may exceed tolerable and damage the control rods. To attack the outlined coupled fluid-structure-interaction problem it is assumed, that the loading at the structures is known in space and time, and that there is no feedback from the deformation response. Then current FCI-knowledge and experience from underwater core model explosion tests is utilized to estimate upper limits of relevant pulse characteristics. As a first step the static carrying capacity of the rigid-plastic hexagonal wrapper tube is calculated using the methods of limit analysis. Then for a general dynamic simulation of the complete elastoplastic subassembly response the concept of a discrete nonlinear hinge is introduced. A corresponding physical lumped parameter hinge model is presented, and general equations of motion are derived using D'Alembert's principle. Application to the static and dynamic analysis of a single complete fuel element includes the semiempirical modelling of the fuel-pin bundle by a homogeneous compressible medium. Most important conclusions are concerning the capability of the theoretical models, the failure modes and threshold load levels of single as well as clustered SNR-300 fuel elements and the safety relevant finding, that only limited deformations are found in the first row around the incident element. This shows in agreement with explosion test results that the structured and closely spaced fuel elements constitute an effective, inherent barrier against extreme dynamic loadings. (orig.) [de

  8. Synthesis, characterization, crystal structure and quantum chemical investigations of three novel coumarin-benzenesulfonohydrazide derivatives

    Science.gov (United States)

    Chethan Prathap, K. N.; Lokanath, N. K.

    2018-04-01

    Coumarin derivatives are an important class of heterocyclic compounds due to their physical and biological properties. Coumarin derivatives have been identified with many significant electro-optical properties and biological activities. Three novel coumarin derivatives containing benzene sulfonohydrazide group were synthesized by condensation reaction. The synthesized compounds were characterized by various spectroscopic techniques (Mass, 1H/13C NMR and FTIR). Thermal and optical properties were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and UV-Vis spectroscopic studies. Finally their structures were confirmed by single crystal X-ray diffraction (XRD) studies. The three compounds exhibit diverse intermolecular interactions, as observed by the crystal packing and Hirshfeld surface analysis. Further, their structures were optimized by density functional theory (DFT) calculations using B3LYP hybrid functionals with 6-311G+(d,p) level basis set. The Mulliken charge, molecular electrostatic potential (MEP), frontier molecular orbitals (HOMO-LUMO) were investigated. The experimentally determined parameters were compared with those calculated theoretically and they complement each other with a very good correlation. The transitions among the molecular orbitals were investigated using time-dependent density functional theory (TD-DFT) and the electronic absorption spectra obtained showed very good agreement with the experimentally measured UV-Vis spectra. Furthermore, non-linear optical (NLO) properties were investigated by calculating polarizabilities and hyperpolarizabilities. All three compounds exhibit significantly high hyperpolarizabilities compared to the reference material urea, which makes them potential candidates for NLO applications.

  9. Theoretical investigations on the structure and potential binding sites of antineoplaston A10 and experimental findings.

    Science.gov (United States)

    Michalska, D

    1990-01-01

    The essential biological importance of antineoplastons has motivated the present theoretical and experimental studies on the structure and potential binding sites of Antineoplaston A10, 3-phenylacetylamino-2,6-piperidinedione. Semi-empirical molecular orbital calculations SCF-LCAO-MO were performed using the MNDO method. The calculated molecular geometry of A10 is in very good agreement with the recently obtained X-ray structure of synthetic A10. Experimental investigations of the Raman spectra of A10 and its N,N-dideuterated derivative confirm the theoretical predictions concerning the structure and hydrogen bonding of A10. Analysis of calculated charge distribution reveals that the negative charges are localized on the ring nitrogen and on the exocyclic oxygen atoms of A10 and are similar to the corresponding charges computed for some pyrimidine bases. This indicates that Antineoplaston A10 may have similar binding sites. It is concluded that the mechanism of action of Antineoplaston A10 may in part be related to its structural and chemical resemblance with deoxythymidine and uridine. A10 may act as a nucleoside antagonist and interact very closely with adenosine units in nucleic acids and enzymes, which may interfere with protein synthesis in neoplastic cells.

  10. Structural investigation of diglycerol monolaurate reverse micelles in nonpolar oils cyclohexane and octane

    International Nuclear Information System (INIS)

    Shrestha, Lok Kumar; Aramaki, Kenji

    2009-01-01

    Structure of diglycerol monolaurate (abbreviated as C 12 G 2 ) micelles in nonpolar oils cyclohexane and n-octane as a function of compositions, temperatures, and surfactant chain length has been investigated by small-angle X-ray scattering (SAXS). The SAXS data were evaluated by the generalized indirect Fourier transformation (GIFT) method and real-space structural information of particles was achieved. Conventional poly(oxyethylene) type nonionic surfactants do not form reverse micelles in oils unless a trace water is added. However, present surfactant C 12 G 2 formed reverse micelle (RM) in cyclohexane and n-octane without addition of water at normal room temperature. A clear signature of one dimensional (1-D) micellar growth was found with increasing C 12 G 2 concentration. On the other hand, increasing temperature or hydrocarbon chain length of surfactant shorten the length of RM, which is essentially a cylinder-to-sphere type transition in the aggregate structure. Drastic changes in the structure of RM, namely, transition of ellipsoidal prolate to long rod-like micelles was observed upon changing oil from cyclohexane to octane. All the microstructural transitions were explained in terms of critical packing parameter. (author)

  11. Investigating performance of microchannel evaporators for automobile air conditioning with different port structures

    Directory of Open Access Journals (Sweden)

    Guoliang Zhou

    2017-08-01

    Full Text Available Microchannel evaporator has been widely applied in automobile air conditioning, while it faces the problem of refrigerant maldistribution which deteriorates the thermal performance of evaporator. In this study, the performances of microchannel evaporators with different port structures are experimentally investigated for purpose of reducing evaporator pressure drop. Four evaporator samples with different port number and hydraulic diameter are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant R-134A at a real automobile air conditioning. The results on the variations of the evaporator pressure drop and evaporator surface temperature distribution are presented and analyzed. By studying the performance of an evaporator, seeking proper port structure is an approach to reduce refrigerant pressure drop as well as improve refrigerant distribution.

  12. Investigating Generic Structure of English Research Articles: Writing Strategy Differences between English and Indonesian Writers

    Directory of Open Access Journals (Sweden)

    Ni Ketut Mirahayuni

    2002-01-01

    Full Text Available Abstract. Research into English research articles (RAs has largely been focused on articles produced by native English writers. This paper reports a study aiming to investigate the textual structure of research articles written by non-native English (i.e. Indonesian writers, which may contribute to their acceptance for international publication. A comparison is made between RAs written by native English speakers, an Indonesian writers writing in English, all in the field of Language and Language Teaching. It explores the relation of text's generic structure. The thesis develops a framework for the generic structure analysis based on Swales' (1990 Create-A­Research-Space (CARS model of moves. The analysis focuses on two RA sections: Introduction and Discussion. The findings indicate significant differences in both forms and functions of organizing strategics between the native and non-native texts. The differences may partly be due to the influence of writing practices in the non-native writers' first language and partly to the writer's attempt to find an appropriate format in the absence of well-established research writing conventions in the first language. Consequently, non-native English texts may show organizing strategies unfamiliar to both the native English and native Indonesian texts. Findings from the research highlight two issues. First, formal and functional differences of generic structure elements and their realizations between the native and non-native English texts may disadvantage the non-native writers, particularly with regards to employment of unfamiliar organizational

  13. Investigation of complete bandgaps in a piezoelectric slab covered with periodically structured coatings.

    Science.gov (United States)

    Zou, Kui; Ma, Tian-Xue; Wang, Yue-Sheng

    2016-02-01

    The propagation of elastic waves in a piezoelectric slab covered with periodically structured coatings or the so-called stubbed phononic crystal slab is investigated. Four different models are selected and the effects of distribution forms and geometrical parameters of the structured coatings on complete bandgaps are discussed. The phononic crystal slab with symmetric coatings can generate wider complete bandgaps while that with asymmetric coatings is favorable for the generation of multi-bandgaps. The complete bandgaps, which are induced by locally resonant effects, change significantly as the geometry of the coatings changes. Moreover, the piezoelectric effects benefit the opening of the complete bandgaps. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Numerical investigation of flow structures with an oblique detonation wave in a hypersonic annular cylindrical chamber

    Science.gov (United States)

    Trotsyuk, Anatoliy V.

    2017-09-01

    A new supersonic flow-type annular detonation combustor is designed in which steady oblique detonation waves in the channel are generated using a compression body in the form of a solid single-wound spiral with a constant pitch angle. A two-dimensional unsteady mathematical model of the reacting flow in this device is formulated. The flow dynamics at the start of the chamber operation and steady supersonic flow structures for a stoichiometric hydrogen-air flow with an inlet Mach number M0=5 are numerically investigated. Two-dimensional numerical simulation is carried out for different spiral angles and geometrical dimensions of the chamber. A bifurcation of steady flow structures with respect to the initial condition of the problem is observed.

  15. Infrared Spectroscopic Study For Structural Investigation Of Lithium Lead Silicate Glasses

    International Nuclear Information System (INIS)

    Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu; Agarwal, Ashish; Monica

    2011-01-01

    Lithium lead silicate glasses with composition 30Li 2 O·(70-x)PbO·xSiO 2 (where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO 2 content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO 2 content changes from 6.0 to 0.4. The observed absorption band around 450-510 cm -1 in IR spectra of these glasses indicates the presence of network forming PbO 4 tetrahedral units in glass structure. The increase in intensity with increasing SiO 2 content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm -1 . The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO 2 ratio.

  16. Transmission electron microscopy investigations of the CdSe based quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Roventa, E.

    2006-09-22

    In this work, the structural morphology of the active region of the ZnSe laser diode: quaternary CdZnSSe quantum well or CdSe quantum dots embedded in CdSe/ZnSSe superlattices is investigated using Transmission Electron Microscopy. The conventional as well as high resolution imaging studies indicated that the degradation of the ZnSe laser diodes is connected with the formation of extended defects in the optical active region leading to a local strain relaxation of the quantum well. Furthermore the outdiffusion of Cd from the quantum well occurs predominantly where the defects are located. The chemical composition and ordering phenomena in CdSe/ZnSSe supperlattices were also investigated, employing a series of five-fold structures with different spacer layer thickness and a ten-fold structure. The composition in the CdSe/ZnSSe superlattice was determined to a certain extent using different techniques. Generally, the encountered difficulties regarding the accuracy of the obtained values are correlated with the complexity of the investigated system and with the available experimental methods used. Regarding the alignment of the dots, experimental results support a strain driven ordering process, in which the strain fields from buried dots lead to heterogeneous nucleation conditions for the dots in the subsequently deposited layers. An increased ordering with subsequent stacking of the dot layers is was also found. An anisotropy of the lateral alignment of the CdSe dots was also observed in two different left angle 110 right angle zone axes. The similar plan-view images shows that the preferential alignment of the dots does not follow low-index crystallographic directions. However, it is assumed that this is attributed to the anisotropic elastic strain distribution combined with surface diffusion. (orig.)

  17. Investigation of the structure of photosynthetic reaction centers. Progress report, June 1, 1981-April 1, 1982

    International Nuclear Information System (INIS)

    van Willigen, H.

    1982-04-01

    The investigation is concerned with the application of Electron Nuclear Double Resonance (ENDOR) and Electron Nuclear Triple Resonance (TRIPLE) in the study of the photo excited triplet state of photosynthetic resonance methods hyperfine interactions between unpaired electrons and nuclear spins can be measured, giving an insight in the electronic and geometric structure of paramagnetic systems. During this initial phase of the project, research has focused on the following areas. (1) Instrumental aspects associated with the application of ENDOR and TRIPLE on the photo excited triplets randomly oriented in solid solution. (2) Exploration of the conditions required for these studies employing ground state triplet systems. (3) Study of photo excited triplet states of model systems such as naphthylene, zinc and magnesium tetraphenyl-porphyrin in polymethylmethacrylate or polycrystalline benzophenone. Progress made in these areas is discussed

  18. Investigation of the structure of photosynthetic reaction centers. Progress report, June 1, 1981-January 5, 1983

    International Nuclear Information System (INIS)

    van Willigen, H.

    1983-01-01

    In this initial phase of the project we have been concerned primarily with the development of the methodology of the application of ENDOR in the study of the photo-excited triplets in amorphous solids. Over the past year and a half the instrumentation has been vastly improved. First of all, by the incorporation of a computer. Secondly, by the development of a better cavity suitable for optical irradiation studies. And finally, as a result of an improved cryogenic system. Proper conditions for the recording of ENDOR spectra of randomly oriented triplets in a solid matrix were found in a study of a series of ground-state triplets with zero field splittings (D) ranging from less than 100 gauss to more than 400 gauss. The measurements established that to be successful ENDOR measurements on chlorophyll triplets must be performed at temperatures well below 10 K. Furthermore, it could be shown that hyperfine and quadrupole data extracted from spectra will be helpful for the elucidation of electronic as well as geometric structure. Finally, ENDOR measurements on a series of photo-excited triplets were performed. From the point of view of the objective of this research it was particularly encouraging to learn from these measurements that a short triplet lifetime does not preclude ENDOR measurements. In fact, of the molecules investigated those with the shortest tau/sub T/ gave the strongest ENDOR effect. This can be attributed to spin-alignment effects of which we can also take advantage in studies of chlorophyll systems. Measurements performed on the porphyrins give an insight into substituent effects which can be of aid in the elucidation of their electronic structure. Hyperfine data obtained from ZnTPP (CN) 4 suggest that the structure proposed for this molecule may be incorrect

  19. Theoretical and numerical investigations of sub-wavelength diffractive optical structures

    DEFF Research Database (Denmark)

    Dridi, Kim

    2000-01-01

    finite-difference time domain method and exact radiation integrals is implemented for the polarization where the electric field vector is perpendicular to the two dimentional plane of symmetry. The computational model solves the full vectorial time domain Maxwell equations with general sources...... of illumination. Maxwell's equations are solved numerically in complex geometries and radiation integrals are applied in homogeneous regions, thus minimizing the computational time. Analysis of finte length surface relief structures embedded in polymer dielectric waveguides are presented. The importance......The work in this thesis concerns theoretical and numerical investigations of sub-wavelength diffractive optical structures, relying on advanced two-dimensional vectorial numerical models that have applications in Optics and Electromagnetics. Integrated Optics is predicted to play a major role...

  20. Structural investigation of the negative thermal expansion in yttrium and rare earth molybdates

    International Nuclear Information System (INIS)

    Guzman-Afonso, Candelaria; Torres, Manuel Eulalio; Sabalisck, Nanci; Sanchez-Fajardo, VIctor; Gonzalez-Silgo, Cristina; Gonzalez-Platas, Javier; Lozano-GorrIn, Antonio Diego; Campo, Javier; RodrIguez-Carvajal, Juan

    2011-01-01

    The Sc 2 (WO 4 ) 3 -type phase (Pbcn) of Y 2 (MoO 4 ) 3 , Er 2 (MoO 4 ) 3 and Lu 2 (MoO 4 ) 3 has been prepared by the conventional solid-state synthesis with preheated oxides and the negative thermal expansion (NTE) has been investigated along with an exhaustive structural study, after water loss. Their crystal structures have been refined using the neutron and x-ray powder diffraction data of dehydrated samples from 150 to 400 K. The multi-pattern Rietveld method, using atomic displacements with respect to a known structure as parameters to refine, has been applied to facilitate the interpretation of the NTE behavior. Polyhedral distortions, transverse vibrations of A···O-Mo (A = Y and rare earths) binding oxygen atoms, non-bonded distances A···Mo and atomic displacements from the high temperature structure, have been evaluated as a function of the temperature and the ionic radii.

  1. Thermodynamic and structural investigation of the specific SDS binding of humicola insolens cutinase

    DEFF Research Database (Denmark)

    Kold, Daniel; Dauter, Zbigniew; Laustsen, Anne

    2014-01-01

    The interaction of lipolytic enzymes with anionic surfactants is of great interest with respect to industrially produced detergents. Here, we report the interaction of cutinase from the thermophilic fungus Humicola insolens with the anionic surfactant SDS, and show the enzyme specifically binds...... a single SDS molecule under nondenaturing concentrations. Protein interaction with SDS was investigated by NMR, ITC and molecular dynamics simulations. The NMR resonances of the protein were assigned, with large stretches of the protein molecule not showing any detectable resonances. SDS is shown...... to specifically interact with the loops surrounding the catalytic triad with medium affinity (Ka ≈ 105 M−1). The mode of binding is closely similar to that seen previously for binding of amphiphilic molecules and substrate analogues to cutinases, and hence SDS acts as a substrate mimic. In addition, the structure...

  2. Synthesis, structure, spectroscopic investigations, and computational studies of optically pure β-ketoamide

    Energy Technology Data Exchange (ETDEWEB)

    Mtat, D.; Touati, R. [Université de Monastir, Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène (UR11ES56), Faculté des Sciences (Tunisia); Guerfel, T., E-mail: taha-guerfel@yahoo.fr [Université de Kairouan, Laboratoire d’Electrochimie, Matériaux et Environnement (Tunisia); Walha, K. [Université de Sfax, M.E.S.Lab. Faculté des Sciences de Sfax (Tunisia); Ben Hassine, B. [Université de Monastir, Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène (UR11ES56), Faculté des Sciences (Tunisia)

    2016-12-15

    Chemical preparation, X-ray single crystal diffraction, IR and NMR spectroscopic investigations of a novel nonlinear optical organic compound (C{sub 17}H{sub 22}NO{sub 2}Cl) are described. The compound crystallizes in the orthorhombic system with the non-centrosymmetric sp. gr. P2{sub 1}2{sub 1}2{sub 1}. In the crystal structure, molecules are interconnected by N–H…O hydrogen bonds forming infinite chains along a axis. The Hirshfeld surface and associated fingerprint plots of the compound are presented to explore the nature of intermolecular interactions and their relative contributions in building the solid-state architecture. The molecular HOMO–LUMO compositions and their respective energy gaps are also drawn to explain the activity of the compound. The first hyperpolarizability β{sub tot} of the title compound is determined using DFT calculations. The optical properties are also investigated by UV–Vis absorption spectrum.

  3. Dam safety investigations of the concrete structures of Hugh Keenleyside dam

    International Nuclear Information System (INIS)

    Hanna, A.W.; Nunn, J.O.H.; Cornish, L.; Northcott, P.

    1993-01-01

    The Hugh Keenleyside dam is located on the Columbia River in southeastern British Columbia, and impounds Arrow Lakes Reservoir which has a live storage of 8.8 km 3 and drains an area of 36,000 km 2 . It consists of a number of concrete structures, with a total length of 360 m and a maximum height of 58 m, and an earthfill embankment which spans across the original river channel. The 450 m long zoned earthfill dam is founded on pervious alluvium over 150 m deep. It has a sloping impervious core constructed from glacial till which extends 670 m upstream of the dam. This impervious blanket extends over the full width of the reservoir and is connected to the upstream face of the concrete structures. The results of a dam safety study, which was carried out due to the presence of high uplift pressures at some parts of the foundation, and stability concerns, are presented. The investigation concluded that the high uplift pressures were due to a localized defect in the upstream blanket and did not indicate any general deterioration of the blanket. Techniques that were found to be of particular use in the study for defining the source and nature of the foundation defects were: temperature surveys of flows from piezometers, cells and drains; air injection tests; and pressure response testing of cells, piezometers and drains to establish foundation interconnections. The concrete structures met the stability criteria for all load cases considered except for the navigation lock and the low level outlets. 3 refs., 6 figs

  4. Investigation of durability of silica fume concretes in coastal structures within tidal zone

    International Nuclear Information System (INIS)

    Ganjian, E.; Sadeghi Pouya, H.

    2003-01-01

    In recent decade use of silica fume has been become greater in coastal concrete structures in the persona gulf, to increase durability of those establishments. In this research the durability of cement passers and concrete cubes with use of 7 and 10 percent of silica fume as a cement replacement have been investigated in three curing conditions (fresh water, coast of sea and simulation bonds) by measuring compressive strengths and capillary absorption. Silica fume specimens under wetting and drying condition showed more strength loss after 180 days compare to samples without silica fume or cured in the fresh water. In addition the greater silica fume amount in specimens cured within tidal zone and under wetting and drying simulation, the more water absorption by capillary. According to the results, good correspondence between simulated condition and real site exposure was obtained

  5. Investigations of the structure and electromagnetic interactions of few-body systems

    International Nuclear Information System (INIS)

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.

    1992-07-01

    In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the George Washington University (GWU) theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions axe the issue, numerically accurate calculations axe always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework, i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art fewbody calculations that wig serve as a means of determining at what point standard nuclear physics requires quark degrees of freedom in order to understand the phenomena in question. So far, in the problems considered, there has been no evidence of the necessity to go beyond the traditional approach, though we always keep in mind that possibility. As our work is involved with questions in the intermediate-energy realm, moving from a nonrelativistic framework to a relativistic one is always a consideration. Currently, for the problems that have been pursued in this domain of energy, the issues concern far more the mechanisms of the reactions and structural questions than the need to move to relativistic dynamics

  6. INVESTIGATION OF PLASMA WEAR RESISTANCE COATING STRUCTURE ON BASIS OF OXIDE CERAMICS WITH INCLUSIONS OF SOLID LUBRICATION

    Directory of Open Access Journals (Sweden)

    F. I. Panteleenko

    2013-01-01

    Full Text Available The paper describes an investigation of the structure, chemical and phase composition of wear resistance coatings on the basis of  oxide ceramics with inclusions of  solid lubrication.

  7. Investigation of the overconsolidation and structural behavior of Shanghai clays by element testing and constitutive modeling

    Directory of Open Access Journals (Sweden)

    Guan-lin Ye

    2016-09-01

    Full Text Available The mechanical properties and constitutive modeling of Shanghai clays are very important for numerical analysis on geotechnical engineering in Shanghai, where continuous layers of soft clays run 30–40 m deep. The clays are divided into 5 major layers. A series of laboratory tests are carried out to investigate their mechanical properties. The top and bottom layers are overconsolidated hard clays, and the middle layers are normally consolidated or lightly overconsolidated sensitive marine clays. A constitutive model, which can describe the overconsolidation and structure of soils using only 8 parameters, is modified to simulate the test results. A rational procedure to determine the values of the material parameters and initial conditions is also proposed. The model is able to effectively reproduce both one-dimensional (1D consolidation and drained/undrained triaxial test results of Shanghai clays, with one set of parameters for each layer. From element testing and constitutive modeling, two findings are obtained. First, the decay rates of overconsolidation are smaller in overconsolidated layers than in normally consolidated layers. Second, the natural microstructure of layer 4 is relatively stable, that is, a large degree of structure is still maintained in the specimen even after 1D consolidation and drained triaxial tests. The modified model and obtained parameter values can be used for numerical analysis of geotechnical projects in Shanghai.

  8. A Comparative Structural Equation Modeling Investigation of the Relationships among Teaching, Cognitive and Social Presence

    Science.gov (United States)

    Kozan, Kadir

    2016-01-01

    The present study investigated the relationships among teaching, cognitive, and social presence through several structural equation models to see which model would better fit the data. To this end, the present study employed and compared several different structural equation models because different models could fit the data equally well. Among…

  9. Investigation of ITO layers for application as transparent contacts in flexible photovoltaic cell structures

    Science.gov (United States)

    Znajdek, Katarzyna; Sibiński, Maciej

    2013-07-01

    In this paper authors present the mechanical, optical and electrical parameters of Indium Tin Oxide (ITO) Transparent Conductive Layers (TCL) deposited on flexible substrate. Layers' properties are analyzed and verified. Investigated Transparent Conductive Oxide (TCO) was deposited, using magnetron sputtering method. Flexible polymer PET (polyethylene terephthalate) foil was used as a substrate, in order to photovoltaic (PV) cell's emitter contact application of investigated material. ITO-coated PET foils have been dynamically bent on numerous cylinders of various diameters according to the standard requirements. Resistance changes for each measured sample were measured and recorded during bending cycle. Thermal durability, as well as temperature influence on resistance and optical transmission are verified. Presented results were conducted to verify practical suitability and to evaluate possible applications of Indium Tin Oxide as a front contact in flexible photovoltaic cell structures.

  10. Investigation of non-uniform structure of sulfur doped monolayer for polystyrene hollow microspheres

    International Nuclear Information System (INIS)

    Liu Yiyang; Su Lin; Liu Meifang; Zhang Zhanwen; Li Bo; Chen Sufen

    2012-01-01

    Detailed analysis is carried out to describe the non-uniform structure of sulfur doped monolayer for polystyrene hollow microscopy. The results demonstrate that the appearance of this non-uniform comes from PSS (sodium polystyrene sulfonate, the doped sulfur agent). The film forming capability of PSS is also investigated with infrared image microscopy and polarizing microscope. PSS has a bad performance in film forming, and the ordering aggregates and crystal appear on the surfaces of the film. There is great difference in the thermal properties between the PSS film and the polystyrene film indicated by thermal treatment, and the PSS film is easy to have brittle crack and strip from the polystyrene film. Therefore, PSS is not appropriate for fabricating the hollow microspheres when the content of doped sulfur is high. (authors)

  11. Electronic structure of the 3d metals. An investigation by L-shell-photoionisation

    Energy Technology Data Exchange (ETDEWEB)

    Richter, T.S.

    2007-12-03

    The 3d transition metal elements from Sc to Cu have been investigated by both photo electron emission and photo absorption. Experimental spectra in the 2p energy range are discussed based on atomic multiplet models and Hartree- Fock calculations. The samples have been evaporated from an electron bombardment crucible and excited/ionized by monochromatized synchrotron radiation. Fundamental effects and the main interactions which govern the electronic structure of the 3d metal atoms are covered. Common spectral features and trends in the series are discussed as well as the importance of many body electron correlation effects. (orig.)

  12. Extended X-ray absorption fine structure investigation of nitrogen stabilized expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2010-01-01

    As-delivered austenitic stainless steel and nitrogen stabilized expanded austenite, both fully nitrided and denitrided (in H2), were investigated with Cr, Fe and Ni extended X-ray absorption fine structure. The data shows pronounced short-range ordering of Cr and N. For the denitrided specimen...... the N atoms remaining in the solid state after H2-reduction are trapped by Cr atoms. Quantitative interpretation in terms of the local distortions around Cr atoms and their N coordination number reveals that no Cr–N clusters or CrN platelets are present....

  13. Evaluation Study of Boundary and Depth of the Soil Structure for Geotechnical Site Investigation using MASW

    Directory of Open Access Journals (Sweden)

    A. Arisona

    2017-03-01

    Full Text Available This study reviews the correlation between the experimental Rayleigh dispersion curve and the Vp & Vs ground model versus depth. Six samples of stations A , B , C , D ,  E  and  F  were used in the experiment.The geophone spacing used was set 1 m and total length of each line was 23 m. The result shows positive significance (best fit of R2 that ranges from 0.80 to 0.90. The fk (frequency-wave number method dispersion curves analysis confirmed that the soil structure investigated is divided into three zones: (1 Unsaturated soil zone (clay soil, in which the layer is dominated by soil with typically alluvial clayey silt and sand. The Vp ranges from 240 m/s to 255 m/s at a depth of 2 to 8 m. (2 The intermediate zone (stiff soil, in which the layer is dominated by sand, silt, clayey sand, sandy clay and clay of low plasticity. This structure is interpreted as partially saturated soil zone, the soil is typically very dense. It contains soft rock typically fill with cobble, sand, slight gravel and highly weathered at depth of 18 to 30 m with Vp of  255 to 300 m/s. (3 Saturated soil zone at a depth of  8 to 18 m with Vp of 300 to 390 m/s. There is a very good agreement between wave-number (k and phase velocity (Vw  produced. Both the two parameters shows similar pattern in the topsoil and subsurface layer, which constitute boundary field of soil structure. Moreover, relationship between phase velocity versus wave-length shows best fit of model from inversion with measured value (observed in  implementation of the boundary and depth of each layer.

  14. Investigation of Structural Properties of Carbon-Epoxy Composites Using Embedded Fiber-Optic Bragg Gratings

    Science.gov (United States)

    Osei, Albert J.

    2003-01-01

    coupled into the optical fiber sensor, a reflection peak will be obtained centered around a wavelength called Bragg-wavelength. The Bragg-wavelength depends on the refractive index and the period of the grating, which both change due to mechanical and thermal strain applied to the sensor. The shift in the Bragg-wavelength is directly proportional to the strain. Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of advanced structural materials expected to become the mainstay of the current and future generation space structures. Since carbon-epoxy composites are the materials of choice for the current space structures, the initial study is concentrated on this type of composite. The goals of this activity are to use embedded FBG sensors for measuring strain and temperature of composite structures, and to investigate the effects of various parameters such as composite fiber orientation with respect to the optical sensor, unidirectional fiber composite, fabrication process etc., on the optical performance of the sensor. This paper describes an experiment to demonstrate the use of an embedded FBG for measuring strain in a composite material. The performance of the fiber optic sensor is determined by direct comparison with results from more conventional instrumentation.

  15. Experimental Investigation of the Spiral Structure of a Magnetic Capsule Endoscope

    Directory of Open Access Journals (Sweden)

    Wanan Yang

    2016-06-01

    Full Text Available Fitting a wireless capsule endoscope (WCE with a navigation feature can maximize its functional benefits. The rotation of a spiral-type capsule can be converted to translational motion. The study investigated how the spiral structure and rotational speed affected the capsule's translation speed. A hand-held instrument, including two permanent magnets, a stepper motor, a controller and a power supplier, were designed to generate rotational magnetic fields. The surfaces of custom-built permanent magnet rings magnetized radially were mounted in spiral lines with different lead angles and diameters, acting as mock-up capsules. The experimental results demonstrate that the rotational speed of the magnetic field and the spiral have significant effects on the translational speed of a capsule. The spiral line with a larger lead angle and the rotating magnetic field with a higher speed can change the capsule's rotation into a translational motion more efficiently in the intestine.

  16. Structural Investigation of Cell Wall Xylan Polysaccharides from the Leaves of Algerian Argania spinosa

    Directory of Open Access Journals (Sweden)

    Kadda Hachem

    2016-11-01

    Full Text Available Xylan-type polysaccharides were isolated from the leaves of Argania spinosa (L. Skeels collected in the Tindouf area (southwestern Algeria. Xylan fractions were obtained by sequential alkaline extractions and purified on Sepharose CL-4B. The xylan structure was investigated by enzymatic hydrolysis with an endo-β(1→4-xylanase followed by chromatography of the resulting fragments on Biogel P2, characterization by sugar analysis and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS . The results show that the A. spinosa xylan is composed of a β-(1→4-d-xylopyranose backbone substituted with 4-O-methyl-d-glucuronic acid and L-arabinose residues.

  17. Analytic tools for investigating the structure of network reliability measures with regard to observation correlations

    Science.gov (United States)

    Prószyński, W.; Kwaśniak, M.

    2018-03-01

    A global measure of observation correlations in a network is proposed, together with the auxiliary indices related to non-diagonal elements of the correlation matrix. Based on the above global measure, a specific representation of the correlation matrix is presented, being the result of rigorously proven theorem formulated within the present research. According to the theorem, each positive definite correlation matrix can be expressed by a scale factor and a so-called internal weight matrix. Such a representation made it possible to investigate the structure of the basic reliability measures with regard to observation correlations. Numerical examples carried out for two test networks illustrate the structure of those measures that proved to be dependent on global correlation index. Also, the levels of global correlation are proposed. It is shown that one can readily find an approximate value of the global correlation index, and hence the correlation level, for the expected values of auxiliary indices being the only knowledge about a correlation matrix of interest. The paper is an extended continuation of the previous study of authors that was confined to the elementary case termed uniform correlation. The extension covers arbitrary correlation matrices and a structure of correlation effect.

  18. New Diethyl Ammonium Salt of Thiobarbituric Acid Derivative: Synthesis, Molecular Structure Investigations and Docking Studies

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2015-11-01

    Full Text Available The synthesis of the new diethyl ammonium salt of diethylammonium(E-5-(1,5-bis(4-fluorophenyl-3-oxopent-4-en-1-yl-1,3-diethyl-4,6-dioxo-2-thioxohexaydropyrimidin-5-ide 3 via a regioselective Michael addition of N,N-diethylthiobarbituric acid 1 to dienone 2 is described. In 3, the carboanion of the thiobarbituric moiety is stabilized by the strong intramolecular electron delocalization with the adjacent carbonyl groups and so the reaction proceeds without any cyclization. The molecular structure investigations of 3 were determined by single-crystal X-ray diffraction as well as DFT computations. The theoretically calculated (DFT/B3LYP geometry agrees well with the crystallographic data. The effect of fluorine replacement by chlorine atoms on the molecular structure aspects were investigated using DFT methods. Calculated electronic spectra showed a bathochromic shift of the π-π* transition when fluorine is replaced by chlorine. Charge decomposition analyses were performed to study possible interaction between the different fragments in the studied systems. Molecular docking simulations examining the inhibitory nature of the compound show an anti-diabetic activity with Pa (probability of activity value of 0.229.

  19. Ab initio density functional theory investigation of structural and electronic properties of silicon carbide nanotube bundles

    International Nuclear Information System (INIS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-01-01

    By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius

  20. Structural investigation of ribonuclease A conformational preferences using high pressure protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Kurpiewska, Katarzyna, E-mail: kurpiews@chemia.uj.edu.pl [Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Protein Crystallography Group, Ingardena 3, 30-060 Kraków (Poland); Dziubek, Kamil; Katrusiak, Andrzej [Adam Mickiewicz University, Faculty of Chemistry, Department of Materials Chemistry, Umultowska 89b, 61-61 Poznań (Poland); Font, Josep [School of Medical Science, University of Sydney, NSW 2006 (Australia); Ribò, Marc; Vilanova, Maria [Universitat de Girona, Laboratorid’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Campus de Montilivi, 17071 Girona (Spain); Lewiński, Krzysztof [Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Protein Crystallography Group, Ingardena 3, 30-060 Kraków (Poland)

    2016-04-01

    Highlights: • A unique crystallographic studies of wild-type and mutated form of the same protein under high pressure. • Compressibility of RNase A molecule is significantly affected by a single amino acid substitution. • High pressure protein crystallography helps understanding protein flexibility and identify conformational substrates. - Abstract: Hydrostatic pressure in range 0.1–1.5 GPa is used to modify biological system behaviour mostly in biophysical studies of proteins in solution. Due to specific influence on the system equilibrium high pressure can act as a filter that enables to identify and investigate higher energy protein conformers. The idea of the presented experiments is to examine the behaviour of RNase A molecule under high pressure before and after introduction of destabilizing mutation. For the first time crystal structures of wild-type bovine pancreatic ribonuclease A and its markedly less stable variant modified at position Ile106 were determined at different pressures. X-ray diffraction experiments at high pressure showed that the secondary structure of RNase A is well preserved even beyond 0.67 GPa at room temperature. Detailed structural analysis of ribonuclease A conformation observed under high pressure revealed that pressure influences hydrogen bonds pattern, cavity size and packing of molecule.

  1. Fabrication of Magnetite Nanoparticles Dispersed in Olive Oil and Their Structural and Magnetic Investigations

    Science.gov (United States)

    Taufiq, A.; Saputro, R. E.; Sunaryono; Hidayat, N.; Hidayat, A.; Mufti, N.; Diantoro, M.; Patriati, A.; Mujamilah; Putra, E. G. R.; Nur, H.

    2017-05-01

    In this work, the iron sand taken from Wedi Ireng Beach in Banyuwangi, Indonesia, was employed as the main precursor in fabricating magnetite nanoparticles. The magnetite nanoparticles were then functionalized in preparing magnetic fluids coated by oleic acid as a surfactant and dispersed in olive oil as a liquid carrier. The phase purity, crystallite size and crystal structure of the dried magnetic fluids were characterized by using X-Ray Diffractometer. Meanwhile, the functional groups of the magnetic fluids were investigated by means of Fourier Transform Infra-Red (FTIR) spectroscopy. The particle size and morphology of the magnetite particles were also investigated by using Transmission Electron Microscopy (TEM). The magnetic behaviors of the magnetic fluids were determined by using Vibrating Sample Magnetometer (VSM). Based on the XRD data analysis, the magnetite particles crystallized in the spinel structure without the presence of any other phases. The FTIR spectra showed that the functional groups of the magnetic fluids were referring to the magnetite, oleic acid, and olive oil. The TEM image presented that the magnetite particle was formed in a nanometric size. Finally, the saturation magnetization of the magnetic fluids varied in the mass composition and particle size of the magnetite nanoparticles.

  2. Investigation of gamma radiation induced changes in local structure of borosilicate glass by TDPAC and EXAFS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashwani, E-mail: kashwani@barc.gov.in [Bhabha Atomic Research Centre, Radioanalytical Chemistry Division (India); Nayak, C.; Rajput, P. [Bhabha Atomic Research Centre, Atomic and Molecular Physics Division (India); Mishra, R. K. [Bhabha Atomic Research Centre, Waste Management Division (India); Bhattacharyya, D. [Bhabha Atomic Research Centre, Atomic and Molecular Physics Division (India); Kaushik, C. P. [Bhabha Atomic Research Centre, Waste Management Division (India); Tomar, B. S. [Bhabha Atomic Research Centre, Radioanalytical Chemistry Division (India)

    2016-12-15

    Gamma radiation induced changes in local structure around the probe atom (Hafnium) were investigated in sodium barium borosilicate (NBS) glass, used for immobilization of high level liquid waste generated from the reprocessing plant at Trombay, Mumbai. The (NBS) glass was doped with {sup 181}Hf as a probe for time differential perturbed angular correlation (TDPAC) spectroscopy studies, while for studies using extended X-ray absorption fine structure (EXAFS) spectroscopy, the same was doped with 0.5 and 2 % (mole %) hafnium oxide. The irradiated as well as un-irradiated glass samples were studied by TDPAC and EXAFS techniques to obtain information about the changes (if any) around the probe atom due to gamma irradiation. TDPAC spectra of unirradiated and irradiated glasses were similar and reminescent of amorphous materials, indicating negligible effect of gamma radiation on the microstructure around Hafnium probe atom, though the quaqdrupole interaction frequency (ω{sub Q}) and asymmetry parameter (η) did show a marginal decrease in the irradiated glass compared to that in the unirradiated glass. EXAFS measurements showed a slight decrease in the Hf-O bond distance upon gamma irradiation of Hf doped NBS glass indicating densification of the glass matrix, while the cordination number around hafnium remains unchanged.

  3. Spectroscopic investigation of the electronic structure of yttria-stabilized zirconia

    Science.gov (United States)

    Götsch, Thomas; Bertel, Erminald; Menzel, Alexander; Stöger-Pollach, Michael; Penner, Simon

    2018-03-01

    The electronic structure and optical properties of yttria-stabilized zirconia are investigated as a function of the yttria content using multiple experimental and theoretical methods, including electron energy-loss spectroscopy, Kramers-Kronig analysis to obtain the optical parameters, photoelectron spectroscopy, and density functional theory. It is shown that many properties, including the band gaps, the crystal field splitting, the so-called defect gap between acceptor (YZr') and donor (VO••) states, as well as the index of refraction in the visible range exhibit the same "zig-zag-like" trend as the unit cell height does, showing the influence of an increased yttria content as well as of the tetragonal-cubic phase transition between 8 mol % and 20 mol %Y2O3 . Also, with Čerenkov spectroscopy (CS), a new technique is presented, providing information complementary to electron energy-loss spectroscopy. In CS, the Čerenkov radiation emitted inside the TEM is used to measure the onset of optical absorption. The apparent absorption edges in the Čerenkov spectra correspond to the energetic difference between the disorder states close to the valence band and the oxygen-vacancy-related electronic states within the band gap. Theoretical computations corroborate this assignment: they find both, the acceptor states and the donor states, at the expected energies in the band structures for diverse yttria concentrations. In the end, a schematic electronic structure diagram of the area around the band gap is constructed, including the chemical potential of the electrons obtained from photoelectron spectroscopy. The latter reveal that tetragonal YSZ corresponds to a p -type semiconductor, whereas the cubic samples exhibit n -type semiconductor properties.

  4. Investigation of three-dimensional turbulent structures in the torsatron TJ-K

    Energy Technology Data Exchange (ETDEWEB)

    Mahdizadeh, N.

    2007-02-14

    In this work, for the first time, the three-dimensional nature of drift waves has been verified experimentally inside the confinement region of the toroidal plasma in TJ-K. The perpendicular dynamics of turbulence has been studied with the focus on the poloidal wavenumber spectra and the scaling of the turbulent structure with the drift scale. To this end, a 64 tip Langmuir probe array has been used, which is poloidally positioned on a flux surface. For the first time, the parallel dynamics of turbulence has been investigated in the core of a toroidally confined plasma. In contrast to previous experiments, multi-probe measurements were carried out to get simultaneous information on the shape and the propagation direction of the turbulent structures. The results for the parallel wave number and the parallel propagation velocity have been compared with results from the simulation code GEM3. It is demonstrated that the propagation in the direction parallel to the magnetic field is affected by Alfven dynamics. Together, these results strongly confirm previous investigations, which have demonstrated the importance of drift-wave turbulence in TJ-K and therefore also in fusion edge plasma. (orig.)

  5. Investigation of three-dimensional turbulent structures in the torsatron TJ-K

    International Nuclear Information System (INIS)

    Mahdizadeh, N.

    2007-01-01

    In this work, for the first time, the three-dimensional nature of drift waves has been verified experimentally inside the confinement region of the toroidal plasma in TJ-K. The perpendicular dynamics of turbulence has been studied with the focus on the poloidal wavenumber spectra and the scaling of the turbulent structure with the drift scale. To this end, a 64 tip Langmuir probe array has been used, which is poloidally positioned on a flux surface. For the first time, the parallel dynamics of turbulence has been investigated in the core of a toroidally confined plasma. In contrast to previous experiments, multi-probe measurements were carried out to get simultaneous information on the shape and the propagation direction of the turbulent structures. The results for the parallel wave number and the parallel propagation velocity have been compared with results from the simulation code GEM3. It is demonstrated that the propagation in the direction parallel to the magnetic field is affected by Alfven dynamics. Together, these results strongly confirm previous investigations, which have demonstrated the importance of drift-wave turbulence in TJ-K and therefore also in fusion edge plasma. (orig.)

  6. Structural Variation in Bacterial Glyoxalase I Enzymes: Investigation of the Metalloenzyme Glyoxalase I from Clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Suttisansanee U.; Swaminathan S.; Lau, K.; Lagishetty, S.; Rao, K. N.; Sauder, J. M.; Burley, S. K.; Honek, J. F.

    2011-11-04

    The glyoxalase system catalyzes the conversion of toxic, metabolically produced {alpha}-ketoaldehydes, such as methylglyoxal, into their corresponding nontoxic 2-hydroxycarboxylic acids, leading to detoxification of these cellular metabolites. Previous studies on the first enzyme in the glyoxalase system, glyoxalase I (GlxI), from yeast, protozoa, animals, humans, plants, and Gram-negative bacteria, have suggested two metal activation classes, Zn{sup 2+} and non-Zn{sup 2+} activation. Here, we report a biochemical and structural investigation of the GlxI from Clostridium acetobutylicum, which is the first GlxI enzyme from Gram-positive bacteria that has been fully characterized as to its three-dimensional structure and its detailed metal specificity. It is a Ni{sup 2+}/Co{sup 2+}-activated enzyme, in which the active site geometry forms an octahedral coordination with one metal atom, two water molecules, and four metal-binding ligands, although its inactive Zn{sup 2+}-bound form possesses a trigonal bipyramidal geometry with only one water molecule liganded to the metal center. This enzyme also possesses a unique dimeric molecular structure. Unlike other small homodimeric GlxI where two active sites are located at the dimeric interface, the C. acetobutylicum dimeric GlxI enzyme also forms two active sites but each within single subunits. Interestingly, even though this enzyme possesses a different dimeric structure from previously studied GlxI, its metal activation characteristics are consistent with properties of other GlxI. These findings indicate that metal activation profiles in this class of enzyme hold true across diverse quaternary structure arrangements.

  7. An Investigation of Structural Damage Location Based on Ultrasonic Excitation-Fiber Bragg Grating Detection

    Directory of Open Access Journals (Sweden)

    Yuegang Tan

    2013-01-01

    Full Text Available With the continuous development of mechanical automation, the structural health monitoring techniques are increasingly high requirements for damage detection. So structural health monitoring (SHM has been playing a significant role in terms of damage prognostics. The main contribution pursued in this investigation is to establish a detection system based on ultrasonic excitation and fiber Bragg grating sensing, which combines the advantages of the ultrasonic detection and fiber Bragg grating (FBG. Differencing from most common approaches, a new way of damage detection is based on fiber Bragg grating (FBG, which can easily realize distributed detection. The basic characteristics of fiber Bragg grating sensing system are analyzed, and the positioning algorithm of structural damage is derived in theory. On these bases, the detection system was used to analyze damage localization in the aluminum alloy plate of a hole with diameters of 6 mm. Experiments have been carried out to demonstrate that the sensing system was feasible and that the estimation method of the location algorithm was easy to implement.

  8. Investigating the transverse optical structure of spider silk micro-fibers using quantitative optical microscopy

    Science.gov (United States)

    Little, Douglas J.; Kane, Deb M.

    2017-01-01

    The transverse optical structure of two orb-weaver (family Araneidae) spider dragline silks was investigated using a variant of the inverse-scattering technique. Immersing the silks in a closely refractive index-matched liquid, the minimum achievable image contrast was greater than expected for an optically homogeneous silk, given what is currently known about the optical absorption of these silks. This "excess contrast" indicated the presence of transverse optical structure within the spider silk. Applying electromagnetic scattering theory to a transparent double cylinder, the minimum achievable irradiance contrast for the Plebs eburnus and Argiope keyserlingi dragline silks was determined to be consistent with step index refractive index contrasts of 1-4×10-4 and 6-7×10-4, respectively, supposing outer-layer thicknesses consistent with previous TEM studies (50 nm and 100 nm, respectively). The possibility of graded index refractive index contrasts within the spider silks is also discussed. This is the strongest evidence, to date, that there is a refractive index contrast associated with the layered morphology of spider silks and/or variation of proportion of nanocrystalline components within the spider silk structure. The method is more generally applicable to optical micro-fibers, including those with refractive index variations on a sub-wavelength scale.

  9. Investigating the transverse optical structure of spider silk micro-fibers using quantitative optical microscopy

    Directory of Open Access Journals (Sweden)

    Little Douglas J.

    2016-10-01

    Full Text Available The transverse optical structure of two orb-weaver (family Araneidae spider dragline silks was investigated using a variant of the inverse-scattering technique. Immersing the silks in a closely refractive index-matched liquid, the minimum achievable image contrast was greater than expected for an optically homogeneous silk, given what is currently known about the optical absorption of these silks. This “excess contrast” indicated the presence of transverse optical structure within the spider silk. Applying electromagnetic scattering theory to a transparent double cylinder, the minimum achievable irradiance contrast for the Plebs eburnus and Argiope keyserlingi dragline silks was determined to be consistent with step index refractive index contrasts of 1−4×10−4 and 6–7×10−4, respectively, supposing outer-layer thicknesses consistent with previous TEM studies (50 nm and 100 nm, respectively. The possibility of graded index refractive index contrasts within the spider silks is also discussed. This is the strongest evidence, to date, that there is a refractive index contrast associated with the layered morphology of spider silks and/or variation of proportion of nanocrystalline components within the spider silk structure. The method is more generally applicable to optical micro-fibers, including those with refractive index variations on a sub-wavelength scale.

  10. Synthesis and anticancer structure activity relationship investigation of cationic anthraquinone analogs.

    Science.gov (United States)

    Shrestha, Jaya P; Fosso, Marina Y; Bearss, Jeremiah; Chang, Cheng-Wei Tom

    2014-04-22

    We have synthesized a series of novel 4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d][1,2,3]triazol-3-ium salts, which can be viewed as analogs of cationic anthraquinones. Unlike the similar analogs that we have reported previously, these compounds show relatively weak antibacterial activities but exert strong anticancer activities (low μM to nM GI50), in particular, against melanoma, colon cancer, non-small cell lung cancer and central nervous system (CNS) cancer. These compounds are structurally different from their predecessors by having the aromatic group, instead of alkyl chains, directly attached to the cationic anthraquinone scaffold. Further investigation in the structure-activity relationship (SAR) reveals the significant role of electron donating substituents on the aromatic ring in enhancing the anticancer activities via resonance effect. Steric hindrance of these groups is disadvantageous but is less influential than the resonance effect. The difference in the attached groups at N-1 position of the cationic anthraquinone analog is the main structural factor for the switching of biological activity from antibacterial to anticancer. The discovery of these compounds may lead to the development of novel cancer chemotherapeutics. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Adsorption of s-triazines onto polybenzimidazole: A quantitative structure-property relationship investigation

    International Nuclear Information System (INIS)

    D'Archivio, Angelo Antonio; Incani, Angela; Mazzeo, Pietro; Ruggieri, Fabrizio

    2009-01-01

    The adsorption of 25 symmetric triazines (s-triazines) on polybenzimidazole (PBI) beads is investigated under equilibrium (batch) conditions. The observed adsorption isotherms of the selected compounds are accurately described by the Freundlich model, while the agreement between the Langmuir model and the experimental data is moderately worse, which seems to reflect the heterogeneous meso- and micro-porosity of PBI and polydispersion in the interaction mechanism. Methylthio- and methoxytriazines exhibit a greater adsorption tendency as compared with chlorotriazines, moreover, progressive dealkylation of amino groups results in a progressive increase of triazine uptake on PBI. Based on these evidences, the adsorption mechanism seems to be governed by a combination of π-π and hydrogen-bonding interactions. Genetic algorithm (GA) variable selection and multilinear regression (MLR) are combined in order to describe the effect of triazine structure on the extraction performance of PBI according to the quantitative structure-property relationship (QSPR) method. q max , the amount of triazine adsorbed per weight unit of PBI assuming homogeneous monolayer (Langmuir) mechanism, exhibits a great variability within the set of investigated triazines and is the quantity here modelled by QSPR. On the other hand, the Freundlich constant, K F , which expresses the adsorption efficiency under multilayer heterogeneous conditions, even if markedly increases passing from chloro- to methylthio- or methoxytriazines, is less noticeably affected by the fine details of the adsorbate structure, as the number or nature of alkyl fragments bound to the amino groups. To quantitatively relate q max with the triazine structure GA-MLR analysis is performed on the set of 1664 theoretical molecular descriptors provided by the software Dragon. Finally, a four-dimensional QSPR model is selected based on leave-one-out cross-validation and its prediction ability is further tested on four

  12. Investigation of structural features of aqueous salt solutions by means of electronic spectroscopy

    International Nuclear Information System (INIS)

    Lyashchenko, A.K.; Borina, A.F.

    1985-01-01

    Electronic spectroscopy and structural-geometric analysis have been used in studying ionic interactions in aqueous solutions of Co(NO 3 ) 2 , CoSO 4 , CoCl 2 , and NiSO 4 . The processes influencing the structural environment of the cations in solution and the character of the electronic spectra of Co(II) and Ni(II) have been distinguished: replacement of ligands in the first coordination sphere of the transition-metal ion, change in mobility of the particles in the medium, and change in the structural matrix on the solution upon going from one concentration region to another. A small change in the structure of bulk water in the solutions of these salts has been demonstrated. For Co(NO 3 ) 2 solutions, the limit of existence of a water-like structure of the solution has been defined

  13. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    Science.gov (United States)

    Swartz, R. Andrew

    2013-01-01

    This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136

  14. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Wenjia Liu

    2013-01-01

    Full Text Available This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate.

  15. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Atul Kumar [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Gajiwala, Astrid Lobo [Tissue Bank, Tata Memorial Hospital, Parel, Mumbai 400012 (India); Rai, Ratan Kumar [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Khan, Mohd Parvez [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Singh, Chandan [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Barbhuyan, Tarun [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Vijayalakshmi, S. [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Chattopadhyay, Naibedya [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Sinha, Neeraj, E-mail: neerajcbmr@gmail.com [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Kumar, Ashutosh, E-mail: ashutoshk@iitb.ac.in [Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); Bellare, Jayesh R., E-mail: jb@iitb.ac.in [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-05-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS® (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  16. Histological investigation of the supra-glottal structures in humans for understanding abnormal phonation

    Science.gov (United States)

    Kimura, Miwako; Sakakibara, Ken-Ichi; Imagawa, Hiroshi; Chan, Roger; Niimi, Seijii; Tayama, Niro

    2002-11-01

    Phonation is the vocal fold vibration on normal voice. But sometimes we can observe the other phonation styles like as the pressed voice or some throat singings like as ''kargyraa'' or ''drone'' in Khoomei in Mongolian music. Also, clinically, we know that some patients who have the wide glottal slit in phonation because of the recurrence nerve palsy or after partial laryngectomy, could make the ''supra-glottal phonation.'' The ''supra-glottal phonation'' would be made from the vibration of ''supra-glottal structures'' such as the false vocal folds, the arytenoids and the epiglottis, etc. Endoscopic examination suggests the existence of some contractile functions in supra-glottal space. However, these phonation systems have not been clear to explain their neuromuscular mechanism in histology. This study aimed to find the basis for making the supra-glottal phonation from the points of view of the histological structures. We tried to investigate if there were any muscles that could contract the supra-glottal structures. The samples are the excised larynx of human beings. They were fixed by formalin after excision. We observed their macroscopic anatomy, and also with the microscopic observation their histological preparations after the process of the embedding in paraffin, slicing for the preparation and HE (hematoxylin-eosin) staining.

  17. Experimental and Numerical Investigation of Vortical Structures in Lean Premixed Swirl-Stabilized Combustion

    Science.gov (United States)

    Taamallah, Soufien; Chakroun, Nadim; Shanbhogue, Santosh; Kewlani, Gaurav; Ghoniem, Ahmed

    2015-11-01

    A combined experimental and LES investigation is performed to identify the origin of major flow dynamics and vortical structures in a model gas turbine's swirl-stabilized turbulent combustor. Swirling flows in combustion lead to the formation of complex flow dynamics and vortical structures that can interact with flames and influence its stabilization. Our experimental results for non-reacting flow show the existence of large scale precession motion. The precessing vortex core (PVC) dynamics disappears with combustion but only above a threshold of equivalence ratio. In addition, large scale vortices along the inner shear layer (ISL) are observed. These structures interact with the ISL stabilized flame and contribute to its wrinkling. Next, the LES setup is validated against the flow field's low-order statistics and point temperature measurement in relevant areas of the chamber. Finally, we show that LES is capable of predicting the precession motion as well as the ISL vortices in the reacting case: we find that ISL vortices originate from a vortex core that is formed right downstream of the swirler's centerbody. The vortex core has a conical spiral shape resembling a corkscrew that interacts - as it winds out - with the flame when it reaches the ISL.

  18. Micro-structural investigations of spray hydrolyzed TiO2

    International Nuclear Information System (INIS)

    Lakhotiya, H.; Singh, Ripandeep; Bahadur, J.; Sen, D.; Das, Avik; Mazumder, S.; Paul, B.; Sastry, P.U.; Lemmel, H.

    2014-01-01

    Highlights: • Titania microstructure formation by spray hydrolysis. • Morphological transition during spray hydrolysis process. • Hollow microspheres and fractal like grains depending on precursor concentration. • Use of scattering and microscopy techniques in probing mesoscopic structures. • A plausible mechanism regarding the morphological transition is also introduced. -- Abstract: Hydrolysis across tiny spray droplet allows a facile one step synthesis of interesting sub-micrometric structures owing to the large available surface area unlike bulk hydrolysis. In the present work, it has been demonstrated that titania precursor concentration plays a significant role in effecting morphological transformation during spray hydrolysis. While hollow microspheres are formed primarily at low precursor concentration, fractal like grains, having two levels of hierarchy, result at high precursor concentration. Mesoscopic structure of these spray hydrolyzed grains has been investigated by ultra small-angle neutron scattering, small-angle X-ray scattering and scanning electron microscopy. Thermal evolution of initial amorphous phase of titania into crystalline rutile phase, through intermediate anatase and brookite phases, is followed by high temperature X-ray diffraction. A plausible mechanism has been elucidated for the observed morphological transition with variation of precursor concentration

  19. Investigating the Synthesis, Structure, and Catalytic Properties of Versatile Gold-Based Nanocatalvsts

    Science.gov (United States)

    Pretzer, Lori A.

    Transition metal nanomaterials are used to catalyze many chemical reactions, including those key to environmental, medicinal, and petrochemical fields. Improving their catalytic properties and lifetime would have significant economic and environmental rewards. Potentially expedient options to make such advancements are to alter the shape, size, or composition of transition metal nanocatalysts. This work investigates the relationships between structure and catalytic properties of synthesized Au, Pd-on-Au, and Au-enzyme model transition metal nanocatalysts. Au and Pd-on-Au nanomaterials were studied due to their wide-spread application and structure-dependent electronic and geometric properties. The goal of this thesis is to contribute design procedures and synthesis methods that enable the preparation of more efficient transition metal nanocatalysts. The influence of the size and composition of Pd-on-Au nanoparticles (NPs) was systematically investigated and each was found to affect the catalyst's surface structure and catalytic properties. The catalytic hydrodechlorination of trichloroethene and reduction of 4-nitrophenol by Pd-on-Au nanoparticles were investigated as these reactions are useful for environmental and pharmaceutical synthesis applications, respectively. Structural characterization revealed that the dispersion and oxidation state of surface Pd atoms are controlled by the Au particle size and concentration of Pd. These structural changes are correlated with observed Pd-on-Au NP activities for both probe reactions, providing new insight into the structure-activity relationships of bimetallic nanocatalysts. Using the structure-dependent electronic properties of Au NPs, a new type of light-triggered biocatalyst was prepared and used to remotely control a model biochemical reaction. This biocatalyst consists of a model thermophilic glucokinase enzyme covalently attached to the surface of Au nanorods. The rod-like shape of the Au nanoparticles made the

  20. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals.

    Science.gov (United States)

    Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Tang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2016-09-09

    In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.

  1. First-principles investigation on structural and electronic properties of antimonene nanoribbons and nanotubes

    Science.gov (United States)

    Nagarajan, V.; Chandiramouli, R.

    2018-03-01

    The electronic properties of antimonene nanotubes and nanoribbons hydrogenated along the zigzag and armchair borders are investigated with the help of density functional theory (DFT) method. The structural stability of antimonene nanostructures is confirmed with the formation energy. The electronic properties of hydrogenated zigzag and armchair antimonene nanostructures are studied in terms of highest occupied molecular orbital (HOMO) & lowest unoccupied molecular orbital (LUMO) gap and density of states (DOS) spectrum. Moreover, due to the influence of buckled orientation, hydrogen passivation and width of antimonene nanostructures, the HOMO-LUMO gap widens in the range of 0.15-0.41 eV. The findings of the present study confirm that the electronic properties of antimonene nanostructures can be tailored with the influence of width, orientation of the edges, passivation with hydrogen and morphology of antimonene nanostructures (nanoribbons, nanotubes), which can be used as chemical sensor and for spintronic devices.

  2. Investigating enhanced thermoelectric performance of graphene-based nano-structures.

    Science.gov (United States)

    Hossain, Md Sharafat; Huynh, Duc Hau; Jiang, Liming; Rahman, Sharmin; Nguyen, Phuong Duc; Al-Dirini, Feras; Hossain, Faruque; Bahk, Je-Hyeong; Skafidas, Efstratios

    2018-03-08

    Recently, it has been demonstrated that graphene nano-ribbons (GNRs) exhibit superior thermoelectric performance compared to graphene sheets. However, the underlying mechanism behind this enhancement has not been systematically investigated and significant opportunity remains for further enhancement of the thermoelectric performance of GNRs by optimizing their charge carrier concentration. In this work, we modulate the carrier concentration of graphene-based nano-structures using a gate voltage and investigate the resulting carrier-concentration-dependent thermoelectric parameters using the Boltzmann transport equations. We investigate the effect of energy dependent scattering time and the role of substrate-induced charge carrier fluctuation in optimizing the Seebeck coefficient and power factor. Our approach predicts the scattering mechanism and the extent of the charge carrier fluctuation in different samples and explains the enhancement of thermoelectric performance of GNR samples. Subsequently, we propose a route towards the enhancement of thermoelectric performance of graphene-based devices which can also be applied to other two-dimensional materials.

  3. Synthesis and computer-aided structural investigation of potentially photochromic spirooxazines

    International Nuclear Information System (INIS)

    Chi, L.

    2000-03-01

    Quantum mechanical methods, PPP-MO and ZINDO, were used to predict the electronic spectra of the ring-opened forms and ring-closed forms respectively of a series of spirooxazines. Molecular mechanics was used to optimise the molecular geometry and to calculate the molecular final energy (steric energy) using the MM2 force field method. An all-valence-electron quantum mechanical method was employed to calculate the heats of formation using AM1 parameters, and the data were used to provide a measure of the stability of the molecules. This computer-aided structural investigation has provided an enhanced understanding of the spirooxazine system and methods with the potential to predict photochromic behaviour have emerged. The synthesis of a series of heterocyclic analogues of the well-known spironaphthoxazines based on quinolines, coumarin and pyrazolones were attempted. The properties of the compounds obtained were correlated with the results of the calculations. (author)

  4. Multidisciplinary scientific program of investigation of the structure and evolution of the Demerara marginal plateau

    Science.gov (United States)

    Loncke, Lies; Basile, Christophe; Roest, Walter; Graindorge, David; Mercier de Lépinay, Marion; Klinghelhoefer, Frauke; Heuret, Arnauld; Pattier, France; Tallobre, Cedric; Lebrun, Jean-Frédéric; Poetisi, Ewald; Loubrieu, Benoît; Iguanes, Dradem, Margats Scientific Parties, Plus

    2017-04-01

    Mercier de Lépinay et al. published in 2016 an updated inventory of transform passive margins in the world. This inventory shows that those margins represent 30% of continental passive margins and a cumulative length of 16% of non-convergent margins. It also highlights the fact that many submarine plateaus prolong transform continental margins, systematically at the junction of oceanic domains of different ages. In the world, we identified twenty of those continental submarine plateaus (Falklands, Voring, Demerara, Tasman, etc). Those marginal plateaus systematically experiment two phases of deformation: a first extensional phase and a second transform phase that allows the individualization of those submarine reliefs appearing on bathymetry as seaward continental-like salients. The understanding of the origin, nature, evolution of those marginal plateaus has many scientific and economic issues. The Demerara marginal plateau located off French Guiana and Surinam belongs to this category of submarine provinces. The French part of this plateau has been the locus of a first investigation in 2003 in the framework of the GUYAPLAC cruise dedicated to support French submissions about extension of the limit of the continental shelf beyond 200 nautical miles. This cruise was the starting point of a scientific program dedicated to geological investigations of the Demerara plateau that was sustained by different cruises and collaborations (1) IGUANES (2013) that completed the mapping of this plateau including off Surinam, allowed to better understand the segmentation of the Northern edge of this plateau, and to evidence the combined importance of contourite and mass-wasting processes in the recent sedimentary evolution of this domain, (2) Collaboration with TOTAL (Mercier de Lépinay's PhD thesis) that allowed to better qualify the two main phases of structural evolution of the plateau respectively during Jurassic times for its Western border, Cretaceous times for its

  5. An investigation into the organisation and structural design of multi-computer process-control systems

    International Nuclear Information System (INIS)

    Gertenbach, W.P.

    1981-12-01

    A multi-computer system for the collection of data and control of distributed processes has been developed. The structure and organisation of this system, a study of the general theory of systems and of modularity was used as a basis for an investigation into the organisation and structured design of multi-computer process-control systems. A multi-dimensional model of multi-computer process-control systems was developed. In this model a strict separation was made between organisational properties of multi-computer process-control systems and implementation dependant properties. The model was based on the principles of hierarchical analysis and modularity. Several notions of hierarchy were found necessary to describe fully the organisation of multi-computer systems. A new concept, that of interconnection abstraction was identified. This concept is an extrapolation of implementation techniques in the hardware implementation area to the software implementation area. A synthesis procedure which relies heavily on the above described analysis of multi-computer process-control systems is proposed. The above mentioned model, and a set of performance factors which depend on a set of identified design criteria, were used to constrain the set of possible solutions to the multi-computer process-control system synthesis-procedure

  6. Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: a comparative structural investigation.

    Directory of Open Access Journals (Sweden)

    Bruno Cuzzi

    Full Text Available The Burkholderia cepacia Complex assembles at least eighteen closely related species that are ubiquitous in nature. Some isolates show beneficial potential for biocontrol, bioremediation and plant growth promotion. On the contrary, other strains are pathogens for plants and immunocompromised individuals, like cystic fibrosis patients. In these subjects, they can cause respiratory tract infections sometimes characterised by fatal outcome. Most of the Burkholderia cepacia Complex species are mucoid when grown on a mannitol rich medium and they also form biofilms, two related characteristics, since polysaccharides are important component of biofilm matrices. Moreover, polysaccharides contribute to bacterial survival in a hostile environment by inhibiting both neutrophils chemotaxis and antimicrobial peptides activity, and by scavenging reactive oxygen species. The ability of these microorganisms to produce exopolysaccharides with different structures is testified by numerous articles in the literature. However, little is known about the type of polysaccharides produced in biofilms and their relationship with those obtained in non-biofilm conditions. The aim of this study was to define the type of exopolysaccharides produced by nine species of the Burkholderia cepacia Complex. Two isolates were then selected to compare the polysaccharides produced on agar plates with those formed in biofilms developed on cellulose membranes. The investigation was conducted using NMR spectroscopy, high performance size exclusion chromatography, and gas chromatography coupled to mass spectrometry. The results showed that the Complex is capable of producing a variety of exopolysaccharides, most often in mixture, and that the most common exopolysaccharide is always cepacian. In addition, two novel polysaccharide structures were determined: one composed of mannose and rhamnose and another containing galactose and glucuronic acid. Comparison of exopolysaccharides obtained

  7. Cellular automata approach to investigation of high burn-up structures in nuclear reactor fuel

    International Nuclear Information System (INIS)

    Akishina, E.P.; Ivanov, V.V.; Kostenko, B.F.

    2005-01-01

    Micrographs of uranium dioxide (UO 2 ) corresponding to exposure times in reactor during 323, 953, 971, 1266 and 1642 full power days were investigated. The micrographs were converted into digital files isomorphous to cellular automata (CA) checkerboards. Such a representation of the fuel structure provides efficient tools for its dynamics simulation in terms of primary 'entities' imprinted in the micrographs. Besides, it also ensures a possibility of very effective micrograph processing by CA means. Interconnection between the description of fuel burn-up development and some exactly soluble models is ascertained. Evidences for existence of self-organization in the fuel at high burn-ups were established. The fractal dimension of microstructures is found to be an important characteristic describing the degree of radiation destructions

  8. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1986-01-01

    The research conducted by the program is: (1) to investigate in detail the role of energy and angular momentum dissipation in the mechanisms of subbarrier fusion, in fusion at and above the barrier, in quasi-elastic and in strongly damped reactions of heavy ions; (2) to extend the above reaction mechanism studies in the regime of 10 to 50 MeV/amu employing techniques of complete detection including γ-rays, light charged particles, neutrons and heavy ions in real or kinematic 4π counting when possible; (3) the study of structural and shape changes of nuclei at very high spins and excitations; and (4) the development and use of novel techniques and instrumentation in the above studies. 76 refs., 27 figs

  9. Investigation into the crystal structure of the perovskite lead hafnate, PbHfO3

    International Nuclear Information System (INIS)

    Corker, D.L.; Glazer, A.M.; Kaminsky, W.; Whatmore, R.W.; Dec, J.; Roleder, K.

    1998-01-01

    The room-temperature crystal structure of the perovskite lead hafnate PbHfO 3 is investigated using both low-temperature single crystal X-ray diffraction (Mo Kα radiation, λ = 0.71069 A) and polycrystalline neutron diffraction (D1A instrument, ILL, λ = 1.90788 A). Single crystal X-ray data at 100 K: space group Pbam, a = 5.856 (1), b = 11.729 (3), c = 8.212 (2) A, V = 564.04 A 3 with Z = 8, μ = 97.2 mm -1 , F(000) = 1424, final R 0.038, wR = 0.045 over 439 reflections with F > 1.4σ(F). Polycrystalline neutron data at 383 K: a = 5.8582 (3), b = 11.7224 (5), c = 8.2246 (3) A, V 564.80 A 3 with χ 2 = 1.62. Although lead hafnate has been thought to be isostructural with lead zirconate, no complete structure determination has been reported, as crystal structure analysis in both these materials is not straightforward. One of the main difficulties encountered is the determination of the oxygen positions, as necessary information lies in extremely weak l = 2n + 1 X-ray reflections. To maximize the intensity of these reflections the X-ray data are collected at 100 K with unusually long scans, a procedure which had previously been found successful with lead zirconate. In order to establish that no phase transitions exist between room temperature and 100 K, and hence that the collected X-ray data are relevant to the room-temperature structure, birefringence measurements for both PbZrO 3 and PbHfO 3 are also reported. (orig.)

  10. Investigation into structure of berylliumaluminium silicate glasses and crystals by X-ray spectroscopy

    International Nuclear Information System (INIS)

    Tykachinskij, I.D.; Gorbachev, V.V.; Petrakov, V.N.; Varshal, B.G.; Bystrakov, A.S.; Dmitriev, I.D.; Zatsepin, A.F.; Blaginina, L.A.

    1983-01-01

    For the purpose of elucidating the structural state of Be 2+ and Al 3+ ions as well as the nature of Be-O bond the investigation of glasses obtained from BeO, Al 2 O 3 and SiO 2 with different component composition is undertaken by X-ray spectroscopy. In three-component beryllium alumosilicate glasses at the ratio γ=Al 2 O 3 /BeO=0.34-1.92 the main part of Al 3+ cations forms AlO 4 groups. Be 2+ cations probably occupy several non-equivalent states. At the ''crystal-glass'' transition the reorganization of near structure of beryllium alumosilicate frame with appearance in a glass in contrast to crystal analog of beryllium cations playing the role of a glass former (being a part of glass net) as well as a modifier role occurs. For compositions with γ=1 the degree of ionic character of the Be-O bond is the greatest. The increase of Be 2+ cations fraction being a part of the glass net is characteristic feature of the glasses with parameter values γ not equal to 1

  11. First principles DFT investigation of yttrium-doped graphene: Electronic structure and hydrogen storage

    International Nuclear Information System (INIS)

    Desnavi, Sameerah; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2014-01-01

    The electronic structure and hydrogen storage capability of Yttrium-doped grapheme has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site of the hexagonal ring with a binding energy of 1.40 eV. Doping by Y makes the system metallic and magnetic with a magnetic moment of 2.11 μ B . Y decorated graphene can adsorb up to four hydrogen molecules with an average binding energy of 0.415 eV. All the hydrogen atoms are physisorbed with an average desorption temperature of 530.44 K. The Y atoms can be placed only in alternate hexagons, which imply a wt% of 6.17, close to the DoE criterion for hydrogen storage materials. Thus, this system is potential hydrogen storage medium with 100% recycling capability

  12. Numerical Investigation of the Flow Structure in a Kaplan Draft Tube at Part Load

    Science.gov (United States)

    Maddahian, R.; Cervantes, M. J.; Sotoudeh, N.

    2016-11-01

    This research presents numerical simulation of the unsteady flow field inside the draft tube of a Kaplan turbine at part load condition. Due to curvature of streamlines, the ordinary two-equations turbulence models fail to predict the flow features. Therefore, a modification of the Shear Stress Transport (SST-SAS) model is utilized to approximate the turbulent stresses. A guide vane, complete runner and draft tube are considered to insure the real boundary conditions at the draft tube inlet. The outlet boundary is assumed to discharge into the atmosphere. The obtained pressure fluctuations inside the draft tube are in good agreement with available experimental data. In order to further investigate the RVR formation and its movement, the λ2 criterion, relating the position of the vortex core and strength to the second largest Eigen value of the velocity gradient tensor, is employed. The method used for vortex identification shows the flow structure and vortex motion inside the draft tube accurately.

  13. Wettability, structural and optical properties investigation of TiO{sub 2} nanotubular arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zalnezhad, E., E-mail: erfan@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Maleki, E. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Banihashemian, S.M. [Low Dimensional Materials Research Center, Department of Physics, Science Faculty, University Malaya, 50603 Kuala Lumpur (Malaysia); Park, J.W. [Department of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Y.B. [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Sarraf, M.; Sarhan, A.A.D.M.; Ramesh, S. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-06-15

    Graphical abstract: FESEM images of the TiO 2 nanotube layers formed at 0.5 wt% NH4F/ glycerol. - Highlights: • Structural property investigation of TiO{sub 2} nanotube. • Evaluation of wettability of TiO{sub 2} nanotube. • Study on optical properties of TiO{sub 2} nanotube. • The effect of anatase phase on optical and wettability properties of TiO{sub 2.} - Abstract: In this study, the effect of microstructural evolution of TiO{sub 2} nanotubular arrays on wettability and optical properties was investigated. Pure titanium was deposited on silica glass by PVD magnetron sputtering technique. The Ti coated substrates were anodized in an electrolyte containing NH{sub 4}F/glycerol. The structures of the ordered anodic TiO{sub 2} nanotubes (ATNs) as long as 175 nm were studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The result shows a sharp peak in the optical absorbance spectra around the band gap energy, 3.49–3.42 eV for annealed and non-annealed respectively. The thermal process induced growth of the grain size, which influence on the density of particles and the index of refraction. Furthermore, the wettability tests' result displays that the contact angle of intact substrate (θ = 74.7°) was decreased to 31.4° and 17.4° after anodization for amorphous and heat treated (450 °C) ANTs coated substrate, respectively.

  14. Investigation of the deep structure of the Sivas Basin (innereast Anatolia, Turkey) with geophysical methods

    Science.gov (United States)

    Onal, K. Mert; Buyuksarac, Aydin; Aydemir, Attila; Ates, Abdullah

    2008-11-01

    Sivas Basin is the easternmost and third largest basin of the Central Anatolian Basins. In this study, gravity, aeromagnetic and seismic data are used to investigate the deep structure of the Sivas Basin, together with the well seismic velocity data, geological observations from the surface and the borehole data of the Celalli-1 well. Basement depth is modeled three-dimensionally (3D) using the gravity anomalies, and 2D gravity and magnetic models were constructed along with a N-S trending profile. Densities of the rock samples were obtained from the distinct parts of the basin surface and in-situ susceptibilities were also measured and evaluated in comparison with the other geophysical and geological data. Additionally, seismic sections, in spite of their low resolution, were used to define the velocity variation in the basin in order to compare depth values and geological cross-section obtained from the modeling studies. Deepest parts of the basin (12-13 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Geometry, extension and wideness of the basin, together with the thickness and lithologies of the sedimentary units are reasonably appropriate for further hydrocarbon exploration in the Sivas Basin that is still an unexplored area with the limited number of seismic lines and only one borehole.

  15. Investigation of Kevlar fabric based materials for use with inflatable structures

    Science.gov (United States)

    Niccum, R. J.; Munson, J. B.

    1974-01-01

    Design, manufacture and testing of laminated and coated composite materials incorporating a structural matrix of Kevlar are reported in detail. The practicality of using Kevlar in aerostat materials is demonstrated and data are provided on practical weaves, lamination and coating particulars, rigidity, strength, weight, elastic coefficients, abrasion resistance, crease effects, peel strength, blocking tendencies, helium permeability, and fabrication techniques. Properties of the Kevlar based materials are compared with conventional, Dacron reinforced counterparts. A comprehensive test and qualification program is discussed and quantitative biaxial tensile and shear test data are provided. The investigation shows that single ply laminates of Kevlar and plastic films offer significant strength to weight improvements, are less permeable than two ply coated materials, but have a lower flex life.

  16. A structural investigation of the interaction of oxalic acid with Cu(110)

    Science.gov (United States)

    White, T. W.; Duncan, D. A.; Fortuna, S.; Wang, Y.-L.; Moreton, B.; Lee, T.-L.; Blowey, P.; Costantini, G.; Woodruff, D. P.

    2018-02-01

    The interaction of oxalic acid with the Cu(110) surface has been investigated by a combination of scanning tunnelling microscopy (STM), low energy electron diffraction (LEED), soft X-ray photoelectron spectroscopy (SXPS), near-edge X-ray absorption fine structure (NEXAFS) and scanned-energy mode photoelectron diffraction (PhD), and density functional theory (DFT). O 1s SXPS and O K-edge NEXAFS show that at high coverages a singly deprotonated monooxalate is formed with its molecular plane perpendicular to the surface and lying in the [ 1 1 bar 0 ] azimuth, while at low coverage a doubly-deprotonated dioxalate is formed with its molecular plane parallel to the surface. STM, LEED and SXPS show the dioxalate to form a (3 × 2) ordered phase with a coverage of 1/6 ML. O 1s PhD modulation spectra for the monooxalate phase are found to be simulated by a geometry in which the carboxylate O atoms occupy near-atop sites on nearest-neighbour surface Cu atoms in [ 1 1 bar 0 ] rows, with a Cusbnd O bondlength of 2.00 ± 0.04 Å. STM images of the (3 × 2) phase show some centred molecules attributed to adsorption on second-layer Cu atoms below missing [001] rows of surface Cu atoms, while DFT calculations show adsorption on a (3 × 2) missing row surface (with every third [001] Cu surface row removed) is favoured over adsorption on the unreconstructed surface. O 1s PhD data from dioxalate is best fitted by a structure similar to that found by DFT to have the lowest energy, although there are some significant differences in intramolecular bondlengths.

  17. Thermodynamic and structural investigation of the specific SDS binding of humicola insolens cutinase

    Science.gov (United States)

    Kold, David; Dauter, Zbigniew; Laustsen, Anne K; Brzozowski, Andrzej M; Turkenburg, Johan P; Nielsen, Anders D; Koldsø, Heidi; Petersen, Evamaria; Schiøtt, Birgit; De Maria, Leonardo; Wilson, Keith S; Svendsen, Allan; Wimmer, Reinhard

    2014-01-01

    The interaction of lipolytic enzymes with anionic surfactants is of great interest with respect to industrially produced detergents. Here, we report the interaction of cutinase from the thermophilic fungus Humicola insolens with the anionic surfactant SDS, and show the enzyme specifically binds a single SDS molecule under nondenaturing concentrations. Protein interaction with SDS was investigated by NMR, ITC and molecular dynamics simulations. The NMR resonances of the protein were assigned, with large stretches of the protein molecule not showing any detectable resonances. SDS is shown to specifically interact with the loops surrounding the catalytic triad with medium affinity (Ka ≈ 105 M−1). The mode of binding is closely similar to that seen previously for binding of amphiphilic molecules and substrate analogues to cutinases, and hence SDS acts as a substrate mimic. In addition, the structure of the enzyme has been solved by X-ray crystallography in its apo form and after cocrystallization with diethyl p-nitrophenyl phosphate (DNPP) leading to a complex with monoethylphosphate (MEP) esterified to the catalytically active serine. The enzyme has the same fold as reported for other cutinases but, unexpectedly, esterification of the active site serine is accompanied by the ethylation of the active site histidine which flips out from its usual position in the triad. PMID:24832484

  18. Lattice QCD investigation of the structure of the a0(980 ) meson

    Science.gov (United States)

    Alexandrou, Constantia; Berlin, Joshua; Dalla Brida, Mattia; Finkenrath, Jacob; Leontiou, Theodoros; Wagner, Marc

    2018-02-01

    We investigate the quark content of the low-lying states in the I (JP)=1 (0+) sector, which are the quantum numbers of the a0(980 ) meson, using lattice QCD. To this end, we consider correlation functions of six different two- and four-quark interpolating fields. We evaluate all diagrams, including diagrams, where quarks propagate within a time slice, e.g. with closed quark loops. We demonstrate that diagrams containing such closed quark loops have a drastic effect on the final results and, thus, may not be neglected. Our analysis, which is carried out at unphysically heavy u and d quark mass corresponding to mπ=296 (3 ) MeV and in a single spatial volume of extent 2.9 fm, shows that in addition to the expected spectrum of two-meson scattering states there is an additional energy level around the two-particle thresholds of K +K ¯ and η +π . This additional state, which is a candidate for the a0(980 ) meson, couples to a quark-antiquark as well as to a diquark-antidiquark interpolating field, indicating that it is a superposition of an ordinary q ¯q and a tetraquark structure. The analysis is performed using AMIAS, a novel statistical method based on the sampling of all possible spectral decompositions of the considered correlation functions, as well as solving standard generalized eigenvalue problems.

  19. Structural investigations of neuromelanin by pyrolysis-gas chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Dzierzega-Lecznar, A.; Kurkiewicz, S.; Stepien, K.; Chodurek, E.; Riederer, P.; Gerlach, M.

    2006-01-01

    Pyrolysis combined with gas chromatography and mass spectrometry (Py-GC/MS) was applied for structural investigations of the human substantia nigra neuromelanin. Using synthetic neuromelanins, we have demonstrated that Py-GC/MS is suitable for identification and differentiation of both eumelanin (dopamine-derived) and pheomelanin (cysteinyldopamine-derived) component of the pigment. Structural information on melanin monomers was inferred from their pyrolytic markers. When the human neuromelanin was subjected to pyrolysis, none of the heterocyclic, sulfur-containing markers of pheomelanin component was detected among the thermal degradation products. We have concluded that nigral pigment isolated from normal brain tissue does not contain benzothiazine-type monomers, and that cysteinyldopamine-originated units may be incorporated into the polymer in uncyclized form. The most abundant pyrolysis product was identified as limonene, which indicates that nigral pigment is tightly associated with an isoprenoid-type compound. Pyrolysis in the presence of the methylating reagent allowed identification of high levels of saturated and monounsaturated straight-chain C14-C18 fatty acid species chemically bound to the pigment macromolecule. (author)

  20. Experimental investigation of the motion of bubble clusters and the flow structures with the clusters

    Science.gov (United States)

    Date, Masanobu; Maeda, Kazuki; Ogasawara, Toshiyuki; Takagi, Shu; Matsumoto, Yoichiro

    2012-11-01

    In upward bubbly flows, mono-dispersed 1 mm spherical bubbles which do not coalesce in the presence of small amount of surfactants in a liquid phase migrate toward the walls due to the shear-induced lift force. Those bubbles form the bubble clusters near the walls [Takagi, S. and Matsumoto, Y., Annu. Rev. Fluid Mech. (2011)]. In this study flow structures of the bubbly flow with the bubble clusters and the motion of the bubble clusters are investigated using scanning stereoscopic Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), respectively. In order to focus on bubble clusters, 1 mm bubbles are injected near the one of the walls and bubble clusters are formed under some conditions of gas flow rate. From the measurement of the bubbly flows by stereoscopic PIV, it is shown that the bubbles near the wall accelerate surrounding liquids due to their buoyancy and reduce Reynolds stress with increasing a void fraction. Three-dimensional velocity fields are also measured by scanning stereoscopic PIV, and the effect of the bubble cluster on the instantaneous flow fields are analyzed. The results are discussed in the presentation.

  1. Investigation of electronic lattice structure by positron annihilation in some insulators

    International Nuclear Information System (INIS)

    Coussot, Gerard

    1970-01-01

    The angular distribution of gamma quanta resulting from positron annihilation in single insulator crystals was measured with long slit geometry apparatus for intense positron sources ( 64 Cu ≅ 1 Ci). Two new phenomena were observed in the angular correlation curves. In the f. c. c. MgO, UO 2 , CaF 2 crystals, modulations appeared at angles corresponding to the limit of the first Brillouin zone in relation to the crystallographic direction studied. In SiO 2 , F 2 Mg, F 2 Mn crystals, a narrow peak at 0 mrad and a fine structure superimposed on the broad distribution, were resolved. The fine structure which is correlated with the narrow component is characterized by modulations appearing at angles corresponding to the projection of reciprocal lattice vectors along the crystallographic direction investigated. The narrow peak at p ≅ 0 suggests the formation of a bound state (positron-electron). If this bound state is described by a Bloch wave, the modulations observed correspond to the Fourier components which contribute to every reciprocal lattice vector p = G ('Umklapp' process). This model predicts that the 'Umklapp' process in polycrystals must produce a change in slope which can be experimentally observed. A systematic research of optimal observation conditions shows that the intensity of the narrow component is closely correlated with the purity and the perfection of the crystal where p-Ps is presumably formed as suggested by magnetic experiments. (author) [fr

  2. Theoretical Investigation of Subwavelength Gratings and Vertical Cavity Lasers Employing Grating Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza

    . Though both sides of the grating layer are not surrounded by low refractive-index materials as in high-index-contrast gratings (HCGs), the HG can provide a near-unity reflectivity over a broader wavelength range than HCGs, or work as a resonator with a quality (Q) factor as high as 109. The physics...... behind these reflector and resonator properties are studied thoroughly. A HG structure comprising a III-V cap layer with a gain material and a Si grating layer enables the realization of a compact vertical cavity laser integrated on Si platform, which has a superior thermal property and fabrication......-factor is investigated, which shows that the uncertainty in the Q-factor can be several orders of magnitude larger than the uncertainty in the resonance frequency. Next, the HG is shown to possess a near-unity reflectivity in a broad wavelength range, which can be broader than the HCG, since the cap layer introduces...

  3. Structural investigation of a neutral extracellular glucan from Lactobacillus reuteri SK24.003.

    Science.gov (United States)

    Miao, Ming; Ma, Yajun; Jiang, Bo; Huang, Chao; Li, Xiaohui; Cui, Steve W; Zhang, Tao

    2014-06-15

    The structural features of a neutral extracellular glucan derived from Lactobacillus reuteri SK24.003 were investigated. Colonies of the strain SK24.003 exhibited a creamy and slimy morphological appearance on MRS solid medium and were identified as L. reuteri via 16S rDNA sequence analysis. The exopolysaccharide produced from sucrose was composed exclusively of glucose, and the weight-average molecular weight was 4.31 × 10(7)g/mol. The polysaccharide exhibited an α-(1→4) backbone with an α-(1→6) branch at every fourth residue, as deduced from both NMR and GC-MS data. The exopolysaccharide acted as a natural steel corrosion inhibitor. The results suggested that a novel α-glucan produced by L. reuteri SK24.00 could be broadly used in food and material field. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  4. NMR relaxation investigation of the native corn starch structure with plasticizers

    Science.gov (United States)

    Cioica, N.; Fechete, R.; Cota, C.; Nagy, E. M.; David, L.; Cozar, O.

    2013-07-01

    The influences of starch, glycerol and water ratios on the structure, morphology and dynamics of starch polymer chains were investigated by NMR relaxation method. The 1H NMR CPMG echo decays and saturation recovery build-up curves were recorded and analyzed using the UPIN algorithm in order to get the spin-spin T2 and spin-lattice T1 relaxation times distributions. Significant differences between the CPMG curves were observed for native starch and the formulas in which water is added, whether these have or not glycerol in composition. For the formula which contains both plasticizers (water and glycerol), the CPMG curves decay slowly, indicating the presence of more mobile components.

  5. Structural Investigations of on-pathway Oligomers of α-Synuclein

    DEFF Research Database (Denmark)

    Pedersen, Martin Nors; Horvath, Istvan; Weise, Christoph F.

    ). "Hunting the Chameleon: Structural Conformations of the Intrinsically Disordered Protein Alpha-Synuclein." Chembiochem 13(6): 761-768. Giehm, L., et al. (2011). "Low-resolution structure of a vesicle disrupting alpha-synuclein oligomer that accumulates during fibrillation." Proceedings of the National...

  6. Investigation of proton pump inhibitors binding with bovine serum albumin and their relationship to molecular structure

    International Nuclear Information System (INIS)

    Zhang Yuping; Shi Shuyun; Peng Mijun

    2012-01-01

    The interactions of three proton pump inhibitors (PPIs), omeprazole, pantoprazole and ilaprazole with bovine serum albumin (BSA) have been investigated by fluorescence, synchronous fluorescence, ultraviolet–visible (UV–vis) and circular dichroism (CD). Various binding parameters have been calculated at various temperatures. The results indicated that omeprazole, pantoprazole and ilaprazole had a strong ability to quench the intrinsic fluorescence of BSA with static quenching mechanism, and the binding affinities were significantly affected by different substituents and polarities as the order ilaprazole>pantoprazole>omeprazole. The site marker competitive experiments indicated that the binding of omeprazole, pantoprazole and ilaprazole to BSA primarily took place in subdomain IIA. The results of thermodynamic parameters ΔG, ΔH and ΔS indicated that electrostatic interaction played a major role for PPIs–BSA association. The distance r between PPIs and BSA was evaluated according to the theory of Förster's energy transfer. The quantitative analysis of synchronous fluorescence and CD spectra showed the change in secondary structure of the BSA upon interaction with PPIs by a reduction of α-helix. All the above results many have relevant insight into the PPIs' availability and distribution. - Highlights: ► The interactions of three PPIs with BSA have been investigated. ► The fluorescence quenching mechanism is static quenching. ► Binding affinities were greatly affected by the substituents and polarities. ► The binding of three PPIs to BSA primarily took place in subdomain IIA.

  7. Investigation on growth, structure and characterization of succinate salt of 8-hydroxyquinoline: An organic NLO crystal

    Science.gov (United States)

    Thirumurugan, R.; Babu, B.; Anitha, K.; Chandrasekaran, J.

    2015-04-01

    8-Hydroxyquinolinium succinate (8-HQSU) has been synthesized and single crystals were grown from ethanol solvent by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated by single crystal X-ray diffraction analysis. It reveals that 8-HQSU crystallizes in monoclinic system with non-centro symmetric space group P21. FTIR, 1H and 13C NMR spectral investigations have been carried out to identify the vibrational modes of various functional groups and placement of proton and carbon in the 8-HQSU compound, respectively. UV-vis-NIR transmission spectrum shows the cutoff wavelength around 357 nm. In addition, a photoluminescence spectral analysis was carried out for 8-HQSU crystals. The thermal properties of crystals were evaluated from TGA and DTA techniques and the crystal was found to be stable up to 145 °C. The dielectric studies show that the dielectric constant and dielectric loss decrease exponentially with frequency at different temperatures. Photoconductivity studies were carried out on the grown crystals it reveals the positive photo conducting nature. Powder second harmonic generation property of the crystal was confirmed by Kurtz and Perry powder SHG technique and it is found to be 1.3 times greater than that of KDP.

  8. Scanning electron microscope investigation of the structural growth in thick sputtered coatings

    Science.gov (United States)

    Spalvins, T.

    1975-01-01

    Sputtered S-Monel, silver, and 304 stainless steel coatings and molybdenum disulfide coatings were deposited on mica and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. The geometry and the surface morphology of the nodules are characterized. Compositional changes within the coating were analyzed by energy dispersive X-ray analysis. Defects in the surface finish act as preferential nucleation sites and form isolated overlapping and complex nodules and various unusual surface overgrowths on the coating. The nodule boundaries are very vulnerable to chemical etching and these nodules do not disappear after full annealing. Further, they have undesirable effects on mechanical properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces.

  9. First-principle investigations on the structural dynamics of Ti2GaN

    International Nuclear Information System (INIS)

    Yang, Z.J.; Li, J.; Linghu, R.F.; Cheng, X.L.; Yang, X.D.

    2013-01-01

    Highlights: •Our calculated lattice parameter of Ti 2 GaN shows that c axis is always stiffer than a axis. •The elastic constants investigations demonstrated that the Ti 2 GaN is meta-stable between 350 and 600 GPa. •We observed an abnormal c-axis expansion behavior within 350–600 GPa resulting from the expansion of the Ti–Ti bond length and the increase of the Ti–Ti bond populations. •Study on the density of states we found that the Ti s and p electrons shift towards higher energies with pressure. -- Abstract: We report a first-principle study on the elastic and electronic properties of the nanolaminate Ti 2 GaN. Our calculated lattice parameter shows that c axis is always stiffer than a axis. The elastic constants investigations demonstrated that Ti 2 GaN is stable over a wide pressure range of 0–1000 GPa with the only exception of 350–600 GPa owing to the elastic softening. The softening behaviors of the Young’s and shear moduli are also found in the same pressure range of 350–600 GPa, indicating a structural metastability. Investigation on the axial compressibility we observed an abnormal c-axis expansion behavior within a pressure range of 350–600 GPa, resulting from the expansion of the Ti–Ti bond length and the increase of the Ti–Ti bond population. Study on the density of states (DOSs) we found that the Ti s and Ti p electrons shift towards higher energies with pressure

  10. Investigation of vulnerability of aircraft structure and materials towards cabin explosions

    NARCIS (Netherlands)

    Wentzel, C.M.; Kasteele, R.M. van de; Soetens, F.

    2007-01-01

    Damage Tolerance of aircraft fuselage structures has a strong link to explosion resistance. Though accidental explosions can and do occur, intentional explosions are more common as the terrorist threat increases. Structural toughness is as welcome in these scenarios as it is under penetration of non

  11. Structural Investigations of Surfaces and Orientation-SpecificPhenomena in Nanocrystals and Their Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Aruguete, Deborah Michiko [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Studies of colloidal nanocrystals and their assemblies are presented. Two of these studies concern the atomic-level structural characterization of the surfaces, interfaces, and interiors present in II-VI semiconductor nanorods. The third study investigates the crystallographic arrangement of cobalt nanocrystals in self-assembled aggregates. Crystallographically-aligned assemblies of colloidal CdSe nanorods are examined with linearly-polarized Se-EXAFS spectroscopy, which probes bonding along different directions in the nanorod. This orientation-specific probe is used, because it is expected that the presence of specific surfaces in a nanorod might cause bond relaxations specific to different crystallographic directions. Se-Se distances are found to be contracted along the long axis of the nanorod, while Cd-Se distances display no angular dependence, which is different from the bulk. Ab-initio density functional theory calculations upon CdSe nanowires indicate that relaxations on the rod surfaces cause these changes. ZnS/CdS-CdSe core-shell nanorods are studied with Se, Zn, Cd, and S X-ray absorption spectroscopy (XAS). It is hypothesized that there are two major factors influencing the core and shell structures of the nanorods: the large surface area-to-volume ratio, and epitaxial strain. The presence of the surface may induce bond rearrangements or relaxations to minimize surface energy; epitaxial strain might cause the core and shell lattices to contract or expand to minimize strain energy. A marked contraction of Zn-S bonds is observed in the core-shell nanorods, indicating that surface relaxations may dominate the structure of the nanorod (strain might otherwise drive the Zn-S lattice to accommodate the larger CdS or CdSe lattices via bond expansion). EXAFS and X-ray diffraction (XRD) indicate that Cd-Se bond relaxations might be anisotropic, an expected phenomenon for a rod-shaped nanocrystal. Ordered self-assembled aggregates of cobalt nanocrystals are

  12. First applications of structural pattern recognition methods to the investigation of specific physical phenomena at JET

    International Nuclear Information System (INIS)

    Ratta, G.A.; Vega, J.; Pereira, A.; Portas, A.; Luna, E. de la; Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Vargas, H.; Santos, M.; Pajares, G.; Murari, A.

    2008-01-01

    Structural pattern recognition techniques allow the identification of plasma behaviours. Physical properties are encoded in the morphological structure of signals. Intelligent access methods have been applied to JET databases to retrieve data according to physical criteria. On the one hand, the structural form of signals has been used to develop general purpose data retrieval systems to search for both similar entire waveforms and similar structural shapes inside waveforms. On the other hand, domain dependent knowledge was added to the structural information of signals to create particular data retrieval methods for specific physical phenomena. The inclusion of explicit knowledge assists in data analysis. The latter has been applied in JET to look for first, cut-offs in ECE heterodyne radiometer signals and, second, L-H transitions

  13. First applications of structural pattern recognition methods to the investigation of specific physical phenomena at JET

    Energy Technology Data Exchange (ETDEWEB)

    Ratta, G.A. [Asociacion EURATOM/CIEMAT para Fusion (Spain)], E-mail: giuseppe.ratta@ciemat.es; Vega, J.; Pereira, A.; Portas, A.; Luna, E. de la [Asociacion EURATOM/CIEMAT para Fusion (Spain); Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Vargas, H. [Dpto. Informatica y Automatica-UNED, 28040 Madrid (Spain); Santos, M.; Pajares, G. [Dpto. Arquitectura de Computadores y Automatica-UCM, 28040 Madrid (Spain); Murari, A. [Consorzio RFX-Associazione EURATOM ENEA per la Fusione, Padua (Italy)

    2008-04-15

    Structural pattern recognition techniques allow the identification of plasma behaviours. Physical properties are encoded in the morphological structure of signals. Intelligent access methods have been applied to JET databases to retrieve data according to physical criteria. On the one hand, the structural form of signals has been used to develop general purpose data retrieval systems to search for both similar entire waveforms and similar structural shapes inside waveforms. On the other hand, domain dependent knowledge was added to the structural information of signals to create particular data retrieval methods for specific physical phenomena. The inclusion of explicit knowledge assists in data analysis. The latter has been applied in JET to look for first, cut-offs in ECE heterodyne radiometer signals and, second, L-H transitions.

  14. Spectroscopic and computational investigation of the structure and pharmacological activity of 1-benzylimidazole

    Directory of Open Access Journals (Sweden)

    A. Madanagopal

    2017-11-01

    Full Text Available The chemical and pharmacological activity of the compound 1-benzylimidazole was analysed using vibrational, NMR and UV-Visible spectroscopic tools. The necessary data were obtained by recording FT-IR, FT-Raman, NMR and UV-Visible spectra. 1H and 13C NMR spectral chemical shifts were observed and investigated to understand the basis of the antiparasitic, antifungal and antimicrobial activities. The elaborate electronic excitational absorptions in which bathochromic shifts in the UV-Visible spectrum are linked to strong cardiotonic activity are noteworthy. The pharmacodynamic activity was related to the molecular polarization as analysed according to different analytical parameters. The molecular reactivity was studied according to the dislocation of charge levels in frontier molecular orbitals. NBO analysis was carried out to delineate the asymmetric charge interaction transitions among orbitals, which were correlated with the pharmacological behaviour of the compound. The enantiomer errors in the electronic structure have been analysed by simulating ECD and VCD spectra. Keywords: 1-Benzylimidazole, Pharmacological, FT-IR, FT-Raman, NMR, Cardiotonic activity, Enantiomer, ECD and VCD spectra

  15. Structural Investigation for Optimization of Anthranilic Acid Derivatives as Partial FXR Agonists by in Silico Approaches

    Science.gov (United States)

    Chen, Meimei; Yang, Xuemei; Lai, Xinmei; Kang, Jie; Gan, Huijuan; Gao, Yuxing

    2016-01-01

    In this paper, a three level in silico approach was applied to investigate some important structural and physicochemical aspects of a series of anthranilic acid derivatives (AAD) newly identified as potent partial farnesoid X receptor (FXR) agonists. Initially, both two and three-dimensional quantitative structure activity relationship (2D- and 3D-QSAR) studies were performed based on such AAD by a stepwise technology combined with multiple linear regression and comparative molecular field analysis. The obtained 2D-QSAR model gave a high predictive ability (R2train = 0.935, R2test = 0.902, Q2LOO = 0.899). It also uncovered that number of rotatable single bonds (b_rotN), relative negative partial charges (RPC−), oprea's lead-like (opr_leadlike), subdivided van der Waal’s surface area (SlogP_VSA2) and accessible surface area (ASA) were important features in defining activity. Additionally, the derived3D-QSAR model presented a higher predictive ability (R2train = 0.944, R2test = 0.892, Q2LOO = 0.802). Meanwhile, the derived contour maps from the 3D-QSAR model revealed the significant structural features (steric and electronic effects) required for improving FXR agonist activity. Finally, nine newly designed AAD with higher predicted EC50 values than the known template compound were docked into the FXR active site. The excellent molecular binding patterns of these molecules also suggested that they can be robust and potent partial FXR agonists in agreement with the QSAR results. Overall, these derived models may help to identify and design novel AAD with better FXR agonist activity. PMID:27070594

  16. Numerical Investigations into the Value of Information in Lifecycle Analysis of Structural Systems

    DEFF Research Database (Denmark)

    Konakli, Katerina; Sudret, Bruno; Faber, Michael Havbro

    2015-01-01

    Preposterior analysis can be used to assess the potential of an experiment to enhance decision-making by providing information on parameters of the decision problem that are surrounded by epistemic uncertainties. The present paper describes a framework for preposterior analysis for support...... dependencies between the components of a system. Furthermore, challenges and potentials in value-of-information analysis for structural systems are discussed....... of decisions related to maintenance of structural systems. In this context, experiments may refer to inspections or structural health monitoring. The value-of-information concept comprises a powerful tool for determining whether the experimental cost is justified by the expected gained benefit during...

  17. Preliminary Results on the Experimental Investigation of the Structure Functions of Bound Nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Bodek, Arie [Univ. of Rochester, NY (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    We present preliminary results on an experimental study of the nuclear modification of the longitudinal ($\\sigma_L$) and transverse ($\\sigma_T$) structure functions of nucleons bound in nuclear targets. The origin of these modifications (commonly referred as as the EMC effect) is not fully understood. Our measurements of R= $\\sigma_L / \\sigma_T$ for nuclei ($R_A$) and for deuterium ($R_D$) indicate that nuclear modifications of the structure functions of bound nucleons are different for the longitudinal and transverse structure functions, and that contrary to expectation from several theoretical models, $R_A< R_D$.

  18. Archaeomagnetic investigation of three Etruscan firing structures in Pisa - Data for the Italian Secular Variation Curve

    Science.gov (United States)

    Principe, Claudia; Malfatti, Jonas; Le Goff, Maxime; Grandinetti, Giuditta; Paribeni, Emanuela; Arias, Claudio

    2010-05-01

    Archaeomagnetic studies have recently undergone a significant progress in Italy, and a preliminary Italian Secular Variation Curve (Tema et al., 2007) for the last three millennia is available as a useful reference curve to compare archaeomagnetic directions from both archaeological and geological undated burnt features. However the number of well-dated and accurate archaeomagnetic directional results in our country is still far away to build a reliable dating tool, above all for times older than the 6 century BC. We present here three unpublished archaeomagnetic directional results carried out from a small Etruscan archaeological area excavated in Pisa, Tuscany (Italy). The importance of this study, a small settled area from the Orientalizzante phase (IX-VI centuries BC) with a well defined metallurgical area inside, is underlined by the fact that, at the moment, these are the only Italian directional investigations coming from a well-dated and constrained archaeological (stratigraphic) context for this time period. In particular, we sampled two different kind of structures (two firing plains and a circular oven) which were used during the iron ore reduction activities; according with different historical sources, the iron ore was probably from the Elba island deposit (Tuscany, Italy), famous for its abundance during Etruscan and Roman times. In addition we present also an updated list of our previous archaeomagnetic investigations from other Etruscan and Roman archaeological structures, in order to contribute improving the non-uniform dataset used to build the preliminary Italian Secular Variation Curve for the period BC. All the presented archaeological structures have been collected by using the modified "Thellier&Thellier" technique, while the analytical measurements have been carried out thanks to a joint collaboration between the IGG-CNR and the Paleomagnetic Laboratory of Institute the Physique du Globe de Paris (IPGP). The thermo-remanent magnetization

  19. Geophysical investigations of geology and structure at the Martis Creek Dam, Truckee, California

    Science.gov (United States)

    Bedrosian, Paul A.; Burton, Bethany L.; Powers, Michael H.; Minsley, Burke J.; Phillips, Jeffrey D.; Hunter, Lewis E.

    2012-02-01

    A recent evaluation of Martis Creek Dam highlighted the potential for dam failure due to either seepage or an earthquake on nearby faults. In 1972, the U.S. Army Corps of Engineers constructed this earthen dam, located within the Truckee Basin to the north of Lake Tahoe, CA for water storage and flood control. Past attempts to raise the level of the Martis Creek Reservoir to its design level have been aborted due to seepage at locations downstream, along the west dam abutment, and at the base of the spillway. In response to these concerns, the U.S. Geological Survey has undertaken a comprehensive suite of geophysical investigations aimed at understanding the interplay between geologic structure, seepage patterns, and reservoir and groundwater levels. This paper concerns the geologic structure surrounding Martis Creek Dam and emphasizes the importance of a regional-scale understanding to the interpretation of engineering-scale geophysical data. Our studies reveal a thick package of sedimentary deposits interbedded with Plio-Pleistocene volcanic flows; both the deposits and the flows are covered by glacial outwash. Magnetic field data, seismic tomography models, and seismic reflections are used to determine the distribution and chronology of the volcanic flows. Previous estimates of depth to basement (or the thickness of the interbedded deposits) was 100 m. Magnetotelluric soundings suggest that electrically resistive bedrock may be up to 2500 m deep. Both the Polaris Fault, identified outside of the study area using airborne LiDAR, and the previously unnamed Martis Creek Fault, have been mapped through the dam area using ground and airborne geophysics. Finally, as determined by direct-current resistivity imaging, time-domain electromagnetic sounding, and seismic refraction, the paleotopography of the interface between the sedimentary deposits and the overlying glacial outwash plays a principal role both in controlling groundwater flow and in the distribution of the

  20. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    Science.gov (United States)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.

  1. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    International Nuclear Information System (INIS)

    Anantachaisilp, Suranan; Smith, Siwaporn Meejoo; Treetong, Alongkot; Ruktanonchai, Uracha Rungsardthong; Pratontep, Sirapat; Puttipipatkhachorn, Satit

    2010-01-01

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812 as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance ( 1 H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1 H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1 H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and

  2. Investigations of functional and structural changes in migraine with aura by magnetic resonance imaging.

    Science.gov (United States)

    Hougaard, Anders

    2015-08-01

    Migraine sufferers with aura often report visual discomfort outside of attacks and many consider bright or flickering light an attack-precipitating factor. The nature of this visual hypersensitivity and its relation to the underlying pathophysiology of the migraine aura is unknown. A useful technology to study these features of migraine with aura (MA) is functional magnetic resonance imaging (fMRI), which has the potential not only to detect, but also to localize hypersensitive cortex. The main objective of this thesis was to investigate the cortical responsivity of patients with MA during visual stimulation using fMRI. To optimize sensitivity, we applied a within-patient design by assessing functional interhemispheric differences in patients consistently experiencing visual aura in the same visual hemifield. To validate our data analysis methods, we initially studied healthy volunteers using single hemifield visual stimulation and compared the "stimulated" hemispheres (i.e. hemispheres contralateral to the visual stimulation) to the "non-stimulated" hemispheres. We then applied this validated method of interhemispheric comparison of fMRI-blood oxygenation level dependent (BOLD) activation to compare left versus right hemisphere responses to symmetric full-field visual stimulation in 54 healthy subjects (study I). This study concluded that, a) the applied visual stimulation is effective in activating large expanses of visual cortex, b) interhemispheric differences in fMRI-BOLD activation can be determined using the proposed method, and c) visual responses to symmetric full-field visual stimulation are asymmetrically distributed between the cerebral hemispheres. We investigated the effects of migraine aura, by including 20 patients with frequent side-fixed visual aura attacks, i.e. ≥= 90% of auras occurring in the same visual hemifield (study II). To circumvent bias relating to differences between right and left hemispheres (e.g. caused by physiological left

  3. Investigation of soil structure in Uzungöl settlement area by Shallow Seismic Methods

    Directory of Open Access Journals (Sweden)

    Hakan Karslı

    2017-04-01

    Full Text Available This study was performed to relase the soil structure of Uzungöl district of Trabzon city, a vocational area, where had been formed by a historical landslide and lake deposits and to evaluate its geotechnical characters by using seismic methods which are noninvasive, rapidly applicable and provide substantial information about the structure of investigated ground in a short time. For this purpose, seismic refraction, active-passive surface waves and seismic reflections in 16 profiles were gathered on four sub-areas and and evaluated by current favorable numerical methods. Although it considerably varies between profiles, the depth of basement, depositional base of deposits, was averagely obtained as 13.5-15m at upper elevation and 25-50m at lower elevation of the study area. Dynamic elastic parameters and average shear wave velocity of the upper 30m (VS30 of soil in the area were calculated. The soil classification of study area was interpreted as locally Z1 and Z2 class for TEC, B and C class for EC-8 code, C and D class for NERHP. According to VS30 (394-530m/s, ground amplification and predominant vibration period of the study area are respectively obtained as 1.5-2.1 and 0.23-0.30sec. On the other hand, all deposits are characterized by stiffness-solid soil, excluding arable soil from surface to a few meters depth. In addition, the first meters of bedrock shows weathered character, but deeper parts are very compact and hard. Therefore, a scientific infrastructure has been formed to carry out the engineering projects to be planned for Uzungöl settletment safely and without damaging the environment.

  4. Investigation into the morphology, composition, structure and dry tribological behavior of rice husk ceramic particles

    Science.gov (United States)

    Hu, Enzhu; Hu, Kunhong; Xu, Zeyin; Hu, Xianguo; Dearn, Karl David; Xu, Yong; Xu, Yufu; Xu, Le

    2016-03-01

    To expand the application of rice husk (RH) resource, this study developed carbon-based RH ceramic (RHC) particles using a common high-temperature carbonization method. The morphology, composition, and structure of the RHC particles were characterized with a series of modern analysis technologies and were then compared with those of the initial RH powder and carbonized RH (CRH) particles. The dry tribological behavior of RHC particle adobes (RHAs) was also investigated. Results showed the sheet-shaped morphology of the RHC particles. The graphitization degree of the RHC particles was lower than that of the CRH particles possibly because the phenolic resin (PR) filled the micro-pores of the RH particles, thereby prompting the formation of amorphous carbon in the RHC particles as a result of high-temperature carbonization. The appearance of a hydroxy function group (sbnd OH) on the surface of the RHC particles was ascribed to the decomposition of PR at 900 °C. The friction coefficients and mass loss rates of the RHAs almost increased with the rise in load and velocity. In addition, the friction coefficients of the RHAs decreased at high load (5 N) and velocity (0.261 m/s) conditions. Such outcome indicated that the variation of contact area between steel ball and RHA at high load and velocity conditions resulted in the abrasive wear or catastrophic wear.

  5. Spectroscopic investigation of the structures of dialkyl tartrates and their cyclodextrin complexes.

    Science.gov (United States)

    Zhang, Peng; Polavarapu, Prasad L

    2007-02-08

    Structures of three dialkyl tartrates, namely, dimethyl tartrate, diethyl tartrate, and diisopropyl tartrate, in CCl4, dimethyl sulfoxide (DMSO)/DMSO-d6, and H2O/D2O solvents have been investigated using vibrational absorption (VA), vibrational circular dichroism (VCD), and optical rotatory dispersion (ORD). VA, VCD, and ORD spectra are found to be dependent on the solvent used. Density functional theory (DFT) calculations are used to interpret the experimental data in CCl4 and DMSO. The trans-COOR conformer with hydrogen bonding between the OH group and the C=O group attached to the same chiral carbon is dominant for dialkyl tartrates both in vacuum and in CCl4. The experimental VA, VCD, and ORD data of dialkyl-D-tartrates in CCl4 correlated well with those predicted for dimethyl-(S,S)-tartrate molecule as both isolated and solvated in CCl4. In DMSO solvent, dialkyl tartrate molecules favor formation of intermolecular hydrogen bonding with DMSO molecules. Clusters of dimethyl-(S,S)-tartrate, with one molecule of dimethyl-(S,S)-tartrate hydrogen bonded to two DMSO molecules, are used for the DFT calculations. A trans-COOR cluster and a trans-H cluster are needed to obtain a reasonable agreement between the predicted and experimental data of dimethyl tartrate in DMSO solvent. VA, VCD, and optical rotations are also measured for dialkyl tartrate-cyclodextrin complexes. It is noted that these properties are barely affected by complexation of dialkyl tartrates with cyclodextrins, indicating weak interaction between tartrates and cyclodextrin. Binding constants of alpha-CD and beta-CD with diethyl L-tartrate in both H2O and DMSO have been determined using isothermal titration calorimetry technique. The smaller binding constants (less than 100) confirmed the weak interaction between tartrates and cyclodextrin in the solution state.

  6. Full-scale investigation of wind-induced vibrations of mast-arm traffic signal structures.

    Science.gov (United States)

    2014-08-01

    Because of their inherent : fl : exibility and low damping ratios, cantilevered mast : - : arm : tra : ffi : c signal structures are suscepti : b : le to : wind : - : induced vibrations. : These vibrations : cause stru : ctural stresses and strains t...

  7. Electronic structure and chemical bonding anisotropy investigation of wurtzite AlN

    Science.gov (United States)

    Magnuson, M.; Mattesini, M.; Höglund, C.; Birch, J.; Hultman, L.

    2009-10-01

    The electronic structure and the anisotropy of the AlN π and σ chemical bonding of wurtzite AlN has been investigated by bulk-sensitive total fluorescence yield absorption and soft x-ray emission spectroscopies. The measured NK , AlL1 , and AlL2,3 x-ray emission and N1s x-ray absorption spectra are compared with calculated spectra using first-principles density-functional theory including dipole transition matrix elements. The main N2p-Al3p-Al 3d and N2p-Al3s hyridization regions are identified at -1.0 to -1.8eV and -5.0 to -5.5eV below the top of the valence band, respectively. In addition, N2s-Al3p and N2s-Al3s hybridization regions are found at the bottom of the valence band around -13.5 and -15eV , respectively. A strongly modified spectral shape of Al3s states in the AlL2,3 emission from AlN in comparison to Al metal is found, which is also reflected in the N2p-Al3p hybridization observed in the AlL1 emission. The differences between the electronic structure and chemical bonding of AlN and Al metal are discussed in relation to the position of the hybridization regions and the valence-band edge influencing the magnitude of the large band gap.

  8. Structural and optical investigation of combustion derived La doped copper oxide nanocrystallites

    Science.gov (United States)

    Vimala Devi, L.; Sellaiyan, S.; Sankar, S.; Sivaji, K.

    2018-02-01

    The effect of La dopant concentration (4% and 6%) and annealing (400, 600 and 800 °C) behavior of CuO derived by solution combustion method (SCS) are investigated. Structural and optical properties were studied by XRD, SEM, diffuse reflectance spectra (DRS) and photoluminescence (PL) measurements for the prepared samples. The crystallinity of the samples increases with temperature. Incorporation of La in CuO lattice reduces the crystallinity due to the variation of ionic radii and also leads to higher angle peak shift. From SEM micrograph, it is clear that annealed samples increases the nucleation rate and agglomerates the particles. DRS study revealed the narrowing of the bandgap in doped CuO compared to undoped CuO, which is due the influence of La3+ impurity dopant ions on the electronic states of the crystallite. The band broadening in higher concentration of impurity is due to the partial curing of copper vacancies. The luminescence spectra show that there is no change in peak position but slight variation in the peak intensity related to the defect change in the CuO due to La doping. La induces the lattice distortion, increases the defect concentration in CuO and it acts as a quencher. Bandgap shift and quenching of PL intensity may provide excellent degradation efficiency of dye by the design of rare earth doped CuO-based photocatalyst.

  9. Investigation of the relationship between structural empowerment and organizational commitment of nurses in Zanjan hospitals.

    Science.gov (United States)

    Eskandari, Fereidoun; Siahkali, Soheila Rabie; Shoghli, Alireza; Pazargadi, Mehrnoosh; Tafreshi, Mansoreh Zaghari

    2017-03-01

    The demanding nature of nursing work environments signals longstanding and growing concerns about nurses' health and job satisfaction and the provision of quality care. Specifically in health care settings, nurse leaders play an essential role in creating supportive work environments to avert these negative trends and increase nurse job satisfaction. The purpose of this study was to examine the relationship between structural empowerment and organizational commitment of nurses. 491 nurses working in Zanjan hospitals participated in this descriptive-correlational study in 2010. Tools for data collection were Meyer and Allen's organizational commitment questionnaire and "Conditions for Work Effectiveness Questionnaire-II" (CWEQ-II). Data was analyzed by SPSS16. The statistical tests such as variance analysis, t-test, pearson correlation coefficient and linear regression were used for data analysis. According to the findings, the perception of nurses working in hospitals on "Structural Empowerment" was moderate (15.98±3.29). Nurses believed "opportunity" as the most important element in structural empowerment with the score of 3.18 ±0.79. Nurses working in non-academic hospitals and in non-teaching hospitals had higher organizational commitment than others. There was a significant relationship between structural empowerment and organizational commitment. Generally, structural empowerment (relatively strong) correlates with nurses' organizational commitment. We concluded that a high structural empowerment increases the organizational commitment of nurses.

  10. An Investigation Into the Aerodynamics and Structural Integrity of the 155-mm M898 Projectile

    National Research Council Canada - National Science Library

    Soencksen, Keith

    1999-01-01

    .... Army Armament Research, Development, and Engineering Center (ARDEC) recently funded an experiment designed to analyze the structural integrity and aerodynamic characteristics of the projectile...

  11. Investigation of 1-D crustal velocity structure beneath Izmir Gulf and surroundings by using local earthquakes

    International Nuclear Information System (INIS)

    Polat, Orhan; Özer, Çaglar

    2016-01-01

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.

  12. An Investigation of Ni2P Single Crystal Surfaces : Structure, Electronic State and Reactivity

    OpenAIRE

    Yuan, Qiuyi; Ariga, Hiroko; Asakura, Kiyotaka

    2015-01-01

    Ni2P has demonstrated high catalytic activity for hydrodesulfurization and has recently been employed as a catalyst in a variety of other reactions. We have thoroughly reviewed the literature concerning Ni2P single crystal surfaces, with the aim of determining the relationship between surface structure and catalytic properties. Published results to date indicate that Ni2P single crystal surfaces exhibit reconstructed structures, and so the bulk terminated structure may not be stable. We have ...

  13. Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration

    Science.gov (United States)

    Fang, Yuqiang; Iu, Catherine Y. Y.; Lui, Cathy N. P.; Zou, Yukai; Fung, Carmen K. M.; Li, Hung Wing; Xi, Ning; Yung, Ken K. L.; Lai, King W. C.

    2014-11-01

    Glutamate-mediated neurodegeneration resulting from excessive activation of glutamate receptors is recognized as one of the major causes of various neurological disorders such as Alzheimer's and Huntington's diseases. However, the underlying mechanisms in the neurodegenerative process remain unidentified. Here, we investigate the real-time dynamic structural and mechanical changes associated with the neurodegeneration induced by the activation of N-methyl-D-aspartate (NMDA) receptors (a subtype of glutamate receptors) at the nanoscale. Atomic force microscopy (AFM) is employed to measure the three-dimensional (3-D) topography and mechanical properties of live SH-SY5Y cells under stimulus of NMDA receptors. A significant increase in surface roughness and stiffness of the cell is observed after NMDA treatment, which indicates the time-dependent neuronal cell behavior under NMDA-mediated neurodegeneration. The present AFM based study further advance our understanding of the neurodegenerative process to elucidate the pathways and mechanisms that govern NMDA induced neurodegeneration, so as to facilitate the development of novel therapeutic strategies for neurodegenerative diseases.

  14. Structural investigations of the Bacillus subtilis SPP1 phage G39P helicase inhibitor loading protein

    CERN Document Server

    Bailey, S

    2002-01-01

    The Bacillus subtilis SPPI phage encoded protein G39P is a loader and inhibitor of the phage G40P replicative helicase involved in the initiation of phage DNA replication. The 2.4A crystal structure of a C-terminal truncated variant of G39P was solved using multiple wavelength anomalous dispersion exploiting the anomalous signal of seleno- methionine substituted protein. Inspection of the electron density maps revealed the asymmetric unit contained three independent G39P monomers, composed of 3 alpha-helices and their connecting loops. However, the model only accounted for the first 67 residues of the protein, as there was no interpretable electron density for residues 68 to 112. A preliminary NMR investigation revealed the C-terminal region of the protein had rapid internal motion and formed no well-defined stable fold that involved immobilized side chains. This is consistent with the X-ray analysis that displayed no electron density for these residues. A detailed comparison of NMR spectra from the C-termina...

  15. Symmetry analysis in the investigation of the order-disorder phase transition and possible structural deformations

    International Nuclear Information System (INIS)

    Gurin, O.V.; Syromyatnikov, V.N.

    1984-01-01

    Order-disorder phase transitions for the Me-X structures in Nb-H(D) hydrides with hydrogen (deuterium) ordering over the 12d tetrahedral interstices of the GAMMAsub(c)sup(v) lattice and for the Me-X and Me-X 2 oxides in the Ta-O system with oxygen ordering over octahedral 6b interstices are presented. The concentration of interstitial atoms is assumed to be constant. All possible models of ordered structures with a GAMMAsub(o)sup(b) lattice were determined using symmetry analysis. The possible structural deformations consistent with each variant of the ordering of the interstitial atoms were also considered. The structural deformations include the displacements of the metal atoms and of the centres of the interstices which were deduced using symmetry analysis. The results of the analysis of the final structure symmetry raise the question of understanding the nature of superstructure reflections in neutron diffraction patterns. (Auth.)

  16. Investigating structural brain changes of dehydration using voxel-based morphometry.

    Directory of Open Access Journals (Sweden)

    Daniel-Paolo Streitbürger

    Full Text Available Dehydration can affect the volume of brain structures, which might imply a confound in volumetric and morphometric studies of normal or diseased brain. Six young, healthy volunteers were repeatedly investigated using three-dimensional T(1-weighted magnetic resonance imaging during states of normal hydration, hyperhydration, and dehydration to assess volume changes in gray matter (GM, white matter (WM, and cerebrospinal fluid (CSF. The datasets were analyzed using voxel-based morphometry (VBM, a widely used voxel-wise statistical analysis tool, FreeSurfer, a fully automated volumetric segmentation measure, and SIENAr a longitudinal brain-change detection algorithm. A significant decrease of GM and WM volume associated with dehydration was found in various brain regions, most prominently, in temporal and sub-gyral parietal areas, in the left inferior orbito-frontal region, and in the extra-nuclear region. Moreover, we found consistent increases in CSF, that is, an expansion of the ventricular system affecting both lateral ventricles, the third, and the fourth ventricle. Similar degrees of shrinkage in WM volume and increase of the ventricular system have been reported in studies of mild cognitive impairment or Alzheimer's disease during disease progression. Based on these findings, a potential confound in GM and WM or ventricular volume studies due to the subjects' hydration state cannot be excluded and should be appropriately addressed in morphometric studies of the brain.

  17. The structure of octofluoronaphthalene at high pressures investigated by neutron powder diffraction

    International Nuclear Information System (INIS)

    Mackenzie, G.A.; Buras, B.

    1977-01-01

    The structure of the molecular crystal octofluoronaphthalene at high pressures has been studied by neutron powder diffraction. Evidence was found at about 0.8 kbar for a structural phase transition similar to that which occurs at 266.5 K at atmospheric pressure. The structure at atmospheric pressure and at 2 and 4 kbar has been refined using the powder profile refinement program EDINP. There is evidence for a further structural charge between 4 and 6 kbar, confirmed by measurements at 16 kbar, but there is insufficient data for a detailed analysis of this change. (Auth.)

  18. Phase study in Sr-Th-P-O system: Structural and thermal investigations of quaternary compounds

    International Nuclear Information System (INIS)

    Keskar, Meera; Phatak, Rohan; Sali, S.K.; Krishnan, K.; Dahale, N.D.; Kulkarni, N.K.; Kannan, S.

    2011-01-01

    The sub-solidus phase relations in Sr-Th-P-O quaternary system were determined at 1223 K in air. To confirm the formation and stability of reported phases, ternary and quaternary compounds in Sr-Th-O, Sr-P-O, Th-P-O and Sr-Th-P-O systems were synthesized by solid state reactions of SrCO 3 , ThO 2 and NH 4 H 2 PO 4 in desired molar proportions at 1223 K. A pseudo-ternary phase diagram of SrO-ThO 2 -P 2 O 5 system was drawn on the basis of the phase analysis of various phase mixtures and phase fields were established by powder X-ray diffraction. In the phase diagram, three quaternary compounds SrTh(PO 4 ) 2 , SrTh 4 (PO 4 ) 6 and Sr 7 Th(PO 4 ) 6 were identified. When heated in air at 1673 K, these compounds decompose to ThO 2 . Structures of SrTh(PO 4 ) 2 , SrTh 4 (PO 4 ) 6 and Sr 7 Th(PO 4 ) 6 were derived from X-ray powder data using the Rietveld refinement method. Thermal expansion behaviors of SrTh(PO 4 ) 2 , SrTh 4 (PO 4 ) 6 and Sr 7 Th(PO 4 ) 6 were investigated using high-temperature X-ray diffraction in the temperature range of 298-1273 K.

  19. An Investigation of the 3D Electrical Resistivity Structure in the Chingshui Geothermal Area, NE Taiwan

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chiang

    2015-01-01

    Full Text Available The Chingshui geothermal area southwest of the Ilan plain is identified as a western extension of the Okinawa Trough in the northern Taiwan subduction system. Numerous geophysical, geological and geochemical investigations have been conducted since the 1970s by the Industrial Technology Research Institute, the Chinese Petroleum Corporation of Taiwan and the National Science Council of Taiwan. These studies indicated that the Chingshui stream is one of the largest geothermal areas for electricity generation in Taiwan. However, the power generation efficiency has not met initial expectations. Magnetotelluric (MT data analyses show that the Chingshui geothermal region is a geologically complex area. A full three-dimensional (3D inversion was therefore applied to reprocess the MT data and provide the detailed electrical structure beneath the Chingshui geothermal region. The 3D geoelectrical model displays an improved image that clearly delineates the Chingshui geothermal system geometry. Two conductive anomalies are imaged that possibly indicate high potential areas for geothermal energy in the Chingshui geothermal system. One of the potential areas is located in the eastern part of the Chingshui Fault at shallow depths. A significant conductive anomaly is associated with high heat flow and fluid content situations southwest of the geothermal manifest area at depth. A higher interconnected fluid indicates that this area contains the highest potential for geothermal energy in the Chingshui geothermal system.

  20. Investigating the Structures of Turbulence in a Multi-Stream, Rectangular, Supersonic Jet

    Science.gov (United States)

    Magstadt, Andrew S.

    Supersonic flight has become a standard for military aircraft, and is being seriously reconsidered for commercial applications. Engine technologies, enabling increased mission capabilities and vehicle performance, have evolved nozzles into complex geometries with intricate flow features. These engineering solutions have advanced at a faster rate than the understanding of the flow physics, however. The full consequences of the flow are thus not known, and using predictive tools becomes exceedingly difficult. Additionally, the increasing velocities associated with supersonic flight exacerbate the preexisting jet noise problem, which has troubled the engineering community for nearly 65 years. Even in the simplest flows, the full consequences of turbulence, e.g. noise production, are not fully understood. For composite flows, the fluid mechanics and acoustic properties have been studied even less sufficiently. Before considering the aeroacoustic problem, the development, structure, and evolution of the turbulent flow-field must be considered. This has prompted an investigation into the compressible flow of a complex nozzle. Experimental evidence is sought to explain the stochastic processes of the turbulent flow issuing from a complex geometry. Before considering the more complicated configuration, an experimental campaign of an axisymmetric jet is conducted. The results from this study are presented, and guide research of the primary flow under investigation. The design of a nozzle representative of future engine technologies is then discussed. Characteristics of this multi-stream rectangular supersonic nozzle are studied via time-resolved schlieren imaging, stereo PIV measurements, dynamic pressure transducers, and far-field acoustics. Experiments are carried out in the anechoic chamber at Syracuse University, and focus primarily on the flow-field. An extensive data set is generated, which reveals a detailed view of a very complex flow. Shear, shock waves, unequal

  1. Detailed imaging of flowing structures at depth using microseismicity: a tool for site investigation?

    Science.gov (United States)

    Pytharouli, S.; Lunn, R. J.; Shipton, Z. K.

    2011-12-01

    Field evidence shows that faults and fractures can act as focused pathways or barriers for fluid migration. This is an important property for modern engineering problems, e.g., CO2 sequestration, geological radioactive waste disposal, geothermal energy exploitation, land reclamation and remediation. For such applications the detailed characterization of the location, orientation and hydraulic properties of existing fractures is necessary. These investigations are expensive, requiring the hire of expensive equipment (excavator or drill rigs), which incur standing charges when not in use. In addition, they only provide information for discrete sample 'windows'. Non-intrusive methods have the ability to gather information across an entire area. Methods including electrical resistivity/conductivity and ground penetrating radar (GRP), have been used as tools for site investigations. Their imaging ability is often restricted due to unfavourable on-site conditions e.g. GRP is not useful in cases where a layer of clay or reinforced concrete is present. Our research has shown that high quality seismic data can be successfully used in the detailed imaging of sub-surface structures at depth; using induced microseismicity data recorded beneath the Açu reservoir in Brazil we identified orientations and values of average permeability of open shear fractures at depths up to 2.5km. Could microseismicity also provide information on the fracture width in terms of stress drops? First results from numerical simulations showed that higher stress drop values correspond to narrower fractures. These results were consistent with geological field observations. This study highlights the great potential of using microseismicity data as a supplementary tool for site investigation. Individual large-scale shear fractures in large rock volumes cannot currently be identified by any other geophysical dataset. The resolution of the method is restricted by the detection threshold of the local

  2. Experimental investigation of modal interactions in a beam-mass structure using bispectrum

    International Nuclear Information System (INIS)

    Khan, K.A.

    2001-01-01

    Observations and results pertaining to experiments with a beam-mass structure are presented. The experiments were conducted with the objective of understanding and characterizing the nonlinear interactions that occur during the motions of the structure, through the use of third-order spectra (bispectrum and bicoherence spectrum). The structure, tuned for two-to-one internal (autoparametric) resonance between its first two modes. was harmonically excited. The effect of misalignment between the components of the structure on bispectrum was also contemplated. The experimental results are provided in the form of frequency spectra, phase portraits, frequency-response curves, bispectra, and bicoherence spectra. Experimental observations of transitions from periodic to modulated motions are also presented. The potential of bispectral estimates for detecting the quadratic phase coupling among the participating modes during bifurcations and modulated motions is also contemplated. The current study is also relevant to other parametrically resonant structures like ships, rings, shells, and arches, etc. (author)

  3. Density functional investigation on structural, elastic, thermal and mechanical properties of NiTi intermetallic compound

    Science.gov (United States)

    Pagare, Gitanjali

    2017-05-01

    Theoretical study of structural, elastic, mechanical and thermal properties of B2-type binary intermetallic NiTi is performed using full-potential linearized augmented plane wave (FP-LAPW) method. In this approach the generalized gradient approximation and local spin density approximation is used for exchange-correlation (XC) potential. We have calculated the ground state properties using PBE-GGA and LDA approximations respectively such as lattice constant (a0 = 3.0140 Å and 2.9439 Å), bulk modulus (B = 161.58 GPa and 191.92 GPa) and pressure derivative of bulk modulus (B‧ = 4.21 and 4.15) for NiTi. Our calculated lattice constants are in good agreement with the experimental data available. A special attention has been paid to the determination of the second order elastic constants. The second order elastic constants (C11 = 308.58 GPa, C12 = 87.97 GPa and C44 = 57.90 GPa) have been calculated using PBE-GGA at ambient condition. In addition Poisson’s ratio (σ), Young’s Modulus (E), Shear modulus (GH) and the ratio of anisotropy factor (A) are also reported. Ductility/brittleness of this compound is further analyzed by calculating the B/GH ratio and Cauchy pressure (C12-C44). The studied compound is found to be ductile in nature. Sound wave velocities with Debye Temperature (θD) are also investigated.

  4. Extended x-ray absorption fine structure investigation of annealed carbon expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas L.; Somers, Marcel A. J.

    2012-01-01

    Carbon expanded austenite synthesized through carburizing of austenitic stainless steel powder at 380°C was annealed at 470°C and investigated with extended X-ray absorption fine structure (EXAFS) and synchrotron powder diffraction (SPD). SPD showed that the samples consisted of carbon expanded...... austenite and Hägg carbide, Ξ-M5C2. EXAFS showed that the Cr atoms were mainly present in environments similar to the carbides Hägg Ξ-M5C2 and M23C6. The environments of the Fe and Ni atoms were concluded to be largely metallic austenite. Light optical micrograph of stainless steel AISI 316 gas......-carburized in a temperature regime around 470°C. The surface zone is converted into carbon expanded austenite; the high interstitial content of carbon dissolved in the surface results in highly favorable materials properties. In the present article the local atomic environment of (annealed) carbon expanded austenite...

  5. Experimental investigation of the seismic control of a nonlinear soil-structure system using MR dampers

    International Nuclear Information System (INIS)

    Li, Hui; Wang, Jian

    2011-01-01

    This paper reports the results of an experimental study conducted to demonstrate the feasibility and capability of magnetorheological (MR) dampers commanded by a decentralized control algorithm for seismic control of nonlinear civil structures considering soil-structure interaction (SSI). A two-story reinforced concrete (RC) frame resting in a laminar soil container is employed as the test specimen, and two MR dampers equipped in the first story are used to mitigate the response of this frame subjected to various intensity seismic excitations. A hyperbolic tangent function is used to represent the hysteretic behavior of the MR damper and a decentralized control approach for commanding MR dampers is proposed and implemented in the shaking table tests. Only the response of the first story is feedback for control command calculation of the MR dampers. The results indicate that the MR damper can effectively reduce the response of the soil-structure system, even when the soil-structure system presents complex nonlinear hysteretic behavior. The robustness of the proposed decentralized control algorithm is validated through the shaking table tests on the soil-structure system with large uncertainty. The most interesting findings in this paper are that MR dampers not only mitigate the superstructure response, but also reduce the soil response, pile response and earth pressure on the pile foundation

  6. Investigation of the cluster structure in aqueous suspensions of nanodiamonds by small-angle neutron scattering

    Directory of Open Access Journals (Sweden)

    L. A. Bulavin

    2015-07-01

    Full Text Available The paper presents the results of the structural study of various types of the water-detonation nanodiamond liquid systems, which are obtained by small-angle scattering of thermal neutrons. It was shown that in the mass fraction range (0.3 - 1.8 % the experimental spectra are well described by a two-level model of unified exponential/power-law approach. The resulting structural parameters allowed us to estimate the aggregation number in the studied systems. Sizes of the nanodiamond particles and their clusters are found as well as the fractal dimension of the latter.

  7. Investigation of the cluster structure in aqueous suspensions of nanodiamonds by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Bulavin, L.A.; Tomchuk, O.V.; Avdeev, M.V.

    2015-01-01

    The paper presents the results of the structural study of various types of the water-detonation nanodiamond liquid systems, which are obtained by small-angle scattering of thermal neutrons. It was shown that in the mass fraction range (0.3/1.8) % the experimental spectra are well described by a two-level model of unified exponential/power-law approach. The resulting structural parameters allowed us to estimate the aggregation number in the studied systems. Sizes of the nanodiamond particles and their clusters are found as well as the fractal dimension of the latter

  8. Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling.

    Science.gov (United States)

    Veluraja, K; Vennila, K N; Umamakeshvari, K; Jasmine, A; Velmurugan, D

    2011-03-25

    The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 Å. The high intense d-spacing signal at 4.22 Å is attributed to the antiparallel β-sheet structure identified in the fraction of the homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 Å reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Structure of Nano-sized CeO2 Materials: Combined Scattering and Spectroscopic Investigations.

    Science.gov (United States)

    Marchbank, Huw R; Clark, Adam H; Hyde, Timothy I; Playford, Helen Y; Tucker, Matthew G; Thompsett, David; Fisher, Janet M; Chapman, Karena W; Beyer, Kevin A; Monte, Manuel; Longo, Alessandro; Sankar, Gopinathan

    2016-11-04

    The structure of several nano-sized ceria, CeO 2 , systems was investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction and total pair distribution functions (PDFs) revealed that in all of the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using Reverse Monte Carlo technique revealed significant disorder around oxygen atoms in the nano-sized ceria samples in comparison to the highly crystalline NIST standard. In addition, the analysis revealed that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributable to the particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3 - and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, is attributed to differences in particle size. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ab initio investigation of the noncollinear magnetic structure of CeFeAsO

    Science.gov (United States)

    Liu, Juan; Luo, Bo; Sun, Zhaoyu; Fu, Huahua; Yao, Kailun

    2011-09-01

    The noncollinear magnetic ground state in CeFeAsO has been investigated using the density-functional theory. When the spin-orbit coupling is discarded, the magnitude of the Ce-magnetic moment (0.87μB) is independent of the spin direction and is in accordance with the experimental value of 0.83(2)μB. However, when the spin-orbit coupling is considered, the Ce-orbital moments change with the internal magnetic field and affect the total magnetic moment of Ce. One type of Ce ions has a magnetic moment of 0.909μB, which is very close to the experimental value. The other type of Ce ions has a magnetic moment of 0.488μB, which has not been previously reported. The magnetic moments of the rare-earth metals in NdFeAsO and PrFeAsO are also twice those of experimental observations. The difference between the rare earth magnetic-moment errors of the three compounds imply that magnetism is related to the onset of the superconducting critical temperature. At the same time, the calculated Fe-magnetic moments in all solutions are over 2.0μB. From the band structure and density of states (DOS), the Ce 4f and Fe 3d orbits are shown to have major contributions to the Fermi level. Four bands in CeFeAsO cross the Fermi level at the Γ (0, 0, 0) point and form four hole-like pockets. The superexchange interaction between the Ce 4f and Fe 3d electrons via oxygen ions is discussed. Furthermore the results show that the Fermi surface shape varies with the Ce spin direction, revealing that electroconductibility is directly affected by the Ce-spin direction. If the Ce spin is perpendicular to the FeAs plane, the electronic field gradient (EFG) changes from a negative value into a positive value.

  11. Elasto-plastic investigation of stresses and deformations of structures in case of fire

    International Nuclear Information System (INIS)

    Pacharzina, B.; Pache, M.

    2010-01-01

    Complex mechanical support structures show a complete different behavior in case of fire (temperatures at 500 C) compared to their behavior at lower temperatures, for instance due to restricted thermal expansion and temperature dependent changes of the material characteristics, including plastification. It is possible that the strongest loads emerge during temperature increase and not at the maximum temperature, therefore it is not sufficient to demonstrate the structural integrity only for the maximum temperature. These effects can only be incorporated into the stress analysis by using temperature dependent elasto-plastic finite-element-modeling. The authors demonstrate the technique for the case of an air-duct attachment at the ceiling of the control room.

  12. Investigation of halo structure of He by hyperspherical three-body ...

    Indian Academy of Sciences (India)

    a fairly stable core. It is interesting to note that no two-body subsystem of the three-body system is bound, which gives rise to the mythical name of 'Borromean rings' to these exotic nuclei [7]. The typical structure of Borromean three-body system resembles the heraldic symbol of the Italian Princess of Borromeo. Its crest has ...

  13. Investigation of the impact of seed record selection on structural response

    International Nuclear Information System (INIS)

    Houston, Thomas W.; Mertz, Greg E.; Costantino, Michael C.; Costantino, Carl J.

    2010-01-01

    Time history records are typically used to define the seismic demand for criteria structures for which soil structure interaction (SSI) analyses are often required. Criteria for the development of time histories is provided in ASCE 43-05. The time histories are based on a close fit of 5% damped target response spectra. Recent experience has demonstrated that for cases where the transfer functions associated with the structural response are narrow, the ASCE 43 criteria can under-predict peak spectral responses in the structure by as much as 70% in some frequency ranges. One potential solution for this issue is to reinstate requirements for matching target response spectra for multiple damping levels to ASCE 43 criteria. However, recent probabilistic seismic hazard analyses (PSHA) do not generally contain spectra for multiple damping levels. This paper proposes an approach to generate target spectra at multiple damping levels, given the 5% damped target spectrum provided by the PSHA, utilizing catalogs of recorded earthquakes. The process of fitting time histories to multiple damped spectra is effective in correcting deficiencies observed in the computed structural response when time histories meeting the ASCE 43 fitting criteria are used.

  14. Soft Synthesis and Nano -Structural Features of Highly Crystalline Asprin An AFM-Investigations

    OpenAIRE

    Morsy M.A.Sekkina; Khaled M. Elsabawy; A. El-Maghraby

    2014-01-01

    The present investigations introduce new trend of applying AFM-microscopy to visualize a real 3D-imaging of sample’s surface topography .High resolution AFM-investigations indicated that crystalline asprin has regular arrays of atomic arrangement with no violation in the bulk of asprin .TM deflection AFM- gave us good approximation to the diffusion of grain throughout the surface topology of investigated asprin . The AFM-deflection centers imaging indicated that the numbers of grains distribu...

  15. Investigation of the Zr-2,5%Nb alloy structure by ultrasonic spectral analysis

    International Nuclear Information System (INIS)

    Ionescu, V.; Mihalache, M.; Velciu, L.

    2010-01-01

    In the present paper, we used the ultrasonic scattering properties as a tool for micro-structural evaluation of metals. The cold-worked Zr-2.5%Nb alloy is used for the pressure tubes in CANDU nuclear reactors. This material has developed a strong texture due to the limited slip system during extrusion process, leading to anisotropic properties. For this reason, it is very important to be able to evaluate its microstructure. The frequency dependence of attenuation coefficient in Zr-2.5%Nb alloy was measured and the scattering coefficient was calculated. The experimental data were fitted to the Rayleigh region scattering. The experimental results obtained with ultrasonic spectroscopy, in grain size evaluation, has been compared with those obtained by metallographic analysis (ASTM E112). The good agreement between them indicates that this method can be used in non-destructive investigation of grain size for nuclear materials. The inverse problem is: by using the determined grain size we can evaluate the elastic coefficients. (authors)

  16. Investigating the performance of catalyst layer micro-structures with different platinum loadings

    Energy Technology Data Exchange (ETDEWEB)

    Khakaz-Baboli, Moben; Harvey, David; Pharoah, Jon

    2012-07-01

    In this study a four-phase micro-structure of a PEFC catalyst layer was reconstructed by randomly placing overlapping spheres for each solid catalyst phase. The micro-structure was mirrored to make a micro-structure. A body-fit computational mesh was produced for the reconstructed micro-structure in OpenFOAM. Associated conservation equations were solved within all the phases with electrochemical reaction as the boundary condition at the interface between ionomer and platinum phases. The study is focused on the platinum loading of CL. The polarization curves of the micro-structure performance have been compared for different platinum loadings. This paper gives increased insight into the relatively greater losses at decreased platinum loadings.

  17. An investigation on vulnerability assessment of steel structures with thin steel shear wall through development of fragility curves

    OpenAIRE

    Mohsen Gerami; Saeed Ghaffari; Amir Mahdi Heidari Tafreshi

    2017-01-01

    Fragility curves play an important role in damage assessment of buildings. Probability of damage induction to the structure against seismic events can be investigated upon generation of afore mentioned curves. In current research 360 time history analyses have been carried out on structures of 3, 10 and 20 story height and subsequently fragility curves have been adopted. The curves are developed based on two indices of inter story drifts and equivalent strip axial strains of the shear wall. T...

  18. Crashworthiness of light aircraft fuselage structures: A numerical and experimental investigation

    Science.gov (United States)

    Nanyaro, A. P.; Tennyson, R. C.; Hansen, J. S.

    1984-01-01

    The dynamic behavior of aircraft fuselage structures subject to various impact conditions was investigated. An analytical model was developed based on a self-consistent finite element (CFE) formulation utilizing shell, curved beam, and stringer type elements. Equations of motion were formulated and linearized (i.e., for small displacements), although material nonlinearity was retained to treat local plastic deformation. The equations were solved using the implicit Newmark-Beta method with a frontal solver routine. Stiffened aluminum fuselage models were also tested in free flight using the UTIAS pendulum crash test facility. Data were obtained on dynamic strains, g-loads, and transient deformations (using high speed photography in the latter case) during the impact process. Correlations between tests and predicted results are presented, together with computer graphics, based on the CFE model. These results include level and oblique angle impacts as well as the free-flight crash test. Comparisons with a hybrid, lumped mass finite element computer model demonstrate that the CFE formulation provides the test overall agreement with impact test data for comparable computing costs.

  19. Investigations on structural and optical behavior of Er3+ doped lead boro-tellurite glasses

    Science.gov (United States)

    Karthikeyan, P.; Suthanthirakumar, P.; Vijayakumar, R.; Marimuthu, K.

    2015-06-01

    Er3+ doped lead boro-tellurite glasses with the chemical composition (30-x)B2O3+30TeO2+23MgO+17PbF2+xEr2O3 (where x=0.05, 0.25, 0.5, and 1 in wt%) were synthesized by melt quenching technique. The structural and optical behaviors have been investigated through FTIR, absorption and emission spectral analysis. The UV-vis- NIR absorption spectra were used to calculate the bonding parameters (β ¯, δ), Judd-Ofelt intensity parameters (Ωλ, λ = 2, 4 and 6), Optical band gap and Urbach's energy of the prepared glasses. The radiative properties such as transition probability (AR), stimulated emission cross-section (σPE ), branching ratios (βR) were calculated from the luminescence spectra. The optical properties of the prepared glasses with varying Er3+ ion concentration have been studied and reported in the present work.

  20. Theoretical investigations of the structures and electronic spectra of 8-hydroxylquinoline derivatives

    Science.gov (United States)

    Ning, Pan; Ren, Tiegang; Zhang, Yanxin; Zhang, Jinglai

    2013-11-01

    The spectroscopic properties of 8-hydroxyquinoline derivatives are theoretically investigated by means of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The target molecules are divided into two groups: group (I): (E)-2-(2-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)vinyl)quinolin-8-ol (A), together with corresponding potential reaction products of A with acetic acid, i.e., (E)-2-(2-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)vinyl)quinolin-8-yl acetate (AR1), and (E)-2-(2-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)vinyl)-8-hydroxyquinolinium (AR2); group (II): (E)-2-(2-(1-(4-chlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)vinyl)quinolin-8-ol (B), as well as potential reaction products of B with acetic acid, i.e., (E)-2-(2-(1-(4-chlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)vinyl)quinolin-8-yl acetate (BR1), and (E)-2-(2-(1-(4-chlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)vinyl)-8-hydroxyquinolinium (BR2). The geometries are optimized by B3LYP and M06 methods. The results indicate that product molecules tend to be effectively planar compared with reactants. Subsequently, UV absorption spectra are simulated through TD-DFT method with PCM model to further confirm the reasonable products of two reactions. AR2 and BR2 are identified as the target molecules through the experimental spectra for the real products. It is worth noting that the maximum absorption wavelengths of compounds AR2 and BR2 present prominent red shift compared the initial reactants A and B, respectively, which should be ascribed to the enhancive planarity of products that mentioned above and the decreased HOMO-LUMO energy gap. Geometric structures and optical properties for corresponding compounds are discussed in detail.

  1. Memory structures for encoding and retrieving a piece of music: an ERP investigation.

    Science.gov (United States)

    Williamon, Aaron; Egner, Tobias

    2004-12-01

    This study examined behavioral and neural correlates of expert musical memory, specifically the hypothesis that particular bars within a complex piece of music would serve as structural markers for encoding to and retrieval from memory. Six pianists were asked to learn and memorize a set prelude by J.S. Bach for performance, and to identify bars that they employed for structuring the prelude into component sections. Following performance from memory, the participants took part in a visual recognition memory task, in which single bars from the prelude had to be distinguished from matched new bars. During the recognition task, the electroencephalogram (EEG) was recorded, and event-related potentials (ERPs) from correctly identified prelude stimulus trials were averaged according to their hypothesized status into "structural" and "nonstructural" bars. The results showed that correct identification of structural bars was significantly faster (and tended to display higher accuracy) than recognition of non-structural ones. In addition, recognition of structural bars was associated with a significantly greater negative ERP peak of 300-400 ms latency and a right centro-parietal scalp distribution. This mid-latency negativity appears to index processing of stimuli that served as cues for encoding and retrieval of a complex semantic structure, and is qualitatively and conceptually different from other previously identified recognition memory ERPs (such as the "old/new" effect), as well as from the classic N400 ERP. The data support existing theories of expert memory and music cognition.

  2. An investigation of the magnetic structure of PrO2

    DEFF Research Database (Denmark)

    Gardiner, C.H.; Boothroyd, A.T.; Lister, S.J.S.

    2002-01-01

    We present a neutron-diffraction study of the crystal structure and magnetic ordering of PrO2. The magnetic moment of the Pr4+ ion is determined from separate single-crystal and powder measurements, and both values are found to agree with a previous powder study. Our powder data reveal a new aspect...

  3. Research Instrumentation for Investigating Vibration Delocalization and Control of Nearly Periodic Structures via Piezoelectric Networks

    National Research Council Canada - National Science Library

    Wang, Kon-Well

    2002-01-01

    The overall goal of this DURIP project is to acquire major facilities that are critical in the development of a comprehensive experimental testbed for advancing the technology of low vibration periodic structures (e.g...

  4. Material dynamics in polluted soils with different structures - comparative investigations of general soil and aggregates

    International Nuclear Information System (INIS)

    Taubner, H.

    1992-01-01

    In structured soils, a small-scale heterogeneity of physical and chemical properties will develop which results in a reduced availability of the reaction sites of the soil matrix. In view of the lack of knowledge on the conditions within the individual aggregates were carried out for characterizing the aggregates and comparing them with the soil in, general soil samples were taken from natural structure of a podzolic soil and a podazolic brown earth from two sites in the Fichtelgebirge mountains as well as a parabraun earth from East Holstein. The horizons differed with regard to their texture and structure; silty material tends to have a subpolyhedral structure and calyey material a polyhedral structure. The general soil samples and aggregate samples from the three B horizons were subjected, with comparable experimental conditions, to percolation experiments inducing a multiple acid load. The soil solution from the secondary pore system and aggregate pore system is more heterogeneus for the higher-structured subpolyhedral texture of the perdzolic soil than for the less strongly aggregated subpolyhedral structured of the podzolic brown earth. (orig.) [de

  5. Investigating the response of biotite to impact metamorphism: Examples from the Steen River impact structure, Canada

    Science.gov (United States)

    Walton, E. L.; Sharp, T. G.; Hu, J.; Tschauner, O.

    2018-01-01

    Impact metamorphic effects from quartz and feldspar and to a lesser extent olivine and pyroxene have been studied in detail. Comparatively, studies documenting shock effects in other minerals, such as double chain inosilicates, phyllosilicates, carbonates, and sulfates, are lacking. In this study, we investigate impact metamorphism recorded in crystalline basement rocks from the Steen River impact structure (SRIS), a 25 km diameter complex crater in NW Alberta, Canada. An array of advanced analytical techniques was used to characterize the breakdown of biotite in two distinct settings: along the margins of localized regions of shock melting and within granitic target rocks entrained as clasts in a breccia. In response to elevated temperature gradients along shock vein margins, biotite transformed at high pressure to an almandine-Ca/Fe majorite-rich garnet with a density of 4.2 g cm-3. The shock-produced garnets are poikilitic, with oxide and silicate glass inclusions. Areas interstitial to garnets are vesiculated, in support of models for the formation of shock veins via oscillatory slip, with deformation continuing during pressure release. Biotite within granitic clasts entrained within the hot breccia matrix thermally decomposed at ambient pressure to produce a fine-grained mineral assemblage of orthopyroxene + sanidine + titanomagnetite. These minerals are aligned to the (001) cleavage plane of the original crystal. In this and previous work, the transformation of an inosilicate (pargasite) and a phyllosilicate (biotite) to form garnet, an easily identifiable, robust mineral, has been documented. We contend that in deeply eroded astroblemes, high-pressure minerals that form within or in the environs of shock veins may serve as one of the possibly few surviving indicators of impact metamorphism.

  6. Towards numerical simulations of fluid-structure interactions for investigation of obstructive sleep apnea

    Science.gov (United States)

    Huang, Chien-Jung; White, Susan M.; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff D.

    2014-11-01

    Obstructive sleep apnea(OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The numerical simulation with patient-specific upper airway model can provide assistance for diagnosis and treatment assessment. The eventual goal of this research is the development of numerical tool for air-tissue interactions in the upper airway of patients with OSA. This tool is expected to capture collapse of the airway in respiratory flow conditions, as well as the effects of various treatment protocols. Here, we present our ongoing progress toward this goal. A sharp-interface embedded boundary method is used on Cartesian grids for resolving the air-tissue interface in the complex patient-specific airway geometries. For the structure simulation, a cut-cell FEM is used. Non-linear Green strains are used for properly resolving the large tissue displacements in the soft palate structures. The fluid and structure solvers are strongly coupled. Preliminary results will be shown, including flow simulation inside the 3D rigid upper airway of patients with OSA, and several validation problem for the fluid-structure coupling.

  7. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1991-01-01

    The research program of our group touches five areas of nuclear physics: (1) Nuclear structure studies at high spin; (2) Studies at the interface between structure and reactions; (3) Production and study of hot nuclei; (4) Incomplete fusion and fragmentation reactions; and (5) Development and use of novel techniques and instrumentation in the above areas of research. The papers from these areas are discussed in this report

  8. Synthesis, molecular structure investigations and antimicrobial activity of 2-thioxothiazolidin-4-one derivatives

    Science.gov (United States)

    Barakat, Assem; Al-Najjar, Hany J.; Al-Majid, Abdullah Mohammed; Soliman, Saied M.; Mabkhot, Yahia Nasser; Al-Agamy, Mohamed H. M.; Ghabbour, Hazem A.; Fun, Hoong-Kun

    2015-02-01

    A variety of 2-thioxothiazolidin-4-one derivatives were prepared and their in vitro antimicrobial activities were studied. Most of these compounds showed significant antibacterial activity specifically against Gram-positive bacteria, among which compounds 4a,e,g, 5b,e,g,h and 6f exhibit high levels of antimicrobial activity against Bacillus subtilis ATCC 10400 with Minimum Inhibitory Concentration (MIC) value of 16 μg/mL. All compounds have antifungal activity against Candida albicans. Unfortunately, however, none of the compounds were active against Gram-negative bacteria. The chemical structure of 3 was confirmed by X-ray single crystal diffraction technique. DFT calculations of 3 have been performed on the free C10H7Cl2NO2S2, 3a and the H-bonded complex, C10H7Cl2NO2S2·H2O, 3b to explore the effect of the H-bonding interactions on the geometric and electronic properties of the studied systems. A small increase in bond length was observed in the C12-O6 due to the H-bonding interactions between 3a and water molecule. MEP study has been used to recognize the most reactive sites towards electrophilic and nucleophilic attacks as well as the possible sites for the H-bonding interactions. The TD-DFT calculations have been used to predict theoretically the electronic spectra of the studied compound. The most intense transition band is predicted at 283.9 nm due to the HOMO-2/HOMO-1 to LUMO transitions. NBO analyses were carried out to investigate the stabilization energy of the various intramolecular charge transfer interactions within the studied molecules.

  9. X-Ray Absorption Structural and Electrochemical Investigations of Novel Materials for Advanced Batteries and Ultracapacitors

    National Research Council Canada - National Science Library

    Mansour, Azzam

    1998-01-01

    The program objectives are as follows: Synthesize and characterize the chemistry and structure of a new class of tin-based amorphous oxides suitable for use as anode material in rechargeable Li-ion batteries...

  10. Investigation of hidden periodic structures on SEM images of opal-like materials using FFT and IFFT.

    Science.gov (United States)

    Stephant, Nicolas; Rondeau, Benjamin; Gauthier, Jean-Pierre; Cody, Jason A; Fritsch, Emmanuel

    2014-01-01

    We have developed a method to use fast Fourier transformation (FFT) and inverse fast Fourier transformation (IFFT) to investigate hidden periodic structures on SEM images. We focused on samples of natural, play-of-color opals that diffract visible light and hence are periodically structured. Conventional sample preparation by hydrofluoric acid etch was not used; untreated, freshly broken surfaces were examined at low magnification relative to the expected period of the structural features, and, the SEM was adjusted to get a very high number of pixels in the images. These SEM images were treated by software to calculate autocorrelation, FFT, and IFFT. We present how we adjusted SEM acquisition parameters for best results. We first applied our procedure on an SEM image on which the structure was obvious. Then, we applied the same procedure on a sample that must contain a periodic structure because it diffracts visible light, but on which no structure was visible on the SEM image. In both cases, we obtained clearly periodic patterns that allowed measurements of structural parameters. We also investigated how the irregularly broken surface interfered with the periodic structure to produce additional periodicity. We tested the limits of our methodology with the help of simulated images. © 2014 Wiley Periodicals, Inc.

  11. Building Investigation: Material or Structural Performance

    Directory of Open Access Journals (Sweden)

    Yusof M.Z.

    2014-03-01

    Full Text Available Structures such as roof trusses will not suddenly collapse without ample warning such as significant deflection, tilting etc. if the designer manages to avoid the cause of structural failure at the material level and the structural level. This paper outlines some principles and procedures of PDCA circle and QC tools which can show some clues of structural problems in terms of material or structural performance

  12. Hybrid Mixed Media Nonwovens: An Investigation of Structure-Property Relationships

    Science.gov (United States)

    Hollowell, Kendall Birckhead

    There have been myriad studies on utilizing bicomponent splittables produced through spunbond/spunlace processes. These production methods have proven to yield microfibers which increase the surface area of the nonwoven structures. There has been recent focus on studying the microfibers within these nonwoven structures as well as using a multiplicity of deniers of fibers within the nonwoven. There have also been studies on producing nonwovens with fibers of differing cross-sectional shapes and diameters. The purpose of this study is to examine the properties of a nonwoven structure, marrying the concepts of multi-denier fibers with multi-shaped fibers in two configurations: three-layer and alternating. The basis for this study will be US Patent 6,964,931 B2 "Method of making Continuous Filament Web with Statistical Filament Distribution" as well as US Patent 7,981,336 B2 "Process of Making Mixed Fibers and Nonwoven Fabrics". This study addresses the melt-spinning and hydroentanglement of nonwoven webs made from bicomponent fibers in three-layer and alternating configurations. The bicomponent cross-sections that will be used include 16-segmented pie and 7-islands-in-the-sea. In this study the establishment of the utility of mixed media nonwovens will take place through property and structure analysis in order to determine the inherent properties of the mixed media structures as well as the structure-property relationships of the nonwoven fabric. Property and structure analysis will also take place on mixed media structures containing poly(lactic acid) as a sacrificial component in the bicomponent fiber after optimizing the removal conditions of the poly(lactic acid) in a sodium hydroxide (NaOH) bath.

  13. Experimental investigation of torque scaling and coherent structures in turbulent Taylor–Couette flow

    International Nuclear Information System (INIS)

    Tokgoz, S; Elsinga, G E; Delfos, R; Westerweel, J

    2011-01-01

    The effect of flow structures to the torque values of fully turbulent Taylor-Couette flow was experimentally studied using tomographic PIV. The measurements were performed for various relative cylinder rotation speeds and Reynolds numbers, based on a study of Ravelet et al. (2010). We confirmed that the flow structures are strongly influenced by the rotation number. Our analyses using time-averaged mean flow showed the presence of Taylor vortices for the two smallest rotation numbers that were studied. Increasing the rotation number initially resulted in the shape deformation of the Taylor vortices. Further increment towards only outer cylinder rotation, showed transition to the dominance of the small scale vortices and absence of Taylor vortex-like structures. We compared the transition of the flow structures with the curves of dimensionless torque. Sudden changes of the flow structures confirmed the presence of transition points on the torque curve, where the dominance of small and large scale vortical structures on the mean flow interchanges.

  14. Investigation of flame structure in plasma-assisted turbulent premixed methane-air flame

    Science.gov (United States)

    Hualei, ZHANG; Liming, HE; Jinlu, YU; Wentao, QI; Gaocheng, CHEN

    2018-02-01

    The mechanism of plasma-assisted combustion at increasing discharge voltage is investigated in detail at two distinctive system schemes (pretreatment of reactants and direct in situ discharge). OH-planar laser-induced fluorescence (PLIF) technique is used to diagnose the turbulent structure methane-air flame, and the experimental apparatus consists of dump burner, plasma-generating system, gas supply system and OH-PLIF system. Results have shown that the effect of pretreatment of reactants on flame can be categorized into three regimes: regime I for voltage lower than 6.6 kV; regime II for voltage between 6.6 and 11.1 kV; and regime III for voltage between 11.1 and 12.5 kV. In regime I, aerodynamic effect and slower oxidation of higher hydrocarbons generated around the inner electrode tip plays a dominate role, while in regime III, the temperature rising effect will probably superimpose on the chemical effect and amplify it. For wire-cylinder dielectric barrier discharge reactor with spatially uneven electric field, the amount of radicals and hydrocarbons are decreased monotonically in radial direction which affects the flame shape. With regard to in situ plasma discharge in flames, the discharge pattern changes from streamer type to glow type. Compared with the case of reactants pretreatment, the flame propagates further in the upstream direction. In the discharge region, the OH intensity is highest for in situ plasma assisted combustion, indicating that the plasma energy is coupled into flame reaction zone.

  15. Optical and structural investigation of ZnO@ZnS core–shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Efracio Mamani; Raubach, Cristiane W.; Gouvea, Rogério [CCAF, Instituto de Física e Matemática (IFM), Departamento de Física, Universidade Federal de Pelotas, Campus Capão do Leão PO Box 354, CEP: 96010970, Pelotas, RS (Brazil); Longo, Elson [INCTMN-UNESP, Universidade Estadual Paulista, P.O. Box 355, Araraquara 14801-907, SP (Brazil); Cava, Sergio [CCAF, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Rua Félix da Cunha 809, Pelotas, RS (Brazil); Moreira, Mário L., E-mail: mlucio3001@gmail.com [CCAF, Instituto de Física e Matemática (IFM), Departamento de Física, Universidade Federal de Pelotas, Campus Capão do Leão PO Box 354, CEP: 96010970, Pelotas, RS (Brazil)

    2016-04-15

    In the present work, are reported the experimental study of ZnO@ZnS core–shell synthesised by a microwave-assisted solvothermal (MAS) method. Some synthesis parameters such as, time, precursor concentration and temperature were fixed. In order to investigate the effect of growing shell on the structural and optical properties, the samples were grown with two different solvent (water or ethylene glycol). The characterizations were performed by X-ray diffraction, absorption spectroscopy in the UV–vis range, scanning electron microscopy, and photoluminescence spectroscopy. The results show that both ZnO and ZnS diffractions are present for all samples, however the crystallinity degree of ZnS shell are too low. The better decorations of ZnS (shell) on the ZnO (core) are obtained for ethylene glycol (EG) solvent, which is verified through FE-SEM images of ZnO@ZnS (EG). On the other hand, non morphological solvent dependence was observed for ZnO multi-wires. Also the luminescent emission for decorated system in water were more intense and leads to form a type-II band alignment for ZnO@ZnS core–shell system. - Highlights: • Obtation of ZnO@ZnS decorated systens using different solvents by MAS methodology. • Growth solvent dependence of hexagonal and cubic phases for ZnS. • Potential application of ZnO@ZnS decorated nanostructures as replacement material for solar cells. • Control over band alignment between ZnO and ZnS.

  16. Investigations of the structure and electromagnetic interactions of few-body systems

    International Nuclear Information System (INIS)

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.; Bennhold, C.; Ito, Hiroshi; Pratt, R.K.; Najmeddine, M.; Rakei, A.

    1993-07-01

    The emphasis of the nuclear theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered, including coherent photoproduction of π mesons. When the excitation energy of the target nucleus is low, the aim is to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions are the issue, numerically accurate calculations are always carried through, limited only by the underlying two-body or three-body interactions used as input. A central goal is to carry through state-of-the-art few-body calculations that will serve as a means of determining at what point standard nuclear physics requires introduction of relativity and/or quark degrees of freedom in order to understand the phenomena in question

  17. Evaluation of the structural integrity of LMFBR equipment cell liners: results of preliminary investigations

    International Nuclear Information System (INIS)

    McAfee, W.J.; Sartory, W.K.

    1976-01-01

    The behavior of a plane wall segment of a prototype liquid-metal-cooled fast breeder reactor (LMFBR) cell under conditions of a postulated massive sodium spill was studied. Sodium-concrete reaction calculations were performed assuming an initial flaw existed in the liner such that high-temperature sodium could penetrate to the concrete underneath. Based on existing sodium-concrete reaction rate data, bounding values were established for the maximum energy release per unit volume of concrete. The potential effect of this energy release on the deformation of the liner material was determined. The temperature buildup in the liner and the pressure differential across the flaw in the liner were also studied. The transient thermal and structural responses of the steel liner and backup concrete were analyzed in detail using the inelastic computer code ANSYS. The literature on the mechanical, physical, and general behavior properties of concrete at high temperature was reviewed. This review emphasized the structural behavior of concrete and did not cover the sodium-concrete reaction

  18. CTAB-Assisted Hydrothermal Synthesis of WO3 Hierarchical Porous Structures and Investigation of Their Sensing Properties

    Directory of Open Access Journals (Sweden)

    Dan Meng

    2015-01-01

    Full Text Available WO3 hierarchical porous structures were successfully synthesized via cetyltrimethylammonium bromide- (CTAB- assisted hydrothermal method. The structure and morphology were investigated using scanning electron microscope, X-ray diffractometer, transmission electron microscopy, X-ray photoelectron spectra, Brunauer-Emmett-Teller nitrogen adsorption-desorption, and thermogravimetry and differential thermal analysis. The result demonstrated that WO3 hierarchical porous structures with an orthorhombic structure were constructed by a number of nanoparticles about 50–100 nm in diameters. The H2 gas sensing measurements showed that well-defined WO3 hierarchical porous structures with a large specific surface area exhibited the higher sensitivity compared with products without CTAB at all operating temperatures. Moreover, the reversible and fast response to H2 gas and good selectivity were obtained. The results indicated that the WO3 hierarchical porous structures are promising materials for gas sensors.

  19. Investigation of Effect of Adding Hydrophobically Modified Water Soluble Polymers on the Structure and Viscosity of Anionic Vesicle Dispersion

    Directory of Open Access Journals (Sweden)

    Marco Sandjaja

    2017-04-01

    Full Text Available This present study was conducted to investigate the effect of adding hydrophobically modified end-capped (HM polymers with various polyethylene oxide (PEO chain lengths on the structure and viscosity of anionic vesicles dispersion. A pronounced increase in viscosity was observed upon adding small amount of such polymers. Based on the dynamic light scattering (DLS and small angle neutron scattering (SANS analysis, 10 to 30 polymer molecules per vesicles can reach maximum viscosity and where polymer molecules can interconnect the vesicles without disrupting their structure. In addition, the kinetic stability of the vesicle dispersion also enhanced. From the measurement of the electrical conductivity of the dispersion, it was observed that the presence of the PEO and polypropylene oxide (PPO group could induce the permeability of the vesicle membrane by altering their internal structure. Controlling viscosity of vesicles dispersion without changing its structure is useful for the further application of vesicles system such as in drug delivery, cosmetics and biomedical.

  20. Particulate structure and microstructure evolution of concrete investigated by DEM : Part 1: Aggregate and binder packing

    NARCIS (Netherlands)

    He, H.; Le, N.L.B.; Stroeven, P.

    2012-01-01

    Experimental approaches in concrete technology are time-consuming, laborious and thus expensive. Developments in computer facilities render possible nowadays realistically simulating the particulate structure and microstructure of cementitious materials. For that purpose, discrete element methods

  1. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 3: Major component development

    Science.gov (United States)

    Bryson, L. L.; Mccarty, J. E.

    1973-01-01

    Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria.

  2. An investigation on vulnerability assessment of steel structures with thin steel shear wall through development of fragility curves

    Directory of Open Access Journals (Sweden)

    Mohsen Gerami

    2017-02-01

    Full Text Available Fragility curves play an important role in damage assessment of buildings. Probability of damage induction to the structure against seismic events can be investigated upon generation of afore mentioned curves. In current research 360 time history analyses have been carried out on structures of 3, 10 and 20 story height and subsequently fragility curves have been adopted. The curves are developed based on two indices of inter story drifts and equivalent strip axial strains of the shear wall. Time history analysis is carried out in Perform 3d considering 10 far field seismograms and 10 near fields. Analysis of low height structures revealed that they are more vulnerable in accelerations lower than 0.8 g in near field earthquakes because of higher mode effects. Upon the generated fragility curves it was observed that middle and high structures have more acceptable performance and lower damage levels compared to low height structures in both near and far field seismic hazards.

  3. Experimental investigation of a shielded complementary Metal-Oxide Semiconductor (MOS) structure

    Science.gov (United States)

    Lin, H. C.; Halsor, J. L.

    1974-01-01

    A shielded integrated complimentary MOS transistor structure is described which is used to prevent field inversion in the region not occupied by the gates and which permits the use of a thinner field oxide, reduces the chip area, and has provision for simplified multilayer connections. The structure is used in the design of a static shift register and results in a 20% reduction in area.

  4. Investigating the Effectiveness of Centaureacyanus Extracts on Planktonic Growth and Biofilm Structures of Six Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Z Mohsenipour

    2014-10-01

    Full Text Available Introduction: Nowadays, the treatments of infectious disease are regarded difficult due to increasing antibiotic resistance among pathogenic bacteria, which the reason may be placing of microorganisms in a structure named biofilm. Biofilms are complex structures consisting of surface-attached bacteria. Therefore, it is essential to find new compounds in order to remove and inhibit biofilms. This study aimed to examine the antibacterial activities of alcoholic extracts of Centaurea cyanus on the biofilm structures and planktonic form of six pathogen bacteria(Staphylococcusaureus, Bacilluscereus, Streptococcuspneumoniae, Pseudomonasaeruginosa, Escherichiacoli and Klebsiellapneumonia. Methods: Antimicrobial activities of the alcoholic plant extracts against the planktonic form of bacteria were assessed via using the disc diffusion method. MIC and MBC values were determined by a macrobroth dilution technique and anti-biofilm effects were scrutinized by microtiter plate method. Results: The results of this study confirmed high ability of C.cyanus extracts against the biofilm of the tested bacteria as well as their free-living forms. To inhibit bacterial growth, ethanolic extracts proved to be more effective than methanolic extracts. Anti-biofilm effects of plant extracts were associated with the solvent type and extract concentration. C.cyanus extracts were reported to be most efficient to inhibit biofilm formation of E. coli (84/26% and S. pneumoniae(83/14%. The greatest eradication of biofilm structures were observed on S. pneumonia biofilm (75.66%, and the highest decrease in metabolic activity was reported in S.aureus biofilms (71/85%. Conclusion: In this study the high capacity of C. cyanus extracts to encounter with whit biofilm was emphasized. Moreover, it was demonstrated that these extracts possess an appropriate potential to become active principles of new drugs.

  5. Structure investigation of ultra-small CdSe nanoparticles using the atomic PDF

    Science.gov (United States)

    Masadeh, Ahmad S.; Billinge, Simon J. L.; Bozin, Emil S.; McBride, James R.; Rosenthal, Sandra J.

    2011-03-01

    The size-dependent structure of CdSe nanoparticles, with diameter ranging from 1.5 to 3.6 nm, has been studied using the atomic pair distribution function (PDF) method. The samples are prepared by the methods of Peng et al, with modifications. The structure of the smallest stable size, (~ 1.5 nm), have been found to posses locally distorted wurtzite structure, with no clear evidence of a heavily disordered surface region. The PDF data of the smallest particle show an extra structural peak appears around r = 3.5 A indicates there is structure modification happened in this sample. This peak start appearing the nanoparticles PDF data gradually as nanoparticle size decreases. The structural parameters are reported quantitatively. We measure a size-dependent strain on the Cd-Se bond which reaches 1.0% at the smallest particle size. The size of the well-ordered core extracted directly from the data agrees with the size determined from other methods.

  6. Investigation of electronic structure of hexagonal vanadium and niobium carbides and nitrides by MO LCAO method

    International Nuclear Information System (INIS)

    Ivanovskij, A.L.; Gubanov, V.A.; Kurmaev, Eh.Z.

    1985-01-01

    By the MO LCAO cluster method calculations of vanadium and niobium h.c.p. - carbides nitrides are performed. The problems of chemical bonds formation in these phases are investigated, the results are compared with the available spectra of X-ray emission of hexagonal V, Nb carbides and nitrides

  7. [Investigation of the chain structure and thermal property of xylene solubles of impact polypropylene copolymers].

    Science.gov (United States)

    Luo, Hua-Lin; Zhao, Ying; Wu, Jin-Guang; Wang, Du-Jin

    2012-12-01

    Impact polypropylene copolymers (IPC) are in-situ blends of polypropylene homopolymer and ethylene-alpha-olefin copolymers formed in the reactor, which is a multiphasic complex material with isotactic polypropylene (iPP) as a matrix in which poly(ethylene-alpha-olefin) elastomeric copolymer is finely dispersed, and ethylene-alpha-olefin random copolymer (EPR) acts as an elastomer to improve the impact resistance properties of iPP at room temperature and low temperature. In the present, the content of xylene soluble is used to evaluate the content of EPR rubber phase in IPC. The content, the chain structure, and glass transition temperature (T(g)) of EPR rubber are critical to the toughness of IPC. In the present report, Fourier transform infrared spectroscopy(FTIR), nuclear magnetic resonance (NMR) and differential scanning calorimetry(DSC) were utilized to study the comonomer content, chain structure and thermal property of xylene soluble of two IPC prepared by different catalysts. The results indicated that there are small amount of ethylene-propylene segmented copolymers containing short methylene sequence that is crystallizable in the xylene soluble in addition to the ethylene-propylene random copolymers. And the sequence length of crystallizable methylene group of ethylene-propylene segmented copolymers in these two kinds of xylene soluble is different. The random distribution degree of ethylene and propylene monomer in the ethylene-propylene copolymers in these two kinds of xylene soluble is similar. The xylene soluble with lower content of PPP sequence and higher content of ethylene monomer has lower T(g), which will benefit the improvement of impact resistance property of polypropylene.

  8. Structural investigation of composite wind turbine blade considering various load cases and fatigue life

    International Nuclear Information System (INIS)

    Kong, C.; Bang, J.; Sugiyama, Y.

    2005-01-01

    This study proposes a structural design for developing a medium scale composite wind turbine blade made of E-glass/epoxy for a 750 kW class horizontal axis wind turbine system. The design loads were determined from various load cases specified at the IEC61400-1 international specification and GL regulations for the wind energy conversion system. A specific composite structure configuration, which can effectively endure various loads such as aerodynamic loads and loads due to accumulation of ice, hygro-thermal and mechanical loads, was proposed. To evaluate the proposed composite wind turbine blade, structural analysis was performed by using the finite element method. Parametric studies were carried out to determine an acceptable blade structural design, and the most dominant design parameters were confirmed. In this study, the proposed blade structure was confirmed to be safe and stable under various load conditions, including the extreme load conditions. Moreover, the blade adapted a new blade root joint with insert bolts, and its safety was verified at design loads including fatigue loads. The fatigue life of a blade that has to endure for more than 20 years was estimated by using the well-known S-N linear damage theory, the service load spectrum, and the Spera's empirical equations. With the results obtained from all the structural design and analysis, prototype composite blades were manufactured. A specific construction process including the lay-up molding method was applied to manufacturing blades. Full-scale static structural test was performed with the simulated aerodynamic loads. From the experimental results, it was found that the designed blade had structural integrity. In addition, the measured results of deflections, strains, mass, and radial center of gravity agreed well with the analytical results. The prototype blade was successfully certified by an international certification institute, GL (Germanisher Lloyd) in Germany

  9. Investigation of structural modification and thermal characteristics of lignin after heat treatment.

    Science.gov (United States)

    Kim, Jae-Young; Hwang, Hyewon; Oh, Shinyoung; Kim, Yong-Sik; Kim, Ung-Jin; Choi, Joon Weon

    2014-05-01

    Milled wood lignin was subjected to heat treatment between 150 and 300°C to understand the pattern of its structural modification and thermal properties. When the temperature was elevated with interval of 50°C, the color of the lignin became dark brown and the lignin released various forms of phenols from terminal phenolic groups in the lignin, leading to two physical phenomena: (1) gradual weight loss of the lignin, up to 19% based on dry weight and (2) increase in the carbon content and decrease in the oxygen content. Nitrobenzene oxidation and (13)C NMR analyses confirmed a cleavage of β-O-4 linkage (depolymerization) and reduction of methoxyl as well as phenolic hydroxyl group were also characteristic in the lignin structure during heat treatment. Simultaneously with lignin depolymerization, GPC analysis provided a possibility that condensation between lignin fragments could also occur during heat treatment. TGA/DTG/DSC data revealed that thermal stability of lignin obviously increased after heat treatment, implicating the structural rearrangement of lignin to reduction of β-O-4 linkage as well as accumulation of CC bonds. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Quantum-chemical investigation of molecular structure of bromopyrogallol red and its complexes with rare earths

    International Nuclear Information System (INIS)

    Sivanova, O.V.; Rodnikova, V.N.; Mushtakova, S.P.

    1979-01-01

    The MO LCAO method has been used to study the structure of the molecular and ionized forms of brompyrogallol red (BPGR) and its complex compounds with rare earths. The calculations performed reveal that addition of rare earth ions to BPGR is possible both with respect to the orthooxyquinone group to give a complex with a short wavelength absorption peak and the dioxy group to give a complex compound absorbing in the long wavelength region

  11. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich

    2017-01-01

    Abstract A major failure reason for structural materials is fatigue-related damage due to repeatedly changing mechanical loads. During cyclic loading dislocations self-organize into characteristic ordered structures, which play a decisive role for the materials lifetime. These heterogeneous...... the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied...

  12. An FTIR investigation of flanking sequence effects on the structure and flexibility of DNA binding sites.

    Science.gov (United States)

    Kahn, Talia R; Fong, Kimberly K; Jordan, Brian; Lek, Janista C; Levitan, Rachel; Mitchell, Patrick S; Wood, Corrina; Hatcher, Mary E

    2009-02-17

    Fourier transform infrared (FTIR) spectroscopy and a library of FTIR marker bands have been used to examine the structure and relative flexibilities conferred by different flanking sequences on the EcoRI binding site. This approach allowed us to examine unique peaks and subtle changes in the spectra of d(AAAGAATTCTTT)(2), d(TTCGAATTCGAA)(2), and d(CGCGAATTCGCG)(2) and thereby identify local changes in base pairing, base stacking, backbone conformation, glycosidic bond rotation, and sugar puckering in the studied sequences. The changes in flanking sequences induce differences in the sugar puckers, glycosidic bond rotation, and backbone conformations. Varying levels of local flexibility are observed within the sequences in agreement with previous biological activity assays. The results also provide supporting evidence for the presence of a splay in the G(4)-C(9) base pair of the EcoRI binding site and a potential pocket of flexibility at the G(4) cleavage site that have been proposed in the literature. In sum, we have demonstrated that FTIR is a powerful methodology for studying the effect of flanking sequences on DNA structure and flexibility, for it can provide information about the local structure of the nucleic acid and the overall relative flexibilities conferred by different flanking sequences.

  13. Preparation of two series of materials with perovskite structure and investigation of their physical properties

    International Nuclear Information System (INIS)

    Mohamed, H.S.R.

    2010-01-01

    Results on structural, electric transport and magnetic properties of a series of (Al / In) doped Ca-series and (Al / In) doped Sr-series are presented and discussed.The polycrystalline ceramic samples were prepared by the solid state reaction technique. Elemental analysis showed a reasonable agreement between nominal and actual sample compositions. The grain size (G.S) of the Ca doped series increased with In content (G.S. (x = 0.2) = 79.5 nm and G.S. (x = 0.8) = 95.4 nm). For the Sr-series it has values in the range of 40 - 42 nm.Room temperature structural analysis using the Rietveld refinement technique,showed no structural transitions with the variation of the Al / In ratio. The doped Ca-series had an orthorhombic symmetry with space group Pnma. The Sr -doped series is rhombohedral with space group ( R3C ). In both series the Mn-O bond distance was found to increase whereas the mean Mn-O-Mn bond angle decreased with x. This was ascribed to the size mismatch between the divalent A- site ions and the B- site as a result of the introduction of the large In 3+ ion size. The tolerance factor varies from 0.918-0.933 for the Ca-series and from 0.932 - 0.948 for the Sr-series as x varies from 0.0 to 1.0. The temperature dependence of the magnetic susceptibility and electric resistivity of the Ca-doped series showed distinct ferromagnetic metallic (FMM) to a paramagnetic insulator (PMI) transitions near the Curie point (T C ), which ranges from T C ∼ 210 - 100 K for x = 0.0 to 1.0 respectively. The temperature dependence of the resistivity for the Sr-doped series showed distinct FMM to PMI transitions for samples with x = 0.0, 0.2 and 1.0, whereas samples with x = 0.4, 0.6 and 0.8 showed FMM to PMM. The transition temperature variation is not linear and lies within a narrow temperature range T p ∼ 344 - 367 K The results of the Sr-series showed that the size mismatch between the A- and B- sites is the major factor that controls the magnetic and electric properties

  14. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1992-01-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A ≅ 182 region, structure of 182 Hg and 182 Au at high spin, a highly deformed band in 136 Pm and the anomalous h 11/2 proton crossing in the A∼135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier α particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative 209 Bi + 136 Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4π channel selection device, a novel x-ray detector, and a simple channel-selecting detector)

  15. Toward numerical simulations of fluid-structure interactions for investigation of obstructive sleep apnea

    Science.gov (United States)

    Huang, Chien-Jung; Huang, Shao-Ching; White, Susan M.; Mallya, Sanjay M.; Eldredge, Jeff D.

    2016-04-01

    Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low-pressure loads incurred during breathing. This paper describes efforts toward the development of a numerical tool for simulation of air-tissue interactions in the upper airway of patients with sleep apnea. A procedure by which patient-specific airway geometries are segmented and processed from dental cone-beam CT scans into signed distance fields is presented. A sharp-interface embedded boundary method based on the signed distance field is used on Cartesian grids for resolving the airflow in the airway geometries. For simulation of structure mechanics with large expected displacements, a cut-cell finite element method with nonlinear Green strains is used. The fluid and structure solvers are strongly coupled with a partitioned iterative algorithm. Preliminary results are shown for flow simulation inside the three-dimensional rigid upper airway of patients with obstructive sleep apnea. Two validation cases for the fluid-structure coupling problem are also presented.

  16. Numerical tool development of fluid-structure interactions for investigation of obstructive sleep apnea

    Science.gov (United States)

    Huang, Chien-Jung; White, Susan; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff

    2016-11-01

    Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the upper airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The ultimate goal of this research is the development of a versatile numerical tool for simulation of air-tissue interactions in the patient specific upper airway geometry. This tool is expected to capture several phenomena, including flow-induced vibration (snoring) and large deformations during airway collapse of the complex airway geometry in respiratory flow conditions. Here, we present our ongoing progress toward this goal. To avoid mesh regeneration, for flow model, a sharp-interface embedded boundary method is used on Cartesian grids for resolving the fluid-structure interface, while for the structural model, a cut-cell finite element method is used. Also, to properly resolve large displacements, non-linear elasticity model is used. The fluid and structure solvers are connected with the strongly coupled iterative algorithm. The parallel computation is achieved with the numerical library PETSc. Some two- and three- dimensional preliminary results are shown to demonstrate the ability of this tool.

  17. Investigation of the ElectroPuls E3000 Test Machine for Fatigue Testing of Structural Materials

    Science.gov (United States)

    2016-12-01

    University in 2008. Since 2009 she has worked as an engineer/scientist in the Armour Mechanics and Vehicle Survivability Group and the Structural...this project. The work could not have been completed without access to the facilities operated and managed by Bruce Crosbie and maintained by...Proceedings of the Joint Seminar: Hydrogen Management in Steel Weldments, Melbourne, Australia: 23 October 1996, Publisher: Organising Committee of the

  18. Numerical investigation of soil and buried structures using finite element analysis

    Directory of Open Access Journals (Sweden)

    Meysam Shirzad Shahrivar

    2017-02-01

    Full Text Available Today the important of studying soil effect on behavior of soil  contacted structures such as foundations, piles,  retaining wall and other similar structures is so much that neglecting of soil-structure interaction effect can cause to untrue results. In this paper soil-structure interaction simulation was done by using Finite element method analysis with ABAQUS version 6.13-14.The results has been presented based on pile function in contact with soil, vertical stresses in soil and structures, pore pressure in drained and undrained condition and underground water level.Final conclusions revealed that pore pressure effect is not uniform on all parts of pile and amount of pore pressure increment in top elements is lower than down elements of  pile.Further it was proven that average amount of vertical stress on end of pile is    of this stress on top of the pile. thus it was concluded that 70% of pile bearing capacity is depend on friction of soil and pile contact surface.

  19. Structural Investigations of Portland Cement Components, Hydration, and Effects of Admixtures by Solid-State NMR Spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen Bengaard; Andersen, Morten D.; Jakobsen, Hans Jørgen

    2006-01-01

    been investigated in detail by 29Si and 27Al MAS NMR where the combination of the results for these spin-nuclei provides important information on the degree of Al-incorporation in the C-S-H structure and of the average chain lengths of tetrahedral SiO4 and AlO4 units. This presentation will illustrate...

  20. Preliminary investigation of fabrication composite structures by using shape memory alloys

    Science.gov (United States)

    Klein, W.; Dudek, O.

    2017-09-01

    The paper shows method of smart forming composite structures and fundamentals of propose fabrication technology. The presented method is based on innovative 3D printing technics with SMA (Shape Memory Alloy) fibres application. The SMA fibres layout cause an eccentric axial load after thermal activation. The result of this process is composite structures deflection in a predictable direction. The technology demonstrator sample was fabricated as well as numerical simulations were performed in aim of proof of concept. The identification process was developed to determine the layout of SMA fibres. The simulations were performed in MATLAB and ANSYS environment, where the genetic algorithm was used to identify geometrical parameters. The MAC (Modal Assurance Criterion) criterion was used to compare nodal solution with the predefined shape pattern. The simulation results shows possibilities of forming composite structures on the example of deflected beam.

  1. Quality investigation of building structure using ground penetrating radar (GPR) as an early study to prevent severe structural damage

    Science.gov (United States)

    Gumai, M. Fariz; Fernando, Stephen; Nugroho, Gatot; Natania, Kana; Widodo

    2017-07-01

    Many infrastructures in Indonesia suffered damage in a short period of time. It proves that there are still many buildings in Indonesia which have questionable quality so a method is needed for checking the quality of the building. Ground Penetrating Radar (GPR) is a method used to describe the structure of the building on the inside that cannot be seen from the outside in this case Parahyangan Reksa Raga (PASAGA) Bridge was examined with 19.7 m × 3.3 m × 1.5 m dimension. Thismethod uses propagation of electromagnetic wave, which will give Radargram response inside a building based on the characteristics of the medium such as magnetic permeability, electric permittivity and electrical conductivity. GPR method is one of geophysical method which is effective, efficient, and environmentally friendly. The measurements were carried out using MALA RAMAC X3M device with frequency 800 MHz. The results show thatindication of fractures was found at less than 1 m depth in the structure from the Radargram display of PASAGA Bridge and supported by the observation data on the surface.

  2. Investigation of soil structure development and properties of macropore networks with X-ray computed tomography

    Science.gov (United States)

    Pagenkemper, Sebastian; Uteau Puschmann, Daniel; Peth, Stephan; Horn, Rainer

    2014-05-01

    X-ray computed tomography provides a non-destructive method to visualize and quantify three-dimensional pore networks. Geometrical and morphological parameters of the complex pore system such as connectivity, tortuosity, porosity and pore surface area would be very useful for modeling and simulating of transport and exchange processes. Thus, quantitative data on relevant soil structural features and their modification by soil management could be provided. The scope of this study was to analyze and quantify the development of soil structure in the subsoil depending on three different precrop species (alfalfa, chicory and fescue), at three depths (45, 60 and 75 cm) and three cultivation periods (1, 2 and 3 yrs) on an experimental field trial (Germany) with a Haplic Luvisol as major soil type. Morphological (air-filled porosity, pore surface area) and geometrical (pore diameter, connectivity, continuity, tortuosity) parameters were gathered with X-ray CT and evaluated with image analysis. Furthermore, the results were linked with air-capacity data from laboratory measurements to validate the data and with tortuosity/connectivity data from diffusion-based measurements. Air-filled porosity was highest for alfalfa (3 yrs, 75 cm). Tortuosity values ranged between 1.3 and 4.38, while alfalfa (3 yrs) showed the highest value, which may indicate structural development due to crack formation by enhanced root water uptake. An increase in accessible surfaces may improve water and nutrient supply for plants, whereas the high tortuosity values may also assume that oxygen supply is limited.

  3. Modal Analysis of a Lightweight STRUCTURE—INVESTIGATION of the Effects of the Supports on the Structural Dynamics

    Science.gov (United States)

    Munsi, A. S. M. Y.; Waddell, A. J.; Walker, C. A.

    2002-03-01

    This study grew out of the use of vibration to modify welding stresses, and the corresponding need to understand the modal vibration properties of the test structures. Supporting the structure is a practical problem in experimental modal analysis. In this study the effect of the supports on the dynamic properties of a lightweight structure were investigated. Thick rubber bungee supports and thin elastic band supports were used in the investigation. The effect of the position of the supports was found to be insignificant if a proper type of support is used. It was observed that with the thick bungees the modes become invisible or obscure on the frequency response function (FRF) curves. On the other hand, the thin elastic band supports provide very clear FRF curves and hence clear mode shapes. It has been suggested that the bungees should be chosen considering the weight of the structure and the requirement of the vibration amplitude in the modal analysis and/or in the subsequent treatments. The position of the bungees should be chosen at the node points of a particular mode of the structure to reduce the support effects further.

  4. Structure and function of proteins investigated by crystallographic and spectroscopic time-resolved methods

    Science.gov (United States)

    Purwar, Namrta

    Biomolecules play an essential role in performing the necessary functions for life. The goal of this thesis is to contribute to an understanding of how biological systems work on the molecular level. We used two biological systems, beef liver catalase (BLC) and photoactive yellow protein (PYP). BLC is a metalloprotein that protects living cells from the harmful effects of reactive oxygen species by converting H2O2 into water and oxygen. By binding nitric oxide (NO) to the catalase, a complex was generated that mimics the Cat-H2O2 adduct, a crucial intermediate in the reaction promoted by the catalase. The Cat-NO complex is obtained by using a convenient NO generator (1-(N,N-diethylamino)diazen-1-ium-1,2-diolate). Concentrations up to 100˜200 mM are reached by using a specially designed glass cavity. With this glass apparatus and DEANO, sufficient NO occupation is achieved and structure determination of the catalase with NO bound to the heme iron becomes possible. Structural changes upon NO binding are minute. NO has a slightly bent geometry with respect to the heme normal, which results in a substantial overlap of the NO orbitals with the iron-porphyrin molecular orbitals. From the structure of the iron-NO complex, conclusions on the electronic properties of the heme iron can be drawn that ultimately lead to an insight into the catalytic properties of this enzyme. Enzyme kinetics is affected by additional parameters such as temperature and pH. Additionally, in crystallography, the absorbed X-ray dose may impair protein function. To address the effect of these parameters, we performed time-resolved crystallographic experiments on a model system, PYP. By collecting multiple time-series on PYP at increasing X-ray dose levels, we determined a kinetic dose limit up to which kinetically meaningful X-ray data sets can be collected. From this, we conclude that comprehensive time-series spanning up to 12 orders of magnitude in time can be collected from a single PYP

  5. Investigation of doping and particle size effect on structural, magnetic and magnetoresistance properties of manganites

    Directory of Open Access Journals (Sweden)

    M. Hakimi

    2008-06-01

    Full Text Available  In this paper after introduction of manganites, we have studied the effect of particle size and doping on structural, magnetic and magnetoresistance of LSMO manganite samples. The magnetoresistance measurements show that, by decreasing the particle size LFMR increases. Also the results show that the LFMR increases at low doping levels and decreases at high doping levels. The spin dependent tunneling and scattering at the grain boundaries is the origin of increasing the LFMR at low doping levels. Also the substitution of impurity ions at Mn sites and subsequently weaking of double exchange is responsible for decreasing of LFMR at high doping level.

  6. Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling

    Energy Technology Data Exchange (ETDEWEB)

    Veluraja, K., E-mail: veluraja@msuniv.ac.in [Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu 627012 (India); Vennila, K.N. [CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025 (India); Umamakeshvari, K.; Jasmine, A. [Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu 627012 (India); Velmurugan, D. [CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025 (India)

    2011-03-25

    Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of the homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.

  7. Structure-property investigations of conjugated thiophenes fused onto a dehydro[14]annulene scaffold.

    Science.gov (United States)

    O'Connor, Matthew J; Yelle, Robert B; Zakharov, Lev N; Haley, Michael M

    2008-06-20

    A series of 12 thieno-fused macrocycles based on the dehydro[14]annulene framework have been prepared. Studies have focused on the optical and electronic properties of the dehydrobenzothieno[14]annulenes (DBTAs) and dehydrothieno[14]annulenes (DTAs) utilizing NMR spectroscopy, UV-vis spectrophotometry, electrochemistry, and DFT computations. X-ray crystal structures were also obtained for two of the macrocycles. The structure-property relationships were found to vary significantly based on the relative orientation of the thiophenes. The stability, properties, and reactivity of these macrocycles were found to be more typical of dehydroannulenes rather than oligothiophenes.

  8. External and internal structure of weevils (Insecta: Coleoptera) investigated with phase-contrast X-ray imaging

    International Nuclear Information System (INIS)

    Hoennicke, M.G.; Cusatis, C.; Rigon, L.; Menk, R.-H.; Arfelli, F.; Foerster, L.A.; Rosado-Neto, G.H.

    2010-01-01

    Weevils (Coleoptera: Curculionidae) are identified by the external structure (dorsal, ventral and lateral features) and also by internal structure. The genitalia can be used to distinguish the sex and to identify the insects when the external structure appears identical. For this purpose, a destructive dissecting microscopy procedure is usually employed. In this paper, phase contrast X-ray imaging (radiography and tomography) is employed to investigate the internal structure (genitalia) of two entire species of weevils that presents very similar external structures (Sitophilus oryzae and Sitophilus zeamais). The detection of features, which looks like the genital structure, shows that such non-destructive technique could be used as an alternative method for identification of insects. This method is especially useful in examining the internal features of precious species from museum collections, as already described in the recent literature.

  9. External and internal structure of weevils (Insecta: Coleoptera) investigated with phase-contrast X-ray imaging

    Science.gov (United States)

    Hönnicke, M. G.; Cusatis, C.; Rigon, L.; Menk, R.-H.; Arfelli, F.; Foerster, L. A.; Rosado-Neto, G. H.

    2010-08-01

    Weevils (Coleoptera: Curculionidae) are identified by the external structure (dorsal, ventral and lateral features) and also by internal structure. The genitalia can be used to distinguish the sex and to identify the insects when the external structure appears identical. For this purpose, a destructive dissecting microscopy procedure is usually employed. In this paper, phase contrast X-ray imaging (radiography and tomography) is employed to investigate the internal structure (genitalia) of two entire species of weevils that presents very similar external structures ( Sitophilus oryzae and Sitophilus zeamais). The detection of features, which looks like the genital structure, shows that such non-destructive technique could be used as an alternative method for identification of insects. This method is especially useful in examining the internal features of precious species from museum collections, as already described in the recent literature.

  10. External and internal structure of weevils (Insecta: Coleoptera) investigated with phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hoennicke, M.G., E-mail: mhonnicke@bnl.go [NSLS II, Brookhaven National Laboratory, Upton, NY (United States); Cusatis, C. [LORXI, Departamento de Fisica-UFPR, Curitiba (Brazil); Rigon, L. [Instituto Nazionale di Fisica Nucleare, Trieste (Italy); Menk, R.-H. [Sincrotrone Trieste SCPa, Basovizza, Trieste (Italy); Arfelli, F. [Instituto Nazionale di Fisica Nucleare, Trieste (Italy); Dipartamento di Fisica-Universita di Trieste, Trieste (Italy); Foerster, L.A.; Rosado-Neto, G.H. [Departamento de Zoologia-UFPR, Curitiba (Brazil)

    2010-08-21

    Weevils (Coleoptera: Curculionidae) are identified by the external structure (dorsal, ventral and lateral features) and also by internal structure. The genitalia can be used to distinguish the sex and to identify the insects when the external structure appears identical. For this purpose, a destructive dissecting microscopy procedure is usually employed. In this paper, phase contrast X-ray imaging (radiography and tomography) is employed to investigate the internal structure (genitalia) of two entire species of weevils that presents very similar external structures (Sitophilus oryzae and Sitophilus zeamais). The detection of features, which looks like the genital structure, shows that such non-destructive technique could be used as an alternative method for identification of insects. This method is especially useful in examining the internal features of precious species from museum collections, as already described in the recent literature.

  11. Experimental investigation on the effect of creep on the damage evolution of CFRP structures during fatigue loading

    NARCIS (Netherlands)

    Zarouchas, D.; Eleftheroglou, N.; Gdoutos, Emmanuel E.

    2016-01-01

    This paper presents an experimental investigation on the effect of creep on the damage evolution of Carbon Fiber Reinforced Polymer structures during fatigue loading. A new experimental campaign is proposed where unidirectional CFRP specimens are tested under the combination of fatigue and constant

  12. Structural investigation of the polysaccharide fraction from the mucilage of Diceroaryum zanguebaricum Merr.

    Science.gov (United States)

    Barone, G; Corsaro, M M; Giannattasio, M; Lanzetta, R; Moscariello, M; Parrilli, M

    1996-01-04

    The polysaccharide fraction from the mucilage of Dicerocaryum zanguebaricum (Pedaliaceae) appears to be mainly constituted of a chemically homogeneous polysaccharide. By NMR and chemical degradative methods its structure appeared to consist of alternate-->4)-beta-D-GlcpA-(1--> and -->2)-alpha-D-Man p-(1-->units. Single branch units of beta-D-Xyl p and alpha-D-Gal p are linked to the O-3 positions of Man p and a significant number of Glc pA residues.

  13. 31P and 29Si NMR investigations of the structure of NASICON-compounds

    International Nuclear Information System (INIS)

    Jaeger, C.; Scheler, G.; Barth, S.; Feltz, A.

    1988-01-01

    First systematic NMR investigations of several NASICON compounds are described. In the original NASICON Na 1+x Zr 2 (SiO 4 ) x (PO 4 ) 3-x the observed down-field shift (for increasing x) of both 31 P and 29 Si MAS NMR lines is explained by a change of the net atomic charge of the zirconium atoms caused by the substitution of the lattice positions of phosphorus by silicon atoms. The 'von Alpen' compound Na 4 ZrSi 3 O 10 consists of two phases; the crystalline Na 4 Zr 2 (SiO 4 ) 3 and the glassy phase 2 Na 2 O · 3 SiO 2 . Moreover, it is shown that NMR can be used to investigate the statistical substitution of lattice positions of the zirconium atoms by magnesium atoms in the mixed crystals Na 1+2x Mg x Zr 2-x (PO 4 ) 3 . (author)

  14. Structural investigation of viscoelastic micellar water/CTAB/NaNO3 ...

    Indian Academy of Sciences (India)

    Analysis of the SANS data using prolate ellipsoidal structure and Yukawa form of interaction potential between mi-celles indicate that addition of NaNO3 leads to a decrease in the surface charge of the ellipsoidal micelles which induces micellar growth. Cryo-TEM measurements support the presence of thread-like micelles ...

  15. Investigation of structural and magnetic properties of Zr-Co doped nickel ferrite nanomaterials

    Science.gov (United States)

    Ali, Rajjab; Khan, Muhammad Azhar; Manzoor, Alina; Shahid, Muhammad; Haider, Sajjad; Malik, Abdul Sattar; Sher, Muhammad; Shakir, Imran; Farooq Warsi, Muhammad

    2017-05-01

    Nano-sized Zr-Co doped nickel ferrites with nominal composition, NiZrxCoxFe2-2xO4 (x=0.0, 0.2, 0.4, 0.6, 0.8) were synthesized using the micro-emulsion route. The structural elucidation of the synthesized materials was carried out by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The XRD analysis confirmed face centered cubic (FCC) structure of all compositions of NiZrxCoxFe2-2xO4 nanocrystallites. Crystallite size was calculated by Scherrer's formula found in the range 10-15 nm. The variation in lattice parameter as determined by XRD data agreed with size variation of host (Fe3+) and guest (Zr4+ and Co2+) cations. FTIR spectra of doped NiFe2O4 exhibited the typical octahedral bands at 528.4 cm-1 which is the characteristic feature of spinel structure of spinel ferrites. The characterized spinel NiZrxCoxFe2-2xO4 nano-ferrites were evaluated for their potential applications by magnetic hysteresis loops and dielectric measurements. The value of saturation magnetization (Ms) decreased from 47.9 to 13.09 emu/g up to x=0.8 with ups and downs fluctuations in between x=0.0 to x=0.8. The high values of Ms of some compositions predicted the potential applications in high density perpendicular recording media and microwave devices. The frequency dependent behavior of permittivity (ε') is recorded and discussed with the help of hopping mechanism of both holes and electrons. The dielectric and magnetic data of NiZrxCoxFe2-2xO4 nano-ferrites suggested the potential applications of these ferrite nanoparticles in high frequency and magnetic data storage devices fabrication.

  16. Multilayer Mie Scattering Model for Investigation of Intracellular Structural Changes in the Nucleolus and Cytoplasm

    Directory of Open Access Journals (Sweden)

    S. Saltsberger

    2012-01-01

    Full Text Available Light scattering from biological cells has been used for many years as a diagnostic tool. Several simulation methods of the scattering process were developed in the last decades in order to understand and predict the scattering patterns. We developed an analytical model of a multilayer spherical scattering cell. Here, we describe the model and show that the results obtained within this simple method are similar to those obtained with far more complicated methods such as finite-difference time-domain (FDTD. The multilayer model is then used to study the effects of changes in the distribution of internal cell structures like mitochondria distribution or nucleus internal structures that exist in biological cells. Such changes are related with cancerous processes within the cell as well as other cell pathologies. Results show the ability to discriminate between different cell stages related to the mitochondria distributions and to internal structure of the nucleolus.

  17. Raman microprobe investigation of molecular structure and organization in the native state of woody tissue

    Energy Technology Data Exchange (ETDEWEB)

    Atalla, R.H.

    1989-08-01

    Although the primary emphasis of our program has remained with the application of Raman spectroscopy to the study of native tissue, the scope of the work has been expanded to include a number of complementary approaches. These have included Solid State 13C NMR, autoradiography of radiolabeled woody tissue sections, and the generation of biomimetic tertiary aggregates which simulate states of aggregation characteristic of cell walls. Our Raman spectroscopic studies have resulted in progress in the areas of interpretation of the spectral features, and confirmation of the variability of the patterns of orientation of lignin reported earlier. We have assembled and made operational our new microprobe and spectrometer systems acquired under the DOE-URIP program. We have also demonstrated that, operating with gated detection and pulsed laser excitation, we can discriminate against the laser-excited fluorescence characteristic of most woody tissue. Our studies of celluloses, which combine Raman spectroscopy and 13C NMR have shown that all native celluloses are composites of two forms which have the same secondary structure but different tertiary structures.

  18. Investigation of Hydraulic Binding Characteristics of Lime Based Mortars Used in Historical Masonry Structures

    Science.gov (United States)

    Binal, Adil

    2017-10-01

    In the historic masonry structures, hard and large rock fragments were used as the construction materials. The hydraulic binder material prepared to keep this used material in its entirety is a different material than the cement used today. Khorasan mortar made by using aggregate and lime exhibits a more flexible structure than the concrete. This feature allows the historic building to be more durable. There is also a significant industrial value because of the use of Khorasan mortar in the restoration of historic masonry structures. Therefore, the calculation of the ideal mixture of Khorasan mortar and the determination of its mechanical and physical properties are of great importance regarding preserving historic buildings. In this study, the mixtures of different lime and brick fractions were prepared. It was determined that Khorasan mortar shows the highest compressive strength in mixtures with water/lime ratio of 0.55 and lime/aggregate ratio of 0.66. By keeping the mixing ratio constant, it was observed that the strengths of the samples kept in the humidity chamber for different curing times increased day by day. The early strength values of samples with the high lime/aggregate ratio (l/a: 0.83) were higher than those with the low lime/aggregate ratio (l/a: 0.5). For the samples with low lime/aggregate ratio, there was an increase in the strength values depending on the curing period. As the cure duration increases, a chemical reaction takes place between the lime and the brick fracture, and as a result of this reaction, the strength values are increased.

  19. Investigation of orexin-2 selective receptor antagonists: Structural modifications resulting in dual orexin receptor antagonists.

    Science.gov (United States)

    Skudlarek, Jason W; DiMarco, Christina N; Babaoglu, Kerim; Roecker, Anthony J; Bruno, Joseph G; Pausch, Mark A; O'Brien, Julie A; Cabalu, Tamara D; Stevens, Joanne; Brunner, Joseph; Tannenbaum, Pamela L; Wuelfing, W Peter; Garson, Susan L; Fox, Steven V; Savitz, Alan T; Harrell, Charles M; Gotter, Anthony L; Winrow, Christopher J; Renger, John J; Kuduk, Scott D; Coleman, Paul J

    2017-03-15

    In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OX 2 R subtype and culminating in the discovery of 23, a highly potent, OX 2 R-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OX 1 R antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Investigation of Amyloid Structures at Nanoscale via AFM based Dynamic Nanomechncial Microscopy

    DEFF Research Database (Denmark)

    Zhang, Shuai

    2014-01-01

    Amyloid structures are one important kind of protein aggregations. They are a group of stable misfolded species, other than native states, which have been found to accumulate as plaques on neuron cells. This behavior is considered to associate with tens of human neurodegenerative diseases...... nanomechnical microscopy (DNM) provides the availability to link topography and corresponding nanomechnical properties. This nanomechnical mapping improves the understanding of amyloid self-assembly mechanisms, and it also assists to design the amyloid structure based nanomaterials. In my PhD thesis, I...

  1. [Changes in bone structure according to the results of investigations on biosatellites of the "BION" series].

    Science.gov (United States)

    Kabitskaya, O E; Oganov, V S; Gordienko, K V; Bakulin, K V

    2014-01-01

    Noninvasive technologies of bone investigations measure largely the main skeletal sites and are not quite suitable to have a look at the bone internal organization in situ. However, there are data obtained noninvasively in experiments on board the space biosatellites. The review is dedicated to analysis and comparison of the evidence for the bone organic and mineral matrix restructuring due to microgravity. These changes have presumably evolved in the course of the system reaction of bone tissue and the whole skeleton.

  2. Structural investigation of two carbon nitride solids produced by cathodic arc deposition and nitrogen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, A.R.; McCulloch, D.; McKenzie, D.R.; Yin, Y.; Gerstner, E.G. [New South Wales Univ., Kensington, NSW (Australia)

    1996-12-31

    Carbon nitride materials have been the focus of research efforts worldwide. Most materials studied have been amorphous, with only a few groups claiming to have found a crystalline material. In this paper, carbon nitride materials prepared by two different techniques are analysed, and found to be remarkably similar in bonding and structure. The materials appear to have a primarily sp{sup 2} bonded carbon structure with a lower bond length than found in an amorphous carbon. This is explained by nitrogen substituting into `rings` to a saturation level of about one nitrogen per three carbon atoms. No evidence was found for a crystalline structure of formula C{sub 3}N{sub 4}, or any amorphous derivative of it. 16 refs., 1 tab., 5 figs.

  3. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    Science.gov (United States)

    Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.

    2015-10-01

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  4. Structural investigation of bistrifluron using x-ray crystallography, NMR spectroscopy, and molecular modeling

    CERN Document Server

    Moon, J K; Rhee, S K; Kim, G B; Yun, H S; Chung, B J; Lee, S S; Lim, Y H

    2002-01-01

    A new insecticide, bistrifluron acts as an inhibitor of insect development and interferes with the cuticle formation of insects. Since it shows low acute oral and dermal toxicities, it can be one of potent insecticides. Based on X-ray crystallography, NMR spectroscopy and molecular modeling, the structural studies of bistrifluron have been carried out.

  5. A first principles investigation of the electronic structure of actinide oxides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Zdzislawa

    2010-01-01

    The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations using the selfinteraction corrected local spin-density approximation. Our study reveals a strong link between preferred oxidation number...... and degree of localization. The ionic nature of the actinide oxides emerges from the fact that those oxides where the ground state is calculated to be metallic do not exist in nature, as the corresponding delocalized f-states favour the accommodation of additional O atoms into the crystal lattice....

  6. Investigation of Structure and Property of Indian Cocos nucifera L. Fibre

    Science.gov (United States)

    Basu, Gautam; Mishra, Leena; Samanta, Ashis Kumar

    2017-12-01

    Structure and physico-mechanical properties of Cocos nucifera L. fibre from a specific agro-climatic region of India, was thoroughly studied. Fine structure of the fibre was examined by Fourier Transform Infra-Red (FTIR) spectroscopy, Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), component analysis, Scanning Electron Microscope (SEM) and optical microscope. SEM shows prominent longitudinal cracks and micro-pores on the surface. XRD shows a low degree of crystallinity (45%), bigger crystallite size, and even the presence of appreciable amount of non-cellulose matter. FTIR reveals presence of large quantities of hydroxyl, phenolic and aldehyde groups. Component and thermal analyses indicates presence of cellulose and lignin as major components. Physical parameters reveal that, fibres are highly variable in length (range 44-305 mm), and diameter (range 100-795 µm). Mechanical properties of the fibre viz. breaking tenacity, breaking extensibility, specific work of rupture, and coefficient of friction were measured. Microbial decomposition test under soil reveals excellent durability of coconut fibre which makes it appropriate for the application in geotextiles. Mass specific electrical resistance of 4 Ω-kg/m2 indicates its enhanced insulation as compared to the jute.

  7. Investigating Structure and Dynamics of Proteins in Amorphous Phases Using Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Maria Monica Castellanos

    Full Text Available In order to increase shelf life and minimize aggregation during storage, many biotherapeutic drugs are formulated and stored as either frozen solutions or lyophilized powders. However, characterizing amorphous solids can be challenging with the commonly available set of biophysical measurements used for proteins in liquid solutions. Therefore, some questions remain regarding the structure of the active pharmaceutical ingredient during freezing and drying of the drug product and the molecular role of excipients. Neutron scattering is a powerful technique to study structure and dynamics of a variety of systems in both solid and liquid phases. Moreover, neutron scattering experiments can generally be correlated with theory and molecular simulations to analyze experimental data. In this article, we focus on the use of neutron techniques to address problems of biotechnological interest. We describe the use of small-angle neutron scattering to study the solution structure of biological molecules and the packing arrangement in amorphous phases, that is, frozen glasses and freeze-dried protein powders. In addition, we discuss the use of neutron spectroscopy to measure the dynamics of glassy systems at different time and length scales. Overall, we expect that the present article will guide and prompt the use of neutron scattering to provide unique insights on many of the outstanding questions in biotechnology. Keywords: Neutron scattering, Protein structure, Protein dynamics, Freeze-dried proteins, Glasses, Frozen protein solutions, Molecular dynamics

  8. Structural investigations of glucans from cultures of Glomerella cingulata Spaulding & von Schrenck.

    Science.gov (United States)

    Gomaa, K; Kraus, J; Franz, G; Röper, H

    1991-09-18

    Methylation analysis, enzymic digestion, n.m.r. spectroscopy, and Smith degradation showed that the major extracellular polysaccharide, isolated from cultures of the fungus Glomerella cingulata, was a (1----3)-beta-D-glucan with side chains of 1-4 (1----3)-linked beta-D-glucose residues attached to position 6. A (1----6)-beta-D-glucan was produced by the fungus in small proportions. Treatment of the (1----3,1----6)-beta-D-glucan (890,315) with greater than 0.05M NaOH at greater than 150 degrees, or Me2SO-H2O with a concentration of dimethyl sulfoxide of greater than 80%, irreversibly destroyed the highly ordered structure responsible for the high viscosity of aqueous solutions. The strong shift of the lambda max of aqueous solutions of Congo Red by the degraded glucan, the fact that the mol. wt. of the original glucan was approximately 4 times higher than that of the degraded polymer, and the suppression of the n.m.r. signals for C-3 indicated that the original glucan had a highly ordered structure, probably built up from single helices.

  9. Investigation of structural and optoelectronic properties of BaThO3

    Science.gov (United States)

    Murtaza, G.; Ahmad, Iftikhar; Amin, B.; Afaq, A.; Maqbool, M.; Maqssod, J.; Khan, I.; Zahid, M.

    2011-01-01

    Structural and optoelectronic properties of BaThO3 cubic perovskite are calculated using all electrons full potential linearized augmented plane wave (FP-LAPW) method. Wide and direct band gap, 5.7 eV, of the compound predicts that it can be effectively used in UV based optoelectronic devices. Different characteristic peaks in the wide UV range emerges mainly due to the transition of electrons between valance band state O-p and conduction band states Ba-d, Ba-f, Th-f and Th-d.

  10. Structural investigation of viscoelastic micellar water/CTAB/NaNO3 ...

    Indian Academy of Sciences (India)

    Worm-like micellar structures in water have garnered a great deal of attention over the past two decades [1,2]. It is well-known that in aqueous solutions of cationic surfactants, for example, hexadecyltrimethylammonium bromide (CTAB), long worm-like micelles form upon addition of some salts, strongly binding coun-.

  11. The Sport Commitment Model: An Investigation of Structural Relationships with Thai Youth Athlete Populations

    Science.gov (United States)

    Choosakul, Chairat; Vongjaturapat, Naruepon; Li, Fuzhong; Harmer, Peter

    2009-01-01

    Grounded in the conceptual framework of the Sport Commitment Model and previous empirical studies conducted in Western countries, this study was designed to (a) test and validate a Thai version of the Athlete Opinion Survey to assess components of the Sport Commitment Model in Thai youth athletes and (b) examine structural relationships among…

  12. Investigation of Nanometal/Carbon Fiber Composite Structures for Use in Novel Lightweight Cryotank Designs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal seeks to investigate the use of a novel high strength nanostructured metal (Nanovate

  13. Investigating the Structure-Activity Relationship of the Insecticidal Natural Product Rocaglamide.

    Science.gov (United States)

    Hall, Roger G; Bruce, Ian; Cooke, Nigel G; Diorazio, Louis J; Cederbaum, Fredrik; Dobler, Markus R; Irving, Ed

    2017-12-01

    The natural product Rocaglamide (1), isolated from the tree Aglaia elliptifolia, is a compelling but also challenging lead structure for crop protection. In laboratory assays, the natural product shows highly interesting insecticidal activity against chewing pests and beetles, but also phytotoxicity on some crop plants. Multi-step syntheses with control of stereochemistry were required to probe the structure-activity relationship (SAR), and seek simplified analogues. After a significant research effort, just two areas of the molecule were identified which allow modification whilst maintaining activity, as will be highlighted in this paper.

  14. Microscopic investigation of structural evolution in even-even N = 60 isotones

    International Nuclear Information System (INIS)

    Oudih, M. R.; Fellah, M.; Allal, N. H.; Benhamouda, N.

    2012-01-01

    The ground state properties of even-even N=60 isotones from the neutron-rich to the proton-rich side are investigated within the self-consistent Skyrme-Hartree-Fock-Bogoliubov theory in the triaxial landscape. Quantities such as binding energies and root-mean-square radii are investigated and compared with available experimental data. The evolution of the potential energy surfaces in the (β,γ) deformation plane is presented and discussed.

  15. National evaluation of the benefits and risks of greater structuring and coding of the electronic health record: exploratory qualitative investigation.

    Science.gov (United States)

    Morrison, Zoe; Fernando, Bernard; Kalra, Dipak; Cresswell, Kathrin; Sheikh, Aziz

    2014-01-01

    We aimed to explore stakeholder views, attitudes, needs, and expectations regarding likely benefits and risks resulting from increased structuring and coding of clinical information within electronic health records (EHRs). Qualitative investigation in primary and secondary care and research settings throughout the UK. Data were derived from interviews, expert discussion groups, observations, and relevant documents. Participants (n=70) included patients, healthcare professionals, health service commissioners, policy makers, managers, administrators, systems developers, researchers, and academics. Four main themes arose from our data: variations in documentation practice; patient care benefits; secondary uses of information; and informing and involving patients. We observed a lack of guidelines, co-ordination, and dissemination of best practice relating to the design and use of information structures. While we identified immediate benefits for direct care and secondary analysis, many healthcare professionals did not see the relevance of structured and/or coded data to clinical practice. The potential for structured information to increase patient understanding of their diagnosis and treatment contrasted with concerns regarding the appropriateness of coded information for patients. The design and development of EHRs requires the capture of narrative information to reflect patient/clinician communication and computable data for administration and research purposes. Increased structuring and/or coding of EHRs therefore offers both benefits and risks. Documentation standards within clinical guidelines are likely to encourage comprehensive, accurate processing of data. As data structures may impact upon clinician/patient interactions, new models of documentation may be necessary if EHRs are to be read and authored by patients.

  16. Brain Events Underlying Episodic Memory Changes in Aging: A Longitudinal Investigation of Structural and Functional Connectivity.

    Science.gov (United States)

    Fjell, Anders M; Sneve, Markus H; Storsve, Andreas B; Grydeland, Håkon; Yendiki, Anastasia; Walhovd, Kristine B

    2016-03-01

    Episodic memories are established and maintained by close interplay between hippocampus and other cortical regions, but degradation of a fronto-striatal network has been suggested to be a driving force of memory decline in aging. We wanted to directly address how changes in hippocampal-cortical versus striatal-cortical networks over time impact episodic memory with age. We followed 119 healthy participants (20-83 years) for 3.5 years with repeated tests of episodic verbal memory and magnetic resonance imaging for quantification of functional and structural connectivity and regional brain atrophy. While hippocampal-cortical functional connectivity predicted memory change in young, changes in cortico-striatal functional connectivity were related to change in recall in older adults. Within each age group, effects of functional and structural connectivity were anatomically closely aligned. Interestingly, the relationship between functional connectivity and memory was strongest in the age ranges where the rate of reduction of the relevant brain structure was lowest, implying selective impacts of the different brain events on memory. Together, these findings suggest a partly sequential and partly simultaneous model of brain events underlying cognitive changes in aging, where different functional and structural events are more or less important in various time windows, dismissing a simple uni-factorial view on neurocognitive aging. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Physical investigations of nonvel materials and structures for nano-MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Feste, Sebastian Frederik

    2009-08-21

    increase of carrier velocity with gate-length scaling reaches its limit. Several aspects of the fabrication of biaxial tensile strained SSOI substrates by strain transfer between a thin SiGe buffer and a Si cap layer have been investigated with emphasis on reducing the threading dislocation density to 1 x 10{sup 6}cm{sup -2}. Thin SiGe/Si-heterostructure lines featuring highly asymmetric strain were fabricated that show decreased resistivities for electrons and holes. Asymmetric strain relaxation relies on the limitation of the path length of threading dislocations by the stripe boundaries in thin SiGe/Si lines, leading to an asymmetrical dislocation network. The electrical properties of biaxial tensile strained (001) SSOI with a stress of 1.2GPa have been studied using Hall-bar MOSFETs. SSOI devices showed improved on-currents, mobilities and transconductances over unstrained parallel processed devices. The mobility in n-type SSOI had a peak value of 1250 cm2/Vs at low vertical electric field, an enhancement by a factor of 1.7 compared to unstrained Si. The impact of biaxial strain on the electron affinity was determined by measuring threshold voltage shifts between strained and unstrained devices. The effective electron mass in 60nm biaxial tensile strained (001) SSOI and unstrained SOI was determined to be meff = 0.20m0 from Shubnikov-de Haas oscillations in the longitudinal resistance. This proves that biaxial tensile stress of 1.2GPa does not warp the Delta2 constant energy surfaces of the Si conduction band for in-plane directions, in agreement with band structure calculations. The mobility increase in biaxial tensile strained SSOI is, therefore, caused by the occupation of the Delta2-valleys with low effective electron mass mt in transport direction and reduced scattering due to a smaller k-space volume. To avoid short channel effects in ultimately scaled FETs multi-gate geometries have to be used. A fully CMOS compatible fabrication process for Si NW-FETs has been

  18. Physicochemical and Biological Investigation of Different Structures of Carbon Coatings Deposited onto Polyurethane

    Directory of Open Access Journals (Sweden)

    Witold Kaczorowski

    2016-01-01

    Full Text Available The aim of this study was to examine the thrombogenic properties of polyurethane that was surface modified with carbon coatings. Physicochemical properties of manufactured coatings were investigated using transmission electron microscopy (TEM, atomic force microscopy (AFM, X-ray Photoelectron Spectroscopy (XPS, Raman spectroscopy and contact angle measurement methods. Samples were examined by the Impact-R method evaluating the level of platelets activation and adhesion of particular blood cell elements. The analysis of antimicrobial resistance against E. coli colonization and viability of endothelial cells showed that polyurethane modified with use of carbon layers constituted an interesting solution for biomedical application.

  19. Experimental setup for the investigation of fluid–structure interactions in a T-junction

    Energy Technology Data Exchange (ETDEWEB)

    Kuschewski, M., E-mail: mario.kuschewski@ike.uni-stuttgart.de [University of Stuttgart, Institute for Nuclear Technology and Energy Systems, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Kulenovic, R., E-mail: rudi.kulenovic@ike.uni-stuttgart.de [University of Stuttgart, Institute for Nuclear Technology and Energy Systems, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Laurien, E., E-mail: eckart.laurien@ike.uni-stuttgart.de [University of Stuttgart, Institute for Nuclear Technology and Energy Systems, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    2013-11-15

    Water experiments were carried out for fluid structure interaction aspects of non-isothermal mixing in a T-junction which is part of a new test facility. The main subject of this paper is firstly to present the new facility and secondly, to demonstrate the Near-Wall LED-Induced-Fluorescence (NWLED-IF) technique, which is a new experimental method for studying fluid–structure interaction under conditions similar to those in LWR. The Fluid–Structure-Interaction-Setup is a closed-loop T-junction facility with a design pressure of 75 bar and a maximum temperature of 280 °C. The water streams are mixed in a horizontally aligned, sharp-edge, 90° T-junction. The forged T-junction is made of austenitic steel 1.4550 (X6 CrNiNb 18-10) with reduced carbon content in accordance with the German KTA 3201.1. It is equipped with 24 thermocouples (1 mm in diameter) in blind holes, which have a surface offset of 1–3 mm. The facility design comprises interchangeable modules, which can be arranged upstream or downstream of the T-junction. Two of these modules provide an optical access to the fluid by means of flanges and tubes made of glass. Additional experiments are conducted in an isothermal T-junction facility and at the Fluid–Structure Interaction Facility. It is demonstrated that the Near-Wall LED-Induced-Fluorescence technique is an image-based measurement method that provides spatially and temporally resolved information of the turbulent flow in the mixing region of the T-junction even under presence of high density differences. In all experiments a buoyancy-driven stratified flow is observed. The light fluid arranges itself on top of the denser which is characterized by a meander-like structure. The experiments are conducted under different fluid-mechanical boundary conditions, yet fluid patterns were similar and the stratification and the meander-like structures were captured by the Near-Wall LED-Induced-Fluorescence technique. The presented experiment is the first

  20. Experimental setup for the investigation of fluid–structure interactions in a T-junction

    International Nuclear Information System (INIS)

    Kuschewski, M.; Kulenovic, R.; Laurien, E.

    2013-01-01

    Water experiments were carried out for fluid structure interaction aspects of non-isothermal mixing in a T-junction which is part of a new test facility. The main subject of this paper is firstly to present the new facility and secondly, to demonstrate the Near-Wall LED-Induced-Fluorescence (NWLED-IF) technique, which is a new experimental method for studying fluid–structure interaction under conditions similar to those in LWR. The Fluid–Structure-Interaction-Setup is a closed-loop T-junction facility with a design pressure of 75 bar and a maximum temperature of 280 °C. The water streams are mixed in a horizontally aligned, sharp-edge, 90° T-junction. The forged T-junction is made of austenitic steel 1.4550 (X6 CrNiNb 18-10) with reduced carbon content in accordance with the German KTA 3201.1. It is equipped with 24 thermocouples (1 mm in diameter) in blind holes, which have a surface offset of 1–3 mm. The facility design comprises interchangeable modules, which can be arranged upstream or downstream of the T-junction. Two of these modules provide an optical access to the fluid by means of flanges and tubes made of glass. Additional experiments are conducted in an isothermal T-junction facility and at the Fluid–Structure Interaction Facility. It is demonstrated that the Near-Wall LED-Induced-Fluorescence technique is an image-based measurement method that provides spatially and temporally resolved information of the turbulent flow in the mixing region of the T-junction even under presence of high density differences. In all experiments a buoyancy-driven stratified flow is observed. The light fluid arranges itself on top of the denser which is characterized by a meander-like structure. The experiments are conducted under different fluid-mechanical boundary conditions, yet fluid patterns were similar and the stratification and the meander-like structures were captured by the Near-Wall LED-Induced-Fluorescence technique. The presented experiment is the first

  1. IR spectroscopic investigation of the structure of glasses containing a sol of burned radioactive by-products

    International Nuclear Information System (INIS)

    Stefanovskii, S.V.; Ivanov, I.A.; Gulin, A.N.

    1993-01-01

    On glassification of sols from the burning apparatus of radioactive by-products (RAB) using sodium borate, sodium silicate, or borosilicate flux, glassy materials suitable for long-time storage or final burying are obtained. Technological and ecologically important properties of glassified RAB are determined by their structure. In some preliminary results are presented of a study of the structure of silicate and borosilicate glasses containing a sol of concrete composition. In a real sol from technological apparatus the qualitative and quantitative relations of the ingredients vary within broad limits. The purpose of this work is a systematic investigation of the structure of sol-containing glassy materials depending on their composition using IR spectroscopy. 16 refs., 4 figs., 3 tabs

  2. Structural investigation of the ZnSe(001)-c(2×2) surface

    DEFF Research Database (Denmark)

    Weigand, W.; Müller, A.; Kilian, L.

    2003-01-01

    Zinc selenide is a model system for II-VI compound semiconductors. The geometric structure of the clean (001)-c(2x2) surface has recently been the subject of intense debate. We report here a surface x-ray-diffraction study on the ZnSe(001)-c(2x2) surface performed under ultrahigh vacuum using...

  3. Using leap motion to investigate the emergence of structure in speech and language.

    Science.gov (United States)

    Eryilmaz, Kerem; Little, Hannah

    2017-10-01

     In evolutionary linguistics, experiments using artificial signal spaces are being used to investigate the emergenceof speech structure. These signal spaces need to be continuous, non-discretized spaces from which discrete unitsand patterns can emerge. They need to be dissimilar from-but comparable with-the vocal tract, in order tominimize interference from pre-existing linguistic knowledge, while informing us about language. This is a hardbalance to strike. This article outlines a new approach that uses the Leap Motion, an infrared controller that canconvert manual movement in 3d space into sound. The signal space using this approach is more flexible than signalspaces in previous attempts. Further, output data using this approach is simpler to arrange and analyze. Theexperimental interface was built using free, and mostly open- source libraries in Python. We provide our sourcecode for other researchers as open source.

  4. A density functional theory investigation of the electronic structure and spin moments of magnetite

    KAUST Repository

    Noh, Junghyun

    2014-08-01

    We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts.

  5. Accurate molecular structure and spectroscopic properties for nucleobases: A combined computational - microwave investigation of 2-thiouracil as a case study

    Science.gov (United States)

    Puzzarini, Cristina; Biczysko, Malgorzata; Barone, Vincenzo; Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2015-01-01

    The computational composite scheme purposely set up for accurately describing the electronic structure and spectroscopic properties of small biomolecules has been applied to the first study of the rotational spectrum of 2-thiouracil. The experimental investigation was made possible thanks to the combination of the laser ablation technique with Fourier Transform Microwave spectrometers. The joint experimental – computational study allowed us to determine accurate molecular structure and spectroscopic properties for the title molecule, but more important, it demonstrates a reliable approach for the accurate investigation of isolated small biomolecules. PMID:24002739

  6. Experimental investigations of structure and dynamics of drift-wave turbulence in stellarator geometry

    International Nuclear Information System (INIS)

    Birkenmeier, Gregor

    2012-01-01

    For more than 60 years, fusion scientists try to confine a plasma by means of external magnetic fields in order to achieve appropriately high densities and temperatures for the ignition of nuclear fusion. Despite of great progress in the design of confinement concepts, which are considered for the confinement of burning plasmas in the near future, theoretical plasma physics promises further confinement improvements using novel magnetic field geometries. Therefor, the key is the minimization of turbulent transport by choosing appropiate magnetic field geometries, which necessitates a fundamental understanding of the influence of magnetic field geometry on plasma turbulence. There are several theoretical works on turbulent plasma dynamics in three-dimensional geometries, but only a few experimental studies for validation of the theoretical results exist. Hence, the present work aims at providing experimental data for comparison with theory and to gain insights into the interplay between drift-wave turbulence and magnetic field geometry. By means of two multi-probe arrays, local density and potential fluctuations are measured in low-temperature plasmas at 128 positions on a single flux surface of the stellarator TJ-K with high temporal resolution. Using methods of statistical timeseries analysis structure sizes and dynamic properties of the drift-wave turbulence in TJ-K are determined. Thereby, it is shown that the size of turbulent structures perpendicular to the magnetic field is reduced in regions of high absolute local magnetic shear. In addition, a poloidal displacement with respect to the magnetic field lines and a complex propagation pattern of parallelly extended turbulent structures is found. Also, poloidal profiles of turbulent transport are calculated from the probe data. The maximum transport is found to be poloidally localized in a region of negative normal curvature (unfavourable curvature). In addition, the results point to an influence of geodesic

  7. Numerical investigation of flow structure and pressure pulsation in the Francis-99 turbine during startup

    Science.gov (United States)

    Minakov, A.; Sentyabov, A.; Platonov, D.

    2017-01-01

    We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at startup regimes. Numerical technique for calculating of low frequency pressure pulsations in a water turbine is based on the use of DES (k-ω Shear Stress Transport) turbulence model and the approach of “frozen rotor”. The structure of the flow behind the runner of turbine was analysed. Shows the effect of flow structure on the frequency and intensity of non-stationary processes in the flow path. Two version of the inlet boundary conditions were considered. The first one corresponded measured time dependence of the discharge. Comparison of the calculation results with the experimental data shows the considerable delay of the discharge in this calculation. Second version corresponded linear approximation of time dependence of the discharge. This calculation shows good agreement with experimental results.

  8. EPR investigation into the structure of boron-containing quartz glasses

    International Nuclear Information System (INIS)

    Amosov, A.V.; Bushmarin, D.B.; Prokhorova, T.I.; Yudin, D.M.

    1975-01-01

    Certain properties of boron-containing quartz glasses and the nature of occurrence of boron in the glass lattice are studied as functions of the method of alloying. The formation of three types of borate structural nodes (BO 4 , BO 3 and BO 4 -BO 3 ) in the lattice of quartz glasses is established. Alloying by boron oxide up to 3% (weight) increases the crystallization stability of quartz glasses, lowers down tsub(g) from 1220 to 950 deg C and does not affect the coefficient of thermal expansion. Low symmetry of borate structural nodes, following from the analysis of EPR spectra, confirms the literature data concerning the low symmetry of glass-forming polyhedrons in a quartz glass

  9. Structural investigation of cell wall polysaccharides of Lactobacillus delbrueckii subsp. bulgaricus 17.

    Science.gov (United States)

    Vinogradov, E; Sadovskaya, I; Cornelissen, A; van Sinderen, D

    2015-09-02

    Lactobacilli are valuable strains for commercial (functional) food fermentations. Their cell surface-associated polysaccharides (sPSs) possess important functional properties, such as acting as receptors for bacteriophages (bacterial viruses), influencing autolytic characteristics and providing protection against antimicrobial peptides. The current report provides an elaborate molecular description of several surface carbohydrates of Lactobacillus delbrueckii subsp. bulgaricus strain 17. The cell surface of this strain was shown to contain short chain poly(glycerophosphate) teichoic acids and at least two different sPSs, designated here as sPS1 and sPS2, whose chemical structures were examined by 2D nuclear magnetic resonance spectroscopy and methylation analysis. Neutral branched sPS1, extracted with n-butanol, was shown to be composed of hexasaccharide repeating units (-[α-d-Glcp-(1-3)-]-4-β-l-Rhap2OAc-4-β-d-Glcp-[α-d-Galp-(1-3)]-4-α-Rhap-3-α-d-Galp-), while the major component of the TCA-extracted sPS2 was demonstrated to be a linear d-galactan with the repeating unit structure being (-[Gro-3P-(1-6)-]-3-β-Galf-3-α-Galp-2-β-Galf-6-β-Galf-3-β-Galp-). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Investigation of the structure and localization of the urease of Helicobacter pylori using monoclonal antibodies.

    Science.gov (United States)

    Hawtin, P R; Stacey, A R; Newell, D G

    1990-10-01

    The urease of Helicobacter pylori (formerly Campylobacter pylori) has been partly purified by fast protein liquid chromatography. This material contained 10 nm doughnut-like structures when examined by electron microscopy and comprised three major polypeptides (61 kDa, 56 kDa and 28 kDa). Only two of these polypeptides (61 kDa and 28 kDa) were observed in urease-containing material isolated by preparative non-denatured PAGE. Monoclonal antibodies (mAbs) were produced which were directed against two of these polypeptides (56 kDa and 28 kDa). Only mAbs directed against the 28 kDa polypeptide inhibited or captured urease activity. These results suggest that the 56 kDa polypeptide is not essential for enzyme activity. Anti-urease mAbs were used in an indirect immunogold technique to localize the enzyme at the ultrastructural level. In both prefixed bacteria and ultrathin cryosectioned bacteria the enzyme was located on the cell surface and in material apparently shed from that surface.

  11. An Investigation of Structure, Flexibility, and Function Variables that Discriminate Asymptomatic Foot Types.

    Science.gov (United States)

    Shultz, Sarah P; Song, Jinsup; Kraszewski, Andrew P; Hafer, Jocelyn F; Rao, Smita; Backus, Sherry; Hillstrom, Rajshree M; Hillstrom, Howard J

    2017-07-01

    It has been suggested that foot type considers not only foot structure (high, normal, low arch), but also function (overpronation, normal, oversupination) and flexibility (reduced, normal, excessive). Therefore, this study used canonical regression analyses to assess which variables of foot structure, function, and flexibility can accurately discriminate between clinical foot type classifications. The feet of 61 asymptomatic, healthy adults (18-77 years) were classified as cavus (N = 24), rectus (N = 54), or planus (N = 44) using standard clinical measures. Custom jigs assessed foot structure and flexibility. Foot function was assessed using an emed-x plantar pressure measuring device. Canonical regression analyses were applied separately to extract essential structure, flexibility, and function variables. A third canonical regression analysis was performed on the extracted variables to identify a combined model. The initial combined model included 30 extracted variables; however 5 terminal variables (malleolar valgus index, arch height index while sitting, first metatarsophalangeal joint laxity while standing, pressure-time integral and maximum contact area of medial arch) were able to correctly predict 80.7% of foot types. These remaining variables focused on specific foot characteristics (hindfoot alignment, arch height, midfoot mechanics, Windlass mechanism) that could be essential to discriminating foot type.

  12. Coordinated experimental/analytical program for investigating margins to failure of Category I reinforced concrete structures

    International Nuclear Information System (INIS)

    Endebrock, E.; Dove, R.; Anderson, C.A.

    1981-01-01

    The material presented in this paper deals with a coordinated experimental/analytical program designed to provide information needed for making margins to failure assessments of seismic Category I reinforced concrete structures. The experimental program is emphasized and background information that lead to this particular experimental approach is presented. Analytical tools being developed to supplement the experimental program are discussed. 16 figures

  13. Synthesis, X-ray structure and theoretical investigation of 2-(2 ...

    Indian Academy of Sciences (India)

    {Co(DMF)(BQ)Cl₂} and {Mn(DMF)(BQ)Cl₂} crystallized in triclinic space group P-1. The metal(II) environment exhibits trigonal bipyramidal coordination. These complexes show presence of N–H. . .Cl, C–H...Cl hydrogen bonds and strong intramolecular C–H...O interactions. The structure parameters were calculated and ...

  14. Investigation of Concrete Structures in Serviceability Limit State Using Energy Principles

    DEFF Research Database (Denmark)

    Hagsten, Lars German; Fisker, Jakob

    2013-01-01

    In this paper, a method concerning analysis of reinforced concrete structures in the serviceability limit state (SLS) is discussed. The method is based on elastic energy principles, combined with simple assumptions with respect to concrete mechanics. This approach allows for a direct implementation...

  15. Investigation of Ba2–xSrxTiO4: Structural aspects and dielectric ...

    Indian Academy of Sciences (India)

    SrTiO4 (0 ≤ ≤ 2), show that pure phases exist only for the end members, Ba2TiO4 and Sr2TiO4, crystallizing in the -K2SO4 and K2NiF4 structures, respectively. The intermediate compositions (till ≤ 1) lead to a biphasic mixture of ...

  16. A Case Investigation of Product Structure Complexity in Mass Customization Using a Data Mining Approach

    DEFF Research Database (Denmark)

    Nielsen, Peter; Brunø, Thomas Ditlev; Nielsen, Kjeld

    2014-01-01

    Apriori, can support the development within the three fundamental mass customization capabilities. The results of the Apriori analysis can be utilized for improving the configuration process by introducing soft constraints and consolidating the product structure by joining components or modules...... and finally for improving production planning and control....

  17. Structural investigation of endoglucanase 2 from the filamentous fungus Penicillium verruculosum

    Science.gov (United States)

    Vakhrusheva, A. V.; Nemashkalov, V. A.; Kravchenko, O. V.; Tishchenko, S. V.; Gabdulkhakov, A. G.; Kljashtorny, V. G.; Korotkova, O. G.; Gusakov, A. V.; Sinitsyn, A. P.

    2017-03-01

    Enzyme additives capable of degrading non-starch polysaccharides of cereal cell walls, which are major ingredients used in animal feed, can improve the efficiency of livestock production. Non-starch polysaccharides have antinutritional properties that interfere with efficient digestion and assimilation of nutrients by animals. Therefore, the improvement of the properties and characteristics of enzyme additive is an important issue. The three-dimensional structure of one of the key industrial enzymes involved in the degradation of non-starch polysaccharides — endoglucanase 2 from the filamentous fungus Penicillium verruculosum — was determined (PDB ID: 5I6S). The catalytic site of this enzyme was established. Based on the enzyme structure, it was suggested that the pH optimum of the enzyme activity can be shifted from acidic to neutral or alkaline pH values.

  18. Structural investigation of molten fluorides of nuclear interest by NMR and XAFS spectroscopies

    International Nuclear Information System (INIS)

    Pauvert, Olivier

    2009-01-01

    In the frame of the renewal of the different nuclear plans, the molten salt reactor is one of the six concepts of reactors of 4. generation. This reactor has the particularity to use a liquid fuel based on LiF-ThF 4 mixtures. In order to develop and to optimize this concept, it is important to characterize the structure of the melt and to describe its physical and chemical properties. Our work has been based on the study of the system MF-ZrF 4 (M = Li, Na, K) selected as a model of ThF 4 based systems. We have combined two spectroscopic techniques, the Nuclear Magnetic Resonance and the X-ray Absorption at high temperature, with molecular dynamics calculations. We particularly focused on the local environments of the fluorine and the zirconium. In order to interpret the NMR data obtain in the molten state, we performed a preliminary study on zirconium halides and rare earth and alkali fluoro zirconates using the 91 Zr solid-state NMR at very high magnetic fields. New correlations between structural parameters and NMR data have been established. At high temperature, in MF-ZrF 4 melts we have shown the coexistence of three different kind of Zr-based complexes with different proportions depending on the amount of ZrF 4 and on the nature of the alkali. Depending on the ZrF 4 content, three kinds of fluorine have been characterized: form free fluorines at low amount of zirconium fluorides, fluorines involved in Zr-based complexes and bridging fluorines at higher ZrF 4 content. This original and innovative approach of molten fluorides mixtures, combining NMR and EXAFS at high temperature with molecular dynamics calculations, is very efficient to describe their speciation and thus their fluoro-acidity. (author)

  19. Structural study and investigation of NMR tensors in interaction of dopamine with Adenine and guanine

    Directory of Open Access Journals (Sweden)

    Lingjia Xu

    2007-04-01

    Full Text Available The interaction of dopamine with adenine and guanine were studied at the Hartree-Fock level theory. The structural and vibrational properties of dopamine-4-N7GUA and dopamine-4-N3ADE were studied at level of HF/6-31G*. Interaction energies (ΔE were calculated to be -11.49 and -11.92 kcal/mol, respectively. Some of bond lengths, angels and tortions are compared. NBO studies were performed to the second-order and perturbative estimates of donor-acceptor interaction have been done. The procedures of gauge-invariant atomic orbital (GIAO and continuous-set-of-gauge-transformation (CSGT were employed to calculate isotropic shielding, chemical shifts anisotropy and chemical shifts anisotropy asymmetry and effective anisotropy using 6-31G* basis set. These calculations yielded molecular geometries in good agreement with available experimental data.

  20. Investigation of energy spectrum structure in a system atom + strong external electromagnetic field

    International Nuclear Information System (INIS)

    Volkova, E.A.; Popov, A.M.; Tikhonova, O.V.

    1996-01-01

    Method of direct numerical integration of nonstationary Schroedinger equation is used for investigation into dynamics of quantum system with short-range potential under the cooperative effect of high-frequency electromagnetic field with super atomic value of intensity and low-frequency field with low radiation intensity

  1. An investigation on the population structure of mixed infections of Mycobacterium tuberculosis in Inner Mongolia, China.

    Science.gov (United States)

    Wang, Xiaoying; Liu, Haican; Wei, Jianhao; Wu, Xiaocui; Yu, Qin; Zhao, Xiuqin; Lyu, Jianxin; Lou, Yongliang; Wan, Kanglin

    2015-12-01

    Mixed infections of Mycobacterium tuberculosis strains have attracted more attention due to their increasing frequencies worldwide, especially in the areas of high tuberculosis (TB) prevalence. In this study, we accessed the rates of mixed infections in a setting with high TB prevalence in Inner Mongolia Autonomous Region of China. A total of 384 M. tuberculosis isolates from the local TB hospital were subjected to mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing method. The single clones of the strains with mixed infections were separated by subculturing them on the Löwenstein-Jensen medium. Of these 384 isolates, twelve strains (3.13%) were identified as mixed infections by MIRU-VNTR. Statistical analysis indicated that demographic characteristics and drug susceptibility profiles showed no statistically significant association with the mixed infections. We further subcultured the mixed infection strains and selected 30 clones from the subculture for each mixed infection. Genotyping data revealed that eight (8/12, 66.7%) strains with mixed infections had converted into single infection through subculture. The higher growth rate was associated with the increasing proportion of variant subpopulation through subculture. In conclusion, by using the MIRU-VNTR method, we demonstrate that the prevalence of mixed infections in Inner Mongolia is low. Additionally, our findings reveal that the subculture changes the population structures of mixed infections, and the subpopulation with higher growth rate show better fitness, which is associated with high proportion among the population structure after subculture. This study highlights that the use of clinical specimens, rather than subcultured isolates, is preferred to estimate the prevalence of mixed infections in the specific regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Investigations of glass structure using fluorescence line narrowing and moleuclar dynamics simulations

    International Nuclear Information System (INIS)

    Weber, M.J.; Brawer, S.A.

    1982-01-01

    The local structure at individual ion sites in simple and multicomponent glasses is simulated using methods of molecular dynamics. Computer simulations of fluoroberyllate glasses predict a range of ion separations and coordination numbers that increases with increasing complexity of the glass composition. This occurs at both glass forming and glass modifying cation sites. Laser-induced fluorescence line-narrowing techniques provide a unique probe of the local environments of selected subsets of ions and are used to measure site to site variations in the electronic energy levels and transition probabilities of rare earth ions. These and additional results from EXAFS, neutron and x-ray diffraction, and NMR experiments are compared with simulated glass structures

  3. A DSC investigation on the changes in pore structure of skin during leather processing

    International Nuclear Information System (INIS)

    Fathima, N. Nishad; Kumar, M. Pradeep; Rao, J. Raghava; Nair, B.U.

    2010-01-01

    Leather processing involves many unit operations that modify the physical, chemical and biological properties of the raw skin/hide of an animal. One such major variation is brought to pore structure and size, which determines the breathing property of skin. Understanding this property is essential to improve the end use of the leather matrix. Thermoporometric technique has been used in this study to bring out the influence of various process steps on the pore size distribution of skin. Marked changes in the depression of freezing point are observed for each process. Scanning electron microscopy study reveals the morphological changes in the grain and cross-section of the skin during leather processing. Understanding and predictions of pore structure changes at various stages of leather processing would benefit: (a) in process control, (b) analysis of cost benefit ratio and (c) strategic planning and transport. Thus, this study aids in better understanding of the pore structure of skin to improve the functional properties of the leather.

  4. Investigation of dynamic influence of rolling stock for the track structure

    Directory of Open Access Journals (Sweden)

    Nozhenko E.S.

    2016-08-01

    Full Text Available Are presented the results of experimental studies to evaluate the dynamic impact of rolling stock wheels with defects in the track structure. Was accomplished of evaluation the impact of movement speeds in the range of 10 to 40 km/h and loading of rolling stock on the edge stresses in the rails, and acceleration of the rail, were compared results of statistical processing of the measured data to determine the maximum permissible level of acceleration of the rails. Was analyzed the influence of defects of various sizes on the value of stresses in the rails and accelerations of rails. It revealed a monotonic increase of the maximum probability values of rail acceleration when passing a locomotive and wagon, regardless of how load the wagon, unlike the stresses in the edges of the rails, which do not depend on the speed in the test speed range. It was found that only in the value of the maximum possible value of the rail edge stresses for the empty wagon can not be detected the defects of wheel with using only the statistical methods, in the same time is presented the anomaly in the values of acceleration of the rail in the records of the empty wagon.

  5. Investigating fundamental properties of wind turbine wake structure using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Whale, J. [Univ. of Edinburgh, Dept. of Mechanical Engineering, Edinburgh (United Kingdom)

    1997-08-01

    Low Reynolds number flow visualization tests are often used for showing the flow pattern changes associated with changes in lift-coefficients at a higher Reynolds number. In wind turbine studies, analysis of measured wake structures at small scale may reveal fundamental properties of the wake which will offer wake modellers a more complete understanding of rotor flows. Measurements are presented from experiments on a model wind turbine rig conducted in a water channel. The laser-optics technique of Particle Image Velocimetry (PIV) is used to make simultaneous multi-point measurements of the wake flow behind small-scale rotors. Analysis of the PIV data shows trends in velocity and vorticity structure in the wake. Study of the flow close to the rotor plane reveals information on stalled flow and blade performance. (au)

  6. Investigation of the Degree of Disorder of the Structure of Polymer Soft Contact Lenses Using Positron Annihilation Lifetime Spectroscopy PALS.

    Science.gov (United States)

    Filipecki, Jacek; Kotynia, Katarzyna; Filipecka, Katarzyna

    2016-01-01

    Hydrogel and silicone-hydrogel polymeric materials are widely used in ophthalmology for the manufacture of contact lenses. An important aspect is the investigation of the structure of these materials. This study has been conducted in order to compare the degree of disorder and presence of free volumes in the internal structure of the polymeric soft contact lenses Omafilcon A (hydrogel) and Comfilcon A (silicone-hydrogel). Differences in the occurrence of trapping centers for positrons and free volumes between the types of investigated contact lenses have been demonstrated. Two types of polymeric contact lenses were used as materials: Omafilcon A (hydrogel) and Comfilcon A (silicone-hydrogel). The study was performed using positron annihilation lifetime spectroscopy (PALS). When the results of the measurements has been obtained, a graphical curve has created to describe the relationship of the number of annihilation acts in time. Significant changes were observed between the contact lenses investigated in positron trapping in macropores (based on a two-state model) and the presence of free volumes (based on the Tao-Eldrup model). The use of the positron annihilation two-state model made it possible to demonstrate that a higher positron trapping rate in macropores occurs in the silicone-hydrogel contact lens. Additionally, calculations using the Tao-Eldrup model show the existence of free volumes in both types of materials. The size and fraction of free volumes is much larger in the silicone-hydrogel contact lens.

  7. Investigation of temperature dependence of muonic X-ray spectra structure in silicon and vanadium oxides

    International Nuclear Information System (INIS)

    Andreeff, A.; Evseev, V.S.; Minkova, A.; Ortlepp, H.-G.; Roganov, V.S.; Rybakov, V.N.; Sabirov, B.M.; Fromm, W.

    1979-01-01

    To study the influence of matter macroscopic properties on the negative muon atomic capture the muonic X-ray spectra have been measured from silicon at 77 deg and 295 deg, from VO 2 at 295 deg and 355 deg, and from V 2 O 3 at 77 deg and 295 deg using a Ge(Li) spectrometer 55 cm 3 in volume and ''on-line'' technique. It is shown that neither changes of a conductivity in all targets, nor a rebuilding of both vanadium oxydes crystal structure at phase transition does not cause any alteration in muonic X-ray spectrum. The obtained results are discussed in terms of a ''time pit''

  8. Theoretical investigation of the electronic structures and carrier transport of hybrid graphene and boron nitride nanostructure

    Directory of Open Access Journals (Sweden)

    Jia-Tao Sun

    2012-09-01

    graphene and hexagonal boron nitride (C-BN nanostructures receive much research interest due to the complementary electronic properties. Graphene is a zero-gap semiconductor, while hexagonal boron nitride (h-BN is a wide gap semiconductor. Here we studied the electronic structures and carrier transport of hybrid C-BN nanostructures by using first principles calculations and deformation potential theory. We have found that the physical quantities in these systems under study, band gap, effective mass, deformation potential, and carrier mobility, can be categorised into three different families depending on the width of graphene nanoribbon. This family behavior is similar to pristine armchair graphene nanoribbon, but with slight difference from the individual component. New opportunities of designing nanoelectric devices are discussed by utilizing the quantum confinement effect based on such kind of hybrid nanostructures.

  9. Investigation of structural, optical, magnetic and electrical properties of tungsten doped Nisbnd Zn nano-ferrites

    Science.gov (United States)

    Pathania, Abhilash; Bhardwaj, Sanjay; Thakur, Shyam Singh; Mattei, Jean-Luc; Queffelec, Patrick; Panina, Larissa V.; Thakur, Preeti; Thakur, Atul

    2018-02-01

    Tungsten substituted nickel-zinc ferrite nanoparticles with chemical composition of Ni0.5Zn0.5WxFe2-xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 & 1.0) were successfully synthesized by a chemical co-precipitation method. The prepared ferrites were pre sintered at 850 °C and then annealed at 1000 °C in a muffle furnace for 3 h each. This sintered powder was inspected by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM) to study the structural, optical, and magnetic properties. XRD measurement revealed the phase purity of all the nanoferrite samples with cubic spinel structure. The estimated crystallite size by X-ray line broadening is found in the range of 49-62 nm. FTIR spectra of all the samples have observed two prominent absorption bands in the range 400-700 cm-1 arising due to tetrahedral and octahedral stretching vibrations. Vibrating sample magnetometer experiments showed that the saturation magnetizations (MS) decreased with an increase in non-magnetic tungsten ion doping. The electrical resistivity of tungsten doped Nisbnd Zn nano ferrites were examined extensively as a function of temperature. With an increase in tungsten composition, resistivity was found to decrease from 2.2 × 105 Ω cm to 1.9 × 105 Ω cm which indicates the semiconducting behavior of the ferrite samples. The activation energy also decreased from 0.0264 to 0.0221 eV at x = 0.0 to x = 1.0. These low coercive field tungsten doped Nisbnd Zn ferrites are suitable for hyperthermia and sensor applications. These observations are explained in detail on the basis of various models and theories.

  10. Investigating the wetting behavior of a surface with periodic reentrant structures using integrated microresonators

    Science.gov (United States)

    Klingel, S.; Oesterschulze, E.

    2017-08-01

    The apparent contact angle is frequently used as an indicator of the wetting state of a surface in contact with a liquid. However, the apparent contact angle is subject to hysteresis that depends furthermore strongly on both the material properties and the roughness and structure of the sample surface. In this work, we show that integrated microresonators can be exploited to determine the wetting state by measuring both the frequency shift caused by the hydrodynamic mass of the liquid and the change in the quality factor as a result of damping. For this, we integrated electrically driven hybrid bridge resonators (HBRs) into a periodically structured surface intended for wetting experiments. We could clearly differentiate between the Wenzel state and the Cassie-Baxter state because the resonant frequency and quality factor of the HBR changed by over 35% and 40%, respectively. This offers the capability to unambiguously distinguish between the different wetting states.

  11. Structural Investigation of Rapidly Quenched FeCoPtB Alloys

    International Nuclear Information System (INIS)

    Grabias, A.; Kopcewicz, M.; Latuch, J.; Oleszak, D.

    2011-01-01

    Two sets of Fe 52-x Co x Pt 28 B 20 (x = 0-26 at.%) and Fe 60-x Co x Pt 25 B 15 (x = 0-40 at.%) alloys were prepared in the form of ribbons by the rapid quenching technique. Structure of the samples was characterized by Moessbauer spectroscopy and X-ray diffraction. In the as-quenched alloys the amorphous phase coexisted with the fcc-(Fe,Co)Pt disordered solid solution. Differential scanning calorimetry measurements performed in the range 50-720 ± C revealed one or two exothermal peaks. The magnetically hard ordered L1 0 (Fe,Co)Pt and magnetically soft (Fe,Co) 2 B nanocrystalline phases were formed due to thermal treatment of the alloys. The influence of Co content on the structure of the as-quenched and heated alloys was studied. (authors)

  12. Investigation of Short Channel Effect on Vertical Structures in Nanoscale MOSFET

    Directory of Open Access Journals (Sweden)

    Munawar A. Riyadi

    2009-12-01

    Full Text Available The recent development of MOSFET demands innovative approach to maintain the scaling into nanoscale dimension. This paper focuses on the physical nature of vertical MOSFET in nanoscale regime. Vertical structure is one of the promising devices in further scaling, with relaxed-lithography feature in the manufacture. The comparison of vertical and lateral MOSFET performance for nanoscale channel length (Lch is demonstrated with the help of numerical tools. The evaluation of short channel effect (SCE parameters, i.e. threshold voltage roll-off, subthreshold swing (SS, drain induced barrier lowering (DIBL and leakage current shows the considerable advantages as well as its thread-off in implementing the structure, in particular for nanoscale regime.

  13. Investigating Information Structure of Phishing Emails Based on Persuasive Communication Perspective

    Directory of Open Access Journals (Sweden)

    Ki Jung Lee

    2007-09-01

    Full Text Available Current approaches of  phishing filters depend on classifying messages based on textually discernable features such as IP-based URLs or domain names as those features that can be easily extracted from a given phishing message. However, in the same sense, those easily perceptible features can be easily manipulated by sophisticated phishers. Therefore, it is important that universal patterns of phishing messages should be identified for feature extraction to serve as a basis for text classification. In this paper, we demonstrate that user perception regarding phishing message can be identified in central and peripheral routes of information processing. We also present a method of formulating quantitative model that can represent persuasive information structure in phishing messages. This paper makes contribution to phishing classification research by presenting the idea of universal information structure in terms of persuasive communication theories.

  14. Experimental investigation of the nature of the magnetoresistance effects in Pd-YIG hybrid structures.

    Science.gov (United States)

    Lin, Tao; Tang, Chi; Alyahayaei, Hamad M; Shi, Jing

    2014-07-18

    In bilayers consisting of Pd and yttrium iron garnet (Y(3)Fe(5)O(12) or YIG), we observe vanishingly small room-temperature conventional anisotropic magnetoresistance but large new magnetoresistance that is similar to the spin Hall magnetoresistance previously reported in Pt-YIG bilayers. We report a temperature dependence study of the two magnetoresistance effects in Pt-YIG bilayers. As the temperature is decreased, the new magnetoresistance shows a peak, whereas the anisotropic magnetoresistance effect starts to appear and increases monotonically. We find that the magnetoresistance peak shifts to lower temperatures in thicker Pd samples, a feature characteristic of the spin current effect. The distinct temperature dependence reveals fundamentally different mechanisms responsible for the two effects in such hybrid structures.

  15. Development and internal structure investigation of the Dimensional Clinical Personality Inventory

    Directory of Open Access Journals (Sweden)

    Lucas de Francisco Carvalho

    2015-06-01

    Full Text Available This study aimed to develop a dimensional instrument to assess personality disorders based on Millon's theoretical perspective and on DSM-IV-TR diagnoses criteria, and seek validity evidence based on internal structure and reliability indexes of the factors. In order to do that, a self-report test composed of 215 items, the Dimensional Clinical Personality Inventory (DCPI was developed and applied to 561 respondents aged between 18 and 90 years (M = 28,8; SD = 11.4, with 51.8% females. Exploratory factor analysis and verification of reliability were performed using Cronbach's alpha. Data provided validity evidence based on internal structure of the instrument according to the theory of Millon and DSM-IV-TR.

  16. Investigating and evaluating the influcence of supply chain structure on supply chain risk

    Directory of Open Access Journals (Sweden)

    Sayed, Zehran

    2016-11-01

    Full Text Available Supply chains are exposed to disruptions resulting from internal or external factors that hinder the performance of one or more of their constituent entities. An exploratory study was conducted to determine whether supply chain structure (SCS influences supply chain risk (SCR, in the context of small and medium enterprises (SMEs in South Africa. Thematic content analysis was applied to the case data of four Gauteng-based manufacturing SMEs (SMMEs, and summarised in a literature-developed, conceptual structure-risk framework. Results indicate that SCS does influence SCR. Investment in facility infrastructure and supplier relationships appear to be the most influential features. SCS also affects the operational and financial risk of an enterprise. These risks drive the SMEs’ strategy and reputation, and consequently drive the corresponding risk dimensions (i.e., strategic and reputation risks. These findings are limited, and should not be generalised to all South African SMEs.

  17. In Situ XRD Investigations on Structural Change of P2-Layered Materials during Electrochemical Sodiation/Desodiation

    DEFF Research Database (Denmark)

    Jung, Young Hwa; Johnsen, Rune E.; Christiansen, Ane Sælland

    2014-01-01

    , No.194), which is identical to P2-layered structure. The structural changes in hexagonal P2-layered oxides have been investigated during electrochemical sodiation/desodiation by in-situ synchrotron X-ray diffractions of a capillary based micro battery cell. From the result of in-situ studies......; as a result, rich experiences for structural studies of O3-layered compounds have been accumulated over the past decades. For sodium layered oxides, however, P2-layered compounds have been reported for better cyclability and structural stability during electrochemical reactions than O3-structure. Therefore......Sodium layered oxides (NaxMO2) are attractive as positive electrode materials for rechargeable sodium-ion batteries (SIBs) due to high capacity, fast ionic diffusion and simple synthetic process. O3-layered lithium compounds have led successful commercialization of current lithium-ion batteries...

  18. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1993-01-01

    This is a progress report on activities of the Washington University group in nuclear reaction studies for the period Sept 1, 1992 to Aug 31, 1993. This group has a research program which touches five areas of nuclear physics: nuclear structure studies at high spin; studies at the interface between structure and reactions; production and study of hot nuclei; reaction mechanism studies; development and use of novel techniques and instrumentation in the above areas of research. Specific activities of the group include in part: superdeformation in 82 Sr; structure of and identical bands in 182 Hg and 178 Pt; a highly deformed band in 136 Pm; particle decay of the 164 Yb compound nucleus; fusion reactions; proton evaporation; two-proton decay of 12 O; modeling and theoretical studies; excited 16 O disassembly into four alpha particles; 209 Bi + 136 Xe collisions at 28.2 MeV/amu; and development work on 4π solid angle gamma detectors, and x-ray detectors

  19. Investigation of impact phenomena on the marine structures: Part I - On the behaviour of thin-walled double bottom tanker during rock-structure interaction

    Science.gov (United States)

    Prabowo, A. R.; Cho, H. J.; Byeon, J. H.; Bae, D. M.; Sohn, J. M.

    2018-01-01

    Predicted loads, such as crew, cargo, and structure have been applied as main inputs during ship design and analysis. However, unexpected events on the sea has high possibility to deliver remarkable losses for ship, industry, and environment. Previous oil spill incident by the Exxon Valdez in Alaska is the perfect example which an environmental damage and industry loss are initiated by an impact phenomenon on the ship, i.e. grounding. Even though hull arrangement has adopted double hull system, grounding may threaten ship safety in various scenarios. This situation pushes society to demand sustainable investigation for impact phenomena on water transportation mode to update understanding in the phenomenon and ensure structural safety during ship operation. This work aimed to study structural behaviour of chemical tanker as a marine structure under impact, namely ship grounding. Bottom raking case was considered to be calculated by virtual experiment. The study was performed using nonlinear finite element (FE) method and an idealised geometry of seabed rock would be deployed to be hard obstruction. Observation on the selected crashworthiness criteria, i.e. internal energy and crushing force indicated that as advanced penetration occurred on the ship structure, the absorbed strain energy continued to increase, while major fluctuation appeared during the initial contact between obstruction and ship happened. Damage extent of several structural members during the crushing process was shown, which concluded that the bottom plating had the largest severity in forms of tearing mode among of all members on the bottom structure.

  20. Investigating the Predictive Role of Authenticity on Subjective Vitality with Structural Equation Modelling

    Science.gov (United States)

    Akin, Umran; Akin, Ahmet

    2014-01-01

    Authenticity is a basic personality characteristic that has an important influence on both the psychological and social lives of individuals. Subjective vitality also assumes a facilitative role regarding positive mental health indicators. Therefore, the purpose of this study is to investigate the predictive role of authenticity on subjective…

  1. Investigating the Structural Relationship for the Determinants of Cloud Computing Adoption in Education

    Science.gov (United States)

    Bhatiasevi, Veera; Naglis, Michael

    2016-01-01

    This research is one of the first few to investigate the adoption and usage of cloud computing in higher education in the context of developing countries, in this case Thailand. It proposes extending the technology acceptance model to integrate subjective norm, perceived convenience, trust, computer self-efficacy, and software functionality in…

  2. Experimental and statistical investigation of the compressive strength anisotropy in structural concrete

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Lauridsen, Jørgen Trankjær; Hoang, Linh Cao

    2018-01-01

    This paper offers a new and closer look into the strength anisotropy of concrete by presenting the so far largest experimental programme (290 tests) and by presenting an advanced statistical analysis of the results. The experimental investigation sheds light on the influence of several important...

  3. Structural and functional investigations of biological catalysts for optimization of solar-driven H II production systems

    Science.gov (United States)

    King, Paul W.; Svedruzic, Drazenka; Cohen, Jordi; Schulten, Klaus; Seibert, Michael; Ghirardi, Maria L.

    2006-08-01

    Research efforts to develop efficient systems for H II production encompass a variety of biological and chemical approaches. For solar-driven H II production we are investigating an approach that integrates biological catalysts, the [FeFe] hydrogenases, with a photoelectrochemical cell as a novel bio-hybrid system. Structurally the [FeFe] hydrogenases consist of an iron-sulfur catalytic site that in some instances is electronically wired to accessory iron-sulfur clusters proposed to function in electron transfer. The inherent structural complexity of most examples of these enzymes is compensated by characteristics desired for bio-hybrid systems (i.e., low activation energy, high catalytic activity and solubility) with the benefit of utilizing abundant, less costly non-precious metals. Redesign and modification of [FeFe] hydrogenases is being undertaken to reduce complexity and to optimize structural properties for various integration strategies. The least complex examples of [FeFe] hydrogenase are found in the species of photosynthetic green algae and are being studied as design models for investigating the effects of structural minimization on substrate transfer, catalytic activity and oxygen sensitivity. Redesigning hydrogenases for effective use in bio-hybrid systems requires a detailed understanding of the relationship between structure and catalysis. To achieve better mechanistic understanding of [FeFe] hydrogenases both structural and dynamic models are being used to identify potential substrate transfer mechanisms which are tested in an experimental system. Here we report on recent progress of our investigations in the areas of [FeFe] hydrogenase overexpression, minimization and biochemical characterization.

  4. Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil

    Science.gov (United States)

    Wu, Qin; Huang, Biao; Wang, Guoyu

    2016-02-01

    The objective of this paper is to address the transient flow structures around a pitching hydrofoil by combining physical and numerical studies. In order to predict the dynamic behavior of the flow structure effectively, the Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) are utilized under the framework of Navier-Stokes flow computations. In the numerical simulations, the k-ω shear stress transport (SST) turbulence model, coupled with a two-equation γ {-Re}_θ transition model, is used for the turbulence closure. Results are presented for a NACA66 hydrofoil undergoing slowly and rapidly pitching motions from 0° to 15° then back to 0° at a moderate Reynolds number Re=7.5× 105. The results reveal that the transient flow structures can be observed by the LCS method. For the slowly pitching case, it consists of five stages: quasi-steady and laminar, transition from laminar to turbulent, vortex development, large-scale vortex shedding, and reverting to laminar. The observation of LCS and Lagrangian particle tracers elucidates that the trailing edge vortex is nearly attached and stable during the vortex development stage and the interaction between the leading and trailing edge vortex caused by the adverse pressure gradient forces the vortexes to shed downstream during the large-scale vortex shedding stage, which corresponds to obvious fluctuations of the hydrodynamic response. For the rapidly pitching case, the inflection is hardly to be observed and the stall is delayed. The vortex formation, interaction, and shedding occurred once instead of being repeated three times, which is responsible for just one fluctuation in the hydrodynamic characteristics. The numerical results also show that the FTLE field has the potential to identify the transient flows, and the LCS can represent the divergence extent of infinite neighboring particles and capture the interface of the vortex region.

  5. Investigation on the geological structures obstructing the propagation of seismic waves - Based on physical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Yul; Hyun, Hye ja; Kim, Yoo Sung [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    In petroleum exploration seismic reflection method is by far the most widely used. The resulting seismogram or seismic trace consists of many wavelets with different strengths and arrival times, due to the wavefront that have traveled different source-to receiver paths. In this sense, the seismic trace may be represented as a convolution of a wavelet with an impulse response denoting the various wavelet amplitudes and arrival times present in the trace. However, the wavelet suffers different attenuations while traveling through the earth layers. For example, the weathered layer (near-surface structure : e.g. valley) affect the propagating seismic wave in ways that cannot be simply modeled, but rather described in terms of an overall time delay and significant distortion of the source wavelet as it travels downward. Of course, the weathered layer will also affect the upgoing wave. Thus, the reflection method does not always lead to a desirable resolution in reflection section, because some specific constraints on the illumination of the deeper reflectors can be often imposed by the near-surface effect. Among other things, the mechanism for attenuation in many types of rocks is not very well understood. The present work is then mostly focussed on studying problems of wave propagation especially dealing with the near-surface structure problem by using physical modeling. An attempt was made to compare the measured data in detail with those from numerical method (ray theory). Besides, various kinds of physical models were additionally built to simulate the complex geological structures comprising wavy layer, coal seam structure, absorbing inhomogeneities, gradient layer that are not simply amenable to theory. Hereby, an attention was given on the reflection and transmission responses. The results illustrated in this work will provide a basis for the future oil exploration in Korea and demonstrate the potential of physical modeling as well. (author). 7 refs., 4 tabs., 62

  6. Seismic Investigations of the Crust and Upper Mantle Structure in Antarctica and Madagascar

    Science.gov (United States)

    Ramirez, Cristo

    In the three studies that form this dissertation, seismic data from Antarctica and Madagascar have been analyzed to obtain new insights into crustal structure and mantle flow. Until recently, there have been little seismic data available from these areas for interrogating Earth structure and processes. In Antarctica, I analyzed datasets from temporary deployments of broadband seismic stations in both East and West Antarctica. In Madagascar, I analyzed data from a temporary network of broadband stations, along with data from three permanent stations. The seismic data have been processed and modeled using a wide range of techniques to characterize crust and mantle structure. Crustal structure in the East Antarctic Craton resembles Precambrian terrains around the world in its thickness and shear wave velocities. The West Antarctic Rift System has thinner crust, consistent with crustal thickness beneath other Cretaceous rifts. The Transantarctic Mountains show thickening of the crust from the costal regions towards the interior of the mountain range, and high velocities in the lower crust at several locations, possibly resulting from the Ferrar magmatic event. Ross Island and Marie Byrd Land Dome have elevated crustal Vp/Vs ratios, suggesting the presence of partial melt and/or volcaniclastic material within the crust. The pattern of seismic anisotropy in Madagascar is complex and cannot arise solely due to mantle flow from the African superplume, as previously proposed. To explain the complex pattern of anisotropy, a combination of mechanisms needs to be invoked, including mantle flow from the African superplume, mantle flow from the Comoros hotspot, small scale upwelling in the mantle induced by lithospheric delamination, and fossil anisotropy in the lithospheric mantle along Precambrian shear zones.

  7. An Investigation of Concrete Deterioration at South Florida Water Management District Structure S65E

    Science.gov (United States)

    2014-02-01

    models were run using PHREEQC v. 2.17 (Parkhurst and Appelo 1999 and subsequent updates) to evaluate how surface water interacts geochemically with...siliceous sediments, whereas the L-8 Basin consists of carbonates and carbonate-cemented silicate sands. Results of PHREEQC geochemical water-rock...biodeterioration in Texas bridge structure. ERDC/GSL TR-14-4 31 References Parkhurst, D. L., and C. A. J. Appelo. 1999. User’s guide to PHREEQC

  8. Transformational leadership and change readiness and a moderating role of perceived bureaucratic structure: an empirical investigation

    OpenAIRE

    Badri Abbasi

    2017-01-01

    The purpose of this study was to examine the relationship between transformational leadership and change readiness through perceived bureaucratic structure among government employees in Rasht. As a methodology, descriptive method was applied using questionnaire to collect data. The studied population consisted of 600 employees from three state organizations including Municipality, Gilan Tax Department and Gilan Justice Court. According to Morgan table, the sample size was estimated at 234. Th...

  9. Complementarity of real-time neutron and synchrotron radiation structural investigations in molecular biology

    International Nuclear Information System (INIS)

    Aksenov, V. L.; Kiselev, M. A.

    2010-01-01

    General problems of the complementarity of different physical methods and specific features of the interaction between neutron and matter and neutron diffraction with respect to the time of flight are discussed. The results of studying the kinetics of structural changes in lipid membranes under hydration and self-assembly of the lipid bilayer in the presence of a detergent are reported. The possibilities of the complementarity of neutron diffraction and X-ray synchrotron radiation and developing a free-electron laser are noted.

  10. Complementarity of real-time neutron and synchrotron radiation structural investigations in molecular biology

    Science.gov (United States)

    Aksenov, V. L.; Kiselev, M. A.

    2010-12-01

    General problems of the complementarity of different physical methods and specific features of the interaction between neutron and matter and neutron diffraction with respect to the time of flight are discussed. The results of studying the kinetics of structural changes in lipid membranes under hydration and self-assembly of the lipid bilayer in the presence of a detergent are reported. The possibilities of the complementarity of neutron diffraction and X-ray synchrotron radiation and developing a free-electron laser are noted.

  11. The temporal structure of the autistic voice: A cross-linguistic investigation

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Grossman, Ruth; Cantio, Cathriona

    , with patterns regularly repeated) in their pitch and pause structure and more irregular in speechrate. Conclusions: Non-linear recurrence analyses techniques suggest that there are quantifiable acoustic features in speech production of children with ASD that distinguish them from typically developing speakers...... and communication and socialization ratings in high functioning speakers with autism spectrum disorders, Journal of autism and developmental disorders, 35 (2005) 861–869. [5] R.B. Grossman, H. Tager-Flusberg, Quality matters! Differences between expressive and receptive non-verbal communication skills in children...... of adult Danish speakers with Asperger’s syndrome. Objectives: We systematically quantify and explore speech patterns in children with and without autism across two languages: Danish and American English. We employ traditional and non-linear techniques measuring the structure (regularity and complexity...

  12. Investigation of dynamic glass transitions and structure transformations in cryovacuum condensates of ethanol

    International Nuclear Information System (INIS)

    Aldiyarov, A.; Aryutkina, M.; Drobyshev, A.; Kaikanov, M.; Kurnosov, V.

    2009-01-01

    An IR spectrometric investigation of the dynamic glass transition of ethanol from the rotationally disordered crystal to the orientationally disordered crystal is carried out. The samples considered are thin films formed from the gas phase at a substrate temperature of T=16 K. The measurements are performed using the experimental apparatus which has been described in detail in our recent work. The sample thickness was d=2 μm, and the typical rate of annealing is approximately 10 K/min. The results are compared with the phase diagram of solid ethanol proposed by M.A. Ramos et al. We observe good agreement between the temperature intervals of existence of the amorphous and crystalline states. The low-temperature amorphous phase (12-70 K) is described by the present authors as amorphous solid ethanol by analogy with the amorphous solid water

  13. Investigating the Structural Impact of the Glutamine Repeat in Huntingtin Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Perevozchikova, Tatiana [ORNL; Stanley, Christopher B [ORNL; McWilliams-Koeppen, Helen P [ORNL; Rowe, Erica L [ORNL; Berthelier-Jung, Valerie M [ORNL

    2014-01-01

    Acquiring detailed structural information about the various aggregation states of the huntingtin-exon1 protein (Htt-exon1) is crucial not only for identifying the true nature of the neurotoxic species responsible for Huntington s disease (HD) but also for designing effective therapeutics. Using time-resolved small-angle neutron scattering (TR-SANS), we followed the conformational changes that occurred during fibrillization of the pathologic form of Htt-exon1 (NtQ42P10) and compared the results with those obtained for the wild-type (NtQ22P10). Our results show that the aggregation pathway of NtQ22P10 is very different from that of NtQ42P10, as the initial steps require a monomer to 7-mer transition stage. In contrast, the earliest species identified for NtQ42P10 are monomer and dimer. The divergent pathways ultimately result in NtQ22P10 fibrils that possess a pack- ing arrangement consistent with the common amyloid sterical zipper model, whereas NtQ42P10 fibrils present a better fit to the Perutz b-helix structural model. The structural details obtained by TR-SANS should help to delineate the key mechanisms that underpin Htt-exon1 aggregation leading to HD.

  14. Theoretical investigations of the thermochemistry, structures, and internal rotation of conjugated polyynes

    Science.gov (United States)

    Jarowski, Peter D.

    isodesmic equations with CBS-RAD data and also with the block localized wavefunction (BLW) method. The new estimates give essentially the same vinyl (22.3 kcal/mol) and ethynyl (21.9 kcal/mol) stabilization energies in the allyl and propargyl radicals, contrary to conventional evaluations. Likewise, the vinyl and ethynyl stabilizations in di-substituted and tri-substituted radicals are similar. These conclusions are corroborated with the block localized wavefunction (BLW) method, which is used to analyze resonance stabilization energies in the radical systems and hyperconjugative stabilization energies in the reference hydrocarbons. Chapter 3 presents the structures, heats of formation, and strain energies of diacetylene (buta-1,3-diynediyl) expanded molecules computed with ab initio and molecular mechanics calculations. Expanded cubane, prismane, tetrahedrane, and expanded monocyclics and bicyclics were optimized at the HF/6-31G(d) and B3LYP/6-31G(d) levels. The heats of formation of these systems were obtained from isodesmic equations at the HF/6-31G(d) level. Heats of formation were also calculated from Benson group equivalents. The strain energies of these expanded molecules were estimated by several independent methods. An adapted MM3* molecular mechanics force field, specifically parameterized to treat conjugated acetylene units, was employed for one measure of strain energy and as an additional method for structural analysis. Expanded dodecahedrane and icosahedrane were calculated by this method. Expanded molecules were considered structurally in the context of their potential material applications. Chapter 4 addresses the computation of the rotational barriers of substituted ethynlene and butatriene as well as their geometric and electronic structures. The barriers to internal rotation of methylated, ethynylated, and vinylated butatrienes and alkenes were calculated at the CASPT2/6-31G(d)//B3LYP/6-31G(d) level. Calculated butatriene rotational barriers are lower

  15. The microscopic investigation of structures of moving flux lines by neutron and muon techniques

    International Nuclear Information System (INIS)

    Forgan, E.M.; Charalambous, D.; Kealey, P.G.

    2002-01-01

    We have used a variety of microscopic techniques to reveal the structure and motion of flux line arrangements, when the flux lines in low T c type II superconductors are caused to move by a transport current. Using small-angle neutron scattering by the flux line lattice (FLL), we are able to demonstrate directly the alignment by motion of the nearest-neighbor FLL direction. This tends to be parallel to the direction of flux line motion, as had been suspected from two-dimensional simulations. We also see the destruction of the ordered FLL by plastic flow and the bending of flux lines. Another technique that our collaboration has employed is the direct measurement of flux line motion, using the ultra-high-resolution spectroscopy of the neutron spin-echo technique to observe the energy change of neutrons diffracted by moving flux lines. The muon spin rotation (μSR) technique gives the distribution of values of magnetic field within the FLL. We have recently succeeded in performing μSR measurements while the FLL is moving. Such measurements give complementary information about the local speed and orientation of the FLL motion. We conclude by discussing the possible application of this technique to thin film superconductors. (author)

  16. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response

    Science.gov (United States)

    Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.

    2007-01-01

    A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.

  17. Three-dimensional investigation of the two-phase flow structure in a bubbly pipe flow

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.

    1997-01-01

    Particle Image Velocimetry (PIV) is a non-intrusive measurement technique, which can be used to study the structure of various fluid flows. PIV is used to measure the time varying full field velocity data of a particle-seeded flow field within either a two-dimensional plane or three-dimensional volume. PIV is a very efficient measurement technique since it can obtain both qualitative and quantitative spatial information about the flow field being studied. This information can be further processed into information such as vorticity and pathlines. Other flow measurement techniques (Laser Doppler Velocimetry, Hot Wire Anemometry, etc...) only provide quantitative information at a single point. PIV can be used to study turbulence structures if a sufficient amount of data can be acquired and analyzed, and it can also be extended to study two-phase flows if both phases can be distinguished. In this study, the flow structure around a bubble rising in a pipe filled with water was studied in three-dimensions. The velocity of the rising bubble and the velocity field of the surrounding water was measured. Then the turbulence intensities and Reynolds stresses were calculated from the experimental data. (author)

  18. Reluctant activists? The impact of legislative and structural attempts of surveillance on investigative journalism

    Directory of Open Access Journals (Sweden)

    Anthony Mills

    2016-11-01

    Full Text Available If we accept that surveillance by the State and ‘sousveillance’ by the media in Western democracies tend towards a relative equilibrium, or ‘equiveillance’ supported by the function of journalism as a watchdog and that the rule of law largely protects fundamental freedoms, this paper argues that the act of ‘mutual watching’ is undesired by the State and comes at a very high cost to journalists. The combination of technological capacity, legislative change and antidemocratic sentiments of the State, in the context of its willingness and ability to collect and process Big Data on an unprecedented scale, disrupt the preconditions for a strong democracy based on free media and free citizens. This paper examines the politics of investigative journalism under the conditions of dominance of the State by investigating the experiences of journalists with surveillance. Our interviews with 48 journalists show that journalists are acutely aware of surveillance and its noxious impact. Well beyond simple ‘watching’ these experiences are remarkably similar in non-Western and Western countries. Journalists are engaging increasingly with technological and other communities, as they aim to defend journalism and their lives. Their activism is operationalised in three areas: (a in reluctant often-fraught cooperation with hacktivists, (b in self-directed protection of communications and sources and (c in not always willingly acting as dissenters vis-a-vis the State. This paper explores the extent to which journalists consider equilibrium to be distorted, and how they are countering any slide into subdued democracy.

  19. Investigation of structural and magnetic properties of Zr-Co doped nickel ferrite nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Rajjab [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Manzoor, Alina [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Department of Physics,