A proposal for investigating three-body forces in Aharonov-Bohm sytems
Ben-Aryeh, Y.
2009-01-01
Although there is no force on the electron in Aharonov-Bohm solenoid effect, the electron exerts a force on the solenoid related to the inequality of action and reaction forces of two subsystems in three-system configuration. The AB phase which is related to the force exerted by the electron on the solenoid . The momentum changes of the mechanical oscillator are equal in magnitude and opposite in sign to the changes in the momentum of the em fields. It is proposed to investigate momentum chan...
Three-body force in the three-nucleon system
International Nuclear Information System (INIS)
Gibson, B.F.
1986-01-01
A brief summary of the symposium is presented. Three-nucleon force models are discussed, including the two-pion exchange potential, NN-ΔN coupled-channels model, and phenomenological parametrization. Relevant experimental data and model calculations are discussed including form factors, binding energies, charge radii, and charge density for 3 H and 3 He. A calculation of the EMC effect for 3 He is also made using Sasakawa's wave function and compared to experimental data obtained at SLAC. The paper ends with discussions of proton-deuteron scattering, investigations at intermediate energies, and QCD efforts to understand the three-body problem
Three-Body Nuclear Forces from a Matrix Model
Hashimoto, Koji
2010-01-01
We compute three-body nuclear forces at short distances by using the nuclear matrix model of holographic QCD proposed in our previous paper with P. Yi. We find that the three-body forces at short distances are repulsive for (a) aligned three neutrons with averaged spins, and (b) aligned proton-proton-neutron / proton-neutron-neutron. These indicate that in dense states of neutrons such as cores of neutron stars, or in Helium-3 / tritium nucleus, the repulsive forces are larger than the ones estimated from two-body forces only.
Three-body forces in p-shell nuclei
Energy Technology Data Exchange (ETDEWEB)
Hees, A.G.M. van; Booten, J.G.L.; Glaudemans, P.W.M. (Rijksuniversiteit Utrecht (Netherlands). Dept. of Physics and Astronomy)
1990-01-29
Within the (0 + 1){Dirac h}{omega} shell-model space for p-shell nuclei we found that a schematic three-body interaction in addition to a translationally invariant two-body interaction leads to a strongly improved description of energy levels. The present three-body interaction is related to the {Delta}-isobar intermediate-state model of the two-pion exchange three-nucleon interaction. (orig.).
Effect of three-body forces on the phase behavior of charged colloids
International Nuclear Information System (INIS)
Wu, J. Z.; Bratko, D.; Blanch, H. W.; Prausnitz, J. M.
2000-01-01
Statistical-thermodynamic theory for predicting the phase behavior of a colloidal solution requires the pair interaction potential between colloidal particles in solution. In practice, it is necessary to assume pairwise additivity for the potential of mean force between colloidal particles, but little is known concerning the validity of this assumption. This paper concerns interaction between small charged colloids, such as surfactant micelles or globular proteins, in electrolyte solutions and the multibody effect on phase behavior. Monte Carlo simulations for isolated colloidal triplets in equilateral configurations show that, while the three-body force is repulsive when the three particles are near contact, it becomes short-ranged attractive at further separations, contrary to a previous study where the triplet force is attractive at all separations. The three-body force arises mainly from hard-sphere collisions between colloids and small ions; it is most significant in solutions of monovalent salt at low concentration where charged colloids experience strong electrostatic interactions. To illustrate the effect of three-body forces on the phase behavior of charged colloids, we calculated the densities of coexisting phases using van der Waals-type theories for colloidal solutions and for crystals. For the conditions investigated in this work, even though the magnitude of the three-body force may be as large as 10% of the total force at small separations, three-body forces do not have a major effect on the densities of binary coexisting phases. However, coexisting densities calculated using Derjaguin-Landau-Verwey-Overbeek theory are much different from those calculated using our simulated potential of mean force. (c) 2000 American Institute of Physics
International Nuclear Information System (INIS)
Zuo Wei; Lu Guangcheng; Li Zenghua; Luo Peiyan; Chinese Academy of Sciences, Beijing
2005-01-01
The finite temperature Brueckner-Hartree-Fock (FTBHF) approach is extended by introducing a microscopic three-body force. Within the extended approach, the three-body force effects on the equation of state of hot nuclear matter and its temperature dependence have been investigated. The critical properties of the liquid-gas phase transition of hot nuclear matter have been calculated. It is shown that the three-body force provides a repulsive contribution to the equation of state of hot nuclear matter. The repulsive effect of the three-body force becomes more pronounced as the density and temperature increase and consequently inclusion of the three-body force contribution in the calculation reduces the predicted critical temperature from about 16 MeV to about 13 MeV. By separating the contribution originated from the 2σ-exchange process coupled to the virtual excitation of a nucleon-antinucleon pair from the full three-body force, the connection between the three-body force effect and the relativistic correction from the Dirac-Brueckner-Hartree-Fock has been explored. It turns out that the contribution of the 2σ-N(N-bar) part is more repulsive than that of the full three-body force and the calculated critical temperature is about 11 MeV if only the 2σ-N(N-bar) component of the three-body force is included which is lower than the value obtained in the case of including the full three-body force and is close to the value predicted by the Dirac-Brueckner-Hartree-Fock (DBHF) approach. Our result provides a reasonable explanation for the discrepancy between the values of critical temperature predicted from the FTBHF approach including the three-body force and the DBHF approach. (authors)
Lagrangian solutions to the three-body problem with forces r sup(-p) (p integer)
International Nuclear Information System (INIS)
Azeredo Campos, R. de; Ferreira, P.L.
1979-08-01
The exact solutions to the three-body problem in Celestial Mechanics, due to Lagrange (triangular solutions) and Euler (collinear solutions), are generalized to the case of forces r sup( - p) (p being an integer). The stability of the system is also investigated in a local sense (small variations about steady motion) for triangular and collinear solutions and conditions restricting the values of p for which there are stable oscillatory modes of vibration are obtained. Furthermore, for the solutions under consideration, Bohr or Bohr-Sommerfeld quantization is performed and compared, for some cases of interest, with the WKB approximation, derived from an Hamiltonian of the system obtained by reducing it to a one-body problem under the action of a central force at the system's center of mass. (Author) [pt
Nuclear three-body force effect on a kaon condensate in neutron star matter
International Nuclear Information System (INIS)
Zuo, W.; Li, A.; Li, Z.H.; Lombardo, U.
2004-01-01
We explore the effects of a microscopic nuclear three-body force on the threshold baryon density for kaon condensation in chemical equilibrium neutron star matter and on the composition of the kaon condensed phase in the framework of the Brueckner-Hartree-Fock approach. Our results show that the nuclear three-body force affects strongly the high-density behavior of nuclear symmetry energy and consequently reduces considerably the critical density for kaon condensation provided that the proton strangeness content is not very large. The dependence of the threshold density on the symmetry energy becomes weaker as the proton strangeness content increases. The kaon condensed phase of neutron star matter turns out to be proton rich instead of neutron rich. The three-body force has an important influence on the composition of the kaon condensed phase. Inclusion of the three-body force contribution in the nuclear symmetry energy results in a significant reduction of the proton and kaon fractions in the kaon condensed phase which is more proton-rich in the case of no three-body force. Our results are compared to other theoretical predictions by adopting different models for the nuclear symmetry energy. The possible implications of our results for the neutron star structure are also briefly discussed
Effect of three-body forces on the lattice dynamics of noble metals
Indian Academy of Sciences (India)
Abstract. A simple method to generate an effective electron–ion interaction pseudopotential from the energy wave number characteristic obtained by first principles calculations has been suggested. This effective potential has been used, in third order perturbation, to study the effect of three-body forces on the lattice ...
Analytical equation of state with three-body forces: Application to noble gases
Energy Technology Data Exchange (ETDEWEB)
Río, Fernando del, E-mail: fdr@xanum.uam.mx; Díaz-Herrera, Enrique; Guzmán, Orlando; Moreno-Razo, José Antonio [Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, Apdo 55 534, México DF, 09340 (Mexico); Ramos, J. Eloy [Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, Mexico DF (Mexico)
2013-11-14
We developed an explicit equation of state (EOS) for small non polar molecules by means of an effective two-body potential. The average effect of three-body forces was incorporated as a perturbation, which results in rescaled values for the parameters of the two-body potential. These values replace the original ones in the EOS corresponding to the two-body interaction. We applied this procedure to the heavier noble gases and used a modified Kihara function with an effective Axilrod-Teller-Muto (ATM) term to represent the two- and three-body forces. We also performed molecular dynamics simulations with two- and three-body forces. There was good agreement between predicted, simulated, and experimental thermodynamic properties of neon, argon, krypton, and xenon, up to twice the critical density and up to five times the critical temperature. In order to achieve 1% accuracy of the pressure at liquid densities, the EOS must incorporate the effect of ATM forces. The ATM factor in the rescaled two-body energy is most important at temperatures around and lower than the critical one. Nonetheless, the rescaling of two-body diameter cannot be neglected at liquid-like densities even at high temperature. This methodology can be extended straightforwardly to deal with other two- and three-body potentials. It could also be used for other nonpolar substances where a spherical two-body potential is still a reasonable coarse-grain approximation.
Study on 16O in the alpha particle model using three-body forces
International Nuclear Information System (INIS)
Agrello, D.A.
1979-01-01
A study of the ground state of 16 O is made using an alpha particle model, all without internal structure, interacting through two-and three-body forces. Some nuclear properties of 16 O, such as binding energy and gaps, are also studied. (L.C.) [pt
Three-body forces for electrons by the S-matrix method
International Nuclear Information System (INIS)
Margaritelli, R.
1989-01-01
A electromagnetic three-body potential between eletrons is derived by the S-matrix method. This potential can be compared up to a certain point with other electromagnetic potentials (obtained by other methods) encountered in the literature. However, since the potential derived here is far more complete than others, this turns direct comparison with the potentials found in the literature somewhat difficult. These calculations allow a better understanding of the S-matrix method as applied to problems which involve the calculations of three-body nuclear forces (these calculations are performed in order to understand the 3 He form factor). Furthermore, these results enable us to decide between two discrepant works which derive the two-pion exchange three-body potential, both by the S-matrix method. (author) [pt
Study of 11Li+p elastic scattering using BHF formalism with three body force
Sharma, Manjari; Haider, W.
2018-04-01
In the present work we have analyzed the elastic scattering data of 11Li + p at 62, 68.4 and 75 MeV/nucleon, using the microscopic optical potential calculated within the framework of Brueckner-Hartree-Fock formalism (BHF). The calculation uses Argonne v18 and Urbana v14 inter-nucleon potentials and the Urbana IX (UVIX) model of three body force. The required nucleon-density distributions for 11Li are obtained using the semi-phenomenological model for nuclear density distributions. The optical potential has been obtained by folding the g-matrices as calculated in BHF (with and without three body forces) over the nucleon density distributions. We have used the exact method for calculating both the direct and the exchange parts of the spin-orbit potential. Our results reveal that the spin-orbit potential significantly contributes to 11Li+p elastic scattering at all three incident energies. Further, the calculated spin-orbit potential in BHF is much smaller and more diffused as compared with the phenomenological spin-orbit potential. The analysis reveals that the calculated microscopic optical potentials, with and without three body force using BHF approach with phenomenological form of density distribution, provides satisfactory agreement with the elastic scattering data for 11Li+p.
Three-body correlations and conditional forces in suspensions of active hard disks
Härtel, Andreas; Richard, David; Speck, Thomas
2018-01-01
Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to the direction of propulsion and the positions of the surrounding particles. We further relate our theory to the effective swimming speed of the active disks, which is relevant for the physics of MIPS. To test and validate our theory, we additionally run particle-resolved computer simulations, for which we explicitly calculate the three-body forces. In this context, we discuss the modeling of active Brownian swimmers with nearly hard interaction potentials. We find very good agreement between our simulations and numerical solutions of our theory, especially for the nonequilibrium pair-distribution function. For our analytical results, we carefully discuss their range of validity in the context of the different levels of approximation we applied. This discussion allows us to study the individual contribution of particles to three-body forces and to the emerging structure. Thus, our work sheds light on the collective behavior, provides the basis for further studies of correlations in active suspensions, and makes a step towards an emerging liquid state theory.
6Li in a three-body model with realistic Forces: Separable versus nonseparable approach
Hlophe, L.; Lei, Jin; Elster, Ch.; Nogga, A.; Nunes, F. M.
2017-12-01
Background: Deuteron induced reactions are widely used to probe nuclear structure and astrophysical information. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. However, it needs to be demonstrated that their solution based on separable interactions agrees exactly with solutions based on nonseparable forces. Methods: Momentum space Faddeev equations are solved with nonseparable and separable forces as coupled integral equations. Results: The ground state of 6Li is calculated via momentum space Faddeev equations using the CD-Bonn neutron-proton force and a Woods-Saxon type neutron(proton)-4He force. For the latter the Pauli-forbidden S -wave bound state is projected out. This result is compared to a calculation in which the interactions in the two-body subsystems are represented by separable interactions derived in the Ernst-Shakin-Thaler (EST) framework. Conclusions: We find that calculations based on the separable representation of the interactions and the original interactions give results that agree to four significant figures for the binding energy, provided that energy and momentum support points of the EST expansion are chosen independently. The momentum distributions computed in both approaches also fully agree with each other.
Investigation of light baryons in a three-body quark model
Aslanzadeh, M.; Rajabi, A. A.
2017-02-01
We present a three-body quark model based on hypercentral approach for investigating the internal structure of light baryons. The analytically obtained energy eigenvalues and eigenfunctions of the three-body problem have been used in the calculations of the mass spectrum of light baryons and electromagnetic elastic form factors of nucleon. The magnetic moments and charge radii of nucleon have also been calculated. We have compared the evaluated observables with experimental data and it has been shown that the present model provides a good description of the observed resonances.
Investigation of halo structure of He by hyperspherical three-body ...
Indian Academy of Sciences (India)
a fairly stable core. It is interesting to note that no two-body subsystem of the three-body system is bound, which gives rise to the mythical name of 'Borromean rings' to these exotic nuclei [7]. The typical structure of Borromean three-body system resembles the heraldic symbol of the Italian Princess of Borromeo. Its crest has ...
Investigation of halo structure of 6 He by hyperspherical three-body ...
Indian Academy of Sciences (India)
They also attempted to undertake a detailed numerical analysis by computing integral equations for ... Hyperspherical three-body model calculation for the ground state of 6He nucleus has been reported by ... we first calculate the binding energy and some related geometrical quantities to compare our calculation with the ...
International Nuclear Information System (INIS)
Petrov, N.M.; Pushkash, A.M.
1985-01-01
In accordance with the main idea of the phase function method the two-body off-shell scattering amplitudes are considered as the limit of the scattering amplitude sequence corresponding to the sequence of the R-radius cut-off potentials. The explicit analytical expression for the scattering amplitudes function is obtained in the case of separable potentials, due to which the three-body problem is investigated
Directory of Open Access Journals (Sweden)
P. P. Hallan
2008-01-01
Full Text Available The effect of perturbations in Coriolis and cetrifugal forces on the nonlinear stability of the equilibrium point of the Robe's (1977 restricted circular three-body problem has been studied when the density parameter K is zero. By applying Kolmogorov-Arnold-Moser (KAM theory, it has been found that the equilibrium point is stable for all mass ratios μ in the range of linear stability 8/9+(2/3((43/25ϵ1−(10/3ϵ<μ<1, where ϵ and ϵ1 are, respectively, the perturbations in Coriolis and centrifugal forces, except for five mass ratios μ1=0.93711086−1.12983217ϵ+1.50202694ϵ1, μ2 = 0.9672922−0.5542091ϵ+ 1.2443968ϵ1, μ3=0.9459503−0.70458206ϵ+ 1.28436549ϵ1, μ4=0.9660792−0.30152273ϵ + 1.11684064ϵ1, μ5=0.893981−2.37971679ϵ + 1.22385421ϵ1, where the theory is not applicable.
International Nuclear Information System (INIS)
Amado, R.D.
1975-01-01
An overview of the formal theory of the three-body problem as it has developed in the past twelve years is given. The formal structure of the theory, some of the techniques that have developed for handling the theory, and some results on how general quantum mechanical principles structure the results, are presented. The discussion is held entirely in the context of non-relativistic quantum mechanics with short-range forces. In this presentation the main outline of the theory is stressed, often at the expense of mathematical rigour [pt
Musielak, Z E; Quarles, B
2014-06-01
The three-body problem, which describes three masses interacting through Newtonian gravity without any restrictions imposed on the initial positions and velocities of these masses, has attracted the attention of many scientists for more than 300 years. In this paper, we present a review of the three-body problem in the context of both historical and modern developments. We describe the general and restricted (circular and elliptic) three-body problems, different analytical and numerical methods of finding solutions, methods for performing stability analysis and searching for periodic orbits and resonances. We apply the results to some interesting problems of celestial mechanics. We also provide a brief presentation of the general and restricted relativistic three-body problems, and discuss their astronomical applications.
Marchal, Christian
1990-01-01
Recent research on the theory of perturbations, the analytical approach and the quantitative analysis of the three-body problem have reached a high degree of perfection. The use of electronics has aided developments in quantitative analysis and has helped to disclose the extreme complexity of the set of solutions. This accelerated progress has given new orientation and impetus to the qualitative analysis that is so complementary to the quantitative analysis. The book begins with the various formulations of the three-body problem, the main classical results and the important questions and conje
Indian Academy of Sciences (India)
tral, antisymmetric spin-orbit (ALS), spin-orbit (LS) and tensor parts [14]. For SMPN, the central and ALS parts for 2f7/2–2f7/2 tbmes account for the majority of the downward shift of the ESPE of 2f7/2 with increasing valence neutron number (n). Variation in ALS part is primarily responsible for this shell gap observed at N = 90 ...
Indian Academy of Sciences (India)
2015-07-29
+ excitation energies of even–even tin isotopes with > 82 compared to those with N < 82. However, none of the theoretical predictions using both realistic and empirical interactions can reproduce experimental data on ...
Coulomb effects in deuteron stripping reactions as a three-body problem
International Nuclear Information System (INIS)
Osman, A.
1981-08-01
Deuteron stripping nuclear reactions are reconsidered as a three-body problem. The Coulomb effects between the proton and the target nucleus are investigated. The mathematical formalism introduces three-body integral equations which can be exactly calculated for such simple models. These coupled integral equations suitably include the Coulomb effects due to replusive or attractive Coulomb potential. Numerical calculations of the differential cross-sections of the reactions 28 Si(d,p) 29 Si and 40 Ca(d,p) 41 Ca are carried out showing the importance of the Coulomb effects. The angular distributions of these reactions are theoretically calculated and fitted to the experimental data. From this fitting, reasonable spectroscopic factors are obtained. Inclusion of Coulomb force in the three-body model are found to improve the results by a percentage of about 6.826%. (author)
Spin Discrimination in Three-Body Decays
Edelhäuser, Lisa; Singh, Ritesh K
2010-01-01
The identification of the correct model for physics beyond the Standard Model requires the determination of the spin of new particles. We investigate to which extent the spin of a new particle $X$ can be identified in scenarios where it decays dominantly in three-body decays $X\\to f\\bar{f} Y$. Here we assume that $Y$ is a candidate for dark matter and escapes direct detection at a high energy collider such as the LHC. We show that in the case that all intermediate particles are heavy, one can get information on the spins of $X$ and $Y$ at the LHC by exploiting the invariant mass distribution of the two standard model fermions. We develop a model-independent strategy to determine the spins without prior knowledge of the unknown couplings and test it in a series of Monte Carlo studies.
Three-body calculation of Be double-hypernuclei
Indian Academy of Sciences (India)
Energy levels and bond energy of the double- hypernucleus are calculated by considering two- and three-cluster interactions. Interactions between constituent particles are contact interactions for reproducing the low binding energy of nuclei. The effective action is constructed to involve three-body forces. In this paper ...
Three-body calculation of Be double- hypernuclei
Indian Academy of Sciences (India)
body hyperonic nuclei using three-cluster ... accuracy of our present study to calculate the many-nucleon bound state with three-body forces [10]. In this paper ..... evidence for the production of 10 Be in an excited state. However, if the produced ...
Analytical solution of relativistic three-body bound systems
Energy Technology Data Exchange (ETDEWEB)
Aslanzadeh, M.; Rajabi, A.A. [Shahrood University of Technology, Physics Department, Shahrood (Iran, Islamic Republic of)
2014-10-15
In this paper we have investigated in detail the relativistic three-body bound states. We carried out calculations in six-dimensional representation on the basis of the Jacobi coordinates. The obtained second-degree differential equation is solved by using the Nikiforov-Uvarov method and the energy eigenvalues are obtained. Consequently we obtained the binding energy of the three-nucleon bound system. Here we used the generalized Woods-Saxon spin-independent potential in our calculations. The dependence of the three-body binding energy on the potential parameters is also investigated. (orig.)
Three-body problems with separable two-body interactions
International Nuclear Information System (INIS)
Osman, A.
1977-09-01
Faddeev equations for the three-body problem are reconsidered using separable two-body interactions. The separable potentials reduce the Faddeev equations to coupled integral equations in one continuous variable. Numerical calculations for the resulting integral equations are carried out using separable two-body interactions which include both attraction and repulsion potentials. Each of the separable attraction and repulsion potentials used is taken as a spin-dependent central force together with tensor forces. The potential functions of the different parts of the two body interactions are taken to be of the Yamaguchi, Gaussian, Tabakin, Mongan and Reid forms. Each of the nuclei 6 Li, 9 Be and 12 C is taken to be composed of three particles according to the cluster structure description of nuclei. The binding energies of the nuclei 6 Li, 9 Be and 12 C are calculated as a three-body problem and in the framework of the Faddeev formalism
Three-body unitarity with isobars revisited
Energy Technology Data Exchange (ETDEWEB)
Mai, M.; Hu, B. [The George Washington University, Washington, DC (United States); Doering, M. [The George Washington University, Washington, DC (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Pilloni, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Szczepaniak, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Indiana University, Center for Exploration of Energy and Matter, Bloomington, IN (United States); Indiana University, Physics Department, Bloomington, IN (United States)
2017-09-15
The particle exchange model of hadron interactions can be used to describe three-body scattering under the isobar assumption. In this study we start from the 3 → 3 scattering amplitude for spinless particles, which contains an isobar-spectator scattering amplitude. Using a Bethe-Salpeter Ansatz for the latter, we derive a relativistic three-dimensional scattering equation that manifestly fulfills three-body unitarity and two-body unitarity for the sub-amplitudes. This property holds for energies above breakup and also in the presence of resonances in the sub-amplitudes. (orig.)
Canonical three-body angular basis
International Nuclear Information System (INIS)
Matveenko, A.V.
2001-01-01
Three-body problems are basic for the quantum mechanics of molecular, atomic, or nuclear systems. We demonstrate that their variational solution for rotational states can be greatly simplified. A special choice of coordinates (hyperspherical) and of the kinematics (body-fixed coordinate frame) allows one to choose basis functions in a form that makes the angular coupling trivial. (author)
Algebraic treatment of three-body problems
International Nuclear Information System (INIS)
Bijker, R.; Leviatan, A.
1998-01-01
We discuss an algebraic treatment of three-body systems in terms of a U(7) spectrum-generating algebra. In particular, we develop the formalism for nonilnear configurations and present an algebraic description of vibrational and rotational excitations of, symmetric (X 3 ) and asymmetric tops (XY 2 and XYZ). The relevant point-group symmetry is incorporated exactly. (author)
Efimov resonances in atomic three-body systems
International Nuclear Information System (INIS)
Mezei, J. Zs.; Papp, Z.
2006-01-01
In a recent work [Phys. Rev. Lett. 94, 143201 (2005)], we reported an accumulation of three-body resonant states attached to n=2 and higher two-body thresholds. A more careful investigation revealed that there are resonances of the same kind above the n=1 threshold as well. This suggests that the resonances attached to the thresholds are Efimov resonances
Physics investigate the forces of nature
Gardner, Jane
2014-01-01
Have you ever noticed that the physical world works in certain ways? Skateboarders use force and motion to perform tricks. If you jump up as high as you can, you'll quickly fall back to the ground. Baseball players use gravity to bring the ball back down when they throw it. When you flip a switch, electricity powers your toaster. Rock bands use electricity to put on a show. The fascinating science of physics helps you understand why forces, motion, gravity, electricity, light, and sound work in predictable ways. Combining inquiry-based activities with physics topics, Physics: Investigate the Forces of Nature features graphic novel illustrations, fascinating sidebars, youtube links, and a glossary of important vocabulary to illuminate the complex world of physics and bring it to life. Projects include designing a skateboard park that maps the forces at work on the skateboarder and the skateboard, and creating a stage design for a rock band that places electric current where it is needed. Additional materials i...
Three-Body Antikaon-Nucleon Systems
Czech Academy of Sciences Publication Activity Database
Shevchenko, Nina V.
2017-01-01
Roč. 58, č. 1 (2017), č. článku UNSP 6. ISSN 0177-7963 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : three-body * antikaon-nucleon * K p interactions Subject RIV: BE - Theoretical Physics OBOR OECD: Atom ic, molecular and chemical physics (physics of atom s and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.877, year: 2016
Structures of two-dimensional three-body systems
International Nuclear Information System (INIS)
Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.
1996-01-01
Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)
Investigating bioconjugation by atomic force microscopy
2013-01-01
Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures. PMID:23855448
Nuclear structure with unitarily transformed two-body plus phenomenological three-body interactions
Energy Technology Data Exchange (ETDEWEB)
Guenther, Anneke
2011-02-02
The importance of three-nucleon forces for a variety of nuclear structure phenomena is apparent in various investigations. This thesis provides a first step towards the inclusion of realistic three-nucleon forces by studying simple phenomenological threebody interactions. The Unitary Correlation Operator Method (UCOM) and the Similarity Renormalization Group (SRG) provide two different approaches to derive soft phase-shift equivalent nucleon-nucleon (NN) interactions via unitary transformations. Although their motivations are quite different the NN interactions obtained with the two methods exhibit some similarities. The application of the UCOM- or SRG-transformed Argonne V18 potential in the Hartree-Fock (HF) approximation and including the second-order energy corrections emerging from many-body perturbation theory (MBPT) reveals that the systematics of experimental ground-state energies can be reproduced by some of the interactions considering a series of closed-shell nuclei across the whole nuclear chart. However, charge radii are systematically underestimated, especially for intermediate and heavy nuclei. This discrepancy to experimental data is expected to result from neglected three-nucleon interactions. As first ansatz for a three-nucleon force, we consider a finite-range three-body interaction of Gaussian shape. Its influence on ground-state energies and charge radii is discussed in detail on the basis of HF plus MBPT calculations and shows a significant improvement in the description of experimental data. As the handling of the Gaussian three-body interaction is time-extensive, we show that it can be replaced by a regularized three-body contact interaction exhibiting a very similar behavior. An extensive study characterizes its properties in detail and confirms the improvements with respect to nuclear properties. To take into account information of an exact numerical solution of the nuclear eigenvalue problem, the No-Core Shell Model is applied to
The self-consistent field model for Fermi systems with account of three-body interactions
Directory of Open Access Journals (Sweden)
Yu.M. Poluektov
2015-12-01
Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.
Comparative investigations of tablet crushing force testers
DEFF Research Database (Denmark)
Sonnergaard, Jørn; Jensen, C.G.; Poulsen, L.
2005-01-01
The performance of 16 tablet breaking force testers was evaluated in terms of accuracy, reproducibility and repeatability. Three tablet formulations with different plastic or brittle deformation mechanisms and with target breaking forces of 50, 100 and 150 N were tested. Statistically significant...... by the concept of components of variance was 5-7 % depending on the model tablet excipient. The standard deviation within testers (repeatability) was affected by the type of model formulation showing increasing variability with increasing brittleness of the compressed material. No specific effect of altering...
Quasi-Three Body Systems: Properties and Scattering
International Nuclear Information System (INIS)
Amusia, M. Ya.
2017-01-01
We investigate systems of three mutually interacting particles with masses m e , m μ , M that obey the following inequality m e ≪ m μ ≪ M. Then the three-body problem reduces to the two-body scattering or structure of m e in the field of the pseudo-nucleus m μ M. We calculate analytically the properties of considered systems, such as the scattering cross-sections, hyperfine splitting, Auger decay of exited states and Lamb shifts, presenting them as expansions in powers of the parameter β=m e /m μ ≪1. (author)
Three body dynamics in dense gravitational systems
Moody, Kenneth
In this thesis, I have used several techniques to answer the following questions: How many black hole binaries will a cluster produce, and will they have the required properties to be seen by our gravitational wave detectors? How often does the crowded environment of star forming cluster allow the exchange of a planet between stars? To answer these questions, I have studied three scenarios: the interaction of black holes in clusters, the effect of the Kozai mechanism on pulsars in clusters, and the effect of an exchanged planetary body on a planetary system. I have examined the interactions of a system of black holes in a globular cluster in which the black holes have different masses with a more realistic distribution. In my thesis, black hole masses are derived from population synthesis models and span a range of a few up to 50 or 80 [Special characters omitted.] depending on metallicity. My new calculations have reduced the efficiency of three-body interactions in ejecting the binary due to their non- equal masses. I also use timescales derived from earlier simulations of clusters (Sigurdsson 1995) to determine the end state of individual binaries interacting with single black holes. While N-body simulations of black hole systems such as in O'Leary et al. (2006) are less model dependent, my method can easily adapt to advances in the understanding of the processes that make black holes and rapidly produce results on rates of binary black hole mergers for gravitational wave observations and the possibilities of intermediate mass black hole seeds. Numerous black hole binaries are produced by clusters, they are hardened in the potential of the cluster, and the most massive black holes survive the interactions. Interactions with the other black holes preferentially produce binaries with higher eccentricities. I found that as many as one in seven binaries will coalesce within a Hubble time, and with the strength of signal that their higher mass gives they would rival
Investigation of dissipative forces near macroscopic media
Energy Technology Data Exchange (ETDEWEB)
Becker, R.S.
1982-12-01
The interaction of classical charged particles with the fields they induce in macroscopic dielectric media is investigated. For 10- to 1000-eV electrons, the angular perturbation of the trajectory by the image potential for surface impact parameters of 50 to 100 A is shown to be of the order of 0.001 rads over a distance of 100 A. The energy loss incurred by low-energy particles due to collective excitations such as surface plasmons is shown to be observable with a transition probability of 0.01 to 0.001 (Becker, et al., 1981b). The dispersion of real surface plasmon modes in planar and cylindrical geometries is discussed and is derived for pinhole geometry described in terms of a single-sheeted hyperboloid of revolution. An experimental apparatus for the measurement of collective losses for medium-energy electrons translating close to a dielectric surface is described and discussed. Data showing such losses at electron energies of 500 to 900 eV in silver foils containing many small apertures are presented and shown to be in good agreement with classical stopping power calculations and quantum mechanical calculations carried out in the low-velocity limit. The data and calculations are compared and contrasted with earlier transmission and reflection measurements, and the course of further investigation is discussed.
A simple coordinate space approach to three-body problems ...
Indian Academy of Sciences (India)
We show how to treat the dynamics of an asymmetric three-body system consisting of one heavy and two identical light particles in a simple coordinate space variational approach. The method is constructive and gives an efﬁcient way of resolving a three-body system to an effective two-body system. It is illustrated by ...
Three-body segment musculoskeletal model of the upper limb
Directory of Open Access Journals (Sweden)
Valdmanová L.
2013-06-01
Full Text Available The main aim is to create a computational three-body segment model of an upper limb of a human body for determination of muscle forces generated to keep a given loaded upper limb position. The model consists of three segments representing arm, forearm, hand and of all major muscles connected to the segments. Muscle origins and insertions determination corresponds to a real anatomy. Muscle behaviour is defined according to the Hill-type muscle model consisting of contractile and viscoelastic element. The upper limb is presented by a system of three rigid bars connected by rotational joints. The whole limb is fixed to the frame in the shoulder joint. A static balance problem is solved by principle of virtual work. The system of equation describing the musculoskeletal system is overdetermined because more muscles than necessary contribute to get the concrete upper limb position. Hence the mathematical problem is solved by an optimization method searching the least energetically-consuming solution. The upper limb computational model is verified by electromyography of the biceps brachii muscle.
Relativistic three-body quark model of light baryons based on hypercentral approach
Aslanzadeh, M.; Rajabi, A. A.
2015-05-01
In this paper, we have treated the light baryons as a relativistic three-body bound system. Inspired by lattice QCD calculations, we treated baryons as a spin-independent three-quark system within a relativistic three-quark model based on the three-particle Klein-Gordon equation. We presented the analytical solution of three-body Klein-Gordon equation with employing the constituent quark model based on a hypercentral approach through which two- and three-body forces are taken into account. Herewith the average energy values of the up, down and strange quarks containing multiplets are reproduced. To describe the hyperfine structure of the baryon, the splittings within the SU(6)-multiplets are produced by the generalized Gürsey Radicati mass formula. The considered SU(6)-invariant potential is popular "Coulomb-plus-linear" potential and the strange and non-strange baryons spectra are in general well reproduced.
Scattering Length Scaling Laws for Ultracold Three-Body Collisions
International Nuclear Information System (INIS)
D'Incao, J.P.; Esry, B.D.
2005-01-01
We present a simple and unifying picture that provides the energy and scattering length dependence for all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination, and collision-induced dissociation for systems that support s-wave two-body collisions. These systems include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces all previous results, predicts several others, and gives the general form of the scaling laws in all cases
Investigations in high speed blanking: cutting forces and microscopic observations
Directory of Open Access Journals (Sweden)
Larue A.
2010-06-01
Full Text Available A new hopefull technique, called high speed blanking, has been investigated since few years. To understand the cutting process and how the tools have to be designed, this study is interrested in the cutting force measurement. A new cutting force measurement device has to be designed consider the industrial interest of such a study. The designed test bench induces a calibration process in order to stucy the cutting forces evolution. The paper is discussing the result that the peack load seems to decrease when the punch speed increases. Finally microscopic observations are made in order to find Adiabatic Shear Bands.
Assessment of mechanical and three-body abrasive wear peculiarity ...
Indian Academy of Sciences (India)
body abrasive wear characteristic of fabricated composites has been assessed under different operating conditions. For this, the three-body abrasion test is done on dry abrasion test rig (TR-50)and analysed using Taguchi's experimental design ...
Three-body interactions and the elastic constants of hcp solid 4He
Barnes, Ashleigh L.; Hinde, Robert J.
2017-09-01
The effect of three-body interactions on the elastic properties of hexagonal close packed solid 4He is investigated using variational path integral (VPI) Monte Carlo simulations. The solid's nonzero elastic constants are calculated, at T = 0 K and for a range of molar volumes from 7.88 cm3/mol to 20.78 cm3/mol, from the bulk modulus and the three pure shear constants C0, C66, and C44. Three-body interactions are accounted for using our recently reported perturbative treatment based on the nonadditive three-body potential of Cencek et al. Previous studies have attempted to account for the effect of three-body interactions on the elastic properties of solid 4He; however, these calculations have treated zero point motions using either the Einstein or Debye approximations, which are insufficient in the molar volume range where solid 4He is characterized as a quantum solid. Our VPI calculations allow for a more accurate treatment of the zero point motions which include atomic correlation. From these calculations, we find that agreement with the experimental bulk modulus is significantly improved when three-body interactions are considered. In addition, three-body interactions result in non-negligible differences in the calculated pure shear constants and nonzero elastic constants, particularly at higher densities, where differences of up to 26.5% are observed when three-body interactions are included. We compare to the available experimental data and find that our results are generally in as good or better agreement with experiment as previous theoretical investigations.
Three-body halo nuclei in an effective theory framework
Energy Technology Data Exchange (ETDEWEB)
Canham, David L.
2009-05-20
The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, {sup 20}C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of {sup 20}C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D{sup 0} and D{sup *0} mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)
Gravitational waves from periodic three-body systems.
Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana
2014-09-05
Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.
Investigation of magnetorheological elastomer surface properties by atomic force microscopy
International Nuclear Information System (INIS)
Iacobescu, G.E.; Balasoiu, M.; Bica, I.
2012-01-01
Magnetorheological elastomers consist of a natural or synthetic rubber matrix interspersed with micron-sized ferromagnetic particles. The magnetoelastic properties of such a composite are not merely a sum of elasticity of the polymer and stiffness and magnetic properties of the filler, but also the result of a complex synergy of several effects, relevant at different length scales and detectable by different techniques. In the present work we investigate the microstructures, the surface magnetic properties and the elastic properties of new isotropic and anisotropic magnetorheological elastomer prepared using silicone rubber and soft magnetic carbonyl iron microspheres. The measurements were performed by atomic force microscopy in the following modes: standard imaging-non-contact atomic force microscopy, magnetic force microscopy and nanoindentation. A comparative study for the samples with different particle concentrations and strength of magnetic field applied during the polymerization process is developed
Tests of the discretized-continuum method in three-body dipole strengths
Energy Technology Data Exchange (ETDEWEB)
Pinilla, E.C., E-mail: epinilla@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Quantique, C.P. 165/82, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Horiuchi, W., E-mail: whoriuchi@riken.jp [RIKEN Nishina Center, Wako 351-0918 (Japan); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0918 (Japan)
2011-08-15
We investigate the {sup 6}He dipole distribution in a three-body {alpha}+n+n model. Two approaches are used to describe the three-body 1{sup -} continuum: the discretized-continuum method, where the scattering wave functions are approximated by square-integrable functions, and the R-matrix formalism, where their asymptotic behaviour is taken into account. We show that some ambiguity exists in the pseudostate method, owing to the smoothing technique, necessary to derive continuous distributions. We show evidence for the important role of the halo structure in the E1 dipole strength. We also address the treatment of Pauli forbidden states in the three-body wave functions.
Systematic study of baryons in a three-body quark model
Aslanzadeh, M.; Rajabi, A. A.
2016-09-01
We investigated the structure of baryons within a three-body quark model based on hypercentral approach. We considered an SU(6)-invariant potential consisting of the well-known "Coulomb-plus-linear" potential plus some multipole interactions as V ( x) ∝ x - n with n > 2. Then, through an analytical solution, we obtained the energy eigenvalues and eigenfunctions of the three-body problem and evaluated some observables such as the mass spectrum of light baryons and both the electromagnetic elastic form factors, and the charge radii of nucleons. We compared our results with the experimental data and showed that the present model provides a good description of the observed resonances.
Three-body interactions and the Landau levels using Nikiforov ...
Indian Academy of Sciences (India)
In this article, the eigenvalues for the three-body interactions on the line and the Landau levels in the presence of topological defects have been regenerated by the Nikiforov–Uvarov (NU) method. Two exhaustive lists of such exactly solvable potentials are given.
Mass-imbalanced Three-Body Systems in Two Dimensions
DEFF Research Database (Denmark)
F. Bellotti, F.; Frederico, T.; T. Yamashita, M.
2013-01-01
We consider three-body systems in two dimensions with zero-range interactions for general masses and interaction strengths. The momentum-space Schr\\"odinger equation is solved numerically and in the Born-Oppenheimer (BO) approximation. The BO expression is derived using separable potentials and y...
Assessment of mechanical and three-body abrasive wear peculiarity ...
Indian Academy of Sciences (India)
This paper is about the development of bi-directional E-glass fibre-based polyester composites filled with zinc oxide (ZnO) and titanium dioxide (TiO 2 ) fillers, respectively. The mechanical characterization of these composites is performed. The three-body abrasive wear characteristic of fabricated composites has been ...
The three-body problem and equivariant Riemannian geometry
Alvarez-Ramírez, M.; García, A.; Meléndez, J.; Reyes-Victoria, J. G.
2017-08-01
We study the planar three-body problem with 1/r2 potential using the Jacobi-Maupertuis metric, making appropriate reductions by Riemannian submersions. We give a different proof of the Gaussian curvature's sign and the completeness of the space reported by Montgomery [Ergodic Theory Dyn. Syst. 25, 921-947 (2005)]. Moreover, we characterize the geodesics contained in great circles.
The three-body problem from Pythagoras to Hawking
Valtonen, Mauri; Kholshevnikov, Konstantin; Mylläri, Aleksandr; Orlov, Victor; Tanikawa, Kiyotaka
2016-01-01
This book, written for a general readership, reviews and explains the three-body problem in historical context reaching to latest developments in computational physics and gravitation theory. The three-body problem is one of the oldest problems in science and it is most relevant even in today’s physics and astronomy. The long history of the problem from Pythagoras to Hawking parallels the evolution of ideas about our physical universe, with a particular emphasis on understanding gravity and how it operates between astronomical bodies. The oldest astronomical three-body problem is the question how and when the moon and the sun line up with the earth to produce eclipses. Once the universal gravitation was discovered by Newton, it became immediately a problem to understand why these three-bodies form a stable system, in spite of the pull exerted from one to the other. In fact, it was a big question whether this system is stable at all in the long run. Leading mathematicians attacked this problem over more than...
Bacterial biofilms investigated by atomic force microscopy and electrochemistry
DEFF Research Database (Denmark)
Hu, Yifan
thesis, Atomic Force Microscopy (AFM) and electrochemistry have been applied to investigate three pathogenic medically important bacterial biofilms, i.e. Pseudomonas aeruginosa (cystic fibrosis pneumonia), Staphylococcus epidermidis (contamination of surgical catheters and indwelling equipment......) and Streptococcus mutans (dental caries). AFM was used to investigate the adhesion force on single live cell surfaces. Four different strains of Staphylococcus epidermidis in liquid aqueous environments were adressed. These strains were selected because of their special surface proteins related with the initial...... pattern of Streptococcus mutans biofilms. Five redox probes were chosen for cyclic voltammetry, i.e. positively, [Ru(NH3)6]3+/2+, [Co(phen)3]3+/2+ and [Co(terpy)2]3+/2+ (phen = 1,10-phenanthroline; terpy = 2,2’,2”-terpyridine) and negatively charged, [Fe(CN)6]3-/4-. [IrCl6]3-/4-. The inhibition...
Investigations on pneumatically forced-actuated compressor valves
Stöckel, Christian; Thomas, Christiane; Nickl, Jörg; Hesse, Ullrich
2017-08-01
In the present paper the performance of a novel designed valve for reciprocating piston machines is investigated, which makes existing compressors utilizable for operating as expander. Three design parameters were identified as critical for the valves performance particularly in forced actuated mode. Within a numerical simulation a study on the crucial geometrical parameters, the influence could be observed. Afterwards the experimental setup for the integral test of the valve design is presented and also additional tests for single valve components.
International Nuclear Information System (INIS)
Barford, Thomas; Birse, Michael C
2005-01-01
A distorted-wave version of the renormalization group is applied to scattering by an inverse-square potential and to three-body systems. In attractive three-body systems, the short-distance wavefunction satisfies a Schroedinger equation with an attractive inverse-square potential, as shown by Efimov. The resulting oscillatory behaviour controls the renormalization of the three-body interactions, with the renormalization-group flow tending to a limit cycle as the cut-off is lowered. The approach used here leads to single-valued potentials with discontinuities as the bound states are cut off. The perturbations around the cycle start with a marginal term whose effect is simply to change the phase of the short-distance oscillations, or the self-adjoint extension of the singular Hamiltonian. The full power counting in terms of the energy and two-body scattering length is constructed for short-range three-body forces
Atomic force microscopy investigation of electrochemically produced carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Miklosi, J.; Poczik, P.; Papp, K.; Nagy, P.; Kalman, E. [Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary); Sytchev, I.; Kaptay, G. [Miskolci Egyetem, Miskolc (Hungary)
2001-04-01
Carbon nanostructures have been synthesized in NaCl-MgCl{sub 2} and in NaCl-CaCl{sub 2} salt melts and the extracted material was investigated by tapping-mode atomic force microscopy (TM-AFM) and scanning electron microscopy. Some interesting new nanostructures were found and investigated as torus-shaped carbon structures with a ring diameter of 300-400 nm and 10-15 nm height. These tori are closely related to the wrapped SWNT rings described recently. They are probably formed during the electrolysis. A chain-like structure was also revealed. (orig.)
Evolved chiral Hamiltonians at the three-body level and beyond
Energy Technology Data Exchange (ETDEWEB)
Calci, Angelo
2014-07-14
Based on the fundamental symmetries of QCD, chiral effective field theory (EFT) provides two- (NN), three- (3N), four- (4N), and many-nucleon interactions in a consistent and systematic scheme. Recent developments to construct chiral NN+3N interactions at different chiral orders and regularizations enable exciting nuclear structure investigations as well as a quantification of the fundamental uncertainties resulting from the chiral expansion and regularization. We present the complete toolchain to employ the present and future chiral NN, 3N, and 4N interactions in nuclear structure calculations and emphasize technical developments in the three- and four-body space, such as the similarity renormalization group (SRG), the frequency conversion, and the transformation to the JT-coupled scheme. We study the predictions of the chiral NN+3N interactions in ab initio nuclear structure calculations with the importance-truncated no-core shell model and coupled-cluster approach. We demonstrate that the inclusion of chiral 3N forces improves the overall agreement with experiment for excitation energies of p-shell nuclei and it qualitatively reproduces the systematics of nuclear binding energies throughout the nuclear chart up to heavy tin isotopes. In this context it is necessary to introduce truncations in the three-body model space and we carefully analyze their impact and confirm the reliability of the reported results. The SRG evolution induces many-nucleon forces that generally cannot be included in the calculations and constitute a major limitation for the applicability of SRG-evolved chiral forces. We study the origin and effect of the induced many-nucleon forces and propose a modification of the interaction, which suppresses the induced beyond-3N forces. This enables applications of the chiral interactions far beyond the mid-p shell. Furthermore, we test alternative formulations of SRG generators aiming to prevent the induced many-body forces from the outset. The
The scattering matrix element of the three body reactive collision
International Nuclear Information System (INIS)
Morsy, M.W.; Hilal, A.A.; El-Sabagh, M.A.
1980-08-01
The optical model approximation has been applied to a previously derived set of coupled equations representing the dynamics of the three-body reactive scattering. The Schroedinger equation obtained describing the scattering problem has then been solved by inserting the effective mass approximation. The asymptotic requirements for both the entrance and exit channels, respectively, have been supplied to give the scattering matrix element of the reactive collision. (author)
Three-body decays: structure, decay mechanism and fragment properties
International Nuclear Information System (INIS)
Alvarez-Rodriguez, R.; Jensen, A.S.; Fedorov, D.V.; Fynbo, H.O.U.; Kirsebom, O.S.; Garrido, E.
2009-01-01
We discuss the three-body decay mechanisms of many-body resonances. R-matrix sequential description is compared with full Faddeev computation. The role of the angular momentum and boson symmetries is also studied. As an illustration we show the computed ?-particle energy distribution after the decay of 12 C(1 + ) resonance at 12.7 MeV. This article is based on the presentation by R. Alvarez-Rodriguez at the Fifth Workshop on Critical Stability, Erice, Sicily. (author)
Three-body parameter for Efimov states in 6Li
Huang, Bo; O'Hara, Kenneth M.; Grimm, Rudolf; Hutson, Jeremy M.; Petrov, Dmitry S.
2014-10-01
We present a state-of-the-art reanalysis of experimental results on Efimov resonances in the three-fermion system of 6Li. We discuss different definitions of the three-body parameter (3BP) for Efimov states and adopt a definition that excludes effects due to deviations from universal scaling for low-lying states. We develop a finite-temperature model for the case of three distinguishable fermions and apply it to the excited-state Efimov resonance to obtain the most accurate determination to date of the 3BP in an atomic three-body system. Our analysis of ground-state Efimov resonances in the same system yields values for the three-body parameter that are consistent with the excited-state result. Recent work has suggested that the reduced 3BP for atomic systems is a near-universal quantity, almost independent of the particular atom involved. However, the value of the 3BP obtained for 6Li is significantly (˜20 % ) different from that previously obtained from the excited-state resonance in Cs. The difference between these values poses a challenge for theory.
Multifarious applications of atomic force microscopy in forensic science investigations.
Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y
2017-04-01
Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science. Copyright © 2017 Elsevier B.V. All rights reserved.
A new class of three-body states beyond the Efimov effect
Guevara, Nicolais L.; Esry, Brett D.
2012-06-01
Recently, we have identified a new type of three-body bound state for three identical bosons interacting via attractive two-body 1/r^2 potentials [1]. These three-body states are bound even when the two-body subsystem does not support a dimer state. In fact, there are an infinity of such states. We will present an extension of this work to the system with two identical bosons (B) and one distinguishable particle (X). We have investigated the spectrum of this BBX system assuming only that the B+X interaction is an attractive 1/r^2 potential. We have again found an infinite number of three-body bound states even though the two-body potential does not support a bound state. This effect is shown to exist at large mass ratios (MB/MX) and depends on the strength of the two-body interaction. The most favorable case is the molecular-type system, i.e., MB/MX1. While these new three-body states resemble Efimov states they originate from fundamentally different physics.[4pt] [1] N. L. Guevara, Yujun Wang, and B. D. Esry, arXiv:1110.0476 (2011)
Photofragment translational spectroscopy of three body dissociations and free radicals
Energy Technology Data Exchange (ETDEWEB)
North, Simon William [Univ. of California, Berkeley, CA (United States)
1995-04-01
This dissertation describes several three-body dissociations and the photodissociation of methyl radicals studied using photofragment translational spectroscopy. The first chapter provides an introduction to three body dissociation, examines current experimental methodology, and includes a discussion on the treatment of photofragment translational spectroscopy data arising from three-body fragmentation. The ultraviolet photodissociation of azomethane into two methyl radicals and nitrogen is discussed in chapter 2. Chapter 3 describes the photodissociation of acetone at 248 nm and 193 nm. At 248 nm the translational energy release from the initial C-C bond cleavage matches the exit barrier height and a comparison with results at 266 nm suggests that
Asteroids in three-body mean motion resonances with planets
Smirnov, Evgeny A.; Dovgalev, Ilya S.; Popova, Elena A.
2018-04-01
We have identified all asteroids in three-body mean-motion resonances in all possible planets configurations. The identification was done dynamically: the orbits of the asteroids were integrated for 100,000 yrs and the set of the resonant arguments was numerically analyzed. We have found that each possible planets configuration has a lot of the resonant asteroids. In total 65,972 resonant asteroids (≈14.1% of the total number of 467,303 objects from AstDyS database) have been identified.
LHCb: Can LHCb Study Three Body Decays with Neutrals?
Fawcett, W
2013-01-01
In this poster we present the first attempt to use a new method to measure CP violation in Dalitz plots. This method is unbinned, model independent and has a greater sensitivity than binned methods. Preliminary studies have been made using the three body decays $D^0 \\rightarrow K_\\rm{S}^0 \\pi^+ \\pi^-$ and $D^0 \\rightarrow \\pi^+ \\pi^- \\pi^0$, which is especially challenging since there is one neutral particle in each of the final states. An attempt to visualise where CP violation occurs in Dalitz plots is also presented.
Three-body cluster state in 11B
International Nuclear Information System (INIS)
Kawabata, T.; Akimune, H.; Fujita, H.; Fujita, Y.; Fujiwara, M.; Hara, K.; Hatanaka, K.; Itoh, M.; Kanada-En'yo, Y.; Kishi, S.; Nakanishi, K.; Sakaguchi, H.; Shimbara, Y.; Tamii, A.; Terashima, S.; Uchida, M.; Wakasa, T.; Yasuda, Y.; Yoshida, H.P.; Yosoi, M.
2007-01-01
The cluster structures of the excited states in 11 B are studied by analyzing the isoscalar monopole and quadrupole strengths in the 11 B(d,d ' ) reaction at E d =200 MeV. The excitation strengths are compared with the predictions by the shell-model and antisymmetrized molecular-dynamics (AMD) calculations. It is found that the large monopole strength for the 3/2 3 - state at E x =8.56 MeV is well described by the AMD calculation and is an evidence for a developed three-body 2α+t cluster structure
Ultracold Three-Body Collisions near Overlapping Feshbach Resonances
International Nuclear Information System (INIS)
D'Incao, J. P.; Esry, B. D.
2009-01-01
We present a comprehensive collection of ultracold three-body collisions properties near overlapping Feshbach resonances. Our results incorporate variations of all scattering lengths and demonstrate novel collisional behavior, such as atom-molecule interference effects. Taking advantage of the unique ways in which these collisions reflect Efimov physics, new pathways to control atomic and molecular losses open up. Further, we show that overlapping resonances can greatly improve the chances of observing multiple Efimov features in an ultracold quantum gas for nearly any system.
The three-body problem in quantum mechanics
International Nuclear Information System (INIS)
Antunes, A.C.B.
1973-01-01
Different methods used in the analysis of the scattering of an elementary particle by a system of two bound particles are compared. All particles are considered spinless and distinguishable from each other. Two approaches are used in the treatment of the problem. In the first method we build an effective - potential which accounts for the interaction of the incident particle with the bound system. The second approach consists in treating the target as a system of two particles, whose momentum distribution is given by the bound state wavefunction. The three body system is then treated by the techniques of the multiple scattering series and of Glauber theory. (author)
New results on order and spacing of levels for two- and three-body systems
International Nuclear Information System (INIS)
Grosse, H.; Martin, A.; Richard, J.M.; Taxil, P.
1987-01-01
The authors propose sufficient conditions on the potential binding a two-body system to compare; the energy of a state with angular momentum iota+1 to the average of the energies of the neighbouring states with angular momentum iota, the spacings of the successive iota = O excitations. Applications to quarkonium physics are given. The authors also find a condition giving the sign of the parameter Δ controlling the pattern of levels obtained by perturbing the lowest positive parity excitation of a three-body system bound by harmonic oscillator two body forces
Morris, Titus; Bogner, Scott
2016-09-01
The In-Medium Similarity Renormalization Group (IM-SRG) has been applied successfully to the ground state of closed shell finite nuclei. Recent work has extended its ability to target excited states of these closed shell systems via equation of motion methods, and also complete spectra of the whole SD shell via effective shell model interactions. A recent alternative method for solving of the IM-SRG equations, based on the Magnus expansion, not only provides a computationally feasible route to producing observables, but also allows for approximate handling of induced three-body forces. Promising results for several systems, including finite nuclei, will be presented and discussed.
The motion and control of a complex three-body space tethered system
Shi, Gefei; Zhu, Zhanxia; Chen, Shiyu; Yuan, Jianping; Tang, Biwei
2017-11-01
This paper is mainly devoted to investigating the dynamics and stability control of a three body-tethered satellite system which contains a main satellite and two subsatellites connected by two straight, massless and inextensible tethers. Firstly, a detailed mathematical model is established in the central gravitational field. Then, the dynamic characteristics of the established system are investigated and analyzed. Based on the dynamic analysis, a novel sliding mode prediction model (SMPM) control strategy is proposed to suppress the motion of the built tethered system. The numerical results show that the proposed underactuated control law is highly effective in suppressing the attitude/libration motion of the underactuated three-body tethered system. Furthermore, cases of different target angles are also examined and analyzed. The simulation results reveal that even if the final equilibrium states differ from different selections of the target angles, the whole system can still be maintained in acceptable areas.
Native Frames: Disentangling Sequential from Concerted Three-Body Fragmentation
Rajput, Jyoti; Severt, T.; Berry, Ben; Jochim, Bethany; Feizollah, Peyman; Kaderiya, Balram; Zohrabi, M.; Ablikim, U.; Ziaee, Farzaneh; Raju P., Kanaka; Rolles, D.; Rudenko, A.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.
2018-03-01
A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O++C++S+ and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO2 + or CS2 + , before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS3 + breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.
Three-body analysis of 11Li and its β-decay to deuteron channel ...
Indian Academy of Sciences (India)
Three-body analysis of 11Li and its β-decay to deuteron channel and to halo analog state. 11Be∗ (18.3 ... a deeper understanding of the two-neutron halo structure, the situation is still far from clear. Previous investigations [7–12] ... tentials for n–n and n-9Li interactions. Our analysis [15] also suggests a marginal role played ...
Simplified three-body model for 11Li and 9Li-neutron momentum correlations
International Nuclear Information System (INIS)
Zhukov, M.V.; Fedorov, D.V.; Danilin, B.V.; Vaagen, J.S.
1991-01-01
The structure of 11 Li is investigated in the approximate three-body approach COSMA. Correlated momentum distributions for 9 Li-n as well as spatial densities are calculated. The results show that while momentum distributions for individual fragments are unable to discriminate between trial wave functions corresponding to quite different configuration mixtures, correlation experiments could provide the essential information to pin down the 11 Li (neuton halo) structure. (orig.)
Asymptotic form of three-body (dtμ)+ and (ddμ)+ wave functions
International Nuclear Information System (INIS)
Kino, Y.; Shimamura, I.; Armour, E.A.G.; Kamimura, M.
1996-01-01
In order to investigate a discrepancy between existing literature values for the normalization constant in the asymptotic form of three-body wave functions for (DTμ) + , we report the results of a new calculation of the normalization constants for this system as well as the related system (DDμ) + . These were obtained by fitting to accurate variational wave functions with special care being taken to describe the long-range behavior. (orig.)
Investigation of polyelectrolyte desorption by single molecule force spectroscopy
International Nuclear Information System (INIS)
Friedsam, C; Seitz, M; Gaub, H E
2004-01-01
Single molecule force spectroscopy has evolved into a powerful method for the investigation of intra- and intermolecular interactions at the level of individual molecules. Many examples, including the investigation of the dynamic properties of complex biological systems as well as the properties of covalent bonds or intermolecular transitions within individual polymers, are reported in the literature. The technique has recently been extended to the systematic investigation of desorption processes of individual polyelectrolyte molecules adsorbed on generic surfaces. The stable covalent attachment of polyelectrolyte molecules to the AFM-tip provides the possibility of performing long-term measurements with the same set of molecules and therefore allows the in situ observation of the impact of environmental changes on the adsorption behaviour of individual molecules. Different types of interactions, e.g. electrostatic or hydrophobic interactions, that determine the adsorption process could be identified and characterized. The experiments provided valuable details that help to understand the nature and the properties of non-covalent interactions, which is helpful with regard to biological systems as well as for technical applications. Apart from this, desorption experiments can be utilized to characterize the properties of surfaces or polymer coatings. Therefore they represent a versatile tool that can be further developed in terms of various aspects
An Investigation of the Posterior Component of Occlusal Force
1994-05-01
the dental arch across the midline and examined mandibula deformation in subjects with osseointegrated implants . The authors found that, with maximum...the 58 tongue and cheek musculature. Future studies may consider examining interdental forces between a natural dentition and osseointegrated implants ... dental occlusion forces, and 4. periodontal membrane forces. A stable occlusion would purportedly result when balance in terms of the magnitude
Dynamics and control of three-body tethered system in large elliptic orbits
Shi, Gefei; Zhu, Zhanxia; Zhu, Zheng H.
2018-03-01
This paper investigates the dynamic characteristics a three-body tethered satellite system in large elliptic orbits and the control strategy to suppress the libration of the system in orbital transfer process. The system is modeled by a two-piece dumbbell model in the domain of true anomaly. The model consists of one main satellite and two subsatellites connected with two straight, massless and inextensible tethers. Two control strategies based on the sliding mode control are developed to control the libration to the zero state and the steady state respectively. The results of numerical simulations show that the proposed control scheme has good performance in controlling the libration motion of a three-body tethered satellite system in an elliptic orbit with large eccentricity by limited control inputs. Furthermore, Hamiltonians in both states are examined and it shows that less control input is required to control the libration motion to the steady state than that of zero state.
Relativistic three-body effects in black hole coalescence
International Nuclear Information System (INIS)
Campanelli, Manuela; Dettwyler, Miranda; Lousto, Carlos O.; Hannam, Mark
2006-01-01
Three-body interactions are expected to be common in globular clusters and in galactic cores hosting supermassive black holes. We consider an equal-mass binary black hole system in the presence of a third black hole. Using numerically generated binary black hole initial data sets, and first and second-order post-Newtonian (1PN and 2PN) techniques, we find that the presence of the third black hole has non-negligible relativistic effects on the location of the binary's innermost stable circular orbit (ISCO), and that these effects arise at 2PN order. For a stellar-mass black hole binary in orbit about a supermassive black hole, the massive black hole has stabilizing effects on the orbiting binary, leading to an increase in merger time and a decrease of the terminal orbital frequency, and an amplification of the gravitational radiation emitted from the binary system by up to 6%
Three body mechanisms in hadron collisions. The A = 3 system
International Nuclear Information System (INIS)
Frascaria, R.
1988-01-01
Three-body mechanisms in hadron collisions, and the role of the A = 3 system are reviewed, and the excitation functions of the proton deuteron system in interactions at energies up to 2.9 GeV are discussed. Meson productions at large angles reveal structures due to the mesonic degrees of freedom in the interaction of the proton with the deuteron, exciting n * isobars in intermediate states. Propagation in the nuclei does not seem to change the properties of these isobars. The meson double scattering mechanism provides a way to understand coherent meson production in pd capture. It is difficult to say whether this coherent process corresponds to eigenstates of the A = 3 system. The sharing of the momentum transfer between the three nucleons renders impossible the observation of high momentum components in coherent proton captures. The possible contribution of the electromagnetic probe in hadron physics with a multi GeV electron accelerator is mentioned
Equivalent local potentials for three-body scattering
International Nuclear Information System (INIS)
Alt, E.O.; Fiedeldey, H.; Sofianos, S.A.
1987-01-01
It is of considerable interest to apply the inverse scattering method at fixed energy, yielding energy-dependent potentials, to a problem in which the full dynamics of a composite-particle reaction is incorporated in an exact manner. This was implemented by calculating complete sets of phase shifts for elastic nd scattering, at various energies and for all partial waves which are exact within the numerical accuracy achieved. The S-matrices constructed from them are then used as input for a fixed-E inversion to deduce a quantal equivalent local potential which correctly takes into account the effects of the full three-body dynamics on the elastic channel, and of the Pauli principle. 6 refs.; 6 figs
Three body dynamics and its applications to exoplanets
Musielak, Zdzislaw
2017-01-01
This brief book provides an overview of the gravitational orbital evolution of few-body systems, in particular those consisting of three bodies. The authors present the historical context that begins with the origin of the problem as defined by Newton, which was followed up by Euler, Lagrange, Laplace, and many others. Additionally, they consider the modern works from the 20th and 21st centuries that describe the development of powerful analytical methods by Poincare and others. The development of numerical tools, including modern symplectic methods, are presented as they pertain to the identification of short-term chaos and long term integrations of the orbits of many astronomical architectures such as stellar triples, planets in binaries, and single stars that host multiple exoplanets. The book includes some of the latest discoveries from the Kepler and now K2 missions, as well as applications to exoplanets discovered via the radial velocity method. Specifically, the authors give a unique perspective in rel...
Unitary three-body calculation of nucleon-nucleon scattering
International Nuclear Information System (INIS)
Tanabe, H.; Ohta, K.
1986-07-01
We calculate nucleon-nucleon elastic scattering phase parameters based on a unitary, relativistic, pion-exchange model. The results are highly dependent on the off-shell amplitudes of πN scattering. The isobar-dominated model for the P 33 interaction leads to too small pion production rates owing to its strong suppression of off-shell pions. We propose to expand the idea of the Δ-isobar model in such a manner as to incorporate a background (non-pole) interaction. The two-potential model, which was first applied to the P 11 partial wave by Mizutani and Koltun, is applied also to the P 33 wave. Our phenomenological model for πN interaction in the P 33 partial wave differs from the conventional model only in its off-shell extrapolation, and has two different variants for the πN → Δ vertex. The three-body approach of Kloet and Silbar is extended such that the background interactions can be included straightfowardly. We make detailed comparisons of the new model with the conventional one and find that our model adequately reproduces the 1 D 2 phase parameters as well as those of peripheral partial waves. We also find that the longitudinal total cross section difference Δσ L (pp → NNπ) comes closer to the data compared to Kloet and Silbar. We discuss about the backward pion propagation in the three-body calculation, and the Pauli-principle violating states for the background P 11 interaction. (author)
Experimental investigation of lateral forces induced by flow through model labyrinth glands
Leong, Y. M. M. S.; Brown, R. D.
1984-01-01
The lateral forces induced by flow through model labyrinth glands were investigated. Circumferential pressure distributions, lateral forces and stiffness coefficients data obtained are discussed. The force system is represented as a negative spring and a tangential force orthogonal to eccentricity. The magnitude of these forces are dependent on eccentricity, entry swirl, rotor peripheral velocity and seal size. A pressure equalization chamber at midgland tests should in significantly reduced forces and stiffness coefficients.
Atomic force microscopy investigation of the giant mimivirus
International Nuclear Information System (INIS)
Kuznetsov, Yuri G.; Xiao Chuan; Sun Siyang; Raoult, Didier; Rossmann, Michael; McPherson, Alexander
2010-01-01
Mimivirus was investigated by atomic force microscopy in its native state following serial degradation by lysozyme and bromelain. The 750-nm diameter virus is coated with a forest of glycosylated protein fibers of lengths about 140 nm with diameters 1.4 nm. Fibers are capped with distinctive ellipsoidal protein heads of estimated Mr = 25 kDa. The surface fibers are attached to the particle through a layer of protein covering the capsid, which is in turn composed of the major capsid protein (MCP). The latter is organized as an open network of hexagonal rings with central depressions separated by 14 nm. The virion exhibits an elaborate apparatus at a unique vertex, visible as a star shaped depression on native particles, but on defibered virions as five arms of 50 nm width and 250 nm length rising above the capsid by 20 nm. The apparatus is integrated into the capsid and not applied atop the icosahedral lattice. Prior to DNA release, the arms of the star disengage from the virion and it opens by folding back five adjacent triangular faces. A membrane sac containing the DNA emerges from the capsid in preparation for fusion with a membrane of the host cell. Also observed from disrupted virions were masses of distinctive fibers of diameter about 1 nm, and having a 7-nm periodicity. These are probably contained within the capsid along with the DNA bearing sac. The fibers were occasionally observed associated with toroidal protein clusters interpreted as processive enzymes modifying the fibers.
Three-body fragmentation of methane dications produced by slow A r8 + -ion impact
Zhang, Y.; Jiang, T.; Wei, L.; Luo, D.; Wang, X.; Yu, W.; Hutton, R.; Zou, Y.; Wei, B.
2018-02-01
The three-body fragmentation dynamics of CH4 2 + dications induced by single-electron capture of slow (3-keV/u) A r8 + ions is investigated. The experiment is performed on a newly built, highly charged ion collision platform which consists of an electron cyclotron resonance ion source and a cold target recoil ion momentum spectroscopy (COLTRIMS) setup. Using the COLTRIMS methodology, the complete kinematical information is determined for two three-body breakup channels, CH4 2 +→H++CH2 ++H and CH4 2 +→H2 ++C H++H . Then analyzing the complete kinematics with the Dalitz plot, very different fragmentation mechanisms (e.g., sequential and/or concerted pathway) are clearly identified for the two channels. To confirm the existence of some possible fragmentation pathways, we also simulate corresponding Dalitz plots employing a simple classical mechanical model. For the H++CH2 ++H channel, the dependence of the fragmentation pathway on its kinetic energy release is studied, which reflects the different nature of the corresponding states of CH4 2 + dications. Furthermore, the kinetic energy ratio of two ionic fragments is analyzed to infer the three-body fragmentation mechanism of CH4 2 + dications.
Restricted three-body problem in effective-field-theory models of gravity
Battista, Emmanuele; Esposito, Giampiero
2014-04-01
One of the outstanding problems of classical celestial mechanics was the restricted three-body problem, in which a planetoid of small mass is subject to the Newtonian attraction of two celestial bodies of large mass, as it occurs, for example, in the Sun-Earth-Moon system. On the other hand, over the last decades, a systematic investigation of quantum corrections to the Newtonian potential has been carried out in the literature on quantum gravity. The present paper studies the effect of these tiny quantum corrections on the evaluation of equilibrium points. It is shown that, despite the extreme smallness of the corrections, there exists no choice of sign of these corrections for which all qualitative features of the restricted three-body problem in Newtonian theory remain unaffected. Moreover, first-order stability of equilibrium points is characterized by solving a pair of algebraic equations of fifth degree, where some coefficients depend on the Planck length. The coordinates of stable equilibrium points are slightly changed with respect to Newtonian theory, because the planetoid is no longer at equal distance from the two bodies of large mass. The effect is conceptually interesting but too small to be observed, at least for the restricted three-body problems available in the solar system.
An Investigation of B-2 Pilot Force Reserve Component Augmentation
National Research Council Canada - National Science Library
Mathers, Russell
2001-01-01
... to enter the major airline industry Due to the resulting limited number of B-2 instructor pilots the Air Force contracted for civilian B-2 academic instructors who are not as qualified to instruct...
Free time minimizers for the three-body problem
Moeckel, Richard; Montgomery, Richard; Sánchez Morgado, Héctor
2018-03-01
Free time minimizers of the action (called "semi-static" solutions by Mañe in International congress on dynamical systems in Montevideo (a tribute to Ricardo Mañé), vol 362, pp 120-131, 1996) play a central role in the theory of weak KAM solutions to the Hamilton-Jacobi equation (Fathi in Weak KAM Theorem in Lagrangian Dynamics Preliminary Version Number 10, 2017). We prove that any solution to Newton's three-body problem which is asymptotic to Lagrange's parabolic homothetic solution is eventually a free time minimizer. Conversely, we prove that every free time minimizer tends to Lagrange's solution, provided the mass ratios lie in a certain large open set of mass ratios. We were inspired by the work of Da Luz and Maderna (Math Proc Camb Philos Soc 156:209-227, 1980) which showed that every free time minimizer for the N-body problem is parabolic and therefore must be asymptotic to the set of central configurations. We exclude being asymptotic to Euler's central configurations by a second variation argument. Central configurations correspond to rest points for the McGehee blown-up dynamics. The large open set of mass ratios are those for which the linearized dynamics at each Euler rest point has a complex eigenvalue.
Sequential three-body breakup of a CO 2 + beam
Rajput, Jyoti; Ablikim, U.; Zohrabi, M.; Jochim, Bethany; Berry, Ben; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.
2016-05-01
The dissociative double ionization of a CO2+beam leading to the three-body fragmentation channel C+ + O+ + O+ can have its origin in either a sequential or concerted process. In case of the sequential mechanism, the first step is a two-body breakup into CO2+ + O+, followed by a second step wherein CO2+ further fragments into C+ + O+. The rotation of the CO2+ formed during the first step has been used to discriminate between the sequential and non-sequential mechanisms in experiments which employ multi-coincidence momentum imaging techniques for detecting recoil fragments. We propose a novel way to look at this discriminating feature in terms of the angle of rotation of the CO2+ intermediate. We will also discuss the implications on the measured momentum distribution of detecting indistinguishable fragments in a coincidence measurement. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. BJ was also supported by DOE-SCGF (DE-AC05-06OR23100).
Global regularization method for planar restricted three-body problem
Directory of Open Access Journals (Sweden)
Sharaf M.A.
2015-01-01
Full Text Available In this paper, global regularization method for planar restricted three-body problem is purposed by using the transformation z = x+iy = ν cos n(u+iv, where i = √−1, 0 < ν ≤ 1 and n is a positive integer. The method is developed analytically and computationally. For the analytical developments, analytical solutions in power series of the pseudotime τ are obtained for positions and velocities (u, v, u', v' and (x, y, x˙, y˙ in both regularized and physical planes respectively, the physical time t is also obtained as power series in τ. Moreover, relations between the coefficients of the power series are obtained for two consequent values of n. Also, we developed analytical solutions in power series form for the inverse problem of finding τ in terms of t. As typical examples, three symbolic expressions for the coefficients of the power series were developed in terms of initial values. As to the computational developments, the global regularized equations of motion are developed together with their initial values in forms suitable for digital computations using any differential equations solver. On the other hand, for numerical evolutions of power series, an efficient method depending on the continued fraction theory is provided.
Imaging three-body breakup involving two identical fragments
Feizollah, Peyman; Severt, T.; Jochim, Bethany; Berry, Ben; Kanaka Raju, P.; Zohrabi, M.; Rajput, Jyoti; Ablikim, U.; Kaderiya, B.; Ziaee, Farzaneh; Rudenko, A.; Rolles, D.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.
2017-04-01
We study the strong-field fragmentation of CO2 and CO2+ into C++O++O+ as examples of three-body breakup involving two identical fragments. This process can happen through concerted- or sequential-breakup mechanisms. In concerted breakup, the two O+ fragments play indistinguishable roles. In sequential breakup, however, one of the O+ fragments comes from the first fragmentation step of CO23+, and the other one comes from unimolecular dissociation of CO2+ in the second step. Therefore, in sequential breakup the two O+ fragments may be distinguished. A method is proposed that allows us to separate the concerted and sequential processes when the lifetime of the intermediate molecule is much longer than its rotational period. As a result, it is possible to experimentally distinguish the two O+ fragments in the sequential process. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy.
MONDian three-body predictions for LISA Pathfinder
International Nuclear Information System (INIS)
Bevis, Neil; Magueijo, Joao; Trenkel, Christian; Kemble, Steve
2010-01-01
In previous work it was shown that modified Newtonian dynamics (MOND) theories predict anomalously strong tidal stresses near the saddle points of the Newtonian gravitational potential. An analytical examination of the saddle between two bodies revealed a linear and a nonlinear solution, valid for the outer and inner regions. Here we present a numerical algorithm for solving the MOND equations. We check the code against the two-body analytical solutions and explore the region transitioning between them. We then develop a realistic model for the MONDian effects on the saddles of the Sun-Earth-Moon system (including further sources is straightforward). For the Sun-Earth saddle we find that the two-body results are almost unchanged, with corrections increasing from full to new Moon. In contrast, the Moon saddle is an intrinsically three-body problem, but we numerically find a recipe for adapting the two-body solution to this case, by means of a suitable rescaling and axis reorientation. We explore possible experimental scenarios for LISA Pathfinder and the prospect of a visit to the saddle(s) at the end of the mission. Given the chaotic nature of the orbits, awareness of the full range of the possibilities is crucial for a realistic prediction. We conclude that even with very conservative assumptions on the impact parameter, the accelerometers are abundantly sensitive to vindicate or rule out the theory.
Global Regularization Method for Planar Restricted Three-body Problem
Sharaf, M. A.; Dwidar, H. R.
2015-12-01
In this paper, global regularization method for planar restricted three-body problem is purposed by using the transformation z=x+iy=ν cos n(u+iv), where i=√{-1}, 0 < ν ≤ 1 and n is a positive integer. The method is developed analytically and computationally. For the analytical developments, analytical solutions in power series of the pseudo-time τ are obtained for positions and velocities (u,v,u',v') and (x,y,dot{x},dot{y}) in both regularized and physical planes respectively, the physical time {t} is also obtained as power series in τ. Moreover, relations between the coefficients of the power series are obtained for two consequent values of {n}. Also, we developed analytical solutions in power series form for the inverse problem of finding τ in terms of {t}. As typical examples, three symbolic expressions for the coefficients of the power series were developed in terms of the initial values. As to the computational developments, the global regularized equations of motion are developed together with their initial values in forms suitable for digital computations using any differential equations solver. On the other hand, for the numerical evolutions of power series, an efficient method depending on the continued fraction theory is provided.
Investigation of penetration force of living cell using an atomic force microscope
Energy Technology Data Exchange (ETDEWEB)
Kwon, Eun Young; Kim, Young Tae; Kim, Dae Eun [Yonsei University, Seoul (Korea, Republic of)
2009-07-15
Recently, the manipulation of a single cell has been receiving much attention in transgenesis, in-vitro fertilization, individual cell based diagnosis, and pharmaceutical applications. As these techniques require precise injection and manipulation of cells, issues related to penetration force arise. In this work the penetration force of living cell was studied using an atomic force microscope (AFM). L929, HeLa, 4T1, and TA3 HA II cells were used for the experiments. The results showed that the penetration force was in the range of 2{approx}22 nN. It was also found that location of cell penetration and stiffness of the AFM cantilever affected the penetration force significantly. Furthermore, double penetration events could be detected, due to the multi-membrane layers of the cell. The findings of this work are expected to aid in the development of precision micro-medical instruments for cell manipulation and treatment
Low energy electron emission in a pure three body collision: C{sup 6+}+H
Energy Technology Data Exchange (ETDEWEB)
Tribedi, L.C. [Tata Inst. of Fundamental Research, Mumbai (India); Richard, P. [J. R. Macdonald Lab., Physics Dept., Kansas State Univ., Manhattan, KS (United States); Gulyas, L. [Inst. of Nuclear Research of the Hungarian Academy of Science (ATOMKI), Debreccen (Hungary); Rudd, M.E. [Nebraska Univ., Lincoln, NE (United States). Dept. of Physics and Astronomy
1999-07-01
We have investigated the energy and angular distributions of the low energy electron emission in a pure three-body ion-atom collision involving atomic hydrogen as target. The double differential ionization cross sections have been measured for C{sup 6+}+H ({nu} = 6-10 a.u.). The CDW-EIS calculations provide an excellent agreement with the data except some discrepancies in the backward angles. These observations clearly show that the two center mechanism plays a major role in emission of low energy electrons. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Bai, Xiao-Dong; Ai, Qing; Zhang, Mei; Xiong, Jun, E-mail: junxiong@bnu.edu.cn; Yang, Guo-Jian; Deng, Fu-Guo
2015-09-15
We investigate the stability and phase transition of localized modes in Bose–Einstein Condensates (BECs) in an optical lattice with the discrete nonlinear Schrödinger model by considering both two- and three-body interactions. We find that there are three types of localized modes, bright discrete breather (DB), discrete kink (DK), and multi-breather (MUB). Moreover, both two- and three-body on-site repulsive interactions can stabilize DB, while on-site attractive three-body interactions destabilize it. There is a critical value for the three-body interaction with which both DK and MUB become the most stable ones. We give analytically the energy thresholds for the destabilization of localized states and find that they are unstable (stable) when the total energy of the system is higher (lower) than the thresholds. The stability and dynamics characters of DB and MUB are general for extended lattice systems. Our result is useful for the blocking, filtering, and transfer of the norm in nonlinear lattices for BECs with both two- and three-body interactions.
International Nuclear Information System (INIS)
Wamba, Etienne; Mohamadou, Alidou; Ekogo, Thierry B.; Atangana, Jacque; Kofane, Timoleon C.
2011-01-01
The parametric modulational instability for a discrete nonlinear Schrödinger equation with a cubic–quintic nonlinearity is analyzed. This model describes the dynamics of BECs, with both two- and three-body interatomic interactions trapped in an optical lattice. We identify and discuss the salient features of the three-body interaction in the parametric modulational instability. It is shown that the three-body interaction term can both, shift as well as narrow the window of parametric instability, and also change the behavior of a modulationally stable and parametrically unstable BEC with attractive two-body interaction. We explore this instability through the multiple-scale analysis and identify it numerically. The effect of the three body losses have also been investigated. -- Highlights: ► The parametric MI for the 1D GPE with a cubic–quintic nonlinearity is analyzed. ► The two- and three-body recombination and time-dependent scattering length is considered. ► We generate bright matter waves soliton through MI.
Universal Three-Body Physics in Ultracold KRb Mixtures
DEFF Research Database (Denmark)
Wacker, L. J.; Jørgensen, N. B.; Birkmose, Danny Matthiesen
2016-01-01
Ultracold atomic gases have recently become a driving force in few-body physics due to the observation of the Efimov effect. While initially observed in equal mass systems, one expects even richer few-body physics in the mass-imbalanced case. In previous experiments with ultracold mixtures of pot...
Drag force and jet propulsion investigation of a swimming squid
Directory of Open Access Journals (Sweden)
Tabatabaei Mahdi
2015-01-01
Full Text Available In this study, CAD model of a squid was obtained by taking computer tomography images of a real squid. The model later placed into a computational domain to calculate drag force and performance of jet propulsion. The drag study was performed on the CAD model so that drag force subjected to real squid was revealed at squid’s different swimming speeds and comparison has been made with other underwater creatures (e.g., a dolphin, sea lion and penguin. The drag coefficient (referenced to total wetted surface area of squid is 0.0042 at Reynolds number 1.6x106 that is a %4.5 difference from Gentoo penguin. Besides, jet flow of squid was simulated to observe the flow region generated in the 2D domain utilizing dynamic mesh method to mimic the movement of squid’s mantle cavity.
Investigating single molecule adhesion by atomic force spectroscopy.
Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten
2015-02-27
Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.
Investigating Single Molecule Adhesion by Atomic Force Spectroscopy
Stetter, Frank W. S.; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten
2015-01-01
Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282
Nieminen, Pasi; Savinainen, Antti; Viiri, Jouni
2010-01-01
This study investigates students' ability to interpret multiple representations consistently (i.e., representational consistency) in the context of the force concept. For this purpose we developed the Representational Variant of the Force Concept Inventory (R-FCI), which makes use of nine items from the 1995 version of the Force Concept Inventory…
A flight investigation of oscillating air forces: Equipment and technique
Reed, W. H., III
1975-01-01
The equipment and techniques are described which are to be used in a project aimed at measuring oscillating air forces and dynamic aeroelastic response of a swept wing airplane at high subsonic speeds. Electro-hydraulic inertia type shakers installed in the wing tips will excite various elastic airplane modes while the related oscillating chordwise pressures at two spanwise wing stations and the wing mode shapes are recorded on magnetic tape. The data reduction technique, following the principle of a wattmeter harmonic analyzer employed by Bratt, Wight, and Tilly, utilizes magnetic tape and high speed electronic multipliers to record directly the real and imaginary components of oscillatory data signals relative to a simple harmonic reference signal. Through an extension of this technique an automatic flight-flutter-test data analyzer is suggested in which vector plots of mechanical admittance or impedance would be plotted during the flight test.
Surface structure investigations using noncontact atomic force microscopy
International Nuclear Information System (INIS)
Kolodziej, J.J.; Such, B.; Goryl, M.; Krok, F.; Piatkowski, P.; Szymonski, M.
2006-01-01
Surfaces of several A III B V compound semiconductors (InSb, GaAs, InP, InAs) of the (0 0 1) orientation have been studied with noncontact atomic force microscopy (NC-AFM). Obtained atomically resolved patterns have been compared with structural models available in the literature. It is shown that NC-AFM is an efficient tool for imaging complex surface structures in real space. It is also demonstrated that the recent structural models of III-V compound surfaces provide a sound base for interpretation of majority of features present in recorded patterns. However, there are also many new findings revealed by the NC-AFM method that is still new experimental technique in the context of surface structure determination
Investigation of electrostatic force and dipole moment effects on ...
African Journals Online (AJOL)
An understanding of static properties of membrane is an essential prelude to the study of movement of molecules within the membrane. In this investigation any molecule has been theoretically investigated through the quantum mechanical calculations.According to the results obtained, the structural optimization of the ...
Three-body structure of low-lying {sup 18}Ne states
Energy Technology Data Exchange (ETDEWEB)
Lay, J.A. [Universidad de Sevilla, Departamento de Fisica Atomica, Molecular y Nuclear, Sevilla (Spain); Fedorov, D.V.; Jensen, A.S. [Aarhus University, Department of Physics and Astronomy, Aarhus C (Denmark); Garrido, E.; Romero-Redondo, C. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain)
2010-05-15
We investigate to what extent {sup 18}Ne can be descibed as a three-body system made of an inert {sup 16}O core and two protons. We compare to experimental data and occasionally to shell model results. We obtain three-body wave functions with the hyperspherical adiabatic expansion method. We study the spectrum of {sup 18}Ne, the structure of the different states and the predominant transition strengths. Two 0{sup +}, two 2{sup +}, and one 4{sup +} bound states are found where they are all known experimentally. Also one 3{sup +} close to threshold is found and several negative-parity states, 1{sup -}, 3{sup -}, 0{sup -}, 2{sup -}, most of them bound with respect to the {sup 16}O excited 3{sup -} state. The structures are extracted as partial-wave components, as spatial sizes of matter and charge, and as probability distributions. Electromagnetic decay rates are calculated for these states. The dominating decay mode for the bound states is E2 and occasionally also M1. (orig.)
Continuation of periodic orbits in the Sun-Mercury elliptic restricted three-body problem
Peng, Hao; Bai, Xiaoli; Xu, Shijie
2017-06-01
Starting from resonant Halo orbits in the Circular Restricted Three-Body Problem (CRTBP), Multi-revolution Elliptic Halo (ME-Halo) orbits around L1 and L2 points in the Sun-Mercury Elliptic Restricted Three-Body Problem (ERTBP) are generated systematically. Three pairs of resonant parameters M5N2, M7N3 and M9N4 are tested. The first pair shows special features and is investigated in detail. Three separated characteristic curves of periodic orbit around each libration point are obtained, showing the eccentricity varies non-monotonically along these curves. The eccentricity of the Sun-Mercury system can be achieved by continuation method in just a few cases. The stability analysis shows that these orbits are all unstable and the complex instability occurs with certain parameters. This paper shows new periodic orbits in both the CRTBP and the ERTBP. Totally four periodic orbits with parameters M5N2 around each libration points are extracted in the Sun-Mercury ERTBP.
Nucleon-nucleon scattering length from three-body reactions
International Nuclear Information System (INIS)
Bodek, K.
1989-01-01
Experiments aimed at the measurement of the singlet scattering lengths 1 a np and 1 a nn of the NN-interaction in the presence of a heavy spectator are described. The values obtained are compared with the results of measurements of other reactions. The very good agreement of the experimental values of 1 a np from all breakup reactions and elastic scattering as well as agreement of the values of 1 a nn from breakup reactions and disagreement with the value from the π - d → nnγ reaction cast doubts on the hypothesis ascribing this discrepancy to a 3N-force. This result also suggests a stronger effect of a violation of the charge independence principle than previously accepted. 101 refs., 18 figs., 3 tabs. (author)
Three-body scattering problem in the fixed center approximation: The case of attraction
Energy Technology Data Exchange (ETDEWEB)
Kudryavtsev, Alexander E. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Gani, Vakhid A. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Romanov, Alexander I. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)
2016-12-15
We study the scattering of a light particle on a bound pair of heavy particles (e.g., the deuteron) within the fixed center approximation in the case of light-heavy attraction, solving the integral equation for the three-body Green's function both in the coordinate and in the momentum space. The results for the three-body scattering amplitude appear to be ambiguous -they depend on a single real parameter. This parameter may be fixed by a three-body input, e.g., the three-body scattering length. We also solve the integral equation for the three-body Green function in the momentum space, introducing a finite cut-off. We show that all three approaches are equivalent. We also discuss how our approach to the problem matches with the introduction of three-body contact interaction as done by other authors. (orig.)
Three-body forces, relativistic effects, isobars, and pions in nuclear systems
International Nuclear Information System (INIS)
Wiringa, R.B.
1983-01-01
Conventional microscopic calculations in nuclear physics start from a nonrelativistic Hamiltonian. The many-body Schroedinger equation is then solved to obtain the ground state energy, wave function, and expectation values of other quantities of interest. Such a procedure gives a qualitative description of nuclear saturation properties, but it is now well established that the simple H is quantitatively inadequate. For example, the light nuclei are underbound with too large a charge radius, while nuclear matter is overbound at far too high a density. This note reviews recent studies that go beyond the simple H. These include 1) the introduction of three-nucleon potentials, 2) estimates of relativistic effects, 3) the introduction of isobar degrees of freedom in the two-body potential, and 4) probing the influence of pion degrees of freedom on nuclear systems
Investigation of slightly forced buoyant flow in a training reactor
International Nuclear Information System (INIS)
Legradi, G.; Aszodi, A.; Por, G.
2001-01-01
A measurement based on the temperature noise analysis method was carried out in the Training Reactor of the Budapest University of Technology and Economics. The main goals were the estimation of the flow velocity immediately above the reactor core and investigation of the thermal-hydraulical conditions of the reactor, mainly in the core. Subsequently 2D and 3D computations were carried out with the aid of the code CFX- 4.3. The main objective of the 2D calculation was to clarify the thermal-hydraulical conditions of the whole reactor tank with a reasonable computing demand. It was also necessary to accomplish 3D numerical investigations of the reactor core and the space above since three dimensional effects of the flow could only be studied in this way. In addition, obtaining certain boundary conditions of the 3D computations was another significant aim of the 2D investigations. It is important that the results of the noise analysis and the operational measuring system of the reactor gave us a basis for verifying our computations.(author)
Directory of Open Access Journals (Sweden)
Hui Zhang
2017-01-01
Full Text Available The control of vortex-induced vibration (VIV in shear flow with different distributions of Lorentz force is numerically investigated based on the stream function–vorticity equations in the exponential-polar coordinates exerted on moving cylinder for Re = 150. The cylinder motion equation coupled with the fluid, including the mathematical expressions of the lift force coefficient C l , is derived. The initial and boundary conditions as well as the hydrodynamic forces on the surface of cylinder are also formulated. The Lorentz force applied to suppress the VIV has no relationship with the flow field, and involves two categories, i.e., the field Lorentz force and the wall Lorentz force. With the application of symmetrical Lorentz forces, the symmetric field Lorentz force can amplify the drag, suppress the flow separation, decrease the lift fluctuation, and then suppress the VIV while the wall Lorentz force decreases the drag only. With the application of asymmetrical Lorentz forces, besides the above-mentioned effects, the field Lorentz force can increase additional lift induced by shear flow, whereas the wall Lorentz force can counteract the additional lift, which is dominated on the total effect.
Graybill, George
2007-01-01
Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.
Effect of three-body transformed Hamiltonian ( ) using full connected ...
Indian Academy of Sciences (India)
KALIPADA ADHIKARI
2018-02-13
Feb 13, 2018 ... ˜H3 is constructed using CCSDT1-A model of Bartlett et al for the ground-state calculation. Contribution of transformed Hamiltonian through full connected triples ˜H3S. (1,0). 3 involves huge amount of computational operations that is time-consuming. Investigation on Cl2 and F2 molecules using cc-pVDZ ...
Investigation of the Effect of Cutting Tool Rake Angle on Feed Force
GÜNAY, Mustafa; ŞEKER, Ulvi
2005-01-01
This paper presents a study of investigation into cutting tool rake angle effect on feed force to have secondary important during machining. For this purpose, a dynamometer was designed and manufactured for experimental determination of the cutting forces and mounted to a CNC turning centre. With the help of two beam type load cells suitably located on the dynamometer, it became possible to sense the cutting tool deflections due to the cutting forces. AISI 1040 was used as the workpiece mater...
Comment on the three-body theory for period changes in RS CVn systems
Van Buren, D.
1986-01-01
In the three-body theory for period variations in RS CVn systems, the timing residuals are interpreted as light-travel time differences as the eclipsing system moves about the barycenter of the triple. These residuals can require a larger orbit than Kepler's law allows, given the time scale of the period variations. For only two of eight systems investigated, SV Cam and V471 Tau, is the theory plausible in that the inferred barycentric motion of the binary is smaller than the orbit of the third body, and the inferred properties of the third body are both reasonable and consistent with its remaining hidden. The theory is thus not a general theory for period changes. Observational testing of the theory is straightforward and may lead to the detection of 'brown dwarfs' associated with eclipsing systems through their kinematic effects.
Fractographic and three body abrasion behaviour of Al-Garnet-C hybrid chill cast composites
Bandekar, Nityanand; Prasad, M. G. Anantha
2017-08-01
Fractographic and tribological behaviour of hybrid composite of aluminum alloy LM13 matrix with garnet and carbon was investigated. Conventional stir casting technique was used to fabricate the composites with chill cast technique. Various chill materials like Copper, Steel, Iron and Silicon carbide were used to improve the directional solidification. The garnet being added ranges from 3 to 12 wt-% in steps of 3wt-% and constant 3wt-% of carbon. The experiment evaluates the mechanical, fractographic and three body abrasion behaviour of the hybrid composites for various parameters of load, garnet and chills. Microstructural characterization of the composite samples revealed a uniform distribution of reinforcements with minimum clustering. SEM was used for examine worn surfaces. The addition of garnet and carbon reinforcement decreases the wear rate of hybrid composites. Fracture behaviour showed the changes from ductile mode to brittle mode of failure. Further, directional chilling with copper chill improves the wear resistance of the composites.
Motions of Kepler circumbinary planets in restricted three-body problem under radiating primaries
Energy Technology Data Exchange (ETDEWEB)
Dermawan, B., E-mail: budider@as.itb.ac.id; Hidayat, T., E-mail: taufiq@as.itb.ac.id [Astronomy Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132 (Indonesia); Huda, I. N., E-mail: ibnu.nurul@students.itb.ac.id; Mandey, D., E-mail: mandey.de@gmail.com; Utama, J. A., E-mail: judhistira@yahoo.com; Tampubolon, I., E-mail: ihsan.tampubolon@gmail.com [Department of Astronomy, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132 (Indonesia); Wibowo, R. W., E-mail: ridlo.w.wibowo@gmail.com [Department of Computational Science, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132 (Indonesia)
2015-09-30
By observing continuously a single field of view in the sky, Kepler mission reveals outstanding results on discoveries of exoplanets. One of its recent progress is the discoveries of circumbinary planets. A circumbinary planet is an exoplanet that moves around a binary system. In this study we investigate motions of Kepler circumbinary planets belong to six binary systems, namely Kepler-16, -34, -35, -38, -47, and -413. The motions are considered to follow the Restricted Three-Body Problem (RTBP). Because the primaries (central massive objects) are stars, they are both radiatives, while the planet is an infinitesimal object. The primaries move in nearly circular and elliptic orbits with respect to their center of masses. We describe, in general, motions of the circumbinary planets in RTBP under radiating primaries. With respect to the averaged zero velocity curves, we show that motions of the exoplanets are stable, in accordance with their Hill stabilities.
Directory of Open Access Journals (Sweden)
Ackermann Marko
2015-01-01
Full Text Available The ratio of tangential to total pushrim force, the so-called Fraction Effective Force (FEF, has been used to evaluate wheelchair propulsion efficiency based on the fact that only the tangential component of the force on the pushrim contributes to actual wheelchair propulsion. Experimental studies, however, consistently show low FEF values and recent experimental as well as modelling investigations have conclusively shown that a more tangential pushrim force direction can lead to a decrease and not increase in propulsion efficiency. This study aims at quantifying the contributions of active, inertial and gravitational forces to the normal pushrim component. In order to achieve this goal, an inverse dynamics-based framework is proposed to estimate individual contributions to the pushrim forces using a model of the wheelchair-user system. The results show that the radial pushrim force component arise to a great extent due to purely mechanical effects, including inertial and gravitational forces. These results corroborate previous findings according to which radial pushrim force components are not necessarily a result of inefficient propulsion strategies or hand-rim friction requirements. This study proposes a novel framework to quantify the individual contributions of active, inertial and gravitational forces to pushrim forces during wheelchair propulsion.
Investigation of a model to verify software for 3-D static force calculation
Takahashi, Norio; Nakata, Takayoshi; Morishige, H.
1994-01-01
Requirements for a model to verify software for 3-D static force calculation are examined, and a 3-D model for static force calculation is proposed. Some factors affecting the analysis and experiments are investigated in order to obtain accurate and reproducible results
Predicting wind farm wake interaction with RANS: an investigation of the Coriolis force
DEFF Research Database (Denmark)
van der Laan, Paul; Hansen, Kurt Schaldemose; Sørensen, Niels N.
2015-01-01
A Reynolds-averaged Navier-Stokes code is used to simulate the interaction of two neighboring wind farms. The influence of the Coriolis force is investigated by modeling the atmospheric surface/boundary layer with three different methodologies. The results show that the Coriolis force is negligible...
Effects of three-body interactions on the dynamics of entanglement in spin chains
International Nuclear Information System (INIS)
Shi Cuihua; Wu Yinzhong; Li Zhenya
2009-01-01
With the consideration of three-body interaction, dynamics of pairwise entanglement in spin chains is studied. The dependence of pairwise entanglement dynamics on the type of coupling, and distance between the spins is analyzed in a finite chain for different initial states. It is found that, for an Ising chain, three-body interactions are not in favor of preparing entanglement between the nearest neighbor spins, while three-body interactions are favorable for creating entanglement between remote spins from a separable initial state. For an isotropic Heisenberg chain, the pairwise concurrence will decrease when three-body interactions are considered both for a separable initial state and for a maximally entangled initial state, however, three-body interactions will retard the decay of the concurrence in an Ising chain when the initial state takes the maximally entangled state.
Project Portfolio Management: An Investigation of One Air Force Product Center
National Research Council Canada - National Science Library
Edmunds, Bryan D
2005-01-01
.... This research focuses on the portfolio management (project selection and resource allocation) part of the CTRRP. The purpose of this research effort was to investigate the use of portfolio management within the Air Force...
Schultz, Sabine; Rosentritt, Martin; Behr, Michael; Handel, Gerhard
2010-01-01
To compare wear performance and resistance to crack propagation (K1C) of commercial restorative materials and their flowable variations. A potential correlation between three-body wear and fracture toughness, modulus of elasticity, fracture work, Vickers hardness, and filler content was investigated. Seven restoratives (five composites, one ormocer, and one compomer) and their corresponding flowable materials were used to determine and compare the three-body wear with a bolus of millet-seed shells and rice food (Willytec). The wear characteristics were measured by profilometry after 50,000, 100,000, 150,000, and 200,000 loading cycles. The fracture toughness value, K1C (MPam1/2), for each single-edged notched specimen was measured in a three-point bending test (universal testing machine 1446, Zwick). Fracture work and modulus of elasticity were calculated from the load curves. Vickers hardness was measured (HV hardness tester, Zwick) according to DIN 50133. The veneering composite Sinfony (3M ESPE) was used as a reference material. Heavily filled composites experienced less wear than their flowable variations. The nanofiller composites revealed better wear results than hybrid composites, compomers, and ormocers. After 200,000 load cycles, the lowest wear rates were detected for Grandio (14 microm; Voco), and the highest mean values were found for Dyract AP (104 microm; Dentsply DeTrey). The values for fracture toughness (K1C) ranged from 0.82 to 3.64 MPam1/2. Highest K1C data was exhibited by the nanocomposite Nanopaq (Schutz Dental). All tested restorative materials exhibited higher fracture toughness than their low-viscosity variations. The wear resistance of the newer generation composites with incorporated nanofiller or microfiller particles increased to a high extent. Flowables show less resistance against wear and crack propagation because of their lower filler content. The reduced mechanical properties limit their use as a restorative to small noncontact
International Nuclear Information System (INIS)
Chen Yan; Chen Yong; Zhang Kezhi
2009-01-01
We study the dynamic behaviour of Bose-Einstein condensates with two- and three-atom interactions in optical lattices with analytical and numerical methods. It is found that the steady-state relative population displays tuning-fork bifurcation when the system parameters are changed to certain critical values. In particular, the existence of the three-body interaction not only transforms the bifurcation point of the system but also greatly affects the macroscopic quantum self-trapping behaviours associated with the critically stable steady-state solution. In addition, we investigated the influence of the initial conditions, three-body interaction, and the energy bias on the macroscopic quantum self-trapping. Finally, by applying the periodic modulation on the energy bias, we observed that the relative population oscillation exhibits a process from order to chaos, via a series of period-doubling bifurcations.
Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design
Gomez, G.; Koon, W. S.; Lo, Martin W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.
2001-01-01
The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold 'tubes' associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case.
The d-α elastic scattering and the lithium-6 in a three-body model with separable interactions
International Nuclear Information System (INIS)
Charnomordic, Brigitte.
1976-01-01
This work consists in a three-body treatment of the six nucleon system. The model is constructed by considering two identical nucleons and a structureless alpha particle. Such a system can be described by the Faddeev-Lovelace equations. A partial antisymetrization is performed taking into account the identity of the nucleons. Pairwise interacting particles with nonlocal separable forces are introduced. Two-body potentials are chosen in each n-n and n-α partial wave. After an analysis of the existing separable interactions, new n-α and 1S0 parametrization are constructed. The sensitivity to the tensor force and the role of the N-α description are especially studied. The case of d-α elastic scattering is also discussed. The observables: differential cross-section, analyzing powers and transfer polarization coefficients are calculated and compared with experiments. The results show the ability of a three-body model with separable interactions in describing the main properties of the d-α elastic scattering and lithium-6 [fr
Investigation of a mutual interaction force at different pressure amplitudes in sulfuric acid
International Nuclear Information System (INIS)
Rezaee, Nastaran; Sadighi-Bonabi, Rasoul; Mirheydari, Mona; Ebrahimi, Homa
2011-01-01
This paper investigates the secondary Bjerknes force for two oscillating bubbles in various pressure amplitudes in a concentration of 95% sulfuric acid. The equilibrium radii of the bubbles are assumed to be smaller than 10 μm at a frequency of 37 kHz in various strong driving acoustical fields around 2.0 bars (1 bar=10 5 Pa). The secondary Bjerknes force is investigated in uncoupled and coupled states between the bubbles, with regard to the quasi-adiabatic model for the bubble interior. It finds that the value of the secondary Bjerknes force depends on the driven pressure of sulfuric acid and its amount would be increased by liquid pressure amplitude enhancement. The results show that the repulsion area of the interaction force would be increased by increasing the driven pressure because of nonlinear oscillation of bubbles. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Energy Technology Data Exchange (ETDEWEB)
Nashold, B.; Rosenblatt, D.; Hau, J. [and others
1995-08-01
This summary describes a Supplemental Site Inspection (SSI) conducted by Argonne National Laboratory (ANL) at Air Force Plant 59 (AFP 59) in Johnson City, New York. All required data pertaining to this project were entered by ANL into the Air Force-wide Installation Restoration Program Information System (IRPIMS) computer format and submitted to an appropriate authority. The work was sponsored by the United States Air Force as part of its Installation Restoration Program (IRP). Previous studies had revealed the presence of contaminants at the site and identified several potential contaminant sources. Argonne`s study was conducted to answer questions raised by earlier investigations.
Efimov Physics and the Three-Body Parameter within a Two-Channel Framework
DEFF Research Database (Denmark)
Sørensen, Peder Klokmose; V. Fedorov, D.; S. Jensen, A.
2012-01-01
scaling laws. We recover known results for broad Feshbach resonances with small effective range, whereas in the case of narrow resonances we find a distinct non-monotonic behavior of the threshold at which the lowest Efimov trimer merges with the three-body continuum. To address the issue of the physical...... origin of the three-body parameter we provide a physically clear model for the relation between three-body physics and typical two-body atom-atom interactions. Our results demonstrate that experimental information from narrow Feshbach resonances and/or mixed systems are of vital importance to pin down...... the relation of two- and three-body physics in atomic systems....
Energy Technology Data Exchange (ETDEWEB)
1994-10-01
This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.
A clinical investigation of force delivery systems for orthodontic space closure.
Nightingale, C; Jones, S P
2003-09-01
To investigate the force retention, and rates of space closure achieved by elastomeric chain and nickel titanium coil springs. Randomized clinical trial. Eastman Dental Hospital, London and Queen Mary's University Hospital, Roehampton, 1998-2000. Twenty-two orthodontic patients, wearing the pre-adjusted edgewise appliance undergoing space closure in opposing quadrants, using sliding mechanics on 0.019 x 0.025-inch posted stainless steel archwires. Medium-spaced elastomeric chain [Durachain, OrthoCare (UK) Ltd., Bradford, UK] and 9-mm nickel titanium coil springs [OrthoCare (UK) Ltd.] were placed in opposing quadrants for 15 patients. Elastomeric chain only was used in a further seven patients. The initial forces on placement and residual forces at the subsequent visit were measured with a dial push-pull gauge [Orthocare (UK) Ltd]. Study models of eight patients were taken before and after space closure, from which measurements were made to establish mean space closure. The forces were measured in grammes and space closure in millimetres. Fifty-nine per cent (31/53) of the elastomeric sample maintained at least 50 per cent of the initial force over a time period of 1-15 weeks. No sample lost all its force, and the mean loss was 47 per cent (range: 0-76 per cent). Nickel titanium coil springs lost force rapidly over 6 weeks, following that force levels plateaued. Forty-six per cent (12/26) maintained at least 50 per cent of their initial force over a time period of 1-22 weeks, and mean force loss was 48 per cent (range: 12-68 per cent). The rate of mean weekly space closure for elastomeric chain was 0.21 mm and for nickel titanium coil springs 0.26 mm. There was no relationship between the initial force applied and rate of space closure. None of the sample failed during the study period giving a 100 per cent response rate. In clinical use, the force retention of elastomeric chain was better than previously concluded. High initial forces resulted in high force decay
On the difficulties of a single three-body Lippmann-Schwinger equation
International Nuclear Information System (INIS)
Sawada, Tatsuro; Miyagawa, Kazuya; Thushima, Kathuhide.
1991-01-01
First, we point out that the often quoted non-uniqueness argument on a single three-body Lippmann-Schwinger equation (the LS equation) is either not valid because the manipulation leading to it is not justifiable, or inconsequential because the non-uniqueness can easily be discerned and eliminated. Next, we discuss the property of the kernel with energy independent absorbing potentials (EIAP) of general forms. We find that the use of EIAP as in the CDCC approach dose not make the kernel compact. It remains non-compact no matter what we use for two-body potentials. Finally, we investigate in what sense the LS equation is solvable in terms of the CDCC approach. When the wave function inside the right-hand side (RHS) of the LS equation is restricted to a small CDCC model space, the difference between the RHS and the ordinary asymptotic form assumed in the approach is found to diverge asymptotically due to contributions from higher partial waves. We conclude that the CDCC solution cannot be claimed to be the solution to the LS equation, not unless it is restricted to a small model space. (author)
On the triad of three-body Lippmann-Schwinger equations
International Nuclear Information System (INIS)
Sawada, Tatsuro; Thushima, Kathuhide; Miyagawa, Kazuya.
1990-01-01
The equivalence problem between the Faddeev equation and the usual triad of three-body Lippmann-Schwinger (LS) equations (LS triad) is re-investigated. We maintain that the LS triad does not qualify as an integral equation since its integral kernel is not uniquely defined. We give a derivation of the LS triad that is truly equivalent to the Faddeev equation (FE-LS triad) in a manner in which the correspondence to the Faddeev equation is apparent. The relation between the Faddeev components and the solution of the FE-LS triad is clarified. By probing this relation, we derive an identity that is satisfied by the solution of the LS triad, and which corresponds to the projection property of adjoint Moeller operators as formulated by Sandhas. We find that this identity is a consequence of more fundamental identities satisfied by the Faddeev components. We conclude that although the usual LS triad is a valid relation satisfied by the solution of the FE-LS triad, it is not truly equivalent to the Faddeev equation. In particular, even in the absence of rearrangement channels, we find it necessary to retain the FE-LS triad. (author)
Spectroscopy of {sup 12}C within the boundary condition for three-body resonant states
Energy Technology Data Exchange (ETDEWEB)
Kurokawa, Chie [Meme Media Laboratory, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: chie@nucl.sci.hokudai.ac.jp; Kato, Kiyoshi [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)
2007-08-01
The 3{alpha}-cluster structure of excited states in {sup 12}C is investigated by taking into account the correct boundary condition for three-body resonant states. In this study, we adopt the Complex Scaling Method (CSM), which enables us to obtain the resonant states that can be described as square integrable states with the same boundary conditions as those of the bound states, and calculate not only resonance energies but also the total decay widths of the 3{alpha} system. We compare the calculated resonance parameters to the experimental data and also to the previous 3{alpha} model results obtained with a bound state approximation. Our results well explain the many observed levels and give an assurance for the presence of the second 2{sup +} state, which is expected by the 3{alpha} model calculations with the approximations of bound state or two-body scattering. As for the negative-parity states, it is considered that the calculated 4{sup -} state is assigned to the observed E{sub x}=13.4MeV state. Through the calculation of channel amplitudes, the obtained third 0{sup +} state is found to have a s-wave dominant and a more dilute structure compared to the second 0{sup +} state.
Directory of Open Access Journals (Sweden)
Hemanth Rajashekaraiah
2014-01-01
Full Text Available Various amounts of short fibers (glass and carbon and particulate fillers like polytetrafluoroethylene (PTFE, silicon carbide (SiC, and alumina (Al2O3 were systematically introduced into the thermoplastic copolyester elastomer (TCE matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to L27 orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region, the storage modulus increases with increase in wt.% of reinforcement (fiber + fillers and the value is maximum for the composite with 40 wt.% reinforcement. The loss modulus and damping peaks were also found to be higher by the incorporation of SiC and Al2O3 microfillers. The routine abrasive wear test results indicated that TCE filled PTFE composite exhibited better abrasion resistance. Improvements in the abrasion resistance, however, have not been achieved by short-fiber and particlaute filler reinforcements. From the Taguchi’s experimental findings, optimal combination of control factors were obtained for minimum wear volume and also predictive correlations were proposed. Further, the worn surface morphology of the samples was discussed.
Studies of continuum states in${16}$ Ne using three-body correlation techniques
Marganiec, J; Aksouh, F; Aksyutina, Yu; Alvarez-Pol, H; Aumann, T; Beceiro-Novo, S; Boretzky, K; Borge, M J G; Chartier, M; Chatillon, A; Chulkov, L V; Cortina-Gil, D; Emling, H; Ershova, O; Fraile, L M; Fynbo, H O U; Galaviz, D; Geissel, H; Heil, M; Hoffmann, D H H; Hoffmann, J; Johansson, H T; Jonson, B; Karagiannis, C; Kiselev, O A; Kratz, J V; Kulessa, R; Kurz, N; Langer, C; Lantz, M; Le Bleis, T; Lemmon, R; Litvinov, Yu A; Mahata, K; Müntz, C; Nilsson, T; Nociforo, C; Nyman, G; Ott, W; Panin, V; Paschalis, S; Perea, A; Plag, R; Reifarth, R; Richter, A; Rodriguez-Tajes, C; Rossi, D; Riisager, K; Savran, D; Schrieder, G; Simon, H; Stroth, J; Sümmerer, K; Tengblad, O; Weick, H; Wiescher, M; Wimmer, C; Zhukov, M V
2015-01-01
Two-proton decay of the unbound $ T_{z} =-2$ nucleus$^{16}$Ne , produced in one-neutron knockout from a 500 MeV/u$^{17}$Ne beam, has been studied at GSI. The ground state, at a resonance energy 1.388(15) MeV, ( $ \\Gamma =0.082(15)$ MeV) above the$^{14}$O +p+p threshold, and two narrow resonances at $ E_{r} =3.220(46)$ MeV and 7.57(6) MeV have been investigated. A comparison of the energy difference between the first excited 2$^{+}$ state and the 0$^{+}$ ground state in$^{16}$Ne with its mirror nucleus$^{16}$C reveals a small Thomas-Ehrman shift (TES) of $ +70(46)$ keV. A trend of the TES for the T = 2 quintet is obtained by completing the known data with a prediction for$^{16}$F obtained from an IMME analysis. The decay mechanisms of the observed three resonances were revealed from an analysis of the energy and angular correlations of the$^{14}$O +p+p decay products. The ground state decay can be considered as a genuine three-body (democratic) mode and the excited states decay sequentially via states in the i...
An experimental and theoretical investigation into three-body abrasive wear
Woldman, M.
2014-01-01
When machines operate under extreme conditions, they often need to perform to maximum capacity. The high demands cause the amount of wear to increase relative to ‘the normal’ situation. Moreover, the extreme conditions are typically variable, making it impossible to define fixed maintenance
Directory of Open Access Journals (Sweden)
Christopher Peschel
2017-09-01
Full Text Available We investigated the effect of fluorinated molecules on dipalmitoylphosphatidylcholine (DPPC bilayers by force-field molecular dynamics simulations. In the first step, we developed all-atom force-field parameters for additive molecules in membranes to enable an accurate description of those systems. On the basis of this force field, we performed extensive simulations of various bilayer systems containing different additives. The additive molecules were chosen to be of different size and shape, and they included small molecules such as perfluorinated alcohols, but also more complex molecules. From these simulations, we investigated the structural and dynamic effects of the additives on the membrane properties, as well as the behavior of the additive molecules themselves. Our results are in good agreement with other theoretical and experimental studies, and they contribute to a microscopic understanding of interactions, which might be used to specifically tune membrane properties by additives in the future.
Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco
2014-01-01
Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.
Theoretical investigation of van der Waals forces between solid surfaces at nanoscales
Kudryavtsev, Y.V.; Gelinck, E.R.M.; Fischer, H.R.
2009-01-01
A theoretical investigation of van der Waals forces acting between two solid silicon surfaces at separations from zero to approximately 20 nm is presented. We focused our efforts on the analysis of different factors that can cause deviations from the classical pressure-distance dependence p ∼ 1/D3.
Investigation of ferromagnetic microstructures by local Hall effect and magnetic force microscopy
Nitta, J; Schapers, T; Heersche, HB; Koga, T; Sato, Y; Takayanagi, H
We have investigated the magnetization process of NiFe micro-magnets, using fringing field induced local Hall effect (LHE) and magnetic force microscopy (MFM), Although the LHE reflects information only from the edge of micro-magnets, the MFM observation supports the conclusion that a rapid jump in
Energy Technology Data Exchange (ETDEWEB)
1991-10-01
This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.
Plasma effects in three-body recombination of high-Z bare ions with electrons
International Nuclear Information System (INIS)
Pajek, M.
1999-01-01
The influence of plasma effects on three-body recombination of bare ions with electrons in cold plasma in the electron cooler is discussed in context of recombination ''enhancement'' observed in storage ring experiments. We show that for high-Z bare ions and low electron temperatures and densities the cooler plasma becomes ''nonideal'', leading to the enhancement of the three-body recombination rates. This effect is described in terms of the Debye screening length within the ''rigid shift'' approximation. We demonstrate, that in cold (T∼1-10 K) anisotropic plasma the screening effect substantially enhances the three-body recombination rates for very high n-states. The relaxation of high Rydberg states below the field ionization cut-off, set in storage ring experiments, is discussed. The calculations are confronted with the experimental results obtained in storage ring experiments. (orig.)
Spacecraft trajectories to the L3 point of the Sun-Earth three-body problem
Tantardini, Marco; Fantino, Elena; Ren, Yuan; Pergola, Pierpaolo; Gómez, Gerard; Masdemont, Josep J.
2010-11-01
Of the three collinear libration points of the Sun-Earth Circular Restricted Three-Body Problem (CR3BP), L3 is that located opposite to the Earth with respect to the Sun and approximately at the same heliocentric distance. Whereas several space missions have been launched to the other two collinear equilibrium points, i.e., L1 and L2, taking advantage of their dynamical and geometrical characteristics, the region around L3 is so far unexploited. This is essentially due to the severe communication limitations caused by the distant and permanent opposition to the Earth, and by the gravitational perturbations mainly induced by Jupiter and the close passages of Venus, whose effects are more important than those due to the Earth. However, the adoption of a suitable periodic orbit around L3 to ensure the necessary communication links with the Earth, or the connection with one or more relay satellites located at L4 or L5, and the simultaneous design of an appropriate station keeping-strategy, would make it possible to perform valuable fundamental physics and astrophysics investigations from this location. Such an opportunity leads to the need of studying the ways to transfer a spacecraft (s/c) from the Earth’s vicinity to L3. In this contribution, we investigate several trajectory design methods to accomplish such a transfer, i.e., various types of two-burn impulsive trajectories in a Sun-s/c two-body model, a patched conics strategy exploiting the gravity assist of the nearby planets, an approach based on traveling on invariant manifolds of periodic orbits in the Sun-Earth CR3BP, and finally a low-thrust transfer. We examine advantages and drawbacks, and we estimate the propellant budget and time of flight requirements of each.
Investigation of Tension Forces in A Stay Cable System of A Road Bridge Using Vibration Methods
Directory of Open Access Journals (Sweden)
Hawryszków Paweł
2015-01-01
Full Text Available In the article author presents method of investigation of tension forces in stay cable systems using dynamical methods. Research was carried out during stay cable system installation on WN-24 viaduct near Poznań, that is way it was possible to compare tension forces indicated directly by devices using for tensioning of cable-stayed bridges with results achieved indirectly by means of dynamical methods. Discussion of results was presented. Advantages of dynamical methods and possible fields of application was described. This method, which has been rarely used before, may occur interesting alternative in diagnostics of bridges in comparison to traditional methods.
Investigation of the nucleon-nucleon tensor force in three-nucleon system
Energy Technology Data Exchange (ETDEWEB)
Clajus, M.; Egun, P.M.; Gruebler, W.; Hautle, P. (Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Mittelenergiephysik); Slaus, I. (Institut Rudjer Boskovic, Zagreb (Yugoslavia)); Vuaridel, B. (Michigan Univ., Ann Arbor (USA) Brookhaven National Lab., Upton, NY (USA)); Sperisen, F. (Indiana Univ., Bloomington (USA). Cyclotron Facility); Kretschmer, W.; Rauscher, A.; Schuster, W.; Weidmann, R.; Haller, M. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.)); Bruno, M.; Cannata, F.; D' Agostino, M. (Istituto Nazionale di Fisica Nucleare, Bologna (Italy)); Witala, H.; Cornelius, T.; Gloeckle, W. (Bochum Univ. (Germany, F.R.)); Schmelzbach, P.A. (Paul Scherrer Inst., Villigen (Switzerland))
1990-08-16
Proton-deuteron elastic scattering has been investigated at E{sub p}=22.7 MeV by comparison of rigorous Faddeev calculations with experimental results. The observable most sensitive to the tensor force is the nucleon-nucleon polarization transfer coefficient K{sub y}sup(y'). The new angular distribution of K{sub y}sup(y') clearly favours the tensor force of the Bonn A potential, which is weaker than the one of the Paris potential. (orig.).
More than six hundred new families of Newtonian periodic planar collisionless three-body orbits
Li, XiaoMing; Liao, ShiJun
2017-12-01
The famous three-body problem can be traced back to Isaac Newton in the 1680s. In the 300 years since this "three-body problem" was first recognized, only three families of periodic solutions had been found, until 2013 when Šuvakov and Dmitrašinović [Phys. Rev. Lett. 110, 114301 (2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new families of Newtonian planar three-body problem with equal mass and zero angular momentum. In this paper, we numerically obtain 695 families of Newtonian periodic planar collisionless orbits of three-body system with equal mass and zero angular momentum in case of initial conditions with isosceles collinear configuration, including the well-known figure-eight family found by Moore in 1993, the 11 families found by Šuvakov and Dmitrašinović in 2013, and more than 600 new families that have never been reported, to the best of our knowledge. With the definition of the average period T = T/L f, where L f is the length of the so-called "free group element", these 695 families suggest that there should exist the quasi Kepler's third law T* ≈ 2:433 ± 0:075 for the considered case, where T ≈ = T | E|3/2 is the scale-invariant average period and E is its total kinetic and potential energy, respectively. The movies of these 695 periodic orbits in the real space and the corresponding close curves on the "shape sphere" can be found via the website: http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.
Three-body correlations in the ground-state decay of 26O
Kohley, Z.; Baumann, T.; Christian, G.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Luther, B.; Lunderberg, E.; Jones, M.; Mosby, S.; Smith, J. K.; Spyrou, A.; Thoennessen, M.
2015-03-01
Background: Theoretical calculations have shown that the energy and angular correlations in the three-body decay of the two-neutron unbound 26O can provide information on the ground-state wave function, which has been predicted to have a dineutron configuration and 2 n halo structure. Purpose: To use the experimentally measured three-body correlations to gain insight into the properties of 26O , including the decay mechanism and ground-state resonance energy. Method: 26O was produced in a one-proton knockout reaction from 27F and the 24O+n +n decay products were measured using the MoNA-Sweeper setup. The three-body correlations from the 26O ground-state resonance decay were extracted. The experimental results were compared to Monte Carlo simulations in which the resonance energy and decay mechanism were varied. Results: The measured three-body correlations were well reproduced by the Monte Carlo simulations but were not sensitive to the decay mechanism due to the experimental resolutions. However, the three-body correlations were found to be sensitive to the resonance energy of 26O . A 1 σ upper limit of 53 keV was extracted for the ground-state resonance energy of 26O . Conclusions: Future attempts to measure the three-body correlations from the ground-state decay of 26O will be very challenging due to the need for a precise measurement of the 24O momentum at the reaction point in the target.
Three-body couplings in RMF and its effects on hyperonic star equation of state
Energy Technology Data Exchange (ETDEWEB)
Tsubakihara, K., E-mail: tsubaki@nucl.sci.hokudai.ac.jp [Meme Media Laboratory, Hokkaido University (Japan); Ohnishi, A. [Yukawa Institute for Theoretical Physics, Kyoto University (Japan)
2013-09-20
We develop a relativistic mean field (RMF) model with explicit three-body couplings and apply it to hyperonic systems and neutron star matter. Three-baryon repulsion is a promising ingredient to answer the massive neutron star puzzle; when strange hadrons such as hyperons are taken into account, the equation of state (EOS) becomes too soft to support the observed two-solar-mass neutron star. We demonstrate that it is possible to consistently explain the massive neutron star and hypernuclear data when we include three-body couplings and modify the hyperon–vector meson couplings from the flavor SU(3) value.
Stability of the three-body Coulomb systems with J=1 in the oscillator representation
International Nuclear Information System (INIS)
Dinejkhan, M.D.; Efimov, G.V.
1995-01-01
The oscillator representation is applied to calculate the energy spectrum of three-body Coulomb systems with J total angular momentum. For the three-body Coulomb systems with J=1 and arbitrary masses the region of stability is determined. For the systems (A + A - e - ), (pe - C + ), (pB - e - ) and (D + e - e + ), the values for the critical masses of A-, B-, C- and D-particles are obtained: m A =2.22m e , m B =1.49m e , m C =2.11m e and m D =4.15m e . 18 refs., 1 fig., 3 tabs
On the inherent self-excited macroscopic randomness of chaotic three-body system
Liao, Shijun; Li, Xiaoming
2014-01-01
What is the origin of macroscopic randomness (uncertainty)? This is one of the most fundamental open questions for human being. In this paper, 10000 samples of reliable (convergent), multiple-scale (from 1.0E-60 to 100) numerical simulations of a chaotic three-body system indicate that, without any external disturbance, the microscopic inherent uncertainty (in the level of 1.0E-60) due to physical fluctuation of initial positions of the three-body system enlarges exponentially into macroscopi...
Using Three-Body Recombination to Extract Electron Temperatures of Ultracold Plasmas
International Nuclear Information System (INIS)
Fletcher, R. S.; Zhang, X. L.; Rolston, S. L.
2007-01-01
Three-body recombination, an important collisional process in plasmas, increases dramatically at low electron temperatures, with an accepted scaling of T e -9/2 . We measure three-body recombination in an ultracold neutral xenon plasma by detecting recombination-created Rydberg atoms using a microwave-ionization technique. With the accepted theory (expected to be applicable for weakly coupled plasmas) and our measured rates, we extract the plasma temperatures, which are in reasonable agreement with previous measurements early in the plasma lifetime. The resulting electron temperatures indicate that the plasma continues to cool to temperatures below 1 K
Reich, Felix A.; Rickert, Wilhelm; Müller, Wolfgang H.
2018-03-01
This study investigates the implications of various electromagnetic force models in macroscopic situations. There is an ongoing academic discussion which model is "correct," i.e., generally applicable. Often, gedankenexperiments with light waves or photons are used in order to motivate certain models. In this work, three problems with bodies at the macroscopic scale are used for computing theoretical model-dependent predictions. Two aspects are considered, total forces between bodies and local deformations. By comparing with experimental data, insight is gained regarding the applicability of the models. First, the total force between two cylindrical magnets is computed. Then a spherical magnetostriction problem is considered to show different deformation predictions. As a third example focusing on local deformations, a droplet of silicone oil in castor oil is considered, placed in a homogeneous electric field. By using experimental data, some conclusions are drawn and further work is motivated.
Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm
Energy Technology Data Exchange (ETDEWEB)
Blank, D.A.; North, S.W.; Stranges, D. [Lawrence Berkeley National Lab., CA (United States)] [and others
1997-04-01
When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH{sub 3}SOCH{sub 3}) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH{sub 3} intermediate prior to dissociation to define a stepwise dissociation: (1) CH{sub 3}SOCH{sub 3} {r_arrow} 2CH{sub 3} + SO; (2a) CH{sub 3}SOCH{sub 3} {r_arrow} CH{sub 3} + SOCH{sub 3}; and (2b) SOCH{sub 3} {r_arrow} SO + CH{sub 3}. Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH{sub 3} and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH{sub 3} intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2.
Studies of continuum states in 16Ne using three-body correlation techniques
International Nuclear Information System (INIS)
Marganiec, J.; Wamers, F.; Aksouh, F.; Aksyutina, Yu.; Boretzky, K.; Chatillon, A.; Emling, H.; Geissel, H.; Heil, M.; Hoffmann, J.; Karagiannis, C.; Kiselev, O.A.; Kurz, N.; Litvinov, Yu.A.; Muentz, C.; Nociforo, C.; Ott, W.; Rossi, D.; Simon, H.; Suemmerer, K.; Weick, H.; Alvarez-Pol, H.; Beceiro-Novo, S.; Cortina-Gil, D.; Rodriguez-Tajes, C.; Aumann, T.; Panin, V.; Borge, M.J.G.; Chartier, M.; Chulkov, L.V.; Ershova, O.; Langer, C.; Plag, R.; Reifarth, R.; Wimmer, C.; Fraile, L.M.; Fynbo, H.O.U.; Riisager, K.; Galaviz, D.; Perea, A.; Tengblad, O.; Hoffmann, D.H.H.; Richter, A.; Schrieder, G.; Johansson, H.T.; Jonson, B.; Nilsson, T.; Nyman, G.; Zhukov, M.V.; Kratz, J.V.; Kulessa, R.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Mahata, K.; Paschalis, S.; Savran, D.; Stroth, J.; Wiescher, M.
2015-01-01
Two-proton decay of the unbound T z =-2 nucleus 16 Ne, produced in one-neutron knockout from a 500 MeV/u 17 Ne beam, has been studied at GSI. The ground state, at a resonance energy 1.388(15) MeV, (Γ = 0.082(15) MeV) above the 14 O+p+p threshold, and two narrow resonances at E r = 3.220(46) MeV and 7.57(6) MeV have been investigated. A comparison of the energy difference between the first excited 2 + state and the 0 + ground state in 16 Ne with its mirror nucleus 16 C reveals a small Thomas-Ehrman shift (TES) of +70(46) keV. A trend of the TES for the T = 2 quintet is obtained by completing the known data with a prediction for 16 F obtained from an IMME analysis. The decay mechanisms of the observed three resonances were revealed from an analysis of the energy and angular correlations of the 14 O+p+p decay products. The ground state decay can be considered as a genuine three-body (democratic) mode and the excited states decay sequentially via states in the intermediate nucleus 15 F, the 3.22 MeV state predominantly via the 15 F ground-state resonance, while the 7.57 MeV state decays via the 5/2 + resonance in 15 F at 2.8 MeV above the 14 O+p+p threshold. Further, from an analysis of angular correlations, the spin-parity of the 7.57 MeV state has been determined as I π = 2 + and assigned as the third 2 + state in 16 Ne based on a comparison with 16 C. (orig.)
Evolution of the halo family in the radial solar sail circular restricted three-body problem
Verrier, Patricia; Waters, Thomas; Sieber, Jan
2014-12-01
We present a detailed investigation of the dramatic changes that occur in the halo family when radiation pressure is introduced into the Sun-Earth circular restricted three-body problem (CRTBP). This photo-gravitational CRTBP can be used to model the motion of a solar sail orientated perpendicular to the Sun-line. The problem is then parameterized by the sail lightness number, the ratio of solar radiation pressure acceleration to solar gravitational acceleration. Using boundary-value problem numerical continuation methods and the AUTO software package (Doedel et al. in Int J Bifurc Chaos 1:493-520, 1991) the families can be fully mapped out as the parameter is increased. Interestingly, the emergence of a branch point in the retrograde satellite family around the Earth at acts to split the halo family into two new families. As radiation pressure is further increased one of these new families subsequently merges with another non-planar family at , resulting in a third new family. The linear stability of the families changes rapidly at low values of , with several small regions of neutral stability appearing and disappearing. By using existing methods within AUTO to continue branch points and period-doubling bifurcations, and deriving a new boundary-value problem formulation to continue the folds and Krein collisions, we track bifurcations and changes in the linear stability of the families in the parameter and provide a comprehensive overview of the halo family in the presence of radiation pressure. The results demonstrate that even at small values of there is significant difference to the classical CRTBP, providing opportunity for novel solar sail trajectories. Further, we also find that the branch points between families in the solar sail CRTBP provide a simple means of generating certain families in the classical case.
International Nuclear Information System (INIS)
Niu, F.; Peterson, P.F.
2004-01-01
This research investigates experimentally mixed convection and heat transfer augmentation by forced jets in a large enclosure, at conditions simulating those of actual passive containment cooling systems and scales approaching those of actual containment buildings or compartments. The experiment was designed to measure the key parameters governing the heat transfer augmentation by forced jets and investigate the effects of geometric factors, including the jet diameter, jet injection orientation, interior structures, and enclosure aspect ratio. The tests cover a variety of injection modes leading to flow configurations of interest that contribute to reveal the nature of mixing and stratification phenomena in the containment under accident conditions of interest. The heat transfer of mixed convection can be predicted to be controlled by jet Archimedes number and geometric factors. Using a combining rule for mixed convection and appropriate forced and natural convection models, the correlations of heat transfer augmentation by forced jets are developed and agree well with experimental data. It appears that the jet Archimedes number is the important parameter in characterizing mixed convection heat transfer. The jet injection orientation has a substantial effect on heat transfer while the effect of the jet diameter is very weak. For vertical cooling surfaces, an impinging jet can achieve more effective heat transfer than a buoyant jet. The heat transfer augmentation increases with the reduction of enclosure aspect ratio
EXPERIMENTAL INVESTIGATION OF THE IMPACT OF FLIGHT SPEED ON DRAG FORCE IN THE AUTOGYRO MODEL
Directory of Open Access Journals (Sweden)
Zbigniew Czyż
2015-05-01
Full Text Available The paper presents the experimental investigation of the impact of velocity on drag force in the autogyro model. One of the methods which simulate motion of the flying object consists of using a wind tunnel. In this case, test object is stationary and the motion of air is forced by e.g. a special fan. The costs related with renting and the wind tunnel service are still very high. In this paper, the motion of the autogyro with respect to the air, was produced by fixing this model with scale to measure the drag force on the passenger car roof. The position of the object relative to the vehicle was checked on the basis of numerical analysis of the airflow around this vehicle. Based on the investigations, the field of velocity and pressure, and air flow formed around the contour of the vehicle which have been chosen, were determined. In addition, the drag force characteristic was determined as a function of velocity and it was compared with the values from the numerical analysis. This research is a form of verifying opportunities for this type of research on vehicles. The conclusions derived from the analysis of the results will be used in the future to carry out further research.
Contact parameters in two dimensions for general three-body systems
DEFF Research Database (Denmark)
F. Bellotti, F.; Frederico, T.; T. Yamashita, M.
2014-01-01
a subsystem is composed of two identical non-interacting particles. We also show that the three-body contact parameter is negligible in the case of one non-interacting subsystem compared to the situation where all subsystem are bound. As example, we present results for mixtures of Lithium with two Cesium...
Three-body interactions in many-body effective field theory
International Nuclear Information System (INIS)
Furnstahl, R.J.
2004-01-01
This contribution is an advertisement for applying effective field theory (EFT) to many-body problems, including nuclei and cold atomic gases. Examples involving three-body interactions are used to illustrate how EFT's quantify and systematically eliminate model dependence, and how they make many-body calculations simpler and more powerful
Three-body analysis of 11Li and its β-decay to deuteron channel ...
Indian Academy of Sciences (India)
The ground state wave function of 11Li obtained in a three-body model proposed earlier (S Kumar and V S Bhasin, Phys. Rev. C65, 034007 (2002)) has been employed to study the probability distributions, momentum distributions and n–n correlation. Complex scaling method has been used to find the energy positions and ...
A new method for calculating the hyperspherical functions for the quantum mechanics of three bodies
International Nuclear Information System (INIS)
Marsh, S.; Buck, B.
1982-01-01
Using the shift operators of Hughes (J. Phys. A.; 6:48 and 281 (1973)) for the group SU(3) in an O(3) basis, a simple method is developed to obtain the three-body hyperspherical functions of a definite symmetry for any angular momentum in a given SU(3) representation. (author)
Frolov, Alexei M.; Smith, Vedene H., Jr.
2003-05-01
The exponential variational expansion is applied to highly accurate computations of the ground states in the Ps- and inftyH- ions. The determined variational energies for these systems are -0.262 005 070 232 980 107 7335 and -0.527 751 016 544 377 196 5668 au respectively. These energies and corresponding wavefunctions are significantly more accurate than values known from earlier studies. A number of bound state properties are determined for the Ps- ion. The method of scalar coupling for three-body systems is developed. A general analytical expression is derived for the overlap integral between two scalar functions phi(r32, r31, r21) and psi(r32, r31), written in relative coordinates and one-particle coordinates respectively. The case of bound S(L = 0) states in Coulomb three-body systems is discussed in detail. In this case, explicit analytical formulae for the three-body scalar coupling coefficients have been produced and tested in actual highly accurate calculations for the Ps- and inftyH- ions. The approach developed in this work can be applied to a large number of real three-body problems.
Effects of three-body atomic interaction and optical lattice on solitons ...
Indian Academy of Sciences (India)
We make use of a coordinate-free approach to implement Vakhitov–Kolokolov criterion for stability analysis in order to study the effects of three-body atomic recombination and lattice potential on the matter–wave bright solitons formed in Bose–Einstein condensates. We analytically demonstrate that. the critical number of ...
Low-lying spectra in anharmonic three-body oscillators with a strong short-range
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2003-01-01
Roč. 36, č. 38 (2003), s. 9929-9941 ISSN 0305-4470 R&D Projects: GA AV ČR IAA1048302 Institutional research plan: CEZ:AV0Z1048901 Keywords : three-body Schrodinger equation * limit * large repulsion Subject RIV: BE - Theoretical Physics Impact factor: 1.357, year: 2003
Correlation properties of a three-body bosonic mixture in a harmonic trap
DEFF Research Database (Denmark)
Barfknecht, R. E.; Salami Dehkharghani, Amin; Foerster, A.
2016-01-01
We make use of a simple pair correlated wave function approach to obtain results for the ground-state densities and momentum distribution of a one-dimensional three-body bosonic system with different interactions in a harmonic trap. For equal interactions this approach is able to reproduce the kn...
Stripping reactions in a three-body system. Comparison of DWBA and exact solutions
International Nuclear Information System (INIS)
Brinati, J.R.
1976-01-01
Stripping reactions 'a estados no continuo' are studied in a three particle system. Since the three-body problem has an exact treatment, comparison will be made between the exact solution and the DWBA model solution. This problem is more complex in the continuous case, as shown in the convergence problem of the standard DWBA amplitude radial integral
International Nuclear Information System (INIS)
Zaytsev, S A
2010-01-01
The possibility of using straight-line paths of integration in computing the integral representation of the three-body Coulomb Green's function is discussed. In our numerical examples two different kinds of integration contours in the complex energy planes are considered. It is demonstrated that straight-line paths, which cross the positive real axis, are suitable for numerical computation.
Effects of three-body atomic interaction and optical lattice on solitons ...
Indian Academy of Sciences (India)
Kolokolov criterion for stability analysis in order to study the effects of three-body atomic recombi- nation and lattice potential on the matter–wave bright solitons formed in Bose–Einstein condensates. We analytically demonstrate that (i) the critical ...
Celletti, A; Lega, E
2003-01-01
The stability of some asteroids, in the framework of the restricted three- body problem, has been recently proved in \\cite{CC03} by developing an isoenergetic KAM theorem. More precisely, having fixed a level of energy related to the motion of the asteroid, the stability can be obtained by showing the existence of nearby trapping invariant tori living on the same energy level. The analytical results are compatible with the astronomical observations, since the theorem is valid for the realistic mass-ratio of the primaries. The model adopted in \\cite{CC03} is the planar, circular, restricted three-body model, in which only the most significant contributions of the Fourier development of the perturbation are retained. In this paper we investigate numerically the stability of the same asteroids considered in \\cite{CC03} (namely, Iris, Victoria and Renzia). In particular, we implement the nowadays standard method of frequency- map analysis and we compare our investigation with the analytical results on the planar,...
Investigating the fundamentals of drug crystal growth using Atomic Force Microscopy
Thompson, Claire
2003-01-01
The importance of crystals to the pharmaceutical industry is evident - over 90% of pharmaceutical products contain a drug in crystalline form. However, the crystallization phenomena of drug compounds are poorly understood. An increased understanding of these processes may allow a greater degree of control over the crystallization outcomes, such as morphology, purity, or stability. In these studies, we have applied Atomic Force Microscopy (AFM) to the in situ investigations of drug crystal gro...
Energy Technology Data Exchange (ETDEWEB)
Caneva Soumetz, Federico [Department of Communication, Computer and System Sciences, University of Genova, Via Opera Pia, 13-16145 Genova (Italy); Saenz, Jose F. [Biophysical and Electronic Engineering Department, University of Genova, Via All' Opera Pia 11a, 16145 Genova (Italy); Pastorino, Laura; Ruggiero, Carmelina [Department of Communication, Computer and System Sciences, University of Genova, Via Opera Pia, 13-16145 Genova (Italy); Nosi, Daniele [Department of Anatomy, Histology and Forensic Medicine, Bio-photonic Laboratory, University of Florence, viale Morgagni, 85 Firenze, CAP 50134 Florence (Italy); Raiteri, Roberto, E-mail: rr@unige.it [Biophysical and Electronic Engineering Department, University of Genova, Via All' Opera Pia 11a, 16145 Genova (Italy)
2010-03-15
The transforming growth factor {beta}1 (TGF-{beta}1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-{beta}1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalised with monoclonal antibodies specific to the {beta}1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-{beta}1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the {beta}1 integrin subunit was enhanced by TGF-{beta}1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-{beta}1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale.
Directory of Open Access Journals (Sweden)
Gil eHerrnstadt
2015-03-01
Full Text Available Modern rehabilitation practices have begun integrating robots, recognizing their significant role in recovery. New and alternative stroke rehabilitation treatments are essential to enhance efficacy and mitigate associated health costs. Today’s robotic interventions can play a significant role in advancing rehabilitation. In addition, robots have an inherent ability to perform tasks accurately and reliably and are typically well suited to measure and quantify performance.Most rehabilitation strategies predominantly target activation of the paretic arm. However, bimanual upper limb rehabilitation research suggests potential in enhancing functional recovery. Moreover studies suggest limb coordination and synchronization can improve treatment efficacy.In this preliminary study, we aimed to investigate and validate our user-driven bimanual system in a reduced intensity rehab practice. A Bimanual Wearable Robotic Device (BWRD with a Master-Slave configuration for the elbow joint was developed to carry out the investigation. The BWRD incorporates position and force sensors for which respective control loops are implemented, and offers varying modes of operation ranging from passive to active training. The proposed system enables the perception of the movements, as well as the forces applied by the hemiparetic arm, with the non-hemiparetic arm. Eight participants with chronic unilateral stroke were recruited to participate in a total of three one-hour sessions per participant, delivered in a week. Participants underwent pre and post training functional assessments along with proprioceptive measures. The post assessment was performed at the end of the last training session.The protocol was designed to engage the user in an assortment of static and dynamic arm matching and opposing tasks. The training incorporates force feedback movements, force feedback positioning, and force matching tasks with same and opposite direction movements. We are able to
International Nuclear Information System (INIS)
Caneva Soumetz, Federico; Saenz, Jose F.; Pastorino, Laura; Ruggiero, Carmelina; Nosi, Daniele; Raiteri, Roberto
2010-01-01
The transforming growth factor β1 (TGF-β1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-β1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalised with monoclonal antibodies specific to the β1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-β1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the β1 integrin subunit was enhanced by TGF-β1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-β1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale.
Directory of Open Access Journals (Sweden)
Pasi Nieminen
2010-08-01
Full Text Available This study investigates students’ ability to interpret multiple representations consistently (i.e., representational consistency in the context of the force concept. For this purpose we developed the Representational Variant of the Force Concept Inventory (R-FCI, which makes use of nine items from the 1995 version of the Force Concept Inventory (FCI. These original FCI items were redesigned using various representations (such as motion map, vectorial and graphical, yielding 27 multiple-choice items concerning four central concepts underpinning the force concept: Newton’s first, second, and third laws, and gravitation. We provide some evidence for the validity and reliability of the R-FCI; this analysis is limited to the student population of one Finnish high school. The students took the R-FCI at the beginning and at the end of their first high school physics course. We found that students’ (n=168 representational consistency (whether scientifically correct or not varied considerably depending on the concept. On average, representational consistency and scientifically correct understanding increased during the instruction, although in the post-test only a few students performed consistently both in terms of representations and scientifically correct understanding. We also compared students’ (n=87 results of the R-FCI and the FCI, and found that they correlated quite well.
Investigation of the hydrodynamic model test of forced rolling for a barge using PIV
Directory of Open Access Journals (Sweden)
WANG Xiaoqiang
2017-03-01
Full Text Available In order to study the physical details of viscous flow in ship roll motions and improve the accuracy of ship roll damping numerical simulation, the application of the Particle Image Velocimetry (PIV technique is investigated in model tests of forced ship rolling in calm water. The hydrodynamic force and flow field at the bilge region are simultaneously measured for barges at different amplitudes and frequencies in which the self-made forced rolling facility was used. In the model test, the viscous flow variation with the time around the bilge region was studied during ship rolling motion. The changes in ship roll damping coefficients with the rolling amplitude and period were also investigated. A comparison of the model test results with the Computational Fluid Dynamics(CFDresults shows that the numerical ship roll damping coefficients agree well with the model test results, while the differences in the local flow details exist between the CFD results and model test results. Further research into the model test technique and CFD application is required.
Cao, Wei-Guang; Zhou, Tian-Yi; Xie, Yi
2017-10-01
As a continuing investigation of an earlier work that establishes the collinear solutions to the three-body problem with general masses under a scalar-tensor theory, we study these solutions and prove their uniqueness up to the first order post-Newtonian approximation. With the help of observed bounds on the scalar field in the Solar System, we show that the seventh-order polynomial equation determining the distance ratio among the three masses has either one or three positive roots. However, in the case with three positive roots, it is found that two positive roots break down the slow-motion condition for the post-Newtonian approximation so that only one positive root is physically valid. The resulting uniqueness suggests that the locations of the three masses are very close to their Newtonian positions with post-Newtonian corrections of general relativity and the scalar field. We also prove that, in the framework of the scalar-tensor theory, the angular velocity of the collinear configuration is always less than the Newtonian one when all other parameters are fixed. These results are valid only for three-body systems where upper-bounds on the scalar field are compatible with those of the Solar System. Supported by the National Natural Science Foundation of China under Grant Nos. 11573015 and J1210039, and the Innovation Training Project for Undergraduates of Nanjing University, China
Energy Technology Data Exchange (ETDEWEB)
1992-03-01
An environmental investigation of ground water conditions has been undertaken at Wright-Patterson Air Force Base (WPAFB), Ohio to obtain data to assist in the evaluation of a potential removal action to prevent, to the extent practicable, migration of the contaminated ground water across Base boundaries. Field investigations were limited to the central section of the southwestern boundary of Area C and the Springfield Pike boundary of Area B. Further, the study was limited to a maximum depth of 150 feet below grade. Three primary activities of the field investigation were: (1) installation of 22 monitoring wells, (2) collection and analysis of ground water from 71 locations, (3) measurement of ground water elevations at 69 locations. Volatile organic compounds including trichloroethylene, perchloroethylene, and/or vinyl chloride were detected in concentrations exceeding Maximum Contaminant Levels (MCL) at three locations within the Area C investigation area. Ground water at the Springfield Pike boundary of Area B occurs in two primary units, separated by a thicker-than-expected clay layers. One well within Area B was determined to exceed the MCL for trichloroethylene.
International Nuclear Information System (INIS)
Hai-Chao, Huang; Hai-Bo, Wang; Dong-Hang, Yan
2010-01-01
We investigate the heterojunction effect between para-sexiphenyl (p-6P) and copper phthalocyanine (CuPc) using Kelvin probe force microscopy. CuPc films are grown on the inducing layer p-6P by a weak epitaxy growth technique. The surface potential images of Kelvin probe force microscopy indicate the band bending in CuPc, which reduces grain boundary barriers and lead to the accumulation of holes in the CuPc layer. The electrical potential distribution on the surface of heterojunction films shows negligible grain boundary barriers in the CuPc layers. The relation between band bending and grain boundary barrier in the weak epitaxy growth thin films is revealed. (condensed matter: structure, mechanical and thermal properties)
Canetta, Elisabetta; Adya, Ashok K
2011-07-15
Pressure sensitive adhesive (PSA), such as those used in packaging and adhesive tapes, are very often encountered in forensic investigations. In criminal activities, packaging tapes may be used for sealing packets containing drugs, explosive devices, or questioned documents, while adhesive and electrical tapes are used occasionally in kidnapping cases. In this work, the potential of using atomic force microscopy (AFM) in both imaging and force mapping (FM) modes to derive additional analytical information from PSAs is demonstrated. AFM has been used to illustrate differences in the ultrastructural and nanomechanical properties of three visually distinguishable commercial PSAs to first test the feasibility of using this technique. Subsequently, AFM was used to detect nanoscopic differences between three visually indistinguishable PSAs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Zhang, Xiaojuan; Yao, Zhixuan; Duan, Yanting; Zhang, Xiaomei; Shi, Jinsong; Xu, Zhenghong
2018-01-11
The specific recognition and binding of promoter and RNA polymerase is the first step of transcription initiation in bacteria and largely determines transcription activity. Therefore, direct analysis of the interaction between promoter and RNA polymerase in vitro may be a new strategy for promoter characterization, to avoid interference due to the cell's biophysical condition and other regulatory elements. In the present study, the specific interaction between T7 promoter and T7 RNA polymerase was studied as a model system using force spectroscopy based on atomic force microscope (AFM). The specific interaction between T7 promoter and T7 RNA polymerase was verified by control experiments, and the rupture force in this system was measured as 307.2 ± 6.7 pN. The binding between T7 promoter mutants with various promoter activities and T7 RNA polymerase was analyzed. Interaction information including rupture force, rupture distance and binding percentage were obtained in vitro , and reporter gene expression regulated by these promoters was also measured according to a traditional promoter activity characterization method in vivo Using correlation analysis, it was found that the promoter strength characterized by reporter gene expression was closely correlated with rupture force and the binding percentage by force spectroscopy. These results indicated that the analysis of the interaction between promoter and RNA polymerase using AFM-based force spectroscopy was an effective and valid approach for the quantitative characterization of promoters. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Weak response of cold symmetric nuclear matter at three-body cluster level
Energy Technology Data Exchange (ETDEWEB)
Lovato, Alessandro, E-mail: lovato@anl.gov [SISSA, I-34014 Trieste (Italy); INFN, Sezione di Roma, I-00185 Roma (Italy); Losa, Cristina [SISSA, I-34014 Trieste (Italy); Benhar, Omar [Dipartimento di Fisica, Università “La Sapienza”, I-00185 Roma (Italy); INFN, Sezione di Roma, I-00185 Roma (Italy)
2013-03-01
We have studied the Fermi and Gamow–Teller responses of cold symmetric nuclear matter within a unified dynamical model, suitable to account for both short- and long-range correlation effects. The formalism of correlated basis functions has been used to construct two-body effective interactions and one-body effective weak operators. The inclusion of the three-body cluster term allowed for the incorporation in our scheme of a realistic model of three-nucleon interactions, referred to as Urbana IX (UIX). Moreover, our results show that the sizable dependence of the effective weak operator on the details of the correlation functions is in fact unphysical, and disappears once the three-body cluster term is taken into account.
Three-body problem in quantum mechanics: Hyperspherical elliptic coordinates and harmonic basis sets
International Nuclear Information System (INIS)
Aquilanti, Vincenzo; Tonzani, Stefano
2004-01-01
Elliptic coordinates within the hyperspherical formalism for three-body problems were proposed some time ago [V. Aquilanti, S. Cavalli, and G. Grossi, J. Chem. Phys. 85, 1362 (1986)] and recently have also found application, for example, in chemical reaction theory [see O. I. Tolstikhin and H. Nakamura, J. Chem. Phys. 108, 8899 (1998)]. Here we consider their role in providing a smooth transition between the known 'symmetric' and 'asymmetric' parametrizations, and focus on the corresponding hyperspherical harmonics. These harmonics, which will be called hyperspherical elliptic, involve products of two associated Lame polynomials. We will provide an expansion of these new sets in a finite series of standard hyperspherical harmonics, producing a powerful tool for future applications in the field of scattering and bound-state quantum-mechanical three-body problems
Lagrangian relative equilibria for a gyrostat in the three-body problem: bifurcations and stability
Energy Technology Data Exchange (ETDEWEB)
Guirao, Juan L G; Vera, Juan A, E-mail: juan.garcia@upct.e, E-mail: juanantonio.vera@upct.e [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Hospital de Marina, 30203 Cartagena, Region de Murcia (Spain)
2010-05-14
In this paper we consider the non-canonical Hamiltonian dynamics of a gyrostat in the frame of the three-body problem. Using geometric/mechanic methods we study the approximate dynamics of the truncated Legendre series representation of the potential of an arbitrary order. Working in the reduced problem, we study the existence of relative equilibria that we refer to as Lagrange type following the analogy with the standard techniques. We provide necessary and sufficient conditions for the linear stability of Lagrangian relative equilibria if the gyrostat morphology form is close to a sphere. Thus, we generalize the classical results on equilibria of the three-body problem and many results on them obtained by the classic approach for the case of rigid bodies.
Critical points of the Bose–Hubbard model with three-body local interaction
Energy Technology Data Exchange (ETDEWEB)
Avila, C.A.; Franco, R. [Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá (Colombia); Souza, A.M.C. [Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristovão, SE (Brazil); Figueira, M.S. [Instituto de Física, Universidade Federal Fluminense, Av. Litorânea s/n, 24210-346 Niterói, Rio de Janeiro (Brazil); Silva-Valencia, J., E-mail: jsilvav@unal.edu.co [Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá (Colombia)
2014-09-12
Using the density matrix renormalization group method, we study a one-dimensional system of bosons that interact with a local three-body term. We calculate the phase diagram for higher densities, where the Mott insulator lobes are surrounded by the superfluid phase. We also show that the Mott insulator lobes always grow as a function of the density. The critical points of the Kosterlitz–Thouless transitions were determined through the von Neumann block entropy, and its dependence on the density is given by a power law with a negative exponent. - Highlights: • We studied the Bose–Hubbard model with a local three-body interaction term. • We show that the Mott insulator lobes always grow as a function of the density. • We found a power law dependence of the critical point position with the density.
JSPAM: A restricted three-body code for simulating interacting galaxies
Wallin, J. F.; Holincheck, A. J.; Harvey, A.
2016-07-01
Restricted three-body codes have a proven ability to recreate much of the disturbed morphology of actual interacting galaxies. As more sophisticated n-body models were developed and computer speed increased, restricted three-body codes fell out of favor. However, their supporting role for performing wide searches of parameter space when fitting orbits to real systems demonstrates a continuing need for their use. Here we present the model and algorithm used in the JSPAM code. A precursor of this code was originally described in 1990, and was called SPAM. We have recently updated the software with an alternate potential and a treatment of dynamical friction to more closely mimic the results from n-body tree codes. The code is released publicly for use under the terms of the Academic Free License ("AFL") v. 3.0 and has been added to the Astrophysics Source Code Library.
Non-integrability of the Anisotropic Stormer Problem and the Isosceles Three-Body Problem
Nomikos, D. G.; Papageorgiou, V. G.
2009-02-01
We study the Anisotropic Stormer Problem (ASP) and the Isosceles Three-Body Problem (IP), from the viewpoint of integrability, using Morales-Ramis theory and its generalization. The study of their integrability presents particular interest since they model important physical phenomena. Both problems can be reduced with respect to the S1 symmetry. Almeida and Stuchi [M.A. Almeida, T.J. Stuchi, Non-integrability of the anisotropic Stormer problem with angular momentum, Physica D 189 (2004) 219-233] proved that the reduced ASP is non-integrable for almost all values of the parameters. In this paper we establish the non-integrability (in the extended Liouville sense) of the remaining cases. The IP is a special case of the three-body problem and it can be considered as a generalization of the Sitnikov problem. Here we prove that the complexified reduced IP does not admit an additional independent meromorphic first integral.
Incorporation of threshold phenomena in the three-body Coulomb continuum wavefunctions
International Nuclear Information System (INIS)
Berakdar, J.
1996-01-01
In this work a three-body Coulomb wavefunction for the description of two continuum electrons moving in the field of a nucleus is constructed such that the Wannier threshold law for double escape is reproduced and the asymptotic Coulomb boundary conditions as well as the Kato cusp conditions are satisfied. It is shown that the absolute value of the total cross section, as well as the spin asymmetry, are well described by the present approach. Further, the excess-energy sharing between the two escaping electrons is calculated and analysed in light of the Wannier theory predictions. This is the first time an analytical three-body wavefunction is presented which is asymptotically exact and capable of describing threshold phenomena. 37 refs., 3 figs
Realizing all reduced syzygy sequences in the planar three-body problem
International Nuclear Information System (INIS)
Moeckel, Richard; Montgomery, Richard
2015-01-01
The configuration space of the planar three-body problem, reduced by rotations and with collisions excluded, has a rich topology which supports a large set of free homotopy classes. These classes have a simple description in terms of syzygy (or eclipse) sequences. Each homotopy class corresponds to a unique ‘reduced’ syzygy sequence. We prove that each reduced syzygy sequence is realized by a periodic solution of the rotation-reduced Newtonian planar three-body problem. The realizing solutions have small, nonzero angular momentum, repeatedly come very close to triple collision, and have lots of ‘stutters’—repeated syzygies of the same type, which cancel out up to homotopy. The heart of the proof stems from the work by one of us on symbolic dynamics arising out of the central configurations after the triple collision is blown up using McGehee's method. We end with a list of open problems. (paper)
Nonlinear Dynamics of a Two-Chain, Three-Body Formation System
Xu, Ming; Wei, Yan; Liu, Shengli
2012-12-01
Multibody formation constitutes a new architecture wherein the functional capabilities of a monolithic satellite are distributed, and some planned missions have begun to take advantage of the benefits offered by the use of satellite formations. The nonlinear dynamics of a two-chain, three-body formation system located on a circular orbit on the Earth is presented in this paper with the assist of nonlinear theory in astrodynamics. Different from only five libration points solved from the circular restricted three-body system, there exist sixteen equilibria for the chain system yielded by its geometry of the pseudo-potential function. For some hyperbolic equilibria, an iterative procedure is developed to correct numerically periodic orbits near them, which are referred as Lyapunov orbits in this paper. The invariant manifolds originating from those orbits are employed by Poincaré mapping to create the heteroclinic or homoclinic trajectories, and some non-transversal intersections between them are addressed in this paper.
Studies of continuum states in {sup 16}Ne using three-body correlation techniques
Energy Technology Data Exchange (ETDEWEB)
Marganiec, J. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Research Division GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Wamers, F. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Research Division GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, Frankfurt am Main (Germany); Aksouh, F.; Aksyutina, Yu.; Boretzky, K.; Chatillon, A.; Emling, H.; Geissel, H.; Heil, M.; Hoffmann, J.; Karagiannis, C.; Kiselev, O.A.; Kurz, N.; Litvinov, Yu.A.; Muentz, C.; Nociforo, C.; Ott, W.; Rossi, D.; Simon, H.; Suemmerer, K.; Weick, H. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Alvarez-Pol, H.; Beceiro-Novo, S.; Cortina-Gil, D.; Rodriguez-Tajes, C. [Universidade de Santiago de Compostela, Grupo de Fisica Nuclear, Santiago de Compostela (Spain); Aumann, T.; Panin, V. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Borge, M.J.G. [CERN, ISOLDE-EP, Geneva (Switzerland); CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Chartier, M. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Chulkov, L.V. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Kurchatov Institute, Moscow (Russian Federation); Ershova, O.; Langer, C.; Plag, R.; Reifarth, R.; Wimmer, C. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe Universitaet, Institut fuer Angewandte Physik, Frankfurt am Main (Germany); Fraile, L.M. [Universidad Complutense de Madrid, CEI Moncloa, Grupo de Fisica Nuclear, FAMN, Madrid (Spain); Fynbo, H.O.U.; Riisager, K. [University of Aarhus, Department of Physics and Astronomy, Aarhus (Denmark); Galaviz, D.; Perea, A.; Tengblad, O. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Hoffmann, D.H.H.; Richter, A.; Schrieder, G. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Johansson, H.T.; Jonson, B.; Nilsson, T.; Nyman, G.; Zhukov, M.V. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Kratz, J.V. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Kernchemie, Mainz (Germany); Kulessa, R. [Uniwersytet Jagellonski, Instytut Fizyki, Krakov (Poland); Lantz, M. [Uppsala Universitet, Institutionen foer fysik och astronomi, Uppsala (Sweden); Le Bleis, T. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Technische Universitaet Muenchen, Physik-Department E12, Garching (Germany); Lemmon, R. [STFC Daresbury Lab, Warrington, Nuclear Physics Group, Cheshire (United Kingdom); Mahata, K. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Bhabha Atomic Research Centre, Nuclear Physics Division, Trombay (India); Paschalis, S. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); University of Liverpool, Department of Physics, Liverpool (United Kingdom); Savran, D. [Research Division GSI, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, Frankfurt am Main (Germany); Stroth, J. [Goethe Universitaet, Institut fuer Angewandte Physik, Frankfurt am Main (Germany); Wiescher, M. [University of Notre Dame, JINA, Notre Dame, IN (United States)
2015-01-01
Two-proton decay of the unbound T{sub z} =-2 nucleus {sup 16}Ne, produced in one-neutron knockout from a 500 MeV/u {sup 17}Ne beam, has been studied at GSI. The ground state, at a resonance energy 1.388(15) MeV, (Γ = 0.082(15) MeV) above the {sup 14}O+p+p threshold, and two narrow resonances at E{sub r} = 3.220(46) MeV and 7.57(6) MeV have been investigated. A comparison of the energy difference between the first excited 2{sup +} state and the 0{sup +} ground state in {sup 16}Ne with its mirror nucleus {sup 16}C reveals a small Thomas-Ehrman shift (TES) of +70(46) keV. A trend of the TES for the T = 2 quintet is obtained by completing the known data with a prediction for {sup 16}F obtained from an IMME analysis. The decay mechanisms of the observed three resonances were revealed from an analysis of the energy and angular correlations of the {sup 14}O+p+p decay products. The ground state decay can be considered as a genuine three-body (democratic) mode and the excited states decay sequentially via states in the intermediate nucleus {sup 15}F, the 3.22 MeV state predominantly via the {sup 15}F ground-state resonance, while the 7.57 MeV state decays via the 5/2{sup +} resonance in {sup 15}F at 2.8 MeV above the {sup 14}O+p+p threshold. Further, from an analysis of angular correlations, the spin-parity of the 7.57 MeV state has been determined as I{sup π} = 2{sup +} and assigned as the third 2{sup +} state in {sup 16}Ne based on a comparison with {sup 16}C. (orig.)
Lyapunov vs. geometrical stability analysis of the Kepler and the restricted three body problems
International Nuclear Information System (INIS)
Yahalom, A.; Levitan, J.; Lewkowicz, M.; Horwitz, L.
2011-01-01
In this Letter we show that although the application of standard Lyapunov analysis predicts that completely integrable Kepler motion is unstable, the geometrical analysis of Horwitz et al. predicts the observed stability. This seems to us to provide evidence for both the incompleteness of the standard Lyapunov analysis and the strength of the geometrical analysis. Moreover, we apply this approach to the three body problem in which the third body is restricted to move on a circle of large radius which induces an adiabatic time dependent potential on the second body. This causes the second body to move in a very interesting and intricate but periodic trajectory; however, the standard Lyapunov analysis, as well as methods based on the parametric variation of curvature associated with the Jacobi metric, incorrectly predict chaotic behavior. The geometric approach predicts the correct stable motion in this case as well. - Highlights: → Lyapunov analysis predicts Kepler motion to be unstable. → Geometrical analysis predicts the observed stability. → Lyapunov analysis predicts chaotic behavior in restricted three body problem. → The geometric approach predicts the correct stable motion in restricted three body problem.
Connecting orbits and invariant manifolds in the spatial restricted three-body problem
Gómez, G.; Koon, W. S.; Lo, M. W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.
2004-09-01
The invariant manifold structures of the collinear libration points for the restricted three-body problem provide the framework for understanding transport phenomena from a geometrical point of view. In particular, the stable and unstable invariant manifold tubes associated with libration point orbits are the phase space conduits transporting material between primary bodies for separate three-body systems. These tubes can be used to construct new spacecraft trajectories, such as a 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. This work extends the results to the three-dimensional case. Besides providing a full description of different kinds of libration motions in a large vicinity of these points, this paper numerically demonstrates the existence of heteroclinic connections between pairs of libration orbits, one around the libration point L1 and the other around L2. Since these connections are asymptotic orbits, no manoeuvre is needed to perform the transfer from one libration point orbit to the other. A knowledge of these orbits can be very useful in the design of missions such as the Genesis Discovery Mission, and may provide the backbone for other interesting orbits in the future.
Ghattan Kashani, H.; Shokrolahi, S.; Akbari Moayyer, H.; Shariat Panahi, M.; Shahmoradi Zavareh, A.
2017-07-01
Atomic Force Microscopes (AFMs) have been widely used as nanomanipulators due to their versatility to work with a broad range of materials and their controllable interaction force, among other features. While AFMs can effectively grasp, move, and position nanoscale objects in 2D environments through basic pull/push operations, they often lack the high precision required in many 3D pick and place applications, especially in non-vacuum environments. In this study, a novel method to resolve the adhesion problem between nanoscale objects and the AFM tip has been developed and tested. The method is based on the application of a high electrostatic voltage to the tip to produce the repulsive force required for the release of the nanoobject. The method is proposed for conductive nanoparticles and tips used in many nanomanipulation applications, and can be easily implemented on typical AFMs with minimal alterations. The applicability of the proposed method is investigated through a series of combined Molecular Dynamics/Finite Element simulations.
Energy Technology Data Exchange (ETDEWEB)
Liikala, T.L.; Evans, J.C.
1995-01-01
Source area ST58 is the site of the old Quartermaster service station at Eielson Air Force Base, Alaska. The source area is one of several Source Evaluation Report sites being investigated by Pacific Northwest Laboratory for the US Air Force as candidates for no further remedial action, interim removal action, or a remedial investigation/feasibility study under a Federal Facilities Agreement. The purpose of this work was to characterize source area ST58 and excavate the most contaminated soils for use in composting treatability studies. A field investigation was conducted to determine the nature and extent of soil contamination. The field investigation entailed a records search; grid node location, surface geophysical, and soil gas surveys; and test pit soil sampling. Soil excavation followed based on the results of the field investigation. The site was backfilled with clean soil. Results from this work indicate close spatial correlation between screening instruments, used during the field investigation and soil excavation, and laboratory analyses. Gasoline was identified as the main subsurface contaminant based on the soil gas surveys and test pit soil sampling. A center of contamination was located near the northcentral portion of the source area, and a center was located in the northwestern comer. The contamination typically occurred near or below a former soil horizon probably as a result of surface spills and leaks from discontinuities and/or breaks in the underground piping. Piping locations were delineated during the surface geophysical surveys and corresponded very well to unscaled drawings of the site. The high subsurface concentrations of gasoline detected in the northwestern comer of the source area probably reflect ground-water contamination and/or possibly floating product.
Operable Unit 1 remedial investigation report, Eielson Air Force Base, Alaska
International Nuclear Information System (INIS)
Gilmore, T.J.; Fruland, R.M.; Liikala, T.L.
1994-06-01
This remedial investigation report for operable Unit 1 (OU-1) at Eielson Air Force Base presents data, calculations, and conclusions as to the nature and extent of surface and subsurface contamination at the eight source areas that make up OU-1. The information is based on the 1993 field investigation result and previous investigations. This report is the first in a set of three for OU-1. The other reports are the baseline risk assessment and feasibility study. The information in these reports will lead to a Record of Decision that will guide and conclude the environmental restoration effort for OU-1 at Eielson Air Force Base. The primary contaminants of concern include fuels and fuel-related contaminants (diesel; benzene, toluene, ethylbenzene, and xylene; total petroleum hydrocarbon; polycyclic aromatic hydrocarbons), maintenance-related solvents and cleaners (volatile chlorinated hydrocarbons such as trichloroothylene), polychlorinated biphenyls, and dichlorodiphenyltrichloroethane (DDT). The origins of contaminants of concern include leaks from storage tanks, drums and piping, and spills. Ongoing operations and past sitewide practices also contribute to contaminants of concern at OU-1 source areas. These include spraying mixed oil and solvent wastes on unpaved roads and aerial spraying of DDT
Operable Unit 1 remedial investigation report, Eielson Air Force Base, Alaska
Energy Technology Data Exchange (ETDEWEB)
Gilmore, T.J.; Fruland, R.M.; Liikala, T.L. [and others
1994-06-01
This remedial investigation report for operable Unit 1 (OU-1) at Eielson Air Force Base presents data, calculations, and conclusions as to the nature and extent of surface and subsurface contamination at the eight source areas that make up OU-1. The information is based on the 1993 field investigation result and previous investigations. This report is the first in a set of three for OU-1. The other reports are the baseline risk assessment and feasibility study. The information in these reports will lead to a Record of Decision that will guide and conclude the environmental restoration effort for OU-1 at Eielson Air Force Base. The primary contaminants of concern include fuels and fuel-related contaminants (diesel; benzene, toluene, ethylbenzene, and xylene; total petroleum hydrocarbon; polycyclic aromatic hydrocarbons), maintenance-related solvents and cleaners (volatile chlorinated hydrocarbons such as trichloroothylene), polychlorinated biphenyls, and dichlorodiphenyltrichloroethane (DDT). The origins of contaminants of concern include leaks from storage tanks, drums and piping, and spills. Ongoing operations and past sitewide practices also contribute to contaminants of concern at OU-1 source areas. These include spraying mixed oil and solvent wastes on unpaved roads and aerial spraying of DDT.
Kemplin, Kate Rocklein; Bowling, F Young
Special Operations Forces (SOF) medics do not have preparation in research knowledge that enables them to independently initiate or generate their own studies. Thus, medics rely on evidence generated by others, who are removed from medics' practice environment. Here, salient literature on research self-efficacy and the genesis of institutional review boards (IRBs) are reviewed and interpreted for contextual applications to medics' practice and initiation of studies. More publications delving into research methods are warranted to promote medics' participation and initiation of selfdirected scientific investigation, in collaboration with research scientists. 2017.
International Nuclear Information System (INIS)
Choi, K.-H.; Friedt, J.-M.; Frederix, F.; Campitelli, A.; Borghs, G.
2002-01-01
We have combined the tapping-mode atomic force microscope (AFM) and quartz crystal microbalance (QCM) for simultaneous investigation of human plasma fibrinogen adsorption on a metallic surface using these two instruments. The AFM images show the surface changes with molecular resolution while the corresponding resonance frequency shift of the QCM provides quantitative adsorbed mass estimates over the whole sensing area. The combination of AFM with QCM allowing the simultaneous measurements with two techniques working at very different scales and probing different properties of the adsorbed layer provides quantitative and qualitative information that can distinguish different protein adsorption mechanisms
Energy Technology Data Exchange (ETDEWEB)
Mohideen, Umar [Univ. of California, Riverside, CA (United States)
2015-04-14
Duration of award was from 4/15/10-4/14/15. In this grant period our contributions to the field of VdW/Casimir forces are 24 refereed publications in journals such as Physical Review Letters (4) [1-4], Physical Review B (10) [5-14], Physical Review D (2) [15,16], Applied Physics Letters (1) [17], Review of Scientific Instruments (1) [18] and the International Journal of Modern Physics A (5) [19-23] and B(1) (invited review article [24]). We presented 2 plenary conference talks, 3 lectures at the Pan American School on Frontiers in Casimir Physics, 2 conferences, 1 colloquium and 11 APS talks. If publications are restricted to only those with direct connection to the aims proposed in the prior grant period, then it will be a total of 12: Physical Review Letters (3) [2-4], Physical Review B (6) [6-8,12,13,25], Review of Scientific Instruments (1) [18], International Journal of Modern Physics A (1) [19] and B(1) [169]. A brief aggregated description of the directly connected accomplishments is below. The following topics are detailed: dispersion force measurements with graphene, dispersion force from ferromagnetic metals, conclusion on role of electrostatic patches, UV radiation induced modification of the Casimir force, low temperature measurement of the Casimir force, and Casimir force from thin fluctuating membranes.
International Nuclear Information System (INIS)
El-Sebaii, A.A.; Shalaby, S.M.
2013-01-01
Graphical abstract: Photograph of the experimental set-up. - Highlights: • Thermal performance of an indirect-mode solar dryer is investigated. • Mathematical models are obtained for thin layer drying of thymus and mint. • Both thymus and mint show the constant and falling rate drying periods. - Abstract: An indirect-mode forced convection solar dryer was designed and fabricated. The thermal performance of the solar dryer under Tanta (latitude, 30° 47′ N and longitude, 31° E) prevailing weather conditions was experimentally investigated. The system consists of a double pass v-corrugated plate solar air heater connected to a drying chamber. A blower was used to force the heated air to the drying chamber. Drying experiments were performed for thymus (initial moisture content 95% on wet basis) and mint (initial moisture content 85% on wet basis) at an initial temperature of 29 °C. The final moisture contents for thymus and mint were reached after 34 and 5 h, respectively. Fourteen mathematical models of thin layer drying were tested to specify the suitable model for describing the drying behavior of the studied products. It was found that, Midilli and Kucuk model is convenient to describe the thin layer solar drying of mint. However, the Page and modified Page models were found to be the best among others for describing the drying curves of thymus
Investigation of the Effect of Neck Muscle Active Force on Whiplash Injury of the Cervical Spine
Directory of Open Access Journals (Sweden)
Yu Yan
2018-01-01
Full Text Available The objective of the present study is to investigate the influence of neck muscle activation on whiplash neck injury of the occupants of a passenger vehicle under different severities of frontal and rear-end impact collisions. The finite element (FE model has been used as a versatile tool to simulate and understand the whiplash injury mechanism for occupant injury prevention. However, whiplash injuries and injury mechanisms have rarely been investigated in connection with neck active muscle forces, which restricts the complete reappearance and understanding of the injury mechanism. In this manuscript, a mixed FE human model in a sitting posture with an active head-neck was developed. The response of the cervical spine under frontal and rear-end collision conditions was then studied using the FE model with and without neck muscle activation. The effect of the neck muscle activation on the whiplash injury was studied based on the results of the FE simulations. The results indicated that the neck active force influenced the head-neck dynamic response and whiplash injury during a collision, especially in a low-speed collision.
Energy Technology Data Exchange (ETDEWEB)
Kwang-Won, Lee; Sang-Yong, Lee
1995-09-01
A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by the frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.
Experimental Investigation of Unsteady Aerodynamic Forces on Airfoil in Harmonic Translatory Motion
DEFF Research Database (Denmark)
Gaunaa, Mac; Sørensen, Jens Nørkær
2003-01-01
The present paper describes the main results from an experimental investigation of the unsteady aerodynamic forces on a NACA 0015 airfoil subject to 1-degree-of-freedom (DOF) harmonic translatory motion. The focus of the experimental investigations was to determine the factors that influence...... the aerodynamic damping of harmonic translatory motion. The maximum negative aerodynamic damping was found to take place at moderate stall and an incidence of about 15, at a movement derection close to the chordwise direction. Up to three distinctively different stall modes (multiple stall) were observed near...... is decreased. Comparison between the experimental data, 2D Navier-Stokes computations and two commonly used dynamic stall models reveal that all models failed to reproduce the dynamic characteristics of the flow for incidences above maximum lift, however the Navier-Stokes computations generally captured...
Direct evidence of three-body interactions in a cold 85Rb Rydberg gas
International Nuclear Information System (INIS)
Han Jianing
2010-01-01
Cold Rydberg atoms trapped in a magneto-optical trap (MOT) are not isolated and they interact through dipole-dipole and multipole-multipole interactions. First-order dipole-dipole interactions and van der Waals interactions between two atoms have been intensively studied. However, the facts that the first-order dipole-dipole interactions and van der Waals interactions show the same size of broadening [A. Reinhard, K. C. Younge, T. C. Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 100, 233201 (2008)] and there are transitions between two dimer states [S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A. S. Estrin, C. Boisseau, R. Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett. 91, 183002 (2003); K. R. Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. A 76, 011403(R) (2007)] cannot be explained by the two-atom picture. The purpose of this article is to show the few-body nature of a dense cold Rydberg gas by studying the molecular-state microwave spectra. Specifically, three-body energy levels have been calculated. Moreover, the transition from three-body energy levels to two-body coupled molecular energy levels and to isolated atomic energy levels as a function of the internuclear spacing is studied. Finally, single-body, two-body, and three-body interaction regions are estimated according to the experimental data. The results reported here provides useful information for plasma formation, further cooling, and superfluid formation.
Direct evidence of three-body interactions in a cold Rb85 Rydberg gas
Han, Jianing
2010-11-01
Cold Rydberg atoms trapped in a magneto-optical trap (MOT) are not isolated and they interact through dipole-dipole and multipole-multipole interactions. First-order dipole-dipole interactions and van der Waals interactions between two atoms have been intensively studied. However, the facts that the first-order dipole-dipole interactions and van der Waals interactions show the same size of broadening [A. Reinhard, K. C. Younge, T. C. Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.233201 100, 233201 (2008)] and there are transitions between two dimer states [S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A. S. Estrin, C. Boisseau, R. Cote, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.91.183002 91, 183002 (2003); K. R. Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.011403 76, 011403(R) (2007)] cannot be explained by the two-atom picture. The purpose of this article is to show the few-body nature of a dense cold Rydberg gas by studying the molecular-state microwave spectra. Specifically, three-body energy levels have been calculated. Moreover, the transition from three-body energy levels to two-body coupled molecular energy levels and to isolated atomic energy levels as a function of the internuclear spacing is studied. Finally, single-body, two-body, and three-body interaction regions are estimated according to the experimental data. The results reported here provides useful information for plasma formation, further cooling, and superfluid formation.
Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials
Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.
2010-01-01
Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (sieved version of the simulant. The lunar dust displayed abrasivity to all of the test materials, which are likely to be used in lunar landing equipment. Based on this test experience and pilot results obtained, recommendations are made for systematic abrasion testing of candidate materials intended for use in lunar exploration systems and in other environments with similar dust challenges.
GRIM, PCM; BROUWER, HJ; SEYGER, RM; OOSTERGETEL, GT; BERGSMASCHUTTER, WG; ARNBERG, AC; GUTHNER, P; DRANSFELD, K; HADZIIOANNOU, G
In this contribution, the general concepts of force microscopy will be presented together with its application to polymer surfaces (Ref.1). Several examples will be presented to illustrate that force microscopy is a powerful and promising tool for investigation of (polymer) surfaces, such as the
Possible large CP violation in three-body decays of heavy baryon
Directory of Open Access Journals (Sweden)
Zhen-Hua Zhang
2015-12-01
Full Text Available We propose a new mechanism which can introduce large CP asymmetries in the phase spaces of three-body decays of heavy baryons. In this mechanism, a large CP asymmetry is induced by the interference of two intermediate resonances, which subsequently decay into two different combinations of final particles. We apply this mechanism to the decay channel Λb0→pπ0π−, and find that the differential CP asymmetry can reach as large as 50%, while the regional CP asymmetry can reach as large as 16% in the interference region of the phase space.
Continuous atom laser with Bose-Einstein condensates involving three-body interactions
Energy Technology Data Exchange (ETDEWEB)
Carpentier, A V; Michinel, H; Novoa, D [Area de Optica, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 (Spain); Olivieri, D N, E-mail: avcarpentier@uvigo.e [Area de Linguaxes e sistemas informaticos, Escola Superior de EnxenerIa Informatica, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 (Spain)
2010-05-28
We demonstrate, through numerical simulations, the emission of a coherent continuous matter wave of constant amplitude from a Bose-Einstein condensate in a shallow optical dipole trap. The process is achieved by spatial control of the variations of the scattering length along the trapping axis, including elastic three-body interactions due to dipole interactions. In our approach, the outcoupling mechanism is atomic interactions, and thus, the trap remains unaltered. We calculate analytically the parameters for the experimental implementation of this continuous wave atom laser.
On the motion of classical three-body system with consideration of quantum fluctuations
Energy Technology Data Exchange (ETDEWEB)
Gevorkyan, A. S., E-mail: g-ashot@sci.am [NAS of RA, Institute for Informatics and Automation Problems (Armenia)
2017-03-15
We obtained the systemof stochastic differential equations which describes the classicalmotion of the three-body system under influence of quantum fluctuations. Using SDEs, for the joint probability distribution of the total momentum of bodies system were obtained the partial differential equation of the second order. It is shown, that the equation for the probability distribution is solved jointly by classical equations, which in turn are responsible for the topological peculiarities of tubes of quantum currents, transitions between asymptotic channels and, respectively for arising of quantum chaos.
Nerger, Bryan A; Siedlik, Michael J; Nelson, Celeste M
2017-05-01
Cell-generated forces drive an array of biological processes ranging from wound healing to tumor metastasis. Whereas experimental techniques such as traction force microscopy are capable of quantifying traction forces in multidimensional systems, the physical mechanisms by which these forces induce changes in tissue form remain to be elucidated. Understanding these mechanisms will ultimately require techniques that are capable of quantifying traction forces with high precision and accuracy in vivo or in systems that recapitulate in vivo conditions, such as microfabricated tissues and engineered substrata. To that end, here we review the fundamentals of traction forces, their quantification, and the use of microfabricated tissues designed to study these forces during cell migration and tissue morphogenesis. We emphasize the differences between traction forces in two- and three-dimensional systems, and highlight recently developed techniques for quantifying traction forces.
(Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)
Energy Technology Data Exchange (ETDEWEB)
Thompson, Bill
1991-10-01
In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).
(Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)
Energy Technology Data Exchange (ETDEWEB)
1992-03-01
An environmental investigation of ground water conditions has been undertaken at Wright-Patterson Air Force Base (WPAFB), Ohio to obtain data to assist in the evaluation of a potential removal action to prevent, to the extent practicable, migration of the contaminated ground water across Base boundaries. Field investigations were limited to the central section of the southwestern boundary of Area C and the Springfield Pike boundary of Area B. Further, the study was limited to a maximum depth of 150 feet below grade. Three primary activities of the field investigation were: (1) installation of 22 monitoring wells, (2) collection and analysis of ground water from 71 locations, (3) measurement of ground water elevations at 69 locations. Volatile organic compounds including trichloroethylene, perchloroethylene, and/or vinyl chloride were detected in concentrations exceeding Maximum Contaminant Levels (MCL) at three locations within the Area C investigation area. Ground water at the Springfield Pike boundary of Area B occurs in two primary units, separated by a thicker-than-expected clay layers. One well within Area B was determined to exceed the MCL for trichloroethylene.
How to orient the functional GroEL-SR1 mutant for atomic force microscopy investigations
International Nuclear Information System (INIS)
Schiener, Jens; Witt, Susanne; Hayer-Hartl, Manajit; Guckenberger, Reinhard
2005-01-01
We present high-resolution atomic force microscopy (AFM) imaging of the single-ring mutant of the chaperonin GroEL (SR-EL) from Escherichia coli in buffer solution. The native GroEL is generally unsuitable for AFM scanning as it is easily being bisected by forces exerted by the AFM tip. The single-ring mutant of GroEL with its simplified composition, but unaltered capability of binding substrates and the co-chaperone GroES, is a more suited system for AFM studies. We worked out a scheme to systematically investigate both the apical and the equatorial faces of SR-EL, as it binds in a preferred orientation to hydrophilic mica and hydrophobic highly ordered pyrolytic graphite. High-resolution topographical imaging and the interaction of the co-chaperone GroES were used to assign the orientations of SR-EL in comparison with the physically bisected GroEL. The usage of SR-EL facilitates single molecule studies on the folding cycle of the GroE system using AFM
Investigation of non-Darcian forced convection in an asymmetrically heated sintered porous channel
International Nuclear Information System (INIS)
Hwang, G.J.; Wu, C.C.; Chao, C.H.
1995-01-01
A study of non-Darcian forced convection in an asymmetric heating sintered porous channel is carried out to investigate the feasibility of using this channel as a heat sink for high-performance forced air cooling in microelectronics. A volume-averaging technique is applied to obtain the macroscopic equations with the non-Darcian effects of no-slip boundary, flow inertia, and thermal dispersion. Local non-thermal-equilibrium is assumed between the solid and the fluid phases. The analysis reveals that the particle Reynolds number significantly affects the solid-to-fluid heat transfer coefficients. A wall function is introduced to model the transverse thermal dispersion process for the wall effect on the lateral mixing of fluid. The local heat transfer coefficient at the inlet is modeled by a modified impinging jet result, and the noninsulated thermal condition is considered at exit. The numerical results are found to be in good agreement with the experimental results in the ranges of 32 ≤ Re d ≤ 428 and q = 0. 8 ∼ 3.2 w/cm 2 for Pr = 0. 71. 19 refs., 6 figs., 1 tab
Coulomb Fourier transformation: A novel approach to three-body scattering with charged particles
International Nuclear Information System (INIS)
Alt, E.O.; Levin, S.B.; Yakovlev, S.L.
2004-01-01
A unitary transformation of the three-body Hamiltonian which describes a system of two charged and one neutral particles is constructed such that the Coulomb potential which acts between the charged particles is explicitly eliminated. The transformed Hamiltonian and, in particular, the transformed short-range pair interactions are worked out in detail. Thereby it is found that, after transformation, the short-range potentials acting between the neutral and either one of the charged particles become simply Fourier transformed but, in addition, multiplied by a function that represents the Coulombic three-body correlations originating from the action of the other charged particle on the considered pair. This function which is universal as it does not depend on any property of the short-range interaction is evaluated explicitly and its singularity structure is described in detail. In contrast, the short-range potential between the charged particles remains of two-body type but occurs now in the 'Coulomb representation'. Specific applications to Yukawa and Gaussian potentials are given. Since the Coulomb-Fourier-transformed Hamiltonian does no longer contain the Coulomb potential or any other effective interaction of long range, standard methods of short-range few-body scattering theory are applicable
6 Li and d + α scattering in a three-body momentum space Faddeev model (I)
Jin, Lei; Hlophe, Linda; Elster, Charlotte; Nogga, Andreas; Nunes, Filomena M.
2017-09-01
The (d , p) transfer reaction constitutes an important tool for extracting nuclear structure information such as spectroscopic factors and asymptotic normalization coefficients. In order to treat the dynamics in all reaction channels on the same footing, it is advantageous to view the (d , p) reaction as a three-body problem (n + p + A) within a Faddeev framework. Coulomb poses severe difficulties when studying these reactions on heavy nuclei with momentum space Faddeev equations. One way to address the challenges is to formulate the problem without screening and using separable interactions. An important first step in testing this formulation is to consider the ground state of 6Li, since this system has been studied in detail before within a three-body n + p + α ansatz. For the np interaction, we employ e.g. the CD-Bonn potential, and for n + α and p + α interactions Wood-Saxon type potentials. We introduce a projection method for the Pauli forbidden state which acts only in the relevant subsystem and thus leaves the structure of the Faddeev equations unaltered. Results for the energy and structure of the 6Li ground state will be presented for both the separable and non-separable approaches. Our results demonstrate the accuracy of the separable approach. Supported in part by the U.S. NSF under Contract PHY-1520972 and PHY-1520929, and U.S. DoE under Contract DE-FG02-93ER40756.
Two- and three-body fragmentation of CO 2 + induced by intense ultrashort laser pulses
Rajput, Jyoti; Ablikim, U.; Zohrabi, M.; Jochim, Bethany; Berry, Ben; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.
2016-05-01
We have studied the fragmentation dynamics of a CO2+molecular-ion beam in the strong-field regime using >= 32 fs laser pulses (about 795 nm and 1x 1016 W/ cm2) . A coincidence three-dimensional momentum imaging method was used to measure all ionic and neutral fragments formed during this multiphoton process. The angular distributions for the dominant two-body fragmentation channels CO+ + O, CO2+ + O and CO+ + O+ show two features, one predominantly aligned with the polarization axis and the other close to isotropic. The angular distributions for the three-body channels C+ + O+ + O and C+ + O+ + O+, populated via dissociative ionization, show the polarization axis lying preferentially in the molecular plane. We will discuss the kinetic energy release, angular distributions and relative production probability of the observed two- and three-body fragmentation channels. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. BJ was also supported by DOE-SCGF (DE-AC05- 06OR23100).
Exact Analytical Solutions in Three-Body Problems and Model of Neutrino Generator
Directory of Open Access Journals (Sweden)
Takibayev N.Zh.
2010-04-01
Full Text Available Exact analytic solutions are obtained in three-body problem for the scattering of light particle on the subsystem of two ﬁxed centers in the case when pair potentials have a separable form. Solutions show an appearance of new resonance states and dependence of resonance energy and width on distance between two ﬁxed centers. The approach of exact analytical solutions is expanded to the cases when two-body scattering amplitudes have the Breit-Wigner’s form and employed for description of neutron resonance scattering on subsystem of two heavy nuclei ﬁxed in nodes of crystalline lattice. It is shown that some resonance states have widths close to zero at the certain values of distance between two heavy scatterer centers, this gives the possibility of transitions between states. One of these transitions between three-body resonance states could be connected with process of electron capture by proton with formation of neutron and emission of neutrino. This exoenergic process leading to the cooling of star without nuclear reactions is discussed.
Periodic orbits for space-based reflectors in the circular restricted three-body problem
Salazar, F. J. T.; McInnes, C. R.; Winter, O. C.
2017-05-01
The use of space-based orbital reflectors to increase the total insolation of the Earth has been considered with potential applications in night-side illumination, electric power generation and climate engineering. Previous studies have demonstrated that families of displaced Earth-centered and artificial halo orbits may be generated using continuous propulsion, e.g. solar sails. In this work, a three-body analysis is performed by using the circular restricted three body problem, such that, the space mirror attitude reflects sunlight in the direction of Earth's center, increasing the total insolation. Using the Lindstedt-Poincaré and differential corrector methods, a family of halo orbits at artificial Sun-Earth L_2 points are found. It is shown that the third order approximation does not yield real solutions after the reflector acceleration exceeds 0.245 mm s^{-2}, i.e. the analytical expressions for the in- and out-of-plane amplitudes yield imaginary values. Thus, a larger solar reflector acceleration is required to obtain periodic orbits closer to the Earth. Derived using a two-body approach and applying the differential corrector method, a family of displaced periodic orbits close to the Earth are therefore found, with a solar reflector acceleration of 2.686 mm s^{-2}.
Emerging bosons with three-body interactions from spin-1 atoms in optical lattices
International Nuclear Information System (INIS)
Mazza, L.; Rizzi, M.; Cirac, J. I.; Lewenstein, M.
2010-01-01
We study two many-body systems of bosons interacting via an infinite three-body contact repulsion in a lattice: a pairs quasicondensate induced by correlated hopping and the discrete version of the Pfaffian wave function. We propose to experimentally realize systems characterized by such interaction by means of a proper spin-1 lattice Hamiltonian: spin degrees of freedom are locally mapped into occupation numbers of emerging bosons, in a fashion similar to spin-1/2 and hardcore bosons. Such a system can be realized with ultracold spin-1 atoms in a Mott insulator with a filling factor of 1. The high versatility of these setups allows us to engineer spin-hopping operators breaking the SU(2) symmetry, as needed to approximate interesting bosonic Hamiltonians with three-body hardcore constraint. For this purpose we combine bichromatic spin-independent superlattices and Raman transitions to induce a different hopping rate for each spin orientation. Finally, we illustrate how our setup could be used to experimentally realize the first setup, that is, the transition to a pairs quasicondensed phase of the emerging bosons. We also report on a route toward the realization of a discrete bosonic Pfaffian wave function and list some open problems for reaching this goal.
Equilibrium configurations of the tethered three-body formation system and their nonlinear dynamics
Xu, Ming; Zhu, Jian-Min; Tan, Tian; Xu, Shi-Jie
2012-12-01
This paper considers nonlinear dynamics of tethered three-body formation system with their centre of mass staying on a circular orbit around the Earth, and applies the theory of space manifold dynamics to deal with the nonlinear dynamical behaviors of the equilibrium configurations of the system. Compared with the classical circular restricted three body system, sixteen equilibrium configurations are obtained globally from the geometry of pseudo-potential energy surface, four of which were omitted in the previous research. The periodic Lyapunov orbits and their invariant manifolds near the hyperbolic equilibria are presented, and an iteration procedure for identifying Lyapunov orbit is proposed based on the differential correction algorithm. The non-transversal intersections between invariant manifolds are addressed to generate homoclinic and heteroclinic trajectories between the Lyapunov orbits. (3,3)-and (2,1)-heteroclinic trajectories from the neighborhood of one collinear equilibrium to that of another one, and (3,6)- and (2,1)-homoclinic trajectories from and to the neighborhood of the same equilibrium, are obtained based on the Poincaré mapping technique.
International Nuclear Information System (INIS)
Maaroufi, S; Parrain, F; Lefeuvre, E; Boutaud, B; Molin, R Dal
2015-01-01
In this paper we propose an approach to study the reliability of piezoelectric structures and more precisely energy harvesting micro-devices dedicated to autonomous active medical implants (new generation pacemakers). The structure under test is designed as a bimorph piezoelectric cantilever with a seismic mass at its tip. Good understanding of material aging and mechanical failure is critical for this kind of system. To study the reliability and durability of the piezoelectric part we propose to establish a new accelerated methodology and an associated test bench where the environment and stimuli can be precisely controlled over a wide period of time. This will allow the identification of potential failure modes and the study of their impacts by the way of direct mechanical investigation based on stiffness and blocking force measurements performed periodically. (paper)
Lidgi-Guigui, Nathalie; Guis, Christine; Brissault, Blandine; Kichler, Antoine; Leborgne, Christian; Scherman, Daniel; Labdi, Sid; Curmi, Patrick A
2010-11-16
Introduction of nucleic acids into cells is an important biotechnology research field which also holds great promise for therapeutic applications. One of the key steps in the gene delivery process is compaction of DNA into nanometric particles. The study of DNA condensing properties of three linear cationic triblock copolymers poly(ethylenimine-b-propylene glycol-b-ethylenimine), namely, LPEI(50)-PPG(36)-LPEI(50), LPEI(19)-PPG(36)-LPEI(19), and LPEI(14)-PPG(68)-LPEI(14), indicates that proper DNA condensation is driven by both the charge and the size of the respective cationic hydrophilic linear polyethylenimine (LPEI) and neutral hydrophobic poly(propylene glycol) (PPG) parts. Atomic force microscopy was used to investigate the interactions of the triblock copolymers with plasmid DNA at the single molecule level and to enlighten the mechanism involved in DNA condensation.
Kuznetsova, T. A.; Zubar, T. I.; Lapitskaya, V. A.; Sudzilouskaya, K. A.; Chizhik, S. A.; Didenko, A. L.; Svetlichnyi, V. M.; Vylegzhanina, M. E.; Kudryavtsev, V. V.; Sukhanova, T. E.
2017-10-01
The series of new thermoplastic elastomer films based on copoly(urethane-imide)s (coPUI)s and nanocomposites containing from 1 to 10 wt. % carbon nanofillers of different morphology (single-walled carbon nanotubes, carbon nanofibers, and graphene) as well as WS2 and WSe2 nanoparticles, were prepared and investigated by atomic force microscopy in contact mode. The friction coefficient (Cfr) on the films surfaces under conditions of true slip was determined both in one scan field and with multiple scans (200-400) in one place. The measurements were carried out at room temperature and at a heating up to 120°C. It is shown that at heating up to 75-85°C, the friction coefficient of some coPUI decreases significantly. The same effect can be achieved also after 100 scans during multi-scan testing at 20°C.
A numerical investigation of laminar forced convection in a solar collector with non-circular duct
Directory of Open Access Journals (Sweden)
Teleszewski Tomasz Janusz
2017-01-01
Full Text Available This paper presents a two-dimensional numerical study to investigate laminar flow in a flat plate solar collector with non-circular duct (regular polygonal, elliptical, and Cassini oval shape featuring forced convection with constant axial wall heat flux and constant peripheral wall temperature (H1 condition. Applying the velocity profile obtained for the duct laminar flow, the energy equation was solved exactly for the constant wall heat flux using the Boundary Element Method (BEM. Poiseuille and Nusselt numbers were obtained for flows having a different number of geometrical factors. The results are presented and discussed in the form of tables and graphs. The area goodness factor and volume goodness factor are calculated. The predicted correlations for Poiseuille and Nusselt numbers may be a very useful resource for the design and optimization of solar collectors with non-circular ducts.
Energy Technology Data Exchange (ETDEWEB)
Heckl, W.M.; Ohnesorge, F.; Binnig, G. (IBM Research Division, Muenchen (West Germany)); Specht, M. (Univ. Muenchen (West Germany)); Hashmi, M. (MPIf. Plasmaphysics, Garching (West Germany))
In this paper the authors present a study of ring-like structures of two different sizes on a nanometer scale found on natural molybdenum disulfide (MoS{sub 2}). Investigation by scanning tunneling and scanning force microscopy as well as secondary-ion mass spectroscopy indicate that these rings might originate from included molecules. Synthetic compared to natural MoS{sub 2} shows characteristic differences. The origin of these striking structures could be the morphology of organic or even remnants of biological material included at the geological time when the mineral was formed and could therefore be regarded as a result of a molecular fossilization process. The alternative explanation that the ring structure is a nonmorphological and purely electronic effect caused by a point defect like a dopant is also discussed.
Investigation of Redistribution of Pile Foundation Forces Under Successive Loading of Its Elements
Sedin, Vladimir; Bikus, Kateryna; Kovba, Vladislav
2017-12-01
Redistribution of pile foundation forces under successive loading of its elements was investigated under laboratory conditions. A segment of pile foundation model was taken for use in the case study. Load tests on the pile foundation model segment, without joining its elements (pile and plate, which turns into grillage) and based on different combinations of static loadings were conducted. This proved that the loading of a plate causes skin friction on some length of the pile side surface as well as providing additional loading and settlement. Test results have shown that application of successive elements enables the foundation to carry loads up to 13% higher than in the case of a standard pile foundation loading with the same settlement rates.
A numerical investigation of laminar forced convection in a solar collector with non-circular duct
Janusz Teleszewski, Tomasz
2017-11-01
This paper presents a two-dimensional numerical study to investigate laminar flow in a flat plate solar collector with non-circular duct (regular polygonal, elliptical, and Cassini oval shape) featuring forced convection with constant axial wall heat flux and constant peripheral wall temperature (H1 condition). Applying the velocity profile obtained for the duct laminar flow, the energy equation was solved exactly for the constant wall heat flux using the Boundary Element Method (BEM). Poiseuille and Nusselt numbers were obtained for flows having a different number of geometrical factors. The results are presented and discussed in the form of tables and graphs. The area goodness factor and volume goodness factor are calculated. The predicted correlations for Poiseuille and Nusselt numbers may be a very useful resource for the design and optimization of solar collectors with non-circular ducts.
Restricted Three-Body Dynamics and Morphologies of Early Novae Shells and their Spectral Signatures
Lynch, D. K.; Mazuk, S.; Campbell, E.; Venturini, C. C.
2003-08-01
The goal of this work is to calculate emission line profiles of classical novae systems for comparison to line profiles we observe in an attempt to deduce geometrical and dynamical properties of the system from the spectra. The material ejected by the thermonuclear runaway on the surface of the white dwarf (WD) is modeled as a large number of massless particles that are launched instantaneously and move ballistically thereafter. Each particle's position is propagated independently in three-dimensional space with a particle's track terminating if it impacts the WD or the secondary. Predicted line profiles, assuming an optically thin shell, are generated by computing a histogram of the number of particles in radial velocity space for a given observing projection. At high ejection velocities, a nearly spherical shell is produced. At ejection speeds near the WD's escape velocity, very complicated and ever changing geometries result and the material remains close to the system's barycenter. We present animations of computer simulations of novae shell development and the associated line profiles. This work supported by The Aerospace Corporation's Independent Research and Development program and by the US Air Force Space and Missile Systems Center through the Mission Oriented Investigation and Experimentation program, under contract F4701-00-C-0009 with the US Air Force.
Investigation of military training injuries in a special force corps in 2011
Directory of Open Access Journals (Sweden)
Gang ZHAO
2013-09-01
Full Text Available Objective To investigate the incidence, related influencing factors and predilection sites of training injuries in a special force corps for providing a basis of effective prevention of the injuries. Methods Four hundred and sixty-four officers and soldiers were randomly selected by lottery method from a special force corps in May 2011, and the training injuries as well as their related information was investigated by a questionnaire method. The medical records of the 464 subjects from May 2010 to May 2011 were reviewed. The collected data were statistically analyzed using SPSS 19.0 software. Results Of the 464 subjects, 165(35.6% never experienced injuries, and 299(64.4% were injured due to training in the last one year. A total of 505 person-time injuries occurred in 464 subjects, and the incidence of injury was 109 per 100 person-year. The major risk factors for training injuries included above average age, fondness of multiple sports, greater labor force, or higher frequency of sport exercises before enlistment, poor sleep or diet caused by training burden, and higher SCL-90 somatization score. The major protective factors comprised of higher military rank, lower-intensity training, higher education level, higher labor frequency before enlistment, higher SCL-90 phobic anxiety score, higher SCL-90 depression score, SCL-90 spirit score, and higher satisfaction degree on training program. The major sites of training injuries were lower extremities and lower back (accounting for 73.0%. Most injuries occurred below the knee (accounting for 49.0%, including the foot (6.5%, ankle (13.6%, leg(7.3% and knee (21.6%, followed by the lower back (accounting for 20.7%. Conclusions The risk factors of military training injuries involve various aspects, and continuous high intensive and highly difficult training items are the main reason of training injuries, and the lower extremities and lower back are the major locations. Psychological factors are
Energy Technology Data Exchange (ETDEWEB)
Hirasawa, Karen Akemi; Nishioka, Keiko; Sato, Tomohiro; Yamaguchi, Shoji; Mori, Shoichiro [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan)
1997-11-01
The surface of a synthetic graphite (KS-44) and polyvinylidene difluoride binder (PVDF) anode for lithium-ion secondary batteries is imaged using atomic force microscopy (AFM) and several related scanning probe microscope (SPM) instruments including: dynamic force microscopy (DFM), friction force microscopy (FFM), laterally-modulated friction force microscopy (LM-FFM), visco-elasticity atomic force microscopy (VE-AFM), and AFM/simultaneous current measurement mode (SCM). DFM is found to be an exceptional mode for topographic imaging while FFM results in the clearest contrast distinction between PVDF binder and KS-44 graphite regions. (orig.)
Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability
Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.
2018-02-01
As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi
Posch, Sandra; Obser, Tobias; König, Gesa; Schneppenheim, Reinhard; Tampé, Robert; Hinterdorfer, Peter
2018-03-01
von Willebrand factor (VWF) is a huge multimeric protein that plays a key role in primary hemostasis. Sites for collagen binding, an initial event of hemostasis, are located in the VWF-domains A1 and A3. In this study, we investigated single molecule interactions between collagen surfaces and wild type VWF A1A2A3 domain constructs, as well as clinically relevant VWF A3 domain point mutations, such as p.Ser1731Thr, p.Gln1734His, and p.His1786Arg. For this, we utilized atomic force microscopy based single molecular force spectroscopy. The p.Ser1731Thr mutant had no impact on the VWF-collagen type III and VI interactions, while the p.Gln1734His and p.His1786Arg mutants showed a slight increase in bond stability to collagen type III. This effect probably arises from additional hydrogen bonds that come along with the introduction of these mutations. Using the same mutants, but collagen type VI as a binding partner, resulted in a significant increase in bond stability. VWF domain A1 was reported to be essential for the interaction with collagen type VI and thus our findings strengthen the hypothesis that the VWF A1 domain can compensate for mutations in the VWF A3 domain. Additionally, our data suggest that the mutations could even stabilize the interaction between VWF and collagen without shear. VWF-collagen interactions seem to be an important system in which defective interactions between one VWF domain and one type of collagen can be compensated by alternative binding events.
Wielgoszewski, Grzegorz; Pałetko, Piotr; Tomaszewski, Daniel; Zaborowski, Michał; Jóźwiak, Grzegorz; Kopiec, Daniel; Gotszalk, Teodor; Grabiec, Piotr
2015-12-01
The use of scanning thermal microscopy (SThM) and Kelvin probe force microscopy (KPFM) to investigate silicon nanowires (SiNWs) is presented. SThM allows imaging of temperature distribution at the nanoscale, while KPFM images the potential distribution with AFM-related ultra-high spatial resolution. Both techniques are therefore suitable for imaging the resistance distribution. We show results of experimental examination of dual channel n-type SiNWs with channel width of 100 nm, while the channel was open and current was flowing through the SiNW. To investigate the carrier distribution in the SiNWs we performed SThM and KPFM scans. The SThM results showed non-symmetrical temperature distribution along the SiNWs with temperature maximum shifted towards the contact of higher potential. These results corresponded to those expressed by the distribution of potential gradient along the SiNWs, obtained using the KPFM method. Consequently, non-uniform distribution of resistance was shown, being a result of non-uniform carrier density distribution in the structure and showing the pinch-off effect. Last but not least, the results were also compared with results of finite-element method modeling. Copyright © 2015 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Magli, R.; Fredrikze, H.; Barocchi, F.
1991-01-01
We present an analysis of the density dependence of the static structure factor in low density 36 Ar gas at T = 140 K, from which we derive the three-body contribution. Within the experimental accuracy, the three-body contribution in the linear density expansion for the Fourier transform of the direct correlation function C(k) agrees, for 3 -1 , with theoretical calculations based on a pair potential and the Axilrod-Teller three-body potential, eventually modified for short-range effects; for k -1 the neutron diffraction data show a behaviour significantly different with respect to the theoretical predictions
Time-frequency analysis of the restricted three-body problem: transport and resonance transitions
International Nuclear Information System (INIS)
Vela-Arevalo, Luz V; Marsden, Jerrold E
2004-01-01
A method of time-frequency analysis based on wavelets is applied to the problem of transport between different regions of the solar system, using the model of the circular restricted three-body problem in both the planar and the spatial versions of the problem. The method is based on the extraction of instantaneous frequencies from the wavelet transform of numerical solutions. Time-varying frequencies provide a good diagnostic tool to discern chaotic trajectories from regular ones, and we can identify resonance islands that greatly affect the dynamics. Good accuracy in the calculation of time-varying frequencies allows us to determine resonance trappings of chaotic trajectories and resonance transitions. We show the relation between resonance transitions and transport in different regions of the phase space
International Nuclear Information System (INIS)
Efremenko, Vasily; Pastukhova, Tatiana; Chabak, Yuliia; Efremenko, Alexey; Shimizu, Kazumichi; Kusumoto, Kenta; Brykov, Michail
2018-01-01
The effect of heat treatment and chromium contents (up to 9.1 wt.%) on the wear resistance of spheroidal carbide cast iron (9.5 wt.% V) was studied using optical and scanning electron microscopy, X-ray diffractometry, dilatometry and three-body abrasive testing. It was found that quenching from 760 C and 920 C improved the alloys' wear resistance compared to the as-cast state due to the formation of metastable austenite transforming into martensite under abrasion. The wear characteristics of alloys studied are 1.6 - 2.3 times higher than that of reference cast iron (12 wt.% V) having stable austenitic matrix. Chromium addition decreases surface damage due to the formation of M_7C_3 carbides, while it reduces wear resistance owing to austenite stabilization to abrasion-induced martensite transformation. The superposition of these factors results in decreasing the alloys' wear behaviour with chromium content increase.
Shape space figure-8 solution of three body problem with two equal masses
Yu, Guowei
2017-06-01
In a preprint by Montgomery (https://people.ucsc.edu/~rmont/Nbdy.html), the author attempted to prove the existence of a shape space figure-8 solution of the Newtonian three body problem with two equal masses (it looks like a figure 8 in the shape space, which is different from the famous figure-8 solution with three equal masses (Chenciner and Montgomery 2000 Ann. Math. 152 881-901)). Unfortunately there is an error in the proof and the problem is still open. Consider the α-homogeneous Newton-type potential, 1/rα, using action minimization method, we prove the existence of this solution, for α \\in (1, 2) ; for α=1 (the Newtonian potential), an extra condition is required, which unfortunately seems hard to verify at this moment.
B+ → K− π+ π+: Three-Body Final State Interactions and Kπ Isospin States
International Nuclear Information System (INIS)
Nogueira, J. H. Alvarenga; Frederico, T.; Lourenço, O.
2017-01-01
In this exploratory study, final state interactions are considered to formulate the B meson decay amplitude for the Kππ channel. The Faddeev decomposition of the Bethe–Salpeter equation is used in order to build a relativistic three-body model within the light-front framework. The S-wave scattering amplitude for the Kπ system is considered in the 1/2 and 3/2 isospin channels with the set of inhomogeneous integral equations solved perturbatively. In comparison with previous results for the D meson decay in the same channel, one has to consider the different partonic processes, which build the source amplitudes, and the larger absorption to other decay channels appears, that are important features to be addressed. As in the D decay case, the convergence of the rescattering perturbative series is also achieved with two-loop contributions. (author)
Tails and bridges in the parabolic restricted three-body problem
Barrabés, Esther; Cors, Josep M.; Garcia-Taberner, Laura; Ollé, Mercè
2017-12-01
After a close encounter of two galaxies, bridges and tails can be seen between or around them. A bridge would be a spiral arm between a galaxy and its companion, whereas a tail would correspond to a long and curving set of debris escaping from the galaxy. The goal of this paper is to present a mechanism, applying techniques of dynamical systems theory, that explains the formation of tails and bridges between galaxies in a simple model, the so-called parabolic restricted three-body problem, i.e. we study the motion of a particle under the gravitational influence of two primaries describing parabolic orbits. The equilibrium points and the final evolutions in this problem are recalled,and we show that the invariant manifolds of the collinear equilibrium points and the ones of the collision manifold explain the formation of bridges and tails. Massive numerical simulations are carried out and their application to recover previous results are also analysed.
Efimov states and bound state properties in selected nuclear and molecular three-body systems
International Nuclear Information System (INIS)
Huber, H.S.
1978-01-01
The search is made among selected three-body systems for possible Efimov state behavior. In order to carry out this analysis of phenomenological potentials a new mathematical approach, the FCM (Faddeev-coordinate-momentum) technique, is developed. The analysis then proceeds through the framework of the Faddeev equations by employing the UPE (unitary pole expansion) to reduce these equations to numerically feasible form. The systems chosen for analysis are the 4 He trimer and the three-α model of 12 C. Efimov states are not found in 12 C, thus answering speculation among nuclear theorists. The 4 He trimer, on the other hand, manifests Efimov states for each potential considered and the characteristics of these states are extensively analyzed. Since Efimov states are predicted by all of the phenomenological potentials considered, these states would seem to be a realistically fundamental property of the 4 He trimer system
Combined mean-field and three-body model tested on the 26O nucleus
Hove, D.; Garrido, E.; Sarriguren, P.; Fedorov, D. V.; Fynbo, H. O. U.; Jensen, A. S.; Zinner, N. T.
2017-06-01
We combine few- and many-body degrees of freedom in a new computationally efficient model applicable to both bound and continuum states and adaptable to different subfields of physics. We formulate a self-consistent three-body model for a core nucleus surrounded by two valence nucleons, where the core is treated in the mean-field approximation and the same effective Skyrme interaction is used between both core and valence nucleons. We apply the model to 26O, where we reproduce the known experimental data as well as phenomenological models with more parameters. The decay of the ground state is found to proceed directly into the continuum without effect of the virtual sequential decay through the well-reproduced d3 /2 resonance of 25O.
Measurements of Charmless Three-Body and Quasi-Two-Body B Decays
Energy Technology Data Exchange (ETDEWEB)
Barrera, Barbara
2000-08-28
The authors present preliminary results of a search for several exclusive charmless hadronic B decays from electron-positron annihilation data collected by the BaBar detector near the Upsilon(4S) resonance. These include three-body decay modes with final states h{+-}h{sup minus-plus}h{+-} and h{+-}h{sup minus-plus}pi{sup 0}, and quasi-two-body decay modes with final states X{sup 0}h and X{sup 0}K{sub S}{sup 0}, where h = pi or K and X{sup 0} = eta-prime or omega. They find beta(B{sup 0} --> rho{sup minus-plus}pi{sup {+-}}) = (49{+-}13{sub {minus}5}{sup +6}) x 10{sup {minus}6} and beta(B{sup +} --> eta-prime-K{sup +}) = (62{+-}18{+-}8) x 10{sup {minus}6} and present upper limits for right other decays.
Three-body decays B →ϕ (ρ )K γ in perturbative QCD approach
Wang, Chao; Liu, Jing-Bin; Li, Hsiang-nan; Lü, Cai-Dian
2018-02-01
We study the three-body radiative decays B →ϕ (ρ )K γ induced by a flavor-changing neutral current in the perturbative QCD approach. Pseudoscalar-vector (P V ) distribution amplitudes (DAs) are introduced for the final-state ϕ K (ρ K ) pair to capture important infrared dynamics in the region with a small P V -pair invariant mass. The dependence of these P V DAs on the parton momentum fraction is parametrized in terms of the Gegenbauer polynomials, and the dependence on the meson momentum fraction is derived through their normalizations to timelike P V form factors. In addition to the dominant electromagnetic penguin, the subleading chromomagnetic penguin, quark-loop and annihilation diagrams are also calculated. After determining the P V DAs from relevant branching-ratio data, the direct C P asymmetries and decay spectra in the P V -pair invariant mass are predicted for each B →ϕ (ρ )K γ mode.
On an efficient and accurate method to integrate restricted three-body orbits
Murison, Marc A.
1989-01-01
This work is a quantitative analysis of the advantages of the Bulirsch-Stoer (1966) method, demonstrating that this method is certainly worth considering when working with small N dynamical systems. The results, qualitatively suspected by many users, are quantitatively confirmed as follows: (1) the Bulirsch-Stoer extrapolation method is very fast and moderately accurate; (2) regularization of the equations of motion stabilizes the error behavior of the method and is, of course, essential during close approaches; and (3) when applicable, a manifold-correction algorithm reduces numerical errors to the limits of machine accuracy. In addition, for the specific case of the restricted three-body problem, even a small eccentricity for the orbit of the primaries drastically affects the accuracy of integrations, whether regularized or not; the circular restricted problem integrates much more accurately.
Solving the three-body Coulomb breakup problem using exterior complex scaling
Energy Technology Data Exchange (ETDEWEB)
McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.
2004-05-17
Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish the formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.
Spectra for the A = 6 reactions calculated from a three-body resonance model
Directory of Open Access Journals (Sweden)
Paris Mark W.
2016-01-01
Full Text Available We develop a resonance model of the transition matrix for three-body breakup reactions of the A = 6 system and present calculations for the nucleon observed spectra, which are important for inertial confinement fusion and Big Bang nucleosynthesis (BBN. The model is motivated by the Faddeev approach where the form of the T matrix is written as a sum of the distinct Jacobi coordinate systems corresponding to particle configurations (α, n-n and (n; n-α to describe the final state. The structure in the spectra comes from the resonances of the two-body subsystems of the three-body final state, namely the singlet (T = 1 nucleon-nucleon (NN anti-bound resonance, and the Nα resonances designated the ground state (Jπ = 3−2${{{3^ - }} \\over 2}$ and first excited state (Jπ = 1−2${{{1^ - }} \\over 2}$ of the A = 5 systems 5He and 5Li. These resonances are described in terms of single-level, single-channel R-matrix parameters that are taken from analyses of NN and Nα scattering data. While the resonance parameters are approximately charge symmetric, external charge-dependent effects are included in the penetrabilities, shifts, and hard-sphere phases, and in the level energies to account for internal Coulomb differences. The shapes of the resonance contributions to the spectrum are fixed by other, two-body data and the only adjustable parameters in the model are the combinatorial amplitudes for the compound system. These are adjusted to reproduce the observed nucleon spectra from measurements at the Omega and NIF facilities. We perform a simultaneous, least-squares fit of the tt neutron spectra and the 3He3He proton spectra. Using these amplitudes we make a prediction of the α spectra for both reactions at low energies. Significant differences in the tt and 3He3He spectra are due to Coulomb effects.
Experimental investigation of unsteady fluid dynamic forces acting on tube array
International Nuclear Information System (INIS)
Tanaka, Hiroki; Takahara, Shigeru; Tanaka, Mitsutoshi
1981-01-01
It is well-known that the cylinder bundle vibrates in cross flow. Many studies of the vibration have been made, and it has been clarified that the vibration is caused by fluid-elastic vibration coupling to neighboring cylinders. The theory given in this paper considers unsteady fluid dynamic forces to be composed of inertia forces due to added mass of fluid, damping forces of fluid which are in phase to cylinder vibrating velocity, and stiffness forces which are proportional to cylinder displacements. Furthermore, taking account of the influences of neighboring cylinder vibrations, ten kinds of unsteady fluid dynamic forces are considered to act on a cylinder in cylinder bundles. Equations of motion of cylinders were deduced and the critical velocities were calculated with the measured unsteady fluid dynamic forces. Critical velocity tests were also conducted with cylinders which were supported with elastic spars. The calculated critical velocities coincided well with the test results. (author)
Siddiqi, Ariba; Poosapadi Arjunan, Sridhar; Kumar, Dinesh Kant
2018-01-16
This study describes a new model of the force generated by tibialis anterior muscle with three new features: single-fiber action potential, twitch force, and pennation angle. This model was used to investigate the relative effects and interaction of ten age-associated neuromuscular parameters. Regression analysis (significance level of 0.05) between the neuromuscular properties and corresponding simulated force produced at the footplate was performed. Standardized slope coefficients were computed to rank the effect of the parameters. The results show that reduction in the average firing rate is the reason for the sharp decline in the force and other factors, such as number of muscle fibers, specific force, pennation angle, and innervation ratio. The fast fiber ratio affects the simulated force through two significant interactions. This study has ranked the individual contributions of the neuromuscular factors to muscle strength decline of the TA and identified firing rate decline as the biggest cause followed by decrease in muscle fiber number and specific force. The strategy for strength preservation for the elderly should focus on improving firing rate. Graphical abstract Neuromuscular properties of Tibialis Anterior on force generated during ankle dorsiflexion.
Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng
2017-08-01
Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version of the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. Other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.
Properties of three-body decay functions derived with time-like jet calculus beyond leading order
International Nuclear Information System (INIS)
Sugiura, Tetsuya
2002-01-01
Three-body decay functions in time-like parton branching are calculated using the jet calculus to the next-to-leading logarithmic (NLL) order in perturbative quantum chromodynamics (QCD). The phase space contributions from each of the ladder diagrams and interference diagrams are presented. We correct part of the results for the three-body decay functions calculated previously by two groups. Employing our new results, the properties of the three-body decay functions in the regions of soft partons are examined numerically. Furthermore, we examine the contribution of the three-body decay functions modified by the restriction resulting from the kinematical boundary of the phase space for two-body decay in the parton shower model. This restriction leads to some problems for the parton shower model. For this reason, we propose a new restriction introduced by the kinematical boundary of the phase space for two-body decay. (author)
International Nuclear Information System (INIS)
Chatterjee, Dipankar; Biswas, Gautam; Amiroudine, Sakir
2009-01-01
This paper presents the unsteady laminar forced convection heat transfer from a row of five isothermal square cylinders placed in a side-by-side arrangement at a Reynolds number of 150. The numerical simulations are performed using a finite volume code based on the PISO algorithm in a collocated grid system. Special attention is paid to investigate the effect of the spacing between the cylinders on the overall transport processes for the separation ratios (spacing to size ratio) between 0.2 and 10. No significant interaction between the wakes is observed for spacing greater than four times the diameter at this Reynolds number. However, at smaller spacing, the wakes interact in a complicated manner resulting different thermo-hydrodynamic regimes. The vortex structures and isotherm patterns obtained are systematically presented and discussed for different separation ratios. In addition, the mean and instantaneous drag and lift coefficients, mean and local Nusselt number and Strouhal number are determined and discussed for various separation ratios. A new correlation is derived for mean Nusselt number as a function of separation ratio for such flows.
Directory of Open Access Journals (Sweden)
M.A. Ahmed
2015-09-01
Full Text Available In this paper, turbulent forced convection of nanofluids flow in triangular-corrugated channels is numerically investigated over Reynolds number ranges of 1000–5000. Four different types of nanofluids which are Al2O3, CuO, SiO2 and ZnO–water with nanoparticles diameters in the range of 30–70 nm and the range of nanoparticles volume fraction from 0% to 4% have been considered. The governing equations of mass, momentum and energy are solved using finite volume method (FVM. The low Reynolds number k–ε model of Launder and Sharma is adopted as well. It is found that the average Nusselt number, pressure drop, heat transfer enhancement, thermal–hydraulic performance increase with increasing in the volume fraction of nanoparticles and with decreasing in the diameter of nanoparticles. Furthermore, the SiO2–water nanofluid provides the highest thermal–hydraulic performance among other types of nanofluids followed by Al2O3, ZnO and CuO–water nanofluids. Moreover, the pure water has the lowest heat transfer enhancement as well as thermal–hydraulic performance.
Investigation of hair shaft in seborrheic dermatitis using atomic force microscopy.
Kim, Kyung Sook; Shin, Min Kyung; Ahn, Jae-Jun; Haw, Choong-Rim; Park, Hun-Kuk
2011-08-01
We have investigated the changes of seborrheic dermatitis (SD) on the hair shaft in the morphological and physical properties using atomic force microscopy (AFM). Hair samples were obtained from the lesional and perilesional regions in 15 patients with SD. Fifteen healthy adults were included as the control group. From the topography of hair obtained by AFM, the height of the scale, step height, roughness, diameter, and pit were determined. The scale thickness of the SD-affected hair was sevenfold more than in the control hair showing statistically significance. The lesional hair showed greater roughness parameters of Sa, Sq, and Sz than the perilesional and the control hair, but this difference was not significant. The cuticle of the lesional hair was significantly damaged while perilesional hair showed a very distinct cuticle structure with smooth edges and a regular interval between the cuticles. The diameter of the lesional hair was significantly lesser by 10-35% than that of the perilesional hair. The pit was rarely observed in the SD-affected hair collected from both the lesional and perilesional regions. The changes in the hair shaft affected SD was measured using AFM non-invasively. AFM could be a useful tool in monitoring the treatment response and the severity of SD. © 2011 John Wiley & Sons A/S.
Pretorius, Etheresia; du Plooy, Jeanette N; Soma, Prashilla; Keyser, Ina; Buys, Antoinette V
2013-11-30
Smoking affects the general health of an individual, however, the red blood cells (RBCs) and their architecture are particularly vulnerable to inhaled toxins related to smoking. Smoking is one of the lifestyle diseases that are responsible for the most deaths worldwide and an individual who smokes is exposed to excessive amounts of oxidants and toxins which generate up to 10(18) free radicals in the human body. Recently, it was reported that smoking decreases RBC membrane fluidity. Here we confirm this and we show changes visible in the topography of RBC membranes, using scanning electron microscopy (SEM). RBC membranes show bubble formation of the phospholipid layer, as well as balloon-like smooth areas; while their general discoid shapes are changed to form pointed extensions. We also investigate membrane roughness using atomic force microscopy (AFM) and these results confirm SEM results. Due to the vast capability of RBCs to be adaptable, their state of well-being is a major indication for the general health status of an individual. We conclude that these changes, using an old technique in a novel application, may provide new insights and new avenues for future improvements in clinical medicine pertaining to conditions like COPD. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Numerical Investigation of Nanofluid Forced Convection in Channels with Discrete Heat Sources
Directory of Open Access Journals (Sweden)
Payam Rahim Mashaei
2012-01-01
Full Text Available Numerical simulation is performed to investigate the laminar force convection of Al2O3/water nanofluid in a flow channel with discrete heat sources. The heat sources are placed on the bottom wall of channel which produce much thermal energy that must be evacuated from the system. The remaining surfaces of channel are kept adiabatic to exchange energy between nanofluid and heat sources. In the present study the effects of Reynolds number (Re=50,100,200,400, and 1000, particle volume fraction (=0 (distilled water, 1 and 4% on the average heat transfer coefficient (h, pressure drop (Δ, and wall temperature ( are evaluated. The use of nanofluid can produce an asymmetric velocity along the height of the channel. The results show a maximum value 38% increase in average heat transfer coefficient and 68% increase in pressure drop for all the considered cases when compared to basefluid (i.e., water. It is also observed that the wall temperature decreases remarkably as Re and ϕ increase. Finally, thermal-hydraulic performance (η is evaluated and it is seen that best performance can be obtained for Re=1000 and =4%.
Experimental investigation of parametric and externally forced motion in resonant MEMS sensors
International Nuclear Information System (INIS)
Harish, K M; Gallacher, B J; Burdess, J S; Neasham, J A
2009-01-01
In this paper an excitation method employing both harmonic forcing and parametric excitation is applied to a resonant MEMS sensor in order to investigate and characterize the phenomena of parametric resonance and parametric amplification. The motivation for this research is that parametric excitation may be used to significantly reduce the total damping in MEMS sensors in a controllable manner. This is extremely pertinent to devices where the Q-factor is a principal factor in determining sensor performance. In this paper it is shown that, by adjusting the parametric excitation parameters (frequency, amplitude and phase) of an electrostatically actuated and sensed device, the gain of the frequency response function of a mode of vibration may be amplified. The amplification is quantified by the gain factor which is characterized experimentally. The instability regions defining the regions for parametric resonance are also characterized experimentally and compared to theoretical predictions. The boundaries of these instability regions define the thresholds for parametric resonance and play a crucial role in the design of the parametric amplifier
How Can Magnetic Forces Do Work? Investigating the Problem with Students
Onorato, Pasquale; De Ambrosis, Anna
2013-01-01
We present a sequence of activities aimed at promoting both learning about magnetic forces and students' reflection about the conceptual bridge between magnetic forces on a moving charge and on a current-carrying wire in a magnetic field. The activity sequence, designed for students in high school or on introductory physics courses, has been…
DEFF Research Database (Denmark)
Voigt, Andreas Jauernik; Santos, Ilmar
2012-01-01
This paper gives an original theoretical and experimental contribution to the issue of reducing force estimation errors, which arise when applying Active Magnetic Bearings (AMBs) with pole embedded Hall sensors for force quantification purposes. Motivated by the prospect of increasing the usabili...
Observation of the Borromean Three-Body Förster Resonances for Three Interacting Rb Rydberg Atoms.
Tretyakov, D B; Beterov, I I; Yakshina, E A; Entin, V M; Ryabtsev, I I; Cheinet, P; Pillet, P
2017-10-27
Three-body Förster resonances at long-range interactions of Rydberg atoms were first predicted and observed in Cs Rydberg atoms by Faoro et al. [Nat. Commun. 6, 8173 (2015)NCAOBW2041-172310.1038/ncomms9173]. In these resonances, one of the atoms carries away an energy excess preventing the two-body resonance, leading thus to a Borromean type of Förster energy transfer. But they were in fact observed as the average signal for the large number of atoms N≫1. In this Letter, we report on the first experimental observation of the three-body Förster resonances 3×nP_{3/2}(|M|)→nS_{1/2}+(n+1)S_{1/2}+nP_{3/2}(|M^{*}|) in a few Rb Rydberg atoms with n=36, 37. We have found here clear evidence that there is no signature of the three-body Förster resonance for exactly two interacting Rydberg atoms, while it is present for N=3-5 atoms. This demonstrates the assumption that three-body resonances can generalize to any Rydberg atom. As such resonance represents an effective three-body operator, it can be used to directly control the three-body interactions in quantum simulations and quantum information processing with Rydberg atoms.
Gutsmann, Thomas; Fantner, Georg E; Kindt, Johannes H; Venturoni, Manuela; Danielsen, Signe; Hansma, Paul K
2004-05-01
Tendons are composed of collagen and other molecules in a highly organized hierarchical assembly, leading to extraordinary mechanical properties. To probe the cross-links on the lower level of organization, we used a cantilever to pull substructures out of the assembly. Advanced force probe technology, using small cantilevers (length exponential increase in force and two different periodic rupture events, one with strong bonds (jumps in force of several hundred pN) with a periodicity of 78 nm and one with weak bonds (jumps in force of <7 pN) with a periodicity of 22 nm. We demonstrate a good correlation between the measured mechanical behavior of collagen fibers and their appearance in the micrographs taken with the atomic force microscope.
An investigation of shoulder forces in active shoulder tackles in rugby union football.
Usman, Juliana; McIntosh, Andrew S; Fréchède, Bertrand
2011-11-01
In rugby union football the tackle is the most frequently executed skill and one most associated with injury, including shoulder injury to the tackler. Despite the importance of the tackle, little is known about the magnitude of shoulder forces in the tackle and influencing factors. The objectives of the study were to measure the shoulder force in the tackle, as well as the effects of shoulder padding, skill level, side of body, player size, and experimental setting on shoulder force. Experiments were conducted in laboratory and field settings using a repeated measures design. Thirty-five participants were recruited to the laboratory and 98 to the field setting. All were male aged over 18 years with rugby experience. The maximum force applied to the shoulder in an active shoulder tackle was measured with a custom built forceplate incorporated into a 45 kg tackle bag. The overall average maximum shoulder force was 1660 N in the laboratory and 1997 N in the field. This difference was significant. The shoulder force for tackling without shoulder pads was 1684 N compared to 1635 N with shoulder pads. There was no difference between the shoulder forces on the dominant and non-dominant sides. Shoulder force reduced with tackle repetition. No relationship was observed between player skill level and size. A substantial force can be applied to the shoulder and to an opponent in the tackle. This force is within the shoulder's injury tolerance range and is unaffected by shoulder pads. Copyright Â© 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Shi, Zhongyuan; Dong, Tao
2014-01-01
Highlights: • Variation of total entropy generation is investigated parametrically. • Pareto solution sets for heat transfer and flow friction components are obtained. • Dominant irreversibility component and impact of key variables are discussed. - Abstract: Based on the second law of thermodynamics, an entropy generation investigation is carried out under given dimensionless parameters, i.e. heat exchanger duty, heat flux, with respect to heat transfer and frictional pressure drop in a rotating helical tube heat exchanger with laminar convective flow. The entropy generation from heat transfer across a finite temperature difference – Ψ h decreases with increasing Dean number which represents the impact of centrifugal force induced secondary flow in enhancing heat transfer. Another aspect of increasing Dean number is that intensified momentum transfer in the radial direction also raises the entropy generation from frictional pressure drop – Ψ f , the superposed effect of which yields a decreasing–increasing trend of the total entropy generation-Ψ, a local minimum located in between. The rotation of the helical tube in streamwise (co-rotation) or counter streamwise (counter-rotation) direction leads to a decrease in Ψ h and a increase in Ψ f which complicates the situation that whether or where the minimum of total entropy generation exists is dependent on whether Ψ is dominated by Ψ h or Ψ f or somewhere in between. No difference is discerned between pairs of cases with constant wall temperature and uniform wall heat flux but the same set of variables and parameters. A multi-objective optimization targeting Ψ h and Ψ f simultaneously is implemented using the non-dominated sorting genetic algorithm II (NSGA II). Five solution sets are selected and compared with the conventional optimization in regard of Ψ distinguishing the Ψ h -dominated region from the Ψ f -dominated region, the dimensionless variable η 1 is found to be the most suitable
Experimental and Numerical Investigation of Radial Forces Acting on Centrifugal Pump Impeller
Directory of Open Access Journals (Sweden)
Karaskiewicz Krzysztof
2014-12-01
Full Text Available The paper presents the results of measurements and predictions of radial thrust in centrifugal pump with specific speed ns = 26. In the pump tested, a volute with rectangular cross-section was used. The tests were carried out for several rotational speeds, including speeds above and below the nominal one. Commercial code ANSYS Fluent was used for the calculations. Apart from the predictions of the radial force, the calculations of axial thrust were also conducted, and correlation between thrust and the radial force was found. In the range of the measured rotational speeds, similarity of radial forces was checked.
Salomone, Salvatore; Piazza, Cateno; Vitale, Daniela Cristina; Cardì, Francesco; Gugliotta, Barbara; Drago, Filippo
2014-02-01
To assess the relative bioavailability of a new subcutaneous (SC) diclofenac hydroxypropyl b-cyclodextrin (HPbCD) formulation administered to three body sites: quadriceps, gluteus, and abdomen. This was a pilot, single-dose, randomized, three-way crossover relative bioavailability study. A total of 12 healthy subjects received a single SC injection of diclofenac HPbCD 50 mg/1 mL in the quadriceps, gluteus, or abdomen. The AUC was comparable after SC diclofenac HPbCD in the quadriceps, gluteus, and abdomen. The Cmax was comparable after SC administration in the quadriceps or abdomen, and ~ 17% higher in the gluteus. The absorption was rapid (30 minutes) after administration of the treatment at any site. The treatment was well tolerated. The relative bioavailability of SC diclofenac HPbCD was comparable when administered to the quadriceps, gluteus, and abdomen. The new diclofenac formulation can therefore be administered subcutaneously to any of these sites without clinically significant differences. A further adequately powered study would be necessary to reveal any differences among injection sites in terms of peak plasma concentration.
Three-body interactions in liquid and solid hydrogen: Evidence from vibrational spectroscopy
Hinde, Robert
2008-03-01
In the cryogenic low-density liquid and solid phases of H2 and D2, the H2 and D2 molecules retain good rotational and vibrational quantum numbers that characterize their internal degrees of freedom. High-resolution infrared and Raman spectroscopic experiments provide extremely sensitive probes of these degrees of freedom. We present here fully-first-principles calculations of the infrared and Raman spectra of liquid and solid H2 and D2, calculations that employ a high-quality six-dimensional coupled-cluster H2-H2 potential energy surface and quantum Monte Carlo treatments of the single-molecule translational degrees of freedom. The computed spectra agree very well with experimental results once we include three-body interactions among the molecules, interactions which we also compute using coupled-cluster quantum chemical methods. We predict the vibrational spectra of liquid and solid H2 at several temperatures and densities to provide a framework for interpreting recent experiments designed to search for superfluid behavior in small H2 droplets. We also present preliminary calculations of the spectra of mixed H2/D2 solids that show how positional disorder affects the spectral line shapes in these systems.
Studies of $C\\!P$-violation in charmless three-body $b$-hadron decays
AUTHOR|(INSPIRE)INSPIRE-00401396
Violation of combined charge and parity inversion ($C\\!P$) is a property of the Standard Model that results in a fundamental difference between particles and anti-particles. The single source of $C\\!P$-violation in the Standard Model is insufficient to explain the dominance of matter over anti-matter in the contemporary universe, however, thus far, there has been no clear observation of $C\\!P$-violation beyond the Standard Model. Constraints on various $C\\!P$-violating observables are now precise enough that these represent sensitive tests for physics beyond the Standard Model. This thesis firstly documents the observation of two three-body $b$-baryon decays, and measurements of their phase-space integrated $C\\!P$-asymmetries, which are some of the first to be performed on baryon decays. These measurements provide useful information on hadronisation in $b$-baryon decays, on the intermediate decay dynamics, and give a potential avenue to search for $C\\!P$-violation in baryon decays. An amplitude analysis of th...
Solving three-body-breakup problems with outgoing-flux asymptotic conditions
International Nuclear Information System (INIS)
Randazzo, J. M.; Frapiccini, A. L.; Colavecchia, F. D.; Buezas, F.; Gasaneo, G.
2011-01-01
An analytically solvable three-body collision system (s wave) model is used to test two different theoretical methods. The first one is a configuration interaction expansion of the scattering wave function using a basis set of Generalized Sturmian Functions (GSF) with purely outgoing flux (CISF), introduced recently in A. L. Frapicinni, J. M. Randazzo, G. Gasaneo, and F. D. Colavecchia [J. Phys. B: At. Mol. Opt. Phys. 43, 101001 (2010)]. The second one is a finite element method (FEM) calculation performed with a commercial code. Both methods are employed to analyze different ways of modeling the asymptotic behavior of the wave function in finite computational domains. The asymptotes can be simulated very accurately by choosing hyperspherical or rectangular contours with the FEM software. In contrast, the CISF method can be defined both in an infinite domain or within a confined region in space. We found that the hyperspherical (rectangular) FEM calculation and the infinite domain (confined) CISF evaluation are equivalent. Finally, we apply these models to the Temkin-Poet approach of hydrogen ionization.
Three-body correlations in the decay of $^{10}$He and $^{13}$Li
Jonson, B; Cortina-Gil, D; Simon, H; Emling, H; Nyman, G; Nilsson, T; Johansson, H T; Borge, M J G; Paschalis, S; Muenzenberg, G; Zhukov, M V; Weick, H; Pramanik, U Datta; LeBleis, T; Meister, M; Reifarth, R; Chulkov, L V; Lantz, M; Riisager, K; Mahata, K; Suemmerer, K; Langer, C; Chatillon, A; Richter, A; Kulessa, R; Palit, R; Aksyutina, Yu; Geissel, H; Aumann, T; Shulgina, N B; Prokopowicz, W; Forssen, C; Ickert, G; Fynbo, H O U; Tengblad, O; Boretzky, K
2010-01-01
The very exotic nuclear resonance systems. He-10 and Li-13, are produced in proton-knockout reactions from relativistic beams of Li-11 and Be-14. The experimentally determined energy and angular correlations between their decay products, He-8 + n + n and Li-11 + n + n, are analyzed using an expansion of decay amplitudes in a restricted set of hyperspherical harmonics. By considering only a small number of terms it is possible to extract the expansion coefficients directly from the experimental three-body correlations. This provides a model-independent way of getting information about the decay process. on the structure of the decaying nucleus and on the quantum characteristics of the binary subsystems The results show that the He-8 + n + n relative-energy spectrum can be interpreted as consisting of two resonances, an I-pi = 0(+) ground state and an excited I-pi = 2(+) state. The Li-11 + n + n relative-energy spectrum is interpreted as an I-pi = 3/2(-) ground state overlapping with excited states having a str...
L^1 -optimality conditions for the circular restricted three-body problem
Chen, Zheng
2016-11-01
In this paper, the L^1 -minimization for the translational motion of a spacecraft in the circular restricted three-body problem (CRTBP) is considered. Necessary conditions are derived by using the Pontryagin Maximum Principle (PMP), revealing the existence of bang-bang and singular controls. Singular extremals are analyzed, recalling the existence of the Fuller phenomenon according to the theories developed in (Marchal in J Optim Theory Appl 11(5):441-486, 1973; Zelikin and Borisov in Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering. Birkhäuser, Basal 1994; in J Math Sci 114(3):1227-1344, 2003). The sufficient optimality conditions for the L^1 -minimization problem with fixed endpoints have been developed in (Chen et al. in SIAM J Control Optim 54(3):1245-1265, 2016). In the current paper, we establish second-order conditions for optimal control problems with more general final conditions defined by a smooth submanifold target. In addition, the numerical implementation to check these optimality conditions is given. Finally, approximating the Earth-Moon-Spacecraft system by the CRTBP, an L^1 -minimization trajectory for the translational motion of a spacecraft is computed by combining a shooting method with a continuation method in (Caillau et al. in Celest Mech Dyn Astron 114:137-150, 2012; Caillau and Daoud in SIAM J Control Optim 50(6):3178-3202, 2012). The local optimality of the computed trajectory is asserted thanks to the second-order optimality conditions developed.
Study of charmless three-body decays of neutral B mesons with the LHCb spectrometer
Sobczak, Krzysztof Grzegorz
This thesis describes an exploratory work on three-body charmless neutral $B$ mesons decays containing either a $K_S$ or $\\pi^0$. The events are reconstructed with the LHCb spectrometer installed at Cern (Geneva, CH) recording the proton-proton collisions delivered by the Large Hadron Collider (LHC). The phenomenology of such modes is rich and covers the possibility to measure all angles of the unitarity triangle linked to the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The single example of the $\\gamma$ measurement is explored in this document. The LHC accelerator and the most relevant sub-detector elements of the LHCb spectrometer are described in details. In particular, emphasis is given to the calorimetry system for which the calibration and alignment of the PreShower (PRS) of the electromagnetic calorimeter has been performed. We used particles at minimum ionisation deposit for such a task. The calibration results until year 2011 are reported as well as the method of the PS alignment with respect to the tra...
Three bodies of practice in a traditional South Indian martial art.
Zarrilli, P B
1989-01-01
This paper describes three interconnected conceptions of the body in kalarippayattu, the martial tradition of Kerala, South India. It traces continuities and discontinuities among concepts and practices recorded in classic source texts and contemporary martial practice for each of the three 'bodies of practice'. The first is the fluid body of humors and saps. The second is the body as superstructure composed of bones, muscles, and vital spots (marma-s), which supports the fluid body. The concepts and practices of the first two bodies are based on the regional tradition of Ayurveda. They constitute the external physical body (sthula-śarira). The third, subtle or interior body (suksma-śarira) is thought to be encased within the physical body. It provides an experiential map of practice and is the basis for higher stages of meditation. The long-term practice of the martial art (1) makes the body fluid so that healthful congruence of the humors occurs, (2) establishes an intuitive and practical knowledge of vital points (marma) useful in fighting (prayogam) and in treating injuries, and (3) purifies the subtle body and awakens the internal vital energy (prana-vayu) that is manifest as the power (śakti) of the master in combat or medical practice. The paper concludes with a discussion of the interrelationship between these three concepts of the body in the accomplished practice of the martial practitioner.
Stability of the Moons Orbits in Solar System in the Restricted Three-Body Problem
Directory of Open Access Journals (Sweden)
Sergey V. Ershkov
2015-01-01
Full Text Available We consider the equations of motion of three-body problem in a Lagrange form (which means a consideration of relative motions of 3 bodies in regard to each other. Analyzing such a system of equations, we consider in detail the case of moon’s motion of negligible mass m3 around the 2nd of two giant-bodies m1, m2 (which are rotating around their common centre of masses on Kepler’s trajectories, the mass of which is assumed to be less than the mass of central body. Under assumptions of R3BP, we obtain the equations of motion which describe the relative mutual motion of the centre of mass of 2nd giant-body m2 (planet and the centre of mass of 3rd body (moon with additional effective mass ξ·m2 placed in that centre of mass ξ·m2+m3, where ξ is the dimensionless dynamical parameter. They should be rotating around their common centre of masses on Kepler’s elliptic orbits. For negligible effective mass ξ·m2+m3 it gives the equations of motion which should describe a quasi-elliptic orbit of 3rd body (moon around the 2nd body m2 (planet for most of the moons of the planets in Solar System.
The rectilinear three-body problem as a basis for studying highly eccentric systems
Voyatzis, G.; Tsiganis, K.; Gaitanas, M.
2018-01-01
The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity e'=1, but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003-1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter μ =0.5 (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke's computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to μ and e'systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.
Ni, Xiao-Ting; Wu, Xin
2014-10-01
The time-transformed leapfrog scheme of Mikkola & Aarseth was specifically designed for a second-order differential equation with two individually separable forms of positions and velocities. It can have good numerical accuracy for extremely close two-body encounters in gravitating few-body systems with large mass ratios, but the non-time-transformed one does not work well. Following this idea, we develop a new explicit symplectic integrator with an adaptive time step that can be applied to a time-dependent Hamiltonian. Our method relies on a time step function having two distinct but equivalent forms and on the inclusion of two pairs of new canonical conjugate variables in the extended phase space. In addition, the Hamiltonian must be modified to be a new time-transformed Hamiltonian with three integrable parts. When this method is applied to the elliptic restricted three-body problem, its numerical precision is explicitly higher by several orders of magnitude than the nonadaptive one's, and its numerical stability is also better. In particular, it can eliminate the overestimation of Lyapunov exponents and suppress the spurious rapid growth of fast Lyapunov indicators for high-eccentricity orbits of a massless third body. The present technique will be useful for conservative systems including N-body problems in the Jacobian coordinates in the the field of solar system dynamics, and nonconservative systems such as a time-dependent barred galaxy model in a rotating coordinate system.
Directory of Open Access Journals (Sweden)
Strange AP
2017-01-01
Full Text Available Adam P Strange,1 Sebastian Aguayo,1 Tarek Ahmed,1 Nicola Mordan,1 Richard Stratton,2 Stephen R Porter,3 Susan Parekh,4 Laurent Bozec1 1Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 2Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, UCL Medical School, 3UCL Eastman Dental Institute, 4Department of Pediatrics, UCL Eastman Dental Institute, London, UK Abstract: Scleroderma (or systemic sclerosis, SSc is a disease caused by excess crosslinking of collagen. The skin stiffens and becomes painful, while internally, organ function can be compromised by the less elastic collagen. Diagnosis of SSc is often only possible in advanced cases by which treatment time is limited. A more detailed analysis of SSc may provide better future treatment options and information of disease progression. Recently, the histological stain picrosirius red showing collagen register has been combined with atomic force microscopy (AFM to study SSc. Skin from healthy individuals and SSc patients was biopsied, stained and studied using AFM. By investigating the crosslinking of collagen at a smaller hierarchical stage, the effects of SSc were more pronounced. Changes in morphology and Young’s elastic modulus were observed and quantified; giving rise to a novel technique, we have termed “quantitative nanohistology”. An increase in nanoscale stiffness in the collagen for SSc compared with healthy individuals was seen by a significant increase in the Young’s modulus profile for the collagen. These markers of stiffer collagen in SSc are similar to the symptoms experienced by patients, giving additional hope that in the future, nanohistology using AFM can be readily applied as a clinical tool, providing detailed information of the state of collagen. Keywords: rheumatology, adjunct diagnosis, picrosirius red, collagen, nanohistology
Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico.
Energy Technology Data Exchange (ETDEWEB)
Van Hart, Dirk (GRAM, Inc.)
2003-06-01
The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of late 2002. In the eastern portion of KAFB (Lurance Canyon and the Hubbell bench), of primary interest is the elevation to which bedrock is buried under a thin cap of alluvium. Elevation maps of the bedrock top reveal the paleodrainage that allows for the interpretation of the area's erosional history. The western portion of KAFB consists of the eastern part of the Albuquerque basin where bedrock is deeply buried under Santa Fe Group alluvium. In this area, the configuration of the down-to-the-west, basin-bounding Sandia and West Sandia faults is of primary interest. New geological and geophysical data and the reinterpretation of old data help to redefine the location and magnitude of these elements. Additional interests in this area are the internal stratigraphy and structure of the Santa Fe Group. Recent data collected from new monitoring wells in the area have led to a geologic characterization of the perched Tijeras Arroyo Groundwater system and have refined the known limits of the Ancestral Rio Grande fluvial sediments within the Santa Fe Group. Both the reinterpretation of the existing data and a review of the regional geology have shown that a segment of the boundary between the eastern and western portions of KAFB is a complicated early Tertiary (Laramide) wrench-fault system, the Tijeras/Explosive Ordnance Disposal Area/Hubbell Spring system. A portion of this fault zone is occupied by a coeval ''pull-apart'' basin filled with early Tertiary conglomerates, whose exposures form the ''Travertine Hills''.
Wu, Chia-Yun
High speed Atomic Force Microscopy (AFM) has a wide variety of applications ranging from nanomanufacturing to biophysics. In order to have higher scanning speed of certain AFM modes, high resonant frequency cantilevers are needed; therefore, the goal of this research is to investigate using polymer derived ceramics for possible applications in making high resonant frequency AFM cantilevers using complex cross sections. The polymer derived ceramic that will be studied, is silicon carbide. Polymer derived ceramics offer a potentially more economic fabrication approach for MEMS due to their relatively low processing temperatures and ease of complex shape design. Photolithography was used to make the desired cantilever shapes with micron scale size followed by a wet etching process to release the cantilevers from the substrates. The whole manufacturing process we use borrow well-developed techniques from the semiconducting industry, and as such this project also could offer the opportunity to reduce the fabrication cost of AFM cantilevers and MEMS in general. The characteristics of silicon carbide made from the precursor polymer, SMP-10 (Starfire Systems), were studied. In order to produce high qualities of silicon carbide cantilevers, where the major concern is defects, proper process parameters needed to be determined. Films of polymer derived ceramics often have defects due to shrinkage during the conversion process. Thus control of defects was a central issue in this study. A second, related concern was preventing oxidation; the polymer derived ceramics we chose is easily oxidized during processing. Establishing an environment without oxygen in the whole process was a significant challenge in the project. The optimization of the parameters for using photolithography and wet etching process was the final and central goal of the project; well established techniques used in microfabrication were modified for use in making the cantilever in the project. The techniques
Investigation of small-scale preferential flow with a forced-gradient tracer test.
Bianchi, Marco; Zheng, Chunmiao; Tick, Geoffrey R; Gorelick, Steven M
2011-01-01
A new tracer experiment (referred to as MADE-5) was conducted at the well-known Macrodispersion Experiment (MADE) site to investigate the influence of small-scale mass-transfer and dispersion processes on well-to-well transport. The test was performed under dipole forced-gradient flow conditions and concentrations were monitored in an extraction well and in two multilevel sampler (MLS) wells located at 6, 1.5, and 3.75 m from the source, respectively. The shape of the breakthrough curve (BTC) measured at the extraction well is strongly asymmetric showing a rapidly arriving peak and an extensive late-time tail. The BTCs measured at seven different depths in the two MLSs are radically different from one another in terms of shape, arrival times, and magnitude of the concentration peaks. All of these characteristics indicate the presence of a complex network of preferential flow pathways controlling solute transport at the test site. Field-experimental data were also used to evaluate two transport models: a stochastic advection-dispersion model (ADM) based on conditional multivariate Gaussian realizations of the hydraulic conductivity field and a dual-domain single-rate (DDSR) mass-transfer model based on a deterministic reconstruction of the aquifer heterogeneity. Unlike the stochastic ADM realizations, the DDSR accurately predicted the magnitude of the concentration peak and its arrival time (within a 1.5% error). For the multilevel BTCs between the injection and extraction wells, neither model reproduced the observed values, indicating that a high-resolution characterization of the aquifer heterogeneity at the subdecimeter scale would be needed to fully capture 3D transport details. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
An Investigation of the Static Force Balance of a Model Railgun
National Research Council Canada - National Science Library
Schroeder, Matthew K
2007-01-01
.... The various claims do not appear to be supported by direct experimental observation. The goal of this research paper is to develop an experiment to observe the balance of forces in a model railgun in a static state...
(Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)
Energy Technology Data Exchange (ETDEWEB)
1991-10-01
This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.
International Nuclear Information System (INIS)
Yousif, B.F.; Nirmal, Umar; Wong, K.J.
2010-01-01
This work aims to investigate the wear and frictional behaviour of a new epoxy composite based on treated betelnut fibres subjected to three-body abrasion using different abrasive particle sizes (500 μm, 714 μm and 1430 μm) and sliding velocities (0.026-0.115 m s -1 ) at constant applied load (5 N) using a newly developed Linear Tribo Machine. The worn surfaces of the composite were studied using scanning electron microscope. The work revealed that the predominant wear mechanism of treated betelnut fibre reinforced epoxy (T-BFRE) composite sliding against grain sands was plastic deformation, pitting and pullout of betelnut fibres. The composite exhibited higher values in frictional coefficient when it was subjected against coarse sand. Besides, the abrasive wear of the composite is depending on the size of abrasive particles and sliding velocity. Higher weight loss is noticed at high sliding velocities. The specific wear rate for the composite subjected to three different sand particles follow the order of: coarse > grain > fine sands respectively.
Three-body fragmentation of multiply charged nitrous oxide induced by Ar8 +- and Xe15 +-ion impact
Khan, Arnab; Tribedi, Lokesh C.; Misra, Deepankar
2017-07-01
We study multiple ionization and subsequent dissociation of nitrous oxide (N2O ) in collisions with 1 a.u. Ar8 + and Xe15 + ions. The experiments are performed by using a recoil ion momentum spectrometer (RIMS) equipped with a position- and time-sensitive detector which allows the measurement of the momenta of fragment ions in coincidence. By measuring the momentum vectors of the recoiling fragment ions various important parameters, such as kinetic energy release and those related to molecular structure prior to fragmentation, have been derived. Furthermore, the projectile-charge-state dependence of the fragmentation dynamics of N2O is investigated and a very mild dependence has been noticed in a few channels. In addition, we also study the concerted and sequential mechanisms in the three-body decay of N2Oq + (where q ≤7 ). It has been observed that N2Oq + breaks up mainly in a concerted manner except for the N2O3 +→N++N++O+ (1,1,1) and N2O4 +→N2 ++N++O+ (2,1,1) channels. For both these channels, the presence of an intermediate rotating NO2 + has been identified. Furthermore, by using Dalitz plot analysis, we have been able to separate various mutually mixed channels of highly charged N2Oq + .
An investigation of rugby scrimmaging posture and individual maximum pushing force.
Wu, Wen-Lan; Chang, Jyh-Jong; Wu, Jia-Hroung; Guo, Lan-Yuen
2007-02-01
Although rugby is a popular contact sport and the isokinetic muscle torque assessment has recently found widespread application in the field of sports medicine, little research has examined the factors associated with the performance of game-specific skills directly by using the isokinetic-type rugby scrimmaging machine. This study is designed to (a) measure and observe the differences in the maximum individual pushing forward force produced by scrimmaging in different body postures (3 body heights x 2 foot positions) with a self-developed rugby scrimmaging machine and (b) observe the variations in hip, knee, and ankle angles at different body postures and explore the relationship between these angle values and the individual maximum pushing force. Ten national rugby players were invited to participate in the examination. The experimental equipment included a self-developed rugby scrimmaging machine and a 3-dimensional motion analysis system. Our results showed that the foot positions (parallel and nonparallel foot positions) do not affect the maximum pushing force; however, the maximum pushing force was significantly lower in posture I (36% body height) than in posture II (38%) and posture III (40%). The maximum forward force in posture III (40% body height) was also slightly greater than for the scrum in posture II (38% body height). In addition, it was determined that hip, knee, and ankle angles under parallel feet positioning are factors that are closely negatively related in terms of affecting maximum pushing force in scrimmaging. In cross-feet postures, there was a positive correlation between individual forward force and hip angle of the rear leg. From our results, we can conclude that if the player stands in an appropriate starting position at the early stage of scrimmaging, it will benefit the forward force production.
Investigation of a cuboidal permanent magnet’s force exerted on a robotic capsule
Directory of Open Access Journals (Sweden)
Yang W
2014-08-01
Full Text Available Wan’an Yang,1 Chengbing Tang,2 Fengqing Qin1 1School of Computer and Information Engineering, Yibin University, Yibin, 2CNPC Chuanqing Geophysical Prospecting Company Research Center Computer Department, Chengdu, Sichuan, People’s Republic of China Abstract: To control and drive a robotic capsule accurately from outside a patient’s body, we present a schema in which the capsule enclosing the imaging device, circuits, batteries, etc is looped by a permanent magnet ring that acts as an actuator. A cuboidal permanent magnet situated outside the patient's body attracts or pushes the magnet ring from different directions to make the capsule move or rotate. A mathematic model of attractive or repulsive force that the cuboidal magnet exerts on the magnet ring is presented for accurate calculation of force. The experiments showed that the measuring force was in agreement with the theoretical one, and the relations between the dimensions of the cuboidal magnet and force are useful to produce a cuboidal magnet with optimal shape to get appropriate force. Keywords: control and drive, robotic capsule, permanent magnet ring, optimal dimension, force model
Petrov, Oleg; Lisin, Evgeny; Statsenko, Konstantin; Hyde, Truell; Carmona, Jorge
2015-11-01
An anisotropic spatial dependence of the wake-mediated interaction forces between dust particles in a plasma flow was studied experimentally. The measurements were performed at CASPER for the vertically aligned chain self-organized from 11 microparticles inside a glass box placed on the lower electrode of a RF gas discharge chamber. The experiment was conducted in argon plasma at 137 mTorr and monodisperse MF particles having diameters of 8.93 microns were used. To recover the wake-mediated interaction forces we improved the method based on solving the inverse Langevin problem of the dynamics of many interacting particles. To determine 3D trajectories of the particles we used a stereoscopic video surveillance system. Spatial profiles of the forces with which upstream particles act on downstream ones and vice versa were obtained. The difference between the interparticle interaction forces in the opposite directions indicates its non-reciprocal nature and can be associated with the wake. The peak position of the wake-field and the space charge concentrated in it were evaluated by the force profile analysis. The data analysis and interaction force recovering in this work was supported by the Russian Science Foundation (O.F. Petrov, K.B. Stacenko, E.?.Lisin) through Grant No. 14-12-01440).
A non-orthogonal harmonic-oscillator basis for three-body problems
International Nuclear Information System (INIS)
Agrello, D.A.; Aguilera-Navarro, V.C.; Chacon, E.
1979-01-01
A set of harmonic-oscillator states suitable for the representation of the wave function of the bound states of a system of three identical particles, is presented. As an illustration of the possibilities of the states defined in this paper, they are applied in a variational determination of the lowest symmetric S state of 12 C, in the model of three structureless α particles interacting through the Coulomb force plus a phenomenological two-body force. (author) [pt
Energy Technology Data Exchange (ETDEWEB)
1991-10-01
This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.
Cogging force investigation of a free piston permanent magnet linear generator
Abdalla, I. I.; Zainal, A. E. Z.; Ramlan, N. A.; Firmansyah; Aziz, A. R. A.; Heikal, M. R.
2017-10-01
Better performance and higher efficiency of the vehicles can be achieved by using free piston engine, in which the piston is connected directly to the linear generator and waiving of any mechanical means. The free piston engine has the ability to overcome or reduce many of the challenges, such as the carbon dioxide (CO2) emission and fossil fuel consumption. The cogging force produces undesired vibration and acoustic noise in the generator. However, the cogging force must be minimized as much as possible, in order to have a high performance. This paper studies the effects of ferromagnetic materials on the cogging force of the permanent magnet linear generator (PMLG) to be used in a free piston engine using nonlinear finite-element analysis (FEA) under ANSYS Maxwell. The comparisons have been established for the cogging force of the PMLG under various translator velocities and three different ferromagnetic materials for the stator core, namely, Silicon Steel laminations, Mild Steel and Somaloy. It has been shown that the PMLG with a stator core made of Somaloy has a lower cogging force among them. Furthermore, the induced voltage of the PMLG at different accelerations has been studied. It is found that the PMLG with Mild Steel and Somaloy, respectively give larger induced voltage. Moreover, as the translator speed increase the induced voltage increased.
International Nuclear Information System (INIS)
Wisman, R.
1979-01-01
The present investigation deals with two aspects of gas-liquid flows, viz. interaction forces between the phases in bubble swarms and numerical description of rotating gas-liquid flows. The insight obtained was applied to the development of axial gas-liquid cyclones, as used i.a. as primary separators in nuclear boiling water reactors. (Auth.)
Basilio, Ralph Ramos
Spacecraft formation flying involves operating multiple spacecraft in a pre-determined geometrical shape such that the configuration yields both individual and system benefits. One example is an over-flight of the same spatial position by spacecraft in geocentric orbit with the intent to create a complementary data set of remotely sensed observables. Another example is controlling to a high degree of accuracy the distance between spacecraft in heliocentric orbit to create a virtual, large-diameter interferometer telescope. Although Keplerian orbits provide the basic framework for general and precision spacecraft formation flying they also present limitations. Spacecraft are generally constrained to operate only in circular and elliptical orbits, parabolic paths, or hyperbolic trajectories around celestial bodies. Applying continuation methods and bifurcation theory techniques to the circular, restricted three-body problem - where stable and unstable periodic orbits exist around equilibrium points - creates an environment that is more orbit rich. After surmounting a similar challenge with test particles in the circular, restricted three-vortex problem in fluid mechanics as a proof-of-concept, it was shown that spacecraft traveling in uncontrolled motion along separate and distinct planar or three-dimensional periodic orbits could be placed in controlled motion, i.e. a controller is enabled and later disabled at precisely the proper positions, to have them phase-locked on a single periodic orbit. Although it was possible to use this controller in a resonant frequency/orbit approach to establish a formation, it was clearly shown that a separate controller could be used in conjunction with the first to expedite the formation establishment process. Creation of these dynamically natural spacecraft formations or multi-spacecraft platforms will enable the 'loiter, synchronize/coordinate, and observe' approach for future engineering and scientific missions where flexibility
CP asymmetries in three-body B{sup ±} decays to charged pions and kaons
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Bhubanjyoti [Physique des Particules, Université de Montréal, C.P. 6128, succ. centre-ville, Montréal, QC, H3C 3J7 (Canada); Gronau, Michael [Physics Department, Technion – Israel Institute of Technology, Haifa 3200 (Israel); Rosner, Jonathan L., E-mail: rosner@hep.uchicago.edu [Enrico Fermi Institute and Department of Physics, University of Chicago, 5620 S. Ellis Avenue, Chicago, IL 60637 (United States)
2013-10-07
CP asymmetries have been measured recently by the LHCb collaboration in three-body B{sup +} decays to final states involving charged pions and kaons. Large asymmetries with opposite signs at a level of about 60% have been observed in B{sup ±}→π{sup ±}(or K{sup ±})π{sup +}π{sup −} and B{sup ±}→π{sup ±}K{sup +}K{sup −} for restricted regions in the Dalitz plots involving π{sup +}π{sup −} and K{sup +}K{sup −} with low invariant mass. U-spin is shown to predict corresponding ΔS=0 and ΔS=1 asymmetries with opposite signs and inversely proportional to their branching ratios, in analogy with a successful relation predicted thirteen years ago between asymmetries in B{sub s}→K{sup −}π{sup +} and B{sup 0}→K{sup +}π{sup −}. We compare these predictions with the measured integrated asymmetries. Effects of specific resonant or non-resonant partial waves on enhanced asymmetries for low-pair-mass regions of the Dalitz plot are studied in B{sup ±}→π{sup ±}π{sup +}π{sup −}. The closure of low-mass π{sup +}π{sup −} and K{sup +}K{sup −} channels involving only ππ↔KK{sup ¯} rescattering may explain by CPT approximately equal magnitudes and opposite signs measured in B{sup ±}→π{sup ±}π{sup +}π{sup −} and B{sup ±}→π{sup ±}K{sup +}K{sup −}.
Energy Technology Data Exchange (ETDEWEB)
Lasalvia, Maria [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Castellani, Stefano [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); D’Antonio, Palma [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Perna, Giuseppe [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Carbone, Annalucia [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); Colia, Anna Laura; Maffione, Angela Bruna [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Capozzi, Vito [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Conese, Massimo, E-mail: massimo.conese@unifg.it [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy)
2016-10-15
The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in
International Nuclear Information System (INIS)
Lasalvia, Maria; Castellani, Stefano; D’Antonio, Palma; Perna, Giuseppe; Carbone, Annalucia; Colia, Anna Laura; Maffione, Angela Bruna; Capozzi, Vito; Conese, Massimo
2016-01-01
The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in
Goharshadi, Elaheh K; Abbaspour, Mohsen
2006-07-01
We have performed the molecular dynamics simulation to obtain energy and pressure of argon, krypton, and xenon at different temperatures using a HFD-like potential which has been obtained with an inversion of viscosity data at zero pressure. The contribution of three-body dispersion resulting from third-order triple-dipole interactions has been computed using an accurate simple relation between two-body and three-body interactions developed by Marcelli and Sadus. Our results indicate that this simple three-body potential which was originally used in conjunction with the BFW potential is also valid when used with the HFD-like potential. This appears to support the conjecture that the relationship is independent of the two-body potential. The energy and pressure obtained are in good overall agreement with the experiment, especially for argon. A comparison of our simulated results with HMSA and ODS integral equations and a molecular simulation have been also included.
Investigation of Unbalanced Magnetic Force in Magnetic Geared Machine Using Analytical Methods
DEFF Research Database (Denmark)
Zhang, Xiaoxu; Liu, Xiao; Chen, Zhe
2016-01-01
The electromagnetic structure of the magnetic geared machine (MGM) may induce a significant unbalanced magnetic force (UMF). However, few methods have been developed to theoretically reveal the essential reasons for this issue in the MGM. In this paper, an analytical method based on an air...
Investigating the relationship between pressure force and acoustic waveform in footstep sounds
DEFF Research Database (Denmark)
Grani, Francesco; Serafin, Stefania; Götzen, Amalia De
2013-01-01
In this paper we present an inquiry into of the relationships between audio waveforms and ground reaction force in recorded footstep sounds. In an anechoic room, we recorded several footstep sounds produced while walking on creaking wood and gravel. The recordings were performed by using a pair...
Gutsmann, Thomas; Fantner, Georg E.; Kindt, Johannes H.; Venturoni, Manuela; Danielsen, Signe; Hansma, Paul K.
2004-01-01
Tendons are composed of collagen and other molecules in a highly organized hierarchical assembly, leading to extraordinary mechanical properties. To probe the cross-links on the lower level of organization, we used a cantilever to pull substructures out of the assembly. Advanced force probe technology, using small cantilevers (length
Langmuir- Blodgett layers of amphiphilic molecules investigated by Atomic Force Microscopy
Zdravkova, Aneliya Nikolova
2007-01-01
Langmuir - Blodgett technique and Atomic Force Microscopy were used to study the phase behaviour of organic molecules (fatty alcohols and monoacid saturated triglycerides) at air-water and air-solid interfaces. The structure of binary mixed LB monolayers of fatty alcohols was reported. The
The Force of Gardening: Investigating Children's Learning in a Food Garden
Green, Monica; Duhn, Iris
2015-01-01
School gardens are becoming increasingly recognised as important sites for learning and for bringing children into relationship with food. Despite the well-known educational and health benefits of gardening, children's interactions with the non-human entities and forces within garden surroundings are less understood and examined in the wider…
Rabbani, Saleha; Juszczyk, Andrzej S; Clark, Robert Kf; Radford, David R
2015-01-01
To evaluate the effect of cyclic disengagement on the retentive force and wear patterns of pairs of three Locator inserts (blue, pink, and clear) in vitro. Implant analogs (Astra Tech) were positioned into aluminum blocks parallel to each other and perpendicular to the horizontal plane, with one analog angulated mesially by 10 degrees (0/10), or with two implant analogs each angulated mesially by 5 degrees (5/5). Ninety Locator attachments, in 15 pairs of each standard retention strength (blue, pink, and clear), underwent 2,500 cycles of testing, lubricated with artificial saliva. Data were analyzed after 6, 12, and 18 months of simulated clinical use (720, 1,440, or 2,160 cycles). The wear patterns of the Locator inserts were examined before and after the cyclic dislodgments using scanning electron microscopy. There were significant differences in retentive force between clear, blue, and pink inserts at baseline, with the clear insert being the most retentive in the 0/10 model. The lowest percentage reduction in retentive force from baseline to 2,160 cycles was the pink insert in the 0/10 model, and the highest was the blue insert in the 5/5 angled model. A rapid decrease in retentive force was observed in all three models after 720 cycles for all three inserts. The most retentive combination was the clear insert in the 0/10 model, and the least retentive was the blue insert in the 0/10 model. After 2,160 cycles, there was a significant reduction in retentive force of 59% to 70%. However, the values of retention were still higher than those claimed by the manufacturer.
Dynamics and Matter-Wave Solitons in Bose-Einstein Condensates with Two- and Three-Body Interactions
Directory of Open Access Journals (Sweden)
Jing Chen
2014-01-01
Full Text Available By means of similarity transformation, this paper proposes the matter-wave soliton solutions and dynamics of the variable coefficient cubic-quintic nonlinear Schrödinger equation arising from Bose-Einstein condensates with time-dependent two- and three-body interactions. It is found that, under the effect of time-dependent two- and three-body interaction and harmonic potential with time-dependent frequency, the density of atom condensates will gradually diminish and finally collapse.
International Nuclear Information System (INIS)
Hobson, D.E.
1990-01-01
The effects of eccentricity have been investigated experimentally on a vibration rig where the fluid forces on a centrebody fixed or forced to vibrate over a range of frequencies and amplitudes within an annular diffuser have been measured directly. It has been discovered that the flow in the annulus can exist in two distinct states characterized by the existence or absence of a Strouhal type of aerodynamic instability. With the instability present and the centrebody held fixed, large forces can be measured at a frequency proportional to flow velocity, but if the centrebody is shaken with sufficient amplitude the frequency of the instability can lock-on to the vibration in the classic fashion. A novel feature, however, is that the instability can be completely suppressed by carefully adjusting the imposed vibration amplitude and frequency, leaving the flow in its nonoscillatory state. The periodic instability can be reinitiated by increasing the forced vibration amplitude above a frequency-dependent threshold. Furthermore, by examining the phase relationships between the self-induced forces on the centrebody and its displacement, it is shown that the second state gives rise to negative fluid dynamic damping, the first to positive damping. (author)
Barkhordarian, Armineh
2012-01-01
We investigate whether the observed mean sea level pressure (SLP) trends over the Mediterranean region in the period from 1975 to 2004 are significantly consistent with what 17 models projected as response of SLP to anthropogenic forcing (greenhouse gases and sulphate aerosols, GS). Obtained results indicate that the observed trends in mean SLP cannot be explained by natural (internal) variability. Externally forced changes are detectable in all seasons, except spring. The large-scale component (spatial mean) of the GS signal is detectable in all the 17 models in winter and in 12 of the 17 models in summer. However, the small-scale component (spatial anomalies about the spatial mean) of GS signal is only detectable in winter within 11 of the 17 models. We also show that GS signal has a detectable influence on observed decreasing (increasing) tendency in the frequencies of extremely low (high) SLP days in winter and that these changes cannot be explained by internal climate variability. While the detection of GS forcing is robust in winter and summer, there are striking inconsistencies in autumn, where analysis points to the presence of an external forcing, which is not GS forcing.
A combined optical and atomic force microscope for live cell investigations
International Nuclear Information System (INIS)
Madl, Josef; Rhode, Sebastian; Stangl, Herbert; Stockinger, Hannes; Hinterdorfer, Peter; Schuetz, Gerhard J.; Kada, Gerald
2006-01-01
We present an easy-to-use combination of an atomic force microscope (AFM) and an epi-fluorescence microscope, which allows live cell imaging under physiological conditions. High-resolution AFM images were acquired while simultaneously monitoring either the fluorescence image of labeled membrane components, or a high-contrast optical image (DIC, differential interference contrast). By applying two complementary techniques at the same time, additional information and correlations between structure and function of living organisms were obtained. The synergy effects between fluorescence imaging and AFM were further demonstrated by probing fluorescence-labeled receptor clusters in the cell membrane via force spectroscopy using antibody-functionalized tips. The binding probability on receptor-containing areas identified with fluorescence microscopy ('receptor-positive sites') was significantly higher than that on sites lacking receptors
Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat
2015-06-01
Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.
Graefe, Roland; Timms, Daniel; Böhning, Fiete; Schmitz-Rode, Thomas; Steinseifer, Ulrich
2010-09-01
Hydrodynamic fluid film bearings represent an optimal possibility for rotary blood pump (RBP) miniaturization and wear-free operation. Size is a key parameter in the development of ventricular assist devices (VADs) as smaller patients and the pediatric population become eligible for the device. In order to maintain rotor suspension, radial journal bearings have been widely used in industrial applications as well as in some VADs. A main influence on the performance of such a bearing is the applied hydraulic bias force. This study combines numerical and analytical approaches to determine the bias force of different impeller-volute configurations and the resulting eccentricity for the hydraulic design point and also for off-design operation. Significant differences occur for different impeller-volute configurations, with the circular volute displaying the most beneficial properties for a stable impeller suspension. Moreover, an analytical prediction of eccentricity was found to be incorrect for the relatively small forces that occur in RBPs. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Investigating the Force Production of Functionally-Graded Flexible Wings in Flapping Wing Flight
Mudbhari, Durlav; Erdogan, Malcolm; He, Kai; Bateman, Daniel; Lipkis, Rory; Moored, Keith
2015-11-01
Birds, insects and bats oscillate their wings to propel themselves over long distances and to maneuver with unprecedented agility. A key element to achieve their impressive aerodynamic performance is the flexibility of their wings. Numerous studies have shown that homogeneously flexible wings can enhance force production, propulsive efficiency and lift efficiency. Yet, animal wings are not homogenously flexible, but instead have varying material properties. The aim of this study is to characterize the force production and energetics of functionally-graded flexible wings. A partially-flexible wing composed of a rigid section and a flexible section is used as a first-order model of functionally-graded materials. The flexion occurs in the spanwise direction and it is affected by the spanwise flexion ratio, that is, the ratio of the length of the rigid section compared to the total span length. By varying the flexion ratio as well as the material properties of the flexible section, the study aims to examine the force production and energetics of flapping flight with functionally-graded flexible wings. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-14-1-0533.
2016-04-25
law enforcement agencies in the realm of the investigation of P2P file transfers of child pornography and the solicitation of minors for sexual ...depicting the sexual exploitation of minors, and the heightened online activity by predators searching for unsupervised contact with underage...contraband images, and images depicting the sexual exploitation of minors, the ICAC program delivers national resources at the local level. Federal Law
Investigation of the transition from forced to natural convection in the research reactor Munich II
International Nuclear Information System (INIS)
Skreba, S.; Adamek, J.; Unger, H.
1999-01-01
The new research reactor Munich II (FRM-II), which is under construction at the Technical University Munich, Germany, makes use of a newly developed compact reactor core consisting of a single fuel element, which is assembled of two concentric pipes. Between the fuel element's inner and outer pipe 113 involutely bent fuel plates are placed rotationally symmetric, forming 113 cooling channels of a constant width of 2.2 mm. After a shut down of the reactor, battery supported cooling pumps are started by the reactor safety system in order to remove the decay heat by a downwards directed forced flow. Three hours after they have been started, the cooling pumps are shut down and so-called 'natural convection flaps' are opened by their own weight. Through a flow path, which is provided by the opening of the natural convection flaps, the decay heat is given off to the water in the reactor pool after the direction of the flow has changed and an upwards directed natural convection flow has developed. At the Department for Nuclear and New Energy Systems of the Ruhr-University Bochum, Germany, a test facility has been built in order to confirm the concept of the decay heat removal in the FRM-II, to acquire data of single and two phase natural convection flows and to detect the dry out in a narrow channel. The thermohydraulics of the FRM-II are simulated by an electrically heated test section, which represents one cooling channel of the fuel element. At first experiments have been performed, which simulated the transition from forced to natural convection in the core of the FRM-II, both at normal operation and at a complete loss of the decay heat removal pumps. In case of normal operation, the transition from forced to natural convection takes place single phased. If a complete loss of the active decay heat removal system occurs, the decay heat removal is ensured by a quasi-steady two phase flow. In a second test series minimum heat flux densities leading to pressure pulsations
Hyperspherical functions and quantum-mechanical three-body problem with application to carbon 12
International Nuclear Information System (INIS)
Letz, H.
1975-01-01
In this work a system of three identical particles (bosons) interacting by a particular two-body force is discussed. Using the complete set of the hyperspherical functions (K-harmonics), analytical expressions for eigenvalues and wave functions of the stationary states are found. The numerical evaluation gives a level sequence for a definite pair of potential parameters similar to that of the nucleus carbon 12
International Nuclear Information System (INIS)
Motovilov, A.K.
2005-01-01
We describe the basic structure of the two- and three-body T-matrices, scattering matrices, and resolvents continued to the unphysical energy sheets. The description is based on the explicit representations that have been found for analytically continued kernels of the T-operators. (author)
Three-body matrix elements for calculations of mean field and exp(S) ground sate correlations
Mihaila, Bogdan; Heisenberg, Jochen H.
1999-01-01
In this document we present our approach to the computation of three-body matrix elements, based on the Urbana family of three-nucleon potentials. The calculations refer only to the necessary matrix elements needed to include the three-nucleon interaction in the manner presented in nucl-th/9912023.
Method of resonating groups in the Faddeev-Hahn equation formalism for three-body nuclear problem
Nasirov, M Z
2002-01-01
The Faddeev-Hahn equation formalism for three-body nuclear problem is considered. For solution of the equations the method of resonant groups have applied. The calculations of tritium binding energy and doublet nd-scattering length have been carried out. The results obtained shows that Faddeev-Hahn equation formalism is very simple and effective. (author)
Energy Technology Data Exchange (ETDEWEB)
Chen, Yanju [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana IL USA; Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Singh, Balwinder [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Bond, Tami C. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana IL USA
2018-02-02
The linearity of dependence of aerosol direct and indirect radiative forcing (DRF and IRF) on emissions is essential to answer the policy-relevant question on how the change in forcing would result from a change in emission. In this study, the forcing-to-emission relationship is investigated for black carbon (BC) and primary organic carbon (OC) emitted from North America and Asia. Direct and indirect radiative forcing of BC and OC are simulated with the Community Atmosphere Model (CAM5.1). Two diagnostics are introduced to aid in policy-relevant discussion: emission-normalized forcing (ENF) and linearity (R). DRF is linearly related to emission for both BC and OC from the two regions and emission-normalized DRF is similar, within 15%. IRF is linear to emissions for weaker sources and regions far from source (North American BC and OC), while for large emission sources and near source regions (Asian OC) the response of forcing to emission is sub-linear. In North America emission-normalized IRF (ENIRF) is 2-4 times higher than that in Asia. The difference among regions and species is primarily caused by failure of accumulation mode particles to become CCN, and then to activate into CDNC. Optimal aggregation area (30ºx 30º) has been used to communicate the regional variation of forcing-to-emission relationship. For IRF, only 15-40% of the Earth’s surface is significantly affected by the two emission regions, but the forcing in these regions comprises most of the global impact. Linearity of IRF occurs in about two-thirds of the significant regions except for Asian OC. ENF is an effective tool to estimate forcing changes due to reduction of surface emissions, as long as there is sufficient attention to the causes of nonlinearity in the simulations used to derive ENIRF (emission into polluted regions and emission elevation). The differences in ENIRF have important implications for policy decisions. Lower ENIRF in more polluted region like Asia means that reductions of
Wang, Shoucheng; Huang, Guoqing; Wu, Xin
2018-02-01
In this paper, we survey the effect of dissipative forces including radiation pressure, Poynting–Robertson drag, and solar wind drag on the motion of dust grains with negligible mass, which are subjected to the gravities of the Sun and Jupiter moving in circular orbits. The effect of the dissipative parameter on the locations of five Lagrangian equilibrium points is estimated analytically. The instability of the triangular equilibrium point L4 caused by the drag forces is also shown analytically. In this case, the Jacobi constant varies with time, whereas its integral invariant relation still provides a probability for the applicability of the conventional fourth-order Runge–Kutta algorithm combined with the velocity scaling manifold correction scheme. Consequently, the velocity-only correction method significantly suppresses the effects of artificial dissipation and a rapid increase in trajectory errors caused by the uncorrected one. The stability time of an orbit, regardless of whether it is chaotic or not in the conservative problem, is apparently longer in the corrected case than in the uncorrected case when the dissipative forces are included. Although the artificial dissipation is ruled out, the drag dissipation leads to an escape of grains. Numerical evidence also demonstrates that more orbits near the triangular equilibrium point L4 escape as the integration time increases.
Analysis tools for precision studies of hadronic three-body decays and transition form factors
Energy Technology Data Exchange (ETDEWEB)
Schneider, Sebastian Philipp
2013-02-14
Due to the running coupling constant of Quantum Chromodynamics one of the pillars of the Standard Model, the strong interactions, is still insufficiently understood at low energies. In order to describe the interactions of hadrons that form in this physical regime, one has to devise methods that are non-perturbative in the strong coupling constant. In particular hadronic three-body decays and transition form factors present a great challenge due to the complex analytic structure ensued by strong final-state interactions. In this thesis we present two approaches to tackle these processes. In the first part we use a modified version of non-relativistic effective field theory to analyze the decay {eta}{yields}3{pi}. This perturbative low-energy expansion is ideally suited to study the effects of {pi}{pi} rescattering and contributes greatly to the understanding of the slope parameter of the {eta}{yields}3{pi}{sup 0} Dalitz plot, a quantity that is strongly influenced by final-state interactions and has presented a long-standing puzzle for theoretical approaches. In the second part we present dispersion relations as a non-perturbative means to study three-particle decays. Using the example of {eta}'{yields}{eta}{pi}{pi} we give a detailed introduction to the framework and its numerical implementation. We confront our findings with recent experimental data from the BES-III and VES collaborations and discuss whether the extraction of {pi}{eta} scattering parameters, one of the prime motives to study this decay channel, is feasible in such an approach. A more clear-cut application is given in our study of the decays {omega}/{phi}{yields}3{pi} due to the relative simplicity of this decay channel: our results are solely dependent on the {pi}{pi} P-wave scattering phase shift. We give predictions for the Dalitz plot distributions and compare our findings to very precise data on {phi}{yields}3{pi} by the KLOE and CMD-2 collaborations. We also predict Dalitz plot
International Nuclear Information System (INIS)
Stangeby, P.C.; Toronto Univ., ON
1990-01-01
Most divertor impurity modelling gives the result that negligible leakage occurs of impurities produced at the plates, to the confined plasma and that negligible impurity radiation occurs, even in the divertor plasma. This is not, however, found experimentally. A Monte Carlo impurity code has been employed in exploratory studies aimed at identifying possible leakage pathways to the main plasma. It was found that for a substantial range of divertor plasma densities and temperatures, the friction force dominated all other forces on the impurities, including the temperature gradient forces which are generally directed away from the plates. Thus, if it was assumed that the deuterium plasma flow was everywhere directed toward the plates, negligible leakage to the confined plasma occurred. The possibility of deuterium flow reversal was also considered where it was assumed that over some radial fraction of the SOL, the deuterium plasma flow was directed away from the plates, starting at a distance from the plates equal to the deuterium average ionization distance. The spatial distribution of impurity (carbon) physically sputtered neutrals was modelled and it was found that a fraction of the impurity neutrals were ionized in the deuterium flow reversal zone. When these impurity particles were then tracked through further ionization, and their parallel and cross-field transport was followed, significant impurity radiation resulted and a substantial impurity density was found in the confined plasma with Z eff values of 3 or more. It was thus concluded that flow reversal of the deuterium plasma is a promising possible explanation of impurity radiation and of the leakage of divertor plate impurities to the confined plasma
Gregory, Jonathan M.; Bouttes, Nathaelle; Griffies, Stephen M.; Haak, Helmuth; Hurlin, William J.; Jungclaus, Johann; Kelley, Maxwell; Lee, Warren G.; Marshall, John; Romanou, Anastasia;
2016-01-01
The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to investigate the spread in simulations of sea-level and ocean climate change in response to CO2 forcing by atmosphere-ocean general circulation models (AOGCMs). It is particularly motivated by the uncertainties in projections of ocean heat uptake, global-mean sealevel rise due to thermal expansion and the geographical patterns of sea-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface flux perturbations of momentum, heat and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these fluxes projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. Heat and water flux perturbation cause the dipole in sea-level change in the North Atlantic, while momentum and heat flux perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC) declines in response to the heat flux perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of sea-surface temperature in the North Atlantic, which enhances the local heat input to the ocean. The momentum and water flux perturbations do not substantially affect the AMOC. Heat is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest heat input, while the weakening of the AMOC causes redistribution of heat towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable investigation of the model
Atomic force microscopy and nanoindentation investigation of polydimethylsiloxane elastomeric substrate compliancy for various sputtered thin film morphologies.
Maji, Debashis; Das, Soumen
2018-03-01
Crack free electrically continuous metal thin films over soft elastomeric substrates play an integral part in realization of modern day flexible bioelectronics and biosensors. Under nonoptimized deposition conditions, delamination, and/or cracking of the top film as well as the underlying soft substrate hinders optimal performance of these devices. Hence it is very important to understand and control not only the various deposition factors like power, time, or deposition pressure but also investigate the various interfacial physics playing a critical role in assuring thin film adhesion and substrate compliancy. In the present study, various nanomechanical information of the underlying substrate, namely, crack profile, average roughness, Young's modulus, and adhesion force were studied for uncracked and cracked polydimethylsiloxane (PDMS) surfaces along with pristine and conventional plasma treated PDMS samples as control. Quantification of the above parameters were done using three-dimensional surface profiler, scanning electron microscopy, nanoindentation, and atomic force microscopy techniques to elucidate the modulus range, average roughness, and adhesion force. Comparative analysis with control revealed remarkable similarity between increased modulus values, increased surface roughness, and reduced adhesion force accounting for reduced substrate compliancy and resulting in film cracking or buckling which are critical for development of various bioflexible devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 725-737, 2018. © 2017 Wiley Periodicals, Inc.
Ferrari, Lucia; Kaufmann, Josef; Winnefeld, Frank; Plank, Johann
2010-07-01
Polyelectrolyte-based dispersants are commonly used in a wide range of industrial applications to provide specific workability to colloidal suspensions. Their working mechanism is based on adsorption onto the surfaces of the suspended particles. The adsorbed polymer layer can exercise an electrostatic and/or a steric effect which is responsible for achieving dispersion. This study is focused on the dispersion forces induced by polycarboxylate ether-based superplasticizers (PCEs) commonly used in concrete. They are investigated by atomic force microscopy (AFM) applying standard silicon nitride tips exposed to solutions with different ionic compositions in a wet cell. Adsorption isotherms and zeta potential analysis were performed to characterize polymer displacement in the AFM system on nonreactive model substrates (quartz, mica, calcite, and magnesium oxide) in order to avoid the complexity of cement hydration products. The results show that PCE is strongly adsorbed by positively charged materials. This fact reveals that, being silicon nitride naturally positively charged, in most cases the superplasticizer adsorbs preferably on the silicon nitride tip than on the AFM substrate. However, the force-distance curves displayed repulsive interactions between tip and substrates even when polymer was poorly adsorbed on both. These observations allow us to conclude that the dispersion due to PCE strongly depends on the particle charge. It differs between colloids adsorbing and not adsorbing PCE, and leads to different forces acting between the particles. Copyright 2010 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Shilei Liu
2017-07-01
Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.
Experimental investigation of a forced response condition in a multistage compressor
Murray, William Louis, III
The objective of this research is twofold. Firstly, the design, development, and construction of a test facility for a Honeywell APU-style centrifugal compressor was implemented, as well as the design and construction of an inlet flow experiment. Secondly, the aeromechanical response of an embedded stage in the Purdue 3-Stage axial research compressor was analyzed through a suite of different measurement techniques in the fulfillment of the end of the GUIde IV Consortium contract. The purpose of the first phase of Honeywell work was to comprehensively measure the flow field of an APU-style centrifugal compressor inlet through the use of Laser Doppler Velocimetry (LDV). A portion of a Honeywell supplied inlet was modified to provide optical access to the elbow, and a gas ejector system was designed and constructed to provide the same suction to the inlet that it would see during operation with the compressor. A performance and health monitoring electronics system was designed and purchased to support the testing of the Honeywell inlet ejector system and eventually it will be used for testing with a centrifugal compressor. Additionally, a secondary air and oil system has been designed and is currently being constructed in the test cell in preparation for the arrival of the Honeywell compressor this summer. An embedded rotor stage in the Purdue 3-stage compressor, with a Campbell diagram crossing of the 1T vibratory mode was analyzed with a suite of measurement systems. In addition to steady state compressor performance measurements, other types of measurements were used to characterize the aerodynamic forcing function for this forced response condition including: NSMS, high-frequency pressure transducers mounted in the casing and in a downstream stator, and cross-film thermal anemometry. Rotor geometry was measured by Aerodyne using an in-situ laser scanning technique. Vibrometry testing was performed at WPAFB to characterize safe operating speeds for stator
DEFF Research Database (Denmark)
Brunskog, Jonas
2015-01-01
of the structure. These types of structures have thus often been studied in the past. However, there is still a lack of simplified expressions for the sound transmission of these structures. Therefore, simplified expressions for the forced airborne sound transmission of finite size single leaf ribbed plates have......Many engineering structures consist of plates being stiffened by ribs. The ribs can be connected to the plate in a line connection (welded or glued) or in point connections (screwed). It is well known that the rib stiffeners can significantly change the vibration field and the radiation behavior...... been derived, using a variational technique based on integral-differential equations of the fluid loaded plate. In this way an optimal solution is derived, using a very simple initial guess of the vibration field. The finite plate is assumed being mounted in a rigid baffle. The approach is based...
DEFF Research Database (Denmark)
Mortensen, Ninell Pollas
2008-01-01
changes in the fraction of individual bacteria and bacteria undergoing proliferation, and decrease of cell length of mother and daughter cells. The results indicated that colistin arrested the bacterial growth just after septum formation. Furthermore did the morphology change from a smooth bacterial......Atomic Force Microscopy (AFM) is unique in the aspect of studying living biological sample under physiological conditions. AFM was invented in 1986 by Binnig and Gerber and began in the early 1990’s to be implemented in life science. AFM can give a detailed three dimensional image of an intact cell...... of AFM are that sample preparation does not demand fixation, staining or coating and the sample it not examined under high vacuum. It is not surprising that mounting plantonic bacteria on a substrate and dehydration will lead to some extent of alteration. Here a flattening of both intact bacterial cells...
The architecture of neutrophil extracellular traps investigated by atomic force microscopy
Pires, Ricardo H.; Felix, Stephan B.; Delcea, Mihaela
2016-07-01
Neutrophils are immune cells that engage in a suicidal pathway leading to the release of partially decondensed chromatin, or neutrophil extracellular traps (NETs). NETs behave as a double edged sword; they can bind to pathogens thereby ensnaring them and limiting their spread during infection; however, they may bind to host circulating materials and trigger thrombotic events, and are associated with autoimmune disorders. Despite the fundamental role of NETs as part of an immune system response, there is currently a very poor understanding of how their nanoscale properties are reflected in their macroscopic impact. In this work, using a combination of fluorescence and atomic force microscopy, we show that NETs appear as a branching filament network that results in a substantially organized porous structure with openings with 0.03 +/- 0.04 μm2 on average and thus in the size range of small pathogens. Topological profiles typically up to 3 +/- 1 nm in height are compatible with a ``beads on a string'' model of nucleosome chromatin. Typical branch lengths of 153 +/- 103 nm appearing as rigid rods and height profiles of naked DNA in NETs of 1.2 +/- 0.5 nm are indicative of extensive DNA supercoiling throughout NETs. The presence of DNA duplexes could also be inferred from force spectroscopy and the occurrence of force plateaus that ranged from ~65 pN to 300 pN. Proteolytic digestion of NETs resulted in widespread disassembly of the network structure and considerable loss of mechanical properties. Our results suggest that the underlying structure of NETs is considerably organized and that part of its protein content plays an important role in maintaining its mesh architecture. We anticipate that NETs may work as microscopic mechanical sieves with elastic properties that stem from their DNA-protein composition, which is able to segregate particles also as a result of their size. Such a behavior may explain their participation in capturing pathogens and their association
Boy, M.; Yaşar, N.; Çiftçi, İ.
2016-11-01
In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.
Alsabeeha, Nabeel; Atieh, Momen; Swain, Michael V; Payne, Alan G T
2010-01-01
The aim of this study was to investigate the retentive force of six different attachment systems used for mandibular single-implant overdentures, including two prototype large ball attachment designs. Two prototype ball attachments of larger dimensions (7.9 and 5.9 mm) and four commercially available ball and stud attachments of standard dimensions (2.25 and 4.0 mm) were evaluated on three identical test casts resembling an edentulous mandible with severe residual ridge resorption. Five samples from each attachment system (n=30) were connected to three different implants (8.0-mm wide diameter, 3.75-mm regular diameter, and 4.0-mm regular diameter). An Instron testing machine with a computer software package was used to deliver a vertical dislodging force at a cross-head speed of 50 mm/min to each overdenture sample from the anterior direction. A total of 300 pull tests were conducted (50 per attachment system). The maximum load (retentive force) required to separate each overdenture from the supporting implant was then measured. The highest retentive force (36.97+/-2.23 N) was achieved with the 7.9-mm prototype ball attachment design, followed in a decreasing order by the 5.9-mm prototype ball attachment design (32.06+/-2.59 N), the standard 2.25-mm ball attachment (17.32+/-3.68 N), Locator white (12.39+/-0.55 N), Locator pink (9.40 N+/-0.74 N), and Locator blue (3.83+/-0.64 N). A statistically significant difference (Pattachments. Attachment systems of larger dimensions provided higher retentive forces for mandibular single-implant overdentures. Further in vitro and in vivo research is necessary to determine prosthodontic outcomes with these attachments in edentulous patients prior to their routine clinical use internationally.
Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba
2017-11-01
The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the
2015-12-01
Competition in Contracting Act Criminal Investigations Division Criminal Investigators Training Program Contract Management Maturity Model continental...Rendon’s Contract Management Maturity Model (CMMM), the DOD’s processes may not be as mature as they should be (2008). The CMMM is a “visual tool to...4), 811. Retrieved from http://www.jstor.org.libproxy.nps.edu/ Kidwell, D. (2013). 2013 OSI fact book. Retrieved from http://www.osi.af.mil/shared
Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.
2004-01-01
We examined particulars of crystal growth from measurements obtained at both microscopic and molecular levels. The crystal growth measurements performed at the microscopic level are well characterized by a model that balances the flux of macromolecules towards the crystal surface with the flux of the crystal surface. Numerical evaluation of model with measurements of crystal growth, in time, provided accurate estimates for the average growth velocities. Growth velocities thus obtained were also interpreted using well-established phenomenological theories. Moreover, we find that microscopic measurements of growth velocity measurements obtained as a function of temperature best characterizes changes in crystal growth modes, when present. We also examined the possibility of detecting a change in crystal growth modes at the molecular level using atomic force microscopy, AFM. From preliminary AFM measurements performed at various supersaturations, we find that magnitude of surface height fluctuations, h(x), increases with supersaturation. Further examination of surface height fluctuations using methods established for fluctuation spectroscopy also enabled the discovery of the existence of a characteristic length, c, which may possibly determine the mode of crystal growth. Although the results are preliminary, we establish the non- critical divergence of 5 and the root-mean-square (rms) magnitude of height-height fluctuations as the kinetic roughening transition temperatures are approached. Moreover, we also examine approximate models for interpreting the non-critical behavior of both 6 and rms magnitude of height-height fluctuations, as the solution supersaturation is increased towards the kinetic roughening supersaturation.
[Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio
International Nuclear Information System (INIS)
1992-04-01
This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size
Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore
Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2-MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2-MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD ) in the micromolar range for the MDM2-MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2-MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2-MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation.
Directory of Open Access Journals (Sweden)
Emil Roduner
2012-06-01
Full Text Available Spatially resolved impedance spectroscopy of a Nafion polyelectrolyte membrane is performed employing a conductive and Pt-coated tip of an atomic force microscope as a point-like contact and electrode. The experiment is conducted by perturbing the system by a rectangular voltage step and measuring the incurred current, followed by Fourier transformation and plotting the impedance against the frequency in a conventional Bode diagram. To test the potential and limitations of this novel method, we present a feasibility study using an identical hydrogen atmosphere at a well-defined relative humidity on both sides of the membrane. It is demonstrated that good quality impedance spectra are obtained in a frequency range of 0.2–1,000 Hz. The extracted polarization curves exhibit a maximum current which cannot be explained by typical diffusion effects. Simulation based on equivalent circuits requires a Nernst element for restricted diffusion in the membrane which suggests that this effect is based on the potential dependence of the electrolyte resistance in the high overpotential region.
Directory of Open Access Journals (Sweden)
A. Narayan
2013-01-01
Full Text Available The oblateness and the photogravitational effects of both the primaries on the location and the stability of the triangular equilibrium points in the elliptical restricted three-body problem have been discussed. The stability of the triangular points under the photogravitational and oblateness effects of both the primaries around the binary systems Achird, Lyeten, Alpha Cen-AB, Kruger 60, and Xi-Bootis, has been studied using simulation techniques by drawing different curves of zero velocity.
Directory of Open Access Journals (Sweden)
J. M. Gregory
2016-11-01
Full Text Available The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP aims to investigate the spread in simulations of sea-level and ocean climate change in response to CO2 forcing by atmosphere–ocean general circulation models (AOGCMs. It is particularly motivated by the uncertainties in projections of ocean heat uptake, global-mean sea-level rise due to thermal expansion and the geographical patterns of sea-level change due to ocean density and circulation change. FAFMIP has three tier-1 experiments, in which prescribed surface flux perturbations of momentum, heat and freshwater respectively are applied to the ocean in separate AOGCM simulations. All other conditions are as in the pre-industrial control. The prescribed fields are typical of pattern and magnitude of changes in these fluxes projected by AOGCMs for doubled CO2 concentration. Five groups have tested the experimental design with existing AOGCMs. Their results show diversity in the pattern and magnitude of changes, with some common qualitative features. Heat and water flux perturbation cause the dipole in sea-level change in the North Atlantic, while momentum and heat flux perturbation cause the gradient across the Antarctic Circumpolar Current. The Atlantic meridional overturning circulation (AMOC declines in response to the heat flux perturbation, and there is a strong positive feedback on this effect due to the consequent cooling of sea-surface temperature in the North Atlantic, which enhances the local heat input to the ocean. The momentum and water flux perturbations do not substantially affect the AMOC. Heat is taken up largely as a passive tracer in the Southern Ocean, which is the region of greatest heat input, while the weakening of the AMOC causes redistribution of heat towards lower latitudes. Future analysis of these and other phenomena with the wider range of CMIP6 FAFMIP AOGCMs will benefit from new diagnostics of temperature and salinity tendencies, which will enable
International Nuclear Information System (INIS)
Wang, Tao; Tseng, K.J.; Zhao, Jiyun; Wei, Zhongbao
2014-01-01
Highlights: • Three-dimensional CFD model with forced air cooling are developed for battery modules. • Impact of different air cooling strategies on module thermal characteristics are investigated. • Impact of different model structures on module thermal responses are investigated. • Effect of inter-cell spacing on cell thermal characteristics are also studied. • The optimal battery module structure and air cooling strategy is recommended. - Abstract: Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1 × 24, 3 × 8 and 5 × 5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended
Directory of Open Access Journals (Sweden)
Li Yuqin
2014-01-01
Full Text Available The interaction of patulin with human serum albumin (HSA was studied in vitro under normal physiological conditions. The study was performed using fluorescence, ultraviolet-visible spectroscopy (UV-Vis, circular dichroism (CD, atomic force microscopy (AFM, and molecular modeling techniques. The quenching mechanism was investigated using the association constants, the number of binding sites, and basic thermodynamic parameters. A dynamic quenching mechanism occurred between HSA and patulin, and the binding constants (K were 2.60 × 104, 4.59 × 104, and 7.01 × 104 M−1 at 288, 300, and 310 K, respectively. Based on fluorescence resonance energy transfer, the distance between the HSA and patulin was determined to be 2.847 nm. The ΔG0, ΔH0, and ΔS0 values across various temperatures indicated that hydrophobic interaction was the predominant binding force. The UV-Vis and CD results confirmed that the secondary structure of HSA was altered in the presence of patulin. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with patulin. In addition, molecular modeling showed that the patulin-HSA complex was stabilized by hydrophobic and hydrogen bond forces. The study results suggested that a weak intermolecular interaction occurred between patulin and HSA. Overall, the results are potentially useful for elucidating the toxigenicity of patulin when it is combined with the biomolecular function effect, transmembrane transport, toxicological, testing and other experiments.
Grévin, Benjamin; Schwartz, Pierre-Olivier; Biniek, Laure; Brinkmann, Martin; Leclerc, Nicolas; Zaborova, Elena; Méry, Stéphane
2016-01-01
Self-assembled donor-acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor-donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor-acceptor supramolecular architectures down to the elementary building block level.
Moisescu, Alexandra-Raluca; Anghelache, Gabriel
2017-10-01
In the modern context of automobile integration with the emerging technologies of the interconnected society, the interaction between tyre and road is an element of major importance for automobile safety systems such as the intelligent tyres, as well as for passenger comfort, fuel economy, environmental protection, infrastructure and vehicle durability. The tyre-road contact generates the distribution of forces exerted on each unit area in the contact patch, therefore the distribution of contact stresses on three orthogonal directions. The numerical investigation of stresses distribution in the contact patch requires the development of finite element models capable of accurately describing the interaction between tyre and rolling surface. The complex finite element model developed for the 11R22.5 truck tyre has been used for investigating the influence of vertical force on the distributions of contact stresses. In addition to these contributions, the paper presents aspects related to the simulation of truck tyre radial stiffness. The influence of tyre rolling has not been taken into consideration, as the purpose of the current research is the investigation of tyre-road contact in stationary conditions.
Energy Technology Data Exchange (ETDEWEB)
Wang Rongguang [Department of Mechanical Systems Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-Ku, Hiroshima 731-5193 (Japan)]. E-mail: wangrg@cc.it-hiroshima.ac.jp; Kido, Mitsuo [Department of Mechanical Systems Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-Ku, Hiroshima 731-5193 (Japan)
2006-10-15
A micro-droplet of H{sub 2}SO{sub 4} solution with a diameter of 1-10 {mu}m is put on a pre-assigned target micro-zone of pure iron and the corrosion behavior investigated using an atomic force microscope. During the initial 0.6 ks, the average corrosion rate of the specimen decreases with the decrease of the droplet size. The drying of the droplet to a solid corrosion product in 25-30% relative humidity condition is faster than that in 50-70% relative humidity condition.
International Nuclear Information System (INIS)
Geng, Y.L.; Xu, D.; Wang, X.Q.; Du, W.; Liu, H.Y.; Zhang, G.H.
2006-01-01
Atomic force microscopy is employed to investigate the surface morphology of the {1 1 0} faces of MMTC crystals grown at 40 deg. C at a supersaturation of σ = 0.5. Growth hillocks generated by dislocation sources often appear in groups, which leads to faster growth of the local area and forming layers with large height difference up to 30 nm. Growth centers operate nearly equally during the growth process. Serried and sparse monolayer steps dominate alternately on the surface, which is thought to be distinct phenomenon of the two-metal-centered complex compounds family
Frolov, Alexei M.
2018-03-01
The universal variational expansion for the non-relativistic three-body systems is explicitly constructed. This universal expansion can be used to perform highly accurate numerical computations of the bound state spectra in various three-body systems, including Coulomb three-body systems with arbitrary particle masses and electric charges. Our main interest is related to the adiabatic three-body systems which contain one bound electron and two heavy nuclei of hydrogen isotopes: the protium p, deuterium d and tritium t. We also consider the analogous (model) hydrogen ion ∞H2+ with the two infinitely heavy nuclei.
Fielden, ML; Claesson, PM; Verrall, RE
1999-01-01
The adsorption of the cationic gemini surfactant 1,2-bis(n-dodecyldimethylammonium)ethane dibromide on mica was followed by measuring forces between mica surfaces and by atomic force microscopy (AFM) imaging. The surface charge was found to be neutralized at total surfactant concentrations between 8
Sheikholeslami, M.; Ganji, D. D.
2017-12-01
In this paper, semi analytical approach is applied to investigate nanofluid Marangoni convection in presence of magnetic field. Koo-Kleinstreuer-Li model is taken into account to simulate nanofluid properties. Homotopy analysis method is utilized to solve the final ordinary equations which are obtained from similarity transformation. Roles of Hartmann number and nanofluid volume fraction are presented graphically. Results show that temperature augments with rise of nanofluid volume fraction. Impact of nanofluid volume fraction on normal velocity is more than tangential velocity. Temperature gradient enhances with rise of magnetic number.
Analysis of Three Body Resonances in the Complex Scaled Orthogonal Condition Model
Energy Technology Data Exchange (ETDEWEB)
Odsuren, M., E-mail: odsuren@nucl.sci.hokudai.ac.jp [Meme Media Laboratory, Hokkaido University, Sapporo 060-8628 (Japan); Nuclear Research Center, National University of Mongolia, Ulaanbaatar 210646 (Mongolia); Katō, K.; Aikawa, M. [Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)
2014-06-15
Although the resonance structures of α+α+n have been studied experimentally and theoretically, it is still necessary to have more accurate and comprehensive understandings of the structure and decay of the low-lying excited states in {sup 9}Be. To perform calculations of an α+α+n system, we investigate five resonant states of α+α subsystem by utilizing different potential parameters and basis functions. In addition, two resonance states of α+n subsystem are computed.
Effect of three-body transformed Hamiltonian (H3) using full ...
Indian Academy of Sciences (India)
... of transformed Hamiltonian through full connected triples H ~ 3 S 3 ( 1 , 0 ) involves huge amount of computational operations that is time-consuming. Investigation on C l 2 and F 2 molecules using cc-pVDZ and cc-pVTZ basis sets shows that the above effect varies from 0.001 eV to around 0.5 eV, suggesting that inclusion ...
Kazakidi, A; Vavourakis, V; Tsakiris, D P; Ekaterinaris, J A
2015-01-01
The fluid dynamics of cephalopods has so far received little attention in the literature, due to their complexity in structure and locomotion. The flow around octopuses, in particular, can be complicated due to their agile and dexterous arms, which frequently display some of the most diverse mechanisms of motion. The study of this flow amounts to a specific instance of the hydrodynamics problem for rough tapered cylinder geometries. The outstanding manipulative and locomotor skills of octopuses could inspire the development of advanced robotic arms, able to operate in fluid environments. Our primary aim was to study the hydrodynamic characteristics of such bio-inspired robotic models and to derive the hydrodynamic force coefficients as a concise description of the vortical flow effects. Utilizing computational fluid dynamic methods, the coefficients were computed on realistic morphologies of octopus-like arm models undergoing prescribed solid-body movements; such motions occur in nature for short durations in time, e.g. during reaching movements and exploratory behaviors. Numerical simulations were performed on translating, impulsively rotating, and maneuvering arms, around which the flow field structures were investigated. The results reveal in detail the generation of complex vortical flow structures around the moving arms. Hydrodynamic forces acting on a translating arm depend on the angle of incidence; forces generated during impulsive rotations of the arms are independent of their exact morphology and the angle of rotation; periodic motions based on a slow recovery and a fast power stroke are able to produce considerable propulsive thrust while harmonic motions are not. Parts of these results have been employed in bio-inspired models of underwater robotic mechanisms. This investigation may further assist elucidating the hydrodynamics underlying aspects of octopus locomotion and exploratory behaviors.
Three-body dynamical interference in electron and positron collision with positronium atom
Directory of Open Access Journals (Sweden)
E Ghanbari Adivi
2010-12-01
Full Text Available In this project, the Faddeev-Watson-Lovelace (FWL formalism is generalized to large scattering angles. The angular range includes 0-180 degrees. Using this method, the charge transfer differential cross-sections are calculated, in a second-order approximation, for collision of energetic positrons and electrons with neutral positronium atoms. In this approximation, the rearrangement amplitude contains two first-order and three second-order partial amplitudes. The first first-order term is the Born amplitude in a first-order approximation. The second one corresponds to capturing the transferred particle without perturbing the state of this particle. This term, in fact, describes a knock-on process. Since the masses of the particles and the absolute values of their charges are equal, one expects that the second-order terms be similar in magnitude. This aspect causes the instructive interference of the partial amplitudes in some angles and destructive interference in some others. However, it is predicted that these amplitudes have local maxima in direction of the recoiling of the projectile. In order to investigate this situation, the second-order partial amplitudes are calculated and their relations with the parity of the initial and final states of the scattering system are analyzed. In particular, the role of dynamical interference of these partial amplitudes in creation of the kinematical peak and the peak corresponding to the knock-on scattering in angular distribution of the differential cross sections is investigated.
Energy Technology Data Exchange (ETDEWEB)
1991-10-01
In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).
Minen, Mia T; Monteith, Tesha; Strauss, Lauren D; Starling, Amaal
2015-09-01
We sought to survey the New Investigators and Trainees Section (NITS) members of the American Headache Society (AHS) to better understand their exposure to headache medicine during training and to determine their perceptions and attitudes about the field and the future of headache medicine. Despite the high prevalence of headache disorders in the general population, only about 2% of neurology residents pursue headache medicine fellowships. Furthermore, there is a paucity of United Council of Neurologic Subspecialties headache specialists in the country to meet the population demands. Thus, there needs to be a focus on how to recruit and retain more headache specialists. A survey was distributed via SurveyMonkey to the NITS listserv. It remained online for 60 days, during which reminder emails were sent to members of the listserv. In addition, the survey was available on laptops at NITS-related events at an annual AHS meeting. Descriptive analyses were then conducted using SurveyMonkey and Excel. Of the 93 members of NITS, 64 of the 96 (68.8%) clicked to initiate the survey and 52.7% successfully completed it. Attendings made up the majority of respondents (62.5%), followed by fellows (10.9%), and residents (7.8%). Key highlights of the survey included the following: just under 10% reported no exposure to a headache center during any time in their training (medical school, residency, or fellowship); less than 2% had exposure to a headache center during medical school; less than half of participants reported exposure to a headache center in residency (45.3%) and during fellowship (43.4%). Having a mentor in the field, liking the patient population, and working in a headache center, 64.7%, 52.9%, and 41.2%, respectively, were the top ways in which participants became interested in headache. The journal Headache (56.9%), attendings (56.3%), and the AHS/American Academy of Neurology guidelines for migraine management (52.0%) are the resources cited as being used all
Selcu, Camelia; Carnevale, Santino C.; Kent, Thomas F.; Akyol, Fatih; Phillips, Patrick J.; Mills, Michael J.; Rajan, Siddharth; Pelz, Jonathan P.; Myers, Roberto C.
2013-03-01
In the search to improve short wavelength light emitting diodes (LED's), where the dislocations limit their performance and hole doping (Mg) is a fundamental challenge, the III-Nitride polarization-induced nanowire LED provides a promising system to address these problems. The new type of pn diode, polarization-induced nanowire LED (PINLED), was developed by linearly grading AlGaN composition of the nanowires (from GaN to AlN and back to GaN) from 0% to 100% and back to 0% Al (Carnevale et al, Nano Lett., 12, 915 (2012)). In III-Nitrides (Ga,Al/N), the effects of polarization are commonly observed at the surfaces and interfaces. Thus, in the case of the polarization-induced nanowire LEDs, taking advantage of the bound polarization charge, due to the grading of the AlGaN, the pn diodes are formed. The polarity of the nanowires determines the carrier type in each graded region, and therefore the diode orientation (n/p vs p/n). We used conductive AFM to investigate polarity of the PINLED's as well as hole conductivity in PINLED's made of AlGaN with and without acceptor doping. The results reveal that most of the wires are n-top/p-bottom (N-face), but some are p-top/n-bottom (Ga-face). Also, we found that the current density is 3 orders of magnitude larger in the case of the doped nanowires than the nanowires with no impurity doping.
Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation.
van Lingen, Henk J; Plugge, Caroline M; Fadel, James G; Kebreab, Ermias; Bannink, André; Dijkstra, Jan
2016-01-01
Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA). Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2), has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate) in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without considering NADH
Cardoso, W. B.; Avelar, A. T.; Bazeia, D.
2011-03-01
We deal with the three-dimensional Gross-Pitaevskii equation which is used to describe a cloud of dilute bosonic atoms that interact under competing two- and three-body scattering potentials. We study the case where the cloud of atoms is strongly confined in two spatial dimensions, allowing us to build an unidimensional nonlinear equation,controlled by the nonlinearities and the confining potentials that trap the system along the longitudinal coordinate. We focus attention on specific limits dictated by the cubic and quintic coefficients, and we implement numerical simulations to help us to quantify the validity of the procedure.
International Nuclear Information System (INIS)
Cardoso, W. B.; Avelar, A. T.; Bazeia, D.
2011-01-01
We deal with the three-dimensional Gross-Pitaevskii equation which is used to describe a cloud of dilute bosonic atoms that interact under competing two- and three-body scattering potentials. We study the case where the cloud of atoms is strongly confined in two spatial dimensions, allowing us to build an unidimensional nonlinear equation,controlled by the nonlinearities and the confining potentials that trap the system along the longitudinal coordinate. We focus attention on specific limits dictated by the cubic and quintic coefficients, and we implement numerical simulations to help us to quantify the validity of the procedure.
Lu, Kuan; Huo, Chun-Fang; Guo, Wen-Ping; Liu, Xing-Wu; Zhou, Yuwei; Peng, Qing; Yang, Yong; Li, Yong-Wang; Wen, Xiao-Dong
2018-01-03
The approach of molecular dynamics with Reactive Force Field (ReaxFF) is a promising way to investigate the carburization of iron which is pivotal in the preparation of desired iron-based materials and catalysts. However, it is a challenge to develop a reliable ReaxFF to describe the Fe-C interaction, especially when it involves bond rearrangement. In this work, we develop an exclusive set of Reactive Force Field (ReaxFF) parameters, denoted RPOIC-2017, to describe the diffusion behavior of carbon atoms in the α-Fe system. It inherited some partial parameters in 2012 (ReaxFF-2012) which are suitable for hydrogen adsorption and dissociation. This set of parameters is trained against data from first-principles calculations, including the equations of state of α-Fe, the crystal constant of Fe 3 C and Fe 4 C, a variety of periodic surface structures with varying carbon coverages, as well as the barriers of carbon diffusion in the α-Fe bulk and on diverse surfaces. The success in predicting the carbon diffusion coefficient and the diffusion barrier using the developed RPOIC-2017 potential demonstrates that the performance is superior to that of the traditional MEAM potential. The new ReaxFF for the Fe-C interaction developed in this work is not only essential for the design of novel iron based materials, but could also help understand atomic arrangements and the interfacial structure of iron carbides.
Pi, Jiang; Li, Baole; Tu, Lvying; Zhu, Haiyan; Jin, Hua; Yang, Fen; Bai, Haihua; Cai, Huaihong; Cai, Jiye
2016-01-01
Quercetin, a wildly distributed bioflavonoid, has been proved to possess excellent antitumor activity on hepatocellular carcinoma (HCC). In the present study, the biophysical properties of HepG2 cells were qualitatively and quantitatively determined using high resolution atomic force microscopy (AFM) to understand the anticancer effects of quercetin on HCC cells at nanoscale. The results showed that quercetin could induce severe apoptosis in HepG2 cells through arrest of cell cycle and disruption of mitochondria membrane potential. Additionally, the nuclei and F-actin structures of HepG2 cells were destroyed by quercetin treatment as well. AFM morphological data showed some typical apoptotic characterization of HepG2 cells with increased particle size and roughness in the ultrastructure of cell surface upon quercetin treatment. As an important biophysical property of cells, the membrane stiffness of HepG2 cells was further quantified by AFM force measurements, which indicated that HepG2 cells became much stiffer after quercetin treatment. These results collectively suggest that quercetin can be served as a potential therapeutic agent for HCC, which not only extends our understanding of the anticancer effects of quercetin against HCC cells into nanoscale, but also highlights the applications of AFM for the investigation of anticancer drugs. © Wiley Periodicals, Inc.
Huang, Qian; Teran Arce, Fernando; Lee, Joon; Yoon, Ilsun; Villanueva, Joshua; Lal, Ratnesh; Sirbuly, Donald J
2016-10-06
Precise positioning of a plasmonic nanoparticle (NP) near a small dielectric surface is not only necessary for understanding gap-dependent interactions between a metal and dielectric but it is also a critical component in building ultrasensitive molecular rulers and force sensing devices. In this study we investigate the gap-dependent scattering of gold and silver NPs by controllably depositing them on an atomic force microscope (AFM) tip and monitoring their scattering within the evanescent field of a tin dioxide nanofiber waveguide. The enhanced distance-dependent scattering profiles due to plasmon-dielectric coupling effects show similar decays for both gold and silver NPs given the strong dependence of the coupling on the decaying power in the near-field. Experiments and simulations also demonstrate that the NPs attached to the AFM tips act as free NPs, eliminating optical interference typically observed from secondary dielectric substrates. With the ability to reproducibly place individual plasmonic NPs on an AFM tip, and optically monitor near-field plasmon-dielectric coupling effects, this approach allows a wide-variety of light-matter interactions studies to be carried out on other low-dimensional nanomaterials.
Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method
International Nuclear Information System (INIS)
Wen, L; Wang, T M; Liang, J H; Wu, G H
2012-01-01
We implement a mackerel (Scomber scombrus) body-shaped robot, programmed to display the three most typical body/caudal fin undulatory kinematics (i.e. anguilliform, carangiform and thunniform), in order to biomimetically investigate hydrodynamic issues not easily tackled experimentally with live fish. The robotic mackerel, mounted on a servo towing system and initially at rest, can determine its self-propelled speed by measuring the external force acting upon it and allowing for the simultaneous measurement of power, flow field and self-propelled speed. Experimental results showed that the robotic swimmer with thunniform kinematics achieved a faster final swimming speed (St = 0.424) relative to those with carangiform (St = 0.43) and anguilliform kinematics (St = 0.55). The thrust efficiency, estimated from a digital particle image velocimetry (DPIV) flow field, showed that the robotic swimmer with thunniform kinematics is more efficient (47.3%) than those with carangiform (31.4%) and anguilliform kinematics (26.6%). Furthermore, the DPIV measurements illustrate that the large-scale characteristics of the flow pattern generated by the robotic swimmer with both anguilliform and carangiform kinematics were wedge-like, double-row wake structures. Additionally, a typical single-row reverse Karman vortex was produced by the robotic swimmer using thunniform kinematics. Finally, we discuss this novel force-feedback-controlled experimental method, and review the relative self-propelled hydrodynamic results of the robot when utilizing the three types of undulatory kinematics. (paper)
Directory of Open Access Journals (Sweden)
Lauren K. Sahagun
2017-01-01
Full Text Available This study investigated climate induced distresses patterns on airfield pavements at US Air Force installations. A literature review and surveys of Pavement Condition Index indicated that the predominant factor contributing to the development of pavement distress was climate. Results suggested that, within each type of pavement distress, a geographic pattern exists which is strongly correlated to conventional US climate zones. The US Air Force Roll-Up Database, housing over 50,000 records of pavement distress data, was distilled using a process designed to combine similar distresses while accounting for age and size of samples. The process reduced the data to a format that could be used to perform krig analysis and to develop pavement behavior models for runways built with asphalt cement (AC and Portland cement concrete (PCC. Regression and krig analyses were conducted for each distress type to understand distress behavior among climate zones. Combined regression and krig analyses provided insight into the overall pavement behavior for AC and PCC runways and illustrated which climate zone was more susceptible to specific pavement distresses. Distress behavior tends to be more severe in the eastern US for AC and in the western US for PCC runway pavements, respectively.
Energy Technology Data Exchange (ETDEWEB)
Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Fedorov, Dmitri G., E-mail: d.g.fedorov@aist.go.jp [NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zahariev, Federico; Schmidt, Michael W.; Gordon, Mark S. [Department of Chemistry and Ames Laboratory, US-DOE, Iowa State University, Ames, Iowa 50011 (United States); Kitaura, Kazuo [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Nakamura, Shinichiro [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2015-03-28
Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluated for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in S{sub N}2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented.
Grant, Julian; Luxford, Yoni
2008-12-01
Concerns about intercultural communication practices in child and family health were raised during a South Australian ethnographic study. The family partnership model was observed as a universal pedagogic tool introduced into the host organisation in 2003. It has a role in shaping and reshaping cultural production within child health practice. In this study, we draw on insights from postcolonial feminist scholarship together with three-body analysis to critique the theoretical canons of care that inform intercultural communication in the child and family health setting. We contend that although the family partnership model may be very useful, its intended universal application is problematic in the context of multiculture. Issues of race, gender and class were seemingly unattended when using a communication approach based in historical scientific rationalism. Liberal interpretations of discourses of equity and empathy arising out of contemporary models of communication were often adopted by child and family health nurses and protected them from seeing the inherent binaries that constrain practice. Insights from postcolonial feminist thinking enabled us to recognise the problems of applying theory to practice in a linear fashion. We demonstrate the use of three-body analysis as a deconstruction strategy to refigure how theory might be understood and worked with in the multiculture that is Australia.
Cartagena-Rivera, Alexander X.
material properties of living cells and viruses in their respective physiological conditions. This advance is based on the harnessing of sub and superharmonic channels of cantilever vibration which are especially strong in liquids environments, which enable the mapping with exquisite detail of nanoscale material properties. Material properties such as storage and loss modulus or the spring and damping constant in live cells and the repulsive electrostatic force gradient, hydration layer viscosity and adhesion on viruses. By the use of this multi-harmonic dynamic AFM technique using a commercial AFM system, the local material properties of live rat fibroblast cells (RFB), red blood cells (RBC), human breast carcinoma cells (MDA-MB-231), and bacteriophage φ29 mature virions have been successfully imaged and extracted in relevant physiological conditions. Also, a novel high-speed dynamic AFM technique is developed to image at higher spatiotemporal resolution whole live cells under physiological conditions. This high-throughput technology enables the study of cellular processes in near real time frames, for example, the cytoskeleton structure dynamics of live fibroblast cells and human breast carcinoma cells. Overall, the contributions described in this thesis demonstrate the robustness and versatility of these novel advanced dynamic AFM techniques to investigate a wide range of complex biological relevant problems.
International Nuclear Information System (INIS)
Sikora, A; Moroń, L; Wałecki, M; Kryla, P; Grabarek, A
2016-01-01
The impact of the environmental conditions on the materials used in various devices and constructions, in particular in electrotechnical applications, has an critical impact in terms of their reliability and utilization range in specific climatic conditions. Due to increasing utilitarian requirements, technological processes complexity and introducing new materials (for instance nanomaterials), advanced diagnostic techniques are desired. One of such techniques is atomic force microscopy (AFM), which allows to study the changes of the roughness and mechanical properties of the surface at the submicrometer scale, enabling the investigation of the degradation processes. In this work the deterioration of selected group of polyethylene based materials have been measured by means of AFM, as the samples were exposed to the simulated solar light and UV-C radiation. Such an analysis of the environmental conditions impact on the deterioration process using AFM methods for various versions of specific material was not presented before. (paper)
Kannojiya, Vikas; Sharma, Riya; Gaur, Rahul; Jangra, Anil; Yadav, Pushpender; Prajapati, Pooja
2018-03-01
The overheating of an industrial component sometimes may leads to system failure. The convection heat transfer from a heated surface can be effectively enhanced by employing fins on that surface. This Paper emphasizes on the experimental investigation of temperature distribution along the length of pin shaped fin. The analysis is performed on a 100 mm long fin made up of brass with 19.6 mm diameter having thermal conductivity as 111 W/m.K. Temperature at different section of the fin along its length is evaluated experimentally and theoretically. The influence of convection mode viz natural & forced convection and variable heat input on the temperature distribution is evaluated. The result outcomes are then compared with the widely accepted analytical relations. A comparison of convective heat transfer coefficient for uniform and non-uniform area fin is also presented. The results by experimental and analytical method are found to be in good agreement for free convection phenomenon.
Holbein, M E Blair; Berglund, Jelena Petrovic; O'Reilly, Erin K; Hartman, Karen; Speicher, Lisa A; Adamo, Joan E; O'Riordan, Gerri; Brown, Jennifer Swanton; Schuff, Kathryn G
2014-06-01
The objective of this study was to provide recommendations for provision of training for sponsor and investigators at Academic Health Centers. A subgroup of the Investigational New Drug/Investigational Device Exemption (IND/IDE) Task Force of the Clinical and Translational Science Award (CTSA) program Regulatory Knowledge Key Function Committee was assembled to specifically address how clinical investigators who hold an IND/IDE and thus assume the role of sponsor-investigators are adequately trained to meet the additional regulatory requirements of this role. The participants who developed the recommendations were representatives of institutions with IND/IDE support programs. Through an informal survey, the task force determined that a variety and mix of models are used to provide support for IND/IDE holders within CTSA institutions. In addition, a CTSA consortium-wide resources survey was used. The participants worked from the models and survey results to develop consensus recommendations to address institutional support, training content, and implementation. The CTSA IND/IDE Task Force recommendations are as follows: (1) Institutions should assess the scope of Food and Drug Administration-regulated research, perform a needs analysis, and provide resources to implement a suitable training program; (2) The model of training program should be tailored to each institution; (3) The training should specifically address the unique role of sponsor-investigators, and the effectiveness of training should be evaluated regularly by methods that fit the model adopted by the institution; and (4) Institutional leadership should mandate sponsor-investigator training and effectively communicate the necessity and availability of training.
Boeyen, Jonathon; Callan, Anna C; Blake, David; Wheeler, Amanda J; Franklin, Peter; Hall, Graham L; Shackleton, Claire; Sly, Peter D; Hinwood, Andrea
2017-04-01
The environmental factors which may affect children's respiratory health are complex, and the influence and significance of factors such as traffic, industry and presence of vegetation is still being determined. We undertook a cross-sectional study of 360 school children aged 5-12 years who lived on the outskirts of a heavy industrial area in Western Australia to investigate the effect of a range of environmental factors on respiratory health using the forced oscillation technique (FOT), a non-invasive method that allows for the assessment of the resistive and reactive properties of the respiratory system. Based on home address, proximity calculations were used to estimate children's exposure to air pollution from traffic and industry and to characterise surrounding green space. Indoor factors were determined using a housing questionnaire. Of the outdoor measures, the length of major roads within a 50m buffer was associated with increased airway resistance (Rrs 8 ). There were no associations between distance to industry and FOT measures. For the indoor environment the presence of wood heating and gas heating in the first year of life was associated with better lung function. The significance of both indoor and outdoor sources of air pollution and effect modifiers such as green space and heating require further investigation. Copyright © 2017 Elsevier GmbH. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Wenji, Song [Guangzhou Institute of Energy Conversion, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Key Laboratory of Renewable Energy and Gas Hydrate, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Rui, Xiao; Chong, Huang; Shihui, He; Kaijun, Dong; Ziping, Feng [Guangzhou Institute of Energy Conversion, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Key Laboratory of Renewable Energy and Gas Hydrate, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China)
2009-11-15
Tetra-n-butyl-ammonium bromide (TBAB) clathrate hydrate slurry (CHS) is one kind of secondary refrigerants, which is promising to be applied into air-conditioning or latent-heat transportation systems as a thermal storage or cold carrying medium for energy saving. It is a solid-liquid two phase mixture which is easy to produce and has high latent heat and good fluidity. In this paper, the heat transfer characteristics of TBAB slurry were investigated in a horizontal stainless steel tube under different solid mass fractions and flow velocities with constant heat flux. One velocity region of weakened heat transfer was found. Moreover, TBAB CHS was treated as a kind of Bingham fluids, and the influences of the solid particles, flow velocity and types of flow on the forced convective heat transfer coefficients of TBAB CHS were investigated. At last, criterial correlations of Nusselt number for laminar and turbulent flows in the form of power function were summarized, and the error with experimental results was within {+-}20%. (author)
Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro
2016-12-16
We investigate the surface potential distribution on a TiO 2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO 2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO 2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO 2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.
International Nuclear Information System (INIS)
Ulyanova, T. M.; Titova, L. V.; Medichenko, S. V.; Zonov, Yu. G.; Konstantinova, T. E.; Glazunova, V. A.; Doroshkevich, A. S.; Kuznetsova, T. A.
2006-01-01
The structures of nanocrystalline fibrous powders of refractory oxides have been investigated by different methods: determination of coherent-scattering regions, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic-force microscopy (AFM). The sizes of nanograins of different crystalline phases of refractory metal oxides have been determined during the formation of these nanograins and the dynamics of their growth during heat treatment in the temperature range 600-1600 deg. C has been studied. The data on the structure of nanocrystalline refractory oxide powders, obtained by different methods, are in good agreement. According to the data on coherent-scattering regions, the sizes of the ZrO 2 (Y 2 O 3 ) and Al 2 O 3 grains formed are in the range 4-6 nm, and the particle sizes determined according to the TEM and AFM data are in the ranges 5-7 and 2-10 nm, respectively. SEM analysis made it possible to investigate the dynamics of nanoparticle growth at temperatures above 1000 deg. C and establish the limiting temperatures of their consolidation in fibers
Bauer, Frank (Technical Monitor); Luquette, Richard J.; Sanner, Robert M.
2003-01-01
Precision Formation Flying is an enabling technology for a variety of proposed space-based observatories, including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), the associated MAXIM pathfinder mission, and the Stellar Imager. An essential element of the technology is the control algorithm. This paper discusses the development of a nonlinear, six-degree of freedom (6DOF) control algorithm for maintaining the relative position and attitude of a spacecraft within a formation. The translation dynamics are based on the equations of motion for the restricted three body problem. The control law guarantees the tracking error convergences to zero, based on a Lyapunov analysis. The simulation, modelled after the MAXIM Pathfinder mission, maintains the relative position and attitude of a Follower spacecraft with respect to a Leader spacecraft, stationed near the L2 libration point in the Sun-Earth system.
Energy Technology Data Exchange (ETDEWEB)
Mishra, Kalanand; /Nehru U.
2008-02-22
The authors present measurements of the relative branching ratios, Dalitz plot structures and CP-asymmetry values in the three-body singly Cabibbo-suppressed decays D{sup 0} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup 0} and D{sup 0} {yields} K{sup -}K{sup +}{pi}{sup 0} using data collected by the BABAR detector at the PEP-II asymmetric-energy ring at SLAC. The author applies the results of the D{sup 0} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup 0} analysis to extracting CP-violation parameters related to the CKM angle {gamma} (or {phi}{sub 3}) using the decay B{sup -} {yields} D{sub {pi}{sup +}{pi}{sup -}{pi}{sup 0}} K{sup -}.
On the cosmic-ray spectra of three-body lepton-flavor-violating dark matter decays
International Nuclear Information System (INIS)
Carone, Christopher D.; Cukierman, Ari; Primulando, Reinard
2011-01-01
We consider possible leptonic three-body decays of spin-1/2, charge-asymmetric dark matter. Assuming a general Dirac structure for the four-fermion contact interactions of interest, we study the cosmic-ray electron and positron spectra and show that good fits to the current data can be obtained for both charged-lepton-flavor-conserving and flavor-violating decay channels. We find that different choices for the Dirac structure of the underlying decay operator can be significantly compensated by different choices for the dark matter mass and lifetime. The decay modes we consider provide differing predictions for the cosmic-ray positron fraction at energies higher than those currently probed at the PAMELA experiment; these predictions might be tested at cosmic-ray detectors like AMS-02.
Three-body decays of Higgs bosons at LEP2 and application to a hidden fermiophobic Higgs
International Nuclear Information System (INIS)
Akeroyd, A.G.
1999-01-01
We study the decays of Higgs bosons to a lighter Higgs boson and a virtual gauge boson in the context of the non-supersymmetric two-Higgs doublet model (2HDM). We consider the phenomenological impact at LEP2 and find that such decays, when open, may be dominant in regions of parameter space and thus affect current Higgs boson search techniques. Three-body decays would be a way of producing light neutral Higgs bosons which have so far escaped detection at LEP due to suppressed couplings to the Z, and are of particular importance in the 2HDM (Model I) which allows both a light fermiophobic Higgs and a light charged scalar
Directory of Open Access Journals (Sweden)
Amir Hossein Ghasemi
2018-01-01
Full Text Available Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed on thrust force, surface roughness, and dimensional accuracy (cylindricity have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5–8% Mo reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy.
DEFF Research Database (Denmark)
Burcharth, H. F.; Liu, Z.
In nature coastal structures are exposed to oblique short-crested waves. The effect of wave incident angle on total wave force on a long caisson are twofold. The one is the force reduction due to the reduction of instantaneous point pressure on the caisson, named point-pressure force reduction....... The other is the force reduction due to the fact that the peak pressures do not occur simultaneously along the caisson, named peak-delay force reduction. These two reduction effects can also be expected with short-crested waves, as the short-crestedness of waves means the spreading of wave energy over...... a range of incident angles. The peak-delay force reduction, i.e. no simultaneous peak along caisson, is of particular interest because the equipment improvement in construction enables the building of considerably long caissons. In Japan length of caissons exceeds often 100m. This paper will concentrate...
Energy Technology Data Exchange (ETDEWEB)
Witt, D.A.; Smuin, D.R.; Williams, J.K.
1988-05-01
An investigative drilling and sampling survey at the site of a proposed Fire Training Facility (FTF) at Davis--Monthan Air Force Base, Tuscon, Arizona, was conducted. The objectives of this survey were to provide environmental/chemical information and geotechnical characteristics of the site from soil samples collected at the proposed site, to determine the concentrations of volatile organic compounds (VOCs) and petroleum hydrocarbon contaminants in these samples, and to make an assessment of survey data to determine if the proposed FTF site is environmentally and geotechnically suitable. Results of the chemical analyses indicate the presence of subsurface petroleum hydrocarbons directly related to the former fire training burn pits. Although one of the samples was found to have a relatively high concentration of petroleum hydrocarbons (9300 ..mu..g/g), the contamination was limited in vertical extent, and the location of the bore hole was approximately 61 m (200 ft) downgradient from any construction planned for the proposed FTF site. All chemical analyses performed on bore hole samples for VOCs were found to be at or below detection limits. This indicates that no significant subsurface concentrations of hazardous wastes are present at the site of the planned FTF. The geotechnical investigation performed by The Earth Technology Corporation provided several recommendations for construction of the FTF, but presents no data to indicate that the site planned for the proposed FTF is geotechnically unsuitable. The results of this siting investigation support the location of the new FTF in close proximity to the present fire training area as planned. 10 refs., 6 figs.
Mesa, Fredy; Chamorro, William; Vallejo, William; Baier, Robert; Dittrich, Thomas; Grimm, Alexander; Lux-Steiner, Martha C
2012-01-01
Summary Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu3BiS3 absorber layer and the junction formation with CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20–100 nm, and a considerably smaller work-function distribution for In2S3 compared to that of CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate negatively charged Cu3BiS3 grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased. PMID:22497001
International Nuclear Information System (INIS)
Shanaghi, Ali; Rouhaghdam, Ali Reza Sabour; Ahangarani, Shahrokh; Chu, Paul K.
2012-01-01
Highlights: ► The TiC x nanostructure coatings have been deposited by PACVD method. ► Dominant mechanism of growth structure at 490 °C is island-layer type. ► TiC x nanostructure coating applied at 490 °C, exhibits lowest friction coefficient. ► Young's moduli are 289.9, 400 and 187.6 GPa for 470, 490 and 510 °C, respectively. ► This higher elastic modulus and higher hardness of nanocoating obtain at 490 °C. -- Abstract: The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H 11 hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperatures are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 °C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 °C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 °C suitable for wear resistant applications.
DEFF Research Database (Denmark)
Lauridsen, Jonas S.; Santos, Ilmar F.
2017-01-01
Significant dynamic forces can be generated by annular seals in rotordynamics and can under certain conditions destabilize the system leading to machine failure. Mathematical modelling of dynamic seal forces are still challenging, especially for multiphase fluids and for seals with complex geomet...
Lee, Hyun-Su; Myers, Carl; Zaidel, Lynette; Nalam, Prathima C; Caporizzo, Matthew A; A Daep, Carlo; Eckmann, David M; Masters, James G; Composto, Russell J
2017-04-19
A current effort in preventive dentistry is to inhibit surface attachment of bacteria using antibacterial polymer coatings on the tooth surface. For the antibacterial coatings, the physisorption of anionic and cationic polymers directly onto hydroxyapatite (HA) and saliva-treated HA surfaces was studied using quartz crystal microbalance, force spectroscopy, and atomic force microscopy. First, single species adsorption is shown to be stronger on HA surfaces than on silicon oxide surfaces for all polymers (i.e., Gantrez, sodium hyaluronate (NaHa), and poly(allylamine-co-allylguanidinium) (PAA-G75)). It is observed through pH dependence of Gantrez, NaHa, and PAA-G75 adsorption on HA surfaces that anionic polymers swell at high pH and collapse at low pH, whereas cationic polymers behave in the opposite fashion. Thicknesses of Gantrez, NaHa, and PAA-G75 are 52 nm (46 nm), 35 nm (11 nm), and 6 nm (54 nm) at pH 7 (3.5), respectively. Second, absorption of charged polymer is followed by absorption of the oppositely charged polymer. Upon exposure of the anionic polymer layers, Gantrez and NaHa, to the cationic polymer, PAA-G75, films collapse from 52 to 8 nm and 35 to 11 nm, respectively. This decrease in film thickness is attributed to the electrostatic cross-linking between anionic and cationic polymers. Third, for HA surfaces pretreated with artificial saliva (AS), the total thickness decreases from 25 to 16 nm upon exposure to PAA-G75. Force spectroscopy is used to further investigate the PAA-G75/AS coating. The results show that the interaction between a negatively charged colloidal bead and the AS surface is strongly repulsive, whereas PAA-G75/AS is attractive but varies across the surface. Additionally, AFM studies show that AS/HA is smooth with a RMS roughness of 1.7 nm, and PAA-G75-treated AS/HA is rough (RMS roughness of 5.4 nm) with patches of polymer distributed across the surface with an underlying coating. The high roughness of PAA-G75 treated AS/HA is
International Nuclear Information System (INIS)
Zhou Yunlong; Sun Bin; Chen Tingkuan; Chen Xuejun
2002-01-01
Two-phase flow forced convection boiling heat transfer on helical-coiled tubes has been systematically studied. The experiments have been done on high pressure water loop in Xi'an Jiaotong University. The test condition is as follows: system pressures 6.0 to 11 MPa, mass velocity 400 to 1200 kg/(m 2 ·s), helical diameter 1.37 m and helical angles 3.94 degree. Two-phase forced convection heat transfer coefficients are correlated as function of Lockhart-Martinelli parameter. Subcooling water and superheated vapor forced convection heat transfer coefficient are also presented and compared with other literatures
Measurements of $C\\!P$ violation in the three-body phase space of charmless $B^{\\pm}$ decays
Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cojocariu, Lucian; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gavrilov, Gennadii; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander
2014-01-01
The charmless three-body decay modes $B^{\\pm} \\rightarrow K^{\\pm} \\pi^{+} \\pi^{-}$, $B^{\\pm} \\rightarrow K^{\\pm} K^{+} K^{-}$, $B^{\\pm} \\rightarrow \\pi^{\\pm} K^{+} K^{-}$ and $B^{\\pm} \\rightarrow \\pi^{\\pm} \\pi^{+} \\pi^{-}$ are reconstructed using data, corresponding to an integrated luminosity of 3.0 fb$^{-1}$, collected by the LHCb detector. The inclusive $C\\!P$ asymmetries of these modes are measured to be \\begin{eqnarray} A_{C\\!P}(B^{\\pm} \\rightarrow K^{\\pm} \\pi^{+} \\pi^{-})= +0.025 \\pm 0.004 \\pm 0.004 \\pm 0.007, \\end{eqnarray} \\begin{eqnarray} A_{C\\!P}(B^{\\pm} \\rightarrow K^{\\pm} K^{+} K^{-}) = -0.036 \\pm 0.004 \\pm 0.002 \\pm 0.007, \\end{eqnarray} \\begin{eqnarray} A_{C\\!P}(B^{\\pm} \\rightarrow \\pi^{\\pm} \\pi^{+} \\pi^{-})= +0.058 \\pm 0.008 \\pm 0.009 \\pm 0.007, \\end{eqnarray} \\begin{eqnarray} A_{C\\!P}(B^{\\pm} \\rightarrow \\pi^{\\pm} K^{+} K^{-})= -0.123 \\pm 0.017 \\pm 0.012 \\pm 0.007, \
International Nuclear Information System (INIS)
Boesten, L.G.J.
1978-01-01
Calculations on the threshold ionization of H, He + and Li 2+ by electrons have been performed to study the so-called 'post-collision interaction' (P.C.I.) effects which appear to affect the threshold ionization process significantly. These effects are caused by the long range Coulomb interactions between the two electrons as they move away from the nucleus. The long range interactions are fully taken into account in the classical three-body collision theory. In quantum mechanical theories, however, it is difficult to account for these interactions. This theory has been used to study the ionization of He + -ions by electron impact up to much higher energies (up till ten times the threshold energy). The results are compared with experimental results of Dolder et al. (1961) and with results of quantum mechanical calculations. Results are given for ionization of helium atoms by electron or proton impact. This collision process, in which four particles are involved, can under certain circumstances be treated as a collision process in which only three particles are involved. Calculations are performed concerning: a) cross sections for ionization of metastable helium atoms by electron impact, b) cross sections for ionization of ground-state helium atoms by fast proton impact (energy and angular distributions of ejected electrons), c) generalized oscillator strengths for ionization of helium by fast proton impact
Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion
Miyoshi, Kazuhisa
1987-01-01
Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.
Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I.; Mazelle, C.
2016-12-01
The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the stellar radiation pressure on planetary exospheres. In a series of papers, we present with a Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain [1989] Icarus, 81, 145-163. In this third paper, we investigate the effect of the stellar radiation pressure on the Circular Restricted Three Body Problem (CR3BP), called also the photogravitational CR3BP, and its implication on the escape and the stability of planetary exospheres, especially for hot Jupiters. In particular, we describe the transformation of the equipotentials and the location of the Lagrange points, and we provide a modified equation for the Hill sphere radius that includes the influence of the radiation pressure. Finally, an application to the hot Jupiter HD 209458b and hot Neptune GJ 436b reveals the existence of a blow-off escape regime induced by the stellar radiation pressure.
Almadori, Yann; Bendiab, Nedjma; Grévin, Benjamin
2018-01-10
Atomically thin transition-metal dichalcogenides (TMDC) have become a new platform for the development of next-generation optoelectronic and light-harvesting devices. Here, we report a Kelvin probe force microscopy (KPFM) investigation carried out on a type-II photovoltaic heterojunction based on WSe 2 monolayer flakes and a bilayer MoS 2 film stacked in vertical configuration on a Si/SiO 2 substrate. Band offset characterized by a significant interfacial dipole is pointed out at the WSe 2 /MoS 2 vertical junction. The photocarrier generation process and phototransport are studied by applying a differential technique allowing to map directly two-dimensional images of the surface photovoltage (SPV) over the vertical heterojunctions (vHJ) and in its immediate vicinity. Differential SPV reveals the impact of chemical defects on the photocarrier generation and that negative charges diffuse in the MoS 2 a few hundreds of nanometers away from the vHJ. The analysis of the SPV data confirms unambiguously that light absorption results in the generation of free charge carriers that do not remain coulomb-bound at the type-II interface. A truly quantitative determination of the electron-hole (e-h) quasi-Fermi levels splitting (i.e., the open-circuit voltage) is achieved by measuring the differential vacuum-level shift over the WSe 2 flakes and the MoS 2 layer. The dependence of the energy-level splitting as a function of the optical power reveals that Shockley-Read-Hall processes significantly contribute to the interlayer recombination dynamics. Finally, a newly developed time-resolved mode of the KPFM is applied to map the SPV decay time constants. The time-resolved SPV images reveal the dynamics of delayed recombination processes originating from photocarriers trapping at the SiO 2 /TMDC interfaces.
CSIR Research Space (South Africa)
Malwela, T
2014-01-01
Full Text Available This article reports the crystal growth behavior of biodegradable polylactide (PLA)/poly[(butylene succinate)-co-adipate] (PBSA) blend thin films using atomic force microscopy (AFM). Currently, polymer thin films have received increased research...
National Research Council Canada - National Science Library
Springs, Anita C
2007-01-01
... Acquisition Managers participating in the Air Force Fundamentals of Acquisition Management (AFFAM) course, and is designed to determine if knowledge, skills and attitudes learned in the instruction setting are being applied to the job...
Directory of Open Access Journals (Sweden)
Atul Srivastava
2018-04-01
Full Text Available Summary: An effort is made to understand and quantify the influence of near surface zonal and meridional winds, incoming shortwave radiation, and freshwater flux air-sea forcings on the seasonal variability of the hydrography, circulation, and mixed layer depth of the Arabian Sea (AS and Bay of Bengal (BoB. Sensitivity experiments using an ocean general circulation model are carried out for this purpose in the Indian ocean around 65°–95°E, 5°–22°N during 1998–2014 (17 years. In the absence of near surface wind forcing, the sea surface temperature of the region greatly increases in all the seasons, whereas, in the absence of incoming shortwave radiation forcing, exactly opposite is the case. The sea surface salinity of the AS and BoB decreases in the absence of wind and shortwave radiation forcings, whereas, in the northern BoB it increases in the absence of freshwater flux forcing. The sub-surface changes in the stratification of temperature and salinity are also investigated. The influence of the air-sea forcings on the mixed layer depth of the region is found to be highly seasonally dependent. The effect of air-sea forcings on the seasonal variability of the upper ocean vertical stability is studied using the vertical shear of the horizontal velocity, buoyancy frequency, and energy required for mixing as quantifiers. The near surface wind forcing has highest contribution in changing the surface circulation of the region. Keywords: Arabian Sea and Bay of Bengal, Air-sea forcing, Ocean general circulation model, Hydrography and circulation, Vertical stability
Chin, Chih-Hao; Lee, Shih-Huang
2012-01-14
We investigated two-body (binary) and three-body (triple) dissociations of ethanedial, propanal, propenal, n-butane, 1-butene, and 1,3-butadiene on the ground potential-energy surfaces using quantum-chemical and Rice-Ramsperger-Kassel-Marcus calculations; most attention is paid on the triple dissociation mechanisms. The triple dissociation includes elimination of a hydrogen molecule from a combination of two separate terminal hydrogen atoms; meanwhile, the rest part simultaneously decomposes to two stable fragments, e.g., C(2)H(4), C(2)H(2), or CO. Transition structures corresponding to the concerted triple dissociation were identified using the B3LYP/6-311G(d,p) level of theory and total energies were computed using the method CCSD(T)/6-311+G(3df, 2p). The forward barrier height of triple dissociation has a trend of ethanedial butadiene, pertaining to the reaction enthalpy. Ratios of translational energies of three separate fragments could be estimated from the transition structure of triple dissociation. The synchronous concerted dissociation of propanal, propenal, and 1-butene leading to three different types of molecular fragments by breaking nonequivalent chemical bonds is rare. The triple dissociation of propanal, n-butane, 1-butene, and 1,3-butadiene were investigated for the first time. To outline a whole picture of dissociation mechanisms, some significant two-body dissociation channels were investigated for the calculations of product branching ratios. The triple dissociation plays an important role in the three carbonyl compounds, but plays a minor or negligible role in the three hydrocarbons.
Directory of Open Access Journals (Sweden)
Kyung Wook Nha
2013-01-01
Full Text Available Many experimental and computational studies have reported that osteoarthritis in the knee joint affects knee biomechanics, including joint kinematics, joint contact forces, and muscle activities, due to functional restriction and disability. In this study, differences in muscle activities and joint force patterns between knee osteoarthritis (OA patients and normal subjects during walking were investigated using the inverse dynamic analysis with a lower extremity musculoskeletal model. Extensor/flexor muscle activations and torque ratios and the joint contact forces were compared between the OA and normal groups. The OA patients had higher extensor muscle forces and lateral component of the knee joint force than normal subjects as well as force and torque ratios of extensor and flexor muscles, while the other parameters had little differences. The results explained that OA patients increased the level of antagonistic cocontraction and the adduction moment on the knee joint. The presented findings and technologies provide insight into biomechanical changes in OA patients and can also be used to evaluate the postoperative functional outcomes of the OA treatments.
Baldwin, Claire E; Paratz, Jennifer D; Bersten, Andrew D
2013-02-01
Dynamometry is an objective tool for volitional strength evaluation that may overcome the limited sensitivity of the Medical Research Council scale for manual muscle tests, particularly at grades 4 and 5. The primary aims of this study were to investigate the reliability, minimal detectable change, and time to peak muscle force, measured with portable dynamometry, in critically ill patients. Isometric hand grip, elbow flexion, and knee extension were measured with portable dynamometry. Interrater consistency (intraclass correlation coefficient [95% confidence interval]) (0.782 [0.321-0.930] to 0.946 [0.840-0.982]) and test-retest agreement (0.819 [0.390-0.943] to 0.918 [0.779-0.970]) were acceptable for all dynamometry forces, with the exception of left elbow flexion. Despite generally good reliability, a mean change (upper 95% confidence interval) of 2.8 (7.8) kg, 1.9 (5.2) kg, and 2.6 (7.1) kg may be required from a patient's baseline force measurement of right grip, elbow flexion, and knee extension to reflect real force changes. There was also a delay in the time for critically ill patients to generate peak muscle forces, compared with healthy controls (P ≤ .001). Dynamometry can provide reliable measurements in alert critically ill patients, but moderate changes in strength may be required to overcome measurement error, during the acute recovery period. Deficits in force timing may reflect impaired neuromuscular control. Copyright © 2013 Elsevier Inc. All rights reserved.
Cartagena, Alexander; Raman, Arvind
2014-03-04
The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties of living cells with nanoscale resolution. However, the differences in viscoelastic properties estimated from such dynamic and traditional quasi-static techniques are poorly understood. In this work we quantitatively reconstruct the local force and dissipation gradients (viscoelasticity) on live fibroblast cells in buffer solutions using Lorentz force excited cantilevers and present a careful comparison between mechanical properties (local stiffness and damping) extracted using dynamic and quasi-static force spectroscopy methods. The results highlight the dependence of measured viscoelastic properties on both the frequency at which the chosen technique operates as well as the interactions with subcellular components beyond certain indentation depth, both of which are responsible for differences between the viscoelasticity property maps acquired using the dynamic AFM method against the quasi-static measurements. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Pousse, Alexandre; Robutel, Philippe; Vienne, Alain
2017-08-01
In the framework of the planar and circular restricted three-body problem, we consider an asteroid that orbits the Sun in quasi-satellite motion with a planet. A quasi-satellite trajectory is a heliocentric orbit in co-orbital resonance with the planet, characterized by a nonzero eccentricity and a resonant angle that librates around zero. Likewise, in the rotating frame with the planet, it describes the same trajectory as the one of a retrograde satellite even though the planet acts as a perturbator. In the last few years, the discoveries of asteroids in this type of motion made the term "quasi-satellite" more and more present in the literature. However, some authors rather use the term "retrograde satellite" when referring to this kind of motion in the studies of the restricted problem in the rotating frame. In this paper, we intend to clarify the terminology to use, in order to bridge the gap between the perturbative co-orbital point of view and the more general approach in the rotating frame. Through a numerical exploration of the co-orbital phase space, we describe the quasi-satellite domain and highlight that it is not reachable by low eccentricities by averaging process. We will show that the quasi-satellite domain is effectively included in the domain of the retrograde satellites and neatly defined in terms of frequencies. Eventually, we highlight a remarkable high eccentric quasi-satellite orbit corresponding to a frozen ellipse in the heliocentric frame. We extend this result to the eccentric case (planet on an eccentric motion) and show that two families of frozen ellipses originate from this remarkable orbit.
DEFF Research Database (Denmark)
Kaasgaard, Thomas; Mouritsen, O.G.; Jørgensen, K.
2002-01-01
A novel experimental technique, based on atomic force microscopy (AFM), is proposed to visualize the lateral organization of membrane systems in the nanometer range. The technique involves the use of a ligand-receptor pair, biotin-avidin, which introduces a height variation on a solid-supported l......A novel experimental technique, based on atomic force microscopy (AFM), is proposed to visualize the lateral organization of membrane systems in the nanometer range. The technique involves the use of a ligand-receptor pair, biotin-avidin, which introduces a height variation on a solid...
Czech Academy of Sciences Publication Activity Database
Borodavka, Fedir; Pokorný, Jan; Hlinka, Jiří
2016-01-01
Roč. 89, 7-8 (2016), 746-751 ISSN 0141-1594 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : phase transition * BiFeO 3 * Raman scattering * piezoresponse force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.060, year: 2016
DEFF Research Database (Denmark)
Taherian, Hessam; Yazdanshenas, Eshagh
2006-01-01
Due to scarcity of literature on forced-convection heat transfer in a solar collector with rhombic cross-section absorbing tubes, a series of experiments was arranged and conducted to determine heat transfer coefficient. In this study, a typical rhombic cross-section finned tube of flat...
Krueger, W.
1947-01-01
Measurements are described which were taken in the large wind tunnel of the AVA on a rectangular wing "Mustang 2" with nose flap of a chord of 10 percent. Besides force measurements the results of pressure-distribution measurements are given and compared with those on the same profile "without" nose flap.
DEFF Research Database (Denmark)
Bækmark, Thomas Rosleff; Bjørnholm, Thomas; Mouritsen, Ole G.
1997-01-01
The construction from simple and cheap commercially available parts of a miniature heat stage for the direct heating of samples studied with a commercially available optical-lever-detection atomic force microscope is reported. We demonstrate that by using this heat stage, atomic resolution can be...
Digital Repository Service at National Institute of Oceanography (India)
Barros, E.A. de; Dantas, J.L.D.; Pascoal, A.M.; Desa, E.S.
to be no- ticed at the sideslip angle of 15 and reaches its maximum when sideslip reaches 25 . However, the corresponding correction angle never exceeds 2.5 . The total lateral force and yaw moment coefficients are cal- culated summing up algebraically body...
International Nuclear Information System (INIS)
Irgaziev, B.F.; Alt, E.O.; Mukhamedzhanov, A.M.
1999-01-01
The amplitude for the Coulomb breakup of a light nucleus in the field of a highly charged ion is considered in the framework of the distorted wave approach, with particular emphasis being laid on correctly taking into account the three-body Coulomb interactions in the final state. Numerical calculations have been performed for the double differential cross section for the reaction 208 Pb( 8 B, 7 Be p) 208 Pb. They clearly demonstrate the importance of long-range three-body Coulomb correlations in the astrophysically interesting regime when the ejectiles have extremely small relative energies. Refs. 9 (author)
International Nuclear Information System (INIS)
Chao, Ong Zhi; Cheet, Lim Hong; Yee, Khoo Shin; Rahman, Abdul Ghaffar Abdul; Ismail, Zubaidah
2016-01-01
A novel method called Impact-synchronous modal analysis (ISMA) was proposed previously which allows modal testing to be performed during operation. This technique focuses on signal processing of the upstream data to provide cleaner Frequency response function (FRF) estimation prior to modal extraction. Two important parameters, i.e., windowing function and impact force level were identified and their effect on the effectiveness of this technique were experimentally investigated. When performing modal testing during running condition, the cyclic loads signals are dominant in the measured response for the entire time history. Exponential window is effectively in minimizing leakage and attenuating signals of non-synchronous running speed, its harmonics and noises to zero at the end of each time record window block. Besides, with the information of the calculated cyclic force, suitable amount of impact force to be applied on the system could be decided prior to performing ISMA. Maximum allowable impact force could be determined from nonlinearity test using coherence function. By applying higher impact forces than the cyclic loads along with an ideal decay rate in ISMA, harmonic reduction is significantly achieved in FRF estimation. Subsequently, the dynamic characteristics of the system are successfully extracted from a cleaner FRF and the results obtained are comparable with Experimental modal analysis (EMA)
Energy Technology Data Exchange (ETDEWEB)
Chao, Ong Zhi; Cheet, Lim Hong; Yee, Khoo Shin [Mechanical Engineering Department, Faculty of EngineeringUniversity of Malaya, Kuala Lumpur (Malaysia); Rahman, Abdul Ghaffar Abdul [Faculty of Mechanical Engineering, University Malaysia Pahang, Pekan (Malaysia); Ismail, Zubaidah [Civil Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia)
2016-08-15
A novel method called Impact-synchronous modal analysis (ISMA) was proposed previously which allows modal testing to be performed during operation. This technique focuses on signal processing of the upstream data to provide cleaner Frequency response function (FRF) estimation prior to modal extraction. Two important parameters, i.e., windowing function and impact force level were identified and their effect on the effectiveness of this technique were experimentally investigated. When performing modal testing during running condition, the cyclic loads signals are dominant in the measured response for the entire time history. Exponential window is effectively in minimizing leakage and attenuating signals of non-synchronous running speed, its harmonics and noises to zero at the end of each time record window block. Besides, with the information of the calculated cyclic force, suitable amount of impact force to be applied on the system could be decided prior to performing ISMA. Maximum allowable impact force could be determined from nonlinearity test using coherence function. By applying higher impact forces than the cyclic loads along with an ideal decay rate in ISMA, harmonic reduction is significantly achieved in FRF estimation. Subsequently, the dynamic characteristics of the system are successfully extracted from a cleaner FRF and the results obtained are comparable with Experimental modal analysis (EMA)
Narchi, Paul; Alvarez, Jose; Chrétien, Pascal; Picardi, Gennaro; Cariou, Romain; Foldyna, Martin; Prod'homme, Patricia; Kleider, Jean-Paul; I Cabarrocas, Pere Roca
2016-12-01
Both surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 100-μm distance in order to compare data from the same area and provide a consistent interpretation. In both measurements, modifications under illumination are observed in accordance with the theory of PIN junctions. Moreover, an unintentional doping during the deposition of the epitaxial silicon intrinsic layer in the solar cell is suggested from the comparison between photovoltage and photocurrent measurements.
Studies of Three-Body Decay of B to J/ψηK and B(Bs to ηcπK*
Directory of Open Access Journals (Sweden)
Behnam Mohammadi
2014-01-01
Full Text Available We investigate the B0→J/ψηK0 and B+→J/ψηK+ decay by using the Dalitz plot analysis. As we know there are tree, penguin, emission, and emission-annihilation diagrams for these decay modes in the factorization approach. The transition matrix element is factorized into a B→ηK form factor multiplied by J/ψ decay constant and also a B→K form factor multiplied by J/ψη decay constant. According to QCD factorization approach and using the Dalitz plot analysis, we calculate the branching ratios of the B0→J/ψηK0 and B+→J/ψηK+ three-body decay in view of the η-η' mixing and obtain the value of the (9.22-1.47+2.67×10-5, while the experimental results of them are (8±4×10-5 and (10.8±3.3×10-5, respectively. In this research we also analyze the B(Bs→ηcπK* decay which is similar to the previous decay, but there is no experimental data for the last decay. Since for calculations of the B(Bs→ηcπK* decay we use assumptions of the B→J/ψηK decay, we hope that if this decay will be measured by the LHCb in the future, the experimental results will be in agreement with our calculations.
Directory of Open Access Journals (Sweden)
Isarawit Chaopanich
2010-07-01
Full Text Available The aim of this study was to examine the effect of grinding variables on the circularity error, finished diameter, andgrinding forces of porous polyurethane foam (PPUF. A cube of PPUF having the size of 21 mm was transformed into a roundshape using a vertical wheel grinding with the circular groove pad developed. The grinding speed (Vs of the wheel wasvaried between 1.41 and 5.18 m/s. The cross head speed of the circular groove pad (f was controlled at 1, 3, 5 mm/min. Theabrasive grit size (A of 20 and 53 μm made of silicon carbide were applied. Two replications of experiment were randomlyperformed. Diameter and circularity error of the ground specimen were determined by vision measuring machine. The tangentialand normal forces of grinding were obtained using a dynamometer. The experimental data were statistically analyzed. The study found that (1 the grinding speed could remarkably affect the circularity error, finished diameter, and grinding forces,(2 the grinding speed ranged between 2.83 and 3.77 m/s could contribute to sphere shape specimens, and (3 the grinding speed of 3.30 m/s, cross head speed of 1 mm/min, and abrasive grit size of 20 μm provided the least circularity error.
International Nuclear Information System (INIS)
Pozdneev, S.A.
1982-01-01
The cross sections for the dissociative attachment of electrons to hydrogen halide molecules are calculated in the multiple-scattering approximation in a three-body system. The calculations are carried out using modified Faddeev equations for three charged particles. The results are compared with experimental data
Three-nucleon forces and the trinucleon bound states
International Nuclear Information System (INIS)
Friar, J.L.; Frois, B.
1986-04-01
A summary of the bound-state working group session of the ''International Symposium on the Three-Body Force in the Three-Nucleon System'' is presented. The experimental evidence for three-nucleon forces has centered on two ground state properties: the tritium binding energy and the trinucleon form factors. Both are discussed
DEFF Research Database (Denmark)
Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.
1996-01-01
Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating......-field optical microscopic scanning of the grating reveals, however, that the bulk of the film remains optically anisotropic. (C) 1996 American Institute of Physics....
Dhopatkar, A A; Sloan, A J; Rock, W P; Cooper, P R; Smith, A J
2005-06-01
To develop a novel mandible slice organ culture model to investigate the effects of externally applied force on the dentine-pulp complex. In vitro organ culture. School of Dentistry, Birmingham, UK. Transverse 2 mm thick sections were cut from the mandibles of five 28-day-old male Wistar rats. Serial sections were used for control and test pairs. Springs made from 0.016-inch and 0.019 x 0.025-inch stainless steel wires were used to apply a 50 g tensile or compressive force, respectively, to test specimens. Control and test specimens were cultured for 5 days in a humidified incubator with 5% CO(2) at 37 degrees C and processed for routine histological investigation. Nine more rats were used to provide control and compression test pairs where the pulps were extirpated after 3 days culture and total RNA isolated for gene expression analysis by reverse transcriptase polymerase chain reaction (RT-PCR). Histology showed the dental and supporting tissues maintained a healthy appearance in the control cultures after culture. Histomorphometric analysis revealed a 20-27% increase in pulp fibroblast density in test specimens compared with controls. Gene expression analyses revealed up-regulation in the test groups of PCNA, c-Myc, Collagen 1alpha, TGF-beta1 and alkaline phosphatase, whilst expression of osteocalcin was reduced. The results demonstrated that the present organ culture technique provides a valuable in vitro experimental model for studying the effects of externally applied forces. These forces stimulated a cellular response in the pulp chamber characterized by altered gene expression and proliferation of fibroblasts; the latter being unaffected by the nature of the force in terms of compression or tension.
Baron, Szymon; Ahearne, Eamonn
2017-04-01
An ageing population, increased physical activity and obesity are identified as lifestyle changes that are contributing to the ongoing growth in the use of in-vivo prosthetics for total hip and knee arthroplasty. Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys, due to their mechanical properties and excellent biocompatibility, qualify as a class of materials that meet the stringent functional requirements of these devices. To cost effectively assure the required dimensional and geometric tolerances, manufacturers rely on high-precision machining. However, a comprehensive literature review has shown that there has been limited research into the fundamental mechanisms in mechanical cutting of these alloys. This article reports on the determination of the basic cutting-force coefficients in orthogonal cutting of medical grade Co-Cr-Mo alloy ASTM F1537 over an extended range of cutting speeds ([Formula: see text]) and levels of undeformed chip thickness ([Formula: see text]). A detailed characterisation of the segmented chip morphology over this range is also reported, allowing for an estimation of the shear plane angle and, overall, providing a basis for macro-mechanic modelling of more complex cutting processes. The results are compared with a baseline medical grade titanium alloy, Ti-6Al-4V ASTM F136, and it is shown that the tangential and thrust-force components generated were, respectively, ≈35% and ≈84% higher, depending primarily on undeformed chip thickness but with some influence of the cutting speed.
Freudenthal, Oona; Quilès, Fabienne; Francius, Grégory; Wojszko, Kamila; Gorczyca, Marcelina; Korchowiec, Beata; Rogalska, Ewa
2016-11-01
Colistin (Polymyxin E), an antimicrobial peptide, is increasingly put forward as salvage for severe multidrug-resistant infections. Unfortunately, colistin is potentially toxic to mammalian cells. A better understanding of the interaction with specific components of the cell membranes may be helpful in controlling the factors that may enhance toxicity. Here, we report a physico-chemical study of model phospholipid (PL) mono- and bilayers exposed to colistin at different concentrations by Langmuir technique, atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The effect of colistin on chosen PL monolayers was examined. Insights into the topographical and elastic changes in the PL bilayers within time after peptide injection are presented via AFM imaging and force spectra. Finally, changes in the PL bilayers' ATR-FTIR spectra as a function of time within three bilayer compositions, and the influence of colistin on their spectral fingerprint are examined together with the time-evolution of the Amide II and νCO band integrated intensity ratios. Our study reveals a great importance in the role of the PL composition as well as the peptide concentration on the action of colistin on PL model membranes. Copyright © 2016 Elsevier B.V. All rights reserved.
Jodin, Gurvan; Scheller, Johannes; Rouchon, Jean-François; Braza, Marianna; Mit Collaboration; Imft Collaboration; Laplace Collaboration
2016-11-01
A quantitative characterization of the effects obtained by high frequency-low amplitude trailing edge actuation is performed. Particle image velocimetry, as well as pressure and aerodynamic force measurements, are carried out on an airfoil model. This hybrid morphing wing model is equipped with both trailing edge piezoelectric-actuators and camber control shape memory alloy actuators. It will be shown that this actuation allows for an effective manipulation of the wake turbulent structures. Frequency domain analysis and proper orthogonal decomposition show that proper actuating reduces the energy dissipation by favoring more coherent vortical structures. This modification in the airflow dynamics eventually allows for a tapering of the wake thickness compared to the baseline configuration. Hence, drag reductions relative to the non-actuated trailing edge configuration are observed. Massachusetts Institute of Technology.
International Nuclear Information System (INIS)
Ozerova, V.M.; Solomonik, V.G.; Krasnov, K.S.
1982-01-01
Non-empirical calculations of equilibrium internuclear distances, force constants, frequencies of normal vibrations, isotope shifts and vibration intensities in IR spectrum of BF 3 molecule have been made by MO LCAO SCF method using three bases of grouped gauss functions: DZ (9s5p/4s2p), TZ(10s6p/5s3p) and TZ+P (10s6p1d/5s3p1d). All the three bases lead to the results which are in good agreement with the experimental data. For instance, theoretical values of vibration frequencies differ from the experimental ones by average 3.2; 2.4 and 7.0% in the bases DZ, TZ and TZ+P respectively
Fu, Desheng; Suzuki, Kazuyuki; Kato, Kazumi
2003-09-01
Atomic force microscopy (AFM) is used to probe the local piezoelectric properties of CaBi4Ti4O15 (CBT) bismuth-layer-structured ferroelectric thin films. Calibration with Z-cut LaTiO3 and X-cut quartz crystals shows that a conductive AFM tip can be employed as a top electrode to accurately evaluate the piezoelectric displacement in ferroelectric materials without a top electrode. Our measurements on individual grains in CBT film clearly reveal that the local piezoelectric properties are determined by the polarization state in the grain. In a grain with a polar axis very close to the normal direction, a piezoelectric coefficient of 16 pm/V was attained after poling.
Directory of Open Access Journals (Sweden)
Moscetti I
2016-08-01
Full Text Available Ilaria Moscetti,1 Emanuela Teveroni,2,3 Fabiola Moretti,3 Anna Rita Bizzarri,1 Salvatore Cannistraro1 1Biophysics and Nanoscience Centre, Department DEB, Università della Tuscia, Viterbo, Italy; 2Department of Endocrinology and Metabolism, Università Cattolica di Roma, Roma, Italy; 3Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR, Roma, Italy Abstract: Murine double minute 2 (MDM2 and 4 (MDM4 are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2–MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2–MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD in the micromolar range for the MDM2–MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2–MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2–MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. Keywords: MDM2, MDM4, atomic force spectroscopy, surface plasmon resonance
de Heer, Brooke
2016-02-01
Prior research on rapes reported to law enforcement has identified criminal sophistication and the use of force against the victim as possible unique identifiers to serial rape versus one-time rape. This study sought to contribute to the current literature on reported serial rape by investigating how the level of criminal sophistication of the rapist and use of force used were associated with two important outcomes of rape: victim injury and overall severity of the assault. In addition, it was evaluated whether rapist and victim ethnicity affected these relationships. A nation-wide sample of serial rape cases reported to law enforcement collected by the Federal Bureau of Investigation (FBI) was analyzed (108 rapists, 543 victims). Results indicated that serial rapists typically used a limited amount of force against the victim and displayed a high degree of criminal sophistication. In addition, the more criminally sophisticated the perpetrator was, the more sexual acts he performed on his victim. Finally, rapes between a White rapist and White victim were found to exhibit higher levels of criminal sophistication and were more severe in terms of number and types of sexual acts committed. These findings provide a more in-depth understanding of serial rape that can inform both academics and practitioners in the field about contributors to victim injury and severity of the assault. © The Author(s) 2014.
Lopez Ayon, Gabriela Monserratt
The field of research of this thesis is Condensed Matter Physics applied to Biology. Specifically it describes the development of different Atomic Force Microscopy techniques and tools towards the study of living cells in physiological solution. Particular interest is put into the understanding of the influence of noise in the determination of ordered liquid layers above a mica surface - as work towards the study of the role of water and ions in biological processes - and the influence of "diving bell" to boost the Q factor and allow stable imaging and force spectroscopy with tips based on Scanning Near-field Optical Microscopy [LeDue, 2010 and LeDue, 2008]. By combining SNOM techniques as a local illumination method (and thus avoiding photo bleaching of individual molecules) and high resolution AFM techniques we will be able to investigate mechano-transduction and associated signaling in living cells and individual proteins.
Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore
2016-01-01
Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2–MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2–MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD) in the micromolar range for the MDM2–MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2–MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2–MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. PMID:27621617
International Nuclear Information System (INIS)
Nakagawa, Shigeaki; Takamatsu, Kuniyoshi; Inaba, Yoshitomo; Goto, Minoru; Tochio, Daisuke
2007-09-01
The three gas circulators trip test and the vessel cooling system stop test as the safety demonstration test by using the High Temperature engineering Test Reactor (HTTR) are under planning to demonstrate inherent safety features of High Temperature Gas-cooled Reactor. All three gas circulators to circulate the helium gas as the coolant are stopped to simulate the loss of forced cooling in the three gas circulators trip test. The stop of the vessel cooling system located outside the reactor pressure vessel to remove the residual heat of the reactor core follows the stop of all three gas circulators in the vessel cooling system stop test. The analysis of the reactor transient for such tests and abnormal events postulated during the test was performed. From the result of analysis, it was confirmed that the three gas circulators trip test and the vessel cooling system stop test can be performed within the region of the normal operation in the HTTR and the safety of the reactor facility is ensured even if the abnormal events would occur. (author)
Erbe, Andeas; Hou, Sing-Yi; Chen, Chen-Yun; Lin, Yi-Lih; Shen, Jie-Pan; Lin, Li-Jing; Chou, Chia-Fu; Shih, Yu-Ling
2008-03-01
Cytoskeletal proteins are often involved in generating mechanical force to drive various cellular processes. A subgroup of the Walker-type ATPases acts as cytoskeletal proteins that show highly dynamic behavior in bacterial cells. One of the most prominent examples is MinD that works with other cellular components to prevent cell division at unwanted polar sites through cycles of pole-to-pole oscillation in E. coli cells. We use fluorescence microscopy techniques to study the process of MinD assembly and disassembly on a lipid bilayer membrane surface and any possible change of membrane properties caused by MinD association with the membrane. To form a supported bilayer membrane, vesicles of the polar or total extract of E. coli membrane or synthetic lipids of defined composition are adsorbed to a treated glass coverslip. Ca^2+ is added to enable vesicle fusion to form a continuous bilayer on a glass surface. Formation of a bilayer is examined using fluorescence recovery after photobleaching. The results on the protein assembly on membranes present an important step in understanding the intermediate stages that occur during the dynamic movement of MinD in cells.
Zhang, XiaoYue; Zhang, Yong; Zheng, Yue; Wang, Biao
2012-06-01
In this paper, we introduce our finding of the effects of C60 nanoparticles (NP) infiltration on mechanical properties of cell and its membrane. Atomic force microscopy (AFM) is used to perform indentation on both normal and C60 infiltrated red blood cells (RBC) to gain data of mechanical characteristics of the membrane. Our results show that the mechanical properties of human RBC membrane seem to be altered due to the presence of C60 NPs. The resistance and ultimate strength of the C60 infiltrated RBC membrane significantly decrease. We also explain the mechanism of how C60 NPs infiltration changes the mechanical properties of the cell membrane by predicting the structural change of the lipid bilayer caused by the C60 infiltration at molecular level and analyze the interactions among molecules in the lipid bilayer. The potential hazards and application of the change in mechanical characteristics of the RBCs membrane are also discussed. Nanotoxicity of C60 NPs may be significant for some biological cells.
The role of three-body coulomb fields versus final state interactions in the decay of 12C-α-12C
International Nuclear Information System (INIS)
Quebert, J.L.; Bertault, D.; Scheurer, J.N.; Fouan, J.P.
1980-01-01
The alpha emission in 16 O + 12 C→ 12 C + α + 12 C has been thoroughly studied in the region of the rapidity plot: Ysub(α)=Ysub(c.m.). The three-body coulomb fields, as well as configurations close to alignment, account for the alpha yield which is observed. The apparent competition between direct and sequential decays is well explained by the coulomb break-up
St-Jean, Audray; Meziou, Salma; Ayotte, Pierre; Lucas, Michel
2017-11-22
Little is known about the suitability of three commonly used body mass index (BMI) classification systems for Indigenous youth. We estimated overweight and obesity prevalence among Cree youth of Eeyou Istchee according to three BMI classification systems, assessed the level of agreement between them, and evaluated their accuracy through body fat and cardiometabolic risk factors. Data on 288 youth (aged 8-17 years) were collected. Overweight and obesity prevalence were estimated with Centers for Disease Control and Prevention (CDC), International Obesity Task Force (IOTF) and World Health Organization (WHO) criteria. Agreement was measured with weighted kappa (κw). Associations with body fat and cardiometabolic risk factors were evaluated by analysis of variance. Obesity prevalence was 42.7% with IOTF, 47.2% with CDC, and 49.3% with WHO criteria. Agreement was almost perfect between IOTF and CDC (κw = 0.93), IOTF and WHO (κw = 0.91), and WHO and CDC (κw = 0.94). Means of body fat and cardiometabolic risk factors were significantly higher (P trend obesity, regardless of the system used. Youth considered overweight by IOTF but obese by CDC or WHO exhibited less severe clinical obesity. IOTF seems to be more accurate in identifying obesity in Cree youth.
Directory of Open Access Journals (Sweden)
Kathleen Thomaes
2016-03-01
Full Text Available Traumatic stress can have severe consequences for both mental and physical health. Furthermore, both psychological and biological traces of trauma increase as a function of accumulating traumatic experiences. Neurobiological research may aid in limiting the impact of traumatic stress, by leading to advances in preventive and treatment interventions. To promote the possibility for clinical implementation of novel research findings, this brief review describes timely conceptual and methodological challenges and directions in neurobiological trauma research on behalf of the Task Force “Neurobiology of Traumatic Stress” of the European Society for Traumatic Stress Studies (ESTSS. The most important conceptual challenges are the heterogeneity of disorders and existence of subtypes across diagnostic categories: differential latent profiles and trajectories regarding symptom expression and neural correlates are being unraveled; however, similar latent classes’ approaches for treatment response and neurobiological data remain scarce thus far. The key to improving the efficacy of currently available preventive interventions and treatments for trauma-related disorders lies in a better understanding and characterization of individual differences in response to trauma and interventions. This could lead to personalized treatment strategies for trauma-related disorders, based on objective information indicating whether individuals are expected to benefit from them. The most important methodological challenge identified here is the need for large consortia and meta-analyses or, rather, mega-analyses on existent data as a first step. In addition, large multicenter studies, combining novel methods for repeated sampling with more advanced statistical modeling techniques, such as machine learning, should aim to translate identified disease mechanisms into molecular blood-based biomarker combinations to predict disorder vulnerability and treatment responses.
Zhukov Kukhtevich, MV, IV; Komissarenko Chubinskiy-Nadezhdin, FE, VI
2017-11-01
Fabrication and investigation of specialized Pt-C single nanowhisker probes are carried out for high-precision study of objects with organic and inorganic nature in liquids by atomic force microscopy. The best modes and buffered media were revealed on calibration lattice TGQ1 choosing as reference inorganic structure. Preliminary results of the study of the structure of bacteria E.Coli in the native state were received in the PBS liquid. Fixation of the bacteria was performed on agar-agar with a mass fraction of 1.8%. The significant improvement of image contrast and resolution was found when using nanowhisker probes compare to standard Si tips.
2017-03-21
officers are implicated with deliberate extrajudicial killings, are rarely punished in civil cases. In most cases, the suspected officers are...addition, some cases involve convicted offenders being unduly released from prisons back to the community where they continue with their deviant acts. 6...judicial processes, as well as the correctional facilities such as the prisons . The role of the police in the CJS is to investigate crime, arrest
Directory of Open Access Journals (Sweden)
Aaron Belbasis
2018-04-01
Full Text Available Muscle activity and fatigue performance parameters were obtained and compared between both a smart compression garment and the gold-standard, a surface electromyography (EMG system during high-speed cycling in seven participants. The smart compression garment, based on force myography (FMG, comprised of integrated pressure sensors that were sandwiched between skin and garment, located on five thigh muscles. The muscle activity was assessed by means of crank cycle diagrams (polar plots that displayed the muscle activity relative to the crank cycle. The fatigue was assessed by means of the median frequency of the power spectrum of the EMG signal; the fractal dimension (FD of the EMG signal; and the FD of the pressure signal. The smart compression garment returned performance parameters (muscle activity and fatigue comparable to the surface EMG. The major differences were that the EMG measured the electrical activity, whereas the pressure sensor measured the mechanical activity. As such, there was a phase shift between electrical and mechanical signals, with the electrical signals preceding the mechanical counterparts in most cases. This is specifically pronounced in high-speed cycling. The fatigue trend over the duration of the cycling exercise was clearly reflected in the fatigue parameters (FDs and median frequency obtained from pressure and EMG signals. The fatigue parameter of the pressure signal (FD showed a higher time dependency (R2 = 0.84 compared to the EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue as a function of time rather than on the origin of fatigue (e.g., peripheral or central fatigue. In light of the high-speed activity results, caution should be exerted when using data obtained from EMG for biomechanical models. In contrast to EMG data, activity data obtained from FMG are considered more appropriate and accurate as an input for biomechanical modeling as they truly reflect the mechanical
Qiu, R.; Orme, C.; Cody, A. M.; Wierzbicki, A.; Hoyer, J.; Nancollas, G.; de Yoreo, J.
2002-12-01
Understanding the physical mechanisms by which biological inhibitors control nucleation and growth of inorganic crystals is a major focus of biomineral research. Calcium oxalate monohydrate (COM), which plays a functional role in plant physiology, is also a source of pathogenesis in humans where it causes kidney stone disease. Although a great deal of research has been carried out on the modulation COM by proteins and small molecules, the basic mechanism has not yet been understood. However, because the proteins that play a role in COM growth have been identified and sequenced, COM provides an excellent model system for research into biomineral growth. In this study, in situ atomic force microscopy (AFM) was used to monitor the COM surface under controlled growth conditions both from pure solutions and those doped with citrate and osteopontin (OPN) in order to determine their effects on surface morphology and growth dynamics at the molecular level. As with other solution-grown crystals such as calcite, COM grows on complex dislocation hillocks. In pure solution, while growth on the (010) face is isotropic, hillocks on the (-101) face exhibit anisotropic step kinetics. Steps of [-10-1] and orientation are clearly delineated with the [-10-1] being the fast growing direction. When citrate is added to the solution, both growth rate and morphology are drastically changed on (-101) face, especially along the [-10-1] direction. This results in isotropic disc-shaped hillocks a shape that is then reflected in the macroscopic growth habit. In contrast, no large growth changes were observed on the (010) facet. At the same time, molecular modeling predicts an excellent fit of the citrate ion into the (-101) plane and a poor fit to the (010) face. Here we propose a model that reconciles the step-specific interactions implied by the AFM results with the face-specific predictions of the calculations. Finally, we present the results of doping with aspartic acid as well as OPN, an
Wahab, Siti Waznah; Bister, Dirk; Sherriff, Martyn
2014-02-01
This study investigated the effect of ultraviolet type A light (UVA) exposure on the tensile properties of elastomeric chain. UVA light exposure was used as model for artificial aging, simulating prolonged storage of elastomeric chain. Tensile strength (n = 60) was measured after exposing Ormco, Forestadent and 3M chains to UVA light for 0, 2, 3, and 4 weeks. Force decay was measured (n = 60) using chain exposed for 5, 10, and 14 days. The chains were subsequently stretched at a constant distance and the resulting forces measured at 0, 1, 24 hours and 7, 14, 21, and 28 days. This test simulated a clinical scenario of pre-stretching and subsequent shortening of elastomeric chain. Tensile strength had statistically significant difference and was directly related to the duration of ultraviolet (UV) light exposure. Forestadent chain, which had the second highest value for the 'as received' product, showed the most consistent values over time with the lowest degradation. Ormco showed the lowest values for 'as received' as well as after UV exposure; 3M chain had the highest loss of tensile strength. Force decay was also significantly different. UV light exposure of 10 days or more appears to mark a 'watershed' between products: 3M had most survivors, Forestadent chain had some survivors, depending on the time the chain was stretched for. None of the Ormco product survived UV light exposure for more than 5 days. UVA light exposure may be used as a model for artificial aging as it reduces force delivery and tensile strength of exposed chains.
The K-harmonics methods and the bound-state spectrum of one-dimensional three-body system
International Nuclear Information System (INIS)
Malta, C.P.; Coutinho, F.A.B.
1983-03-01
The symmetry properties of one-dimensional hyperspherical harmonics components have been investigated. For a system of three identical particles moving in one-dimension it is shown how to construct solutions of definite parity and definite transformation properties under permutation of any particle pair. General qualitative features of the spectrum of the one-dimensional system are deduced for particles satisfying Bose-Einstein, Fermi-Dirac and Boltzmann statistics. (Author) [pt
Sadeghi, Javad; Khajehdezfuly, Amin; Esmaeili, Morteza; Poorveis, Davood
2016-07-01
Rail irregularity is one of the most significant load amplification factors in railway track systems. In this paper, the capability and effectiveness of the two main railway slab tracks modeling techniques in prediction of the influences of rail irregularities on the Wheel/Rail Dynamic Force (WRDF) were investigated. For this purpose, two 2D and 3D numerical models of vehicle/discontinuous slab track interaction were developed. The validation of the numerical models was made by comparing the results of the models with those obtained from comprehensive field tests carried out in this research. The effects of the harmonic and non-harmonic rail irregularities on the WRDF obtained from 3D and 2D models were investigated. The results indicate that the difference between WRDF obtained from 2D and 3D models is negligible when the irregularities on the right and left rails are the same. However, as the difference between irregularities of the right and left rails increases, the results obtained from 2D and 3D models are considerably different. The results indicate that 2D models have limitations in prediction of WRDF; that is, a 3D modeling technique is required to predict WRDF when there is uneven or non-harmonic irregularity with large amplitudes. The size and extent of the influences of rail irregularities on the wheel/rail forces were discussed leading to provide a better understanding of the rail-wheel contact behavior and the required techniques for predicting WRDF.
Directory of Open Access Journals (Sweden)
Stoiljković Zora Ž.
2014-01-01
Full Text Available An isocratic, reversed-phase liquid chromatographic method was applied for the investigation of the degradation products of amlodipine besylate under the stressed conditions in solution. Amlodipine besylate stock solutions were subjected to acid and alkali hydrolysis, chemical oxidation and photodegradation as well as to the electrochemical degradation by cyclic voltammetry in 0.05 mol/L NaHCO3 on gold electrode. The total degradation of amlodipine besylate was achieved in 5 mol/L NaOH at 80°C for 6 h and the compound with molecular formula C15H16NOCl was identified as a main degradation product. Under acidic (5 mol/L HCl at 80°C for 6 h stress conditions 75.2% of amlodipine besylate degradation was recorded. Oxidative degradation in the solution of 3% H2O2-methanol 80:20 at 80°C for 6 h showed that amlodipine besylate degraded to 80.1%. After 14 days of expose in photostability chamber amlodipine besylate solution showed degradation of 32.2%. In electrochemical degradation after 9 hours of cyclization the beginning of amlodipine oxidation was shifted for 200 mV to more negative potentials, with the degradation of 66.5%. Mass spectrometry analysis confirmed the presence of dehydro amlodipine derivate with molecular formula C20H23N2O5Cl in oxidative and acidic conditions while in electrochemical degradation was detected in traces. [Projekat Ministarsva nauke Republike Srbije, br. 172013
Directory of Open Access Journals (Sweden)
R Fathi
2011-09-01
Full Text Available A three-body model is devised to study differential and total cross sections for the excitation of helium atom under impact of energetic protons. The actual process is a four body one but in the present model the process is simplified into a three-body one. In this model, an electron of helium atom is assumed to be inactive and only one electron of the atom is active. Therefore, the active electron is assumed to be in an atomic state with a potential of the nucleus, T, being screened by the inactive electron, e, and, thus, an effective charge of Ze. As a result, the ground state, 11S, or the excited states, 21S and 21P, wave function of the active electron is deduced from similar hydrogenic wave functions assuming effective charge, Ze for the combined nucleus (T+e. In this three-body model, the Faddeev-Watson-Lovelace formalism for excitation channel is used to calculate the transition amplitude. In the first order approximation, electronic and nuclear interaction is assumed in the collision to be A(1e=
Yang, Bing-Fang; Liu, Zhi-Yong; Liu, Ning
2017-04-01
Motivated by the search for flavor-changing neutral current (FCNC) top quark decays at the LHC, we calculate the rare Higgs three body decay H → Wbc induced by top-Higgs FCNC coupling in the littlest Higgs model with T-parity (LHT). We find that the branching ratio of H → Wbc in the LHT model can reach O(10-7) in the allowed parameter space. Supported by National Natural Science Foundation of China (11305049, 11405047), Startup Foundation for Doctors of Henan Normal University (11112, qd15207) and Education Department Foundation of Henan Province(14A140010)
International Nuclear Information System (INIS)
Kazantzis, P.G.
1979-01-01
New families of three-dimensional double-symmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families bifurcate from the 'vertical-critical' orbits (αsub(ν) = -1, csub(ν) = 0) of the 'basic' plane families i. g 1 g 2 h, a, m and I. Further the numerical procedure employed in the determination of these families has been described and interesting results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections. (orig.)
Directory of Open Access Journals (Sweden)
V. K. Shatalov
2014-01-01
Full Text Available Outboard elements (arms, towers are widely used in spacecraft structure for setting-out of a payload; their high stiffness-weight ratio provides an opportunity to decrease the mass. The deployment unit is considered as an example of outboard structure. Its strength beams work under special conditions in operation. At the transportation stage beams are under considerable vibration loads. Therefore for increasing the natural resonance frequency it is rational to increase their rigidity. Using the micro-arc oxide coating suggests itself because the modulus of elasticity of the micro-arc oxide coating is more than that of the aluminium alloy. The beams suffer considerable bending load at the step of deploying; therefore the aluminium alloy with the micro-arc oxide coating must have suitable loading capacity, in addition to increased rigidity.Influence of micro-arc oxide coating on the rigidity and strength of tubes f rom aluminium alloy is investigated. It is determined that forming the micro-arc oxide coating on thin-walled tubes with a ratio of the coating area to the cross-section area of more than 25% is the most rational. In this case the rigidity of composite material considerably exceeds the rigidity of the aluminium alloy of the same cross-section while the redistribution of stresses in the surface coating of heterogeneous elasticity cross-section doesn’t cause the sudden increase of stresses. Also forming an attainable thickness of the micro-arc oxide coating on the surface of tube from aluminium alloy will be rational solution because the increase of attainable thickness of the microarc oxide coating provides an opportunity to form it on thick-walled tubes saving an acceptable, in the context of the strength, ratio of the coating area to the overall cross-section area.Micro-arc oxidation is an advanced method to form the wear resistant, resistant to corrosion, heat-shielding and electrically insulating coatings, but depending on the
Patil, Harshal Bhauso; Dingare, Sunil Vishnu
2018-03-01
Heat exchange upgrade is a vital territory of research area. Utilization of reasonable systems can bring about noteworthy specialized points of interest coming about reserve funds of cost. Rectangular plates are viewed as best balance arrangement utilized for heat exchange improvement. This gives an enlargement strategy to heat exchange with beginning of limit layer and vortex development. To assess and look at the rate of heat exchange enhancement by rectangular plate fins with differing inclinations (0°-30°-60°), shifting Re and heat supply under forced convection are the principle destinations of this study. The study is done by fluctuating introductions of fins with various inclinations, input heat supply and Re under forced convection. The coefficient of heat transfer increments observed with the expansion in air speed for all the examined designs. The coefficient of the heat transfer is discovered higher at the edge of introduction of fins at 30° for inline arrangement and 0° for staggered arrangement. Looking at both the arrangements, it is discovered that the heat transfer coefficient in 0° fin staggered arrangement is about 17% higher than 30° inline arrangement and 76% higher than the vertical plate fin. For plate fin heat sink, boundary layer formation and growth results in decrease of the coefficient of heat transfer in forced convection. This issue is overcome by accommodating some rectangular fins on the plate fin. It brings about increment of heat transfer coefficient of the RPFHS under the states of trial factors. As indicated by past research, it is discovered that examination of the plate fin heat sink with various sorts of fins for horizontal orientation is done yet but this investigation expects to discover the upgrade of transfer coefficient of plate fin heat sink for its vertical position with rectangular plates at different inclinations under the shifting scopes of heat input supply, fin arrangements and Reynolds number (Re).
Energy Technology Data Exchange (ETDEWEB)
Weaver, M L; Qiu, S R; Hoyer, J R; Casey, W H; Nancollas, G H; De Yoreo, J J
2008-05-28
The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin (OPN), and the 27-residue synthetic peptides (DDDS){sub 6}DDD and (DDDG){sub 6}DDD [where D = aspartic acid and X = S (serine) or G (glycine)] was investigated via in situ atomic force microscopy (AFM). The results show that these three growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition or increase of the step speeds (with respect to the impurity-free system) depending on a range of factors that include peptide or protein concentration, supersaturation and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the (-101) face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we argue for a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at crystal surface.
Energy Technology Data Exchange (ETDEWEB)
Garcilazo, H., E-mail: humberto@esfm.ipn.mx [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Edificio 9, 07738 Mexico D.F. (Mexico); Gal, A., E-mail: avragal@savion.huji.ac.il [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)
2013-01-02
The {pi}{Lambda}N-{pi}{Sigma}N coupled-channel system with quantum numbers (Y,I,J{sup P})=(1,3/2 ,2{sup +}) is studied in a relativistic three-body model, using two-body separable interactions in the dominant p-wave pion-baryon and {sup 3}S{sub 1}YN channels. Three-body equations are solved in the complex energy plane to search for quasibound state and resonance poles, producing a robust narrow {pi}{Lambda}N resonance about 10-20 MeV below the {pi}{Sigma}N threshold. Viewed as a dibaryon, it is a {sup 5}S{sub 2} quasibound state consisting of {Sigma}(1385)N and {Delta}(1232)Y components. Comparison is made between the present relativistic model calculation and a previous, outdated nonrelativistic calculation which resulted in a {pi}{Lambda}N bound state. Effects of adding a K{sup Macron }NN channel are studied and found insignificant. Possible production and decay reactions of this (Y,I,J{sup P})=(1,3/2 ,2{sup +}) dibaryon are discussed.
Zhan, Jinglin; Chen, Zhizhong; Jiao, Qianqian; Feng, Yulong; Li, Chengcheng; Chen, Yifan; Chen, Yiyong; Jiao, Fei; Kang, Xiangning; Li, Shunfeng; Wang, Qi; Yu, Tongjun; Zhang, Guoyi; Shen, Bo
2018-03-05
GaN/InGaN multi-quantum-wells (MQWs) micron light emitting diodes (µLEDs) with the size ranging from 10 to 300 µm are fabricated. Effects of strain relaxation on the performance of µLEDs have been investigated both experimentally and numerically. Kelvin probe force microscopy (KPFM) and micro-photoluminescence (µPL) are used to characterize the strained area on micron pillars. Strain relaxation and reducing polarization field in MQWs almost affects the whole mesa for 10 µm LEDs and about 4% area around the lateral for 300 µm LEDs. It makes a great contribution to high performance for smaller size µLEDs. Moreover, an indirect nanoscale strain measurement for µLEDs are provided.
Criddle, N.; Taylor, M. J.; Pautet, P. D.; Zhao, Y.
2014-12-01
DEEPWAVE is a new international collaborative research program focused on identifying, characterizing, and predicting the generation and propagation of deeply propagating atmospheric gravity waves from the Earth's surface up to ̴100 km altitude and beyond. An extended series of coordinated airborne and ground-based measurements were recently conducted from New Zealand's South Island to investigate gravity wave forcing during the winter months when strong North-Westerly winds are known to generate gravity waves capable of penetrating well into the stratosphere. As part of this collaborative effort the Atmospheric Imaging Lab at Utah State University (USU) deployed and operated an Advanced Mesospheric Temperature Mapper (AMTM) at the National Institute for Water and Atmosphere (NIWA) Lauder research station, NZ (45°S 169°E). In the lee of the Southern Alps, Lauder is well positioned for measuring a broad spectrum of gravity waves launched from south island orography and from other meteorological sources. The AMTM is uniquely capable of mapping the wave-induced temperature perturbations to investigate the two-dimensional gravity wave field with high temporal ( ̴10 sec) and high temperature precision ( ̴1-2 K in 30 sec). High-quality infrared image measurements of the OH (3,1) band emission layer (altitude ̴ 87 km) were made nightly from May 31 to July 22, 2014. The DEEPWAVE program has been a resounding success and over 42 nights of data were obtained at Lauder with distinct mesospheric mountain wave signatures recorded there in OH intensity, and in temperatures for the first time. In this poster we provide a summary of the AMTM data set from Lauder, complemented by data from coincident airborne over-flights where appropriate, and we present initial results characterizing the mesopause gravity wave field under varying orographic forcings. We thank the NSF for sponsoring this research program.
Stájer, Anette; Ungvári, Krisztina; Pelsoczi, István K; Polyánka, Hilda; Oszkó, Albert; Mihalik, Erzsébet; Rakonczay, Zoltán; Radnai, Márta; Kemény, Lajos; Fazekas, András; Turzó, Kinga
2008-11-01
High fluoride (F(-)) concentrations and acidic pH impair the corrosion resistance of titanium (Ti). Effects of F(-)-containing caries-preventive prophylactic rinses, and gels on Ti were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Human epithelial cell attachment and proliferation were investigated by dimethylthiazol-diphenyl tetrazolium bromide (MTT) and protein content assays. Aqueous 1% NaF solution (3800 ppm F(-), pH 4.5) or high (12,500 ppm) F(-) content gel (pH 4.8) strongly corroded the surface and modified its composition. XPS revealed formation of a strongly bound F(-)-containing complex (Na(2)TiF(6)). AFM indicated an increase in roughness (R(a)) of the surfaces: 10-fold for the NaF solution and smaller for the gel or a mouthwash (250 ppm F(-), pH 4.4). MTT revealed that cell attachment was significantly increased by the gel, but was not disturbed by either the mouthwash or the NaF. Cell proliferation determined by MTT decreased significantly only for the NaF-treated samples; protein content assay experiments showed no such effect. This study indicates that epithelial cell culturing results can depend on the method used, and the adverse effects of a high F(-) concentration and low pH should be considered when prophylactic gels are applied by patients with Ti implants or other dental devices.
Poincaré, Henri
2017-01-01
Here is an accurate and readable translation of a seminal article by Henri Poincaré that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincaré applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations’ solutions, such as orbital resonances and horseshoe orbits. Poincaré wrote for professional mathematicians and astronomers interested in celestial mechanics and differential equations. Contemporary historians of math or science and researchers in dynamical systems and planetary motion with an interest in the origin or history of their field will find his work fascinating. .
Monte-Carlo simulation and analysis of the spectrum of p + sup 1 sup 1 B three-body sequential decay
Li Chen; Meng Qiu Ying; Zhang Pei Hua; Lin Er Kang
2002-01-01
The new experimental data of sup 1 sup 1 B(p, alpha sub 1) sup 8 Be* sup ( sup 1 sup ) (2 alpha) three-body decay show that the continuous alpha spectrum of the two alpha particles produced by the intermediate nuclear sup 8 Be* sup ( sup 1 sup ) looks like a saddle type distribution. To explain the experimental facts, the authors have written a Monte Carlo simulation program to the p + sup 1 sup 1 B reaction. The calculation results of the program indicate that the anisotropy distribution emission of the decay alpha particles produced by sup 8 Be* sup ( sup 1 sup ) can give a satisfying explanation to the experimental spectrum
Energy Technology Data Exchange (ETDEWEB)
Ramazani-Moghaddam-Arani, A., E-mail: ramazani@kvi.nl [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); KVI, University of Groningen, Groningen (Netherlands); Mahjour-Shafiei, M. [Department of Physics, University of Tehran, Tehran 1439955961 (Iran, Islamic Republic of); KVI, University of Groningen, Groningen (Netherlands); Amir-Ahmadi, H.R. [KVI, University of Groningen, Groningen (Netherlands); Bacher, A.D.; Bailey, C.D. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN (United States); Biegun, A. [KVI, University of Groningen, Groningen (Netherlands); Eslami-Kalantari, M. [KVI, University of Groningen, Groningen (Netherlands); Department of Physics, Faculty of Science, Yazd University, Yazd (Iran, Islamic Republic of); Gašparić, I. [Rudjer Bošković Institute, Zagreb (Croatia); Joulaeizadeh, L.; Kalantar-Nayestanaki, N. [KVI, University of Groningen, Groningen (Netherlands); Kistryn, St. [Institute of Physics, Jagellonian University, Krakow (Poland); Kozela, A. [University of Winnipeg, Winnipeg (Canada); Mardanpour, H.; Messchendorp, J.G. [KVI, University of Groningen, Groningen (Netherlands); Micherdzinska, A.M. [Institute of Nuclear Physics PAN, Krakow (Poland); Moeini, H.; Shende, S.V. [KVI, University of Groningen, Groningen (Netherlands); Stephan, E. [Institute of Physics, University of Silesia, Katowice (Poland); Stephenson, E.J. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN (United States); Sworst, R. [Institute of Physics, Jagellonian University, Krakow (Poland)
2013-10-01
We have studied spin observables in the three-body break-up reaction in deuteron–deuteron scattering in the phase-space regime that corresponds to the quasi-free deuteron–proton scattering process with the neutron as spectator. The data are compared to measurements of the elastic deuteron–proton scattering process and state-of-the-art Faddeev calculations. The results for iT{sub 11} and T{sub 22} for the quasi-free scattering data agree very well with previously published elastic-scattering data. A significant discrepancy is found for T{sub 20}, which could point to a break-down of the quasi-free assumption.
Arnot, C. S.; McInnes, C. R.; McKay, R. J.; Macdonald, M.; Biggs, J.
2018-02-01
This paper presents rich new families of relative orbits for spacecraft formation flight generated through the application of continuous thrust with only minimal intervention into the dynamics of the problem. Such simplicity facilitates implementation for small, low-cost spacecraft with only position state feedback, and yet permits interesting and novel relative orbits in both two- and three-body systems with potential future applications in space-based interferometry, hyperspectral sensing, and on-orbit inspection. Position feedback is used to modify the natural frequencies of the linearised relative dynamics through direct manipulation of the system eigenvalues, producing new families of stable relative orbits. Specifically, in the Hill-Clohessy-Wiltshire frame, simple adaptations of the linearised dynamics are used to produce a circular relative orbit, frequency-modulated out-of-plane motion, and a novel doubly periodic cylindrical relative trajectory for the purposes of on-orbit inspection. Within the circular restricted three-body problem, a similar minimal approach with position feedback is used to generate new families of stable, frequency-modulated relative orbits in the vicinity of a Lagrange point, culminating in the derivation of the gain requirements for synchronisation of the in-plane and out-of-plane frequencies to yield a singly periodic tilted elliptical relative orbit with potential use as a Lunar far-side communications relay. The Δ v requirements for the cylindrical relative orbit and singly periodic Lagrange point orbit are analysed, and it is shown that these requirements are modest and feasible for existing low-thrust propulsion technology.
Boito, D.; Dedonder, J.-P.; El-Bennich, B.; Escribano, R.; Kamiński, R.; Leśniak, L.; Loiseau, B.
2017-12-01
We introduce parametrizations of hadronic three-body B and D weak decay amplitudes that can be readily implemented in experimental analyses and are a sound alternative to the simplistic and widely used sum of Breit-Wigner type amplitudes, also known as the isobar model. These parametrizations can be particularly useful in the interpretation of C P asymmetries in the Dalitz plots. They are derived from previous calculations based on a quasi-two-body factorization approach in which two-body hadronic final-state interactions are fully taken into account in terms of unitary S - and P -wave π π , π K , and K K ¯ form factors. These form factors can be determined rigorously, fulfilling fundamental properties of quantum field-theory amplitudes such as analyticity and unitarity, and are in agreement with the low-energy behavior predicted by effective theories of QCD. They are derived from sets of coupled-channel equations using T -matrix elements constrained by experimental meson-meson phase shifts and inelasticities, chiral symmetry, and asymptotic QCD. We provide explicit amplitude expressions for the decays B±→π+π-π±, B →K π+π-, B±→K+K-K±, D+→π-π+π+, D+→K-π+π+, and D0→KS0π+π-, for which we have shown in previous studies that this approach is phenomenologically successful; in addition, we provide expressions for the D0→KS0K+K- decay. Other three-body hadronic channels can be parametrized likewise.
Soepangkat, Bobby O. P.; Agustin, H. C. Kis; Subiyanto, H.
2017-06-01
This research aimed to analyze the viability of the minimum quantity of lubricant (MQL) technique towards normal force, tangential force, surface roughness and chip formation in surface grinding of SKD 11 tool steel. The three surface grinding parameters were varied including the type of cooling method (MQL and dry), table speed, and depth of cut. Based on statistical analysis, depth of cut is the most influential factor which affects the four responses in both dry and MQL grinding. MQL could reduce normal force and tangential force considerably, but produce higher surface roughness. In MQL grinding, the chips removal took place mostly by shearing and fracturing.
Liu, Huiqing; Wang, Nan; Zhang, Zhe; Wang, Hongda; Du, Jun; Tang, Jilin
2017-01-01
Chronic inflammation orchestrates the tumor microenvironment and is strongly associated with cancer. Tumor necrosis factor- α (TNF α ) is involved in tumor invasion and metastasis by inducing epithelial to mesenchymal transition (EMT). This process is defined by the loss of epithelial characteristics and gain of mesenchymal traits. The mechanisms of TNF α -induced EMT in cancer cells have been well studied. However, mechanical properties have not yet been probed. In this work, atomic force microscopy (AFM) was applied to investigate the morphology and mechanical properties of EMT in HCT116 human colon cancer cells. A remarkable morphological change from cobblestone shape to spindle-like morphology was observed. In parallel, AFM images showed that the cellular cytoskeleton was rearranged from a cortical to a stress-fiber pattern. Moreover, cell stiffness measurements indicated that Young's modulus of cells gradually reduced from 1 to 3 days with TNF α -treatment, but it has an apparent increase after 4 days of treatment compared with that for 3 days. Additionally, Young's modulus of the cells treated with TNF α for 4 days is slightly larger than that for 1 or 2 days, but still less than that of the untreated cells. Our work contributes to a better understanding of colorectal cancer metastasis induced by inflammation.
Directory of Open Access Journals (Sweden)
Huiqing Liu
2017-01-01
Full Text Available Chronic inflammation orchestrates the tumor microenvironment and is strongly associated with cancer. Tumor necrosis factor-α (TNFα is involved in tumor invasion and metastasis by inducing epithelial to mesenchymal transition (EMT. This process is defined by the loss of epithelial characteristics and gain of mesenchymal traits. The mechanisms of TNFα-induced EMT in cancer cells have been well studied. However, mechanical properties have not yet been probed. In this work, atomic force microscopy (AFM was applied to investigate the morphology and mechanical properties of EMT in HCT116 human colon cancer cells. A remarkable morphological change from cobblestone shape to spindle-like morphology was observed. In parallel, AFM images showed that the cellular cytoskeleton was rearranged from a cortical to a stress-fiber pattern. Moreover, cell stiffness measurements indicated that Young’s modulus of cells gradually reduced from 1 to 3 days with TNFα-treatment, but it has an apparent increase after 4 days of treatment compared with that for 3 days. Additionally, Young’s modulus of the cells treated with TNFα for 4 days is slightly larger than that for 1 or 2 days, but still less than that of the untreated cells. Our work contributes to a better understanding of colorectal cancer metastasis induced by inflammation.
International Nuclear Information System (INIS)
Gibson, J.D.; Pratt, G.; Davidson, H.; DeWitt, C.; Hitchcock, C.; Kelson, K.; Noller, J.; Sawyer, T.; Thomas, E.
1994-01-01
This paper presents results of preliminary geologic site characterization and hydrogeologic conceptual model development for the 250-km 2 Kirtland Air Force Base (KAFB) and associated lands in central New Mexico. The research, development, and other operational activities of the Department of Defense (DoD) and Department of Energy (DOE) on KAFB over the last 50 years have resulted in diverse hazardous, radioactive, and mixed-waste environmental concerns. Because multiple federal, state, and local agencies are responsible for administrating the involved lands and because of the nature of many U.S. environmental regulations, individual contaminated and potentially contaminated DoD and DOE environmental restoration (ER) sites on KAFB are commonly handled as distinct entities with little consideration for the cumulative environmental and health risk from all sites. A site-wide characterization program has been undertaken at Sandia National Laboratories/New Mexico (SNL/NM), under the auspices of the DOE, to construct a conceptual hydrogeologic model for the base. This conceptual model serves as the basis for placing each ER site into a broader context for evaluating background (i.e., non-contaminated) conditions and for modeling of possible contaminant pathways and travel-times. Regional and local hydrogeologic investigations from KAFB can be used as models for characterizing and evaluating other sites around the world where combined civilian and military environmental programs must work together to resolve environmental problems that may present health risks to workers and the general public
Energy Technology Data Exchange (ETDEWEB)
Jindra, Sarah A. [Wright State Univ., Dayton, OH (United States); Bertagni, Angela L. [Wright State Univ., Dayton, OH (United States); Bracco, Jacquelyn N. [Wright State Univ., Dayton, OH (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Higgins, Steven R. [Wright State Univ., Dayton, OH (United States)
2017-09-25
Here, to better understand the role of spectator ions in barite growth, the kinetics of step edge growth on barite (001) surfaces were studied under various salt solutions. Hydrothermal atomic force microscopy (HAFM) was used to investigate the effect of background electrolytes (NaCl, NaBr, and NaNO_{3}) as a function of saturation index and ionic strength (I) on barite growth sourced at dislocations at 108 °C. Results demonstrate that hillock morphology is affected by I, as well as type of anion, where the prevalence of steps aligned on the [010] direction is highest under Cl^{–}. There is a modest increase in kinetic coefficient of 55–130% with a 10-fold increase in I for each salt. In comparing the kinetic coefficients of the salts at low ionic strength (0.01 M), there is a moderate difference, suggesting that the anion may play a role in barium attachment.
Rad, Maryam Alsadat; Ibrahim, Kamarulazizi; Mohamed, Khairudin
2012-05-01
The present paper investigates the surface roughness generated by reactive ion etching (RIE) on the location between silicon dioxide (SiO2) micro-pits structures. The micro-pit pattern on polymethyl methacrylate (PMMA) mask was created by an electron beam lithography tool. By using PMMA as a polymer resist mask layer for pattern transfer in RIE process, the carbon (C) content in etching process is increased, which leads to decrease of F/C ratio and causes domination of polymerization reactions. This leads to high surface roughness via self-organized nanostructure features generated on SiO2 surface which was analyzed using atomic force microscopy (AFM) technique. The etching chemistry of CHF3 plasma on PMMA masking layer and SiO2 is analyzed to explain the polymerization. The surface root-mean-square (RMS) roughness below 1 nm was achieved by decreasing the RF power to 150 W and process pressure lower than 10 mTorr.
Rodrigues Cavalcante, Ana Barbara; Joram, Christian
In the first part of the thesis, we present studies on three-body charmless $B^\\pm$ decays. The analysis is performed using LHCb dataset from proton-proton collisions at the centre-of-mass energy of 7 TeV and 8 TeV collected in 2011 and 2012, respectively, corresponding to an integrated luminosity of 3.1 fb$^{-1}$. We measured the inclusive $CP$ asymmetry of the four channels: $B^\\pm\\to K^\\pm\\pi^+\\pi^-$, $B^\\pm \\to K^\\pm K^+ K^-$, $B^\\pm \\to \\pi^\\pm\\pi^+\\pi^-$ and $B^\\pm\\to \\pi^\\pm K^+ K^-$. $CP$ asymmetries were also studied along the phase space. The second part of this thesis is devoted to my contribution to the LHCb SciFi Tracker, a detector made of scintillating fibres. It presents the experimental setups used to characterise the scintillating fibres which need to meet specific requirements to be able to operate under the running conditions foreseen for the LHCb upgrade. In addition, we discuss the results on the development of fibres made of a new class of scintillating material denominated as Nanostruc...
Kim, Haeri; Park, Se Jin; Kim, Byungwoo; Hwang, Yun Jeong; Min, Byoung Koun
2018-02-05
CuIn 1-x Ga x S 2-y Se y (CIGSSe) thin films have attracted a great deal of attention as promising absorbing materials for solar cell applications, owing to their favorable optical properties (e.g. a direct band gap and high absorption coefficients) and stable structure. Many studies have sought to improve the efficiency of solar cells using these films, and it has been found that surface modification through post-heat treatment can lead to surface passivation of surface defects and a subsequent increase in efficiency. The surface properties of solution-processed CIGSSe films are considered to be particularly important in this respect, owing to the fact that they are more prone to defects. In this work, CIGSSe thin films with differing S/Se ratios at their surface were synthesized by using a precursor solution and post-sulfurization heat treatment. These CIGSSe thin films were investigated with current-voltage and Kelvin probe force microscope (KPFM) analyses. Surface photovoltage (SPV), which is the difference in the work function in the dark and under illumination, was measured by using KPFM, which can examine the screening and the modification of surface charge through carrier trapping. As the concentration of S increases on the CIGSSe film surface, higher work functions and more positive SPV values were observed. Based on these measurements, we inferred the band-bending behavior of CIGSSe absorber films and proposed reasons for the improvement in solar cell performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Broo, Anders; Nilsson Lill, Sten O
2016-08-01
A new force field, here called AZ-FF, aimed at being used for crystal structure predictions, has been developed. The force field is transferable to a new type of chemistry without additional training or modifications. This makes the force field very useful in the prediction of crystal structures of new drug molecules since the time-consuming step of developing a new force field for each new molecule is circumvented. The accuracy of the force field was tested on a set of 40 drug-like molecules and found to be very good where observed crystal structures are found at the top of the ranked list of tentative crystal structures. Re-ranking with dispersion-corrected density functional theory (DFT-D) methods further improves the scoring. After DFT-D geometry optimization the observed crystal structure is found at the leading top of the ranking list. DFT-D methods and force field methods have been evaluated for use in predicting properties such as phase transitions upon heating, mechanical properties or intrinsic crystalline solubility. The utility of using crystal structure predictions and the associated material properties in risk assessment in connection with form selection in the drug development process is discussed.
Medehouenou, Thierry Comlan Marc; Ayotte, Pierre; St-Jean, Audray; Meziou, Salma; Roy, Cynthia; Muckle, Gina; Lucas, Michel
2015-07-01
Little is known about the suitability of three commonly used body mass index (BMI) classification system for Indigenous children. This study aims to estimate overweight and obesity prevalence among school-aged Nunavik Inuit children according to International Obesity Task Force (IOTF), Centers for Disease Control and Prevention (CDC), and World Health Organization (WHO) BMI classification systems, to measure agreement between those classification systems, and to investigate whether BMI status as defined by these classification systems is associated with levels of metabolic and inflammatory biomarkers. Data were collected on 290 school-aged children (aged 8-14 years; 50.7% girls) from the Nunavik Child Development Study with data collected in 2005-2010. Anthropometric parameters were measured and blood sampled. Participants were classified as normal weight, overweight, and obese according to BMI classification systems. Weighted kappa (κw) statistics assessed agreement between different BMI classification systems, and multivariate analysis of variance ascertained their relationship with metabolic and inflammatory biomarkers. The combined prevalence rate of overweight/obesity was 26.9% (with 6.6% obesity) with IOTF, 24.1% (11.0%) with CDC, and 40.4% (12.8%) with WHO classification systems. Agreement was the highest between IOTF and CDC (κw = .87) classifications, and substantial for IOTF and WHO (κw = .69) and for CDC and WHO (κw = .73). Insulin and high-sensitivity C-reactive protein plasma levels were significantly higher from normal weight to obesity, regardless of classification system. Among obese subjects, higher insulin level was observed with IOTF. Compared with other systems, IOTF classification appears to be more specific to identify overweight and obesity in Inuit children. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Gusso, André; Burnham, Nancy A.
2016-09-01
It has long been recognized that stochastic surface roughness can considerably change the van der Waals (vdW) force between interacting surfaces and particles. However, few analytical expressions for the vdW force between rough surfaces have been presented in the literature. Because they have been derived using perturbative methods or the proximity force approximation the expressions are valid when the roughness correction is small and for a limited range of roughness parameters and surface separation. In this work, a nonperturbative approach, the effective density method (EDM) is proposed to circumvent some of these limitations. The method simplifies the calculations of the roughness correction based on pairwise summation (PWS), and allows us to derive simple expressions for the vdW force and energy between two semispaces covered with stochastic rough surfaces. Because the range of applicability of PWS and, therefore, of our results, are not known a priori, we compare the predictions based on the EDM with those based on the multilayer effective medium model, whose range of validity can be defined more properly and which is valid when the roughness correction is comparatively large. We conclude that the PWS can be used for roughness characterized by a correlation length of the order of its rms amplitude, when this amplitude is of the order of or smaller than a few nanometers, and only for typically insulating materials such as silicon dioxide, silicon nitride, diamond, and certain glasses, polymers and ceramics. The results are relevant for the correct modeling of systems where the vdW force can play a significant role such as micro and nanodevices, for the calculation of the tip-sample force in atomic force microscopy, and in problems involving adhesion.
Occupational Outlook Quarterly, 2012
2012-01-01
The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…
International Nuclear Information System (INIS)
Tsytovich, V N; Morfill, G; Konopka, U; Thomas, H
2003-01-01
Numerical solutions of stationary force balance equations are used to investigate the possible dust configurations (dust structures) in complex plasmas between two floating potential plane electrodes. The distance between electrodes is assumed to be larger than the ion-neutral mean free path and the hydrodynamic description is used. It includes the known forces operating in this limit, the ionization source and the dust charge variations. The stationary balance equations are solved both in the case of the presence of one-size dust grains and for the case of a mixture of grains with two different sizes. Recent micro-gravity experiments with single-size dust grains and two-different-size dust grains show the formation of a system of dust sheaths and dust voids between the two plane electrodes. The observed configurations of dust structures depend strongly on the gas pressure and the degree of ionization used. The numerical investigations are able to show the necessary conditions for the types of structure to be created and give their size. The size of the structures observed is larger than the ion-neutral mean free path and is of the order of magnitude of that obtained numerically. The numerical investigations give details of the spatial distributions, the dust particles, the electron/ion densities, the ion drift velocity and dust charges inside and outside different dust structures. These details have not yet been investigated experimentally and can indicate directions for further experimental work to be performed. The single-dust-sheath structure with single-size dust particles surrounded by dust free regions (dust wall-voids) and floating potential electrodes is computed. Such a structure was observed recently and the computational results are in agreement with observations. It is shown that more often a dust void in the centre is observed. It is found that a dust void in the centre region between two electrodes is formed if the ionization rate is larger than the
International Nuclear Information System (INIS)
Aris, M.S.; McGlen, R.; Owen, I.; Sutcliffe, C.J.
2011-01-01
Forced air convection heat pipe cooling systems play an essential role in the thermal management of electronic and power electronic devices such as microprocessors and IGBT's (Integrated Gate Bipolar Transistors). With increasing heat dissipation from these devices, novel methods of improving the thermal performance of fin stacks attached to the heat pipe condenser section are required. The current work investigates the use of a wing type surface protrusions in the form of 3-D delta wing tabs adhered to the fin surface, thin wings punched-out of the fin material and TiNi shape memory alloy delta wings which changed their angles of attack based on the fin surface temperature. The longitudinal vortices generated from the wing designs induce secondary mixing of the cooler free stream air entering the fin stack with the warmer fluid close to the fin surfaces. The change in angle of the attack of the active delta wings provide heat transfer enhancement while managing flow pressure losses across the fin stack. A heat transfer enhancement of 37% compared to a plain fin stack was obtained from the 3-D tabs in a staggered arrangement. The punched-out delta wings in the staggered and inline arrangements provided enhancements of 30% and 26% respectively. Enhancements from the active delta wings were lower at 16%. However, as these devices reduce the pressure drop through the fin stack by approximately 19% in the de-activate position, over the activated position, a reduction in fan operating cost may be achieved for systems operating with inlet air temperatures below the maximum inlet temperature specification for the device. CFD analysis was also carried out to provide additional detail of the local heat transfer enhancement effects. The CFD results corresponded well with previously published reports and were consistent with the experimental findings. - Highlights: → Heat transfer enhancements of heat pipe fin stacks was successfully achieved using fixed and active delta
Buhmann, Stefan Yoshi
2012-01-01
In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...
Energy Technology Data Exchange (ETDEWEB)
1991-10-01
This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.
Krause, H.; Senuma, T.
1980-08-01
The effect of a dynamic force on the tribological behavior of bodies in rolling-sliding contact without lubrication was analyzed experimentally and theoretically. The coefficient of traction and wear decrease with the increase in the amplitude of the dynamic normal force; the ripples in a carbon steel in the presence of slip result from the formation of oxide stripes, and their propagation depends on plastic deformation and periodic wear. It is concluded that the accuracy of test rig results requires a consideration of the effect of the dynamic system on the tribological behavior.
National Research Council Canada - National Science Library
May, Jason
2003-01-01
... (Gongla and Rizzuto, 2001). A primary goal of AFMC/DRW, AFMC Electronic Learning (eLearning) Knowledge Management Integrated Project Team, and the office of the Air Force Chief Information Officer is to increase CoP participation and effectiveness...
Energy Technology Data Exchange (ETDEWEB)
Zou, Chenyu; van Duin, Adri C.T.; Sorescu, Dan C.
2012-06-01
We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of Fischer–Tropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H{sub 2} and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.
Davis, K G; Jorgensen, M J; Marras, W S
2000-02-01
The objective of this study was to identify the perceived exertion mechanisms (direct muscle force and whole body exertion) associated with the decision to change the weight of lift during the determination of the maximum acceptable weight of lift (MAWL). Fifteen males lifted a box of unknown weight at a rate of 4.3 lifts/min, and adjusted the weight until their MAWL was reached. Variables such as the predicted muscle forces and heart rate were measured during the lifting exertion, as well as the predicted spinal loading in three dimensions using an EMG-assisted biomechanical model. Multiple logistic regression techniques were used to identify variables that were associated with the decision to change the weights up and down prior to a subsequent lift. Results indicated that the force in the left erector spinae, right internal oblique, and left latissimus dorsi muscles as well as heart rate were associated with decreases in the weight prior to the next lift. It appears that a combination of local factors (muscle force) and whole body exertion factors (heart rate) provide the feedback for the perceived exertion when decreasing the weight. The up-change model indicated that the forces of the right erector spinae, left internal oblique, and the right latissimus dorsi muscles were associated with the decision to increase the weight prior to the next lift. Thus, local factors provide feedback during the decision to increase the weight when starting from light weights. Collectively, these findings indicate that psychophysically determined weight limits may be more sensitive to muscular strain rather than spinal loading.
2007-06-01
Guidelines to help A&E staff and other healthcare professionals who suspect cases of forced marriage were launched this month by the government. The guidelines provide practical advice on how to recognise the warning signs, and what to do if patients disclose that they have been, or are about to be, forced to marry. The guidelines, Dealing with Cases of Forced Marriage, are available at www.fco.gov.uk/forcedmarriage.
Huiqing Liu; Nan Wang; Zhe Zhang; Hongda Wang; Jun Du; Jilin Tang
2017-01-01
Chronic inflammation orchestrates the tumor microenvironment and is strongly associated with cancer. Tumor necrosis factor-α (TNFα) is involved in tumor invasion and metastasis by inducing epithelial to mesenchymal transition (EMT). This process is defined by the loss of epithelial characteristics and gain of mesenchymal traits. The mechanisms of TNFα-induced EMT in cancer cells have been well studied. However, mechanical properties have not yet been probed. In this work, atomic force microsc...
Directory of Open Access Journals (Sweden)
Hasan GÖKKAYA
2006-03-01
Full Text Available In this study, the effects of different cutting and feed rates over average surface roughness and main cutting force during the machinability of AA5052 aluminum alloy with uncoated cemented carbide insert were evaluated. In the experiments, stable depth of cut (1.5 mm, four different cutting speeds (200, 300, 400, 500 m/min and five different feed rates (0.10, 0.15, 0.20, 0.25, 0.30 mm/rev were used. Based on cutting and feed rates, the lowest main cutting force was obtained as 113 in 500 m/min cutting speed and 0.10 mm/rev feed rate and the highest cutting force was obtained as 332 N in 200 m/min cutting speed and 0.30 mm/rev feed rate. The lowest average surface roughness was obtained as 0.95 µm in 200 m/min cutting speed and 0.10 mm/rev feed rate and the highest average surface roughness was obtained as 6.65 µm in 300 m/min cutting speed and 0.30 mm/rev feed rate.
1982-01-01
The different forces, together with a pictorial analogy of how the exchange of particles works. The table lists the relative strength of the couplings, the quanta associated with the force fields and the bodies or phenomena in which they have a dominant role.
Directory of Open Access Journals (Sweden)
L.V. Cherkesov
2016-08-01
Full Text Available The effect of inhomogeneous moving atmospheric pressure fields upon the flows, and free and forced oscillations of the Azov Sea level induced by constant wind is studied by the method of mathematical modeling. The hypothesis on the role of the resonance mechanism in arising of the extremely high amplitudes of the surge oscillations and seiches generated by a baric field moving at the velocity equal to that of a free long wave is tested. The equations of the applied mathematical model are described in general, transition to the curvilinear coordinates is shown, the model parameters chosen allowing for different physical factors are substantiated, and the features of the model numerical realization are explained. The information on the wind and atmospheric pressure fields used in the numerical experiments is given. The results of simulations of free oscillations in the Sea of Azov are discussed with the purpose to analyze the impact of the resonance characteristics related to the speed and time of the baric fields’ motion over the sea. The sea level deviations resulted from the calculations with constant pressure and those with passing of the inhomogeneous baric front are compared. It is revealed that at one and the same wind, the baric disturbances moving over the Sea of Azov induce the forced oscillations and after their forcing is stopped – free oscillations the amplitudes of which exceed those obtained at constant atmospheric pressure by 14%. It is shown that the baric front motion, speed and time of which are chosen based on the assumption on generation of the waves with maximum amplitudes, plays an important but not decisive role in formation of the currents’ structure and the level oscillations in the Sea of Azov.
International Nuclear Information System (INIS)
Asakawa, Hitoshi; Fukuma, Takeshi
2009-01-01
Cholesterols play key roles in controlling molecular fluidity in a biological membrane, yet little is known about their molecular-scale arrangements in real space. In this study, we have directly imaged lipid-cholesterol complexes in a model biological membrane consisting of dipalmitoylphosphatidylcholine (DPPC) and cholesterols by frequency modulation atomic force microscopy (FM-AFM) in phosphate buffer solution. FM-AFM images of a DPPC/cholesterol bilayer in the liquid-ordered phase showed higher energy dissipation values compared to those measured on a nanoscale DPPC domain in the gel phase, reflecting the increased molecular fluidity due to the insertion of cholesterols. Molecular-resolution FM-AFM images of a DPPC/cholesterol bilayer revealed the existence of a rhombic molecular arrangement (lattice constants: a = 0.46 nm, b = 0.71 nm) consisting of alternating rows of DPPC and cholesterols as well as the increased defect density and reduced molecular ordering. The mechanical strength of a DPPC/cholesterol bilayer was quantitatively evaluated by measuring a loading force required to penetrate the membrane with an AFM tip. The result revealed the significant decrease of mechanical strength upon insertion of cholesterols. Based on the molecular-scale arrangement found in this study, we propose a model to explain the reduced mechanical strength in relation to the formation of lipid-ion networks.
Energy Technology Data Exchange (ETDEWEB)
Asakawa, Hitoshi; Fukuma, Takeshi [Frontier Science Organization, Kanazawa University, Kakuma-machi, 920-1192 Kanazawa (Japan)], E-mail: hi_asa@staff.kanazawa-u.ac.jp, E-mail: fukuma@staff.kanazawa-u.ac.jp
2009-07-01
Cholesterols play key roles in controlling molecular fluidity in a biological membrane, yet little is known about their molecular-scale arrangements in real space. In this study, we have directly imaged lipid-cholesterol complexes in a model biological membrane consisting of dipalmitoylphosphatidylcholine (DPPC) and cholesterols by frequency modulation atomic force microscopy (FM-AFM) in phosphate buffer solution. FM-AFM images of a DPPC/cholesterol bilayer in the liquid-ordered phase showed higher energy dissipation values compared to those measured on a nanoscale DPPC domain in the gel phase, reflecting the increased molecular fluidity due to the insertion of cholesterols. Molecular-resolution FM-AFM images of a DPPC/cholesterol bilayer revealed the existence of a rhombic molecular arrangement (lattice constants: a = 0.46 nm, b = 0.71 nm) consisting of alternating rows of DPPC and cholesterols as well as the increased defect density and reduced molecular ordering. The mechanical strength of a DPPC/cholesterol bilayer was quantitatively evaluated by measuring a loading force required to penetrate the membrane with an AFM tip. The result revealed the significant decrease of mechanical strength upon insertion of cholesterols. Based on the molecular-scale arrangement found in this study, we propose a model to explain the reduced mechanical strength in relation to the formation of lipid-ion networks.
Directory of Open Access Journals (Sweden)
Xiaohong Jiang
2016-04-01
Full Text Available The composite assembly of C60 and CdS Quantum Dots (QDs on ITO substrate was prepared by Langmuir-Blodgett (LB technique using arachic acid (AA, stearic acid (SA and octadecanyl amine (OA as additives. Photoassisted conductive atomic force microscopy was used to make point contact current-voltage (I-V measurements on both the CdS QDs and the composite assembly of C60/CdS. The result make it clear that the CdS, C60/CdS assemblies deposited on ITO substrate showed linear characteristics and the current increased largely under illumination comparing with that in the dark. The coherent, nonresonant tunneling mechanism was used to explain the current occurrence. It is considered that the photoinduced carriers CdS QDs tunneled through alkyl chains increased the current rapidly.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Xiaohong; Liu, He; Zhang, Xingtang; Cheng, Gang; Wang, Shujie; Du, Zuliang, E-mail: zld@henu.edu.cn [Key Laboratory for Special Functional Materials, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, PR. China (China)
2016-04-15
The composite assembly of C{sub 60} and CdS Quantum Dots (QDs) on ITO substrate was prepared by Langmuir-Blodgett (LB) technique using arachic acid (AA), stearic acid (SA) and octadecanyl amine (OA) as additives. Photoassisted conductive atomic force microscopy was used to make point contact current-voltage (I-V) measurements on both the CdS QDs and the composite assembly of C{sub 60}/CdS. The result make it clear that the CdS, C{sub 60}/CdS assemblies deposited on ITO substrate showed linear characteristics and the current increased largely under illumination comparing with that in the dark. The coherent, nonresonant tunneling mechanism was used to explain the current occurrence. It is considered that the photoinduced carriers CdS QDs tunneled through alkyl chains increased the current rapidly.
Nair, Ashish Shashikant; Tilakchand, Mahima; Naik, Balaram Damodar
2015-01-01
To observe and study the effect of multiple autoclave sterilization cycles, on the surface of nickel-titanium (NiTi) files. The file used for this study was the Mtwo file (VDW) and ProTaper (Dentsply). The apical 5 mm of the files were attached to a silicon wafer and subjected to autoclave cycles under standardized conditions. They were scanned with an AFM after 1, 5, and 10 cycles. The unsterilized files were used as control, before start of the study. Three vertical topographic parameters namely maximum height (MH), root mean square (RMS) of surface roughness, and arithmetic mean roughness (AMR)were measured with the atomic force microscope (AFM). Analysis of variance along with Tukey's test was used to test the differences. The vertical topographic parameters were higher for both the files, right after the first cycle, when compared with the control (P autoclave cycles, a fact that should be kept in mind during their reuse.
Ahuja, Rajiv; Almuzian, Moahmmed; Khan, Alamgir; Pascovici, Dana; Dalci, Oyku; Darendeliler, M Ali
2017-12-01
Orthodontically induced iatrogenic root resorption (OIIRR) is an unavoidable inflammatory process. Several factors claimed to be related to the severity of OIIRR. Orthodontic forces cause micro-trauma to the periodontal ligament and activate a cascade of cellular events associated with local periodontal inflammation. The purpose of this split-mouth study were (1) to investigate the changes in cytokine profile in the gingival crevicular fluid (GCF) secondary to heavy orthodontic forces and (2) to compare the cytokine expression between participants showing high and low root resorption. Eight participants requiring maxillary first premolar extractions involved in this study. The teeth on the tested side (TS) received 225 g of controlled buccal tipping force for 28 days, while the contralateral teeth act as a control (CS). GCF was collected from both TS and CS teeth at 0 h (prior to application of force) and 3 h, 1 day, 3 days, 7 days and 28 days after the application of force, and analysed with multiplex bead immunoassay to determine the cytokine levels. Statistically significant temporal increase was found in the TS teeth for tumour necrosis factor alpha (TNF-α) at 3 h and 28 days (p = 0.01). Interleukin 7 (IL-7) significantly peaked at the 28th day. Comparing cytokine profile for participants with high and low root resorption (>0.35 and <0.15 mm 3 , respectively), the levels of GM-CSF was significantly greater in low root resorption cases (p < 0.05). The amounts of root resorption which craters on mesial, distal surfaces and middle third region were significant in the TS teeth (p < 0.05). IL-7 and TNF-α (pro-resorptive cytokine) increased significantly secondary to a high-level of orthodontic force application. Significantly high levels of granulocyte macrophage colony-stimulating factor (anti-resorptive cytokine) were detected in mild root resorption cases secondary to high-level orthodontic force application. A future long
Directory of Open Access Journals (Sweden)
Rajiv Ahuja
2017-08-01
Full Text Available Abstract Background Orthodontically induced iatrogenic root resorption (OIIRR is an unavoidable inflammatory process. Several factors claimed to be related to the severity of OIIRR. Orthodontic forces cause micro-trauma to the periodontal ligament and activate a cascade of cellular events associated with local periodontal inflammation. The purpose of this split-mouth study were (1 to investigate the changes in cytokine profile in the gingival crevicular fluid (GCF secondary to heavy orthodontic forces and (2 to compare the cytokine expression between participants showing high and low root resorption. Methods Eight participants requiring maxillary first premolar extractions involved in this study. The teeth on the tested side (TS received 225 g of controlled buccal tipping force for 28 days, while the contralateral teeth act as a control (CS. GCF was collected from both TS and CS teeth at 0 h (prior to application of force and 3 h, 1 day, 3 days, 7 days and 28 days after the application of force, and analysed with multiplex bead immunoassay to determine the cytokine levels. Results Statistically significant temporal increase was found in the TS teeth for tumour necrosis factor alpha (TNF-α at 3 h and 28 days (p = 0.01. Interleukin 7 (IL-7 significantly peaked at the 28th day. Comparing cytokine profile for participants with high and low root resorption (>0.35 and <0.15 mm3, respectively, the levels of GM-CSF was significantly greater in low root resorption cases (p < 0.05. The amounts of root resorption which craters on mesial, distal surfaces and middle third region were significant in the TS teeth (p < 0.05. Conclusions IL-7 and TNF-α (pro-resorptive cytokine increased significantly secondary to a high-level of orthodontic force application. Significantly high levels of granulocyte macrophage colony-stimulating factor (anti-resorptive cytokine were detected in mild root resorption cases secondary to high
Directory of Open Access Journals (Sweden)
Gautam P. Sadarangani
2017-07-01
Full Text Available There is increasing research interest in technologies that can detect grasping, to encourage functional use of the hand as part of daily living, and thus promote upper-extremity motor recovery in individuals with stroke. Force myography (FMG has been shown to be effective for providing biofeedback to improve fine motor function in structured rehabilitation settings, involving isolated repetitions of a single grasp type, elicited at a predictable time, without upper-extremity movements. The use of FMG, with machine learning techniques, to detect and distinguish between grasping and no grasping, continues to be an active area of research, in healthy individuals. The feasibility of classifying FMG for grasp detection in populations with upper-extremity impairments, in the presence of upper-extremity movements, as would be expected in daily living, has yet to be established. We explore the feasibility of FMG for this application by establishing and comparing (1 FMG-based grasp detection accuracy and (2 the amount of training data necessary for accurate grasp classification, in individuals with stroke and healthy individuals. FMG data were collected using a flexible forearm band, embedded with six force-sensitive resistors (FSRs. Eight participants with stroke, with mild to moderate upper-extremity impairments, and eight healthy participants performed 20 repetitions of three tasks that involved reaching, grasping, and moving an object in different planes of movement. A validation sensor was placed on the object to label data as corresponding to a grasp or no grasp. Grasp detection performance was evaluated using linear and non-linear classifiers. The effect of training set size on classification accuracy was also determined. FMG-based grasp detection demonstrated high accuracy of 92.2% (σ = 3.5% for participants with stroke and 96.0% (σ = 1.6% for healthy volunteers using a support vector machine (SVM. The use of a training set that was 50
Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen
2016-01-21
The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.
Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi
2017-07-12
The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH) 2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.
Lin, Juqiang; Xu, Han; Wu, Yangzhe; Tang, Mingjie; McEwen, Gerald D; Liu, Pin; Hansen, Dane R; Gilbertson, Timothy A; Zhou, Anhong
2013-02-05
G-protein-coupled receptor 120 (GPR120) is a previously orphaned G-protein-coupled receptor that apparently functions as a sensor for dietary fat in the gustatory and digestive systems. In this study, a cDNA sequence encoding a doxycycline (Dox)-inducible mature peptide of GPR120 was inserted into an expression vector and transfected in HEK293 cells. We measured Raman spectra of single HEK293 cells as well as GPR120-expressing HEK293-GPR120 cells at a 48 h period following the additions of Dox at several concentrations. We found that the spectral intensity of HEK293-GPR120 cells is dependent upon the dose of Dox, which correlates with the accumulation of GPR120 protein in the cells. However, the amount of the fatty acid activated changes in intracellular calcium (Ca(2+)) as measured by ratiometric calcium imaging was not correlated with Dox concentration. Principal components analysis (PCA) of Raman spectra reveals that the spectra from different treatments of HEK293-GPR120 cells form distinct, completely separated clusters with the receiver operating characteristic (ROC) area of 1, while those spectra for the HEK293 cells form small overlap clusters with the ROC area of 0.836. It was also found that expression of GPR120 altered the physiochemical and biomechanical properties of the parental cell membrane surface, which was quantitated by atomic force microscopy (AFM). These findings demonstrate that the combination of Raman spectroscopy, calcium imaging, and AFM may provide new tools in noninvasive and quantitative monitoring of membrane receptor expression induced alterations in the biophysical and signaling properties of single living cells.
The United States’ 2010 annual production of soybean oil exceeded 8 million metric tons, making a significant vegetable oil surplus available for new uses, particularly as a lubricant. Investigation of soybean oil and methyl oleate adsorption onto steel using a quartz crystal microbalance with diss...