WorldWideScience

Sample records for investigating neuromagnetic brain

  1. Neuromagnetic correlates of audiovisual word processing in the developing brain.

    Science.gov (United States)

    Dinga, Samantha; Wu, Di; Huang, Shuyang; Wu, Caiyun; Wang, Xiaoshan; Shi, Jingping; Hu, Yue; Liang, Chun; Zhang, Fawen; Lu, Meng; Leiken, Kimberly; Xiang, Jing

    2018-06-01

    The brain undergoes enormous changes during childhood. Little is known about how the brain develops to serve word processing. The objective of the present study was to investigate the maturational changes of word processing in children and adolescents using magnetoencephalography (MEG). Responses to a word processing task were investigated in sixty healthy participants. Each participant was presented with simultaneous visual and auditory word pairs in "match" and "mismatch" conditions. The patterns of neuromagnetic activation from MEG recordings were analyzed at both sensor and source levels. Topography and source imaging revealed that word processing transitioned from bilateral connections to unilateral connections as age increased from 6 to 17 years old. Correlation analyses of language networks revealed that the path length of word processing networks negatively correlated with age (r = -0.833, p processing networks were positively correlated with age. In addition, males had more visual connections, whereas females had more auditory connections. The correlations between gender and path length, gender and connection strength, and gender and clustering coefficient demonstrated a developmental trend without reaching statistical significance. The results indicate that the developmental trajectory of word processing is gender specific. Since the neuromagnetic signatures of these gender-specific paths to adult word processing were determined using non-invasive, objective, and quantitative methods, the results may play a key role in understanding language impairments in pediatric patients in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The brain in time: insights from neuromagnetic recordings.

    Science.gov (United States)

    Hari, Riitta; Parkkonen, Lauri; Nangini, Cathy

    2010-03-01

    The millisecond time resolution of magnetoencephalography (MEG) is instrumental for investigating the brain basis of sensory processing, motor planning, cognition, and social interaction. We review the basic principles, recent progress, and future potential of MEG in noninvasive tracking of human brain activity. Cortical activation sequences from tens to hundreds of milliseconds can be followed during, e.g., perception, motor action, imitation, and language processing by recording both spontaneous and evoked brain signals. Moreover, tagging of sensory input can be used to reveal neuronal mechanisms of binaural interaction and perception of ambiguous images. The results support the emerging ideas of multiple, hierarchically organized temporal scales in human brain function. Instrumentation and data analysis methods are rapidly progressing, enabling attempts to decode the four-dimensional spatiotemporal signal patterns to reveal correlates of behavior and mental contents.

  3. Aberrant neuromagnetic activation in the motor cortex in children with acute migraine: a magnetoencephalography study.

    Directory of Open Access Journals (Sweden)

    Xinyao Guo

    Full Text Available Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65-150 Hz oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems.

  4. High Neuromagnetic Activation in the Left Prefrontal and Frontal Cortices Correlates with Better Memory Performance for Abstract Words

    Science.gov (United States)

    Chen, Tzu-Ching; Lin, Yung-Yang

    2012-01-01

    The present study aimed to clarify the spatiotemporal characteristics of memory processing for abstract and concrete words. Neuromagnetic responses to memory encoding and recognition tasks of abstract and concrete nouns were obtained in 18 healthy adults using a whole-head neuromagnetometer. During memory encoding, abstract words elicited larger…

  5. Noninvasive studies of human visual cortex using neuromagnetic techniques

    International Nuclear Information System (INIS)

    Aine, C.J.; George, J.S.; Supek, S.; Maclin, E.L.

    1990-01-01

    The major goals of noninvasive studies of the human visual cortex are: to increase knowledge of the functional organization of cortical visual pathways; and to develop noninvasive clinical tests for the assessment of cortical function. Noninvasive techniques suitable for studies of the structure and function of human visual cortex include magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission tomography (SPECT), scalp recorded event-related potentials (ERPs), and event-related magnetic fields (ERFs). The primary challenge faced by noninvasive functional measures is to optimize the spatial and temporal resolution of the measurement and analytic techniques in order to effectively characterize the spatial and temporal variations in patterns of neuronal activity. In this paper we review the use of neuromagnetic techniques for this purpose. 8 refs., 3 figs

  6. Neuromagnetic beta and gamma oscillations in the somatosensory cortex after music training in healthy older adults and a chronic stroke patient.

    Science.gov (United States)

    Jamali, Shahab; Fujioka, Takako; Ross, Bernhard

    2014-06-01

    Extensive rehabilitation training can lead to functional improvement even years after a stroke. Although neuronal plasticity is considered as a main origin of such ameliorations, specific subtending mechanisms need further investigation. Our aim was to obtain objective neuromagnetic measures sensitive to brain reorganizations induced by a music-supported training. We applied 20-Hz vibrotactile stimuli to the index finger and the ring finger, recorded somatosensory steady-state responses with magnetoencephalography, and analyzed the cortical sources displaying oscillations synchronized with the external stimuli in two groups of healthy older adults before and after musical training or without training. In addition, we applied the same analysis for an anecdotic report of a single chronic stroke patient with hemiparetic arm and hand problems, who received music-supported therapy (MST). Healthy older adults showed significant finger separation within the primary somatotopic map. Beta dipole sources were more anterior located compared to gamma sources. An anterior shift of sources and increases in synchrony between the stimuli and beta and gamma oscillations were observed selectively after music training. In the stroke patient a normalization of somatotopic organization was observed after MST, with digit separation recovered after training and stimulus induced gamma synchrony increased. The proposed stimulation paradigm captures the integrity of primary somatosensory hand representation. Source position and synchronization between the stimuli and gamma activity are indices, sensitive to music-supported training. Responsiveness was also observed in a chronic stroke patient, encouraging for the music-supported therapy. Notably, changes in somatosensory responses were observed, even though the therapy did not involve specific sensory discrimination training. The proposed protocol can be used for monitoring changes in neuronal organization during training and will improve

  7. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields.

    Science.gov (United States)

    Garcia-Cossio, Eliana; Witkowski, Matthias; Robinson, Stephen E; Cohen, Leonardo G; Birbaumer, Niels; Soekadar, Surjo R

    2016-10-15

    Transcranial direct current stimulation (tDCS) can influence cognitive, affective or motor brain functions. Whereas previous imaging studies demonstrated widespread tDCS effects on brain metabolism, direct impact of tDCS on electric or magnetic source activity in task-related brain areas could not be confirmed due to the difficulty to record such activity simultaneously during tDCS. The aim of this proof-of-principal study was to demonstrate the feasibility of whole-head source localization and reconstruction of neuromagnetic brain activity during tDCS and to confirm the direct effect of tDCS on ongoing neuromagnetic activity in task-related brain areas. Here we show for the first time that tDCS has an immediate impact on slow cortical magnetic fields (SCF, 0-4Hz) of task-related areas that are identical with brain regions previously described in metabolic neuroimaging studies. 14 healthy volunteers performed a choice reaction time (RT) task while whole-head magnetoencephalography (MEG) was recorded. Task-related source-activity of SCFs was calculated using synthetic aperture magnetometry (SAM) in absence of stimulation and while anodal, cathodal or sham tDCS was delivered over the right primary motor cortex (M1). Source reconstruction revealed task-related SCF modulations in brain regions that precisely matched prior metabolic neuroimaging studies. Anodal and cathodal tDCS had a polarity-dependent impact on RT and SCF in primary sensorimotor and medial centro-parietal cortices. Combining tDCS and whole-head MEG is a powerful approach to investigate the direct effects of transcranial electric currents on ongoing neuromagnetic source activity, brain function and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Volumetric localization of somatosensory cortex in children using synthetic aperture magnetometry

    International Nuclear Information System (INIS)

    Xiang, Jing; Holowka, Stephanie; Chuang, Sylvester; Sharma, Rohit; Hunjan, Amrita; Otsubo, Hiroshi

    2003-01-01

    Magnetic signal from the human brain can be measured noninvasively by using magnetoencephalography (MEG). This study was designed to localize and reconstruct the neuromagnetic activity in the somatosensory cortex in children Twenty children were studied using a 151-channel MEG system with electrical stimulation applied to median nerves. Data were analyzed using synthetic aperture magnetometry (SAM). A clear deflection (M1) was clearly identified in 18 children (90%, 18/20). Two frequency bands, 30-60 Hz and 60-120 Hz, were found to be related to somatosensory cortex. Magnetic activity was localized in the posterior bank of the central sulcus in 16 children. The extent of the reconstructed neuromagnetic activity of the left hemisphere was significantly larger than that of the right hemisphere (P<0.01). Somatosensory cortex was accurately localized by using SAM. The extent of the reconstructed neuromagnetic activity suggested that the left hemisphere was the dominant side in the somatosensory system in children. We postulate that the volumetric characteristics of the reconstructed neuromagnetic activity are able to indicate the functionality of the brain. (orig.)

  9. Effects of aging on neuromagnetic mismatch responses to pitch changes.

    Science.gov (United States)

    Cheng, Chia-Hsiung; Baillet, Sylvain; Hsiao, Fu-Jung; Lin, Yung-Yang

    2013-06-07

    Although aging-related alterations in the auditory sensory memory and involuntary change discrimination have been widely studied, it remains controversial whether the mismatch negativity (MMN) or its magnetic counterpart (MMNm) is modulated by physiological aging. This study aimed to examine the effects of aging on mismatch activity to pitch deviants by using a whole-head magnetoencephalography (MEG) together with distributed source modeling analysis. The neuromagnetic responses to oddball paradigms consisting of standards (1000 Hz, p=0.85) and deviants (1100 Hz, p=0.15) were recorded in healthy young (n=20) and aged (n=18) male adults. We used minimum norm estimate of source reconstruction to characterize the spatiotemporal neural dynamics of MMNm responses. Distributed activations to MMNm were identified in the bilateral fronto-temporo-parietal areas. Compared to younger participants, the elderly exhibited a significant reduction of cortical activation in bilateral superior temporal guri, superior temporal sulci, inferior fontal gyri, orbitofrontal cortices and right inferior parietal lobules. In conclusion, our results suggest an aging-related decline in auditory sensory memory and automatic change detection as indexed by MMNm. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Neuromagnetic vistas into typical and atypical development of frontal lobe functions

    Directory of Open Access Journals (Sweden)

    Margot J Taylor

    2014-06-01

    Full Text Available The frontal lobes are involved in many higher-order cognitive functions such as social cognition executive functions and language and speech. These functions are complex and follow a prolonged developmental course from childhood through to early adulthood. Magnetoencephalography (MEG is ideal for the study of development of these functions, due to its combination of temporal and spatial resolution which allows the determination of age-related changes in both neural timing and location. There are several challenges for MEG developmental studies: to design tasks appropriate to capture the neurodevelopmental trajectory of these cognitive functions, and to develop appropriate analysis strategies to capture various aspects of neuromagnetic frontal lobe activity. Here, we review our MEG research on social and executive functions, and speech in typically developing children and in two clinical groups – children with ASD and children born very preterm. The studies include facial emotional processing, inhibition, visual short-term memory, speech production and resting-state networks. We present data from event-related analyses as well as on oscillations and connectivity analyses and review their contributions to understanding frontal lobe cognitive development. We also discuss the challenges of testing young children in the MEG and the development of age-appropriate technologies and paradigms.

  11. Physical Feature Encoding and Word Recognition Abilities Are Altered in Children with Intractable Epilepsy: Preliminary Neuromagnetic Evidence

    Science.gov (United States)

    Pardos, Maria; Korostenskaja, Milena; Xiang, Jing; Fujiwara, Hisako; Lee, Ki H.; Horn, Paul S.; Byars, Anna; Vannest, Jennifer; Wang, Yingying; Hemasilpin, Nat; Rose, Douglas F.

    2015-01-01

    Objective evaluation of language function is critical for children with intractable epilepsy under consideration for epilepsy surgery. The purpose of this preliminary study was to evaluate word recognition in children with intractable epilepsy by using magnetoencephalography (MEG). Ten children with intractable epilepsy (M/F 6/4, mean ± SD 13.4 ± 2.2 years) were matched on age and sex to healthy controls. Common nouns were presented simultaneously from visual and auditory sensory inputs in “match” and “mismatch” conditions. Neuromagnetic responses M1, M2, M3, M4, and M5 with latencies of ~100 ms, ~150 ms, ~250 ms, ~350 ms, and ~450 ms, respectively, elicited during the “match” condition were identified. Compared to healthy children, epilepsy patients had both significantly delayed latency of the M1 and reduced amplitudes of M3 and M5 responses. These results provide neurophysiologic evidence of altered word recognition in children with intractable epilepsy. PMID:26146459

  12. Altered Cortical Activation in Adolescents With Acute Migraine: A Magnetoencephalography Study

    Science.gov (United States)

    Xiang, Jing; deGrauw, Xinyao; Korostenskaja, Milena; Korman, Abraham M.; O’Brien, Hope L.; Kabbouche, Marielle A.; Powers, Scott W.; Hershey, Andrew D.

    2013-01-01

    To quantitatively assess cortical dysfunction in pediatric migraine, 31 adolescents with acute migraine and age- and gender-matched controls were studied using a magnetoencephalography (MEG) system at a sampling rate of 6,000 Hz. Neuromagnetic brain activation was elicited by a finger-tapping task. The spectral and spatial signatures of magnetoencephalography data in 5 to 2,884 Hz were analyzed using Morlet wavelet and beamformers. Compared with controls, 31 migraine subjects during their headache attack phases (ictal) showed significantly prolonged latencies of neuromagnetic activation in 5 to 30 Hz, increased spectral power in 100 to 200 Hz, and a higher likelihood of neuromagnetic activation in the supplementary motor area, the occipital and ipsilateral sensorimotor cortices, in 2,200 to 2,800 Hz. Of the 31 migraine subjects, 16 migraine subjects during their headache-free phases (interictal) showed that there were no significant differences between interictal and control MEG data except that interictal spectral power in 100 to 200 Hz was significantly decreased. The results demonstrated that migraine subjects had significantly aberrant ictal brain activation, which can normalize interictally. The spread of abnormal ictal brain activation in both low- and high-frequency ranges triggered by movements may play a key role in the cascade of migraine attacks. Perspective This is the first study focusing on the spectral and spatial signatures of cortical dysfunction in adolescents with migraine using MEG signals in a frequency range of 5 to 2,884 Hz. This analyzing aberrant brain activation may be important for developing new therapeutic interventions for migraine in the future. PMID:23792072

  13. Volitional Control of Neuromagnetic Coherence

    Directory of Open Access Journals (Sweden)

    Matthew D Sacchet

    2012-12-01

    Full Text Available Coherence of neural activity between circumscribed brain regions has been implicated as an indicator of intracerebral communication in various cognitive processes. While neural activity can be volitionally controlled with neurofeedback, the volitional control of coherence has not yet been explored. Learned volitional control of coherence could elucidate mechanisms of associations between cortical areas and its cognitive correlates and may have clinical implications. Neural coherence may also provide a signal for brain-computer interfaces (BCI. In the present study we used the Weighted Overlapping Segment Averaging (WOSA method to assess coherence between bilateral magnetoencephalograph (MEG sensors during voluntary digit movement as a basis for BCI control. Participants controlled an onscreen cursor, with a success rate of 124 of 180 (68.9%, sign-test p < 0.001 and 84 out of 100 (84%, sign-test p < 0.001. The present findings suggest that neural coherence may be volitionally controlled and may have specific behavioral correlates.

  14. The effect of conditional probability of chord progression on brain response: an MEG study.

    Directory of Open Access Journals (Sweden)

    Seung-Goo Kim

    Full Text Available BACKGROUND: Recent electrophysiological and neuroimaging studies have explored how and where musical syntax in Western music is processed in the human brain. An inappropriate chord progression elicits an event-related potential (ERP component called an early right anterior negativity (ERAN or simply an early anterior negativity (EAN in an early stage of processing the musical syntax. Though the possible underlying mechanism of the EAN is assumed to be probabilistic learning, the effect of the probability of chord progressions on the EAN response has not been previously explored explicitly. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, the empirical conditional probabilities in a Western music corpus were employed as an approximation of the frequencies in previous exposure of participants. Three types of chord progression were presented to musicians and non-musicians in order to examine the correlation between the probability of chord progression and the neuromagnetic response using magnetoencephalography (MEG. Chord progressions were found to elicit early responses in a negatively correlating fashion with the conditional probability. Observed EANm (as a magnetic counterpart of the EAN component responses were consistent with the previously reported EAN responses in terms of latency and location. The effect of conditional probability interacted with the effect of musical training. In addition, the neural response also correlated with the behavioral measures in the non-musicians. CONCLUSIONS/SIGNIFICANCE: Our study is the first to reveal the correlation between the probability of chord progression and the corresponding neuromagnetic response. The current results suggest that the physiological response is a reflection of the probabilistic representations of the musical syntax. Moreover, the results indicate that the probabilistic representation is related to the musical training as well as the sensitivity of an individual.

  15. Brain noise is task dependent and region specific.

    Science.gov (United States)

    Misić, Bratislav; Mills, Travis; Taylor, Margot J; McIntosh, Anthony R

    2010-11-01

    The emerging organization of anatomical and functional connections during human brain development is thought to facilitate global integration of information. Recent empirical and computational studies have shown that this enhanced capacity for information processing enables a diversified dynamic repertoire that manifests in neural activity as irregularity and noise. However, transient functional networks unfold over multiple time, scales and the embedding of a particular region depends not only on development, but also on the manner in which sensory and cognitive systems are engaged. Here we show that noise is a facet of neural activity that is also sensitive to the task context and is highly region specific. Children (6-16 yr) and adults (20-41 yr) performed a one-back face recognition task with inverted and upright faces. Neuromagnetic activity was estimated at several hundred sources in the brain by applying a beamforming technique to the magnetoencephalogram (MEG). During development, neural activity became more variable across the whole brain, with most robust increases in medial parietal regions, such as the precuneus and posterior cingulate cortex. For young children and adults, activity evoked by upright faces was more variable and noisy compared with inverted faces, and this effect was reliable only in the right fusiform gyrus. These results are consistent with the notion that upright faces engender a variety of integrative neural computations, such as the relations among facial features and their holistic constitution. This study shows that transient changes in functional integration modulated by task demand are evident in the variability of regional neural activity.

  16. Functional community analysis of brain: a new approach for EEG-based investigation of the brain pathology.

    Science.gov (United States)

    Ahmadlou, Mehran; Adeli, Hojjat

    2011-09-15

    Analysis of structure of the brain functional connectivity (SBFC) is a fundamental issue for understanding of the brain cognition as well as the pathology of brain disorders. Analysis of communities among sub-parts of a system is increasingly used for social, ecological, and other networks. This paper presents a new methodology for investigation of the SBFC and understanding of the brain based on graph theory and community pattern analysis of functional connectivity graph of the brain obtained from encephalograms (EEGs). The methodology consists of three main parts: fuzzy synchronization likelihood (FSL), community partitioning, and decisions based on partitions. As an example application, the methodology is applied to analysis of brain of patients with attention deficit/hyperactivity disorder (ADHD) and the problem of discrimination of ADHD EEGs from healthy (non-ADHD) EEGs. Copyright © 2011. Published by Elsevier Inc.

  17. Investigating the Intersession Reliability of Dynamic Brain-State Properties.

    Science.gov (United States)

    Smith, Derek M; Zhao, Yrian; Keilholz, Shella D; Schumacher, Eric H

    2018-06-01

    Dynamic functional connectivity metrics have much to offer to the neuroscience of individual differences of cognition. Yet, despite the recent expansion in dynamic connectivity research, limited resources have been devoted to the study of the reliability of these connectivity measures. To address this, resting-state functional magnetic resonance imaging data from 100 Human Connectome Project subjects were compared across 2 scan days. Brain states (i.e., patterns of coactivity across regions) were identified by classifying each time frame using k means clustering. This was done with and without global signal regression (GSR). Multiple gauges of reliability indicated consistency in the brain-state properties across days and GSR attenuated the reliability of the brain states. Changes in the brain-state properties across the course of the scan were investigated as well. The results demonstrate that summary metrics describing the clustering of individual time frames have adequate test/retest reliability, and thus, these patterns of brain activation may hold promise for individual-difference research.

  18. Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs

    Science.gov (United States)

    Michinaga, Shotaro; Koyama, Yutaka

    2015-01-01

    Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB) and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them. PMID:25941935

  19. Movement-related neuromagnetic fields in preschool age children.

    Science.gov (United States)

    Cheyne, Douglas; Jobst, Cecilia; Tesan, Graciela; Crain, Stephen; Johnson, Blake

    2014-09-01

    We examined sensorimotor brain activity associated with voluntary movements in preschool children using a customized pediatric magnetoencephalographic system. A videogame-like task was used to generate self-initiated right or left index finger movements in 17 healthy right-handed subjects (8 females, ages 3.2-4.8 years). We successfully identified spatiotemporal patterns of movement-related brain activity in 15/17 children using beamformer source analysis and surrogate MRI spatial normalization. Readiness fields in the contralateral sensorimotor cortex began ∼0.5 s prior to movement onset (motor field, MF), followed by transient movement-evoked fields (MEFs), similar to that observed during self-paced movements in adults, but slightly delayed and with inverted source polarities. We also observed modulation of mu (8-12 Hz) and beta (15-30 Hz) oscillations in sensorimotor cortex with movement, but with different timing and a stronger frequency band coupling compared to that observed in adults. Adult-like high-frequency (70-80 Hz) gamma bursts were detected at movement onset. All children showed activation of the right superior temporal gyrus that was independent of the side of movement, a response that has not been reported in adults. These results provide new insights into the development of movement-related brain function, for an age group in which no previous data exist. The results show that children under 5 years of age have markedly different patterns of movement-related brain activity in comparison to older children and adults, and indicate that significant maturational changes occur in the sensorimotor system between the preschool years and later childhood. Copyright © 2014 Wiley Periodicals, Inc.

  20. Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs

    Directory of Open Access Journals (Sweden)

    Shotaro Michinaga

    2015-04-01

    Full Text Available Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them.

  1. Investigation of elemental changes in brain tissues following excitotoxic injury

    International Nuclear Information System (INIS)

    Siegele, Rainer; Howell, Nicholas R.; Callaghan, Paul D.; Pastuovic, Zeljko

    2013-01-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca +2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca +2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma

  2. Investigation of elemental changes in brain tissues following excitotoxic injury

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Rainer, E-mail: rns@ansto.gov.au [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Howell, Nicholas R.; Callaghan, Paul D. [Life Sciences, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Pastuovic, Zeljko [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca{sup +2} cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca{sup +2} cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  3. Early brain-body impact of emotional arousal

    Directory of Open Access Journals (Sweden)

    Fabien D'Hondt

    2010-04-01

    Full Text Available Current research in affective neuroscience suggests that the emotional content of visual stimuli activates brain–body responses that could be critical to general health and physical disease. The aim of this study was to develop an integrated neurophysiological approach linking central and peripheral markers of nervous activity during the presentation of natural scenes in order to determine the temporal stages of brain processing related to the bodily impact of emotions. More specifically, whole head magnetoencephalogram (MEG data and skin conductance response (SCR, a reliable autonomic marker of central activation, were recorded in healthy volunteers during the presentation of emotional (unpleasant and pleasant and neutral pictures selected from the International Affective Picture System (IAPS. Analyses of event-related magnetic fields (ERFs revealed greater activity at 180 ms in an occipitotemporal component for emotional pictures than for neutral counterparts. More importantly, these early effects of emotional arousal on cerebral activity were significantly correlated with later increases in SCR magnitude. For the first time, a neuromagnetic cortical component linked to a well-documented marker of bodily arousal expression of emotion, namely, the skin conductance response, was identified and located. This finding sheds light on the time course of the brain–body interaction with emotional arousal and provides new insights into the neural bases of complex and reciprocal mind–body links.

  4. Clinicoelectrophysiologic and magnetoresonance and tomographic investigation of hereditary and congenital diseases of the brain

    International Nuclear Information System (INIS)

    Kamalov, I.I.; Pikuza, O.I.; Idrisova, L.G.; Uryvskij, V.I.

    1996-01-01

    The combined investigation of hereditary and congenital diseases of the brain using magnetoresonance tomography is performed. The hereditary and congenital diseases of the brain accompanied by disorders of liquoroconductive tracts with medullary substance lesion are revealed. The investigation results provide timely development of the treatment tactics and rehabilitation of sick children. Refs. 3

  5. Frontal Brain Asymmetry in Depression with Comorbid Anxiety: A Neuropsychological Investigation

    OpenAIRE

    Nelson, Brady D.; Sarapas, Casey; Robison-Andrew, E. Jenna; Altman, Sarah E.; Campbell, Miranda L.; Shankman, Stewart A.

    2012-01-01

    The approach-withdrawal model posits that depression and anxiety are associated with a relative right asymmetry in frontal brain activity. Most studies have tested this model using measures of cortical brain activity such as electroencephalography. However, neuropsychological tasks that differentially employ left vs. right frontal cortical regions can also be used to test hypotheses from the model. In two independent samples (Study 1 and 2), the present study investigated the performance of c...

  6. Chronic microelectrode investigations of normal human brain physiology using a hybrid depth electrode.

    Science.gov (United States)

    Howard, M A; Volkov, I O; Noh, M D; Granner, M A; Mirsky, R; Garell, P C

    1997-01-01

    Neurosurgeons have unique access to in vivo human brain tissue, and in the course of clinical treatment important scientific advances have been made that further our understanding of normal brain physiology. In the modern era, microelectrode recordings have been used to systematically investigate the cellular properties of lateral temporal cerebral cortex. The current report describes a hybrid depth electrode (HDE) recording technique that was developed to enable neurosurgeons to simultaneously investigate normal cellular physiology during chronic intracranial EEG recordings. The HDE combines microelectrode and EEG recordings sites on a single shaft. Multiple microelectrode recordings are obtained from MRI defined brain sites and single-unit activity is discriminated from these data. To date, over 60 HDEs have been placed in 20 epilepsy surgery patients. Unique physiologic data have been gathered from neurons in numerous brain regions, including amygdala, hippocampus, frontal lobe, insula and Heschl's gyrus. Functional activation studies were carried out without risking patient safety or comfort.

  7. Investigating the ''social brain'' through Williams syndrome

    International Nuclear Information System (INIS)

    Nagamine, Masanori; Mimura, Masaru; Reiss, A.L.; Hoeft, F.

    2010-01-01

    Recent advances in social cognitive neuroscience have led to the concept of the ''social brain''. The social brain includes neural processes specialized for processing social information necessary for the recognition of self and others, and interpersonal relationships. Because of its unique behavioral phenotypic features which includes 'hypersociability', Williams syndrome has gained popularity among social cognitive neuroscientists. Individuals with Williams syndrome share the same genetic risk factor for cognitive-behavioral dysfunction utilizing brain imaging to elucidate endophenotype provides us with an unprecendented opportunity to study gene, brain and behavior relationships especially those related to social cognition. In this review, we provide an overview of neuroimaging studies on social cognition in Williams syndrome and discuss the neural basis of the social brain. (author)

  8. The SAMP8 mouse for investigating memory and the role of insulin in the brain.

    Science.gov (United States)

    Rhea, Elizabeth M; Banks, William A

    2017-08-01

    SAMP8 mice exhibit changes that commonly occur with normal aging late in life, but do so at a much earlier age. These changes include impairments in learning and memory as early as 8months of age and so the SAMP8 is a useful model to investigate those age-related brain changes that may affect cognition. As brain insulin signaling and memory decline with aging, the SAMP8 model is useful for investigating these changes and interventions that might prevent the decline. This review will summarize the SAMP8 mouse model, highlight changes in brain insulin signaling and its role in memory, and discuss intranasal insulin delivery in investigating effects on insulin metabolism and memory in the SAMP8 mice. Published by Elsevier Inc.

  9. Analysis of large brain MRI databases for investigating the relationships between brain, cognitive, and genetic polymorphisms

    International Nuclear Information System (INIS)

    Mazoyer, B.

    2006-01-01

    A major challenge for the years to come is the understanding of the brain-behaviour relationships, and in particular the investigation and quantification of the impact of genetic polymorphism on these relationships. In this framework, a promising experimental approach, which we will refer to as neuro-epidemiologic imaging, consists in acquiring multimodal (brain images, psychometric an d sociological data, genotypes) data in large (several hundreds or thousands ) cohorts of subjects. Processing of such large databases requires on first place the conception and implementation of automated 'pipelines', including image registration, spatial normalisation tissue segmentation, and multivariate statistical analysis. Given the number of images and data to be processed, such pipelines must be both fully automated and robust enough to be able to handle multi-center MRI data, e.g. having inhomogeneous characteristics in terms of resolution and contrast. This approach will be illustrated using two databases collected in aged healthy subjects, searching for the impact of genetic and environmental on two markers of brain aging, namely white matter hyper-signals, and grey matter atrophy. (author)

  10. Every Newton Hertz: a macro to micro approach to investigating brain injury.

    Science.gov (United States)

    Duma, Stefan M; Rowson, Steven

    2009-01-01

    The high incidence of concussion in contact sports provides a unique opportunity to collect data to characterize mild traumatic brain injury. This paper outlines a macro to micro approach in which the organ level response of the head is analyzed through head acceleration data from human volunteers and the tissue level response is analyzed through finite element analysis of these data. The helmets of Virginia Tech football players are instrumented with multi-accelerometer measurement devices to record linear and rotational head accelerations for every impact during a game or practice. These impacts are then modeled using the Simulated Injury Monitor (SIMon) finite element head model. Cumulative strain damage measure was investigated for the impacts resulting in the high linear and rotational accelerations. The effect of head impacts on functional performance in football players is also investigated to identify any cognitive effects from repetitive sub-concussive impacts. A better understanding of the effects of head impacts and the mechanisms of brain injury will likely result in insight to future head injury prevention methods and cellular research on brain injury.

  11. Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI

    DEFF Research Database (Denmark)

    Cramer, Stig Præstekær; Simonsen, Helle Juhl; Frederiksen, Jette Lautrup Battistini

    2013-01-01

    To investigate whether blood-brain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics.......To investigate whether blood-brain barrier (BBB) permeability is disrupted in normal appearing white matter in MS patients, when compared to healthy controls and whether it is correlated with MS clinical characteristics....

  12. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Inaji, Motoki; Ohno, Kikuo; Hiura, Mikio; Ishii, Kenji; Hosoda, Chihiro

    2011-01-01

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18 F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11 C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  13. A Systematic Review of Investigations into Functional Brain Connectivity Following Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Alkinoos Athanasiou

    2017-10-01

    Full Text Available Background: Complete or incomplete spinal cord injury (SCI results in varying degree of motor, sensory and autonomic impairment. Long-lasting, often irreversible disability results from disconnection of efferent and afferent pathways. How does this disconnection affect brain function is not so clear. Changes in brain organization and structure have been associated with SCI and have been extensively studied and reviewed. Yet, our knowledge regarding brain connectivity changes following SCI is overall lacking.Methods: In this study we conduct a systematic review of articles regarding investigations of functional brain networks following SCI, searching on PubMed, Scopus and ScienceDirect according to PRISMA-P 2015 statement standards.Results: Changes in brain connectivity have been shown even during the early stages of the chronic condition and correlate with the degree of neurological impairment. Connectivity changes appear as dynamic post-injury procedures. Sensorimotor networks of patients and healthy individuals share similar patterns but new functional interactions have been identified as unique to SCI networks.Conclusions: Large-scale, multi-modal, longitudinal studies on SCI patients are needed to understand how brain network reorganization is established and progresses through the course of the condition. The expected insight holds clinical relevance in preventing maladaptive plasticity after SCI through individualized neurorehabilitation, as well as the design of connectivity-based brain-computer interfaces and assistive technologies for SCI patients.

  14. The brain effects of laser acupuncture in healthy individuals: an FMRI investigation.

    Directory of Open Access Journals (Sweden)

    Im Quah-Smith

    2010-09-01

    Full Text Available As laser acupuncture is being increasingly used to treat mental disorders, we sought to determine whether it has a biologically plausible effect by using functional magnetic resonance imaging (fMRI to investigate the cerebral activation patterns from laser stimulation of relevant acupoints.Ten healthy subjects were randomly stimulated with a fibreoptic infrared laser on 4 acupoints (LR14, CV14, LR8 and HT7 used for depression following the principles of Traditional Chinese Medicine (TCM, and 1 control non-acupoint (sham point in a blocked design (alternating verum laser and placebo laser/rest blocks, while the blood oxygenation level-dependent (BOLD fMRI response was recorded from the whole brain on a 3T scanner. Many of the acupoint laser stimulation conditions resulted in different patterns of neural activity. Regions with significantly increased activation included the limbic cortex (cingulate and the frontal lobe (middle and superior frontal gyrus. Laser acupuncture tended to be associated with ipsilateral brain activation and contralateral deactivation that therefore cannot be simply attributed to somatosensory stimulation.We found that laser stimulation of acupoints lead to activation of frontal-limbic-striatal brain regions, with the pattern of neural activity somewhat different for each acupuncture point. This is the first study to investigate laser acupuncture on a group of acupoints useful in the management of depression. Differing activity patterns depending on the acupoint site were demonstrated, suggesting that neurological effects vary with the site of stimulation. The mechanisms of activation and deactivation and their effects on depression warrant further investigation.

  15. Investigating dynamical information transfer in the brain following a TMS pulse: Insights from structural architecture.

    Science.gov (United States)

    Amico, Enrico; Van Mierlo, Pieter; Marinazzo, Daniele; Laureys, Steven

    2015-01-01

    Transcranial magnetic stimulation (TMS) has been used for more than 20 years to investigate connectivity and plasticity in the human cortex. By combining TMS with high-density electroencephalography (hd-EEG), one can stimulate any cortical area and measure the effects produced by this perturbation in the rest of the cerebral cortex. The purpose of this paper is to investigate changes of information flow in the brain after TMS from a functional and structural perspective, using multimodal modeling of source reconstructed TMS/hd-EEG recordings and DTI tractography. We prove how brain dynamics induced by TMS is constrained and driven by its structure, at different spatial and temporal scales, especially when considering cross-frequency interactions. These results shed light on the function-structure organization of the brain network at the global level, and on the huge variety of information contained in it.

  16. Which radiopharmaceuticals for to-morrow. Heart and brain investigations

    International Nuclear Information System (INIS)

    Maziere, B.

    1994-01-01

    This paper is a critical review of the various radiopharmaceuticals which have been or are presently designed for functional imaging of brain or heart using positron (PET) or single photon emission tomography. Currently used radiopharmaceuticals have been classified into two broad categories: 'passive' radiotracers intended to visualize the perfusion of the organ and 'active' or 'specific' radiotracers used to investigate metabolism or neurotransmission processes. Moreover, the potential interest of radioactive peptides or oligonucleotides which would be biologically stable in vivo and which could target proteins involved in inter or intra-cellular communications will be reviewed. (authors). 47 refs

  17. Investigating the effects of streamline-based fiber tractography on matrix scaling in brain connective network.

    Science.gov (United States)

    Jan, Hengtai; Chao, Yi-Ping; Cho, Kuan-Hung; Kuo, Li-Wei

    2013-01-01

    Investigating the brain connective network using the modern graph theory has been widely applied in cognitive and clinical neuroscience research. In this study, we aimed to investigate the effects of streamline-based fiber tractography on the change of network properties and established a systematic framework to understand how an adequate network matrix scaling can be determined. The network properties, including degree, efficiency and betweenness centrality, show similar tendency in both left and right hemispheres. By employing the curve-fitting process with exponential law and measuring the residuals, the association between changes of network properties and threshold of track numbers is found and an adequate range of investigating the lateralization of brain network is suggested. The proposed approach can be further applied in clinical applications to improve the diagnostic sensitivity using network analysis with graph theory.

  18. FROM BRAIN DRAIN TO BRAIN NETWORKING

    Directory of Open Access Journals (Sweden)

    Irina BONCEA

    2015-06-01

    Full Text Available Scientific networking is the most accessible way a country can turn the brain drain into brain gain. Diaspora’s members offer valuable information, advice or financial support from the destination country, without being necessary to return. This article aims to investigate Romania’s potential of turning brain drain into brain networking, using evidence from the medical sector. The main factors influencing the collaboration with the country of origin are investigated. The conclusions suggest that Romania could benefit from the diaspora option, through an active implication at institutional level and the implementation of a strategy in this area.

  19. Investigations of primary blast-induced traumatic brain injury

    Science.gov (United States)

    Sawyer, T. W.; Josey, T.; Wang, Y.; Villanueva, M.; Ritzel, D. V.; Nelson, P.; Lee, J. J.

    2018-01-01

    The development of an advanced blast simulator (ABS) has enabled the reproducible generation of single-pulse shock waves that simulate free-field blast with high fidelity. Studies with rodents in the ABS demonstrated the necessity of head restraint during head-only exposures. When the head was not restrained, violent global head motion was induced by pressures that would not produce similar movement of a target the size and mass of a human head. This scaling artefact produced changes in brain function that were reminiscent of traumatic brain injury (TBI) due to impact-acceleration effects. Restraint of the rodent head eliminated these, but still produced subtle changes in brain biochemistry, showing that blast-induced pressure waves do cause brain deficits. Further experiments were carried out with rat brain cell aggregate cultures that enabled the conduct of studies without the gross movement encountered when using rodents. The suspension nature of this model was also exploited to minimize the boundary effects that complicate the interpretation of primary blast studies using surface cultures. Using this system, brain tissue was found not only to be sensitive to pressure changes, but also able to discriminate between the highly defined single-pulse shock waves produced by underwater blast and the complex pressure history exposures experienced by aggregates encased within a sphere and subjected to simulated air blast. The nature of blast-induced primary TBI requires a multidisciplinary research approach that addresses the fidelity of the blast insult, its accurate measurement and characterization, as well as the limitations of the biological models used.

  20. Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs

    OpenAIRE

    Shotaro Michinaga; Yutaka Koyama

    2015-01-01

    Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vas...

  1. Investigating the acute and long-term effects of traumatic brain injury on the immune and fibrinolytic system

    OpenAIRE

    MARIA DAGLAS

    2018-01-01

    Traumatic brain injury is a serious condition that results in long-term disability in most patients. This thesis investigated the early and long-term effects of the immune and fibrinolytic response (blood clot breakdown), and the link between these two systems after brain injury in mice. A unique discovery was that the chronic immune response, over a period of 8 months, directly contributes to a worse outcome after brain injury. We also found gender-specific differences occurring at the early...

  2. Investigation of dental alginate and agar impression materials as a brain simulant for ballistic testing.

    Science.gov (United States)

    Falland-Cheung, Lisa; Piccione, Neil; Zhao, Tianqi; Lazarjan, Milad Soltanipour; Hanlin, Suzanne; Jermy, Mark; Waddell, J Neil

    2016-06-01

    Routine forensic research into in vitro skin/skull/brain ballistic blood backspatter behavior has traditionally used gelatin at a 1:10 Water:Powder (W:P) ratio by volume as a brain simulant. A limitation of gelatin is its high elasticity compared to brain tissue. Therefore this study investigated the use of dental alginate and agar impression materials as a brain simulant for ballistic testing. Fresh deer brain, alginate (W:P ratio 91.5:8.5) and agar (W:P ratio 81:19) specimens (n=10) (11×22×33mm) were placed in transparent Perspex boxes of the same internal dimensions prior to shooting with a 0.22inch caliber high velocity air gun. Quantitative analysis to establish kinetic energy loss, vertical displacement elastic behavior and qualitative analysis to establish elasticity behavior was done via high-speed camera footage (SA5, Photron, Japan) using Photron Fastcam Viewer software (Version 3.5.1, Photron, Japan) and visual observation. Damage mechanisms and behavior were qualitatively established by observation of the materials during and after shooting. The qualitative analysis found that of the two simulant materials tested, agar behaved more like brain in terms of damage and showed similar mechanical response to brain during the passage of the projectile, in terms of energy absorption and vertical velocity displacement. In conclusion agar showed a mechanical and subsequent damage response that was similar to brain compared to alginate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. [Investigating Quisling's brain].

    Science.gov (United States)

    Skalpe, Ingar O

    2004-12-16

    The trial against Vidkun Quisling (1887-1945) started on 20 August 1945. The question of whether he might suffer from a brain disease came up in court, and on Saturday 25 August he was examined by pneumoencephalography and cerebral angiography on the right side. Nothing pathological was found. Later on it has been claimed that these examinations were "experiments which today would be regarded as life-threatening". This is not correct; they were standard procedures at the time. What is criticizable is that Quisling was brought back to court in a relatively short time after the examinations. This paper gives a brief historic account of the development of the two methods, emphasising the contributions of Norwegian physicians such as Arne Engeset (1906-73) and Leif Emblem (1907-91). It has been claimed that the pneumoencephalography of Quisling has been used as an example of a normal finding from encephalography in the internationally renowned textbook "Clinical examination of the nervous system".

  4. Morphology investigation of the mink’s brain (Mustela vison

    Directory of Open Access Journals (Sweden)

    Milanović Valentina

    2013-01-01

    Full Text Available The mink is a strict carnivore and a seasonal breeder, which may be used as an experimental model for other carnivores. Using anatomical methods, 32 brains of the N. American mink were examined. It was found that the brain consists of four ventricles. Also, it was noted that the posterior horn was missing and that the olfactory recess was present in the lateral ventricle, a large-size interthalamic connection was present in the third ventricle, and a flat, necklace like bottom in the fourth ventricle. Only recently, the ins and outs of the mink’s anatomical structure have begun to absorb the attention of anatomists. Apparently, it is related to the fact that fury animals, among them the mink, are being domesticated. For this reason and because of easy access to the material, the purpose of brain dissection is to familiarize with the three dimensional structure of the brain and teach one of the great methods of studying the brain: looking at its structure.

  5. Investigation of G72 (DAOA expression in the human brain

    Directory of Open Access Journals (Sweden)

    Hirsch Steven

    2008-12-01

    Full Text Available Abstract Background Polymorphisms at the G72/G30 locus on chromosome 13q have been associated with schizophrenia or bipolar disorder in more than ten independent studies. Even though the genetic findings are very robust, the physiological role of the predicted G72 protein has thus far not been resolved. Initial reports suggested G72 as an activator of D-amino acid oxidase (DAO, supporting the glutamate dysfunction hypothesis of schizophrenia. However, these findings have subsequently not been reproduced and reports of endogenous human G72 mRNA and protein expression are extremely limited. In order to better understand the function of this putative schizophrenia susceptibility gene, we attempted to demonstrate G72 mRNA and protein expression in relevant human brain regions. Methods The expression of G72 mRNA was studied by northern blotting and semi-quantitative SYBR-Green and Taqman RT-PCR. Protein expression in human tissue lysates was investigated by western blotting using two custom-made specific anti-G72 peptide antibodies. An in-depth in silico analysis of the G72/G30 locus was performed in order to try and identify motifs or regulatory elements that provide insight to G72 mRNA expression and transcript stability. Results Despite using highly sensitive techniques, we failed to identify significant levels of G72 mRNA in a variety of human tissues (e.g. adult brain, amygdala, caudate nucleus, fetal brain, spinal cord and testis human cell lines or schizophrenia/control post mortem BA10 samples. Furthermore, using western blotting in combination with sensitive detection methods, we were also unable to detect G72 protein in a number of human brain regions (including cerebellum and amygdala, spinal cord or testis. A detailed in silico analysis provides several lines of evidence that support the apparent low or absent expression of G72. Conclusion Our results suggest that native G72 protein is not normally present in the tissues that we analysed

  6. You had me at "Hello": Rapid extraction of dialect information from spoken words.

    Science.gov (United States)

    Scharinger, Mathias; Monahan, Philip J; Idsardi, William J

    2011-06-15

    Research on the neuronal underpinnings of speaker identity recognition has identified voice-selective areas in the human brain with evolutionary homologues in non-human primates who have comparable areas for processing species-specific calls. Most studies have focused on estimating the extent and location of these areas. In contrast, relatively few experiments have investigated the time-course of speaker identity, and in particular, dialect processing and identification by electro- or neuromagnetic means. We show here that dialect extraction occurs speaker-independently, pre-attentively and categorically. We used Standard American English and African-American English exemplars of 'Hello' in a magnetoencephalographic (MEG) Mismatch Negativity (MMN) experiment. The MMN as an automatic change detection response of the brain reflected dialect differences that were not entirely reducible to acoustic differences between the pronunciations of 'Hello'. Source analyses of the M100, an auditory evoked response to the vowels suggested additional processing in voice-selective areas whenever a dialect change was detected. These findings are not only relevant for the cognitive neuroscience of language, but also for the social sciences concerned with dialect and race perception. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Disordered semantic representation in schizophrenic temporal cortex revealed by neuromagnetic response patterns

    Directory of Open Access Journals (Sweden)

    Silberman Yaron

    2006-05-01

    Full Text Available Abstract Background Loosening of associations and thought disruption are key features of schizophrenic psychopathology. Alterations in neural networks underlying this basic abnormality have not yet been sufficiently identified. Previously, we demonstrated that spatio-temporal clustering of magnetic brain responses to pictorial stimuli map categorical representations in temporal cortex. This result has opened the possibility to quantify associative strength within and across semantic categories in schizophrenic patients. We hypothesized that in contrast to controls, schizophrenic patients exhibit disordered representations of semantic categories. Methods The spatio-temporal clusters of brain magnetic activities elicited by object pictures related to super-ordinate (flowers, animals, furniture, clothes and base-level (e.g. tulip, rose, orchid, sunflower categories were analysed in the source space for the time epochs 170–210 and 210–450 ms following stimulus onset and were compared between 10 schizophrenic patients and 10 control subjects. Results Spatio-temporal correlations of responses elicited by base-level concepts and the difference of within vs. across super-ordinate categories were distinctly lower in patients than in controls. Additionally, in contrast to the well-defined categorical representation in control subjects, unsupervised clustering indicated poorly defined representation of semantic categories in patients. Within the patient group, distinctiveness of categorical representation in the temporal cortex was positively related to negative symptoms and tended to be inversely related to positive symptoms. Conclusion Schizophrenic patients show a less organized representation of semantic categories in clusters of magnetic brain responses than healthy adults. This atypical neural network architecture may be a correlate of loosening of associations, promoting positive symptoms.

  8. Functional MRI in the Investigation of Blast-Related Traumatic Brain Injury

    Science.gov (United States)

    Graner, John; Oakes, Terrence R.; French, Louis M.; Riedy, Gerard

    2012-01-01

    This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries. PMID:23460082

  9. Strong memory in time series of human magnetoencephalograms can identify photosensitive epilepsy

    International Nuclear Information System (INIS)

    Yulmetyev, R. M.; Yulmetyeva, D. G.; Haenggi, P.; Shimojo, S.; Bhattacharya, J.

    2007-01-01

    To discuss the salient role of statistical memory effects in human brain functioning, we have analyzed a set of stochastic memory quantifiers that reflects the dynamical characteristics of neuromagnetic responses of magnetoencephalographic signals to a flickering stimulus of different color combinations from a group of control subjects, and compared them with those for a patient with photosensitive epilepsy. We have discovered that the emergence of strong memory and the accompanying transition to a regular and robust regime of chaotic behavior of signals in separate areas for a patient most likely identifies the regions where the protective mechanism against the occurrence of photosensitive epilepsy is located

  10. Computer tomography investigation of epilepsy the brain atrophy

    International Nuclear Information System (INIS)

    Taneva, N.

    1997-01-01

    The problem of brain atrophy in patients with epilepsy is often discussed in literature. The aim of the study is to present the results of computer tomography measurements of ventricular size and sulci of brain of 90 patients with various electro-clinical forms of epilepsy, including males and females at the age of 15 to 70 years. Computer tomography measurements were performed having in mind 6 parameters (frontal horn index, FHI; Huckman's number, HZ; cella media index,CMI; width of the third and the fourth ventricles; sulci). The results were compared to the CT measurements of a control group of 40 healthy males and females in the same age range.The obtained data indicate high percentage of subcortical atrophy among patients with epilepsy. Ventricular dilatation was found to be in light extent occurring most early in the frontal brain regions (frontal horns and lateral ventricles)., furthermore observed in the young age. (author)

  11. Variations of the Functional Brain Network Efficiency in a Young Clinical Sample within the Autism Spectrum: A fNIRS Investigation

    OpenAIRE

    Li, Yanwei; Yu, Dongchuan

    2018-01-01

    Autism is a neurodevelopmental disorder with dimensional behavioral symptoms and various damages in the structural and functional brain. Previous neuroimaging studies focused on exploring the differences of brain development between individuals with and without autism spectrum disorders (ASD). However, few of them have attempted to investigate the individual differences of the brain features among subjects within the Autism spectrum. Our main goal was to explore the individual differences of ...

  12. Synthesis and investigation of novel shelf-stable, brain-specific chemical delivery system

    International Nuclear Information System (INIS)

    Al-Obaid, Abdulrahman M.; Farag, Hassan A.; Khalil, Ashraf A.; Hamide, Sami G. Abdel; Ahmed, Hassan S.; Al-Affifi, Ahmed M.; Gadkariem Elrasheed, A.; El-Subbagh, Hussein I.; Al-Shabanah, Othman A.; El-Kashef, Hassan A.

    2006-01-01

    A 1, 4-dihydropyridine pyridinium salt type redox system is described as a general and flexible method for site-specific and sustained delivery of drugs into the brain. Monoamine oxidase inhibitors (MAOIs) were used as a model example to be delivered into the brain. Chemical and biological oxidations of these compounds were investigated. The prepared 1, 4-dihydropyridines were subjected to various chemical and biological oxidations to evaluate their ability to cross blood brain barrier (BBB), and to be oxidized biologically into their corresponding quaternary compounds. 1-(Ethioxy-carbonylmethyl)-3, 5-bis[N-(2-fluoro-benzylideneamino)carbamoyl]-1, 4-dyhydropyridine (31) proved to cross BBB in adequate rate and converted by the oxidizing enzymes into the corresponding quaternary salt N-(ethoxycarbolynmethyl)-3, 5-bis[N-(2-fluorobenylideneamino)carbamoyl]pyridimium bromide(20). Stability studies of the synthesized chemical delivery systems (CDSs) at various pH values and temperatures showed the shelf life time of a solution containing compound 31 is 20.53 days at 5C, which recommended a lower storage temperature for such solutions. The prepared CDSs proved to be fairly stable for powder form storage. The stability of the prepared compounds is attributed to the conjugation of the two carboxylic functions at C3 and C5 of the pyridine ring with their adjacent double bonds. These results are in consistency with the original rationale design. (author)

  13. Transtemporal Investigation of Brain Parenchyma Elasticity Using 2-D Shear Wave Elastography: Definition of Age-Matched Normal Values.

    Science.gov (United States)

    Ertl, Michael; Raasch, Nele; Hammel, Gertrud; Harter, Katharina; Lang, Christopher

    2018-01-01

    The goal of our research was to assess the possibility of reliable investigation of brain tissue stiffness using ultrasonographic brain parenchyma elastography with an intact temporal bone. We enrolled 108 patients after exclusion of intracranial pathology or healthy volunteers. All patients were subdivided by age into groups: 20-40, 40-60 and >60 y. For statistical analysis, the χ 2 test and t-test were used. The mean values, regardless of age and other parameters, were 3.34 kPa (SD = 0.59) on the left side and 3.33 kPa (SD = 0.58) on the right side. We found no correlation between the values, body mass index (r = 0.07, p = 0.48) and sex (t = -0.11, p = 0.91), but we observed a highly significant correlation between the values and age (r = 0.43, p <0.0001). We found ultrasonographic brain parenchyma elastography to be a valid, reproducible and investigator-independent method that reliably determines brain parenchyma stiffness. Normal values should serve as a reference for studies on various intracranial lesions. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  14. Investigation of the Effects of Brain Teasers on Attention Spans of Pre-School Children

    Science.gov (United States)

    Altun, Meryem; Hazar, Muhsin; Hazar, Zekihan

    2016-01-01

    The purpose of this study is to investigate the effects of brain teasers on attention spans of preschool children of age six. The study was conducted using an experimental design with a control group and pre-test/post-test. The sample of the study is children of age six selected via random appointment among ones who were enrolled in the Merkez…

  15. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood-brain barrier transport investigations.

    Science.gov (United States)

    Zidan, Ahmed S; Aldawsari, Hibah

    2015-01-01

    Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood-brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood-brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes.

  16. Research review: Functional brain connectivity and child psychopathology--overview and methodological considerations for investigators new to the field.

    Science.gov (United States)

    Matthews, Marguerite; Fair, Damien A

    2015-04-01

    Functional connectivity MRI is an emerging technique that can be used to investigate typical and atypical brain function in developing and aging populations. Despite some of the current confounds in the field of functional connectivity MRI, the translational potential of the technique available to investigators may eventually be used to improve diagnosis, early disease detection, and therapy monitoring. Based on a comprehensive survey of the literature, this review offers an introduction of resting-state functional connectivity for new investigators to the field of resting-state functional connectivity. We discuss a brief history of the technique, various methods of analysis, the relationship of functional networks to behavior, as well as the translational potential of functional connectivity MRI to investigate neuropsychiatric disorders. We also address some considerations and limitations with data analysis and interpretation. The information provided in this review should serve as a foundation for investigators new to the field of resting-state functional connectivity. The discussion provides a means to better understand functional connectivity and its application to typical and atypical brain function. © 2014 Association for Child and Adolescent Mental Health.

  17. Altered structural connectivity of pain-related brain network in burning mouth syndrome-investigation by graph analysis of probabilistic tractography.

    Science.gov (United States)

    Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu

    2017-05-01

    Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.

  18. Effects of brain lesions on moral agency: ethical dilemmas in investigating moral behavior.

    Science.gov (United States)

    Christen, Markus; Müller, Sabine

    2015-01-01

    Understanding how the "brain produces behavior" is a guiding idea in neuroscience. It is thus of no surprise that establishing an interrelation between brain pathology and antisocial behavior has a long history in brain research. However, interrelating the brain with moral agency--the ability to act in reference to right and wrong--is tricky with respect to therapy and rehabilitation of patients affected by brain lesions. In this contribution, we outline the complexity of the relationship between the brain and moral behavior, and we discuss ethical issues of the neuroscience of ethics and of its clinical consequences. First, we introduce a theory of moral agency and apply it to the issue of behavioral changes caused by brain lesions. Second, we present a typology of brain lesions both with respect to their cause, their temporal development, and the potential for neural plasticity allowing for rehabilitation. We exemplify this scheme with case studies and outline major knowledge gaps that are relevant for clinical practice. Third, we analyze ethical pitfalls when trying to understand the brain-morality relation. In this way, our contribution addresses both researchers in neuroscience of ethics and clinicians who treat patients affected by brain lesions to better understand the complex ethical questions, which are raised by research and therapy of brain lesion patients.

  19. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  20. Radioisotopic investigations of zinc uptake into brain slices

    International Nuclear Information System (INIS)

    Howell, G.A.

    1983-01-01

    The presence of zinc in the vicinity of the hippocampal mossy fibers has been repeatedly demonstrated, and several lines of evidence suggest that the mossy-fiber zinc is concentrated within the terminals of mossy fibers. In search of insight into the metabolism and function of mossy-fiber zinc, the present study investigated the transport of zinc into tissue slices and the response of the zinc transport to depolarization. Kinetic analysis of zinc accumulation by mouse brain slices in vitro revealed the presence of a high affinity uptake component with an apparent Km of 17.7 μM for hippocampus, 16.6 μM< for cortex and 25 μM for striatum and a V/sub max/ of 9.2 ng/mg/hr for the hippocampus, 10.1 ng/mg/hr for cortex and 9.6 ng/mg/hr for striatum. Cytoarchitectonic differences in zinc transport between the different hippocampal subregions were found with those regions containing granule cells or mossy fiber axons accumulating greater amounts of zinc than the CA 1 region. The present finding that mossy-fiber neuropil selectivity accumulates zinc suggests the presence of a zinc-binding substance unique to mossy-fiber tissue

  1. Investigating Contingency Risk Factors of Brain Tumor in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    A Nazemi

    2014-12-01

    Conclusion: According to research results, several preventable and predictable factors are linked to pediatric brain tumors. Therefore, children prone to brain tumors are recommended to be examined and screened for these risk factors.

  2. Brain imaging and brain function

    International Nuclear Information System (INIS)

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage

  3. Kinetic Analysis of 2-[11C]Thymidine PET Imaging Studies of Malignant Brain Tumors: Compartmental Model Investigation and Mathematical Analysis

    Directory of Open Access Journals (Sweden)

    Joanne M. Wells

    2002-07-01

    Full Text Available 2-[11C]Thymidine (TdR, a PET tracer for cellular proliferation, may be advantageous for monitoring brain tumor progression and response to therapy. We previously described and validated a five-compartment model for thymidine incorporation into DNA in somatic tissues, but the effect of the blood–brain barrier on the transport of TdR and its metabolites necessitated further validation before it could be applied to brain tumors. Methods: We investigated the behavior of the model under conditions experienced in the normal brain and brain tumors, performed sensitivity and identifiability analysis to determine the ability of the model to estimate the model parameters, and conducted simulations to determine whether it can distinguish between thymidine transport and retention. Results: Sensitivity and identifiability analysis suggested that the non-CO2 metabolite parameters could be fixed without significantly affecting thymidine parameter estimation. Simulations showed that K1t and KTdR could be estimated accurately (r = .97 and .98 for estimated vs. true parameters with standard errors < 15%. The model was able to separate increased transport from increased retention associated with tumor proliferation. Conclusion: Our model adequately describes normal brain and brain tumor kinetics for thymidine and its metabolites, and it can provide an estimate of the rate of cellular proliferation in brain tumors.

  4. A Whole-Brain Investigation of White Matter Microstructure in Adolescents with Conduct Disorder.

    Science.gov (United States)

    Sarkar, Sagari; Dell'Acqua, Flavio; Froudist Walsh, Seán; Blackwood, Nigel; Scott, Stephen; Craig, Michael C; Deeley, Quinton; Murphy, Declan G M

    2016-01-01

    The biological basis of severe antisocial behaviour in adolescents is poorly understood. We recently reported that adolescents with conduct disorder (CD) have significantly increased fractional anisotropy (FA) of the uncinate fasciculus (a white matter (WM) tract that connects the amygdala to the frontal lobe) compared to their non-CD peers. However, the extent of WM abnormality in other brain regions is currently unclear. We used tract-based spatial statistics to investigate whole brain WM microstructural organisation in 27 adolescent males with CD, and 21 non-CD controls. We also examined relationships between FA and behavioural measures. Groups did not differ significantly in age, ethnicity, or substance use history. The CD group, compared to controls, had clusters of significantly greater FA in 7 brain regions corresponding to: 1) the bilateral inferior and superior cerebellar peduncles, corticopontocerebellar tract, posterior limb of internal capsule, and corticospinal tract; 2) right superior longitudinal fasciculus; and 3) left cerebellar WM. Severity of antisocial behavior and callous-unemotional symptoms were significantly correlated with FA in several of these regions across the total sample, but not in the CD or control groups alone. Adolescents with CD have significantly greater FA than controls in WM regions corresponding predominantly to the fronto-cerebellar circuit. There is preliminary evidence that variation in WM microstructure may be dimensionally related to behaviour problems in youngsters. These findings are consistent with the hypothesis that antisocial behaviour in some young people is associated with abnormalities in WM 'connectivity'.

  5. A Whole-Brain Investigation of White Matter Microstructure in Adolescents with Conduct Disorder.

    Directory of Open Access Journals (Sweden)

    Sagari Sarkar

    Full Text Available The biological basis of severe antisocial behaviour in adolescents is poorly understood. We recently reported that adolescents with conduct disorder (CD have significantly increased fractional anisotropy (FA of the uncinate fasciculus (a white matter (WM tract that connects the amygdala to the frontal lobe compared to their non-CD peers. However, the extent of WM abnormality in other brain regions is currently unclear.We used tract-based spatial statistics to investigate whole brain WM microstructural organisation in 27 adolescent males with CD, and 21 non-CD controls. We also examined relationships between FA and behavioural measures. Groups did not differ significantly in age, ethnicity, or substance use history.The CD group, compared to controls, had clusters of significantly greater FA in 7 brain regions corresponding to: 1 the bilateral inferior and superior cerebellar peduncles, corticopontocerebellar tract, posterior limb of internal capsule, and corticospinal tract; 2 right superior longitudinal fasciculus; and 3 left cerebellar WM. Severity of antisocial behavior and callous-unemotional symptoms were significantly correlated with FA in several of these regions across the total sample, but not in the CD or control groups alone.Adolescents with CD have significantly greater FA than controls in WM regions corresponding predominantly to the fronto-cerebellar circuit. There is preliminary evidence that variation in WM microstructure may be dimensionally related to behaviour problems in youngsters. These findings are consistent with the hypothesis that antisocial behaviour in some young people is associated with abnormalities in WM 'connectivity'.

  6. A Systematic Investigation into Aging Related Genes in Brain and Their Relationship with Alzheimer's Disease.

    Science.gov (United States)

    Meng, Guofeng; Zhong, Xiaoyan; Mei, Hongkang

    2016-01-01

    Aging, as a complex biological process, is accompanied by the accumulation of functional loses at different levels, which makes age to be the biggest risk factor to many neurological diseases. Even following decades of investigation, the process of aging is still far from being fully understood, especially at a systematic level. In this study, we identified aging related genes in brain by collecting the ones with sustained and consistent gene expression or DNA methylation changes in the aging process. Functional analysis with Gene Ontology to these genes suggested transcriptional regulators to be the most affected genes in the aging process. Transcription regulation analysis found some transcription factors, especially Specificity Protein 1 (SP1), to play important roles in regulating aging related gene expression. Module-based functional analysis indicated these genes to be associated with many well-known aging related pathways, supporting the validity of our approach to select aging related genes. Finally, we investigated the roles of aging related genes on Alzheimer's Disease (AD). We found that aging and AD related genes both involved some common pathways, which provided a possible explanation why aging made the brain more vulnerable to Alzheimer's Disease.

  7. Deep brain stimulation results in local glutamate and adenosine release: investigation into the role of astrocytes.

    Science.gov (United States)

    Tawfik, Vivianne L; Chang, Su-Youne; Hitti, Frederick L; Roberts, David W; Leiter, James C; Jovanovic, Svetlana; Lee, Kendall H

    2010-08-01

    Several neurological disorders are treated with deep brain stimulation; however, the mechanism underlying its ability to abolish oscillatory phenomena associated with diseases as diverse as Parkinson's disease and epilepsy remain largely unknown. To investigate the role of specific neurotransmitters in deep brain stimulation and determine the role of non-neuronal cells in its mechanism of action. We used the ferret thalamic slice preparation in vitro, which exhibits spontaneous spindle oscillations, to determine the effect of high-frequency stimulation on neurotransmitter release. We then performed experiments using an in vitro astrocyte culture to investigate the role of glial transmitter release in high-frequency stimulation-mediated abolishment of spindle oscillations. In this series of experiments, we demonstrated that glutamate and adenosine release in ferret slices was able to abolish spontaneous spindle oscillations. The glutamate release was still evoked in the presence of the Na channel blocker tetrodotoxin, but was eliminated with the vesicular H-ATPase inhibitor bafilomycin and the calcium chelator 2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester. Furthermore, electrical stimulation of purified primary astrocytic cultures was able to evoke intracellular calcium transients and glutamate release, and bath application of 2-bis (2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester inhibited glutamate release in this setting. Vesicular astrocytic neurotransmitter release may be an important mechanism by which deep brain stimulation is able to achieve clinical benefits.

  8. Problems in accurately diagnosing and follow-up for a higher brain dysfunction after traumatic brain injury

    International Nuclear Information System (INIS)

    Hayakawa, Mineji; Ikoma, Katsunori; Oshiro, Akiko; Hoshino, Hirokatsu; Gando, Satoshi

    2007-01-01

    Recently, the occurrence of a higher brain dysfunction after brain injury has been socially noticed and epidemiological investigations have thus been performed. However, most of these previous investigations tended to be based on populations in a chronic stage after brain trauma. We hypothesized that some patients with a higher brain dysfunction were socially in extreme distress after being discharged from our hospital due to a lack of any follow-up treatment. We investigated this problem to identify possible problems in diagnosing and follow-up for a higher brain dysfunction after blunt traumatic brain injury at a tertiary emergency center. A questionnaire survey was performed for 204 blunt trauma patients who had been admitted during the period from January 2000 thorough December 2003. Clinical examinations were performed for patients suspected of having a higher brain dysfunction based on this questionnaire survey. Three patients had been already diagnosed to have a higher brain dysfunction while other 3 patients were newly diagnosed in this investigation. The newly diagnosed patients discharged from departments other than the neurosurgery department. Computed tomography (CT) was performed in 82% patients (65 patients) to diagnose major brain injury or bone fracture. No magnetic resonance image was performed to detect any minor brain injury in alert patients. Overlooking the occurrence of a higher brain dysfunction may result from an insufficient recognition of higher brain dysfunction and an insufficient sensitivity of the present diagnostic methods available for minor brain injury. An increased awareness regarding the potential of a higher brain dysfunction existing in such patients is therefore needed by the entire medical staff and the general public. (author)

  9. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood–brain barrier transport investigations

    Directory of Open Access Journals (Sweden)

    Zidan AS

    2015-07-01

    Full Text Available Ahmed S Zidan,1,2 Hibah Aldawsari1 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt Abstract: Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood–brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood–brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (<200 nm of narrow size distribution. Optimized ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes. Keywords: CNS delivery, sizing, lipid based formulations, quality by design, sertraline hydrochloride

  10. Investigation of Resonance Effect Caused by Local Exposure of Extremely Low Frequency Magnetic Field on Brain Signals: A Randomize Clinical Trial

    Directory of Open Access Journals (Sweden)

    Rasul Zadeh Tabataba’ei K

    2011-03-01

    Full Text Available Background and Objectives: Some studies have investigated the effects of extremely low frequency magnetic fields (ELF-MFs on brain signals, but only few of them have reported that humans exposed to magnetic fields exhibit changes in brain signals at the frequency of stimulation, i.e. resonance effect. In most investigations, researchers usually take advantage of a uniform field which encompasses the head. The aim of present study was to expose different parts of the brain to ELF-MFs locally and to investigate variation of brain signal and resonance effect.Methods: The subjects consisting of 19 male-students with the mean age of 25.6±1.6 years participated in this study. Local ELF-MFs with 3, 5, 10, 17 and 45Hz frequencies and 240 μT intensity was applied on five points (T3, T4, Cz, F3 and F4 of participants scalp Separately in 10-20 system. In the end, relative power over this points in common frequency bands and at the frequency of magnetic fields was evaluated by paired t-test.Results: Exposure of Central area by local magnetic field caused significant change (p<0.05 in the forehead alpha band. Reduction in the alpha band over central area was observed when temporal area was exposed to ELF MF.Conclusion: The results showed that resonance effect in the brain signals caused by local magnetic field exposure was not observed and change in every part of the relative power spectrum might occur. The changes in the EEG bands were not limited necessarily to the exposure point.

  11. Investigating Irregularly Patterned Deep Brain Stimulation Signal Design Using Biophysical Models

    Directory of Open Access Journals (Sweden)

    Samantha Rose Summerson

    2015-06-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disorder which follows from cell loss of dopaminergic neurons in the substantia nigra pars compacta (SNc, a nucleus in the basal ganglia (BG. Deep brain stimulation (DBS is an electrical therapy that modulates the pathological activity to treat the motor symptoms of PD. Although this therapy is currently used in clinical practice, the sufficient conditions for therapeutic efficacy are unknown. In this work we develop a model of critical motor circuit structures in the brain using biophysical cell models as the base components and then evaluate performance of different DBS signals in this model to perform comparative studies of their efficacy. Biological models are an important tool for gaining insights into neural function and, in this case, serve as effective tools for investigating innovative new DBS paradigms. Experiments were performed using the hemi-parkinsonian rodent model to test the same set of signals, verifying the obedience of the model to physiological trends. We show that antidromic spiking from DBS of the subthalamic nucleus (STN has a significant impact on cortical neural activity, which is frequency dependent and additionally modulated by the regularity of the stimulus pulse train used. Irregular spacing between stimulus pulses, where the amount of variability added is bounded, is shown to increase diversification of response of basal ganglia neurons and reduce entropic noise in cortical neurons, which may be fundamentally important to restoration of information flow in the motor circuit.

  12. Functional MRI studies of human vision on a clinical imager

    International Nuclear Information System (INIS)

    George, J.S.; Lewine, J.D.; Aine, C.J.; van Hulsteyn, D.; Wood, C.C.; Sanders, J.; Maclin, E.; Belliveau, J.W.; Caprihan, A.

    1992-01-01

    During the past decade, Magnetic Resonance Imaging (MRI) has become the method of choice for imaging the anatomy of the human brain. Recently, Belliveau and colleagues have reported the use of echo planar magnetic resonance imaging (EPI) to image patterns of neural activity. Here, we report functional MR imaging in response to visual stimulation without the use of contrast agents, and without the extensive hardware modifications required for EPI. Regions of activity were observed near the expected locations of V1, V2 and possibly V3 and another active region was observed near the parietal-occipital sulcus on the superior surface of the cerebrum. These locations are consistent with sources observed in neuromagnetic studies of the human visual response

  13. Playing with your Brain : Brain-Computer Interfaces and Games

    NARCIS (Netherlands)

    Nijholt, Anton; Tan, Desney; Bernhaupt, Regina; Tscheligi, Manfred

    2007-01-01

    In this workshop we investigate a possible role of brain-computer interaction in computer games and entertainment computing. The assumption is that brain activity, whether it is consciously controlled and directed by the user or just recorded in order to obtain information about the user’s affective

  14. Playing with your Brain: Brain-Computer Interfaces and Games

    NARCIS (Netherlands)

    Nijholt, Antinus; Tan, Desney; Bernhaupt, R.; Tscheligi, M.

    2007-01-01

    In this workshop we investigate a possible role of brain-computer interaction in computer games and entertainment computing. The assumption is that brain activity, whether it is consciously controlled and directed by the user or just recorded in order to obtain information about the user’s affective

  15. Investigation of olfactory function in normal volunteers by Tc-99m ECD Brain SPECT: Analysis using statistical parametric mapping

    International Nuclear Information System (INIS)

    Chung, Y.A.; Kim, S.H.; Park, Y.H.; Lee, S.Y.; Sohn, H.S.; Chung, S.K.

    2002-01-01

    The purpose of this study was to investigate olfactory function according to Tc-99m ECD uptake pattern in brain perfusion SPET of normal volunteer by means of statistical parametric mapping (SPM) analysis. The study population was 8 healthy volunteer subjects (M:F = 6:2, age range: 22-54 years, mean 34 years). We performed baseline brain perfusion SPET using 555 MBq of Tc-99m ECD in a silent dark room. Two hours later, we obtained brain perfusion SPET using 1110 MBq of Tc-99m ECD after 3% butanol solution under the same condition. All SPET images were spatially transformed to standard space smoothed and globally normalized. The differences between the baseline and odor-identification SPET images were statistically analyzed using SPM-99 software. The difference between two sets of brain perfusion SPET was considered significant at a threshold of uncorrected p values less than 0.01. SPM analysis revealed significant hyper-perfusion in both cingulated gyri, right middle temporal gyrus, right superior and inferior frontal gyri, right lingual gyrus and right fusiform gyrus on odor-identification SPET. This study shows that brain perfusion SPET can securely support other diagnostic techniques in the evaluation of olfactory function

  16. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    Science.gov (United States)

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  17. Bridging from Brain to Tumor Imaging: (S-(−- and (R-(+-[18F]Fluspidine for Investigation of Sigma-1 Receptors in Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Mathias Kranz

    2018-03-01

    Full Text Available Sigma-1 receptors (Sig1R are highly expressed in various human cancer cells and hence imaging of this target with positron emission tomography (PET can contribute to a better understanding of tumor pathophysiology and support the development of antineoplastic drugs. Two Sig1R-specific radiolabeled enantiomers (S-(−- and (R-(+-[18F]fluspidine were investigated in several tumor cell lines including melanoma, squamous cell/epidermoid carcinoma, prostate carcinoma, and glioblastoma. Dynamic PET scans were performed in mice to investigate the suitability of both radiotracers for tumor imaging. The Sig1R expression in the respective tumors was confirmed by Western blot. Rather low radiotracer uptake was found in heterotopically (subcutaneously implanted tumors. Therefore, a brain tumor model (U87-MG with orthotopic implantation was chosen to investigate the suitability of the two Sig1R radiotracers for brain tumor imaging. High tumor uptake as well as a favorable tumor-to-background ratio was found. These results suggest that Sig1R PET imaging of brain tumors with [18F]fluspidine could be possible. Further studies with this tumor model will be performed to confirm specific binding and the integrity of the blood-brain barrier (BBB.

  18. BrainCrafter: An investigation into human-based neural network engineering

    DEFF Research Database (Denmark)

    Piskur, J.; Greve, P.; Togelius, J.

    2015-01-01

    This paper presents the online application Brain-Crafter, in which users can manually build artificial neural networks (ANNs) to control a robot in a maze environment. Users can either start to construct networks from scratch or elaborate on networks created by other users. In particular, Brain......Crafter was designed to study how good we as humans are at building ANNs for control problems and if collaborating with other users can facilitate this process. The results in this paper show that (1) some users were in fact able to successfully construct ANNs that solve the navigation tasks, (2) collaboration between...

  19. Origin of hyperbolicity in brain-to-brain coordination networks

    Science.gov (United States)

    Tadić, Bosiljka; Andjelković, Miroslav; Šuvakov, Milovan

    2018-02-01

    Hyperbolicity or negative curvature of complex networks is the intrinsic geometric proximity of nodes in the graph metric space, which implies an improved network function. Here, we investigate hidden combinatorial geometries in brain-to-brain coordination networks arising through social communications. The networks originate from correlations among EEG signals previously recorded during spoken communications comprising of 14 individuals with 24 speaker-listener pairs. We find that the corresponding networks are delta-hyperbolic with delta_max=1 and the graph diameter D=3 in each brain. While the emergent hyperbolicity in the two-brain networks satisfies delta_max/D/2 neuronal correlation patterns ranging from weak coordination to super-brain structure. These topology features are in qualitative agreement with the listener’s self-reported ratings of own experience and quality of the speaker, suggesting that studies of the cross-brain connector networks can reveal new insight into the neural mechanisms underlying human social behavior.

  20. MRI or not to MRI! Should brain MRI be a routine investigation in children with autistic spectrum disorders?

    Science.gov (United States)

    Zeglam, Adel M; Al-Ogab, Marwa F; Al-Shaftery, Thouraya

    2015-09-01

    To evaluate the routine usage of Magnetic Resonance Imaging (MRI) of brain and estimate the prevalence of brain abnormalities in children presenting to the Neurodevelopment Clinic of Al-Khadra Hospital (NDC-KH), Tripoli, Libya with autistic spectrum disorders (ASD). The records of all children with ASD presented to NDC-KH over 4-year period (from January 2009 to December 2012) were reviewed. All MRIs were acquired with a 1.5-T Philips (3-D T1, T2, FLAIR coronal and axial sequences). MRIs were reported to be normal, abnormal or no significant abnormalities by a consultant neuroradiologist. One thousand and seventy-five children were included in the study. Seven hundred and eighty-two children (72.7 %) had an MRI brain of whom 555 (71 %) were boys. 26 children (24 males and 2 females) (3.3 %) demonstrated MRI abnormalities (8 leukodystrophic changes, 4 periventricular leukomalacia, 3 brain atrophy, 2 tuberous sclerosis, 2 vascular changes, 1 pineoblastoma, 1 cerebellar angioma, 1 cerebellar hypoplasia, 3 agenesis of corpus callosum, 1 neuro-epithelial cyst). An unexpectedly high rate of MRI abnormalities was found in the first large series of clinical MRI investigations in children with autism. These results could contribute to further research into the pathogenesis of autistic spectrum disorder.

  1. Migraine, the heart and the brain

    NARCIS (Netherlands)

    Koppen, H.

    2018-01-01

    The association between migraine and silent ischemic brain lesions was investigated. Also the occurence of right-to-left shunts in different migraine groups and controls. The functional consequences of silent ischemic brain lesions were investigated.

  2. [Self-esteem Saves Brain and Health: Evidence from a Follow-up Investigation after the Great East Japan Earthquake].

    Science.gov (United States)

    Sekiguchi, Atsushi

    2015-10-01

    Self-esteem plays a crucial role in mental health status. Past studies have revealed higher self-esteem as one of the most important traits of resilience in the context of stressful life events. In fact, our recent studies demonstrated that high self-esteem is a predicting factor for the recovery from brain volume reduction due to the post-earthquake distress. In this article, we introduce structural brain magnetic resonance imaging research with respect to self-esteem as well as past investigations about psychological and physiological backgrounds of tolerance to psycho-social stressors in individuals with high self-esteem. Finally, we discuss effective methods for improving self-esteem to manage unusual events like natural disaster.

  3. Brain imaging and schizophrenia

    International Nuclear Information System (INIS)

    Martinot, J.L.; Dao-Castellana, M.H.

    1991-01-01

    Brain structures and brain function have been investigated by the new brain imaging techniques for more than ten years. In Psychiatry, these techniques could afford a new understanding of mental diseases. In schizophrenic patients, CAT scanner and RMI pointed out statistically significant ventricular enlargments which are presently considered as evidence for abnormalities in brain maturation. Functional imaging techniques reported metabolic dysfunctions in the cortical associative areas which are probably linked to the cognitive features of schizophrenics [fr

  4. Evolution of brain region volumes during artificial selection for relative brain size.

    Science.gov (United States)

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-12-01

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. Measurement of event-related potentials and placebo

    Directory of Open Access Journals (Sweden)

    Sovilj Platon

    2014-01-01

    Full Text Available ERP is common abbreviation for event-related brain potentials, which are measured and used in clinical practice as well as in research practice. Contemporary studies of placebo effect are often based on functional neuromagnetic resonance (fMRI, positron emission tomography (PET, and event related potentials (ERP. This paper considers an ERP instrumentation system used in experimental researches of placebo effect. This instrumentation system can be divided into four modules: electrodes and cables, conditioning module, digital measurement module, and PC module for stimulations, presentations, acquisition and data processing. The experimental oddball paradigm is supported by the software of the instrumentation. [Projekat Ministarstva nauke Republike Srbije, br. TR32019 and Provincial Secretariat for Science and Technological Development of Autonomous Province of Vojvodina (Republic of Serbia under research grant No. 114-451-2723

  6. Investigating Children's Conceptions of the Brain: First Steps

    Science.gov (United States)

    Bartoszeck, Amauri Betini; Bartoszeck, Flavio Kulevicz

    2012-01-01

    This paper reports data, part of a cross-sectional study about the use of pupil's drawings as a means of probing the development of 195 Brazilian pre-school children (4 to 6 year-olds) and 681 primary school pupils 1st Grade through 4th Grade (7 to 10 years of age) conceptions of the human brain. The aims of the present study is to analyze how the…

  7. Investigation of olfactory function in normal volunteers and patients with anosmia : analysis of brain perfusion SPECTs using statistical parametric mapping

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. A.; Kim, S. H.; Sohn, H. S.; Chung, S. K. [Catholic University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    The purpose of this study was to investigate olfactory function with Tc-99m ECD brain perfusion SPECT using statistical parametric mapping (SPM) analysis in normal volunteers and patients with anosmia. The study populations were 8 subjects matched healthy volunteers and 16 subjects matched patients with anosmia. We obtaibed baseline and post-stimulation (3% butanol) brain perfusion SPECTs in the silent dark room. We analyzed the all SPECTs using SPM. The difference between two sets of brain perfusion SPECTs were compared with t-test. The voxels with p-value of less than 0.01 were considered to be significantly different. We demonstrated increased perfusion in the both cingulated gyri, right middle temporal gyrus, right superior and inferior frontal gyri, right lingual gyrus and right fusiform gyrus on post-stimulation brain SPECT in normal volunteers, and demonstrated decreased perfusion in the both cingulate gyri, right middle temporal gyrus, right rectal gyrus and both superior and inferior frontal gyri in the 10 patients with anosmia. No significant hypoperfusion area was observed in the other 6 patients with anosmia. The baseline and post-stimulation brain perfusion SPECTs can helpful in the evaluation of olfactory function and be useful in the diagnosis of anosmia.

  8. Investigation of olfactory function in normal volunteers and patients with anosmia : analysis of brain perfusion SPECTs using statistical parametric mapping

    International Nuclear Information System (INIS)

    Chung, Y. A.; Kim, S. H.; Sohn, H. S.; Chung, S. K.

    2002-01-01

    The purpose of this study was to investigate olfactory function with Tc-99m ECD brain perfusion SPECT using statistical parametric mapping (SPM) analysis in normal volunteers and patients with anosmia. The study populations were 8 subjects matched healthy volunteers and 16 subjects matched patients with anosmia. We obtaibed baseline and post-stimulation (3% butanol) brain perfusion SPECTs in the silent dark room. We analyzed the all SPECTs using SPM. The difference between two sets of brain perfusion SPECTs were compared with t-test. The voxels with p-value of less than 0.01 were considered to be significantly different. We demonstrated increased perfusion in the both cingulated gyri, right middle temporal gyrus, right superior and inferior frontal gyri, right lingual gyrus and right fusiform gyrus on post-stimulation brain SPECT in normal volunteers, and demonstrated decreased perfusion in the both cingulate gyri, right middle temporal gyrus, right rectal gyrus and both superior and inferior frontal gyri in the 10 patients with anosmia. No significant hypoperfusion area was observed in the other 6 patients with anosmia. The baseline and post-stimulation brain perfusion SPECTs can helpful in the evaluation of olfactory function and be useful in the diagnosis of anosmia

  9. Brain damage and addictive behavior: a neuropsychological and electroencephalogram investigation with pathologic gamblers.

    Science.gov (United States)

    Regard, Marianne; Knoch, Daria; Gütling, Eva; Landis, Theodor

    2003-03-01

    Gambling is a form of nonsubstance addiction classified as an impulse control disorder. Pathologic gamblers are considered healthy with respect to their cognitive status. Lesions of the frontolimbic systems, mostly of the right hemisphere, are associated with addictive behavior. Because gamblers are not regarded as "brain-lesioned" and gambling is nontoxic, gambling is a model to test whether addicted "healthy" people are relatively impaired in frontolimbic neuropsychological functions. Twenty-one nonsubstance dependent gamblers and nineteen healthy subjects underwent a behavioral neurologic interview centered on incidence, origin, and symptoms of possible brain damage, a neuropsychological examination, and an electroencephalogram. Seventeen gamblers (81%) had a positive medical history for brain damage (mainly traumatic head injury, pre- or perinatal complications). The gamblers, compared with the controls, were significantly more impaired in concentration, memory, and executive functions, and evidenced a higher prevalence of non-right-handedness (43%) and, non-left-hemisphere language dominance (52%). Electroencephalogram (EEG) revealed dysfunctional activity in 65% of the gamblers, compared with 26% of controls. This study shows that the "healthy" gamblers are indeed brain-damaged. Compared with a matched control population, pathologic gamblers evidenced more brain injuries, more fronto-temporo-limbic neuropsychological dysfunctions and more EEG abnormalities. The authors thus conjecture that addictive gambling may be a consequence of brain damage, especially of the frontolimbic systems, a finding that may well have medicolegal consequences.

  10. Investigating nystagmus in patients with traumatic brain injury: A ...

    African Journals Online (AJOL)

    Background. Traumatic brain injury (TBI) is a health and socioeconomic concern worldwide. In patients with TBI, post-traumatic balance problems are often the result of damage to the vestibular system. Nystagmus is common in these patients, and can provide insight into the damage that has resulted from the trauma.

  11. The impact of anxiety-inducing distraction on cognitive performance: a combined brain imaging and personality investigation.

    Directory of Open Access Journals (Sweden)

    Ekaterina Denkova

    Full Text Available BACKGROUND: Previous investigations revealed that the impact of task-irrelevant emotional distraction on ongoing goal-oriented cognitive processing is linked to opposite patterns of activation in emotional and perceptual vs. cognitive control/executive brain regions. However, little is known about the role of individual variations in these responses. The present study investigated the effect of trait anxiety on the neural responses mediating the impact of transient anxiety-inducing task-irrelevant distraction on cognitive performance, and on the neural correlates of coping with such distraction. We investigated whether activity in the brain regions sensitive to emotional distraction would show dissociable patterns of co-variation with measures indexing individual variations in trait anxiety and cognitive performance. METHODOLOGY/PRINCIPAL FINDINGS: Event-related fMRI data, recorded while healthy female participants performed a delayed-response working memory (WM task with distraction, were investigated in conjunction with behavioural measures that assessed individual variations in both trait anxiety and WM performance. Consistent with increased sensitivity to emotional cues in high anxiety, specific perceptual areas (fusiform gyrus--FG exhibited increased activity that was positively correlated with trait anxiety and negatively correlated with WM performance, whereas specific executive regions (right lateral prefrontal cortex--PFC exhibited decreased activity that was negatively correlated with trait anxiety. The study also identified a role of the medial and left lateral PFC in coping with distraction, as opposed to reflecting a detrimental impact of emotional distraction. CONCLUSIONS: These findings provide initial evidence concerning the neural mechanisms sensitive to individual variations in trait anxiety and WM performance, which dissociate the detrimental impact of emotion distraction and the engagement of mechanisms to cope with

  12. Evaluating Changes to Blood-Brain Barrier Integrity in Brain Metastasis over Time and after Radiation Treatment

    Directory of Open Access Journals (Sweden)

    Donna H. Murrell

    2016-06-01

    Full Text Available INTRODUCTION: The incidence of brain metastasis due to breast cancer is increasing, and prognosis is poor. Treatment is challenging because the blood-brain barrier (BBB limits efficacy of systemic therapies. In this work, we develop a clinically relevant whole brain radiotherapy (WBRT plan to investigate the impact of radiation on brain metastasis development and BBB permeability in a murine model. We hypothesize that radiotherapy will decrease tumor burden and increase tumor permeability, which could offer a mechanism to increase drug uptake in brain metastases. METHODS: Contrast-enhanced magnetic resonance imaging (MRI and high-resolution anatomical MRI were used to evaluate BBB integrity associated with brain metastases due to breast cancer in the MDA-MB-231-BR-HER2 model during their natural development. Novel image-guided microirradiation technology was employed to develop WBRT treatment plans and to investigate if this altered brain metastatic growth or permeability. Histology and immunohistochemistry were performed on whole brain slices corresponding with MRI to validate and further investigate radiological findings. RESULTS: Herein, we show successful implementation of microirradiation technology that can deliver WBRT to small animals. We further report that WBRT following diagnosis of brain metastasis can mitigate, but not eliminate, tumor growth in the MDA-MB-231-BR-HER2 model. Moreover, radiotherapy did not impact BBB permeability associated with metastases. CONCLUSIONS: Clinically relevant WBRT is not curative when delivered after MRI-detectable tumors have developed in this model. A dose of 20 Gy in 2 fractions was not sufficient to increase tumor permeability such that it could be used as a method to increase systemic drug uptake in brain metastasis.

  13. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the

  14. Dance and the brain: a review.

    Science.gov (United States)

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2015-03-01

    Dance is a universal form of human expression that offers a rich source for scientific study. Dance provides a unique opportunity to investigate brain plasticity and its interaction with behavior. Several studies have investigated the behavioral correlates of dance, but less is known about the brain basis of dance. Studies on dance observation suggest that long- and short-term dance training affect brain activity in the action observation and simulation networks. Despite methodological challenges, the feasibility of conducting neuroimaging while dancing has been demonstrated, and several brain regions have been implicated in dance execution. Preliminary work from our laboratory suggests that long-term dance training changes both gray and white matter structure. This article provides a critical summary of work investigating the neural correlates of dance. It covers functional neuroimaging studies of dance observation and performance as well as structural neuroimaging studies of expert dancers. To stimulate ongoing dialogue between dance and science, future directions in dance and brain research as well as implications are discussed. Research on the neuroscience of dance will lead to a better understanding of brain-behavior relationships and brain plasticity in experts and nonexperts and can be applied to the development of dance-based therapy programs. © 2014 New York Academy of Sciences.

  15. One brain, two selves

    NARCIS (Netherlands)

    Reinders, AATS; Nijenhuis, ERS; Paans, AMJ; Korf, J; Willemsen, ATM; den Boer, JA

    2003-01-01

    Having a sense of self is an explicit and high-level functional specialization of the human brain. The anatomical localization of self-awareness and the brain mechanisms involved in consciousness were investigated by functional neuroimaging different emotional mental states of core consciousness in

  16. Effect of AVP on brain edema following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    XU Miao; SU Wei; HUANG Wei-dong; LU Yuan-qiang; XU Qiu-ping; CHEN Zhao-jun

    2007-01-01

    Objective: To evaluate plasma arginine vasopressin (AVP) level in patients with traumatic brain injury and investigate the role of AVP in the process of brain edema. Methods: A total of 30 patients with traumatic brain injury were involved in our study. They were divided into two groups by Glasgow Coma Scale: severe traumatic brain injury group (STBI, GCS≤ 8) and moderate traumatic brain injury group (MTBI, GCS>8).Samples of venous blood were collected in the morning at rest from 15 healthy volunteers (control group)and within 24 h after traumatic brain injury from these patients for AVP determinations by radioimmunoassay. The severity and duration of the brain edema were estimated by head CT scan.Results: plasma AVP levels (ng/L) were (mean±SD): control, 3.06±1.49; MTBI, 38.12±7.25; and STBI, 66.61±17.10.The plasma level of AVP was significantly increased within 24 h after traumatic brain injury and followed by the reduction of GCS, suggesting the deterioration of cerebral injury (P<0.01). And the AVP level was correlated with the severity (STBI r=0.919, P<0.01; MTBI r=0.724, P<0.01) and the duration of brain edema (STBI r=0.790, P<0.01; MTBI r=0.712, P<0.01). Conclusions: The plasma AVP level is closely associated with the severity of traumatic brain injury. AVP may play an important role in pathogenesis of brain edema after traumatic brain injury.

  17. In silico investigation of blast-induced intracranial fluid cavitation as it potentially leads to traumatic brain injury

    Science.gov (United States)

    Haniff, S.; Taylor, P. A.

    2017-11-01

    We conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressure pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.

  18. Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states

    NARCIS (Netherlands)

    Deco, Gustavo; Cabral, Joana; Saenger, Victor M; Boly, Melanie; Tagliazucchi, Enzo; Laufs, Helmut; Van Someren, Eus; Jobst, Beatrice; Stevner, Angus; Kringelbach, Morten L

    2017-01-01

    Human neuroimaging research has revealed that wakefulness and sleep involve very different activity patterns. Yet, it is not clear why brain states differ in their dynamical complexity, e.g. in the level of integration and segregation across brain networks over time. Here, we investigate the

  19. Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states

    NARCIS (Netherlands)

    Deco, Gustavo; Cabral, Joana; Saenger, Victor M; Boly, Melanie; Tagliazucchi, Enzo; Laufs, Helmut; Van Someren, Eus; Jobst, Beatrice M; Stevner, Angus B A; Kringelbach, Morten L

    2018-01-01

    Human neuroimaging research has revealed that wakefulness and sleep involve very different activity patterns. Yet, it is not clear why brain states differ in their dynamical complexity, e.g. in the level of integration and segregation across brain networks over time. Here, we investigate the

  20. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  1. Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience

    Directory of Open Access Journals (Sweden)

    Ole eJensen

    2011-05-01

    Full Text Available Large efforts are currently being made to develop and improve online analysis of brain activity which can be used e.g. for brain-computer interfacing (BCI. A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from EEG/MEG studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work.

  2. Non-invasive brain-to-brain interface (BBI: establishing functional links between two brains.

    Directory of Open Access Journals (Sweden)

    Seung-Schik Yoo

    Full Text Available Transcranial focused ultrasound (FUS is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI. In conjunction with the use of brain-to-computer interface (BCI techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat, thus creating a brain-to-brain interface (BBI. The implementation was aimed to non-invasively translate the human volunteer's intention to stimulate a rat's brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer's intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications.

  3. Baby brain atlases.

    Science.gov (United States)

    Oishi, Kenichi; Chang, Linda; Huang, Hao

    2018-04-03

    The baby brain is constantly changing due to its active neurodevelopment, and research into the baby brain is one of the frontiers in neuroscience. To help guide neuroscientists and clinicians in their investigation of this frontier, maps of the baby brain, which contain a priori knowledge about neurodevelopment and anatomy, are essential. "Brain atlas" in this review refers to a 3D-brain image with a set of reference labels, such as a parcellation map, as the anatomical reference that guides the mapping of the brain. Recent advancements in scanners, sequences, and motion control methodologies enable the creation of various types of high-resolution baby brain atlases. What is becoming clear is that one atlas is not sufficient to characterize the existing knowledge about the anatomical variations, disease-related anatomical alterations, and the variations in time-dependent changes. In this review, the types and roles of the human baby brain MRI atlases that are currently available are described and discussed, and future directions in the field of developmental neuroscience and its clinical applications are proposed. The potential use of disease-based atlases to characterize clinically relevant information, such as clinical labels, in addition to conventional anatomical labels, is also discussed. Copyright © 2018. Published by Elsevier Inc.

  4. Investigation of different classifiers and channel configurations of a mobile P300-based brain-computer interface.

    Science.gov (United States)

    Ludwig, Simone A; Kong, Jun

    2017-12-01

    Innovative methods and new technologies have significantly improved the quality of our daily life. However, disabled people, for example those that cannot use their arms and legs anymore, often cannot benefit from these developments, since they cannot use their hands to interact with traditional interaction methods (such as mouse or keyboard) to communicate with a computer system. A brain-computer interface (BCI) system allows such a disabled person to control an external device via brain waves. Past research mostly dealt with static interfaces, which limit users to a stationary location. However, since we are living in a world that is highly mobile, this paper evaluates a speller interface on a mobile phone used in a moving condition. The spelling experiments were conducted with 14 able-bodied subjects using visual flashes as the stimulus to spell 47 alphanumeric characters (38 letters and 9 numbers). This data was then used for the classification experiments. In par- ticular, two research directions are pursued. The first investigates the impact of different classification algorithms, and the second direction looks at the channel configuration, i.e., which channels are most beneficial in terms of achieving the highest classification accuracy. The evaluation results indicate that the Bayesian Linear Discriminant Analysis algorithm achieves the best accuracy. Also, the findings of the investigation on the channel configuration, which can potentially reduce the amount of data processing on a mobile device with limited computing capacity, is especially useful in mobile BCIs.

  5. MRIVIEW: An interactive computational tool for investigation of brain structure and function

    International Nuclear Information System (INIS)

    Ranken, D.; George, J.

    1993-01-01

    MRIVIEW is a software system which uses image processing and visualization to provide neuroscience researchers with an integrated environment for combining functional and anatomical information. Key features of the software include semi-automated segmentation of volumetric head data and an interactive coordinate reconciliation method which utilizes surface visualization. The current system is a precursor to a computational brain atlas. We describe features this atlas will incorporate, including methods under development for visualizing brain functional data obtained from several different research modalities

  6. Prenatal and pubertal testosterone affect brain lateralization

    NARCIS (Netherlands)

    Beking, T; Geuze, R H; van Faassen, M; Kema, I P; Kreukels, B P C; Groothuis, T G G

    After decades of research, the influence of prenatal testosterone on brain lateralization is still elusive, whereas the influence of pubertal testosterone on functional brain lateralization has not been investigated, although there is increasing evidence that testosterone affects the brain in

  7. Differential diagnostic value of diffusion weighted imaging on brain abscess and necrotic or cystic brain tumors

    International Nuclear Information System (INIS)

    Zhang Xiaoya; Yin Jie; Wang Kunpeng; Zhang Jiandang; Liang Biling

    2009-01-01

    Objective: To investigate the value of diffusion weighted imaging (DWI)on brain abscess and necrotic or cystic brain tumors. Methods: 27 cases with brain abscesses and 33 cases with necrotic or cystic brain tumors (gliomas or metastases) were performed conventional MRI and DWI. Apparent diffusion coefficient (ADC) of region of interest (ROI) was measured and statistically tested. Sensitivity and specificity were calculated and compared with conventional MR and DWI. Results: Hyperintensity signal was seen on most brain abscesses. All necrotic or cystic brain tumors showed hypointensity signal on DWI. There was statistical significance on ADC of them. The sensitivity and specificity of conventional MRI was lower than that of DWI. Conclusion: DWI and ADC were useful in distinguishing brain abscessed from necrotic or cystic brain tumors, which was important in addition to conventional MRI. (authors)

  8. Linking brain, mind and behavior.

    Science.gov (United States)

    Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard

    2009-08-01

    Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.

  9. Investigating the Effects of Brain Respiration on Children’s Behavior

    Directory of Open Access Journals (Sweden)

    Geoffrey K. Leigh

    2009-06-01

    Full Text Available Building on the increasing number of programs designed to enhance brain development, a program developed in Korea, Brain Respiration, was adapted to a school in Nevada. Classes were offered twice weekly to a class of fourth and fifth grade students with control group classes assessed in the same school. Self-report surveys, teacher observations, and standardized reading and math scores were used to determine effects of the program on the students. Some differences were found in the pretest for the survey and the observation, with control groups scoring higher. There were differences in some post-test scores, with treatment group children scoring higher when differences did occur. There also were differences in the reading and math scores, with control groups scoring higher than the overall treatment group, but not higher when compared to those actively participating in the program. Such differences are discussed as well as other issues possibly influencing the effects.

  10. Subcortical Brain Morphology in Schizophrenia : Descriptive analysis based on MRI findings of subcortical brain volumes

    OpenAIRE

    Gunleiksrud, Sindre

    2009-01-01

    The aim of this study was to investigate magnetic resonance images (MR) from patients with schizophrenia and healthy control subjects for difference in brain morphology with focus on subcortical brain volumes. Method: The study compared fourteen subcortical brain structure volumes of 96 patients diagnosed with schizophrenia (n=81) or schizoaffective disorder (n=15) with 106 healthy control subjects. Volume measures were obtained using voxel-based morphometry (FreeSurfer software suite) of ...

  11. Early affective processing in patients with acute posttraumatic stress disorder: magnetoencephalographic correlates.

    Directory of Open Access Journals (Sweden)

    Markus Burgmer

    Full Text Available In chronic PTSD, a preattentive neural alarm system responds rapidly to emotional information, leading to increased prefrontal cortex (PFC activation at early processing stages (<100 ms. Enhanced PFC responses are followed by a reduction in occipito-temporal activity during later processing stages. However, it remains unknown if this neuronal pattern is a result of a long lasting mental disorder or if it represents changes in brain function as direct consequences of severe trauma.The present study investigates early fear network activity in acutely traumatized patients with PTSD. It focuses on the question whether dysfunctions previously observed in chronic PTSD patients are already present shortly after trauma exposure. We recorded neuromagnetic activity towards emotional pictures in seven acutely traumatized PTSD patients between one and seven weeks after trauma exposure and compared brain responses to a balanced healthy control sample. Inverse modelling served for mapping sources of differential activation in the brain.Compared to the control group, acutely traumatized PTSD patients showed an enhanced PFC response to high-arousing pictures between 60 to 80 ms. This rapid prefrontal hypervigilance towards arousing pictorial stimuli was sustained during 120-300 ms, where it was accompanied by a reduced affective modulation of occipito-temporal neural processing.Our findings indicate that the hypervigilance-avoidance pattern seen in chronic PTSD is not necessarily a product of an endured mental disorder, but arises as an almost immediate result of severe traumatisation. Thus, traumatic experiences can influence emotion processing strongly, leading to long-lasting changes in trauma network activation and expediting a chronic manifestation of maladaptive cognitive and behavioral symptoms.

  12. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Takeda, Shumpei; Hatazawa, Jun

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT and following results were obtained. Brain atrophy was minimal in 34 -- 35 years old in both sexes, increased exponentially to the increasing age after 34 -- 35 years, and probably resulted in dementia, such as vascular or multiinfarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34 -- 35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extents of brain atrophy (20 -- 30 %) existed among aged subjects. Some aged subjects had little or no atrophy of their brains, as seen in young subjects, and others had markedly shrunken brains associated with senility. From these results there must be pathological factors promoting brain atrophy with a great individual difference. We have studied the relation of intelligence to brain volume, and have ascertained that progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was decrease in the cerebral blood flow. MNR-CT can easily detected small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy, while X-CT can not. Therefore NMR-CT is very useful for detection of subtle changes in the brain. (J.P.N.)

  13. Structural Graphical Lasso for Learning Mouse Brain Connectivity

    KAUST Repository

    Yang, Sen; Sun, Qian; Ji, Shuiwang; Wonka, Peter; Davidson, Ian; Ye, Jieping

    2015-01-01

    Investigations into brain connectivity aim to recover networks of brain regions connected by anatomical tracts or by functional associations. The inference of brain networks has recently attracted much interest due to the increasing availability

  14. Moral judgement by the disconnected left and right cerebral hemispheres: a split-brain investigation.

    Science.gov (United States)

    Steckler, Conor M; Hamlin, J Kiley; Miller, Michael B; King, Danielle; Kingstone, Alan

    2017-07-01

    Owing to the hemispheric isolation resulting from a severed corpus callosum, research on split-brain patients can help elucidate the brain regions necessary and sufficient for moral judgement. Notably, typically developing adults heavily weight the intentions underlying others' moral actions, placing greater importance on valenced intentions versus outcomes when assigning praise and blame. Prioritization of intent in moral judgements may depend on neural activity in the right hemisphere's temporoparietal junction, an area implicated in reasoning about mental states. To date, split-brain research has found that the right hemisphere is necessary for intent-based moral judgement. When testing the left hemisphere using linguistically based moral vignettes, split-brain patients evaluate actions based on outcomes, not intentions. Because the right hemisphere has limited language ability relative to the left, and morality paradigms to date have involved significant linguistic demands, it is currently unknown whether the right hemisphere alone generates intent-based judgements. Here we use nonlinguistic morality plays with split-brain patient J.W. to examine the moral judgements of the disconnected right hemisphere, demonstrating a clear focus on intent. This finding indicates that the right hemisphere is not only necessary but also sufficient for intent-based moral judgement, advancing research into the neural systems supporting the moral sense.

  15. A neonatal piglet model for investigating brain and cognitive development in small for gestational age human infants.

    Directory of Open Access Journals (Sweden)

    Emily C Radlowski

    Full Text Available The piglet was investigated as a potential model for studying brain and cognitive deficits associated with being born small for gestational age (SGA. Naturally farrowed SGA (0.7-1.0 kg BW and average for gestational age (AGA, 1.3-1.6 kg BW piglets were obtained on postnatal day (PD 2, placed in individual cages, and provided a nutritionally adequate milk replacer diet (285 ml/kg/d. Beginning at PD14, performance in a spatial T-maze task was assessed. At PD28, piglets were anesthetized for magnetic resonance (MR imaging to assess brain structure (voxel-based morphometry, connectivity (diffusion-tensor imaging and metabolites in the hippocampus and corpus callosum (proton MR spectroscopy. Piglets born SGA showed compensatory growth such that BW of SGA and AGA piglets was similar (P>0.05, by PD15. Birth weight affected maze performance, with SGA piglets taking longer to reach criterion than AGA piglets (p<0.01. Total brain volume of SGA and AGA piglets was similar (P<0.05, but overall, SGA piglets had less gray matter than AGA piglets (p<0.01 and tended to have a smaller internal capsule (p = 0.07. Group comparisons between SGA and AGA piglets defined 9 areas (≥ 20 clusters where SGA piglets had less white matter (p<0.01; 2 areas where SGA piglets had more white matter (p<0.01; and 3 areas where SGA piglets had more gray matter (p<0.01. The impact of being born SGA on white matter was supported by a lower (p<0.04 fractional anisotropy value for SGA piglets, suggesting reduced white matter development and connectivity. None of the metabolites measured were different between groups. Collectively, the results show that SGA piglets have spatial learning deficits and abnormal development of white matter. As learning deficits and abnormalities in white matter are common in SGA human infants, the piglet is a tractable translational model that can be used to investigate SGA-associated cognitive deficits and potential interventions.

  16. The Effect of Ovariectomy and Estrogen on Penetrating Brain Arterioles and Blood-Brain Barrier Permeability

    NARCIS (Netherlands)

    Cipolla, Marilyn J.; Godfrey, Julie A.; Wiegman, Marchien J.

    2009-01-01

    Objective: We investigated the effect of estrogen replacement on the structure and function of penetrating brain arterioles (PA) and blood-brain barrier (BBB) permeability. Materials and Methods: Female ovariectomized Sprague-Dawley rats were replaced with estradiol (E-2) and estriol (E-3) (OVX + E;

  17. Variations of the Functional Brain Network Efficiency in a Young Clinical Sample within the Autism Spectrum: A fNIRS Investigation

    Directory of Open Access Journals (Sweden)

    Yanwei Li

    2018-02-01

    Full Text Available Autism is a neurodevelopmental disorder with dimensional behavioral symptoms and various damages in the structural and functional brain. Previous neuroimaging studies focused on exploring the differences of brain development between individuals with and without autism spectrum disorders (ASD. However, few of them have attempted to investigate the individual differences of the brain features among subjects within the Autism spectrum. Our main goal was to explore the individual differences of neurodevelopment in young children with Autism by testing for the association between the functional network efficiency and levels of autistic behaviors, as well as the association between the functional network efficiency and age. Forty-six children with Autism (ages 2.0–8.9 years old participated in the current study, with levels of autistic behaviors evaluated by their parents. The network efficiency (global and local network efficiency were obtained from the functional networks based on the oxy-, deoxy-, and total-Hemoglobin series, respectively. Results indicated that the network efficiency decreased with age in young children with Autism in the deoxy- and total-Hemoglobin-based-networks, and children with a relatively higher level of autistic behaviors showed decreased network efficiency in the oxy-hemoglobin-based network. Results suggest individual differences of brain development in young children within the Autism spectrum, providing new insights into the psychopathology of ASD.

  18. The two-brain approach: how can mutually interacting brains teach us something about social interaction?

    Directory of Open Access Journals (Sweden)

    Ivana eKonvalinka

    2012-07-01

    Full Text Available Measuring brain activity simultaneously from two people interacting is intuitively appealing if one is interested in putative neural markers of social interaction. However, given the complex nature of two-person interactions, it has proven difficult to carry out two-person brain imaging experiments in a methodologically feasible and conceptually relevant way. Only a small number of recent studies have put this into practice, using fMRI, EEG, or NIRS. Here, we review two main two-brain methodological approaches, each with two conceptual strategies. The first group has employed simultaneous fMRI recordings, studying a turn-based interactions on the order of seconds, or b pseudo-interactive scenarios, where only one person is scanned at a time, investigating the flow of information between brains. The second group of studies has recorded dual EEG/NIRS from two people interacting, in a face-to-face turn-based interactions, investigating functional connectivity between theory-of-mind regions of interacting partners, or in b continuous mutual interactions on millisecond timescales, to measure coupling between the activity in one person’s brain and the activity in the other’s brain. We discuss the questions these approaches have addressed, and consider scenarios when simultaneous two-brain recordings are needed. Furthermore, we suggest that a quantification of inter-personal neural effects via measures of emergence, and b multivariate decoding models that generalize source-specific features of interaction, may provide novel tools to study brains in interaction. This may allow for a better understanding of social cognition as both representation and participation.

  19. Implantation of glioblastoma spheroids into organotypic brain slice cultures as a model for investigating effects of irradiation

    DEFF Research Database (Denmark)

    Petterson, Stine Asferg; Jakobsen, Ida Pind; Jensen, Stine Skov

    2016-01-01

    , models for studying the effects of radiotherapy in combination with novel strategies are lacking but important since radiotherapy is the most successful non-surgical treatment of brain tumors. The aim of this study was to establish a glioblastoma spheroid-organotypic rat brain slice culture model...... comprising both tumors, tumor-brain interface and brain tissue to provide a proof of concept that this model is useful for studying effects of radiotherapy. Organotypic brain slice cultures cultured for 1-2 days or 11-16 days corresponding to immature brain and mature brain respectively were irradiated...... with doses between 10 and 50 Gy. There was a high uptake of the cell death marker propidium iodide in the immature cultures. In addition, MAP2 expression decreased whereas GFAP expression increased in these cultures suggesting neuronal death and astrogliosis. We therefore proceeded with the mature cultures...

  20. Comparison of SPET brain perfusion and 18F-FDG brain metabolism in patients with chronic fatigue syndrome.

    Science.gov (United States)

    Abu-Judeh, H H; Levine, S; Kumar, M; el-Zeftawy, H; Naddaf, S; Lou, J Q; Abdel-Dayem, H M

    1998-11-01

    Chronic fatigue syndrome is a clinically defined condition of uncertain aetiology. We compared 99Tcm-HMPAO single photon emission tomography (SPET) brain perfusion with dual-head 18F-FDG brain metabolism in patients with chronic fatigue syndrome. Eighteen patients (14 females, 4 males), who fulfilled the diagnostic criteria of the Centers for Disease Control for chronic fatigue syndrome, were investigated. Thirteen patients had abnormal SPET brain perfusion scans and five had normal scans. Fifteen patients had normal glucose brain metabolism scans and three had abnormal scans. We conclude that, in chronic fatigue syndrome patients, there is discordance between SPET brain perfusion and 18F-FDG brain uptake. It is possible to have brain perfusion abnormalities without corresponding changes in glucose uptake.

  1. The development and investigation of a prototype three-dimensional compensator for whole brain radiation therapy

    International Nuclear Information System (INIS)

    Keall, Paul; Arief, Isti; Shamas, Sofia; Weiss, Elisabeth; Castle, Steven

    2008-01-01

    Whole brain radiation therapy (WBRT) is the standard treatment for patients with brain metastases, and is often used in conjunction with stereotactic radiotherapy for patients with a limited number of brain metastases, as well as prophylactic cranial irradiation. The use of open fields (conventionally used for WBRT) leads to higher doses to the brain periphery if dose is prescribed to the brain center at the largest lateral radius. These dose variations potentially compromise treatment efficacy and translate to increased side effects. The goal of this research was to design and construct a 3D 'brain wedge' to compensate dose heterogeneities in WBRT. Radiation transport theory was invoked to calculate the desired shape of a wedge to achieve a uniform dose distribution at the sagittal plane for an ellipsoid irradiated medium. The calculations yielded a smooth 3D wedge design to account for the missing tissue at the peripheral areas of the brain. A wedge was machined based on the calculation results. Three ellipsoid phantoms, spanning the mean and ± two standard deviations from the mean cranial dimensions were constructed, representing 95% of the adult population. Film was placed at the sagittal plane for each of the three phantoms and irradiated with 6 MV photons, with the wedge in place. Sagittal plane isodose plots for the three phantoms demonstrated the feasibility of this wedge to create a homogeneous distribution with similar results observed for the three phantom sizes, indicating that a single wedge may be sufficient to cover 95% of the adult population. The sagittal dose is a reasonable estimate of the off-axis dose for whole brain radiation therapy. Comparing the dose with and without the wedge the average minimum dose was higher (90% versus 86%), the maximum dose was lower (107% versus 113%) and the dose variation was lower (one standard deviation 2.7% versus 4.6%). In summary, a simple and effective 3D wedge for whole brain radiotherapy has been developed

  2. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Yamada, Kenji; Yamada, Susumu; Ono, Shuichi; Takeda, Shunpei; Hatazawa, Jun; Ito, Masatoshi; Kubota, Kazuo

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT. Brain atrophy was minimal in 34-35 years old in both sexes, increased exponentially to the increasing age after 34-35 years, and probably resulted in dementia, such as vascular or multi-infarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34-35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extent of brain atrophy (20 - 30 %) existed among aged subjects. Progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was the decrease in the cerebral blood flow. We have classified brain atrophy into sulcal and cisternal enlargement type (type I), ventricular enlargement type (type II) and mixed type (type III) according to the clinical study using NMR-CT. Brain atrophy of type I progresses significantly in almost all of the geriatric disorders. This type of brain atrophy progresses significantly in heavy smokers and drinkers. Therefore this type of brain atrophy might be caused by the decline in the blood flow in anterior and middle cerebral arteries. Brain atrophy of type II was caused by the disturbance of cerebrospinal fluid circulation after cerebral bleeding and subarachnoid bleeding. Brain atrophy of type III was seen in vascular dementia or multi-infarct dementia which was caused by loss of brain matter after multiple infarction, and was seen also in dementia of Alzheimer type in which degeneration of nerve cells results in brain atrophy. NMR-CT can easily detect small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy. (J.P.N.)

  3. HSV presence in brains of individuals without dementia: the TASTY brain series

    Directory of Open Access Journals (Sweden)

    Jan Olsson

    2016-11-01

    Full Text Available Herpes simplex virus (HSV type 1 affects a majority of the population and recent evidence suggests involvement in Alzheimer's disease aetiology. We investigated the prevalence of HSV type 1 and 2 in the Tampere Autopsy Study (TASTY brain samples using PCR and sero-positivity in plasma, and associations with Alzheimer's disease neuropathology. HSV was shown to be present in human brain tissue in 11/584 (1.9% of samples in the TASTY cohort, of which six had Alzheimer's disease neuropathological amyloid beta (Aβ aggregations. Additionally, serological data revealed 86% of serum samples tested were IgG-positive for HSV. In conclusion, we report epidemiological evidence of the presence of HSV in brain tissue free from encephalitis symptoms in a cohort most closely representing the general population (a minimum prevalence of 1.9%. Whereas 6/11 samples with HSV DNA in the brain tissue had Aβ aggregations, most of those with Aβ aggregations did not have HSV present in the brain tissue.

  4. A brain worth keeping? Waste, value and time in contemporary brain banking.

    Science.gov (United States)

    Erslev, Thomas

    2018-02-01

    If a temporal rather than spatial concept of waste is adopted, novel categories emerge which are useful for identifying and understanding logics of temporality at play in determining what is kept in contemporary brain banks, and reveal that brain banks are constituted by more than stored materials. First, I apply the categories analytically on a recent UK brain banking discussion among professionals. This analysis highlights the importance of data in brain banks, as well as the centrality of ideas about pasts and futures in the discussions. Secondly, I investigate the case of a seven decades old, Danish brain bank which had been reduced to its physically stored material for 24 years, before being reinstituted in 2006. This case demonstrates the importance of material and conceptual infrastructures that co-constitute a collection, as they make up an experimental system that is crucial to maintaining the collection's continued relevance and usefulness as a scientific institution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Brain aging, Alzheimer's disease, and mitochondria

    Science.gov (United States)

    Swerdlow, Russell H.

    2011-01-01

    The relationship between brain aging and Alzheimer’s disease (AD) is contentious. One view holds AD results when brain aging surpasses a threshold. The other view postulates AD is not a consequence of brain aging. This review discusses this conundrum from the perspective of different investigative lines that have tried to address it, as well as from the perspective of the mitochondrion, an organelle that appears to play a role in both AD and brain aging. Specific issues addressed include the question of whether AD and brain aging should be conceptually lumped or split, the extent to which AD and brain aging potentially share common molecular mechanisms, whether beta amyloid should be primarily considered a marker of AD or simply brain aging, and the definition of AD itself. PMID:21920438

  6. Aluminum neurotoxicity in the rat brain

    International Nuclear Information System (INIS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ogawa, Y.; Iwata, Y.; Ishii, K.

    1992-01-01

    To investigate the etiology of Alzheimer's disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer's disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer's disease patients. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author)

  7. Aluminum neurotoxicity in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, S [Tokyo Univ. (Japan). Faculty of Medicine; Ohashi, H; Nagai, H; Kakimi, S; Ogawa, Y; Iwata, Y; Ishii, K

    1993-12-31

    To investigate the etiology of Alzheimer`s disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer`s disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer`s disease patients. Our results indicate that Alzheimer`s disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author).

  8. Brain banking for immunocytochemistry and autoradiography

    International Nuclear Information System (INIS)

    Eymin, C.; Jordan, D.; Saint-Pierre, G.; Kopp, N.

    1993-01-01

    The aim of a human brain bank is to establish groups of matched brains (normal control versus pathological groups) for studying human diseases of the nervous system. This bank is obtained by means of autopsy performed with a very short post-mortem delay and from clinically and neuropathologically well-documented patients. According to research protocols, two types of brain tissue storage are performed: fixed tissue or frozen tissue. Brain dissection procedures are performed according to precise anatomical boundaries of each brain region. This paper will center on the questions raised by brain banking in relation to histological and immunocytochemical studies and to biochemistry and autoradiography of binding sites. The lack of neuroanatomical data of the human brain leads us to compare anatomical results obtained in animals to that of the human. Moreover, it is clear that human brains present numerous interindividual differences (Kopp et al., 1977; Jack et al., 1989). Therefore, investigations of the human brain should be made on a large series of brains indicating the necessity of a well-documented brain bank of tissue from normal controls and patients. (authors)

  9. Lutein and Brain Function

    Directory of Open Access Journals (Sweden)

    John W. Erdman

    2015-10-01

    Full Text Available Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated as macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Recently, interest in lutein has expanded beyond the retina to its possible contributions to brain development and function. Only primates accumulate lutein within the brain, but little is known about its distribution or physiological role. Our team has begun to utilize the rhesus macaque (Macaca mulatta model to study the uptake and bio-localization of lutein in the brain. Our overall goal has been to assess the association of lutein localization with brain function. In this review, we will first cover the evolution of the non-human primate model for lutein and brain studies, discuss prior association studies of lutein with retina and brain function, and review approaches that can be used to localize brain lutein. We also describe our approach to the biosynthesis of 13C-lutein, which will allow investigation of lutein flux, localization, metabolism and pharmacokinetics. Lastly, we describe potential future research opportunities.

  10. Algorithms for biomagnetic source imaging with prior anatomical and physiological information

    Energy Technology Data Exchange (ETDEWEB)

    Hughett, Paul William [Univ. of California, Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences

    1995-12-01

    This dissertation derives a new method for estimating current source amplitudes in the brain and heart from external magnetic field measurements and prior knowledge about the probable source positions and amplitudes. The minimum mean square error estimator for the linear inverse problem with statistical prior information was derived and is called the optimal constrained linear inverse method (OCLIM). OCLIM includes as special cases the Shim-Cho weighted pseudoinverse and Wiener estimators but allows more general priors and thus reduces the reconstruction error. Efficient algorithms were developed to compute the OCLIM estimate for instantaneous or time series data. The method was tested in a simulated neuromagnetic imaging problem with five simultaneously active sources on a grid of 387 possible source locations; all five sources were resolved, even though the true sources were not exactly at the modeled source positions and the true source statistics differed from the assumed statistics.

  11. Therapeutic Sleep for Traumatic Brain Injury

    Science.gov (United States)

    2017-06-01

    AWARD NUMBER: W81XWH-16-1-0166 TITLE: Therapeutic Sleep for Traumatic Brain Injury PRINCIPAL INVESTIGATOR: Ravi Allada CONTRACTING...1. REPORT DATE June 2017 2. REPORT TYPE Annual 3. DATES COVERED 1June2016 - 31May2017 4. TITLE AND SUBTITLE Therapeutic Sleep for Traumatic Brain ...proposal will test the hypothesis that correcting sleep disorders can have a therapeutic effect onTraumatic Brain Injury (TBI) The majority of TBI

  12. Investigating effects of steroid hormones on lateralization of brain and behavior

    NARCIS (Netherlands)

    Beking, Tess; Geuze, Reint; Groothuis, Ton; Rogers, Lesley; Vallortigara, Giorgio

    Steroid hormones have been proposed to influence the development of lateralisation of brain and behaviour. We briefly describe the available hypotheses explaining this influence. These are all based on human data. However, experimental testing is almost exclusively limited to other animal models. As

  13. Serotonergic mechanisms in the migraine brain

    DEFF Research Database (Denmark)

    Christensen, Marie Deen; Christensen, Casper Emil; Hougaard, Anders

    2017-01-01

    role of brain serotonergic mechanisms remains a matter of controversy. Methods We systematically searched PubMed for studies investigating the serotonergic system in the migraine brain by either molecular neuroimaging or electrophysiological methods. Results The literature search resulted in 59 papers......, of which 13 were eligible for review. The reviewed papers collectively support the notion that migraine patients have alterations in serotonergic neurotransmission. Most likely, migraine patients have a low cerebral serotonin level between attacks, which elevates during a migraine attack. Conclusion...... This review suggests that novel methods of investigating the serotonergic system in the migraine brain are warranted. Uncovering the serotonergic mechanisms in migraine pathophysiology could prove useful for the development of future migraine drugs....

  14. A qualitative investigation of masculine identity after traumatic brain injury.

    Science.gov (United States)

    MacQueen, Ruth; Fisher, Paul; Williams, Deirdre

    2018-04-30

    Men are twice as likely as women to experience a traumatic brain injury (TBI), suggesting that aspects of masculine identity contribute to how people acquire their brain injuries. Research also suggests that masculine identity impacts on how people manage their health experiences. The current study aimed to explore the experience of masculine identity following TBI. Individual interviews were conducted with 10 men aged 21-67 years who had experienced a TBI. All were living in the community. Interpretative phenomenological analysis was used to consider lived experiences and to explore the meaning of the TBI experience in relation to masculine identity. Three superordinate themes emerged from the analysis: doing life and relationships differently, self-perceptions and the perceived view of others, and managing the impact of TBI as a man. These themes are considered in relation to how participants' experiences interacted with dominant social ideals of masculine identity. The findings highlighted how masculine identity may be a valuable aspect of self in considering threats to and reconstruction of self-identity after TBI. Aspects of gender identity should be considered in order to promote engagement, support adjustment and achieve meaningful outcomes in rehabilitation.

  15. Brain bank of the Brazilian aging brain study group - a milestone reached and more than 1,600 collected brains.

    Science.gov (United States)

    Grinberg, Lea Tenenholz; Ferretti, Renata Eloah de Lucena; Farfel, José Marcelo; Leite, Renata; Pasqualucci, Carlos Augusto; Rosemberg, Sérgio; Nitrini, Ricardo; Saldiva, Paulo Hilário Nascimento; Filho, Wilson Jacob

    2007-01-01

    Brain banking remains a necessity for the study of aging brain processes and related neurodegenerative diseases. In the present paper, we report the methods applied at and the first results of the Brain Bank of the Brazilian Aging Brain Study Group (BBBABSG) which has two main aims: (1) To collect a large number of brains of elderly comprising non-demented subjects and a large spectrum of pathologies related to aging brain processes, (2) To provide quality material to a multidisciplinar research network unraveling multiple aspects of aging brain processes and related neurodegenerative diseases. The subjects are selected from the Sao Paulo Autopsy Service. Brain parts are frozen and fixated. CSF, carotids, kidney, heart and blood are also collected and DNA is extracted. The neuropathological examinations are carried out based on accepted criteria, using immunohistochemistry. Functional status are assessed through a collateral source based on a clinical protocol. Protocols are approved by the local ethics committee and a written informed consent form is obtained. During the first 21 months, 1,602 samples were collected and were classified by Clinical Dementia Rating as CDR0: 65.7%; CDR0.5:12.6%, CDR1:8.2%, CDR2:5.4%, and CDR3:8.1%. On average, the cost for the processing each case stood at 400 US dollars. To date, 14 laboratories have been benefited by the BBBABSG. The high percentage of non- demented subjects and the ethnic diversity of this series may be significantly contributive toward aging brain processes and related neurodegenerative diseases understanding since BBBABSG outcomes may provide investigators the answers to some additional questions.

  16. Prognostic factors for outcomes after whole-brain irradiation of brain metastases from relatively radioresistant tumors: a retrospective analysis

    NARCIS (Netherlands)

    Meyners, T.; Heisterkamp, C.; Kueter, J.D.; Veninga, T.; Stalpers, L.J.A.; Schild, S.E.; Rades, D.

    2010-01-01

    Background: This study investigated potential prognostic factors in patients treated with whole-brain irradiation (WBI) alone for brain metastases from relatively radioresistant tumors such as malignant melanoma, renal cell carcinoma, and colorectal cancer. Additionally, a potential benefit from

  17. Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Vida Naderi

    2015-02-01

    Full Text Available Objective(s:Estrogen (E2 has neuroprotective effects on blood-brain-barrier (BBB after traumatic brain injury (TBI. In order to investigate the roles of estrogen receptors (ERs in these effects, ER-α antagonist (MPP and, ER-β antagonist (PHTPP, or non-selective estrogen receptors antagonist (ICI 182780 were administered. Materials and Methods: Ovariectomized rats were divided into 10 groups, as follows: Sham, TBI, E2, oil, MPP+E2, PHTPP+E2, MPP+PHTPP+E2, ICI+E2, MPP, and DMSO. E2 (33.3 µg/Kg or oil were administered 30 min after TBI. 1 dose (150 µg/Kg of each of MPP, PHTPP, and (4 mg/kg ICI182780 was injected two times, 24 hr apart, before TBI and estrogen treatment. BBB disruption (Evans blue content and brain edema (brain water content evaluated 5 hr and 24 hr after the TBI were evaluated, respectively. Results: The results showed that E2 reduced brain edema after TBI compared to vehicle (P

  18. Motor-cortical interaction in Gilles de la Tourette syndrome.

    Directory of Open Access Journals (Sweden)

    Stephanie Franzkowiak

    Full Text Available BACKGROUND: In Gilles de la Tourette syndrome (GTS increased activation of the primary motor cortex (M1 before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG. Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS.

  19. Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom.

    Science.gov (United States)

    Dikker, Suzanne; Wan, Lu; Davidesco, Ido; Kaggen, Lisa; Oostrik, Matthias; McClintock, James; Rowland, Jess; Michalareas, Georgios; Van Bavel, Jay J; Ding, Mingzhou; Poeppel, David

    2017-05-08

    The human brain has evolved for group living [1]. Yet we know so little about how it supports dynamic group interactions that the study of real-world social exchanges has been dubbed the "dark matter of social neuroscience" [2]. Recently, various studies have begun to approach this question by comparing brain responses of multiple individuals during a variety of (semi-naturalistic) tasks [3-15]. These experiments reveal how stimulus properties [13], individual differences [14], and contextual factors [15] may underpin similarities and differences in neural activity across people. However, most studies to date suffer from various limitations: they often lack direct face-to-face interaction between participants, are typically limited to dyads, do not investigate social dynamics across time, and, crucially, they rarely study social behavior under naturalistic circumstances. Here we extend such experimentation drastically, beyond dyads and beyond laboratory walls, to identify neural markers of group engagement during dynamic real-world group interactions. We used portable electroencephalogram (EEG) to simultaneously record brain activity from a class of 12 high school students over the course of a semester (11 classes) during regular classroom activities (Figures 1A-1C; Supplemental Experimental Procedures, section S1). A novel analysis technique to assess group-based neural coherence demonstrates that the extent to which brain activity is synchronized across students predicts both student class engagement and social dynamics. This suggests that brain-to-brain synchrony is a possible neural marker for dynamic social interactions, likely driven by shared attention mechanisms. This study validates a promising new method to investigate the neuroscience of group interactions in ecologically natural settings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Prognostic factors for outcomes after whole-brain irradiation of brain metastases from relatively radioresistant tumors: a retrospective analysis

    NARCIS (Netherlands)

    Meyners, Thekla; Heisterkamp, Christine; Kueter, Jan-Dirk; Veninga, Theo; Stalpers, Lukas J. A.; Schild, Steven E.; Rades, Dirk

    2010-01-01

    This study investigated potential prognostic factors in patients treated with whole-brain irradiation (WBI) alone for brain metastases from relatively radioresistant tumors such as malignant melanoma, renal cell carcinoma, and colorectal cancer. Additionally, a potential benefit from escalating the

  1. Metabolic Profiles of Brain Metastases

    Directory of Open Access Journals (Sweden)

    Tone F. Bathen

    2013-01-01

    Full Text Available Metastasis to the brain is a feared complication of systemic cancer, associated with significant morbidity and poor prognosis. A better understanding of the tumor metabolism might help us meet the challenges in controlling brain metastases. The study aims to characterize the metabolic profile of brain metastases of different origin using high resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS to correlate the metabolic profiles to clinical and pathological information. Biopsy samples of human brain metastases (n = 49 were investigated. A significant correlation between lipid signals and necrosis in brain metastases was observed (p < 0.01, irrespective of their primary origin. The principal component analysis (PCA showed that brain metastases from malignant melanomas cluster together, while lung carcinomas were metabolically heterogeneous and overlap with other subtypes. Metastatic melanomas have higher amounts of glycerophosphocholine than other brain metastases. A significant correlation between microscopically visible lipid droplets estimated by Nile Red staining and MR visible lipid signals was observed in metastatic lung carcinomas (p = 0.01, indicating that the proton MR visible lipid signals arise from cytoplasmic lipid droplets. MRS-based metabolomic profiling is a useful tool for exploring the metabolic profiles of metastatic brain tumors.

  2. A Study for Visual Realism of Designed Pictures on Computer Screens by Investigation and Brain-Wave Analyses.

    Science.gov (United States)

    Wang, Lan-Ting; Lee, Kun-Chou

    2016-08-01

    In this article, the visual realism of designed pictures on computer screens is studied by investigation and brain-wave analyses. The practical electroencephalogram (EEG) measurement is always time-varying and fluctuating so that conventional statistical techniques are not adequate for analyses. This study proposes a new scheme based on "fingerprinting" to analyze the EEG. Fingerprinting is a technique of probabilistic pattern recognition used in electrical engineering, very like the identification of human fingerprinting in a criminal investigation. The goal of this study was to assess whether subjective preference for pictures could be manifested physiologically by EEG fingerprinting analyses. The most important advantage of the fingerprinting technique is that it does not require accurate measurement. Instead, it uses probabilistic classification. Participants' preference for pictures can be assessed using fingerprinting analyses of physiological EEG measurements. © The Author(s) 2016.

  3. Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing.

    Science.gov (United States)

    Ross, Bernhard; Miyazaki, Takahiro; Thompson, Jessica; Jamali, Shahab; Fujioka, Takako

    2014-10-15

    When two tones with slightly different frequencies are presented to both ears, they interact in the central auditory system and induce the sensation of a beating sound. At low difference frequencies, we perceive a single sound, which is moving across the head between the left and right ears. The percept changes to loudness fluctuation, roughness, and pitch with increasing beat rate. To examine the neural representations underlying these different perceptions, we recorded neuromagnetic cortical responses while participants listened to binaural beats at a continuously varying rate between 3 Hz and 60 Hz. Binaural beat responses were analyzed as neuromagnetic oscillations following the trajectory of the stimulus rate. Responses were largest in the 40-Hz gamma range and at low frequencies. Binaural beat responses at 3 Hz showed opposite polarity in the left and right auditory cortices. We suggest that this difference in polarity reflects the opponent neural population code for representing sound location. Binaural beats at any rate induced gamma oscillations. However, the responses were largest at 40-Hz stimulation. We propose that the neuromagnetic gamma oscillations reflect postsynaptic modulation that allows for precise timing of cortical neural firing. Systematic phase differences between bilateral responses suggest that separate sound representations of a sound object exist in the left and right auditory cortices. We conclude that binaural processing at the cortical level occurs with the same temporal acuity as monaural processing whereas the identification of sound location requires further interpretation and is limited by the rate of object representations. Copyright © 2014 the American Physiological Society.

  4. A SPECT study of language and brain reorganization three years after pediatric brain injury.

    Science.gov (United States)

    Chiu Wong, Stephanie B; Chapman, Sandra B; Cook, Lois G; Anand, Raksha; Gamino, Jacquelyn F; Devous, Michael D

    2006-01-01

    Using single photon emission computed tomography (SPECT), we investigated brain plasticity in children 3 years after sustaining a severe traumatic brain injury (TBI). First, we assessed brain perfusion patterns (i.e., the extent of brain blood flow to regions of the brain) at rest in eight children who suffered severe TBI as compared to perfusion patterns in eight normally developing children. Second, we examined differences in perfusion between children with severe TBI who showed good versus poor recovery in complex discourse skills. Specifically, the children were asked to produce and abstract core meaning for two stories in the form of a lesson. Inconsistent with our predictions, children with severe TBI showed areas of increased perfusion as compared to normally developing controls. Adult studies have shown the reverse pattern with TBI associated with reduced perfusion. With regard to the second aim and consistent with previously identified brain-discourse relations, we found a strong positive association between perfusion in right frontal regions and discourse abstraction abilities, with higher perfusion linked to better discourse outcomes and lower perfusion linked to poorer discourse outcomes. Furthermore, brain-discourse patterns of increased perfusion in left frontal regions were associated with lower discourse abstraction ability. The results are discussed in terms of how brain changes may represent adaptive and maladaptive plasticity. The findings offer direction for future studies of brain plasticity in response to neurocognitive treatments.

  5. Brain lesion correlates of fatigue in individuals with traumatic brain injury.

    Science.gov (United States)

    Schönberger, Michael; Reutens, David; Beare, Richard; O'Sullivan, Richard; Rajaratnam, Shantha M W; Ponsford, Jennie

    2017-10-01

    The purpose of this study was to investigate the neurological correlates of both subjective fatigue as well as objective fatigability in individuals with traumatic brain injury (TBI). The study has a cross-sectional design. Participants (N = 53) with TBI (77% male, mean age at injury 38 years, mean time since injury 1.8 years) underwent a structural magnetic resonance imaging (MRI) scan and completed the Fatigue Severity Scale (FSS), while a subsample (N = 36) was also tested with a vigilance task. While subjective fatigue (FSS) was not related to measures of brain lesions, multilevel analyses showed that a change in the participants' decision time was significantly predicted by grey matter (GM) lesions in the right frontal lobe. The time-dependent development of the participants' error rate was predicted by total brain white matter (WM) lesion volumes, as well as right temporal GM and WM lesion volumes. These findings could be explained by decreased functional connectivity of attentional networks, which results in accelerated exhaustion during cognitive task performance. The disparate nature of objectively measurable fatigability on the one hand and the subjective experience of fatigue on the other needs further investigation.

  6. D-BRAIN : Anatomically accurate simulated diffusion MRI brain data

    NARCIS (Netherlands)

    Perrone, Daniele; Jeurissen, Ben; Aelterman, Jan; Roine, Timo; Sijbers, Jan; Pizurica, Aleksandra; Leemans, Alexander; Philips, Wilfried

    2016-01-01

    Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT

  7. Methodical investigations regarding the influence of narcosis on the distribution of L-3H-fucose in the brain of rats after intracerebral application

    International Nuclear Information System (INIS)

    Gutoehrle, P.

    1981-01-01

    The distribution of 3 H-fucose in the rat brain after intraventricular injection was investigated in wake and pentobarbital-anaesthetized test animals, using a method for autoradiography of water-soluble substances. By a specially developed procedure a director cannula was stereotactically implanted into a calotte through which, a few days later, an injection needle could be introduced into the lateral ventricle without narcosis. The autoradiogrammes were prepared from cryostat cuts of the cerebrum. The investigation proved the distribution of 3 H-fucose in the different sections of the brain to be very inhomogeneous and revealed that the tracer had mainly labelled the areas near the ventricle. With the aid of a micro-videomat, the blackened areas were measured in a certain frontal plane. The areas reached by the tracer, which were determined as parameters, were shown to increase as a function of the experimental time and to be always more extended in anaesthetized animals than in wake rats. (orig./MG) [de

  8. Investigating hyperoxic effects in the rat brain using quantitative susceptibility mapping based on MRI phase.

    Science.gov (United States)

    Hsieh, Meng-Chi; Kuo, Li-Wei; Huang, Yun-An; Chen, Jyh-Horng

    2017-02-01

    To test whether susceptibility imaging can detect microvenous oxygen saturation changes, induced by hyperoxia, in the rat brain. A three-dimensional gradient-echo with a flow compensation sequence was used to acquire T2*-weighted images of rat brains during hyperoxia and normoxia. Quantitative susceptibility mapping (QSM) and QSM-based microvenous oxygenation venography were computed from gradient-echo (GRE) phase images and compared between the two conditions. Pulse oxygen saturation (SpO 2 ) in the cortex was examined and compared with venous oxygen saturation (SvO 2 ) estimated by QSM. Oxygen saturation change calculated by a conventional Δ R2* map was also compared with the ΔSvO 2 estimated by QSM. Susceptibilities of five venous and tissue regions were quantified separately by QSM. Venous susceptibility was reduced by nearly 10%, with an SvO 2 shift of 10% during hyperoxia. A hyperoxic effect, confirmed by SpO 2 measurement, resulted in an SvO 2 increase in the cortex. The ΔSvO 2 between hyperoxia and normoxia was consistent with what was estimated by the Δ R2* map in five regions. These findings suggest that a quantitative susceptibility map is a promising technique for SvO 2 measurement. This method may be useful for quantitatively investigating oxygenation-dependent functional MRI studies. Magn Reson Med 77:592-602, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Working memory and proverb comprehension in adolescents with traumatic brain injury: a preliminary investigation.

    Science.gov (United States)

    Moran, Catherine A; Nippold, Marilyn A; Gillon, Gail T

    2006-04-01

    This study investigated the relationship between working memory and comprehension of low-familiarity proverbs in adolescents with traumatic brain injury (TBI). Ten adolescents, aged 12-21 years who had suffered a TBI prior to the age of 10 years and 10 individually age-matched peers with typical development participated in the study. The participants listened to short paragraphs containing a proverb and interpreted the meaning of the proverb using a forced-choice task. In addition, participants engaged in a task that evaluated working memory ability. Analysis revealed that individuals with TBI differed from their non-injured peers in their understanding of proverbs. In addition, working memory capacity influenced performance for all participants. The importance of considering working memory when evaluating figurative language comprehension in adolescents with TBI is highlighted. Implications for future research, particularly with regard to varying working memory and task demands, are considered.

  10. Characterizing brain oscillations in cognition and disease

    NARCIS (Netherlands)

    Jiang, H.

    2016-01-01

    It has been suggested that neuronal oscillations play a fundamental role for shaping the functional architecture of the working brain. This thesis investigates brain oscillations in rat, human healthy population and major depressive disorder (MDD) patients. A novel measurement termed

  11. Solvation effects on brain uptakes of isomers of 99mTc brain imaging agents

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Analysis of electrostatic hydration free energies of the isomers of the 99mTc-BAT and 99mTc-DADT complexes is carried out using the computer simulation technique. The results show that not only a correlation exists between the logarithm of the brain uptake and the electrostatic hydration free energy for the isomers of 99mTc-brain radiopharmaceuticals, but also a linear relationship exists between the logarithm of the ratio of the brain uptake of the syn isomer to that of the anti one and the difference between the electrostatic hydration free energy of the syn-isomer and that of the anti one. Furthermore, the investigation on the important factors influencing the brain uptakes of 99mTc-radiopharmaceuticals and the reasons of the different biodistribution of the isomers of the 99mTc-complexes is explored at the molecular level. The results may provide a reference for the rational drug design of brain imaging agents.

  12. Further Controversies About Brain Tissue Oxygenation Pressure-Reactivity After Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Andresen, Morten; Donnelly, Joseph; Aries, Marcel

    2018-01-01

    arterial pressure and intracranial pressure. A new ORx index based on brain tissue oxygenation and cerebral perfusion pressure (CPP) has been proposed that similarly allows for evaluation of cerebrovascular reactivity. Conflicting results exist concerning its clinical utility. METHODS: Retrospective......BACKGROUND: Continuous monitoring of cerebral autoregulation is considered clinically useful due to its ability to warn against brain ischemic insults, which may translate to a relationship with adverse outcome. It is typically performed using the pressure reactivity index (PRx) based on mean...... analysis was performed in 85 patients with traumatic brain injury (TBI). ORx was calculated using three time windows of 5, 20, and 60 min. Correlation coefficients and individual "optimal CPP" (CPPopt) were calculated using both PRx and ORx, and relation to patient outcome investigated. RESULTS...

  13. Osmotherapy in brain edema

    DEFF Research Database (Denmark)

    Grände, Per-Olof; Romner, Bertil

    2012-01-01

    Despite the fact that it has been used since the 1960s in diseases associated with brain edema and has been investigated in >150 publications on head injury, very little has been published on the outcome of osmotherapy. We can only speculate whether osmotherapy improves outcome, has no effect......, osmotherapy can be negative for outcome, which may explain why we lack scientific support for its use. These drawbacks, and the fact that the most recent Cochrane meta-analyses of osmotherapy in brain edema and stroke could not find any beneficial effects on outcome, make routine use of osmotherapy in brain...... edema doubtful. Nevertheless, the use of osmotherapy as a temporary measure may be justified to acutely prevent brain stem compression until other measures, such as evacuation of space-occupying lesions or decompressive craniotomy, can be performed. This article is the Con part in a Pro-Con debate...

  14. Brain-Based Learning and Classroom Practice: A Study Investigating Instructional Methodologies of Urban School Teachers

    Science.gov (United States)

    Morris, Lajuana Trezette

    2010-01-01

    The purpose of this study was to examine the implementation of brain-based instructional strategies by teachers serving at Title I elementary, middle, and high schools within the Memphis City School District. This study was designed to determine: (a) the extent to which Title I teachers applied brain-based strategies, (b) the differences in…

  15. Modeling Early Postnatal Brain Growth and Development with CT: Changes in the Brain Radiodensity Histogram from Birth to 2 Years.

    Science.gov (United States)

    Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W

    2018-04-01

    The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.

  16. The relation between persistent coma and brain ischemia after severe brain injury.

    Science.gov (United States)

    Cheng, Quan; Jiang, Bing; Xi, Jian; Li, Zhen Yan; Liu, Jin Fang; Wang, Jun Yu

    2013-12-01

    To investigate the relation between brain ischemia and persistent vegetative state after severe traumatic brain injury. The 66 patients with severe brain injury were divided into two groups: The persistent coma group (coma duration ≥10 d) included 51 patients who had an admission Glasgow Coma Scale (GCS) of 5-8 and were unconscious for more than 10 d. There were 15 patients in the control group, their admission GCS was 5-8, and were unconscious for less than 10 d. The brain areas, including frontal, parietal, temporal, occipital lobes and thalamus, were measured by Single Photon Emission Computed Tomography (SPECT). In the first SPECT scan, multiple areas of cerebral ischemia were documented in all patients in both groups, whereas bilateral thalamic ischemia were presented in all patients in the persistent coma group and were absented in the control group. In the second SPECT scan taken during the period of analepsia, with an indication that unilateral thalamic ischemia were persisted in 28 of 41 patients in persistent coma group(28/41,68.29%). Persistent coma after severe brain injury is associated with bilateral thalamic ischemia.

  17. Brain Science of Ethics: Present Status and the Future

    Science.gov (United States)

    Aoki, Ryuta; Funane, Tsukasa; Koizumi, Hideaki

    2010-01-01

    Recent advances in technologies for neuroscientific research enable us to investigate the neurobiological substrates of the human ethical sense. This article introduces several findings in "the brain science of ethics" obtained through "brain-observation" and "brain-manipulation" approaches. Studies over the past decade have revealed that several…

  18. Whole brain helical Tomotherapy with integrated boost for brain metastases in patients with malignant melanoma–a randomized trial

    International Nuclear Information System (INIS)

    Hauswald, Henrik; Habl, Gregor; Krug, David; Kehle, Denise; Combs, Stephanie E; Bermejo, Justo Lorenzo; Debus, Jürgen; Sterzing, Florian

    2013-01-01

    Patients with malignant melanoma may develop brain metastases during the course of the disease, requiring radiotherapeutic treatment. In patients with 1–3 brain metastases, radiosurgery has been established as a treatment option besides surgery. For patients with 4 or more brain metastases, whole brain radiotherapy is considered the standard treatment. In certain patients with brain metastases, radiation treatment using whole brain helical Tomotherapy with integrated boost and hippocampal-sparing may improve prognosis of these patients. The present prospective, randomized two-armed trial aims to exploratory investigate the treatment response to conventional whole brain radiotherapy applying 30 Gy in 10 fractions versus whole brain helical Tomotherapy applying 30 Gy in 10 fractions with an integrated boost of 50 Gy to the brain metastases as well as hippocampal-sparing in patients with brain metastases from malignant melanoma. The main inclusion criteria include magnetic resonance imaging confirmed brain metastases from a histopathologically confirmed malignant melanoma in patients with a minimum age of 18 years. The main exclusion criteria include a previous radiotherapy of the brain and not having recovered from acute high-grade toxicities of prior therapies. The primary endpoint is treatment-related toxicity. Secondary endpoints include imaging response, local and loco-regional progression-free survival, overall survival and quality of life

  19. Two hands, one brain, and aging.

    Science.gov (United States)

    Maes, Celine; Gooijers, Jolien; Orban de Xivry, Jean-Jacques; Swinnen, Stephan P; Boisgontier, Matthieu P

    2017-04-01

    Many activities of daily living require moving both hands in an organized manner in space and time. Therefore, understanding the impact of aging on bimanual coordination is essential for prolonging functional independence and well-being in older adults. Here we investigated the behavioral and neural determinants of bimanual coordination in aging. The studies surveyed in this review reveal that aging is associated with cortical hyper-activity (but also subcortical hypo-activity) during performance of bimanual tasks. In addition to changes in activation in local areas, the interaction between distributed brain areas also exhibits age-related effects, i.e., functional connectivity is increased in the resting brain as well as during task performance. The mechanisms and triggers underlying these functional activation and connectivity changes remain to be investigated. This requires further research investment into the detailed study of interactions between brain structure, function and connectivity. This will also provide the foundation for interventional research programs towards preservation of brain health and behavioral performance by maximizing neuroplasticity potential in older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Stem cells to regenerate the newborn brain

    NARCIS (Netherlands)

    van Velthoven, C.T.J.

    2011-01-01

    Perinatal hypoxia-ischemia (HI) is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. In this thesis we investigate whether mesenchymal stem cells (MSC) regenerate the neonatal brain after HI injury. We show that transplantation of MSC after neonatal brain injury

  1. Introducing transcranial magnetic stimulation (TMS) and its property of causal inference in investigating brain-function relationships

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Honk, E.J. van; Panksepp, J.

    2004-01-01

    Transcranial magnetic stimulation (TMS) is a method capable of transiently modulating neural excitability. Depending on the stimulation parameters information processing in the brain can be either enhanced or disrupted. This way the contribution of different brain areas involved in mental processes

  2. An investigation on the mechanism of sublimed DHB matrix on molecular ion yields in SIMS imaging of brain tissue.

    Science.gov (United States)

    Dowlatshahi Pour, Masoumeh; Malmberg, Per; Ewing, Andrew

    2016-05-01

    We have characterized the use of sublimation to deposit matrix-assisted laser desorption/ionization (MALDI) matrices in secondary ion mass spectrometry (SIMS) analysis, i.e. matrix-enhanced SIMS (ME-SIMS), a common surface modification method to enhance sensitivity for larger molecules and to increase the production of intact molecular ions. We use sublimation to apply a thin layer of a conventional MALDI matrix, 2,5-dihydroxybenzoic acid (DHB), onto rat brain cerebellum tissue to show how this technique can be used to enhance molecular yields in SIMS while still retaining a lateral resolution around 2 μm and also to investigate the mechanism of this enhancement. The results here illustrate that cholesterol, which is a dominant lipid species in the brain, is decreased on the tissue surface after deposition of matrix, particularly in white matter. The decrease of cholesterol is followed by an increased ion yield of several other lipid species. Depth profiling of the sublimed rat brain reveals that the lipid species are de facto extracted by the DHB matrix and concentrated in the top most layers of the sublimed matrix. This extraction/concentration of lipids directly leads to an increase of higher mass lipid ion yield. It is also possible that the decrease of cholesterol decreases the potential suppression of ion yield caused by cholesterol migration to the tissue surface. This result provides us with significant insights into the possible mechanisms involved when using sublimation to deposit this matrix in ME-SIMS.

  3. Brain SPECT

    International Nuclear Information System (INIS)

    Feistel, H.

    1991-01-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG) [de

  4. Brain Dominance And Speaking Strategy Use of Iranian EFL Learners

    Directory of Open Access Journals (Sweden)

    Nastaran Mireskandari

    2015-05-01

    Full Text Available The present study investigated the effect of brain dominance on the use of Language learning speaking strategies. One hundred forty two undergraduate students of Shiraz University, Iran, participated in this study. The Hemispheric Dominance Test (HDT was employed to categorize participants as right-, left- and whole-brain dominant, and a Speaking Strategy Questionnaire was administered to evaluate their use of speaking strategies. The results were analyzed using a one-way between groups analysis of variance (ANOVA to investigate whether there were any significant differences between the three brain dominant groups in their overall use of speaking strategies. A MANOVA was also run to investigate whether the groups had preferences regarding the use of any particular strategy type. Results indicated a statistically significant difference between the whole brain dominant participants and both left brain and right brain dominant learners for using compensation speaking strategies. To teach and learn more effectively, instructors and learners need to better understand and appreciate individual differences and how they can affect the learning process. They could find ways to combine activities that accommodate both left and right brain learners, employing not only the usual linear, verbal model, but also the active, image-rich, visuo-spatial models so that learners would be able to use both hemispheres.

  5. Increased brain iron deposition is a risk factor for brain atrophy in patients with haemodialysis: a combined study of quantitative susceptibility mapping and whole brain volume analysis.

    Science.gov (United States)

    Chai, Chao; Zhang, Mengjie; Long, Miaomiao; Chu, Zhiqiang; Wang, Tong; Wang, Lijun; Guo, Yu; Yan, Shuo; Haacke, E Mark; Shen, Wen; Xia, Shuang

    2015-08-01

    To explore the correlation between increased brain iron deposition and brain atrophy in patients with haemodialysis and their correlation with clinical biomarkers and neuropsychological test. Forty two patients with haemodialysis and forty one age- and gender-matched healthy controls were recruited in this prospective study. 3D whole brain high resolution T1WI and susceptibility weighted imaging were scanned on a 3 T MRI system. The brain volume was analyzed using voxel-based morphometry (VBM) in patients and to compare with that of healthy controls. Quantitative susceptibility mapping was used to measure and compare the susceptibility of different structures between patients and healthy controls. Correlation analysis was used to investigate the relationship between the brain volume, iron deposition and neuropsychological scores. Stepwise multiple regression analysis was used to explore the effect of clinical biomarkers on the brain volumes in patients. Compared with healthy controls, patients with haemodialysis showed decreased volume of bilateral putamen and left insular lobe (All P brain iron deposition is negatively correlated with the decreased volume of bilateral putamen (P brain iron deposition and dialysis duration was risk factors for brain atrophy in patients with haemodialysis. The decreased gray matter volume of the left insular lobe was correlated with neurocognitive impairment.

  6. Studying variability in human brain aging in a population-based German cohort – Rationale and design of 1000BRAINS

    Directory of Open Access Journals (Sweden)

    Svenja eCaspers

    2014-07-01

    Full Text Available The ongoing 1000 brains study (1000BRAINS is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions & language; examination of motor skills; ratings of personality, life quality, mood & daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla of the brain. The latter includes (i 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fibre tracking and for diffusion kurtosis imaging; (iii resting-state and task-based functional MRI; and (iv fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  7. Shapley ratings in brain networks

    Directory of Open Access Journals (Sweden)

    Rolf Kötter

    2007-11-01

    Full Text Available Recent applications of network theory to brain networks as well as the expanding empirical databases of brain architecture spawn an interest in novel techniques for analyzing connectivity patterns in the brain. Treating individual brain structures as nodes in a directed graph model permits the application of graph theoretical concepts to the analysis of these structures within their large-scale connectivity networks. In this paper, we explore the application of concepts from graph and game theory toward this end. Specifically, we utilize the Shapley value principle, which assigns a rank to players in a coalition based upon their individual contributions to the collective profit of that coalition, to assess the contributions of individual brain structures to the graph derived from the global connectivity network. We report Shapley values for variations of a prefrontal network, as well as for a visual cortical network, which had both been extensively investigated previously. This analysis highlights particular nodes as strong or weak contributors to global connectivity. To understand the nature of their contribution, we compare the Shapley values obtained from these networks and appropriate controls to other previously described nodal measures of structural connectivity. We find a strong correlation between Shapley values and both betweenness centrality and connection density. Moreover, a stepwise multiple linear regression analysis indicates that approximately 79% of the variance in Shapley values obtained from random networks can be explained by betweenness centrality alone. Finally, we investigate the effects of local lesions on the Shapley ratings, showing that the present networks have an immense structural resistance to degradation. We discuss our results highlighting the use of such measures for characterizing the organization and functional role of brain networks.

  8. Ontogenetic Shape Change in the Chicken Brain: Implications for Paleontology

    OpenAIRE

    Kawabe, Soichiro; Matsuda, Seiji; Tsunekawa, Naoki; Endo, Hideki

    2015-01-01

    Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental st...

  9. On the blood-brain barrier to peptides: [3H]gonadotropin-releasing hormone accumulation by eighteen regions of the rat brain and by anterior pituitary

    International Nuclear Information System (INIS)

    Ermisch, A.; Ruehle, H.J.; Klauschenz, E.; Kretzschmar, R.

    1984-01-01

    After intracarotid injection of [ 3 H]gonadotropin-releasing hormone ([ 3 H]GnRH) the mean accumulation of radioactivity per unit wet weight of 18 brain samples investigated and the anterior pituitary was 0.38 +- 0.11% g -1 of the injected tracer dose. This indicates a low but measurable brain uptake of the peptide. The brain uptake of [ 3 H]GnRH in blood-brain barrier (BBB)-protected regions is 5% of that of separately investigated [ 3 H]OH. In BBB-free regions the accumulation of radioactivity was more than 25-fold higher than in BBB-protected regions. The accumulation of [ 3 H]GnRH among regions with BBB varies less than among regions with leaky endothelia. The data presented for [ 3 H]GnRH are similar to those for other peptides so far investigated. (author)

  10. Brain/MINDS: brain-mapping project in Japan

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  11. Brain/MINDS: brain-mapping project in Japan.

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-05-19

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas.

  12. Gut-Brain Axis and Behavior.

    Science.gov (United States)

    Martin, Clair R; Mayer, Emeran A

    2017-01-01

    In the last 5 years, interest in the interactions among the gut microbiome, brain, and behavior has exploded. Preclinical evidence supports a role of the gut microbiome in behavioral responses associated with pain, emotion, social interactions, and food intake. Limited, but growing, clinical evidence comes primarily from associations of gut microbial composition and function to behavioral and clinical features and brain structure and function. Converging evidence suggests that the brain and the gut microbiota are in bidirectional communication. Observed dysbiotic states in depression, chronic stress, and autism may reflect altered brain signaling to the gut, while altered gut microbial signaling to the brain may play a role in reinforcing brain alterations. On the other hand, primary dysbiotic states due to Western diets may signal to the brain, altering ingestive behavior. While studies performed in patients with depression and rodent models generated by fecal microbial transfer from such patients suggest causation, evidence for an influence of acute gut microbial alterations on human behavioral and clinical parameters is lacking. Only recently has an open-label microbial transfer therapy in children with autism tentatively validated the gut microbiota as a therapeutic target. The translational potential of preclinical findings remains unclear without further clinical investigation. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  13. The fibrinolytic system facilitates tumor cell migration across the blood-brain barrier in experimental melanoma brain metastasis

    International Nuclear Information System (INIS)

    Perides, George; Zhuge, Yuzheng; Lin, Tina; Stins, Monique F; Bronson, Roderick T; Wu, Julian K

    2006-01-01

    Patients with metastatic tumors to the brain have a very poor prognosis. Increased metastatic potential has been associated with the fibrinolytic system. We investigated the role of the fibrinolytic enzyme plasmin in tumor cell migration across brain endothelial cells and growth of brain metastases in an experimental metastatic melanoma model. Metastatic tumors to the brain were established by direct injection into the striatum or by intracarotid injection of B16F10 mouse melanoma cells in C57Bl mice. The role of plasminogen in the ability of human melanoma cells to cross a human blood-brain barrier model was studied on a transwell system. Wild type mice treated with the plasmin inhibitor epsilon-aminocaproic acid (EACA) and plg -/- mice developed smaller tumors and survived longer than untreated wild type mice. Tumors metastasized to the brain of wild type mice treated with EACA and plg -/- less efficiently than in untreated wild type mice. No difference was observed in the tumor growth in any of the three groups of mice. Human melanoma cells were able to cross the human blood-brain barrier model in a plasmin dependent manner. Plasmin facilitates the development of tumor metastasis to the brain. Inhibition of the fibrinolytic system could be considered as means to prevent tumor metastasis to the brain

  14. Transcranial magnetic stimulation: Improved coil design for deep brain investigation

    Science.gov (United States)

    Crowther, L. J.; Marketos, P.; Williams, P. I.; Melikhov, Y.; Jiles, D. C.; Starzewski, J. H.

    2011-04-01

    This paper reports on a design for a coil for transcranial magnetic stimulation. The design shows potential for improving the penetration depth of the magnetic field, allowing stimulation of subcortical structures within the brain. The magnetic and induced electric fields in the human head have been calculated with finite element electromagnetic modeling software and compared with empirical measurements. Results show that the coil design used gives improved penetration depth, but also indicates the likelihood of stimulation of additional tissue resulting from the spatial distribution of the magnetic field.

  15. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  16. Microwave reflection, transmission, and absorption by human brain tissue

    Science.gov (United States)

    Ansari, M. A.; Akhlaghipour, N.; Zarei, M.; Niknam, A. R.

    2018-04-01

    These days, the biological effects of electromagnetic (EM) radiations on the brain, especially in the frequency range of mobile communications, have caught the attention of many scientists. Therefore, in this paper, the propagation of mobile phone electromagnetic waves in the brain tissues is investigated analytically and numerically. The brain is modeled by three layers consisting of skull, grey and white matter. First, we have analytically calculated the microwave reflection, transmission, and absorption coefficients using signal flow graph technique. The effect of microwave frequency and variations in the thickness of layers on the propagation of microwave through brain are studied. Then, the penetration of microwave in the layers is numerically investigated by Monte Carlo method. It is shown that the analytical results are in good agreement with those obtained by Monte Carlo method. Our results indicate the absorbed microwave energy depends on microwave frequency and thickness of brain layers, and the absorption coefficient is optimized at a number of frequencies. These findings can be used for comparing the microwave absorbed energy in a child's and adult's brain.

  17. Big words, halved brains and small worlds: complex brain networks of figurative language comprehension.

    Science.gov (United States)

    Arzouan, Yossi; Solomon, Sorin; Faust, Miriam; Goldstein, Abraham

    2011-04-27

    Language comprehension is a complex task that involves a wide network of brain regions. We used topological measures to qualify and quantify the functional connectivity of the networks used under various comprehension conditions. To that aim we developed a technique to represent functional networks based on EEG recordings, taking advantage of their excellent time resolution in order to capture the fast processes that occur during language comprehension. Networks were created by searching for a specific causal relation between areas, the negative feedback loop, which is ubiquitous in many systems. This method is a simple way to construct directed graphs using event-related activity, which can then be analyzed topologically. Brain activity was recorded while subjects read expressions of various types and indicated whether they found them meaningful. Slightly different functional networks were obtained for event-related activity evoked by each expression type. The differences reflect the special contribution of specific regions in each condition and the balance of hemispheric activity involved in comprehending different types of expressions and are consistent with the literature in the field. Our results indicate that representing event-related brain activity as a network using a simple temporal relation, such as the negative feedback loop, to indicate directional connectivity is a viable option for investigation which also derives new information about aspects not reflected in the classical methods for investigating brain activity.

  18. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma

    DEFF Research Database (Denmark)

    Johnsen, Kasper B.; Burkhart, Annette; Melander, Fredrik

    2017-01-01

    Drug delivery to the brain is hampered by the presence of the blood-brain barrier, which excludes most molecules from freely diffusing into the brain, and tightly regulates the active transport mechanisms that ensure sufficient delivery of nutrients to the brain parenchyma. Harnessing...... the possibility of delivering neuroactive drugs by way of receptors already present on the brain endothelium has been of interest for many years. The transferrin receptor is of special interest since its expression is limited to the endothelium of the brain as opposed to peripheral endothelium. Here, we...... investigate the possibility of delivering immunoliposomes and their encapsulated cargo to the brain via targeting of the transferrin receptor. We find that transferrin receptor-targeting increases the association between the immunoliposomes and primary endothelial cells in vitro, but that this does...

  19. The State of the NIH BRAIN Initiative.

    Science.gov (United States)

    Koroshetz, Walter; Gordon, Joshua; Adams, Amy; Beckel-Mitchener, Andrea; Churchill, James; Farber, Gregory; Freund, Michelle; Gnadt, Jim; Hsu, Nina; Langhals, Nicholas; Lisanby, Sarah; Liu, Guoying; Peng, Grace; Ramos, Khara; Steinmetz, Michael; Talley, Edmund; White, Samantha

    2018-06-19

    The BRAIN Initiative® arose from a grand challenge to "accelerate the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought." The BRAIN Initiative is a public-private effort focused on the development and use of powerful tools for acquiring fundamental insights about how information processing occurs in the central nervous system. As the Initiative enters its fifth year, NIH has supported over 500 principal investigators, who have answered the Initiative's challenge via hundreds of publications describing novel tools, methods, and discoveries that address the Initiative's seven scientific priorities. We describe scientific advances produced by individual labs, multi-investigator teams, and entire consortia that, over the coming decades, will produce more comprehensive and dynamic maps of the brain, deepen our understanding of how circuit activity can produce a rich tapestry of behaviors, and lay the foundation for understanding how its circuitry is disrupted in brain disorders. Much more work remains to bring this vision to fruition, and NIH continues to look to the diverse scientific community, from mathematics, to physics, chemistry, engineering, neuroethics, and neuroscience, to ensure that the greatest scientific benefit arises from this unique research Initiative. Copyright © 2018 the authors.

  20. Mathematical modelling of blood-brain barrier failure and edema

    Science.gov (United States)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  1. Involvement of brain gangliosides in temperature adaptation of fish

    Energy Technology Data Exchange (ETDEWEB)

    Breer, H.; Rahmann, H.

    1976-10-01

    The ganglioside pattern of goldfish brain was investigated after adaptation (acclimatization, acclimation) to different temperatures. Adaptation at lower ambient temperature causes a higher proportion of polysialogangliosides to be formed in fish brain.

  2. Prognostic factors for outcomes after whole-brain irradiation of brain metastases from relatively radioresistant tumors: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Schild Steven E

    2010-10-01

    Full Text Available Abstract Background This study investigated potential prognostic factors in patients treated with whole-brain irradiation (WBI alone for brain metastases from relatively radioresistant tumors such as malignant melanoma, renal cell carcinoma, and colorectal cancer. Additionally, a potential benefit from escalating the radiation dose was investigated. Methods Data from 220 patients were retrospectively analyzed for overall survival and local control. Nine potential prognostic factors were evaluated: tumor type, WBI schedule, age, gender, Karnofsky performance score, number of brain metastases, extracerebral metastases, interval from diagnosis of cancer to WBI, and recursive partitioning analysis (RPA class. Results Survival rates at 6 and 12 months were 32% and 19%, respectively. In the multivariate analysis, WBI doses >30 Gy (p = 0.038, KPS ≥70 (p Conclusions Improved outcomes were associated with WBI doses >30 Gy, better performance status, fewer brain metastases, lack of extracerebral metastases, and lower RPA class. Patients receiving WBI alone appear to benefit from WBI doses >30 Gy. However, such a benefit is limited to RPA class 1 or 2 patients.

  3. Brain connectivity in normally developing children and adolescents.

    Science.gov (United States)

    Khundrakpam, Budhachandra S; Lewis, John D; Zhao, Lu; Chouinard-Decorte, François; Evans, Alan C

    2016-07-01

    The developing human brain undergoes an astonishing sequence of events that continuously shape the structural and functional brain connectivity. Distinct regional variations in the timelines of maturational events (synaptogenesis and synaptic pruning) occurring at the synaptic level are reflected in brain measures at macroscopic resolution (cortical thickness and gray matter density). Interestingly, the observed brain changes coincide with cognitive milestones suggesting that the changing scaffold of brain circuits may subserve cognitive development. Recent advances in connectivity analysis propelled by graph theory have allowed, on one hand, the investigation of maturational changes in global organization of structural and functional brain networks; and on the other hand, the exploration of specific networks within the context of global brain networks. An emerging picture from several connectivity studies is a system-level rewiring that constantly refines the connectivity of the developing brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Residential Radon and Brain Tumour Incidence in a Danish Cohort

    DEFF Research Database (Denmark)

    Bräuner, Elvira V.; Andersen, Zorana J.; Andersen, Claus Erik

    2013-01-01

    Background: Increased brain tumour incidence over recent decades may reflect improved diagnostic methods and clinical practice, but remain unexplained. Although estimated doses are low a relationship between radon and brain tumours may exist. Objective: To investigate the long-term effect of expo...... significant associations and exposure-response patterns between long-term residential radon exposure radon in a general population and risk of primary brain tumours, adding new knowledge to this field. This finding could be chance and needs to be challenged in future studies.......Background: Increased brain tumour incidence over recent decades may reflect improved diagnostic methods and clinical practice, but remain unexplained. Although estimated doses are low a relationship between radon and brain tumours may exist. Objective: To investigate the long-term effect...... of exposure to residential radon on the risk of primary brain tumour in a prospective Danish cohort. Methods: During 1993–1997 we recruited 57,053 persons. We followed each cohort member for cancer occurrence from enrolment until 31 December 2009, identifying 121 primary brain tumour cases. We traced...

  5. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Giuseppina; Trojsi, Francesca; Cirillo, Mario; Tedeschi, Gioacchino [MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care ' ' Hermitage Capodimonte' ' , Naples (Italy); Second University of Naples, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Naples (Italy); Esposito, Fabrizio [University of Salerno, Department of Medicine and Surgery, Baronissi (Salerno) (Italy); Maastricht University, Department of Cognitive Neuroscience, Maastricht (Netherlands)

    2016-02-15

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm{sup 2}, 54 gradient directions) and low angular resolution (b = 1000 s/mm{sup 2}, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  6. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma

    DEFF Research Database (Denmark)

    Johnsen, Kasper B.; Burkhart, Annette; Melander, Fredrik

    2017-01-01

    Drug delivery to the brain is hampered by the presence of the blood-brain barrier, which excludes most molecules from freely diffusing into the brain, and tightly regulates the active transport mechanisms that ensure sufficient delivery of nutrients to the brain parenchyma. Harnessing the possibi...... cargo uptake in the brain endothelium and subsequent cargo transport into the brain. These findings suggest that transferrin receptor-targeting is a relevant strategy of increasing drug exposure to the brain....... investigate the possibility of delivering immunoliposomes and their encapsulated cargo to the brain via targeting of the transferrin receptor. We find that transferrin receptor-targeting increases the association between the immunoliposomes and primary endothelial cells in vitro, but that this does...... not correlate with increased cargo transcytosis. Furthermore, we show that the transferrin receptor-targeted immunoliposomes accumulate along the microvessels of the brains of rats, but find no evidence for transcytosis of the immunoliposome. Conversely, the increased accumulation correlated both with increased...

  7. Shadows of Music-Language Interaction on Low Frequency Brain Oscillatory Patterns

    Science.gov (United States)

    Carrus, Elisa; Koelsch, Stefan; Bhattacharya, Joydeep

    2011-01-01

    Electrophysiological studies investigating similarities between music and language perception have relied exclusively on the signal averaging technique, which does not adequately represent oscillatory aspects of electrical brain activity that are relevant for higher cognition. The current study investigated the patterns of brain oscillations…

  8. Generation of a High Resistance in vitro Blood-Brain-Barrier Model and Investigations of Brain-to-Blood Glutamate Efflux

    DEFF Research Database (Denmark)

    Helms, Hans Christian

    Blod-hjernebarrieren (blood-brain barrier, BBB) opretholder den generelle homeostase i hjernens væsker. BBB kan også spille en rolle i homeostasen for den eksitatoriske aminosyre, L-glutamat. In vitro modeller kan være effektive værktøjer til at få mekanistiske informationer om transcellulær...

  9. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury

    OpenAIRE

    Meierhans, Roman; B?chir, Markus; Ludwig, Silke; Sommerfeld, Jutta; Brandi, Giovanna; Haberth?r, Christoph; Stocker, Reto; Stover, John F

    2010-01-01

    Introduction The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. Methods In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 ?l/min, collecting samples at 60 minute intervals. Occult metabolic alteratio...

  10. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose beneath 1 mM in patients with severe traumatic brain injury.

    OpenAIRE

    Meierhans, R; Bechir, M; Ludwig, S; Sommerfeld, J; Brandi, G; Haberthur, C; Stocker, R; Stover, J F

    2010-01-01

    ABSTRACT: INTRODUCTION: The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. METHODS: In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 mul/ min, collecting samples at 60 minute intervals. Occult metab...

  11. Individual Identification Using Functional Brain Fingerprint Detected by Recurrent Neural Network.

    Science.gov (United States)

    Chen, Shiyang; Hu, Xiaoping P

    2018-03-20

    Individual identification based on brain function has gained traction in literature. Investigating individual differences in brain function can provide additional insights into the brain. In this work, we introduce a recurrent neural network based model for identifying individuals based on only a short segment of resting state functional MRI data. In addition, we demonstrate how the global signal and differences in atlases affect the individual identifiability. Furthermore, we investigate neural network features that exhibit the uniqueness of each individual. The results indicate that our model is able to identify individuals based on neural features and provides additional information regarding brain dynamics.

  12. The flexible brain. On mind and brain, neural darwinism and psychiatry.

    Science.gov (United States)

    den Boer, J A

    1997-09-01

    A theoretical introduction is given in which several theoretical viewpoints concerning the mind-brain problem are discussed. During the last decade philosophers like Searle, Dennett and the Churchlands have taken a more or less pure materialistic position in explaining mental phenomena. Investigators in biological psychiatry have hardly ever taken a clear position in this discussion, whereas we believe it is important that the conclusions drawn from biological research are embedded in a theoretical framework related to the mind-brain problem. In this article the thesis is defended that the theory of neural darwinism represents a major step forward and may bridge previous distinctions between biological, clinical and social psychiatry.

  13. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias-Vasquez, A.; Desrivières, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Biks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.K.; Cuellar-Partida, G.; den Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santiañez, R.; Rose, E.J.; Salami, A.; Sämann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J.; van Eijk, K.R.; Walters, R.K.; Westlye, L.T.; Welan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.H.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.G.A.M.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.M.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.A.M.; Reese McKay, D.; Needham, M.; Nugent, A.C.; Pütz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; van der Marel, S.S.L.; van Hulzen, K.J.E.; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; de Zubicaray, G.I.; Dillman, A.; Duggirala, R.; Dyer, T.D.; Erk, S.; Fedko, I.O.; Ferrucci, L.; Foroud, T.M.; Fox, P.T.; Fukunaga, M.; Gibbs, J.R.; Göring, H.H.H.; Green, R.C.; Guelfi, S.; Hansell, N.K.; Hartman, C.A.; Hegenscheid, K.; Heinz, A.; Hernandez, D.G.; Heslenfeld, D.J.; Hoekstra, P.J.; Holsboer, F.; Homuth, G.; Hottenga, J.J.; Ikeda, M.; Jack, C.R., Jr.; Jenkinson, M.; Johnson, R.; Kanai, R.; Keil, M.; Kent, J.W. Jr.; Kochunov, P.; Kwok, J.B.; Lawrie, S.M.; Liu, X.; Longo, D.L.; McMahon, K.L.; Meisenzahl, E.; Melle, I.; Mohnke, S.; Montgomery, G.W.; Mostert, J.C.; Mühleisen, T.W.; Nalls, M.A.; Nichols, T.E.; Nilsson, L.G.; Nöthen, M.M.; Ohi, K.; Olvera, R.L.; Perez-Iglesias, R.; Pike, G.B.; Potkin, S.G.; Reinvang, I.; Reppermund, S.; Rietschel, M.; Romanczuk-Seiferth, N.; Rosen, G.D.; Rujescu, D.; Schnell, K.; Schofield, P.R.; Smith, C.; Steen, V.M.; Sussmann, J.E.; Thalamuthu, A.; Toga, A.W.; Traynor, B.J.; Troncoso, J.; Turner, J.A.; Valdés Hernández, M.C.; van t Ent, D.; van der Brug, M.; van der Wee, N.J.A.; van Tol, M.J.; Veltman, D.J.; Wassink, T.H.; Westmann, E.; Zielke, R.H.; Zonderman, A.B.; Ashbrook, D.G.; Hager, R.; Lu, L.; McMahon, F.J.; Morris, D.W.; Williams, R.W.; Brunner, H.G.; Buckner, R.L.; Buitelaar, J.K.; Cahn, W.; Calhoun, V.D.; Cavalleri, G.L.; Crespo-Facorro, B.; Dale, A.M.; Davies, G.E.; Delanty, N.; Depondt, C.; Djurovic, S.; Drevets, W.C.; Espeseth, T.; Gollub, R.L.; Ho, B.C.; Hoffmann, W.; Hosten, N.; Kahn, R.S.; Le Hellard, S.; Meyer-Lindenberg, A.; Müller-Myhsok, B.; Nauck, M.; Nyberg, L.; Pandolfo, M.; Penninx, B.W.J.H.; Roffman, J.L.; Sisodiya, SM; Smoller, J.W.; van Bokhoven, H.; van Haren, N.E.M.; Völzke, H.; Walter, H.; Weiner, M.W.; Wen, W.; White, T.; Agartz, I.; Andreassen, O.A.; Blangero, J.; Boomsma, D.I.; Brouwer, R.M.; Cannon, D.M.; Cookson, M.R.; de Geus, E.J.C.; Deary, I.J.; Donohoe, G.; Fernandez, G.; Fisher, S.E.; Francks, C.; Glahn, D.C.; Grabe, H.J.; Gruber, O.; Hardy, J.; Hashimoto, R.; Hulshoff Pol, H.E.; Jönsson, E.G.; Kloszewska, I.; Lovestone, S.; Mattay, V.S.; Mecocci, P.; McDonald, C.; McIntosh, A.M.; Ophoff, R.A.; Paus, T.; Pausova, Z.; Ryten, M.; Sachdev, P.S.; Saykin, A.J.; Simmons, A.; Singleton, A.; Soininen, H.; Wardlaw, J.M.; Weale, M.E.; Weinberger, D.R.; Adams, H.H.H.; Launer, L.J.; Seiler, S.; Schmidt, R.; Chauhan, G.; Satizabal, C.L.; Becker, J.T.; Yanek, L.; van der Lee, S.J.; Ebling, M.; Fischl, B.; Longstreth, Jr. W.T.; Greve, D.; Schmidt, H.; Nyquist, P.; Vinke, L.N.; van Duijn, C.M.; Xue, L.; Mazoyer, B.; Bis, J.C.; Gudnason, V.; Seshadri, S.; Arfan Ikram, M.; Martin, N.G.; Wright, M.J.; Schumann, G.; Franke, B.; Thompson, P.M.; Medland, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  14. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); L.T. Strike (Lachlan); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  15. Acute and chronic changes in brain activity with deep brain stimulation for refractory depression.

    Science.gov (United States)

    Conen, Silke; Matthews, Julian C; Patel, Nikunj K; Anton-Rodriguez, José; Talbot, Peter S

    2018-04-01

    Deep brain stimulation is a potential option for patients with treatment-refractory depression. Deep brain stimulation benefits have been reported when targeting either the subgenual cingulate or ventral anterior capsule/nucleus accumbens. However, not all patients respond and optimum stimulation-site is uncertain. We compared deep brain stimulation of the subgenual cingulate and ventral anterior capsule/nucleus accumbens separately and combined in the same seven treatment-refractory depression patients, and investigated regional cerebral blood flow changes associated with acute and chronic deep brain stimulation. Deep brain stimulation-response was defined as reduction in Montgomery-Asberg Depression Rating Scale score from baseline of ≥50%, and remission as a Montgomery-Asberg Depression Rating Scale score ≤8. Changes in regional cerebral blood flow were assessed using [ 15 O]water positron emission tomography. Remitters had higher relative regional cerebral blood flow in the prefrontal cortex at baseline and all subsequent time-points compared to non-remitters and non-responders, with prefrontal cortex regional cerebral blood flow generally increasing with chronic deep brain stimulation. These effects were consistent regardless of stimulation-site. Overall, no significant regional cerebral blood flow changes were apparent when deep brain stimulation was acutely interrupted. Deep brain stimulation improved treatment-refractory depression severity in the majority of patients, with consistent changes in local and distant brain regions regardless of target stimulation. Remission of depression was reached in patients with higher baseline prefrontal regional cerebral blood flow. Because of the small sample size these results are preliminary and further evaluation is necessary to determine whether prefrontal cortex regional cerebral blood flow could be a predictive biomarker of treatment response.

  16. Maternal Brain-Reactive Antibodies and Autism Spectrum Disorder

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0369 TITLE: Maternal Brain-Reactive Antibodies and Autism Spectrum Disorder PRINCIPAL INVESTIGATOR: Betty Diamond...Sep 2015 4. TITLE AND SUBTITLE Maternal Brain-Reactive Antibodies and Autism Spectrum 5a. CONTRACT NUMBER Disorder 5b. GRANT NUMBER W81XWH-14-1...to approximately 5% of cases of ASD. 15. SUBJECT TERMS Fetal brain; Autism spectrum disorder ; antibody; B cells; Caspr2 16. SECURITY CLASSIFICATION

  17. Male microchimerism in the human female brain.

    Directory of Open Access Journals (Sweden)

    William F N Chan

    Full Text Available In humans, naturally acquired microchimerism has been observed in many tissues and organs. Fetal microchimerism, however, has not been investigated in the human brain. Microchimerism of fetal as well as maternal origin has recently been reported in the mouse brain. In this study, we quantified male DNA in the human female brain as a marker for microchimerism of fetal origin (i.e. acquisition of male DNA by a woman while bearing a male fetus. Targeting the Y-chromosome-specific DYS14 gene, we performed real-time quantitative PCR in autopsied brain from women without clinical or pathologic evidence of neurologic disease (n=26, or women who had Alzheimer's disease (n=33. We report that 63% of the females (37 of 59 tested harbored male microchimerism in the brain. Male microchimerism was present in multiple brain regions. Results also suggested lower prevalence (p=0.03 and concentration (p=0.06 of male microchimerism in the brains of women with Alzheimer's disease than the brains of women without neurologic disease. In conclusion, male microchimerism is frequent and widely distributed in the human female brain.

  18. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    Science.gov (United States)

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the

  19. Efficacy of brain scanning in epilepsy of late onset

    International Nuclear Information System (INIS)

    Jain, A.N.; Ramanathan, P.; Ganatra, R.D.

    1978-01-01

    Brain scans of 513 patients with epilepsy of late onset were analysed with reference to the patient's age and sex and to the nature of convulsion. Only 17 of them showed an abnormal concentration of radionuclide indicating a space-occupying lesion in the brain. The findings of those patients who had positive brain scans were correlated with EEG findings. It was found that the incidence of epilepsy of late onset is almost 3 times higher in males than in females and that the age cannot be considered as a criterion for screening the patients for brain scan investigation as far as epilepsy of late onset is concerned. In the authors' opinion, the incidence of 3.3% is not too low. A positive brain scan finding calls for further investigation and helps in deciding the management and further line of treatment of the patients. Moreover, a normal scan rules out the presence of a space-occupying lesion and helps as a screening procedure. (orig.) 891 MG [de

  20. Brain MRI abnormalities in neuromyelitis optica

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fei, E-mail: feiwang1973@gmail.com [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Liu Yaou, E-mail: asiaeurope80@gmail.com [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Duan Yunyun, E-mail: duanyun2003@sohu.com [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li Kuncheng, E-mail: kunchengli@yahoo.com.cn [Department of Radiology, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China); Education Ministry Key Laboratory for Neurodegenerative Disease, Xuanwu Hospital, Capital University of Medical Sciences, 45 Chang-Chun St, Xuanwu District, Beijing 100053 (China)

    2011-11-15

    Objective: The purpose of this study was to explore brain MRI findings in neuromyelitis optica (NMO) and to investigate specific brain lesions with respect to the localization of aquaporin-4 (AQP-4). Materials and methods: Forty admitted patients (36 women) who satisfied the 2006 criteria of Wingerchuk et al. for NMO were included in this study. All patients received a neurological examination and MRI scanning including brain and spinal cord. MRIs were classified as normal, nonspecific, multiple sclerosis-like, typical abnormalities. MS-like lesions were too few to satisfy the Barkhof et al. criteria for MS. Confluent lesions involving high AQP-4 regions were considered typical. Non-enhancing deep white matter lesions other than MS-like lesions or typical lesions were classified as nonspecific. Results: Brain MRI lesions were delineated in 12 patients (25%). Four patients (10%) had hypothalamus, brainstem or periventricle lesions. Six (15%) patients were nonspecific, and 2 (5%) patients had multiple sclerosis-like lesions. Conclusion: Brain MRIs are negative in most NMO, and brain lesions do not exclude the diagnosis of NMO. Hypothalamus, brainstem or periventricle lesions, corresponding to high sites of AQP-4 in the brain, are indicative of lesions of NMO.

  1. Brain MRI abnormalities in neuromyelitis optica

    International Nuclear Information System (INIS)

    Wang Fei; Liu Yaou; Duan Yunyun; Li Kuncheng

    2011-01-01

    Objective: The purpose of this study was to explore brain MRI findings in neuromyelitis optica (NMO) and to investigate specific brain lesions with respect to the localization of aquaporin-4 (AQP-4). Materials and methods: Forty admitted patients (36 women) who satisfied the 2006 criteria of Wingerchuk et al. for NMO were included in this study. All patients received a neurological examination and MRI scanning including brain and spinal cord. MRIs were classified as normal, nonspecific, multiple sclerosis-like, typical abnormalities. MS-like lesions were too few to satisfy the Barkhof et al. criteria for MS. Confluent lesions involving high AQP-4 regions were considered typical. Non-enhancing deep white matter lesions other than MS-like lesions or typical lesions were classified as nonspecific. Results: Brain MRI lesions were delineated in 12 patients (25%). Four patients (10%) had hypothalamus, brainstem or periventricle lesions. Six (15%) patients were nonspecific, and 2 (5%) patients had multiple sclerosis-like lesions. Conclusion: Brain MRIs are negative in most NMO, and brain lesions do not exclude the diagnosis of NMO. Hypothalamus, brainstem or periventricle lesions, corresponding to high sites of AQP-4 in the brain, are indicative of lesions of NMO.

  2. Quantification of Brain Access of Exendin-4 in the C57BL Mouse Model by SPIM Fluorescence Imaging and the Allen Mouse Brain Reference Model

    DEFF Research Database (Denmark)

    Jensen, Casper Bo; Secher, Anna; Hecksher-Sørensen, Jacob

    2015-01-01

    -4, into the brain with the aim of developing medication for obesity. To investigate mode of action of the medication it is important to identify the specific anatomical brain nuclei that are targeted by the compound. Such segmentations can be obtained using an annotated digital brain atlas. We...

  3. Investigating the impact of blood pressure increase to the brain using high resolution serial histology and image processing

    Science.gov (United States)

    Lesage, F.; Castonguay, A.; Tardif, P. L.; Lefebvre, J.; Li, B.

    2015-09-01

    A combined serial OCT/confocal scanner was designed to image large sections of biological tissues at microscopic resolution. Serial imaging of organs embedded in agarose blocks is performed by cutting through tissue using a vibratome which sequentially cuts slices in order to reveal new tissue to image, overcoming limited light penetration encountered in microscopy. Two linear stages allow moving the tissue with respect to the microscope objective, acquiring a 2D grid of volumes (1x1x0.3 mm) with OCT and a 2D grid of images (1x1mm) with the confocal arm. This process is repeated automatically, until the entire sample is imaged. Raw data is then post-processed to re-stitch each individual acquisition and obtain a reconstructed volume of the imaged tissue. This design is being used to investigate correlations between white matter and microvasculature changes with aging and with increase in pulse pressure following transaortic constriction in mice. The dual imaging capability of the system allowed to reveal different contrast information: OCT imaging reveals changes in refractive indices giving contrast between white and grey matter in the mouse brain, while transcardial perfusion of FITC or pre-sacrifice injection of Evans Blue shows microsvasculature properties in the brain with confocal imaging.

  4. Radiolabeled cetuximab plus whole-brain irradiation (WBI) for the treatment of brain metastases from non-small cell lung cancer (NSCLC)

    International Nuclear Information System (INIS)

    Rades, Dirk; Nadrowitz, Roger; Buchmann, Inga; Meller, Birgit; Hunold, Peter; Noack, Frank; Schild, Steven E.

    2010-01-01

    Background and Purpose: The addition of systemic drugs to whole-brain irradiation has not improved the survival of patients with multiple brain metastases, most likely because the agents did not readily cross the blood-brain barrier (BBB). Radiolabeling of cetuximab was performed to investigate whether this antibody crosses the BBB. Case Report: A patient with multiple brain lesions from non-small cell lung cancer was investigated. The largest metastasis (40 x 33 x 27 mm) was selected the reference lesion. On day 1, 200 mg/m 2 cetuximab (0.25% hot and 99.75% cold antibody) were given. On day 3, 200 mg/m 2 cetuximab (cold antibody) were given. Weekly doses of 250 mg/m 2 cetuximab were administered for 3 months. Results: The reference lesion showed enhancement of radiolabeled cetuximab ( 123 I-Erbi) on scintigraphy; 123 I-Erbi crossed the BBB and accumulated in the lesion. The reference lesion measured 31 x 22 x 21 mm at 4 months. Enhancement of contrast medium was less pronounced. Conclusion: This is the first demonstration of cetuximab crossing the BBB and accumulating in brain metastasis. (orig.)

  5. Radiolabeled cetuximab plus whole-brain irradiation (WBI) for the treatment of brain metastases from non-small cell lung cancer (NSCLC)

    Energy Technology Data Exchange (ETDEWEB)

    Rades, Dirk; Nadrowitz, Roger [Dept. of Radiation Oncology, Univ. of Luebeck (Germany); Buchmann, Inga; Meller, Birgit [Section of Nuclear Medicine, Univ. of Luebeck (Germany); Hunold, Peter [Dept. of Radiology, Univ. of Luebeck (Germany); Noack, Frank [Inst. of Pathology, Univ. of Luebeck (Germany); Schild, Steven E. [Dept. of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States)

    2010-08-15

    Background and Purpose: The addition of systemic drugs to whole-brain irradiation has not improved the survival of patients with multiple brain metastases, most likely because the agents did not readily cross the blood-brain barrier (BBB). Radiolabeling of cetuximab was performed to investigate whether this antibody crosses the BBB. Case Report: A patient with multiple brain lesions from non-small cell lung cancer was investigated. The largest metastasis (40 x 33 x 27 mm) was selected the reference lesion. On day 1, 200 mg/m{sup 2} cetuximab (0.25% hot and 99.75% cold antibody) were given. On day 3, 200 mg/m{sup 2} cetuximab (cold antibody) were given. Weekly doses of 250 mg/m{sup 2} cetuximab were administered for 3 months. Results: The reference lesion showed enhancement of radiolabeled cetuximab ({sup 123}I-Erbi) on scintigraphy; {sup 123}I-Erbi crossed the BBB and accumulated in the lesion. The reference lesion measured 31 x 22 x 21 mm at 4 months. Enhancement of contrast medium was less pronounced. Conclusion: This is the first demonstration of cetuximab crossing the BBB and accumulating in brain metastasis. (orig.)

  6. Noninvasive Blood-Brain Barrier Opening in Live Mice

    Science.gov (United States)

    Choi, James J.; Pernot, Mathieu; Small, Scott; Konofagou, Elisa E.

    2006-05-01

    Most therapeutic agents cannot be delivered to the brain because of brain's natural defense: the Blood-Brain Barrier (BBB). It has recently been shown that Focused Ultrasound (FUS) can produce reversible and localized BBB opening in the brain when applied in the presence of ultrasound contrast agents post-craniotomy in rabbits [1]. However, a major limitation of ultrasound in the brain is the strong phase aberration and attenuation of the skull bone, and, as a result, no study of trans-cranial ultrasound-targeted drug treatment in the brain in vivo has been reported as of yet. In this study, the feasibility of BBB opening in the hippocampus of wildtype mice using FUS through the intact skull and skin was investigated. In order to investigate the effect of the skull, simulations of ultrasound wave propagation (1.5 MHz) through the skull using μCT data, and needle hydrophone measurements through an ex-vivo skull were made. The pressure field showed minimal attenuation (18% of the pressure amplitude) and a well-focused pattern through the left and right halves of the parietal bone. In experiments in vivo, the brains of four mice were sonicated through intact skull and skin. Ultrasound sonications (burst length: 20 ms; duty cycle: 20%; acoustic pressure range: 2.0 to 2.7 MPa) was applied 5 times for 30 s per shot with a 30 s delay between shots. Prior to sonication, ultrasound contrast agents (Optison; 10 μL) were injected intravenously. Contrast material enhanced high resolution MR Imaging (9.4 Tesla) was able to distinguish opening of large vessels in the region of the hippocampus. These results demonstrate the feasibility of locally opening the BBB in the mouse hippocampus using focused ultrasound through intact skull and skin. Future investigations will deal with optimization and reproducibility of the technique as well as application on Alzheimer's-model mice.

  7. Does Aerobic Exercise Influence Intrinsic Brain Activity?

    DEFF Research Database (Denmark)

    Flodin, Pär; Jonasson, Lars S; Riklund, Katrin

    2017-01-01

    exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling......Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64-78 years) were randomized into either an aerobic...... group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings...

  8. N-alkylamides: from plant to brain

    Directory of Open Access Journals (Sweden)

    Lieselotte Veryser

    2014-06-01

    Full Text Available Background: Plant N-alkylamides (NAAs are bio-active compounds with a broad functional spectrum. In order to reach their pharmacodynamic targets, they have to overcome several barriers of the body in the absorption phase. The permeability kinetics of spilanthol (a diene NAA and pellitorine (a triene NAA across these barriers (i.e. skin, oral/gut mucosa, bloodbrain barrier were investigated. Methods: The skin and oral mucosa permeability were investigated using human skin and pig mucosa in an ex vivo in vitro Franz diffusion cell set-up. The gut absorption characteristics were examined using the in vitro Caco-2 cell monolayer test system. The initial blood-brain barrier transport kinetics were investigated in an in vivo mice model using multiple time regression and efflux experiments. Quantification of both NAAs was conducted using HPLC-UV and bioanalytical UPLC-MS methods. Results: We demonstrated that spilanthol and pellitorine are able to penetrate the skin after topical administration. It is likely that spilanthol and pellitorine can pass the endothelial gut as they easily pass the Caco-2 cells in the monolayer model. It has been shown that spilanthol also crosses the oral mucosa as well as the blood-brain barrier. Conclusion: It was demonstrated that NAAs pass various physiological barriers i.e. the skin, oral and gut mucosa, and after having reached the systemic circulation, also the blood-brain barrier. As such, NAAs are cosmenutriceuticals which can be active in the brain

  9. The Virtual Brain: a simulator of primate brain network dynamics.

    Science.gov (United States)

    Sanz Leon, Paula; Knock, Stuart A; Woodman, M Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor

    2013-01-01

    We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications.

  10. The Virtual Brain: a simulator of primate brain network dynamics

    Science.gov (United States)

    Sanz Leon, Paula; Knock, Stuart A.; Woodman, M. Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R.; Jirsa, Viktor

    2013-01-01

    We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications. PMID:23781198

  11. N-terminal pro-brain natriuretic peptide and abnormal brain aging: The AGES-Reykjavik Study.

    Science.gov (United States)

    Sabayan, Behnam; van Buchem, Mark A; de Craen, Anton J M; Sigurdsson, Sigurdur; Zhang, Qian; Harris, Tamara B; Gudnason, Vilmundur; Arai, Andrew E; Launer, Lenore J

    2015-09-01

    To investigate the independent association of serum N-terminal fragment of the prohormone natriuretic peptide (NT-proBNP) with structural and functional features of abnormal brain aging in older individuals. In this cross-sectional study based on the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study, we included 4,029 older community-dwelling individuals (born 1907 to 1935) with a measured serum level of NT-proBNP. Outcomes included parenchymal brain volumes estimated from brain MRI, cognitive function measured by tests of memory, processing speed, and executive functioning, and presence of depressive symptoms measured using the Geriatric Depression Scale. In a substudy, cardiac output of 857 participants was assessed using cardiac MRI. In multivariate analyses, adjusted for sociodemographic and cardiovascular factors, higher levels of NT-proBNP were independently associated with lower total (p brain volumes. Likewise, in multivariate analyses, higher levels of NT-proBNP were associated with worse scores in memory (p = 0.005), processing speed (p = 0.001), executive functioning (p brain parenchymal volumes, impaired executive function and processing speed, and higher depressive symptoms were independent of the level of cardiac output. Higher serum levels of NT-proBNP, independent of cardiovascular risk factors and a measure of cardiac function, are linked with alterations in brain structure and function. Roles of natriuretic peptides in the process of brain aging need to be further elucidated. © 2015 American Academy of Neurology.

  12. Computed tomographic brain scanning in the diagnosis of metastatic neoplasms

    International Nuclear Information System (INIS)

    Ringelstein, E.B.; Zeumer, H.; Hacke, W.; Keulers, P.

    1981-01-01

    Clinical investigations and computed brain scanning were done in 305 patients with primary extracerebral malignant tumours. One third of the patients had cerebral metastases. In most patients with brain metastases extracerebral secondary tumours were known already. Silent brain metastases were present in only 0.6% of all investigated tumour patients. All other patients had either objective neurologic-psychiatric defects or at least symptoms (headache, vomiting). Use of cranial computed tomography in all tumour patients as a pure screening method is thus not justified. The indication for the investigation is dependent on the clinical symptomatology. However, not only objective neurologic-psychiatric defects must be taken into account, but also occurrence of new symptoms. (orig.) [de

  13. Brain docosahexaenoic acid uptake and metabolism.

    Science.gov (United States)

    Lacombe, R J Scott; Chouinard-Watkins, Raphaël; Bazinet, Richard P

    2018-02-08

    Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field. Copyright © 2017. Published by Elsevier Ltd.

  14. Keeping brains young with making music.

    Science.gov (United States)

    Rogenmoser, Lars; Kernbach, Julius; Schlaug, Gottfried; Gaser, Christian

    2018-01-01

    Music-making is a widespread leisure and professional activity that has garnered interest over the years due to its effect on brain and cognitive development and its potential as a rehabilitative and restorative therapy of brain dysfunctions. We investigated whether music-making has a potential age-protecting effect on the brain. For this, we studied anatomical magnetic resonance images obtained from three matched groups of subjects who differed in their lifetime dose of music-making activities (i.e., professional musicians, amateur musicians, and non-musicians). For each subject, we calculated a so-called BrainAGE score which corresponds to the discrepancy (in years) between chronological age and the "age of the brain", with negative values reflecting an age-decelerating brain and positive values an age-accelerating brain, respectively. The index of "brain age" was estimated using a machine-learning algorithm that was trained in a large independent sample to identify anatomical correlates of brain-aging. Compared to non-musicians, musicians overall had lower BrainAGE scores, with amateur musicians having the lowest scores suggesting that music-making has an age-decelerating effect on the brain. Unlike the amateur musicians, the professional musicians showed a positive correlation between their BrainAGE scores and years of music-making, possibly indicating that engaging more intensely in just one otherwise enriching activity might not be as beneficial than if the activity is one of several that an amateur musician engages in. Intense music-making activities at a professional level could also lead to stress-related interferences and a less enriched environment than that of amateur musicians, possibly somewhat diminishing the otherwise positive effect of music-making.

  15. Surgical Resection Followed by Whole Brain Radiotherapy Versus Whole Brain Radiotherapy Alone for Single Brain Metastasis

    International Nuclear Information System (INIS)

    Rades, Dirk; Kieckebusch, Susanne; Haatanen, Tiina; Lohynska, Radka; Dunst, Juergen; Schild, Steven E.

    2008-01-01

    Purpose: To compare the outcome of surgical resection followed by whole brain radiotherapy (WBRT) with WBRT alone in patients treated for single brain metastasis. Methods and Materials: The data from 195 patients with single brain metastases were retrospectively evaluated. Of the 195 patients, 99 underwent resection of the metastasis followed by WBRT and 96 underwent WBRT alone. Seven additional potential prognostic factors were investigated: age, gender, Eastern Cooperative Oncology Group performance score, tumor type, interval between initial tumor diagnosis and WBRT, extracranial metastases, and recursive partitioning analysis class. Both treatment groups were well balanced for these factors. Results: On multivariate analysis, improved survival was associated with resection (relative risk [RR], 1.20; 95% confidence interval [CI], 1.11-1.31; p < 0.001), lower recursive partitioning analysis class (RR, 1.58; 95% CI, 1.22-2.06; p < 0.001), age ≤61 years (RR, 1.79; 95% CI, 1.23-2.61; p = 0.002), Eastern Cooperative Oncology Group performance score of 0-1 (RR, 2.47; 95% CI, 1.70-3.59; p < 0.001), and the absence of extracranial metastases (RR, 1.99; 95% CI, 1.41-2.79; p < 0.001). Improved local control was associated with resection (RR, 1.25; 95% CI, 1.11-1.41; p < 0.001) and age ≤61 years (RR, 1.77; 95% CI, 1.09-2.88; p = 0.020). Improved brain control distant from the original site was associated with lower recursive partitioning analysis class (RR, 1.65; 95% CI, 1.03-2.69; p < 0.035), age ≤61 years (RR, 1.81; 95% CI, 1.12-2.96; p = 0.016), and the absence of extracranial metastases (RR, 2.42; 95% CI, 1.52-3.88; p < 0.001). Improved control within the entire brain was associated with surgery (RR, 1.24; 95% CI, 1.12-1.38; p < 0.001) and age ≤61 years (RR, 1.83; 95% CI, 1.21-2.77; p = 0.004). Conclusion: In patients with a single brain metastasis, the addition of resection to WBRT improved survival, local control at the original metastatic site, and control

  16. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury.

    Science.gov (United States)

    Cole, James H; Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-04

    Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the follow

  17. The relationship between brain volumes and intelligence in bipolar disorder.

    Science.gov (United States)

    Vreeker, Annabel; Abramovic, Lucija; Boks, Marco P M; Verkooijen, Sanne; van Bergen, Annet H; Ophoff, Roel A; Kahn, René S; van Haren, Neeltje E M

    2017-12-01

    Bipolar disorder type-I (BD-I) patients show a lower Intelligence Quotient (IQ) and smaller brain volumes as compared with healthy controls. Considering that in healthy individuals lower IQ is related to smaller total brain volume, it is of interest to investigate whether IQ deficits in BD-I patients are related to smaller brain volumes and to what extent smaller brain volumes can explain differences between premorbid IQ estimates and IQ after a diagnosis of BD-I. Magnetic resonance imaging brain scans, IQ and premorbid IQ scores were obtained from 195 BDI patients and 160 controls. We studied the relationship of (global, cortical and subcortical) brain volumes with IQ and IQ change. Additionally, we investigated the relationship between childhood trauma, lithium- and antipsychotic use and IQ. Total brain volume and IQ were positively correlated in the entire sample. This correlation did not differ between patients and controls. Although brain volumes mediated the relationship between BD-I and IQ in part, the direct relationship between the diagnosis and IQ remained significant. Childhood trauma and use of lithium and antipsychotic medication did not affect the relationship between brain volumes and IQ. However, current lithium use was related to lower IQ in patients. Our data suggest a similar relationship between brain volume and IQ in BD-I patients and controls. Smaller brain volumes only partially explain IQ deficits in patients. Therefore, our findings indicate that in addition to brain volumes and lithium use other disease factors play a role in IQ deficits in BD-I patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Main-, minor- and trace elements distribution in human brain

    International Nuclear Information System (INIS)

    Zoeger, N.; Streli, C.; Wobrauschek, P.; Jokubonis, C.; Pepponi, G.; Roschger, P.; Bohic, S.; Osterode, W.

    2004-01-01

    Lead (Pb) is known to induce adverse health effects in humans. In fact, cognitive deficits are repeatedly described with Pb exposure, but little is known about the distribution of lead in brain. Measurements of the distribution of Pb in human brain and to study if Pb is associated with the distribution of other chemical elements such as zinc (Zn), iron (Fe) is of great interest and could reveal some hints about the metabolism of Pb in brain. To determine the local distribution of lead (Pb) and other trace elements x-ray fluorescence spectroscopy (XRF) measurements have been performed, using a microbeam setup and highest flux synchrotron radiation. Experiments have been carried out at ID-22, ESRF, Grenoble, France. The installed microprobe setup provides a monochromatic beam (17 keV) from an undulator station focused by Kirkpatrick-Baez x-ray optics to a spot size of 5 μm x 3μm. Brain slices (20 μm thickness, imbedded in paraffin and mounted on Kapton foils) from areas of the frontal cortex, thalamus and hippocampus have been investigated. Generally no significant increase in fluorescence intensities could be detected in one of the investigated brain compartments. However Pb and other (trace) elements (e.g. S, Ca, Fe, Cu, Zn, Br) could be detected in all samples and showed strong inhomogeneities across the analyzed areas. While S, Ca, Fe, Cu, Zn and Br could be clearly assigned to the investigated brain structures (vessels, etc.) Pb showed a very different behavior. In some cases (e.g. plexus choroidei) Pb was located at the walls of the vessel, whereas with other structures (e.g. blood vessel) this correlation was not found. Moreover, the detected Pb in different brain areas was individually correlated with various elements. The local distribution of the detected elements in various brain structures will be discussed in this work. (author)

  19. Measuring dopamine release in the human brain with PET

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  20. Quality assessment of brain images by Hoffman phantom

    International Nuclear Information System (INIS)

    Karimian, A.R.; Saddad, F.; Mosalla, B.; Moradkhani, S.; Degbankhan, R.; Pouladi, M.

    2002-01-01

    The purpose of this investigation is using Hoffman brain phantom for quality assessment of brian images in SPECT system. There are the following standards for quality control in nuclear medicine: American Association of Physicists in Medicine, National Electrical Manufacturers Association, International Electromechanical Commission, International Atomic Energy Agency. Each of the above standards has the following important orders: Physical inspection, Acceptance and Reference Testing, Periodic Q C tests (Daily, Weekly, Monthly, Quarterly, Annually). The above tests are simple physics measures. To more meaningful ones based on performance of some tasks related to clinical application it is better to use from organs' phantoms, such as: brain, cardiac, etc. In this research we made a comparison between normal and abnormal states of Hoffman brain phantom. Methods of Hoffman brain phantom was filled with a solution of Tc- 99 m (5 mCi) and water (1300 cc). this results: The investigation of small abnormalities strongly related to the operating conditions and deviation from best tuning state of the system

  1. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  2. Endothelial cell marker PAL-E reactivity in brain tumor, developing brain, and brain disease

    NARCIS (Netherlands)

    Leenstra, S.; Troost, D.; Das, P. K.; Claessen, N.; Becker, A. E.; Bosch, D. A.

    1993-01-01

    The endothelial cell marker PAL-E is not reactive to vessels in the normal brain. The present study concerns the PAL-E reactivity in brain tumors in contrast to normal brain and nonneoplastic brain disease. A total of 122 specimens were examined: brain tumors (n = 94), nonneoplastic brain disease (n

  3. Light-sensitive brain pathways and aging.

    Science.gov (United States)

    Daneault, V; Dumont, M; Massé, É; Vandewalle, G; Carrier, J

    2016-03-15

    Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle, alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue wavelengths (460-480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results demonstrate that aging research should take into account the diversity of the pathways underlying the effects of light on specific NIF functions which may explain their differences in light sensitivity.

  4. Study of brain atrophy using X-ray computed tomography

    International Nuclear Information System (INIS)

    Kawabata, Masayoshi

    1987-01-01

    Cerebrospinal fluid space-cranial cavity ratio (CCR) of 811 subjects with no brain damage were investigated using X-ray computed tomography. Brain volume of healthy adults aged 20 - 59 years was almost constant and decreased gradually after 60 years. CCR of men aged 20 - 49 years kept constant value and increased with aging after 50 years. CCR of women aged 20 - 59 years kept equal value and CCR increased with aging after 60 years. Brain atrophy with aging was investigated in this study also. In retrospective study, CCR of patients in any age diagnosed brain atrophy in daily CT reports were beyond the normal range of CCR of healthy subjects aged 20 - 49 years. In 48 patients with Parkinson's disease, almost of CCR of them were included within normal range of CCR in age-matched control. (author)

  5. Revisiting Einstein's brain in Brain Awareness Week.

    Science.gov (United States)

    Chen, Hao; Chen, Su; Zeng, Lidan; Zhou, Lin; Hou, Shengtao

    2014-10-01

    Albert Einstein's brain has long been an object of fascination to both neuroscience specialists and the general public. However, without records of advanced neuro-imaging of his brain, conclusions regarding Einstein's extraordinary cognitive capabilities can only be drawn based on the unique external features of his brain and through comparison of the external features with those of other human brain samples. The recent discovery of 14 previously unpublished photographs of Einstein's brain taken at unconventional angles by Dr. Thomas Stoltz Harvey, the pathologist, ignited a renewed frenzy about clues to explain Einstein's genius. Dr. Dean Falk and her colleagues, in their landmark paper published in Brain (2013; 136:1304-1327), described in such details about the unusual features of Einstein's brain, which shed new light on Einstein's intelligence. In this article, we ask what are the unique structures of his brain? What can we learn from this new information? Can we really explain his extraordinary cognitive capabilities based on these unique brain structures? We conclude that studying the brain of a remarkable person like Albert Einstein indeed provides us a better example to comprehensively appreciate the relationship between brain structures and advanced cognitive functions. However, caution must be exercised so as not to over-interpret his intelligence solely based on the understanding of the surface structures of his brain.

  6. Linking neuronal brain activity to the glucose metabolism

    OpenAIRE

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-01-01

    Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regul...

  7. Brain MR imaging in dietarily treated phenylketonuria

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, L. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Smet, M.H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Johannik, K. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Hecke, P. van [Dept. of Radiology, University Hospitals, Leuven (Belgium); Francois, B. [L. Willems Inst., Diepenbeek (Belgium); Wilms, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Bosmans, H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Marchal, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Jaeken, J. [Dept. of Pediatrics, University Hospitals, Leuven (Belgium); Demaerel, P. [Dept. of Radiology, University Hospitals, Leuven (Belgium)

    1994-08-01

    Magnetic resonance imaging is the most efficient imaging modality to evaluate brain gray and white matter of patients with metabolic diseases. The main purpose of our study was to investigate the relation between brain MRI abnormalities and the phenylalanine (phe) and tyrosine (tyr) blood levels in 38 phenylketonuria (PKU) patients. Increased periventricular white matter intensity on T2-weighted brain images was the only pathologic finding in 24 patients. Brain MRI abnormalities were scored (4) and correlated with the individual mean phe and phe/tyr levels during 1 year preceding MR examination and with phe tolerance. The residual activity of phenylalanine hydroxylase was defined for each patient by an oral phe tolerance. The appearance of MRI abnormalities on brain T2-weighted images correlates with a threshold mean phe level (averaged over the year preceding the examination). (orig.)

  8. Brain MR imaging in dietarily treated phenylketonuria

    International Nuclear Information System (INIS)

    Breysem, L.; Smet, M.H.; Johannik, K.; Hecke, P. van; Francois, B.; Wilms, G.; Bosmans, H.; Marchal, G.; Jaeken, J.; Demaerel, P.

    1994-01-01

    Magnetic resonance imaging is the most efficient imaging modality to evaluate brain gray and white matter of patients with metabolic diseases. The main purpose of our study was to investigate the relation between brain MRI abnormalities and the phenylalanine (phe) and tyrosine (tyr) blood levels in 38 phenylketonuria (PKU) patients. Increased periventricular white matter intensity on T2-weighted brain images was the only pathologic finding in 24 patients. Brain MRI abnormalities were scored (4) and correlated with the individual mean phe and phe/tyr levels during 1 year preceding MR examination and with phe tolerance. The residual activity of phenylalanine hydroxylase was defined for each patient by an oral phe tolerance. The appearance of MRI abnormalities on brain T2-weighted images correlates with a threshold mean phe level (averaged over the year preceding the examination). (orig.)

  9. Hyper-attenuating brain lesions on CT after ischemic stroke and thrombectomy are associated with final brain infarction.

    Science.gov (United States)

    Cabral, F B; Castro-Afonso, L H; Nakiri, G S; Monsignore, L M; Fábio, Src; Dos Santos, A C; Pontes-Neto, O M; Abud, D G

    2017-12-01

    Purpose Hyper-attenuating lesions, or contrast staining, on a non-contrast brain computed tomography (NCCT) scan have been investigated as a predictor for hemorrhagic transformation after endovascular treatment of acute ischemic stroke (AIS). However, the association of hyper-attenuating lesions and final ischemic areas are poorly investigated in this setting. The aim of the present study was to assess correlations between hyper-attenuating lesions and final brain infarcted areas after thrombectomy for AIS. Methods Data from patients with AIS of the anterior circulation who underwent endovascular treatment were retrospectively assessed. Images of the brain NCCT scans were analyzed in the first hours and late after treatment. The hyper-attenuating areas were compared to the final ischemic areas using the Alberta Stroke Program Early CT Score (ASPECTS). Results Seventy-one of the 123 patients (65.13%) treated were included. The association between the hyper-attenuating region in the post-thrombectomy CT scan and final brain ischemic area were sensitivity (58.3% to 96.9%), specificity (42.9% to 95.6%), positive predictive values (71.4% to 97.7%), negative predictive values (53.8% to 79.5%), and accuracy values (68% to 91%). The highest sensitivity values were found for the lentiform (96.9%) and caudate nuclei (80.4%) and for the internal capsule (87.5%), and the lowest values were found for the M1 (58.3%) and M6 (66.7%) cortices. Conclusions Hyper-attenuating lesions on head NCCT scans performed after endovascular treatment of AIS may predict final brain infarcted areas. The prediction appears to be higher in the deep brain regions compared with the cortical regions.

  10. Use of antimatter for the in vivo investigation of the brain: positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Syrota, A. [CEA, 75 - Paris (France)

    2002-07-01

    This series of slides presents 3 imaging methods used in medicine: - the single photon emission computed tomography (SPECT), the positron emission tomography (PET), and the functional magnetic resonance imaging (FMRI). The presentation begins with a brief historical description that highlights the narrow link between progress in imaging techniques and the technological development in radiation detection and computer sciences. Another aspect is the parallel and necessary development of isotopic tracers along with imaging techniques. The clinical applications of PET and FMRI concerning either normal brain functions such as calculus or consciousness or diseases affecting the central nervous system such as Parkinson's disease or schizophrenia (trough the study of the pathways of dopamine in the brain) are presented.

  11. Noninvasive Transcranial Brain Stimulation and Pain

    OpenAIRE

    Rosen, Allyson C.; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the tre...

  12. Brain drain of China and India

    OpenAIRE

    Li, Yuan

    2012-01-01

    Abstract Under the background of globalization, brain drain is a common phenomenon in many countries. Talents flow from developing countries to developed countries, and this phenomenon unavoidably exerts various and profound influences to both the source countries and the receiving countries. This thesis deals with the phenomenon of brain drain with the aim to investigate the phenomenon further and carry out two case studies of China and India. The research method is main...

  13. Left Brain. Right Brain. Whole Brain

    Science.gov (United States)

    Farmer, Lesley S. J.

    2004-01-01

    As the United States student population is becoming more diverse, library media specialists need to find ways to address these distinctive needs. However, some of these differences transcend culture, touching on variations in the brain itself. Most people have a dominant side of the brain, which can affect their personality and learning style.…

  14. Computer tomography in management and prognosis of patients with severe brain injury

    NARCIS (Netherlands)

    K.J. van Dongen

    1982-01-01

    textabstractThe purpose of this study is to investigate the influence of computer tomography on the management and prognosis of patients with severe traumatic brain damage. To this end a consecutive series of patients with severe brain damage was investigated by means of serial

  15. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy

    Science.gov (United States)

    Wirth, Dennis; Smith, Thomas W.; Moser, Richard; Yaroslavsky, Anna N.

    2015-04-01

    Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml-1 aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors.

  16. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy

    International Nuclear Information System (INIS)

    Wirth, Dennis; Yaroslavsky, Anna N; Smith, Thomas W; Moser, Richard

    2015-01-01

    Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml −1 aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors. (paper)

  17. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Ni Shu

    2015-01-01

    Full Text Available The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.

  18. Organisation and functional role of the brain angiotensin system

    OpenAIRE

    Catherine Llorens-Cortes; Frederic AO Mendelsohn

    2002-01-01

    The discovery that all components of the renin-angiotensin system (RAS) are present in the brain led investigators to postulate the existence of a local brain RAS. Supporting this, angiotensin immunoreactive neurones have been visualised in the brain. Two major pathways were described: a forebrain pathway which connects circumventricular organs to the median preoptic nucleus, paraventricular and supraoptic nuclei, and a second pathway connecting the hypothalamus to the medulla oblongata. Bloo...

  19. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma.

    Science.gov (United States)

    Johnsen, Kasper Bendix; Burkhart, Annette; Melander, Fredrik; Kempen, Paul Joseph; Vejlebo, Jonas Bruun; Siupka, Piotr; Nielsen, Morten Schallburg; Andresen, Thomas Lars; Moos, Torben

    2017-09-04

    Drug delivery to the brain is hampered by the presence of the blood-brain barrier, which excludes most molecules from freely diffusing into the brain, and tightly regulates the active transport mechanisms that ensure sufficient delivery of nutrients to the brain parenchyma. Harnessing the possibility of delivering neuroactive drugs by way of receptors already present on the brain endothelium has been of interest for many years. The transferrin receptor is of special interest since its expression is limited to the endothelium of the brain as opposed to peripheral endothelium. Here, we investigate the possibility of delivering immunoliposomes and their encapsulated cargo to the brain via targeting of the transferrin receptor. We find that transferrin receptor-targeting increases the association between the immunoliposomes and primary endothelial cells in vitro, but that this does not correlate with increased cargo transcytosis. Furthermore, we show that the transferrin receptor-targeted immunoliposomes accumulate along the microvessels of the brains of rats, but find no evidence for transcytosis of the immunoliposome. Conversely, the increased accumulation correlated both with increased cargo uptake in the brain endothelium and subsequent cargo transport into the brain. These findings suggest that transferrin receptor-targeting is a relevant strategy of increasing drug exposure to the brain.

  20. Volatile anesthetics influence blood-brain barrier integrity by modulation of tight junction protein expression in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Serge C Thal

    Full Text Available Disruption of the blood-brain barrier (BBB results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI. As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ such as zonula occludens-1 (ZO-1 and claudin-5 (cl5 play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER in murine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression of ZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled cortical impact (CCI. In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours after exposure. In BBB co-cultures mimicking the neurovascular unit (NVU volatile anesthetics had no impact on TEER. In healthy mice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water content increased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expression was significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analyses revealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The study demonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed to modulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence the barrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Future research is required to investigate

  1. Effects of cannabis on the adolescent brain.

    Science.gov (United States)

    Jacobus, Joanna; Tapert, Susan F

    2014-01-01

    This article reviews neuroimaging, neurocognitive, and preclinical findings on the effects of cannabis on the adolescent brain. Marijuana is the second most widely used intoxicant in adolescence, and teens who engage in heavy marijuana use often show disadvantages in neurocognitive performance, macrostructural and microstructural brain development, and alterations in brain functioning. It remains unclear whether such disadvantages reflect pre-existing differences that lead to increased substances use and further changes in brain architecture and behavioral outcomes. Future work should focus on prospective investigations to help disentangle dose-dependent effects from pre-existing effects, and to better understand the interactive relationships with other commonly abused substances (e.g., alcohol) to better understand the role of regular cannabis use on neurodevelopmental trajectories.

  2. Effects of Cannabis on the Adolescent Brain

    Science.gov (United States)

    Jacobus, Joanna; Tapert, Susan F.

    2014-01-01

    This article reviews neuroimaging, neurocognitive, and preclinical findings on the effects of cannabis on the adolescent brain. Marijuana is the second most widely used intoxicant in adolescence, and teens who engage in heavy marijuana use often show disadvantages in neurocognitive performance, macrostructural and microstructural brain development, and alterations in brain functioning. It remains unclear whether such disadvantages reflect pre-existing differences that lead to increased substances use and further changes in brain architecture and behavioral outcomes. Future work should focus on prospective investigations to help disentangle dose-dependent effects from pre-existing effects, and to better understand the interactive relationships with other commonly abused substances (e.g., alcohol) to better understand the role of regular cannabis use on neurodevelopmental trajectories. PMID:23829363

  3. TRAUMATIC BRAIN INJURY CHILDREN: A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Denismar Borges de Miranda

    2013-09-01

    Full Text Available Objective: to know the scientific literature on head injury in children. Method: this study is an integrative review of published articles in the database SciELO the period 2000-2010. Results: 10 articles were analyzed, from which emerged four categories: causes of traumatic brain child infant prognosis of traumatic brain child, treating children victims of child head injury and complications of therapy used for child victims of traumatic brain injury in children. Conclusions: there is consensus among the authors investigated the factors associated with better prognosis of traumatic brain child, remain vague and uncertain. They add that the success of this customer service related to the control of complications arising from cerebral trauma and mostly are treatable and / or preventable.

  4. Functional brain imaging study on brain processes involved in visual awareness

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuo; Futakawa, Hiroyuki; Tokita, Shohko; Jung, Jiuk

    2003-01-01

    Recently, there has been great interest in visual awareness because it is thought that it may provide valuable information in understanding aspects of consciousness. An important but still controversial issue is what region in the brain is involved in visual awareness. When viewing ambiguous figures, observers can be aware of only one of multiple competing percepts at any given moment, but experience spontaneous alternations among the percepts over time. This phenomenon is known as multistable perceptions and thought to be essential in understanding the brain processes involved in visual awareness. We used functional magnetic resonance imaging to investigate the brain activities associated with multistable perceptions. Two separate experiments were performed based on two different multistable phenomena known as binocular rivalry and perceptions of ambiguous figures. Significant differential activations in the parietal and prefrontal areas were commonly observed under multistable conditions compared to monostable control conditions in the two separate experiments. These findings suggest that neural processes in the parietal and prefrontal areas may be involved in perceptual alternations in situations involving multistable phenomena. (author)

  5. Investigation of the Safety of Focused Ultrasound-Induced Blood-Brain Barrier Opening in a Natural Canine Model of Aging.

    Science.gov (United States)

    O'Reilly, Meaghan Anne; Jones, Ryan Matthew; Barrett, Edward; Schwab, Anthony; Head, Elizabeth; Hynynen, Kullervo

    2017-01-01

    Rationale: Ultrasound-mediated opening of the Blood-Brain Barrier(BBB) has shown exciting potential for the treatment of Alzheimer's disease(AD). Studies in transgenic mouse models have shown that this approach can reduce plaque pathology and improve spatial memory. Before clinical translation can occur the safety of the method needs to be tested in a larger brain that allows lower frequencies be used to treat larger tissue volumes, simulating clinical situations. Here we investigate the safety of opening the BBB in half of the brain in a large aged animal model with naturally occurring amyloid deposits. Methods: Aged dogs naturally accumulate plaques and show associated cognitive declines. Low-frequency ultrasound was used to open the BBB unilaterally in aged beagles (9-11yrs, n=10) in accordance with institutionally approved protocols. Animals received either a single treatment or four weekly treatments. Magnetic resonance imaging(MRI) was used to guide the treatments and assess the tissue effects. The animals underwent neurological testing during treatment follow-up, and a follow-up MRI exam 1 week following the final treatment. Results: The permeability of the BBB was successfully increased in all animals (mean enhancement: 19±11% relative to untreated hemisphere). There was a single adverse event in the chronic treatment group that resolved within 24 hrs. Follow-up MRI showed the BBB to be intact with no evidence of tissue damage in all animals. Histological analysis showed comparable levels of microhemorrhage between the treated and control hemispheres in the prefrontal cortex (single/repeat treatment: 1.0±1.4 vs 0.4±0.5/5.2±1.8 vs. 4.0±2.0). No significant differences were observed in beta-amyloid load (single/repeat: p=0.31/p=0.98) although 3/5 animals in each group showed lower Aβ loads in the treated hemisphere. Conclusion: Whole-hemisphere opening of the BBB was well tolerated in the aged large animal brain. The treatment volumes and frequencies

  6. Crossing the Blood-Brain Barrier: Recent Advances in Drug Delivery to the Brain.

    Science.gov (United States)

    Patel, Mayur M; Patel, Bhoomika M

    2017-02-01

    CNS disorders are on the rise despite advancements in our understanding of their pathophysiological mechanisms. A major hurdle to the treatment of these disorders is the blood-brain barrier (BBB), which serves as an arduous janitor to protect the brain. Many drugs are being discovered for CNS disorders, which, however fail to enter the market because of their inability to cross the BBB. This is a pronounced challenge for the pharmaceutical fraternity. Hence, in addition to the discovery of novel entities and drug candidates, scientists are also developing new formulations of existing drugs for brain targeting. Several approaches have been investigated to allow therapeutics to cross the BBB. As the molecular structure of the BBB is better elucidated, several key approaches for brain targeting include physiological transport mechanisms such as adsorptive-mediated transcytosis, inhibition of active efflux pumps, receptor-mediated transport, cell-mediated endocytosis, and the use of peptide vectors. Drug-delivery approaches comprise delivery from microspheres, biodegradable wafers, and colloidal drug-carrier systems (e.g., liposomes, nanoparticles, nanogels, dendrimers, micelles, nanoemulsions, polymersomes, exosomes, and quantum dots). The current review discusses the latest advancements in these approaches, with a major focus on articles published in 2015 and 2016. In addition, we also cover the alternative delivery routes, such as intranasal and convection-enhanced diffusion methods, and disruption of the BBB for brain targeting.

  7. Intact blood-brain barrier during spontaneous attacks of migraine without aura

    DEFF Research Database (Denmark)

    Amin, F M; Hougaard, A; Cramer, S P

    2017-01-01

    BACKGROUND AND PURPOSE: The integrity of the blood-brain barrier (BBB) has been questioned in migraine, but BBB permeability has never been investigated during spontaneous migraine attacks. In the present study, BBB permeability during spontaneous attacks of migraine without aura was investigated......, brain stem, posterior pons and whole brain. The paired samples t test was used to compare Ki (permeability) values between the attack and headache-free days. RESULTS: Nineteen patients completed the study. Median time from onset of migraine attack to scan was 6.5 h (range 4.0-15.5 h). No change...

  8. Insulin action in the human brain: evidence from neuroimaging studies.

    Science.gov (United States)

    Kullmann, S; Heni, M; Fritsche, A; Preissl, H

    2015-06-01

    Thus far, little is known about the action of insulin in the human brain. Nonetheless, recent advances in modern neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG), have made it possible to investigate the action of insulin in the brain in humans, providing new insights into the pathogenesis of brain insulin resistance and obesity. Using MEG, the clinical relevance of the action of insulin in the brain was first identified, linking cerebral insulin resistance with peripheral insulin resistance, genetic predisposition and weight loss success in obese adults. Although MEG is a suitable tool for measuring brain activity mainly in cortical areas, fMRI provides high spatial resolution for cortical as well as subcortical regions. Thus, the action of insulin can be detected within all eating behaviour relevant regions, which include regions deeply located within the brain, such as the hypothalamus, midbrain and brainstem, as well as regions within the striatum. In this review, we outline recent advances in the field of neuroimaging aiming to investigate the action of insulin in the human brain using different routes of insulin administration. fMRI studies have shown a significant insulin-induced attenuation predominantly in the occipital and prefrontal cortical regions and the hypothalamus, successfully localising insulin-sensitive brain regions in healthy, mostly normal-weight individuals. However, further studies are needed to localise brain areas affected by insulin resistance in obese individuals, which is an important prerequisite for selectively targeting brain insulin resistance in obesity. © 2015 British Society for Neuroendocrinology.

  9. Neurophotonics: optical methods to study and control the brain

    International Nuclear Information System (INIS)

    Doronina-Amitonova, L V; Fedotov, I V; Fedotov, A B; Zheltikov, A M; Anokhin, K V

    2015-01-01

    Methods of optical physics offer unique opportunities for the investigation of brain and higher nervous activity. The integration of cutting-edge laser technologies and advanced neurobiology opens a new cross-disciplinary area of natural sciences – neurophotonics – focusing on the development of a vast arsenal of tools for functional brain diagnostics, stimulation of individual neurons and neural networks, and the molecular engineering of brain cells aimed at the diagnosis and therapy of neurodegenerative and psychic diseases. Optical fibers help to confront the most challenging problems in brain research, including the analysis of molecular-cellular mechanisms of the formation of memory and behavior. New generation optical fibers provide new solutions for the development of fundamentally new, unique tools for neurophotonics and laser neuroengineering – fiber-optic neuroendoscopes and neurointerfaces. These instruments broaden research horizons when investigating the most complex brain functions, enabling a long-term multiplex detection of fluorescent protein markers, as well as photostimulation of neuronal activity in deep brain areas in living, freely moving animals with an unprecedented spatial resolution and minimal invasiveness. This emerging technology opens new horizons for understanding learning and long-term memory through experiments with living, freely moving mammals. Here, we present a brief review of this rapidly growing field of research. (reviews of topical problems)

  10. Neurophotonics: optical methods to study and control the brain

    Science.gov (United States)

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2015-04-01

    Methods of optical physics offer unique opportunities for the investigation of brain and higher nervous activity. The integration of cutting-edge laser technologies and advanced neurobiology opens a new cross-disciplinary area of natural sciences - neurophotonics - focusing on the development of a vast arsenal of tools for functional brain diagnostics, stimulation of individual neurons and neural networks, and the molecular engineering of brain cells aimed at the diagnosis and therapy of neurodegenerative and psychic diseases. Optical fibers help to confront the most challenging problems in brain research, including the analysis of molecular-cellular mechanisms of the formation of memory and behavior. New generation optical fibers provide new solutions for the development of fundamentally new, unique tools for neurophotonics and laser neuroengineering - fiber-optic neuroendoscopes and neurointerfaces. These instruments broaden research horizons when investigating the most complex brain functions, enabling a long-term multiplex detection of fluorescent protein markers, as well as photostimulation of neuronal activity in deep brain areas in living, freely moving animals with an unprecedented spatial resolution and minimal invasiveness. This emerging technology opens new horizons for understanding learning and long-term memory through experiments with living, freely moving mammals. Here, we present a brief review of this rapidly growing field of research.

  11. Association of IQ Changes and Progressive Brain Changes in Patients With Schizophrenia

    NARCIS (Netherlands)

    Kubota, Manabu; van Haren, Neeltje E. M.; Haijma, Sander V.; Schnack, Hugo G.; Cahn, Wiepke; Pol, Hilleke E. Hulshoff; Kahn, Rene S.

    IMPORTANCE Although schizophrenia is characterized by impairments in intelligence and the loss of brain volume, the relationship between changes in IQ and brain measures is not clear. OBJECTIVE To investigate the association between IQ and brain measures in patients with schizophrenia across time.

  12. Maternal hypertension during pregnancy modifies the response of the immature brain to hypoxia-ischemia: Sequential MRI and behavioral investigations

    International Nuclear Information System (INIS)

    Letourneur, Annelise; Roussel, Simon; Divoux, Didier; Toutain, Jerome; Bernaudin, Myriam; Touzani, Omar; Freret, Thomas; Boulouard, Michel; Schumann-Bard, Pascale; Bouet, Valentine

    2012-01-01

    Hypoxic-ischemic (HI) brain injury occurring during the perinatal period is still a major cause of mortality and morbidity. We assessed the impact of maternal hypertension, the most common medical disorder of pregnancy, on the anatomical and functional consequences of HI insult in the immature brain. Rat pups from spontaneously hypertensive (SHR) and normotensive (Wistar Kyoto - WKY) dams were subjected to HI brain damage at postnatal day 7 (P7). Brain lesion and functional deficits were analyzed from 10 min to 35 days after HI, using magnetic resonance imaging (MRI), sensorimotor and cognitive tests. MRI data revealed that SHR pups displayed less brain damage than WKY, attested by an initial smaller lesion followed by a reduced tissue loss at chronic stage (57.1±21.6 and 31.1±27% ipsilateral hemisphere atrophy in WKY and SHR, respectively). Behavioral analyses showed less HI-induced behavioral deficits in motor coordination (rotarod test) and spatial learning (Morris watermaze test) in pups from hypertensive dams compared to those from normotensive ones. The data suggest that maternal hypertension causes prenatal stress that may render the immature brain more resistant to subsequent hypoxia-ischemia, related to a preconditioning phenomenon. (authors)

  13. Association of brain cancer with dental x-rays and occupation in Missouri

    International Nuclear Information System (INIS)

    Neuberger, J.S.; Brownson, R.C.; Morantz, R.A.; Chin, T.D.

    1991-01-01

    This investigation of a brain cancer cluster in Missouri used two approaches to investigate associations with potential risk factors. In a case-control study in a rural town, we interviewed surrogates of cases and controls about potential risk factors. We found a statistically significant positive association of brain cancer with reported exposure to dental x-rays. Occupation was not associated with the cluster in the rural town. In a standardized proportional mortality study for the state of Missouri, we calculated the observed and expected proportion of brain cancers by occupation and industry in Missouri decedents. We found that motor vehicle manufacturers, beauty shop workers, managers and administrators, elementary school teachers, and hairdressers and cosmetologists had significantly elevated proportions of brain cancer. Brain tumors are inconsistently associated with occupation in the literature. Further study of brain cancer etiology with respect to dental x-ray exposures seems warranted

  14. Peptidomic analysis of the neurolysin-knockout mouse brain.

    Science.gov (United States)

    Castro, Leandro M; Cavalcanti, Diogo M L P; Araujo, Christiane B; Rioli, Vanessa; Icimoto, Marcelo Y; Gozzo, Fábio C; Juliano, Maria; Juliano, Luiz; Oliveira, Vitor; Ferro, Emer S

    2014-12-05

    A large number of intracellular peptides are constantly produced following protein degradation by the proteasome. A few of these peptides function in cell signaling and regulate protein-protein interactions. Neurolysin (Nln) is a structurally defined and biochemically well-characterized endooligopeptidase, and its subcellular distribution and biological activity in the vertebrate brain have been previously investigated. However, the contribution of Nln to peptide metabolism in vivo is poorly understood. In this study, we used quantitative mass spectrometry to investigate the brain peptidome of Nln-knockout mice. An additional in vitro digestion assay with recombinant Nln was also performed to confirm the identification of the substrates and/or products of Nln. Altogether, the data presented suggest that Nln is a key enzyme in the in vivo degradation of only a few peptides derived from proenkephalin, such as Met-enkephalin and octapeptide. Nln was found to have only a minor contribution to the intracellular peptide metabolism in the entire mouse brain. However, further studies appear necessary to investigate the contribution of Nln to the peptide metabolism in specific areas of the murine brain. Neurolysin was first identified in the synaptic membranes of the rat brain in the middle 80's by Frederic Checler and colleagues. Neurolysin was well characterized biochemically, and its brain distribution has been confirmed by immunohistochemical methods. The neurolysin contribution to the central and peripheral neurotensin-mediated functions in vivo has been delineated through inhibitor-based pharmacological approaches, but its genuine contribution to the physiological inactivation of neuropeptides remains to be firmly established. As a result, the main significance of this work is the first characterization of the brain peptidome of the neurolysin-knockout mouse. This article is part of a Special Issue entitled: Proteomics, mass spectrometry and peptidomics, Cancun 2013

  15. High brain serotonin levels in migraine between attacks

    DEFF Research Database (Denmark)

    Deen, Marie; Hansen, Hanne D; Hougaard, Anders

    2018-01-01

    Migraine has been hypothesized to be a syndrome of chronic low serotonin (5-HT) levels, but investigations of brain 5-HT levels have given equivocal results. Here, we used positron emission tomography (PET) imaging of the 5-HT4receptor as a proxy for brain 5-HT levels. Given that the 5-HT4receptor...

  16. Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent?

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Coe, Christopher L; Lubach, Gabriele R; Styner, Martin A; Johnson, G Allan

    2014-11-01

    Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis, we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results. Copyright © 2014 Wiley Periodicals, Inc.

  17. The Virtual Brain: a simulator of primate brain network dynamics

    Directory of Open Access Journals (Sweden)

    Paula eSanz Leon

    2013-06-01

    Full Text Available We present TheVirtualBrain (TVB, a neuroinformatics platform for full brainnetwork simulations using biologically realistic connectivity. This simulationenvironment enables the model-based inference of neurophysiological mechanismsacross different brain scales that underlie the generation of macroscopicneuroimaging signals including functional MRI (fMRI, EEG and MEG. Researchersfrom different backgrounds can benefit from an integrative software platformincluding a supporting framework for data management (generation,organization, storage, integration and sharing and a simulation core writtenin Python. TVB allows the reproduction and evaluation of personalizedconfigurations of the brain by using individual subject data. Thispersonalization facilitates an exploration of the consequences of pathologicalchanges in the system, permitting to investigate potential ways to counteractsuch unfavorable processes. The architecture of TVB supports interaction withMATLAB packages, for example, the well known Brain Connectivity Toolbox. TVBcan be used in a client-server configuration, such that it can be remotelyaccessed through the Internet thanks to its web-basedHTML5, JS and WebGL graphical user interface. TVB is alsoaccessible as a standalone cross-platform Python library and application, andusers can interact with the scientific core through the scripting interfaceIDLE, enabling easy modeling, development and debugging of the scientifickernel. This second interface makes TVB extensible by combining it with otherlibraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to thedevelopment of TVB, the architecture and features of its major softwarecomponents as well as potential neuroscience applications.

  18. Genetic influences on schizophrenia and subcortical brain volumes

    DEFF Research Database (Denmark)

    Franke, Barbara; Stein, Jason L; Ripke, Stephan

    2016-01-01

    and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between...... genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk...

  19. Neuromagnetic index of hemispheric asymmetry prognosticating the outcome of sudden hearing loss.

    Directory of Open Access Journals (Sweden)

    Lieber Po-Hung Li

    Full Text Available The longitudinal relationship between central plastic changes and clinical presentations of peripheral hearing impairment remains unknown. Previously, we reported a unique plastic pattern of "healthy-side dominance" in acute unilateral idiopathic sudden sensorineural hearing loss (ISSNHL. This study aimed to explore whether such hemispheric asymmetry bears any prognostic relevance to ISSNHL along the disease course. Using magnetoencephalography (MEG, inter-hemispheric differences in peak dipole amplitude and latency of N100m to monaural tones were evaluated in 21 controls and 21 ISSNHL patients at two stages: initial and fixed stage (1 month later. Dynamics/Prognostication of hemispheric asymmetry were assessed by the interplay between hearing level/hearing gain and ipsilateral/contralateral ratio (I/C of N100m latency and amplitude. Healthy-side dominance of N100m amplitude was observed in ISSNHL initially. The pattern changed with disease process. There is a strong correlation between the hearing level at the fixed stage and initial I/C(amplitude on affected-ear stimulation in ISSNHL. The optimal cut-off value with the best prognostication effect for the hearing improvement at the fixed stage was an initial I/C(latency on affected-ear stimulation of 1.34 (between subgroups of complete and partial recovery and an initial I/C(latency on healthy-ear stimulation of 0.76 (between subgroups of partial and no recovery, respectively. This study suggested that a dynamic process of central auditory plasticity can be induced by peripheral lesions. The hemispheric asymmetry at the initial stage bears an excellent prognostic potential for the treatment outcomes and hearing level at the fixed stage in ISSNHL. Our study demonstrated that such brain signature of central auditory plasticity in terms of both N100m latency and amplitude at defined time can serve as a prognostication predictor for ISSNHL. Further studies are needed to explore the long

  20. Ex vivo MR volumetry of human brain hemispheres.

    Science.gov (United States)

    Kotrotsou, Aikaterini; Bennett, David A; Schneider, Julie A; Dawe, Robert J; Golak, Tom; Leurgans, Sue E; Yu, Lei; Arfanakis, Konstantinos

    2014-01-01

    The aims of this work were to (a) develop an approach for ex vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, (b) longitudinally assess regional brain volumes postmortem, and (c) investigate the relationship between MR volumetric measurements performed in vivo and ex vivo. An approach for ex vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex vivo was assessed. The relationship between in vivo and ex vivo volumetric measurements was investigated in seven elderly subjects imaged both antemortem and postmortem. This approach for ex vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than intersubject volume variation. A close linear correspondence was detected between in vivo and ex vivo volumetric measurements. Regional brain volumes measured with this approach for ex vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in vivo and ex vivo MR volumetric measurements suggests that this approach captures information linked to antemortem macrostructural brain characteristics. Copyright © 2013 Wiley Periodicals, Inc.

  1. The Efficiency of a Small-World Functional Brain Network

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing-Bai; ZHANG Xiao-Fei; SUI Dan-Ni; ZHOU Zhi-Jin; CHEN Qi-Cai; TANG Yi-Yuan

    2012-01-01

    We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task.Functional brain networks are constructed by multichannel eventrelated potential data,in which the electrodes are the nodes and the functional connectivities between them are the edges.The results show that the correlation between small-world measures and reaction time is task-specific,such that in global imagery,there is a positive correlation between the clustering coefficient and reaction time,while in local imagery the average path length is positively correlated with the reaction time.This suggests that the efficiency of a functional brain network is task-dependent.%We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task. Functional brain networks are constructed by multichannel event-related potential data, in which the electrodes are the nodes and the functional connectivities between them are the edges. The results show that the correlation between small-world measures and reaction time is task-specific, such that in global imagery, there is a positive correlation between the clustering coefficient and reaction time, while in local imagery the average path length is positively correlated with the reaction time. This suggests that the efficiency of a functional brain network is task-dependent.

  2. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.

    Science.gov (United States)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby; Nielsen, Carsten Uhd; Brodin, Birger

    2012-05-01

    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 μM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 μM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  3. More 'mapping' in brain mapping: statistical comparison of effects

    DEFF Research Database (Denmark)

    Jernigan, Terry Lynne; Gamst, Anthony C.; Fennema-Notestine, Christine

    2003-01-01

    The term 'mapping' in the context of brain imaging conveys to most the concept of localization; that is, a brain map is meant to reveal a relationship between some condition or parameter and specific sites within the brain. However, in reality, conventional voxel-based maps of brain function......, or for that matter of brain structure, are generally constructed using analyses that yield no basis for inferences regarding the spatial nonuniformity of the effects. In the normal analysis path for functional images, for example, there is nowhere a statistical comparison of the observed effect in any voxel relative...... to that in any other voxel. Under these circumstances, strictly speaking, the presence of significant activation serves as a legitimate basis only for inferences about the brain as a unit. In their discussion of results, investigators rarely are content to confirm the brain's role, and instead generally prefer...

  4. Brain Events Underlying Episodic Memory Changes in Aging: A Longitudinal Investigation of Structural and Functional Connectivity.

    Science.gov (United States)

    Fjell, Anders M; Sneve, Markus H; Storsve, Andreas B; Grydeland, Håkon; Yendiki, Anastasia; Walhovd, Kristine B

    2016-03-01

    Episodic memories are established and maintained by close interplay between hippocampus and other cortical regions, but degradation of a fronto-striatal network has been suggested to be a driving force of memory decline in aging. We wanted to directly address how changes in hippocampal-cortical versus striatal-cortical networks over time impact episodic memory with age. We followed 119 healthy participants (20-83 years) for 3.5 years with repeated tests of episodic verbal memory and magnetic resonance imaging for quantification of functional and structural connectivity and regional brain atrophy. While hippocampal-cortical functional connectivity predicted memory change in young, changes in cortico-striatal functional connectivity were related to change in recall in older adults. Within each age group, effects of functional and structural connectivity were anatomically closely aligned. Interestingly, the relationship between functional connectivity and memory was strongest in the age ranges where the rate of reduction of the relevant brain structure was lowest, implying selective impacts of the different brain events on memory. Together, these findings suggest a partly sequential and partly simultaneous model of brain events underlying cognitive changes in aging, where different functional and structural events are more or less important in various time windows, dismissing a simple uni-factorial view on neurocognitive aging. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. A Microfabricated Transduction Coil for Inductive Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Jie (Jayne WU

    2006-07-01

    Full Text Available "Inductively Coupled Deep Brain Stimulator" describes a chip/system design to inductively couple arbitrary waveforms to electrodes embedded in the brain for deep brain stimulation or other neurostimulation. This approach moves the conventionally implanted signal generator outside the body and provides flexibility in adjusting waveforms to investigate optimum stimulation waveforms. An "inlaid electroplating" process with through-wafer plating is used to reduce microcoil resistance and integrate microstructures and electronics. Utilizing inductive link resonance specific to microcoils, waveforms are selectively transmitted to microcoils, which further produces biphasic waveforms that are suitable for deep brain stimulation.

  6. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  7. Diagnostic value of low-field MRI for acute poisoning brain injury

    International Nuclear Information System (INIS)

    Dang Lianrong; He Qinyi

    2012-01-01

    Objective: To investigate the value of low-field MIR in diagnosis of acute CO poisoning brain injury. Methods: The brain MIR and clinical data of 110 patients with acute CO poisoning brain injury confirmed by clinical examination were retrospectively analyzed. Results: Long T1 and T2 signal intensity was showed on MRI in cerebral hemispheres and globus pallidus symmetrically. There were three basic types of MIR manifestations, white matter of brain type, globus pallidus type and brain mixed type. Conclusions: MRI could be used for confirming the degree and range of acute CO poisoning brain injury. It has important clinical value in the diagnosis, staging and prognosis of patients with acute CO poisoning brain injury. (authors)

  8. Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery.

    Science.gov (United States)

    Yu, Yuan; Pang, Zhiqing; Lu, Wei; Yin, Qi; Gao, Huile; Jiang, Xinguo

    2012-01-01

    To develop a novel brain drug delivery system based on self-assembled poly(ethyleneglycol)-poly (D,L-lactic-co-glycolic acid) (PEG-PLGA) polymersomes conjugated with lactoferrin (Lf-POS). The brain delivery properties of Lf-POS were investigated and optimized. Three formulations of Lf-POS, with different densities of lactoferrin on the surface of polymersomes, were prepared and characterized. The brain delivery properties in mice were investigated using 6-coumarin as a fluorescent probe loaded in Lf-POS (6-coumarin-Lf-POS). A neuroprotective peptide, S14G-humanin, was incorporated into Lf-POS (SHN-Lf-POS); a protective effect on the hippocampuses of rats treated by Amyloid-β(25-35) was investigated by immunohistochemical analysis. The results of brain delivery in mice demonstrated that the optimized number of lactoferrin conjugated per polymersome was 101. This obtains the greatest blood-brain barrier (BBB) permeability surface area(PS) product and percentage of injected dose per gram brain (%ID/g brain). Immunohistochemistry revealed the SHN-Lf-POS had a protective effect on neurons of rats by attenuating the expression of Bax and caspase-3 positive cells. Meanwhile, the activity of choline acetyltransferase (ChAT) had been increased compared with negative controls. These results suggest that lactoferrin functionalized self-assembled PEG-PLGA polymersomes could be a promising brain-targeting peptide drug delivery system via intravenous administration.

  9. Do patients with very few brain metastases from breast cancer benefit from whole-brain radiotherapy in addition to radiosurgery?

    International Nuclear Information System (INIS)

    Rades, Dirk; Huttenlocher, Stefan; Hornung, Dagmar; Blanck, Oliver; Schild, Steven E; Fischer, Dorothea

    2014-01-01

    An important issue in palliative radiation oncology is the whether whole-brain radiotherapy should be added to radiosurgery when treating a limited number of brain metastases. To optimize personalized treatment of cancer patients with brain metastases, the value of whole-brain radiotherapy should be described separately for each tumor entity. This study investigated the role of whole-brain radiotherapy added to radiosurgery in breast cancer patients. Fifty-eight patients with 1–3 brain metastases from breast cancer were included in this retrospective study. Of these patients, 30 were treated with radiosurgery alone and 28 with radiosurgery plus whole-brain radiotherapy. Both groups were compared for local control of the irradiated metastases, freedom from new brain metastases and survival. Furthermore, eight additional factors were analyzed including dose of radiosurgery, age at radiotherapy, Eastern Cooperative Oncology Group (ECOG) performance score, number of brain metastases, maximum diameter of all brain metastases, site of brain metastases, extra-cranial metastases and the time from breast cancer diagnosis to radiotherapy. The treatment regimen had no significant impact on local control in the univariate analysis (p = 0.59). Age ≤59 years showed a trend towards improved local control on univariate (p = 0.066) and multivariate analysis (p = 0.07). On univariate analysis, radiosurgery plus whole-brain radiotherapy (p = 0.040) and ECOG 0–1 (p = 0.012) showed positive associations with freedom from new brain metastases. Both treatment regimen (p = 0.039) and performance status (p = 0.028) maintained significance on multivariate analysis. ECOG 0–1 was positively correlated with survival on univariate analysis (p < 0.001); age ≤59 years showed a strong trend (p = 0.054). On multivariate analysis, performance status (p < 0.001) and age (p = 0.041) were significant. In breast cancer patients with few brain metastases, radiosurgery plus whole-brain

  10. Changes in brain size during the menstrual cycle.

    Directory of Open Access Journals (Sweden)

    Georg Hagemann

    Full Text Available BACKGROUND: There is increasing evidence for hormone-dependent modification of function and behavior during the menstrual cycle, but little is known about associated short-term structural alterations of the brain. Preliminary studies suggest that a hormone-dependent decline in brain volume occurs in postmenopausal, or women receiving antiestrogens, long term. Advances in serial MR-volumetry have allowed for the accurate detection of small volume changes of the brain. Recently, activity-induced short-term structural plasticity of the brain was demonstrated, challenging the view that the brain is as rigid as formerly believed. METHODOLOGY/PRINCIPAL FINDINGS: We used MR-volumetry to investigate short-term brain volume changes across the menstrual cycle in women or a parallel 4 week period in men, respectively. We found a significant grey matter volume peak and CSF loss at the time of ovulation in females. This volume peak did not correlate with estradiol or progesterone hormone levels. Men did not show any significant brain volume alterations. CONCLUSIONS/SIGNIFICANCE: These data give evidence of short-term hormone-dependent structural brain changes during the menstrual cycle, which need to be correlated with functional states and have to be considered in structure-associated functional brain research.

  11. Simultaneous two-voxel localized 1H-observed 13C-edited spectroscopy for in vivo MRS on rat brain at 9.4 T: Application to the investigation of excitotoxic lesions

    Science.gov (United States)

    Doan, Bich-Thuy; Autret, Gwennhael; Mispelter, Joël; Méric, Philippe; Même, William; Montécot-Dubourg, Céline; Corrèze, Jean-Loup; Szeremeta, Frédéric; Gillet, Brigitte; Beloeil, Jean-Claude

    2009-05-01

    13C spectroscopy combined with the injection of 13C-labeled substrates is a powerful method for the study of brain metabolism in vivo. Since highly localized measurements are required in a heterogeneous organ such as the brain, it is of interest to augment the sensitivity of 13C spectroscopy by proton acquisition. Furthermore, as focal cerebral lesions are often encountered in animal models of disorders in which the two brain hemispheres are compared, we wished to develop a bi-voxel localized sequence for the simultaneous bilateral investigation of rat brain metabolism, with no need for external additional references. Two sequences were developed at 9.4 T: a bi-voxel 1H-( 13C) STEAM-POCE (Proton Observed Carbon Edited) sequence and a bi-voxel 1H-( 13C) PRESS-POCE adiabatically decoupled sequence with Hadamard encoding. Hadamard encoding allows both voxels to be recorded simultaneously, with the same acquisition time as that required for a single voxel. The method was validated in a biological investigation into the neuronal damage and the effect on the Tri Carboxylic Acid cycle in localized excitotoxic lesions. Following an excitotoxic quinolinate-induced localized lesion in the rat cortex and the infusion of U- 13C glucose, two 1H-( 13C) spectra of distinct (4 × 4 × 4 mm 3) voxels, one centred on the injured hemisphere and the other on the contralateral hemisphere, were recorded simultaneously. Two 1H bi-voxel spectra were also recorded and showed a significant decrease in N-acetyl aspartate, and an accumulation of lactate in the ipsilateral hemisphere. The 1H-( 13C) spectra could be recorded dynamically as a function of time, and showed a fall in the glutamate/glutamine ratio and the presence of a stable glutamine pool, with a permanent increase of lactate in the ipsilateral hemisphere. This bi-voxel 1H-( 13C) method can be used to investigate simultaneously both brain hemispheres, and to perform dynamic studies. We report here the neuronal damage and the

  12. Iron uptake and transport at the blood-brain barrier

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben

    The mechanism by which iron is transported across the blood-brain barrier (BBB) remains controversial, and in this study we aimed to further clarify mechanisms by which iron is transported into the brain. We analyzed and compared the mRNA and protein expression of a variety of proteins involved...... in the transport of iron (transferrin receptor, divalent metal transporter I (DMT1), steap 2, steap 3, ceruloplasmin, hephaestin and ferroportin) in both primary rat brain capillary endothelial cells (BCEC) and immortalized rat brain capillary endothelial cell line (RBE4) grown in co-culture with defined polarity....... The mRNA expression of the iron-related molecules was also investigated in isolated brain capillaries from iron deficiency, iron reversible and normal rats. We also performed iron transport studies to analyze the routes by which iron is transported through the brain capillary endothelial cells: i) We...

  13. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    International Nuclear Information System (INIS)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei

    2011-01-01

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (− 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (− 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  14. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei, E-mail: wzheng@purdue.edu

    2011-11-15

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (- 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (- 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  15. Mapping of brain lipid binding protein (Blbp) in the brain of adult zebrafish, co-expression with aromatase B and links with proliferation.

    Science.gov (United States)

    Diotel, Nicolas; Vaillant, Colette; Kah, Olivier; Pellegrini, Elisabeth

    2016-01-01

    Adult fish exhibit a strong neurogenic capacity due to the persistence of radial glial cells. In zebrafish, radial glial cells display well-established markers such as the estrogen-synthesizing enzyme (AroB) and the brain lipid binding protein (Blbp), which is known to strongly bind omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). While Blpb is mainly described in the telencephalon of adult zebrafish, its expression in the remaining regions of the brain is poorly documented. The present study was designed to further investigate Blbp expression in the brain, its co-expression with AroB, and its link with radial glial cells proliferation in zebrafish. We generated a complete and detailed mapping of Blbp expression in the whole brain and show its complete co-expression with AroB, except in some tectal and hypothalamic regions. By performing PCNA and Blbp immunohistochemistry on cyp19a1b-GFP (AroB-GFP) fish, we also demonstrated preferential Blbp expression in proliferative radial glial cells in almost all regions studied. To our knowledge, this is the first complete and detailed mapping of Blbp-expressing cells showing strong association between Blbp and radial glial cell proliferation in the adult brain of fish. Given that zebrafish is now recognized models for studying neurogenesis and brain repair, our data provide detailed characterization of Blbp in the entire brain and open up a broad field of research investigating the role of omega-3 polyunsaturated fatty acids in neural stem cell activity in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The Neuromagnetic Dynamics of Time Perception

    OpenAIRE

    Carver, Frederick W.; Elvevåg, Brita; Altamura, Mario; Weinberger, Daniel R.; Coppola, Richard

    2012-01-01

    Examining real-time cortical dynamics is crucial for understanding time perception. Using magnetoencephalography we studied auditory duration discrimination of short (.5 s) versus a pitch control. Time-frequency analysis of event-related fields showed widespread beta-band (13-30 Hz) desynchronization during all tone presentations. Synthetic aperture magnetometry indicated automatic primarily sensorimotor responses in short and pitch conditions, with activation specific to timing in bilateral ...

  17. Gene expression in the aging human brain: an overview.

    Science.gov (United States)

    Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S

    2016-03-01

    The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.

  18. Brain anatomical networks in early human brain development.

    Science.gov (United States)

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  19. Changes in brain glucose metabolism in subthalamic nucleus deep brain stimulation for advanced Parkinson's disease.

    Science.gov (United States)

    Volonté, M A; Garibotto, V; Spagnolo, F; Panzacchi, A; Picozzi, P; Franzin, A; Giovannini, E; Leocani, L; Cursi, M; Comi, G; Perani, D

    2012-07-01

    Despite its large clinical application, our understanding about the mechanisms of action of deep brain stimulation of the subthalamic nucleus is still limited. Aim of the present study was to explore cortical and subcortical metabolic modulations measured by Positron Emission Tomography associated with improved motor manifestations after deep brain stimulation in Parkinson disease, comparing the ON and OFF conditions. Investigations were performed in the stimulator off- and on-conditions in 14 parkinsonian patients and results were compared with a group of matched healthy controls. The results were also used to correlate metabolic changes with the clinical effectiveness of the procedure. The comparisons using Statistical parametric mapping revealed a brain metabolic pattern typical of advanced Parkinson disease. The direct comparison in ON vs OFF condition showed mainly an increased metabolism in subthalamic regions, corresponding to the deep brain stimulation site. A positive correlation exists between neurostimulation clinical effectiveness and metabolic differences in ON and OFF state, including the primary sensorimotor, premotor and parietal cortices, anterior cingulate cortex. Deep brain stimulation seems to operate modulating the neuronal network rather than merely exciting or inhibiting basal ganglia nuclei. Correlations with Parkinson Disease cardinal features suggest that the improvement of specific motor signs associated with deep brain stimulation might be explained by the functional modulation, not only in the target region, but also in surrounding and remote connecting areas, resulting in clinically beneficial effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Investigating therapists’ intention to use serious games for acquired brain injury cognitive rehabilitation

    Directory of Open Access Journals (Sweden)

    Ahmed Mohammed Elaklouk

    2015-04-01

    Full Text Available Acquired brain injury is one cause of long-term disability. Serious games can assist in cognitive rehabilitation. However, therapists’ perception and feedback will determine game adoption. The objective of this study is to investigate therapists’ intention to use serious games for cognitive rehabilitation and identify underlying factors that may affect their acceptance. The respondents are 41 therapists who evaluated a “Ship Game” prototype. Data were collected using survey questionnaire and interview. A seven-point Likert scale was used for items in the questionnaire ranging from (1 “strongly disagree” to (7 “strongly agree”. Results indicate that the game is easy to use (Mean = 5.83, useful (Mean = 5.62, and enjoyable (Mean = 5.90. However intention to use is slightly low (Mean = 4.60. Significant factors that can affect therapists’ intention to use the game were gathered from interviews. Game-based intervention should reflect therapists’ needs in order to achieve various rehabilitation goals, providing suitable and meaningful training. Hence, facilities to tailor the game to the patient’s ability, needs and constraints are important factors that can increase therapists’ intention to use and help to deliver game experience that can motivate patients to undergo the practices needed. Moreover, therapists’ supervision, database functionality and quantitative measures regarding a patient’s progress also represent crucial factors.

  1. Role of Non-neuronal Cells in Tauopathies After Brain Injury

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0422 TITLE: Role of Nonneuronal Cells in Tauopathies After Brain Injury PRINCIPAL INVESTIGATOR: Sally A. Frautschy...AND SUBTITLE 5a. CONTRACT NUMBER Role of Non-neuronal Cells in Tauopathies After Brain Injury 5b. GRANT NUMBER W81XWH-15-1-0422 5c. PROGRAM...traumatic brain injury (TBI), specific inflammatory factors (complement proteins) elevated during long asymptomatic prodromal period are responsible

  2. Mechanistic Links Between PARP, NAD, and Brain Inflammation After TBI

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-2-0091 TITLE: Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI PRINCIPAL INVESTIGATOR...COVERED 25 Sep 2014 - 24 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI 5b. GRANT...efficacy of veliparib and NAD as agents for suppressing inflammation and improving outcomes after traumatic brain injury. The animal models include

  3. Brain edema associated with unruptured brain arteriovenous malformations

    International Nuclear Information System (INIS)

    Kim, Bum-soo; Sarma, Dipanka; Lee, Seon-Kyu; ter Brugge, Karel G.

    2009-01-01

    Brain edema in unruptured brain arteriovenous malformations (AVMs) is rare; this study examines (1) its frequency and clinical presentation, (2) imaging findings with emphasis on venous drainage abnormalities, and (3) implications of these findings on natural history and management. Presentation and imaging features of all unruptured brain AVMs were prospectively collected in our brain AVM database. Neurological findings, size, location, venous drainage pattern, presence of venous thrombosis, ectasia, or stenosis, and brain edema were specifically recorded. Treatment details of all patients with brain edema and their clinical and imaging follow-up were reviewed. Finally, a comparison was made between patients with and without edema. Brain edema was found in 13/329 unruptured brain AVMs (3.9%). Neurological deficit (46.2%), venous thrombosis (38.5%), venous ectasia (84.6%), stenosis (38.5%), and contrast stagnation in the draining veins (84.6%) were more frequent in patients with brain edema than without edema. Eight patients with brain edema received specific treatment (embolization = 5, surgery = 2, radiosurgery = 1). Clinical features correlated well with change in degree of edema in six. Three of five embolized patients were stable or showed improvement after the procedure. On follow-up, however, intracranial hemorrhage developed in three. Brain edema in unruptured brain AVMs is rare, 3.9% in this series. Venous outflow abnormalities are frequently associated and appear to contribute to the development of edema. Progressive nonhemorrhagic symptoms are also associated, with a possible increased risk of hemorrhage. Palliative embolization arrests the nonhemorrhagic symptoms in selected patients, although it may not have an effect on hemorrhagic risk. (orig.)

  4. What will this do to me and my brain? Ethical issues in brain-to-brain interfacing

    Directory of Open Access Journals (Sweden)

    Elisabeth eHildt

    2015-02-01

    Full Text Available For several years now, brain-computer interfaces (BCIs in which brain signals are used to navigate a computer, a prostheses or a technical device, have been developed in various experimental contexts (Wolpaw & Wolpaw 2012; Grübler & Hildt 2014. Researchers have recently taken the next step and run experiments based on connections between two brains. These so-called brain-to-brain interfaces (abbreviation: BBIs or BTBIs involve not only a BCI component deriving information from a brain and sending it to a computer, but also a computer-brain interface (CBI component delivering information to another brain. What results is technology-mediated brain-to-brain communication (B2B communication, i.e. direct communication between two brains that does not involve any activity of the peripheral nervous system. In what follows, ethical issues that arise in neural interfacing will be discussed after a short introduction to recent BBI experiments. In this, the focus will be on the implications BBIs may have on the individual at the CBI side of the BBI, i.e. on the recipient.

  5. On the Relationship between Right- brain and Left- brain Dominance and Reading Comprehension Test Performance of Iranian EFL Learners

    Directory of Open Access Journals (Sweden)

    Hassan Soleimani

    2012-05-01

    Full Text Available A tremendous amount of works have been conducted by psycholinguistics to identify hemisphere processing during second/ foreign language learning, or in other words to investigate the role of the brain hemisphere dominance in language performance of learners. Most of these researches have focused on single words and word pairs (e.g., Anaki et al., 1998; Arzouan et. al., 2007; Faust & Mahal, 2007 or simple sentences (Rapp et al., 2007; Kacinik & Chiarello, 2007, and it has been discovered that there is an advantage of right hemisphere for metaphors and an
    advantage of left hemisphere for literal text. But the present research was designed to study Iranian EFL learners' performance in different reading tasks, so there could be differences between the consequences of the former research and the results of the present study due to the context. Here left-brain and right-brain dominance was investigated in 60 individuals (20 right-handed and 10 left-handed male, 20 right-handed and 10 left-handed female via the Edinburg Handedness Questionnaire (EHQ. The research results suggested that the right-handed learners who are supposed to be left-brain outperformed the left-handed ones; and regarding participant's gender, male learners outperformed female learners on reading comprehension test tasks.

  6. D-BRAIN : Anatomically accurate simulated diffusion MRI brain data

    OpenAIRE

    Perrone, Daniele; Jeurissen, Ben; Aelterman, Jan; Roine, Timo; Sijbers, Jan; Pizurica, Aleksandra; Leemans, Alexander; Philips, Wilfried

    2016-01-01

    Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT algorithms have been developed. However, it is not clear how accurately these methods reproduce the WM bundle characteristics in real-world conditions, such as in the presence of noise, partial volume...

  7. Ex-vivo MR Volumetry of Human Brain Hemispheres

    Science.gov (United States)

    Kotrotsou, Aikaterini; Bennett, David A.; Schneider, Julie A.; Dawe, Robert J.; Golak, Tom; Leurgans, Sue E.; Yu, Lei; Arfanakis, Konstantinos

    2013-01-01

    Purpose The aims of this work were to: a) develop an approach for ex-vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, b) longitudinally assess regional brain volumes postmortem, and c) investigate the relationship between MR volumetric measurements performed in-vivo and ex-vivo. Methods An approach for ex-vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex-vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex-vivo was assessed. The relationship between in-vivo and ex-vivo volumetric measurements was investigated in seven elderly subjects imaged both ante-mortem and postmortem. Results The presented approach for ex-vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than inter-subject volume variation. A close linear correspondence was detected between in-vivo and ex-vivo volumetric measurements. Conclusion Regional brain volumes measured with the presented approach for ex-vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in-vivo and ex-vivo MR volumetric measurements suggests that the presented approach captures information linked to ante-mortem macrostructural brain characteristics. PMID:23440751

  8. Are there fetal stem cells in the maternal brain?

    Institute of Scientific and Technical Information of China (English)

    Osman Demirhan; Necmi (C)ekin; Deniz Ta(s)temir; Erdal Tun(c); Ali irfan Güzel; Demet Meral; Bülent Demirbek

    2013-01-01

    Fetal cells can enter maternal blood during pregnancy but whether they can also cross the blood-brain barrier to enter the maternal brain remains poorly understood. Previous results suggest that fetal cells are summoned to repair damage to the mother's brain. If this is confirmed, it would open up new and safer avenues of treatment for brain damage caused by strokes and neural diseases. In this study, we aimed to investigate whether a baby's stem cells can enter the maternal brain during pregnancy. Deceased patients who had at least one male offspring and no history of abortion and blood transfusion were included in this study. DNA was extracted from brain tissue samples of deceased women using standard phenol-chloroform extraction and ethanol precipitation methods. Genomic DNA was screened by quantitative fluorescent-polymerase chain reaction amplification together with short tandem repeat markers specific to the Y chromosome, and 13, 18, 21 and X. Any foreign DNA residues that could be used to interpret the presence of fetal stem cells in the maternal brain were monitored. Results indicated that fetal stem cells can not cross the blood-brain barrier to enter the maternal brain.

  9. Time delay between cardiac and brain activity during sleep transitions

    NARCIS (Netherlands)

    Long, X.; Arends, J.B.A.M.; Aarts, R.M.; Haakma, R.; Fonseca, P.; Rolink, J.

    2015-01-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by

  10. Brain-machine and brain-computer interfaces.

    Science.gov (United States)

    Friehs, Gerhard M; Zerris, Vasilios A; Ojakangas, Catherine L; Fellows, Mathew R; Donoghue, John P

    2004-11-01

    The idea of connecting the human brain to a computer or machine directly is not novel and its potential has been explored in science fiction. With the rapid advances in the areas of information technology, miniaturization and neurosciences there has been a surge of interest in turning fiction into reality. In this paper the authors review the current state-of-the-art of brain-computer and brain-machine interfaces including neuroprostheses. The general principles and requirements to produce a successful connection between human and artificial intelligence are outlined and the authors' preliminary experience with a prototype brain-computer interface is reported.

  11. Left brain, right brain: facts and fantasies.

    Directory of Open Access Journals (Sweden)

    Michael C Corballis

    2014-01-01

    Full Text Available Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  12. Left brain, right brain: facts and fantasies.

    Science.gov (United States)

    Corballis, Michael C

    2014-01-01

    Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  13. The blood-brain barrier in vitro using primary culture

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart

    The brain is protected from the entry of unwanted substances by means of the blood-brain barrier (BBB) formed by the brain microvasculature. This BBB is composed of non-fenestrated brain capillary endothelial cells (BCECs) with their intermingling tight junctions. The presence of the BBB is a huge...... obstacle for the treatment of central nervous system (CNS) diseases, as many potentially CNS active drugs are unable to reach their site of action within the brain. In vitro BBB models are, therefore, being developed to investigate the BBB permeability of a drug early in its development. The first part...... of the thesis involves the establishment and characterization of an in vitro BBB models based on primary cells isolated from the rat brain. Co-culture and triple culture models with astrocytes and pericytes were found to be the superior to mono cultured BCECs with respect to many important BBB characteristics...

  14. Effects of Soccer Heading on Brain Structure and Function

    Science.gov (United States)

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6–12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety

  15. Effects of soccer heading on brain structure and function

    Directory of Open Access Journals (Sweden)

    Ana Carolina Oliveira Rodrigues

    2016-03-01

    Full Text Available Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of six to twelve incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the

  16. Network-dependent modulation of brain activity during sleep.

    Science.gov (United States)

    Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki

    2014-09-01

    Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Intrapartum FHR monitoring and neonatal CT brain scan

    International Nuclear Information System (INIS)

    Takahashi, Yoshiki; Ukita, Masahiko; Nakada, Eizo

    1982-01-01

    The effect of fetal distress on the neonatal brain was investigated by neonatal CT brain scan, FHR monitoring and mode of delivery. This study involved 11 cases of full term vertex delivery in which FHR was recorded by fetal direct ECG during the second stage labor. All infants weighed 2,500 g or more. FHR monitoring was evaluated by Hon's classification. Neonatal brain edema was evaluated by cranial CT histgraphic analysis (Nakada's method). 1) Subdural hemorrhage was noted in 6 of 7 infants delivered by vacuum extraction or fundal pressure (Kristeller's method). 2) Intracranial hemorrhage was demonstrated in all of 3 infants with 5-min. Apgar score 7 or less. 3) Two cases with prolonged bradycardia and no variability had intraventricular or intracerebral hemorrhage which resulted in severe central nervous system damage. 4) The degree of neonatal brain edema correlated with 5-min. Apgar score. 5) One case with prolonged bradycardia and no variability resulted in severe neonatal brain edema. Four cases with variable deceleration and increased variability resulted in mild neonatal brain edema. Two cases with late deceleration and decreased variability resulted in no neonatal brain edema. (author)

  18. A Right Brain/Left Brain Model of Acting.

    Science.gov (United States)

    Bowlen, Clark

    Using current right brain/left brain research, this paper develops a model that explains acting's underlying quality--the actor is both himself and the character. Part 1 presents (1) the background of the right brain/left brain theory, (2) studies showing that propositional communication is a left hemisphere function while affective communication…

  19. Mapping brain structure and function: cellular resolution, global perspective.

    Science.gov (United States)

    Zupanc, Günther K H

    2017-04-01

    A comprehensive understanding of the brain requires analysis, although from a global perspective, with cellular, and even subcellular, resolution. An important step towards this goal involves the establishment of three-dimensional high-resolution brain maps, incorporating brain-wide information about the cells and their connections, as well as the chemical architecture. The progress made in such anatomical brain mapping in recent years has been paralleled by the development of physiological techniques that enable investigators to generate global neural activity maps, also with cellular resolution, while simultaneously recording the organism's behavioral activity. Combination of the high-resolution anatomical and physiological maps, followed by theoretical systems analysis of the deduced network, will offer unprecedented opportunities for a better understanding of how the brain, as a whole, processes sensory information and generates behavior.

  20. Radiosurgery without whole brain radiotherapy in melanoma brain metastases

    International Nuclear Information System (INIS)

    Grob, J.J.; Regis, J.; Laurans, R.; Delaunay, M.; Wolkenstein, P.; Paul, K.; Souteyrand, P.; Koeppel, M.C.; Murraciole, X.; Perragut, J.C.; Bonerandi, J.J.

    1998-01-01

    To evaluate the effectiveness of radiosurgery without whole brain radiotherapy in the palliative treatment of melanoma brain metastases, we retrospectively assessed the results in 35 patients: 4 with a solitary brain metastasis, 13 with a single brain metastasis and metastases elsewhere and 18 with multiple brain metastases. The local control rate was 98.2% (55/56 metastases) at 3 months. Median survival was 22 months in patients with a solitary brain metastasis, 7.5 months in patients with a single brain metastasis and metastases elsewhere, and 4 months in patients with multiple brain metastases. Complications were unusual and surgery was required in 2 of 35 patients. These results show for the first time that melanoma patients with a unique brain metastasis with or without metastases elsewhere clearly benefit from tumour control easily obtained by radiosurgery. Although the comparison of radiosurgery with surgery and/or whole brain radiotherapy cannot be adequately addressed, radiosurgery alone seems to provide similar results with lower morbidity and impact on quality of life. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Brain Basics: Know Your Brain

    Science.gov (United States)

    ... however, the brain is beginning to relinquish its secrets. Scientists have learned more about the brain in ... through the activity of these lobes. At the top of each temporal lobe is an area responsible ...

  2. Brain volumes in relatives of patients with schizophrenia - A meta-analysis

    NARCIS (Netherlands)

    Boos, Heleen B. M.; Aleman, Andre; Cahn, Wiepke; Pol, Hilleke Hulshoff; Kahn, Rene S.

    Context: Smaller brain volumes have consistently been found in patients with schizophrenia, particularly in gray matter and medial temporal lobe structures. Although several studies have investigated brain volumes in nonpsychotic relatives of patients with schizophrenia, results have been

  3. The relationship between brain volumes and intelligence in bipolar disorder

    NARCIS (Netherlands)

    Vreeker, Annabel; Abramovic, Lucija; Boks, Marco P.M.; Verkooijen, Sanne; van Bergen, Annet H.; Ophoff, Roel A.; Kahn, René S.; van Haren, Neeltje E.M.

    2017-01-01

    Objectives Bipolar disorder type-I (BD-I) patients show a lower Intelligence Quotient (IQ) and smaller brain volumes as compared with healthy controls. Considering that in healthy individuals lower IQ is related to smaller total brain volume, it is of interest to investigate whether IQ deficits in

  4. GRIN2B Gene and Associated Brain Cortical White Matter Changes in Bipolar Disorder: A Preliminary Combined Platform Investigation

    Directory of Open Access Journals (Sweden)

    Carissa Nadia Kuswanto

    2013-01-01

    Full Text Available Abnormalities in glutamate signaling and glutamate toxicity are thought to be important in the pathophysiology of bipolar disorder (BD. Whilst previous studies have found brain white matter changes in BD, there is paucity of data about how glutamatergic genes affect brain white matter integrity in BD. Based on extant neuroimaging data, we hypothesized that GRIN2B risk allele is associated with reductions of brain white matter integrity in the frontal, parietal, temporal, and occipital regions and cingulate gyrus in BD. Fourteen patients with BD and 22 healthy controls matched in terms of age, gender and handedness were genotyped using blood samples and underwent diffusion tensor imaging. Compared to G allele, brain FA values were significantly lower in BD patients with risk T allele in left frontal region (P=0.001, right frontal region (P=0.002, left parietal region (P=0.001, left occipital region (P=0.001, right occipital region (P<0.001, and left cingulate gyrus (P=0.001. Further elucidation of the interactions between different glutamate genes and their relationships with such structural, functional brain substrates will enhance our understanding of the link between dysregulated glutamatergic neurotransmission and neuroimaging endophenotypes in BD.

  5. Neuropsychological testing and biomarkers in the management of brain metastases

    International Nuclear Information System (INIS)

    Baschnagel, Andrew; Wolters, Pamela L; Camphausen, Kevin

    2008-01-01

    Prognosis for patients with brain metastasis remains poor. Whole brain radiation therapy is the conventional treatment option; it can improve neurological symptoms, prevent and improve tumor associated neurocognitive decline, and prevents death from neurologic causes. In addition to whole brain radiation therapy, stereotactic radiosurgery, neurosurgery and chemotherapy also are used in the management of brain metastases. Radiosensitizers are now currently being investigated as potential treatment options. All of these treatment modalities carry a risk of central nervous system (CNS) toxicity that can lead to neurocognitive impairment in long term survivors. Neuropsychological testing and biomarkers are potential ways of measuring and better understanding CNS toxicity. These tools may help optimize current therapies and develop new treatments for these patients. This article will review the current management of brain metastases, summarize the data on the CNS effects associated with brain metastases and whole brain radiation therapy in these patients, discuss the use of neuropsychological tests as outcome measures in clinical trials evaluating treatments for brain metastases, and give an overview of the potential of biomarker development in brain metastases research

  6. Noninvasive transcranial brain stimulation and pain.

    Science.gov (United States)

    Rosen, Allyson C; Ramkumar, Mukund; Nguyen, Tam; Hoeft, Fumiko

    2009-02-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are two noninvasive brain stimulation techniques that can modulate activity in specific regions of the cortex. At this point, their use in brain stimulation is primarily investigational; however, there is clear evidence that these tools can reduce pain and modify neurophysiologic correlates of the pain experience. TMS has also been used to predict response to surgically implanted stimulation for the treatment of chronic pain. Furthermore, TMS and tDCS can be applied with other techniques, such as event-related potentials and pharmacologic manipulation, to illuminate the underlying physiologic mechanisms of normal and pathological pain. This review presents a description and overview of the uses of two major brain stimulation techniques and a listing of useful references for further study.

  7. Mechanics of the brain: perspectives, challenges, and opportunities.

    Science.gov (United States)

    Goriely, Alain; Geers, Marc G D; Holzapfel, Gerhard A; Jayamohan, Jayaratnam; Jérusalem, Antoine; Sivaloganathan, Sivabal; Squier, Waney; van Dommelen, Johannes A W; Waters, Sarah; Kuhl, Ellen

    2015-10-01

    The human brain is the continuous subject of extensive investigation aimed at understanding its behavior and function. Despite a clear evidence that mechanical factors play an important role in regulating brain activity, current research efforts focus mainly on the biochemical or electrophysiological activity of the brain. Here, we show that classical mechanical concepts including deformations, stretch, strain, strain rate, pressure, and stress play a crucial role in modulating both brain form and brain function. This opinion piece synthesizes expertise in applied mathematics, solid and fluid mechanics, biomechanics, experimentation, material sciences, neuropathology, and neurosurgery to address today's open questions at the forefront of neuromechanics. We critically review the current literature and discuss challenges related to neurodevelopment, cerebral edema, lissencephaly, polymicrogyria, hydrocephaly, craniectomy, spinal cord injury, tumor growth, traumatic brain injury, and shaken baby syndrome. The multi-disciplinary analysis of these various phenomena and pathologies presents new opportunities and suggests that mechanical modeling is a central tool to bridge the scales by synthesizing information from the molecular via the cellular and tissue all the way to the organ level.

  8. Ontogenetic Shape Change in the Chicken Brain: Implications for Paleontology.

    Science.gov (United States)

    Kawabe, Soichiro; Matsuda, Seiji; Tsunekawa, Naoki; Endo, Hideki

    2015-01-01

    Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental stages using three-dimensional (3D) geometric morphometric analysis and the growth rate of brain regions was evaluated to explore post-hatching morphological changes. Microscopic MRI (μMRI) was used to acquire in vivo data from living and post-mortem chicken brains. The telencephalon rotates caudoventrally during growth. This change in shape leads to a relative caudodorsal rotation of the cerebellum and myelencephalon. In addition, all brain regions elongate rostrocaudally and this leads to a more slender brain shape. The growth rates of each brain region were constant and the slopes from the growth formula were parallel. The dominant pattern of ontogenetic shape change corresponded with interspecific shape changes due to increasing brain size. That is, the interspecific and ontogenetic changes in brain shape due to increased size have similar patterns. Although the shape of the brain and each brain region changed considerably, the volume ratio of each brain region did not change. This suggests that the brain can change its shape after completing functional differentiation of the brain regions. Moreover, these results show that consideration of ontogenetic changes in brain shape is necessary for an accurate assessment of brain morphology in paleontological studies.

  9. Nanoparticle transport across the blood brain barrier.

    Science.gov (United States)

    Grabrucker, Andreas M; Ruozi, Barbara; Belletti, Daniela; Pederzoli, Francesca; Forni, Flavio; Vandelli, Maria Angela; Tosi, Giovanni

    2016-01-01

    While the role of the blood-brain barrier (BBB) is increasingly recognized in the (development of treatments targeting neurodegenerative disorders, to date, few strategies exist that enable drug delivery of non-BBB crossing molecules directly to their site of action, the brain. However, the recent advent of Nanomedicines may provide a potent tool to implement CNS targeted delivery of active compounds. Approaches for BBB crossing are deeply investigated in relation to the pathology: among the main important diseases of the CNS, this review focuses on the application of nanomedicines to neurodegenerative disorders (Alzheimer, Parkinson and Huntington's Disease) and to other brain pathologies as epilepsy, infectious diseases, multiple sclerosis, lysosomal storage disorders, strokes.

  10. Go green! Reusing brain monitoring data containing missing values: a feasibility study with traumatic brain injury patients.

    Science.gov (United States)

    Feng, Mengling; Loy, Liang Yu; Zhang, Feng; Zhang, Zhuo; Vellaisamy, Kuralmani; Chin, Pei Loon; Guan, Cuntai; Shen, Liang; King, Nicolas K K; Lee, Kah Keow; Ang, Beng Ti

    2012-01-01

    Despite the wealth of information carried, periodic brain monitoring data are often incomplete with a significant amount of missing values. Incomplete monitoring data are usually discarded to ensure purity of data. However, this approach leads to the loss of statistical power, potentially biased study and a great waste of resources. Thus, we propose to reuse incomplete brain monitoring data by imputing the missing values - a green solution! To support our proposal, we have conducted a feasibility study to investigate the reusability of incomplete brain monitoring data based on the estimated imputation error. Seventy-seven patients, who underwent invasive monitoring of ICP, MAP, PbtO (2) and brain temperature (BTemp) for more than 24 consecutive hours and were connected to a bedside computerized system, were selected for the study. In the feasibility study, the imputation error is experimentally assessed with simulated missing values and 17 state-of-the-art predictive methods. A framework is developed for neuroclinicians and neurosurgeons to determine the best re-usage strategy and predictive methods based on our feasibility study. The monitoring data of MAP and BTemp are more reliable for reuse than ICP and PbtO (2); and, for ICP and PbtO (2) data, a more cautious re-usage strategy should be employed. We also observe that, for the scenarios tested, the lazy learning method, K-STAR, and the tree-based method, M5P, are consistently 2 of the best among the 17 predictive methods investigated in this study.

  11. Asymptomatic brain tumor detected at brain check-up

    International Nuclear Information System (INIS)

    Onizuka, Masanari; Suyama, Kazuhiko; Shibayama, Akira; Hiura, Tsuyoshi; Horie, Nobutaka; Miyazaki, Hisaya

    2001-01-01

    Brain check-up was performed in 4000 healthy subjects who underwent medical and radiological examinations for possible brain diseases in our hospital from April 1996 to March 2000. Magnetic resonance imaging revealed 11 brain tumors which consisted of six meningiomas, three pituitary adenomas, one astrocytoma, and one epidermoid cyst. The detection rate of incidental brain tumor in our hospital was 0.3%. Nine patients underwent surgery, with one case of morbidity due to postoperative transient oculomotor nerve paresis. The widespread use of brain check-up may increasingly detect asymptomatic brain tumors. Surgical indications for such lesions remain unclear, and the strategy for treatment should be determined with consideration of the patient's wishes. (author)

  12. Short-term mechanisms influencing volumetric brain dynamics

    Directory of Open Access Journals (Sweden)

    Nikki Dieleman

    2017-01-01

    Full Text Available With the use of magnetic resonance imaging (MRI and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist. When we focus on short-term changes of the brain, changes may be either physiological or pathological. As such determining the cause of volumetric dynamics of the brain is essential. Additionally for an accurate interpretation of longitudinal brain volume measures by means of neurodegeneration, knowledge about the short-term changes is needed. Therefore, in this review, we discuss the possible mechanisms influencing brain volumes on a short-term basis and set-out a framework of MRI techniques to be used for volumetric changes as well as the used analysis tools. 3D T1-weighted images are the images of choice when it comes to MRI of brain volume. These images are excellent to determine brain volume and can be used together with an analysis tool to determine the degree of volume change. Mechanisms that decrease global brain volume are: fluid restriction, evening MRI measurements, corticosteroids, antipsychotics and short-term effects of pathological processes like Alzheimer's disease, hypertension and Diabetes mellitus type II. Mechanisms increasing the brain volume include fluid intake, morning MRI measurements, surgical revascularization and probably medications like anti-inflammatory drugs and anti-hypertensive medication. Exercise was found to have no effect on brain volume on a short-term basis, which may imply that dehydration caused by exercise differs from dehydration by fluid restriction. In the upcoming years, attention should be directed towards studies investigating physiological short-term changes within the light of long-term pathological changes. Ultimately this may lead to a better understanding of the physiological short-term effects of

  13. 11C-methionine uptake in the brain of phenylketonuric children

    International Nuclear Information System (INIS)

    Comar, D.; Chopinet, A.; Maziere, M.; Berger, G.; Todd-Pokropek, A.

    The investigation covered 9 children aged between 7 and 77 months. The brain uptake for each examination before and after correction (for each child correction due to pericerebral activity, calculated by a method described) and the ratio between the corrected uptake rates of two examinations are reported. The results show clearly the strong resistance of the blood brain barrier to the passage of methionine in non-dieting phenylketonuric children. Moreover analysis of the brain radioactivity variation with time during the two examinations suggests a partial inhibition of brain protein synthesis, especially when the blood phenylalanine content is high [fr

  14. Preliminary study of MR elastography in brain tumors

    International Nuclear Information System (INIS)

    Xu Lei; Gao Peiyi; Lin Yan; Han Jiancheng; Xi Zhinong; Shen Hao

    2008-01-01

    Objective: To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods: Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years) underwent brain MRE studies. Informed consent was obtained from all patients. A dedicated external force actuator for brain MRE study was developed. The actuator was fixed to the head coil. During scan, one side of the actuator was attached to the patients' head. Low frequency oscillation was produced by the actuator and caused shear waves propagating into brain tissue. The pulse sequence used in the study was phase-contrast gradient-echo sequence. Phase images of the brain were obtained and the shear waves within the brain were directly imaged. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity image. Consistency of brain tumors was evaluated at surgery and was classified as soft, intermediate, or hard with comparison to the white matter of the brain. Correspondence of MRE evaluation with operative results was studied. Results: The elastic modulus of the tumor was lower than that of white matter in 1 patient, higher in 11 patients, and similar in 2 patients. At surgery, the tumor manifested a soft consistency in 1 patient, hard consistency in 11 patients, intermediate consistency in 2 patients. The elasticity of tumors in 14 patients evaluated by MRE was correlated with the tumor consistency on the operation. Conclusion: MRE can noninvasively display the elasticity of brain tumors in vivo, and evaluate the brain tumor consistency before operation. (authors)

  15. The Use of Brain Stimulation in Dysphagia Management.

    Science.gov (United States)

    Simons, Andre; Hamdy, Shaheen

    2017-04-01

    Dysphagia is common sequela of brain injury with as many as 50% of patients suffering from dysphagia following stroke. Currently, the majority of guidelines for clinical practice in the management of dysphagia focus on the prevention of complications while any natural recovery takes place. Recently, however, non-invasive brain stimulation (NIBS) techniques like transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have started to attract attention and are applied to investigate both the physiology of swallowing and influences on dysphagia. TMS allows for painless stimulation of the brain through an intact skull-an effect which would normally be impossible with electrical currents due to the high resistance of the skull. By comparison, tDCS involves passing a small electric current (usually under 2 mA) produced by a current generator over the scalp and cranium external to the brain. Initial studies used these techniques to better understand the physiological mechanisms of swallowing in healthy subjects. More recently, a number of studies have investigated the efficacy of these techniques in the management of neurogenic dysphagia with mixed results. Controversy still exists as to which site, strength and duration of stimulation yields the greatest improvement in dysphagia. And while multiple studies have suggested promising effects of NIBS, more randomised control trials with larger sample sizes are needed to investigate the short- and long-term effects of NIBS in neurogenic dysphagia.

  16. An investigation of cerebrograph imaging system

    International Nuclear Information System (INIS)

    Chen Lianxiang; Zhang Qingling; Wang Xinhui; Luo Qikun

    1994-01-01

    A cerebrograph imaging system was investigated for the diagnosis of cerebrovascular diseases. This system can quantitatively analyse and map the regional cerebral blood flow (rCBF) and also the electroencephalography (EEG). The mapping of cerebellum-brain stem area was also realized. This system is the first one to combine the technology of nuclear medicine with electrophysiology, and thereby provide a combined information about the rCBF and the function of brain with coloured rCBF mapping, topographical EEG mapping and quantitative data at the same time. It has important value for the early diagnosis of brain diseases, especially for the cerebral vascular accident

  17. Brain and heart disease studies

    International Nuclear Information System (INIS)

    Budinger, T.F.; Sargent, T.W. III; Yen, C.K.; Friedland, R.F.; Moyer, B.R.

    1981-01-01

    Highlights of important studies completed during the past year using the Donner 280-crystal positron ring tomograph are summarized in this article. Using rubidium-82, images of a brain tumor and an arteriovenous malformation are described. An image demonstrating methionine uptake in a patient with schizophrenia and an image reflecting sugar metabolism in the brain of a man with Alzheimer's disease are also included. Uptake of rubidium-82 in subjects before and after exercise is being investigated. The synthesis of new radiopharmaceuticals and the development of a new synthesis for C-taurine for use in the study of metabolism in the human heart are also being studied

  18. Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tingting Lin

    2016-07-01

    Full Text Available Brain delivery of macromolecular therapeutics (e.g., proteins remains an unsolved problem because of the formidable blood–brain barrier (BBB. Although a direct pathway of nose-to-brain transfer provides an answer to circumventing the BBB and has already been intensively investigated for brain delivery of small drugs, new challenges arise for intranasal delivery of proteins because of their larger size and hydrophilicity. In order to overcome the barriers and take advantage of available pathways (e.g., epithelial tight junctions, uptake by olfactory neurons, transport into brain tissues, and intra-brain diffusion, a low molecular weight protamine (LMWP cell-penetrating peptide was utilized to facilitate nose-to-brain transport. Cell-penetrating peptides (CPP have been widely used to mediate macromolecular delivery through many kinds of biobarriers. Our results show that conjugates of LMWP–proteins are able to effectively penetrate into the brain after intranasal administration. The CPP-based intranasal method highlights a promising solution for protein therapy of brain diseases.

  19. Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides

    Institute of Scientific and Technical Information of China (English)

    Tingting Lin; Ergang Liu; Huining He; Meong Cheol Shin; Cheol Moon; Victor C.Yang; Yongzhuo Huang

    2016-01-01

    Brain delivery of macromolecular therapeutics(e.g., proteins) remains an unsolved problem because of the formidable blood–brain barrier(BBB). Although a direct pathway of nose-to-brain transfer provides an answer to circumventing the BBB and has already been intensively investigated for brain delivery of small drugs,new challenges arise for intranasal delivery of proteins because of their larger size and hydrophilicity. In order to overcome the barriers and take advantage of available pathways(e.g., epithelial tight junctions, uptake by olfactory neurons, transport into brain tissues, and intra-brain diffusion), a low molecular weight protamine(LMWP) cell-penetrating peptide was utilized to facilitate nose-to-brain transport. Cell-penetrating peptides(CPP)have been widely used to mediate macromolecular delivery through many kinds of biobarriers. Our results show that conjugates of LMWP–proteins are able to effectively penetrate into the brain after intranasal administration.The CPP-based intranasal method highlights a promising solution for protein therapy of brain diseases.

  20. Hemispheric lateralization of topological organization in structural brain networks.

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander

    2014-09-01

    The study on structural brain asymmetries in healthy individuals plays an important role in our understanding of the factors that modulate cognitive specialization in the brain. Here, we used fiber tractography to reconstruct the left and right hemispheric networks of a large cohort of 346 healthy participants (20-86 years) and performed a graph theoretical analysis to investigate this brain laterality from a network perspective. Findings revealed that the left hemisphere is significantly more "efficient" than the right hemisphere, whereas the right hemisphere showed higher values of "betweenness centrality" and "small-worldness." In particular, left-hemispheric networks displayed increased nodal efficiency in brain regions related to language and motor actions, whereas the right hemisphere showed an increase in nodal efficiency in brain regions involved in memory and visuospatial attention. In addition, we found that hemispheric networks decrease in efficiency with age. Finally, we observed significant gender differences in measures of global connectivity. By analyzing the structural hemispheric brain networks, we have provided new insights into understanding the neuroanatomical basis of lateralized brain functions. Copyright © 2014 Wiley Periodicals, Inc.

  1. Phenotypic integration of neurocranium and brain.

    Science.gov (United States)

    Richtsmeier, Joan T; Aldridge, Kristina; DeLeon, Valerie B; Panchal, Jayesh; Kane, Alex A; Marsh, Jeffrey L; Yan, Peng; Cole, Theodore M

    2006-07-15

    Evolutionary history of Mammalia provides strong evidence that the morphology of skull and brain change jointly in evolution. Formation and development of brain and skull co-occur and are dependent upon a series of morphogenetic and patterning processes driven by genes and their regulatory programs. Our current concept of skull and brain as separate tissues results in distinct analyses of these tissues by most researchers. In this study, we use 3D computed tomography and magnetic resonance images of pediatric individuals diagnosed with premature closure of cranial sutures (craniosynostosis) to investigate phenotypic relationships between the brain and skull. It has been demonstrated previously that the skull and brain acquire characteristic dysmorphologies in isolated craniosynostosis, but relatively little is known of the developmental interactions that produce these anomalies. Our comparative analysis of phenotypic integration of brain and skull in premature closure of the sagittal and the right coronal sutures demonstrates that brain and skull are strongly integrated and that the significant differences in patterns of association do not occur local to the prematurely closed suture. We posit that the current focus on the suture as the basis for this condition may identify a proximate, but not the ultimate cause for these conditions. Given that premature suture closure reduces the number of cranial bones, and that a persistent loss of skull bones is demonstrated over the approximately 150 million years of synapsid evolution, craniosynostosis may serve as an informative model for evolution of the mammalian skull. Copyright 2006 Wiley-Liss, Inc.

  2. Diffusion imaging and tractography of congenital brain malformations

    International Nuclear Information System (INIS)

    Wahl, Michael; Barkovich, A.J.; Mukherjee, Pratik

    2010-01-01

    Diffusion imaging is an MRI modality that measures the microscopic molecular motion of water in order to investigate white matter microstructure. The modality has been used extensively in recent years to investigate the neuroanatomical basis of congenital brain malformations. We review the basic principles of diffusion imaging and of specific techniques, including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI). We show how DTI and HARDI, and their application to fiber tractography, has elucidated the aberrant connectivity underlying a number of congenital brain malformations. Finally, we discuss potential uses for diffusion imaging of developmental disorders in the clinical and research realms. (orig.)

  3. White matter sexual dimorphism of the adult human brain

    Directory of Open Access Journals (Sweden)

    Bourisly Ali K.

    2017-05-01

    Full Text Available Sex-biased psychophysiology, behavior, brain function, and conditions are extensive, yet underlying structural brain mechanisms remain unclear. There is contradicting evidence regarding sexual dimorphism when it comes to brain structure, and there is still no consensus on whether or not there exists such a dimorphism for brain white matter. Therefore, we conducted a voxel-based morphometry (VBM analysis along with global volume analysis for white matter across sex. We analyzed 384 T1-weighted MRI brain images (192 male, 192 female to investigate any differences in white matter (WM between males and females. In the VBM analysis, we found males to have larger WM, compared to females, in occipital, temporal, insular, parietal, and frontal brain regions. In contrast, females showed only one WM region to be significantly larger than males: the right postcentral gyrus in the parietal lobe region. Although, on average, males showed larger global WM volume, we did not find any significant difference in global WM volume between males and females.

  4. Whole brain imaging with Serial Two-Photon Tomography

    Directory of Open Access Journals (Sweden)

    Stephen P Amato

    2016-03-01

    Full Text Available Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. The has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this paper, we describe in detail Serial Two-Photon (STP tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as optical coherence tomography, in order to provide unique contrast mechanisms. Furthermore we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches

  5. Effect of alcohol exposure on fetal brain development

    Science.gov (United States)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    Alcohol consumption during pregnancy can be severely damage to the brain development in fetuses. This study investigates the effects of maternal ethanol consumption on brain development in mice embryos. Pregnant mice at gestational day 12.5 were intragastrically gavaged with ethanol (3g/Kg bwt) twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde and imaged using a swept-source optical coherence tomography (SSOCT) system. 3D images of the mice embryo brain were obtained and the volumes of the left and right ventricles of the brain were measured. The average volumes of the left and the right volumes of 5 embryos each alcohol-exposed and control embryos were measured to be 0.35 and 0.15 mm3, respectively. The results suggest that the left and right ventricle volumes of brain are much larger in the alcohol-exposed embryos as compared to control embryos indicating alcohol-induced developmental delay.

  6. Functional imaging of the brain with positron emission tomography

    International Nuclear Information System (INIS)

    Alavi, A.; Reivich, M.; Jones, S.C.; Greenberg, J.H.; Wolf, A.P.

    1982-01-01

    An extensive review, with 191 references, of the development and diagnostic use of positron emission tomography (PET) of the brain is presented. An historical overview of functional studies of the brain reviews the use of nitrons oxide, 85 Kr and 133 Xe, [ 14 C]2-deoxyglucose, and [ 18 F]FDG. The [ 18 F]FDG technique allows the investigation of the effects of physiologic stimulation on the brain. Several studies using this technique are reported. The effects of stroke, seizure disorders, aging and dementia, and schizophrenia on cerebral metabolism as demosntrated by PET are explored

  7. The use of gammophos to prevent the delayed radiation injury to brain

    International Nuclear Information System (INIS)

    Shaposhnikova, V.V.; Levitman, M.Kh.; Plotnikova, E.D.; Ehjdus, L.Kh.

    1987-01-01

    The influence of a radioprotector, gammaphos, on the development of delayed vascular changes and necrosis in rat brain following local brain irradiation with 25 Gy was investigated. The radioprotective effect was manifested by both the morphometric parameters of vessels and the survival rate and relative number of animals with gross vascular abnormalities and brain necrosis. There was a causative relationship between the development of gross vascular abnormalities and the occurrence of brain necrosis after exposure to moderate radiation doses

  8. The Creative Brain.

    Science.gov (United States)

    Herrmann, Ned

    1982-01-01

    Outlines the differences between left-brain and right-brain functioning and between left-brain and right-brain dominant individuals, and concludes that creativity uses both halves of the brain. Discusses how both students and curriculum can become more "whole-brained." (Author/JM)

  9. Investigating structure and function in the healthy human brain: validity of acute versus chronic lesion-symptom mapping.

    Science.gov (United States)

    Karnath, Hans-Otto; Rennig, Johannes

    2017-07-01

    Modern voxel-based lesion-symptom mapping (VLSM) analyses techniques provide powerful tools to examine the relationship between structure and function of the healthy human brain. However, there is still uncertainty on the type of and the appropriate time point of imaging and of behavioral testing for such analyses. Here we tested the validity of the three most common combinations of structural imaging data and behavioral scores used in VLSM analyses. Given the established knowledge about the neural substrate of the primary motor system in humans, we asked the mundane question of where the motor system is represented in the normal human brain, analyzing individual arm motor function of 60 unselected stroke patients. Only the combination of acute behavioral scores and acute structural imaging precisely identified the principal brain area for the emergence of hemiparesis after stroke, i.e., the corticospinal tract (CST). In contrast, VLSM analyses based on chronic behavior-in combination with either chronic or acute imaging-required the exclusion of patients who had recovered from an initial paresis to reveal valid anatomical results. Thus, if the primary research aim of a VLSM lesion analysis is to uncover the neural substrates of a certain function in the healthy human brain and if no longitudinal designs with repeated evaluations are planned, the combination of acute imaging and behavior represents the ideal dataset.

  10. Headache and Vascular Events with Brain Tumors

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-05-01

    Full Text Available Investigators at the Children's Hospital of Philadelphia, PA, performed a retrospective study of 265 children with brain tumors who received cranial irradiation and developed severe recurrent headache.

  11. Whole-brain atrophy rate and cognitive decline: longitudinal MR study of memory clinic patients

    NARCIS (Netherlands)

    Sluimer, J.D.; van der Flier, W.M.; Karas, G.B.; Fox, N.C.; Scheltens, P.; Barkhof, F.; Vrenken, H.

    2008-01-01

    Purpose: To prospectively determine whole-brain atrophy rate in mild cognitive impairment (MCI) and Alzheimer disease (AD) and its association with cognitive decline, and investigate the risk of progression to dementia in initially non-demented patients given baseline brain volume and whole-brain

  12. Peripersonal space in the brain.

    Science.gov (United States)

    di Pellegrino, Giuseppe; Làdavas, Elisabetta

    2015-01-01

    Research in neuroscience reveals that the brain constructs multiple representation of space. Here, we primarily focus on peripersonal space (PPS) representation, the region of space immediately surrounding our bodies and in which objects can be grasped and manipulated. We review convergent results from several generations of studies, including neurophysiological studies in animals, neuropsychological investigations in monkeys and brain-damaged patients with spatial cognition disorders, as well as recent neuroimaging experiments in neurologically normal individuals. Collectively, these studies show that the primate brain constructs multiple, rapidly modifiable representations of space, centered on different body parts (i.e., hand-centered, head-centered, and trunk-centered), which arise through extensive multisensory interactions within a set of interconnected parietal and frontal regions. PPS representations are pivotal in the sensory guidance of motor behavior, allowing us to interact with objects and, as demonstrated by recent studies, with other people in the space around us. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The brain response to peripheral insulin declines with age: a contribution of the blood-brain barrier?

    Science.gov (United States)

    Sartorius, Tina; Peter, Andreas; Heni, Martin; Maetzler, Walter; Fritsche, Andreas; Häring, Hans-Ulrich; Hennige, Anita M

    2015-01-01

    It is a matter of debate whether impaired insulin action originates from a defect at the neural level or impaired transport of the hormone into the brain. In this study, we aimed to investigate the effect of aging on insulin concentrations in the periphery and the central nervous system as well as its impact on insulin-dependent brain activity. Insulin, glucose and albumin concentrations were determined in 160 paired human serum and cerebrospinal fluid (CSF) samples. Additionally, insulin was applied in young and aged mice by subcutaneous injection or intracerebroventricularly to circumvent the blood-brain barrier. Insulin action and cortical activity were assessed by Western blotting and electrocorticography radiotelemetric measurements. In humans, CSF glucose and insulin concentrations were tightly correlated with the respective serum/plasma concentrations. The CSF/serum ratio for insulin was reduced in older subjects while the CSF/serum ratio for albumin increased with age like for most other proteins. Western blot analysis in murine whole brain lysates revealed impaired phosphorylation of AKT (P-AKT) in aged mice following peripheral insulin stimulation whereas P-AKT was comparable to levels in young mice after intracerebroventricular insulin application. As readout for insulin action in the brain, insulin-mediated cortical brain activity instantly increased in young mice subcutaneously injected with insulin but was significantly reduced and delayed in aged mice during the treatment period. When insulin was applied intracerebroventricularly into aged animals, brain activity was readily improved. This study discloses age-dependent changes in insulin CSF/serum ratios in humans. In the elderly, cerebral insulin resistance might be partially attributed to an impaired transport of insulin into the central nervous system.

  14. Occurrence and severity of agitated behavior after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Moth Wolffbrandt, Mia; Poulsen, Ingrid; Engberg, Aase W

    2013-01-01

    To investigate the occurrence and severity of agitation in patients after severe traumatic brain injury (TBI), to identify predictors of agitation and to study interrater reliability for a translated version of the Agitated Behavior Scale (ABS).......To investigate the occurrence and severity of agitation in patients after severe traumatic brain injury (TBI), to identify predictors of agitation and to study interrater reliability for a translated version of the Agitated Behavior Scale (ABS)....

  15. Bioavailability of magnetic nanoparticles to the brain

    International Nuclear Information System (INIS)

    Huang, B.-R.; Chen, P.-Y.; Huang, C.-Y.; Jung, S.-M.; Ma, Y.-H.; Wu, Tony; Chen, J.-P.; Wei, K.-C.

    2009-01-01

    This study investigates the bioavailability of carboxymethyl dextran-coated magnetic nanoparticles (CMD-MNP) to the brain. The cytotoxicity of CMD-MNP was assessed by co-culture with C6, a rat glioma cell line. To investigate the effects of an external magnetic field on the biodistribution of nanoparticles in a rat model, a magnet of 0.3 Tesla was applied externally over the cranium and the particles injected via the external jugular vein. Nanoparticles were also injected into rats implanted with C6 tumor cells. Staining of histological samples with Prussian blue to detect iron particles revealed that the external magnetic field enhanced the aggregation of nanoparticles in the rat brain; this enhancement was even more pronounced in the tumor region.

  16. Bioavailability of magnetic nanoparticles to the brain

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.-R. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Chen, P.-Y. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Graduate Institute of Biomedical Sciences, Chang-Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan (China); Huang, C.-Y. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Jung, S.-M. [Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Ma, Y.-H. [Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Wu, Tony [Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Chen, J.-P. [Department of Chemical and Material Engineering, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China)], E-mail: jpchen@mail.cgu.edu.tw; Wei, K.-C. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China)], E-mail: kuochenwei@adm.cgmh.org.tw

    2009-05-15

    This study investigates the bioavailability of carboxymethyl dextran-coated magnetic nanoparticles (CMD-MNP) to the brain. The cytotoxicity of CMD-MNP was assessed by co-culture with C6, a rat glioma cell line. To investigate the effects of an external magnetic field on the biodistribution of nanoparticles in a rat model, a magnet of 0.3 Tesla was applied externally over the cranium and the particles injected via the external jugular vein. Nanoparticles were also injected into rats implanted with C6 tumor cells. Staining of histological samples with Prussian blue to detect iron particles revealed that the external magnetic field enhanced the aggregation of nanoparticles in the rat brain; this enhancement was even more pronounced in the tumor region.

  17. Whole brain functional connectivity in clinically isolated syndrome without conventional brain MRI lesions

    International Nuclear Information System (INIS)

    Liu, Yaou; Dai, Zhengjia; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Li, Kuncheng; Liu, Zheng; Dong, Huiqing; Shu, Ni; He, Yong; Vrenken, Hugo; Wattjes, Mike P.; Barkhof, Frederik

    2016-01-01

    To investigate brain functional connectivity (FC) alterations in patients with clinically isolated syndromes (CIS) presenting without conventional brain MRI lesions, and to identify the FC differences between the CIS patients who converted to multiple sclerosis (MS) and those not converted during a 5-year follow-up. We recruited 20 CIS patients without conventional brain lesions, 28 patients with MS and 28 healthy controls (HC). Normalized voxel-based functional connectivity strength (nFCS) was determined using resting-state fMRI (R-fMRI) and compared among groups. Furthermore, 5-years clinical follow-up of the CIS patients was performed to examine the differences in nFCS between converters and non-converters. Compared to HC, CIS patients showed significantly decreased nFCS in the visual areas and increased nFCS in several brain regions predominately in the temporal lobes. MS patients revealed more widespread higher nFCS especially in deep grey matter (DGM), compared to CIS and HC. In the four CIS patients converting to MS, significantly higher nFCS was found in right anterior cingulate gyrus (ACC) and fusiform gyrus (FG), compared to non-converted patients. We demonstrated both functional impairment and compensation in CIS by R-fMRI. nFCS alteration in ACC and FG seems to occur in CIS patients at risk of developing MS. (orig.)

  18. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    Science.gov (United States)

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L; Tschickardt, Sabrina E; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  19. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Sylvia Wagner

    Full Text Available BACKGROUND: The blood-brain barrier (BBB represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. CONCLUSIONS/SIGNIFICANCE: This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  20. Genetic and environmental influences on focal brain density in bipolar disorder

    NARCIS (Netherlands)

    van der Schot, Astrid C.; Vonk, Ronald; Brouwer, Rachel M.; van Baal, G. Caroline M.; Brans, Rachel G. H.; van Haren, Neeltje E. M.; Schnack, Hugo G.; Boomsma, Dorret I.; Nolen, Willem A.; Pol, Hilleke E. Hulshoff; Kahn, Rene S.

    2010-01-01

    Structural neuroimaging studies suggest the presence of subtle abnormalities in the brains of patients with bipolar disorder. The influence of genetic and/or environmental factors on these brain abnormalities is unknown. To investigate the contribution of genetic and environmental factors on grey

  1. Ontogenetic Shape Change in the Chicken Brain: Implications for Paleontology.

    Directory of Open Access Journals (Sweden)

    Soichiro Kawabe

    Full Text Available Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental stages using three-dimensional (3D geometric morphometric analysis and the growth rate of brain regions was evaluated to explore post-hatching morphological changes. Microscopic MRI (μMRI was used to acquire in vivo data from living and post-mortem chicken brains. The telencephalon rotates caudoventrally during growth. This change in shape leads to a relative caudodorsal rotation of the cerebellum and myelencephalon. In addition, all brain regions elongate rostrocaudally and this leads to a more slender brain shape. The growth rates of each brain region were constant and the slopes from the growth formula were parallel. The dominant pattern of ontogenetic shape change corresponded with interspecific shape changes due to increasing brain size. That is, the interspecific and ontogenetic changes in brain shape due to increased size have similar patterns. Although the shape of the brain and each brain region changed considerably, the volume ratio of each brain region did not change. This suggests that the brain can change its shape after completing functional differentiation of the brain regions. Moreover, these results show that consideration of ontogenetic changes in brain shape is necessary for an accurate assessment of brain morphology in paleontological studies.

  2. Brain radiation - discharge

    Science.gov (United States)

    Radiation - brain - discharge; Cancer - brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  3. The relationship of resting cerebral blood flow and brain activation during a social cognition task in adolescents with chronic moderate to severe traumatic brain injury: a preliminary investigation.

    Science.gov (United States)

    Newsome, Mary R; Scheibel, Randall S; Chu, Zili; Hunter, Jill V; Li, Xiaoqi; Wilde, Elisabeth A; Lu, Hanzhang; Wang, Zhiyue J; Lin, Xiaodi; Steinberg, Joel L; Vasquez, Ana C; Cook, Lori; Levin, Harvey S

    2012-05-01

    Alterations in cerebrovascular function are evident acutely in moderate to severe traumatic brain injury (TBI), although less is known about their chronic effects. Adolescent and adult patients with moderate to severe TBI have been reported to demonstrate diffuse activation throughout the brain during functional magnetic resonance imaging (fMRI). Because fMRI is a measure related to blood flow, it is possible that any deficits in blood flow may alter activation. An arterial spin labeling (ASL) perfusion sequence was performed on seven adolescents with chronic moderate to severe TBI and seven typically developing (TD) adolescents during the same session in which they had performed a social cognition task during fMRI. In the TD group, prefrontal CBF was positively related to prefrontal activation and negatively related to non-prefrontal, posterior, brain activation. This relationship was not seen in the TBI group, who demonstrated a greater positive relationship between prefrontal CBF and non-prefrontal activation than the TD group. An analysis of CBF data independent of fMRI showed reduced CBF in the right non-prefrontal region (pflow throughout the right hemisphere in healthy brains. However, the TBI group demonstrated a positive association with activation constrained to the right non-prefrontal region. These data suggest a relationship between impaired non-prefrontal CBF and the presence of non-prefrontal extra-activation, where the region with more limited blood flow is associated with activation limited to that region. In a secondary analysis, pathology associated with hyperintensities on T2-weighted FLAIR imaging over the whole brain was related to whole brain activation, revealing a negative relationship between lesion volume and frontal activation, and a positive relationship between lesion volume and posterior activation. These preliminary data, albeit collected with small sample sizes, suggest that reduced non-prefrontal CBF, and possibly pathological

  4. Age-dependent association of thyroid function with brain morphology and microstructural organization : Evidence from brain imaging

    NARCIS (Netherlands)

    Chaker, Layal; Cremers, Lotte G M; Korevaar, Tim I.M.; De Groot, Marius; Dehghan, Abbas; Franco, Oscar H.; Niessen, W.J.; Ikram, M. Arfan; Peeters, Robin P.; Vernooij, Meike W.

    2018-01-01

    Thyroid hormone (TH) is crucial during neurodevelopment, but high levels of TH have been linked to neurodegenerative disorders. No data on the association of thyroid function with brain imaging in the general population are available. We therefore investigated the association of

  5. Whole-brain radiation therapy for brain metastases: detrimental or beneficial?

    International Nuclear Information System (INIS)

    Gemici, Cengiz; Yaprak, Gokhan

    2015-01-01

    Stereotactic radiosurgery is frequently used, either alone or together with whole-brain radiation therapy to treat brain metastases from solid tumors. Certain experts and radiation oncology groups have proposed replacing whole-brain radiation therapy with stereotactic radiosurgery alone for the management of brain metastases. Although randomized trials have favored adding whole-brain radiation therapy to stereotactic radiosurgery for most end points, a recent meta-analysis demonstrated a survival disadvantage for patients treated with whole-brain radiation therapy and stereotactic radiosurgery compared with patients treated with stereotactic radiosurgery alone. However the apparent detrimental effect of adding whole-brain radiation therapy to stereotactic radiosurgery reported in this meta-analysis may be the result of inhomogeneous distribution of the patients with respect to tumor histologies, molecular histologic subtypes, and extracranial tumor stages between the groups rather than a real effect. Unfortunately, soon after this meta-analysis was published, even as an abstract, use of whole-brain radiation therapy in managing brain metastases has become controversial among radiation oncologists. The American Society of Radiation Oncology recently recommended, in their “Choose Wisely” campaign, against routinely adding whole-brain radiation therapy to stereotactic radiosurgery to treat brain metastases. However, this situation creates conflict for radiation oncologists who believe that there are enough high level of evidence for the effectiveness of whole-brain radiation therapy in the treatment of brain metastases

  6. N-Terminal pro-Brain Natriuretic Peptide and Associations With Brain Magnetic Resonance Imaging (MRI Features in Middle Age: The CARDIA Brain MRI Study

    Directory of Open Access Journals (Sweden)

    Ian T. Ferguson

    2018-05-01

    Full Text Available ObjectiveAs part of research on the heart–brain axis, we investigated the association of N-terminal pro-brain natriuretic peptide (NT-proBNP with brain structure and function in a community-based cohort of middle-aged adults from the Brain Magnetic Resonance Imaging sub-study of the Coronary Artery Risk Development in Young Adults (CARDIA Study.Approach and resultsIn a cohort of 634 community-dwelling adults with a mean (range age of 50.4 (46–52 years, we examined the cross-sectional association of NT-proBNP to total, gray (GM and white matter (WM volumes, abnormal WM load and WM integrity, and to cognitive function tests [the Digit Symbol Substitution Test (DSST, the Stroop test, and the Rey Auditory–Verbal Learning Test]. These associations were examined using linear regression models adjusted for demographic and cardiovascular risk factors and cardiac output. Higher NT-proBNP concentration was significantly associated with smaller GM volume (β = −3.44; 95% CI = −5.32, −0.53; p = 0.003, even after additionally adjusting for cardiac output (β = −2.93; 95% CI = −5.32, −0.53; p = 0.017. Higher NT-proBNP levels were also associated with lower DSST scores. NT-proBNP was not related to WM volume, WM integrity, or abnormal WM load.ConclusionIn this middle-aged cohort, subclinical levels of NT-proBNP were related to brain function and specifically to GM and not WM measures, extending similar findings in older cohorts. Further research is warranted into biomarkers of cardiac dysfunction as a target for early markers of a brain at risk.

  7. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    Science.gov (United States)

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  8. Cerebral Glucose Metabolism and Sedation in Brain-injured Patients: A Microdialysis Study.

    Science.gov (United States)

    Hertle, Daniel N; Santos, Edgar; Hagenston, Anna M; Jungk, Christine; Haux, Daniel; Unterberg, Andreas W; Sakowitz, Oliver W

    2015-07-01

    Disturbed brain metabolism is a signature of primary damage and/or precipitates secondary injury processes after severe brain injury. Sedatives and analgesics target electrophysiological functioning and are as such well-known modulators of brain energy metabolism. Still unclear, however, is how sedatives impact glucose metabolism and whether they differentially influence brain metabolism in normally active, healthy brain and critically impaired, injured brain. We therefore examined and compared the effects of anesthetic drugs under both critical (1 mmol/L) extracellular brain glucose levels. We performed an explorative, retrospective analysis of anesthetic drug administration and brain glucose concentrations, obtained by bedside microdialysis, in 19 brain-injured patients. Our investigations revealed an inverse linear correlation between brain glucose and both the concentration of extracellular glutamate (Pearson r=-0.58, P=0.01) and the lactate/glucose ratio (Pearson r=-0.55, P=0.01). For noncritical brain glucose levels, we observed a positive linear correlation between midazolam dose and brain glucose (Pbrain glucose levels, extracellular brain glucose was unaffected by any type of sedative. These findings suggest that the use of anesthetic drugs may be of limited value in attempts to influence brain glucose metabolism in injured brain tissue.

  9. Investigating Synchronous Oscillation and Deep Brain Stimulation Treatment in A Model of Cortico-Basal Ganglia Network.

    Science.gov (United States)

    Lu, Meili; Wei, Xile; Loparo, Kenneth A

    2017-11-01

    Altered firing properties and increased pathological oscillations in the basal ganglia have been proven to be hallmarks of Parkinson's disease (PD). Increasing evidence suggests that abnormal synchronous oscillations and suppression in the cortex may also play a critical role in the pathogenic process and treatment of PD. In this paper, a new closed-loop network including the cortex and basal ganglia using the Izhikevich models is proposed to investigate the synchrony and pathological oscillations in motor circuits and their modulation by deep brain stimulation (DBS). Results show that more coherent dynamics in the cortex may cause stronger effects on the synchrony and pathological oscillations of the subthalamic nucleus (STN). The pathological beta oscillations of the STN can both be efficiently suppressed with DBS applied directly to the STN or to cortical neurons, respectively, but the underlying mechanisms by which DBS suppresses the beta oscillations are different. This research helps to understand the dynamics of pathological oscillations in PD-related motor regions and supports the therapeutic potential of stimulation of cortical neurons.

  10. Whole Brain Irradiation With Hippocampal Sparing and Dose Escalation on Multiple Brain Metastases: A Planning Study on Treatment Concepts

    International Nuclear Information System (INIS)

    Prokic, Vesna; Wiedenmann, Nicole; Fels, Franziska; Schmucker, Marianne; Nieder, Carsten; Grosu, Anca-Ligia

    2013-01-01

    Purpose: To develop a new treatment planning strategy in patients with multiple brain metastases. The goal was to perform whole brain irradiation (WBI) with hippocampal sparing and dose escalation on multiple brain metastases. Two treatment concepts were investigated: simultaneously integrated boost (SIB) and WBI followed by stereotactic fractionated radiation therapy sequential concept (SC). Methods and Materials: Treatment plans for both concepts were calculated for 10 patients with 2-8 brain metastases using volumetric modulated arc therapy. In the SIB concept, the prescribed dose was 30 Gy in 12 fractions to the whole brain and 51 Gy in 12 fractions to individual brain metastases. In the SC concept, the prescription was 30 Gy in 12 fractions to the whole brain followed by 18 Gy in 2 fractions to brain metastases. All plans were optimized for dose coverage of whole brain and lesions, simultaneously minimizing dose to the hippocampus. The treatment plans were evaluated on target coverage, homogeneity, and minimal dose to the hippocampus and organs at risk. Results: The SIB concept enabled more successful sparing of the hippocampus; the mean dose to the hippocampus was 7.55 ± 0.62 Gy and 6.29 ± 0.62 Gy, respectively, when 5-mm and 10-mm avoidance regions around the hippocampus were used, normalized to 2-Gy fractions. In the SC concept, the mean dose to hippocampus was 9.8 ± 1.75 Gy. The mean dose to the whole brain (excluding metastases) was 33.2 ± 0.7 Gy and 32.7 ± 0.96 Gy, respectively, in the SIB concept, for 5-mm and 10-mm hippocampus avoidance regions, and 37.23 ± 1.42 Gy in SC. Conclusions: Both concepts, SIB and SC, were able to achieve adequate whole brain coverage and radiosurgery-equivalent dose distributions to individual brain metastases. The SIB technique achieved better sparing of the hippocampus, especially when a10-mm hippocampal avoidance region was used.

  11. Maternal Pseudo-Bartter Syndrome Associated with Severe Perinatal Brain Injury.

    Science.gov (United States)

    Vora, Shrenik; Ibrahim, Thowfique; Rajadurai, Victor Samuel

    2017-09-15

    Maternal electrolyte imbalance is rarely reported as causative factor of severe perinatal brain injury. This case outlines a unique maternal and neonatal pseudo-Bartter syndrome presented with metabolic alkalosis and hypochloremia due to maternal severe vomiting. Neonatal MRI brain revealed extensive brain hemorrhages with porencephalic cysts. Subsequent investigation workup points towards maternal severe metabolic alkalosis as its cause. Careful medical attention should be paid to pregnant women with excessive vomiting to ensure a healthy outcome for both the mother and the baby.

  12. An Investigation of the Linguistic Construction of Identity in Individuals after Traumatic Brain Injury

    Science.gov (United States)

    Keegan, Louise C.

    2012-01-01

    Previous research has emphasized the importance of a positive identity in the rehabilitation of individuals with traumatic brain injury (TBI) and although identity is constructed and negotiated socially, through the use of language, there is little research available on the linguistic tools used by this population in constructing their identities.…

  13. A novel fiber-free technique for brain activity imaging in multiple freely behaving mice

    Science.gov (United States)

    Inagaki, Shigenori; Agetsuma, Masakazu; Nagai, Takeharu

    2018-02-01

    Brain functions and related psychiatric disorders have been investigated by recording electrophysiological field potential. When recording it, a conventional method requires fiber-based apparatus connected to the brain, which however hampers the simultaneous measurement in multiple animals (e.g. by a tangle of fibers). Here, we propose a fiber-free recording technique in conjunction with a ratiometric bioluminescent voltage indicator. Our method allows investigation of electrophysiological filed potential dynamics in multiple freely behaving animals simultaneously over a long time period. Therefore, this fiber-free technique opens up the way to investigate a new mechanism of brain function that governs social behaviors and animal-to-animal interaction.

  14. Brain Connectivity and Visual Attention

    Science.gov (United States)

    Parks, Emily L.

    2013-01-01

    Abstract Emerging hypotheses suggest that efficient cognitive functioning requires the integration of separate, but interconnected cortical networks in the brain. Although task-related measures of brain activity suggest that a frontoparietal network is associated with the control of attention, little is known regarding how components within this distributed network act together or with other networks to achieve various attentional functions. This review considers both functional and structural studies of brain connectivity, as complemented by behavioral and task-related neuroimaging data. These studies show converging results: The frontal and parietal cortical regions are active together, over time, and identifiable frontoparietal networks are active in relation to specific task demands. However, the spontaneous, low-frequency fluctuations of brain activity that occur in the resting state, without specific task demands, also exhibit patterns of connectivity that closely resemble the task-related, frontoparietal attention networks. Both task-related and resting-state networks exhibit consistent relations to behavioral measures of attention. Further, anatomical structure, particularly white matter pathways as defined by diffusion tensor imaging, places constraints on intrinsic functional connectivity. Lastly, connectivity analyses applied to investigate cognitive differences across individuals in both healthy and diseased states suggest that disconnection of attentional networks is linked to deficits in cognitive functioning, and in extreme cases, to disorders of attention. Thus, comprehensive theories of visual attention and their clinical translation depend on the continued integration of behavioral, task-related neuroimaging, and brain connectivity measures. PMID:23597177

  15. The endocannabinoid system in brain reward processes.

    Science.gov (United States)

    Solinas, M; Goldberg, S R; Piomelli, D

    2008-05-01

    Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB(1) receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB(1) receptors by plant-derived, synthetic or endogenous CB(1) receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB(1) receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes.

  16. Brain Stimulation Therapies

    Science.gov (United States)

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  17. Sorting Tubules Regulate Blood-Brain Barrier Transcytosis

    Directory of Open Access Journals (Sweden)

    Roberto Villaseñor

    2017-12-01

    Full Text Available Transcytosis across the blood-brain barrier (BBB regulates key processes of the brain, but the intracellular sorting mechanisms that determine successful receptor-mediated transcytosis in brain endothelial cells (BECs remain unidentified. Here, we used Transferrin receptor-based Brain Shuttle constructs to investigate intracellular transport in BECs, and we uncovered a pathway for the regulation of receptor-mediated transcytosis. By combining live-cell imaging and mathematical modeling in vitro with super-resolution microscopy of the BBB, we show that intracellular tubules promote transcytosis across the BBB. A monovalent construct (sFab sorted for transcytosis was localized to intracellular tubules, whereas a bivalent construct (dFab sorted for degradation formed clusters with impaired transport along tubules. Manipulating tubule biogenesis by overexpressing the small GTPase Rab17 increased dFab transport into tubules and induced its transcytosis in BECs. We propose that sorting tubules regulate transcytosis in BECs and may be a general mechanism for receptor-mediated transport across the BBB.

  18. Brain SPECT in severs traumatic head injury

    International Nuclear Information System (INIS)

    Beaulieu, F.; Eder, V.; Pottier, J.M.; Baulieu, J.L.; Fournier, P.; Legros, B.; Chiaroni, P.; Dalonneau, M.

    2000-01-01

    The aim of this work was to compare the results of the early brain scintigraphy in traumatic brain injury to the long term neuropsychological behavior. Twenty four patients had an ECD-Tc99m SPECT, within one month after the trauma; scintigraphic abnormalities were evaluated according to a semi-quantitative analysis. The neuropsychological clinical investigation was interpreted by a synthetic approach to evaluate abnormalities related to residual motor deficit, frontal behavior, memory and language disorders. Fourteen patients (58%) had sequela symptoms. SPECT revealed 80 abnormalities and CT scan only 31. Statistical analysis of uptake values showed significantly lower uptake in left basal ganglia and brain stem in patients with sequela memory disorders. We conclude that the brain perfusion scintigraphy is able to detect more lesions than CT and that it could really help to predict the neuropsychological behavior after severe head injury. Traumatology could become in the future a widely accepted indication of perfusion SPECT. (authors)

  19. Brain herniation

    Science.gov (United States)

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  20. Hypofractionation Regimens for Stereotactic Radiotherapy for Large Brain Tumors

    International Nuclear Information System (INIS)

    Yuan Jiankui; Wang, Jian Z.; Lo, Simon; Grecula, John C.; Ammirati, Mario; Montebello, Joseph F.; Zhang Hualin; Gupta, Nilendu; Yuh, William T.C.; Mayr, Nina A.

    2008-01-01

    Purpose: To investigate equivalent regimens for hypofractionated stereotactic radiotherapy (HSRT) for brain tumor treatment and to provide dose-escalation guidance to maximize the tumor control within the normal brain tolerance. Methods and Materials: The linear-quadratic model, including the effect of nonuniform dose distributions, was used to evaluate the HSRT regimens. The α/β ratio was estimated using the Gammaknife stereotactic radiosurgery (GKSRS) and whole-brain radiotherapy experience for large brain tumors. The HSRT regimens were derived using two methods: (1) an equivalent tumor control approach, which matches the whole-brain radiotherapy experience for many fractions and merges it with the GKSRS data for few fractions; and (2) a normal-tissue tolerance approach, which takes advantages of the dose conformity and fractionation of HSRT to approach the maximal dose tolerance of the normal brain. Results: A plausible α/β ratio of 12 Gy for brain tumor and a volume parameter n of 0.23 for normal brain were derived from the GKSRS and whole-brain radiotherapy data. The HSRT prescription regimens for the isoeffect of tumor irradiation were calculated. The normal-brain equivalent uniform dose decreased as the number of fractions increased, because of the advantage of fractionation. The regimens for potential dose escalation of HSRT within the limits of normal-brain tolerance were derived. Conclusions: The designed hypofractionated regimens could be used as a preliminary guide for HSRT dose prescription for large brain tumors to mimic the GKSRS experience and for dose escalation trials. Clinical studies are necessary to further tune the model parameters and validate these regimens

  1. Hydrocephalus following severe traumatic brain injury in adults. Incidence, timing, and clinical predictors during rehabilitation

    DEFF Research Database (Denmark)

    Kammersgaard, Lars Peter; Linnemann, Mia; Tibæk, Maiken

    2013-01-01

    To investigate timing and clinical predictors that might predict hydrocephalus emerging during rehabilitation until 1 year following severe traumatic brain injury (TBI).......To investigate timing and clinical predictors that might predict hydrocephalus emerging during rehabilitation until 1 year following severe traumatic brain injury (TBI)....

  2. Antioxidant therapies in traumatic brain injury: a review

    Directory of Open Access Journals (Sweden)

    Romero-Rivera Hector Rolando

    2017-09-01

    Full Text Available Oxidative stress constitute one of the commonest mechanism of the secondary injury contributing to neuronal death in traumatic brain injury cases. The oxidative stress induced secondary injury blockade may be considered as to be a good alternative to improve the outcome of traumatic brain injury (TBI treatment. Due to absence of definitive therapy of traumatic brain injury has forced researcher to utilize unconventional therapies and its roles investigated in the improvement of management and outcome in recent year. Antioxidant therapies are proven effective in many preclinical studies and encouraging results and the role of antioxidant mediaction may act as further advancement in the traumatic brain injury management it may represent aonr of newer moadlaity in neurosurgical aramamentorium, this kind of therapy could be a good alternative or adjuct to the previously established neuroprotection agents in TBI.

  3. Neuropsychiatric aspects of severe brain injuries

    Directory of Open Access Journals (Sweden)

    O. S. Zaitsev

    2012-01-01

    Full Text Available The state-of-the-art of Russian neuropsychiatry and priority developments in different psychopathological syndromes in severe brain injuries are assessed. Many cognitive and emotional impairments are explained in terms of the idea on the organization of psychic activity over time. It is emphasized that to achieve the premorbid levels of an interhemispheric interaction and functional asymmetry of the cerebral hemispheres affords psychic activity recovery. The experience in investigating, classifying, and treating various mental disorders occurring after severe brain injuries is generalized. The basic principles of psychopharmacotherapy and rehabilitation of victims are stated.

  4. Hemispheric asymmetry of electroencephalography-based functional brain networks.

    Science.gov (United States)

    Jalili, Mahdi

    2014-11-12

    Electroencephalography (EEG)-based functional brain networks have been investigated frequently in health and disease. It has been shown that a number of graph theory metrics are disrupted in brain disorders. EEG-based brain networks are often studied in the whole-brain framework, where all the nodes are grouped into a single network. In this study, we studied the brain networks in two hemispheres and assessed whether there are any hemispheric-specific patterns in the properties of the networks. To this end, resting state closed-eyes EEGs from 44 healthy individuals were processed and the network structures were extracted separately for each hemisphere. We examined neurophysiologically meaningful graph theory metrics: global and local efficiency measures. The global efficiency did not show any hemispheric asymmetry, whereas the local connectivity showed rightward asymmetry for a range of intermediate density values for the constructed networks. Furthermore, the age of the participants showed significant direct correlations with the global efficiency of the left hemisphere, but only in the right hemisphere, with local connectivity. These results suggest that only local connectivity of EEG-based functional networks is associated with brain hemispheres.

  5. Skulls, brains, and memorial culture: on cerebral biographies of scientists in the nineteenth century.

    Science.gov (United States)

    Hagner, Michael

    2003-06-01

    In this paper, I will argue that the scientific investigation of skulls and brains of geniuses went hand in hand with hagiographical celebrations of scientists. My analysis starts with late-eighteenth century anatomists and anthropologists who highlighted quantitative parameters such as the size and weight of the brain in order to explain intellectual differences between women and men and Europeans and non-Europeans, geniuses and ordinary persons. After 1800 these parameters were modified by phrenological inspections of the skull and brain. As the phrenological examination of the skulls of Immanuel Kant, Wilhelm Heinse, Arthur Schopenhauer and others shows, the anthropometrical data was interpreted in light of biographical circumstances. The same pattern of interpretation can be found in non-phrenological contexts: Reports about extraordinary brains were part of biographical sketches, mainly delivered in celebratory obituaries. It was only in this context that moral reservations about dissecting the brains of geniuses could be overcome, which led to a more systematic investigation of brains of geniuses after 1860.

  6. The impact of dietary isoflavonoids on malignant brain tumors

    International Nuclear Information System (INIS)

    Sehm, Tina; Fan, Zheng; Weiss, Ruth; Schwarz, Marc; Engelhorn, Tobias; Hore, Nirjhar; Doerfler, Arnd; Buchfelder, Michael; Eyüpoglu, IIker Y; Savaskan, Nic E

    2014-01-01

    Poor prognosis and limited therapeutic options render malignant brain tumors one of the most devastating diseases in clinical medicine. Current treatment strategies attempt to expand the therapeutic repertoire through the use of multimodal treatment regimens. It is here that dietary fibers have been recently recognized as a supportive natural therapy in augmenting the body's response to tumor growth. Here, we investigated the impact of isoflavonoids on primary brain tumor cells. First, we treated glioma cell lines and primary astrocytes with various isoflavonoids and phytoestrogens. Cell viability in a dose-dependent manner was measured for biochanin A (BCA), genistein (GST), and secoisolariciresinol diglucoside (SDG). Dose–response action for the different isoflavonoids showed that BCA is highly effective on glioma cells and nontoxic for normal differentiated brain tissues. We further investigated BCA in ex vivo and in vivo experimentations. Organotypic brain slice cultures were performed and treated with BCA. For in vivo experiments, BCA was intraperitoneal injected in tumor-implanted Fisher rats. Tumor size and edema were measured and quantified by magnetic resonance imaging (MRI) scans. In vascular organotypic glioma brain slice cultures (VOGIM) we found that BCA operates antiangiogenic and neuroprotective. In vivo MRI scans demonstrated that administered BCA as a monotherapy was effective in reducing significantly tumor-induced brain edema and showed a trend for prolonged survival. Our results revealed that dietary isoflavonoids, in particular BCA, execute toxicity toward glioma cells, antiangiogenic, and coevally neuroprotective properties, and therefore augment the range of state-of-the-art multimodal treatment approach

  7. Brain surgery

    Science.gov (United States)

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  8. [Blood-brain barrier part III: therapeutic approaches to cross the blood-brain barrier and target the brain].

    Science.gov (United States)

    Weiss, N; Miller, F; Cazaubon, S; Couraud, P-O

    2010-03-01

    Over the last few years, the blood-brain barrier has come to be considered as the main limitation for the treatment of neurological diseases caused by inflammatory, tumor or neurodegenerative disorders. In the blood-brain barrier, the close intercellular contact between cerebral endothelial cells due to tight junctions prevents the passive diffusion of hydrophilic components from the bloodstream into the brain. Several specific transport systems (via transporters expressed on cerebral endothelial cells) are implicated in the delivery of nutriments, ions and vitamins to the brain; other transporters expressed on cerebral endothelial cells extrude endogenous substances or xenobiotics, which have crossed the cerebral endothelium, out of the brain and into the bloodstream. Recently, several strategies have been proposed to target the brain, (i) by by-passing the blood-brain barrier by central drug administration, (ii) by increasing permeability of the blood-brain barrier, (iii) by modulating the expression and/or the activity of efflux transporters, (iv) by using the physiological receptor-dependent blood-brain barrier transport, and (v) by creating new viral or chemical vectors to cross the blood-brain barrier. This review focuses on the illustration of these different approaches. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.

  9. Brain volume reductions in adolescent heavy drinkers.

    Science.gov (United States)

    Squeglia, Lindsay M; Rinker, Daniel A; Bartsch, Hauke; Castro, Norma; Chung, Yoonho; Dale, Anders M; Jernigan, Terry L; Tapert, Susan F

    2014-07-01

    Brain abnormalities in adolescent heavy drinkers may result from alcohol exposure, or stem from pre-existing neural features. This longitudinal morphometric study investigated 40 healthy adolescents, ages 12-17 at study entry, half of whom (n=20) initiated heavy drinking over the 3-year follow-up. Both assessments included high-resolution magnetic resonance imaging. FreeSurfer was used to segment brain volumes, which were measured longitudinally using the newly developed quantitative anatomic regional change analysis (QUARC) tool. At baseline, participants who later transitioned into heavy drinking showed smaller left cingulate, pars triangularis, and rostral anterior cingulate volume, and less right cerebellar white matter volumes (pteens. Over time, participants who initiated heavy drinking showed significantly greater volume reduction in the left ventral diencephalon, left inferior and middle temporal gyrus, and left caudate and brain stem, compared to substance-naïve youth (pbrain regions in future drinkers and greater brain volume reduction in subcortical and temporal regions after alcohol use was initiated. This is consistent with literature showing pre-existing cognitive deficits on tasks recruited by frontal regions, as well as post-drinking consequences on brain regions involved in language and spatial tasks. Published by Elsevier Ltd.

  10. In vitro evidence for the brain glutamate efflux hypothesis

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby

    2012-01-01

    resistance values of 1014 ± 70 O cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids......The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L......-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial...

  11. Brain and Cognitive-Behavioural Development after Asphyxia at Term Birth

    Science.gov (United States)

    de Haan, Michelle; Wyatt, John S.; Roth, Simon; Vargha-Khadem, Faraneh; Gadian, David; Mishkin, Mortimer

    2006-01-01

    Perinatal asphyxia occurs in approximately 1-6 per 1000 live full-term births. Different patterns of brain damage can result, though the relation of these patterns to long-term cognitive-behavioural outcome remains under investigation. The hippocampus is one brain region that can be damaged (typically not in isolation), and this site of damage has…

  12. Transfection of rat brain endothelium in a primary culture model of the blood-brain barrier at different states of barrier maturity

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Lichota, Jacek

    Central nervous system diseases are becoming more prevalent. Unfortunately, the treatment of CNS diseases is often rendered complicated by the inability of many drugs of therapeutic relevance to cross the blood-brain barrier (BBB). In order to enhance drug delivery to the brain, different...... approaches have been developed. Gene therapy could be a promising and novel approach to overcome the restricting properties of the BBB to polypeptides and proteins. Gene therapy is based on the delivery of genetic material into brain capillary endothelial cells (BCECs), which, theoretically, will result...... in expression and secretion of the recombinant protein from the BCECs and into the brain, thus turning BCECs into small recombinant protein factories. In this study, the possibility of using BCECs as small factories for recombinant protein production was investigated. To mimic the in-vivo situation as closely...

  13. Lack of evidence for dysfunction of the blood-brain barrier in Alzheimer's disease: an immunohistochemical study

    NARCIS (Netherlands)

    Rozemuller, J. M.; Eikelenboom, P.; Kamphorst, W.; Stam, F. C.

    1988-01-01

    With immunohistoperoxidase techniques the presence of plasma (serum) proteins was investigated in senile plaques, congophilic angiopathy, neurons and glial cells in brains of patients with Alzheimer's dementia. Other investigators have found plasma proteins in brain parenchyma and suggested that

  14. [Forensic application of brainstem auditory evoked potential in patients with brain concussion].

    Science.gov (United States)

    Zheng, Xing-Bin; Li, Sheng-Yan; Huang, Si-Xing; Ma, Ke-Xin

    2008-12-01

    To investigate changes of brainstem auditory evoked potential (BAEP) in patients with brain concussion. Nineteen patients with brain concussion were studied with BAEP examination. The data was compared to the healthy persons reported in literatures. The abnormal rate of BAEP for patients with brain concussion was 89.5%. There was a statistically significant difference between the abnormal rate of patients and that of healthy persons (Pconcussion was 73.7%, indicating dysfunction of the brainstem in those patients. BAEP might be helpful in forensic diagnosis of brain concussion.

  15. Brain-computer interface supported collaborative work: Implications for rehabilitation.

    Science.gov (United States)

    Nam, C S; Lee, J; Bahn, S

    2013-01-01

    Working together and collaborating in a group can provide greater benefits for people with severe motor disability. However, it is still not clear how collaboration should be supported by BCI systems. The present study explored BCI-supported collaborative work by investigating differences in performance and brain activity between when a pair of users performs a task jointly with each other and when they do alone only through means of their brain activity. We found differences in performance and brain activity between different work conditions. The results of this research should provide fundamental knowledge of BCI-supported cooperative work.

  16. Exploring miniature insect brains using micro-CT scanning techniques

    Science.gov (United States)

    Smith, Dylan B.; Bernhardt, Galina; Raine, Nigel E.; Abel, Richard L.; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J.

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  17. A network of genes, genetic disorders, and brain areas.

    Directory of Open Access Journals (Sweden)

    Satoru Hayasaka

    Full Text Available The network-based approach has been used to describe the relationship among genes and various phenotypes, producing a network describing complex biological relationships. Such networks can be constructed by aggregating previously reported associations in the literature from various databases. In this work, we applied the network-based approach to investigate how different brain areas are associated to genetic disorders and genes. In particular, a tripartite network with genes, genetic diseases, and brain areas was constructed based on the associations among them reported in the literature through text mining. In the resulting network, a disproportionately large number of gene-disease and disease-brain associations were attributed to a small subset of genes, diseases, and brain areas. Furthermore, a small number of brain areas were found to be associated with a large number of the same genes and diseases. These core brain regions encompassed the areas identified by the previous genome-wide association studies, and suggest potential areas of focus in the future imaging genetics research. The approach outlined in this work demonstrates the utility of the network-based approach in studying genetic effects on the brain.

  18. Cortical and subcortical brain alterations in Juvenile Absence Epilepsy

    Directory of Open Access Journals (Sweden)

    Manuela Tondelli

    2016-01-01

    Full Text Available Despite the common assumption that genetic generalized epilepsies are characterized by a macroscopically normal brain on magnetic resonance imaging, subtle structural brain alterations have been detected by advanced neuroimaging techniques in Childhood Absence Epilepsy syndrome. We applied quantitative structural MRI analysis to a group of adolescents and adults with Juvenile Absence Epilepsy (JAE in order to investigate micro-structural brain changes using different brain measures. We examined grey matter volumes, cortical thickness, surface areas, and subcortical volumes in 24 patients with JAE compared to 24 healthy controls; whole-brain voxel-based morphometry (VBM and Freesurfer analyses were used. When compared to healthy controls, patients revealed both grey matter volume and surface area reduction in bilateral frontal regions, anterior cingulate, and right mesial-temporal lobe. Correlation analysis with disease duration showed that longer disease was correlated with reduced surface area in right pre- and post-central gyrus. A possible effect of valproate treatment on brain structures was excluded. Our results indicate that subtle structural brain changes are detectable in JAE and are mainly located in anterior nodes of regions known to be crucial for awareness, attention and memory.

  19. Resection of deep-seated brain glioma by microsurgery assisted with neuronavigation

    International Nuclear Information System (INIS)

    Feng Ming; Zhou Youxin; Sun Chunming; Zhang Shiming

    2009-01-01

    Objective: To investigate the clinical value of neuronavigator assisted microsurgery for deep-seated brain glioma. Methods: The electromagnetic neuronavigation system had been applied for microsurgery of deep-seated brain glioma in fifteen cases. Results: Ten from 15 patients were totally removed, 2 were subtotally removed and 3 were partial removed.All patients had no new neurological deficit. Conclusion: The neuronavigator assisted microsurgery for deep-seated brain glioma is of characters including accurate location, minimal invasiveness, and can enhance the rate of total resection and decrease the operative complications in the patients with deep-seated brain glioma. (authors)

  20. "Celebration of the Neurons": The Application of Brain Based Learning in Classroom Environment

    Science.gov (United States)

    Duman, Bilal

    2007-01-01

    The purpose of this study is to investigate approaches and techniques related to how brain based learning used in classroom atmosphere. This general purpose were answered following the questions: (1) What is the aim of brain based learning? (2) What are general approaches and techniques that brain based learning used? and (3) How should be used…

  1. Default, Cognitive, and Affective Brain Networks in Human Tinnitus

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0491 TITLE: Default, Cognitive, and Affective Brain Networks in Human Tinnitus PRINCIPAL INVESTIGATOR: Jennifer R...SUBTITLE 5a. CONTRACT NUMBER Default, Cognitive and Affective Brain Networks in Human Tinnitus 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Tinnitus is a major health problem among those currently and formerly in military

  2. Global cerebral blood flow changes measured by brain perfusion SPECT immediately after whole brain irradiation

    International Nuclear Information System (INIS)

    Ohtawa, Nobuyuki; Machida, Kikuo; Honda, Norinari; Hosono, Makoto; Takahashi, Takeo

    2003-01-01

    Whole brain irradiation (WBI) is still a major treatment option for patients with metastatic brain tumor despite recent advances in chemotherapy and newer techniques of radiation therapy. Cerebral blood flow (CBF) of changes induced by whole brain radiation is not fully investigated, and the aim of the study was to measure CBF changes non-invasively with brain perfusion SPECT to correlate with treatment effect or prognosis. Total of 106 patients underwent WBI during April 1998 to March 2002. Both brain MRI and brain perfusion SPECT could be performed before (less than 1 week before or less than 10 Gy of WBI) and immediately after (between 1 week before and 2 weeks after the completion of WBI) the therapy in 17 of these patients. They, 10 men and 7 women, all had metastatic brain tumor with age range of 45 to 87 (mean of 61.4) years. Tc-99m brain perfusion agent (HMPAO in 4, ECD in 13) was rapidly administered in a 740-MBq dose to measure global and regional CBF according to Matsuda's method, which based on both Patlak plot and Lassens' linearity correction. Brain MRI was used to measure therapeutic response according to World Health Organization (WHO) classification as complete remission (CR), partial response (PR), no change (NC), and progressive disease (PD). Survival period was measured from the completion of WBI. Mean global CBF was 40.6 and 41.5 ml/100 g/min before and immediately after the WBI, respectively. Four patients increased (greater than 10%) their global mean CBF, 10 unchanged (less than 10% increase or decrease), and 3 decreased after the WBI. The WBI achieved CR in none, PR in 8, NC in 6, and PD in 3 on brain MRI. Change in global mean CBF (mean±SD) was significantly larger in PR (4.3±2.0 ml/100 g/min, p=0.002) and in NC (-0.1±4.5) than in PD (-3.9±6.4, P=0.002, P=0.016, respectively). Survival was not significantly (p>0.05) different among the patients with CR (20 weeks), NC (48 weeks), and PD (21 weeks). Change in global CBF and survival was

  3. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation

    DEFF Research Database (Denmark)

    Undén, Johan; Strandberg, Karin; Malm, Jan

    2009-01-01

    INTRODUCTION: A simple and accurate method of differentiating ischemic stroke and intracerebral hemorrhage (ICH) is potentially useful to facilitate acute therapeutic management. Blood measurements of biomarkers of brain damage and activation of the coagulation system may potentially serve as nov...

  4. Creating the brain and interacting with the brain: an integrated approach to understanding the brain

    Science.gov (United States)

    Morimoto, Jun; Kawato, Mitsuo

    2015-01-01

    In the past two decades, brain science and robotics have made gigantic advances in their own fields, and their interactions have generated several interdisciplinary research fields. First, in the ‘understanding the brain by creating the brain’ approach, computational neuroscience models have been applied to many robotics problems. Second, such brain-motivated fields as cognitive robotics and developmental robotics have emerged as interdisciplinary areas among robotics, neuroscience and cognitive science with special emphasis on humanoid robots. Third, in brain–machine interface research, a brain and a robot are mutually connected within a closed loop. In this paper, we review the theoretical backgrounds of these three interdisciplinary fields and their recent progress. Then, we introduce recent efforts to reintegrate these research fields into a coherent perspective and propose a new direction that integrates brain science and robotics where the decoding of information from the brain, robot control based on the decoded information and multimodal feedback to the brain from the robot are carried out in real time and in a closed loop. PMID:25589568

  5. Do glutathione levels decline in aging human brain?

    Science.gov (United States)

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The 'selfish brain' is regulated by aquaporins and autophagy under nutrient deprivation.

    Science.gov (United States)

    Ye, Qiao; Wu, Yonghong; Gao, Yan; Li, Zhihui; Li, Weiguang; Zhang, Chenggang

    2016-05-01

    The brain maintains its mass and physiological functional capacity compared with other organs under harsh conditions such as starvation, a mechanism termed the 'selfish brain' theory. To further investigate this phenomenon, mice were examined following water and/or food deprivation. Although the body weights of the mice, the weight of the organs except the brain and blood glucose levels were significantly reduced in the absence of water and/or food, the brain weight maintained its original state. Furthermore, no significant differences in the water content of the brain or its energy balance were observed when the mice were subjected to water and/or food deprivation. To further investigate the mechanism underlying the brain maintenance of water and substance homeostasis, the expression levels of aquaporins (AQPs) and autophagy‑specific protein long‑chain protein 3 (LC3) were examined. During the process of water and food deprivation, no significant differences in the transcriptional levels of AQPs were observed. However, autophagy activity levels were initially stimulated, then suppressed in a time‑dependent manner. LC3 and AQPs have important roles for the survival of the brain under conditions of food and water deprivation, which provided further understanding of the mechanism underlying the 'selfish brain' phenomenon. Although not involved in the energy regulation of the 'selfish brain', AQPs were observed to have important roles in water and food deprivation, specifically with regards to the control of water content. Additionally, the brain exhibits an 'unselfish strategy' using autophagy during water and/or food deprivation. The present study furthered current understanding of the 'selfish brain' theory, and identified additional regulating target genes of AQPs and autophagy, with the aim of providing a basis for the prevention of nutrient shortage in humans and animals.

  7. Structural Graphical Lasso for Learning Mouse Brain Connectivity

    KAUST Repository

    Yang, Sen

    2015-08-07

    Investigations into brain connectivity aim to recover networks of brain regions connected by anatomical tracts or by functional associations. The inference of brain networks has recently attracted much interest due to the increasing availability of high-resolution brain imaging data. Sparse inverse covariance estimation with lasso and group lasso penalty has been demonstrated to be a powerful approach to discover brain networks. Motivated by the hierarchical structure of the brain networks, we consider the problem of estimating a graphical model with tree-structural regularization in this paper. The regularization encourages the graphical model to exhibit a brain-like structure. Specifically, in this hierarchical structure, hundreds of thousands of voxels serve as the leaf nodes of the tree. A node in the intermediate layer represents a region formed by voxels in the subtree rooted at that node. The whole brain is considered as the root of the tree. We propose to apply the tree-structural regularized graphical model to estimate the mouse brain network. However, the dimensionality of whole-brain data, usually on the order of hundreds of thousands, poses significant computational challenges. Efficient algorithms that are capable of estimating networks from high-dimensional data are highly desired. To address the computational challenge, we develop a screening rule which can quickly identify many zero blocks in the estimated graphical model, thereby dramatically reducing the computational cost of solving the proposed model. It is based on a novel insight on the relationship between screening and the so-called proximal operator that we first establish in this paper. We perform experiments on both synthetic data and real data from the Allen Developing Mouse Brain Atlas; results demonstrate the effectiveness and efficiency of the proposed approach.

  8. Impact of bronchopulmonary dysplasia on brain and retina

    Directory of Open Access Journals (Sweden)

    Annie Wing Hoi Poon

    2016-04-01

    Full Text Available Many premature newborns develop bronchopulmonary dysplasia (BPD, a chronic lung disease resulting from prolonged mechanical ventilation and hyperoxia. BPD survivors typically suffer long-term injuries not only to the lungs, but also to the brain and retina. However, currently it is not clear whether the brain and retinal injuries in these newborns are related only to their prematurity, or also to BPD. We investigated whether the hyperoxia known to cause histologic changes in the lungs similar to BPD in an animal model also causes brain and retinal injuries. Sprague Dawley rat pups were exposed to hyperoxia (95% O2, ‘BPD’ group or room air (21% O2, ‘control’ group from postnatal day 4–14 (P4–14; the rat pups were housed in room air between P14 and P28. At P28, they were sacrificed, and their lungs, brain, and eyes were extracted. Hematoxylin and eosin staining was performed on lung and brain sections; retinas were stained with Toluidine Blue. Hyperoxia exposure resulted in an increased mean linear intercept in the lungs (P<0.0001. This increase was associated with a decrease in some brain structures [especially the whole-brain surface (P=0.02], as well as a decrease in the thickness of the retinal layers [especially the total retina (P=0.0008], compared to the room air control group. In addition, a significant negative relationship was observed between the lung structures and the brain (r=−0.49, P=0.02 and retina (r=−0.70, P=0.0008 structures. In conclusion, hyperoxia exposure impaired lung, brain, and retina structures. More severe lung injuries correlated with more severe brain and retinal injuries. This result suggests that the same animal model of chronic neonatal hyperoxia can be used to simultaneously study lung, brain and retinal injuries related to hyperoxia.

  9. Linking neuronal brain activity to the glucose metabolism.

    Science.gov (United States)

    Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias

    2013-08-29

    Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported.

  10. Postmortem Quetiapine Reference Concentrations in Brain and Blood

    DEFF Research Database (Denmark)

    Skov, Louise; Johansen, Sys Stybe; Linnet, Kristian

    2015-01-01

    and related to concentrations in postmortem blood. For cases, where quetiapine was unrelated to the cause of death (N 5 36), the 10–90 percentiles for quetiapine concentrations in brain tissue were 0.030 – 1.54 mg/kg (median 0.48 mg/kg, mean 0.79 mg/kg). Corresponding blood 10 –90 percentile values were 0.......007 – 0.39 mg/kg (median 0.15 mg/kg, mean 0.19 mg/kg), giving brain –blood ratio 10 –90 percentiles of 2.31 – 6.54 (median 3.87, mean 4.32). Both correspond well to the limited amount of data found in the literature. For cases where quetiapine was a contributing factor to death (N 5 5), the median value......Brain tissue is a useful alternative to blood in postmortem forensic investigations, but scarcity of information on reference concentrations in brain tissue makes interpretation challenging. Here we present a study of 43 cases where the antipsychotic drug quetiapine was quantified in brain tissue...

  11. Lithuanian "brain drain” causes : push and pull factors

    OpenAIRE

    Kazlauskienė, Aušra; Rinkevičius, Leonardas

    2006-01-01

    Differences of remuneration in regions are traditionally considered to be the reasons of migration. However, we should not give prominence solely to the reasons of economic migration. Even if the economic data of different states are similar, migration might be influenced by other factors that determine the movement of highly qualified workers, facing the brain drain problem. The paper aims to investigate the brain drain problems in Lithuania, reveal and evaluate their causes. It analyses the...

  12. HMGB1 a-Box Reverses Brain Edema and Deterioration of Neurological Function in a Traumatic Brain Injury Mouse Model

    Directory of Open Access Journals (Sweden)

    Lijun Yang

    2018-05-01

    Full Text Available Background/Aims: Traumatic brain injury (TBI is a complex neurological injury in young adults lacking effective treatment. Emerging evidences suggest that inflammation contributes to the secondary brain injury following TBI, including breakdown of the blood brain barrier (BBB, subsequent edema and neurological deterioration. High mobility group box-1 (HMGB1 has been identified as a key cytokine in the inflammation reaction following TBI. Here, we investigated the therapeutic efficacy of HMGB1 A-box fragment, an antagonist competing with full-length HMGB1 for receptor binding, against TBI. Methods: TBI was induced by controlled cortical impact (CCI in adult male mice. HMGB1 A-box fragment was given intravenously at 2 mg/kg/day for 3 days after CCI. HMGB1 A-box-treated CCI mice were compared with saline-treated CCI mice and sham mice in terms of BBB disruption evaluated by Evan’s blue extravasation, brain edema by brain water content, cell death by propidium iodide staining, inflammation by Western blot and ELISA assay for cytokine productions, as well as neurological functions by the modified Neurological Severity Score, wire grip and beam walking tests. Results: HMGB1 A-box reversed brain damages in the mice following TBI. It significantly reduced brain edema by protecting integrity of the BBB, ameliorated cell degeneration, and decreased expression of pro-inflammatory cytokines released in injured brain after TBI. These cellular and molecular effects were accompanied by improved behavioral performance in TBI mice. Notably, HMGB1 A-box blocked IL-1β-induced HMGB1 release, and preferentially attenuated TLR4, Myd88 and P65 in astrocyte cultures. Conclusion: Our data suggest that HMGB1 is involved in CCI-induced TBI, which can be inhibited by HMGB1 A-box fragment. Therefore, HMGB1 A-box fragment may have therapeutic potential for the secondary brain damages in TBI.

  13. HMGB1 a-Box Reverses Brain Edema and Deterioration of Neurological Function in a Traumatic Brain Injury Mouse Model.

    Science.gov (United States)

    Yang, Lijun; Wang, Feng; Yang, Liang; Yuan, Yunchao; Chen, Yan; Zhang, Gengshen; Fan, Zhenzeng

    2018-01-01

    Traumatic brain injury (TBI) is a complex neurological injury in young adults lacking effective treatment. Emerging evidences suggest that inflammation contributes to the secondary brain injury following TBI, including breakdown of the blood brain barrier (BBB), subsequent edema and neurological deterioration. High mobility group box-1 (HMGB1) has been identified as a key cytokine in the inflammation reaction following TBI. Here, we investigated the therapeutic efficacy of HMGB1 A-box fragment, an antagonist competing with full-length HMGB1 for receptor binding, against TBI. TBI was induced by controlled cortical impact (CCI) in adult male mice. HMGB1 A-box fragment was given intravenously at 2 mg/kg/day for 3 days after CCI. HMGB1 A-box-treated CCI mice were compared with saline-treated CCI mice and sham mice in terms of BBB disruption evaluated by Evan's blue extravasation, brain edema by brain water content, cell death by propidium iodide staining, inflammation by Western blot and ELISA assay for cytokine productions, as well as neurological functions by the modified Neurological Severity Score, wire grip and beam walking tests. HMGB1 A-box reversed brain damages in the mice following TBI. It significantly reduced brain edema by protecting integrity of the BBB, ameliorated cell degeneration, and decreased expression of pro-inflammatory cytokines released in injured brain after TBI. These cellular and molecular effects were accompanied by improved behavioral performance in TBI mice. Notably, HMGB1 A-box blocked IL-1β-induced HMGB1 release, and preferentially attenuated TLR4, Myd88 and P65 in astrocyte cultures. Our data suggest that HMGB1 is involved in CCI-induced TBI, which can be inhibited by HMGB1 A-box fragment. Therefore, HMGB1 A-box fragment may have therapeutic potential for the secondary brain damages in TBI. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  15. Cerebral blood flow and brain atrophy correlated by xenon contrast CT scanning

    International Nuclear Information System (INIS)

    Kitagawa, Y.; Meyer, J.S.; Tanahashi, N.; Rogers, R.L.; Tachibana, H.; Kandula, P.; Dowell, R.E.; Mortel, K.F.

    1985-01-01

    Correlations between cerebral blood flow (CBF) measured during stable xenon contrast CT scanning and standard CT indices of brain atrophy were investigated in the patients with senile dementia of Alzheimer type, multi-infarct dementia and idiopathic Parkinson's disease. Compared to age-matched normal volunteers, significant correlations were found in patients with idiopathic Parkinson's disease between cortical and subcortical gray matter blood flow and brain atrophy estimated by the ventricular body ratio, and mild to moderate brain atrophy were correlated with stepwise CBF reductions. However, in patients with senile dementia of Alzheimer type and multi-infarct dementia, brain atrophy was not associated with stepwise CBF reductions. Overall correlations between brain atrophy and reduced CBF were weak. Mild degrees of brain atrophy are not always associated with reduced CBF

  16. Functional brain imaging - baric and clinical questions

    International Nuclear Information System (INIS)

    Mager, T.; Moeller, H.J.

    1997-01-01

    The advancing biological knowledge of disease processes plays a central part in the progress of modern psychiatry. An essential contribution comes from the functional and structural brain imaging techniques (CT, MRI, SPECT, PET). Their application is important for biological oriented research in psychiatry and there is also a growing relevance in clinical aspects. This development is taken into account by recent diagnostic classification systems in psychiatry. The capabilities and limitations of functional brain imaging in the context of research and clinic will be presented and discussed by examples and own investigations. (orig.) [de

  17. Brain dysfunctions in Wistar rats exposed to municipal landfill leachates

    Directory of Open Access Journals (Sweden)

    Chibuisi G. Alimba

    2015-12-01

    Full Text Available Brain damage induced by Olusosun and Aba-Eku municipal landfill leachates was investigated in Wistar rats. Male rats were orally exposed to 1–25% concentrations of the leachates for 30 days. Catalase (CAT and superoxide dismutase (SOD activities, and malondialdehyde (MDA concentrations in the brain and serum of rats were evaluated; body and brain weight gain and histopathology were examined. There was significant (p < 0.05 decrease in body weight gain and SOD activity but increase in absolute and relative brain weight gain, MDA concentration and CAT activity in both brain and serum of treated rats. The biochemical parameters, which were more altered in the brain than serum, corroborated the neurologic lesions; neurodegeneration of purkinje cells with loss of dendrites, perineural vacuolations of the neuronal cytoplasm (spongiosis and neuronal necrosis in the brain. The concentrations of Cr, Cu, Pb, As, Cd, Mn, Ni, sulphates, ammonia, chloride and phosphate in the leachate samples were above standard permissible limits. The interactions of the neurotoxic constituents of the leachates induced the observed brain damage in the rats via oxidative damage. This suggests health risk in wildlife and human populations.

  18. Transcranial brain stimulation: closing the loop between brain and stimulation

    DEFF Research Database (Denmark)

    Karabanov, Anke; Thielscher, Axel; Siebner, Hartwig Roman

    2016-01-01

    -related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified......PURPOSE OF REVIEW: To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. RECENT FINDINGS: Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain...... stimulation. Trait-related and state-related determinants contribute to this variability, challenging the standard approach to apply stimulation in a rigid, one-size-fits-all fashion. Several strategies have been identified to reduce variability and maximize the plasticity-inducing effects of noninvasive...

  19. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  20. Brain antibodies in the cortex and blood of people with schizophrenia and controls.

    Science.gov (United States)

    Glass, L J; Sinclair, D; Boerrigter, D; Naude, K; Fung, S J; Brown, D; Catts, V S; Tooney, P; O'Donnell, M; Lenroot, R; Galletly, C; Liu, D; Weickert, T W; Shannon Weickert, C

    2017-08-08

    The immune system is implicated in the pathogenesis of schizophrenia, with elevated proinflammatory cytokine mRNAs found in the brains of ~40% of individuals with the disorder. However, it is not clear if antibodies (specifically immunoglobulin-γ (IgG)) can be found in the brain of people with schizophrenia and if their abundance relates to brain inflammatory cytokine mRNA levels. Therefore, we investigated the localization and abundance of IgG in the frontal cortex of people with schizophrenia and controls, and the impact of proinflammatory cytokine status on IgG abundance in these groups. Brain IgGs were detected surrounding blood vessels in the human and non-human primate frontal cortex by immunohistochemistry. IgG levels did not differ significantly between schizophrenia cases and controls, or between schizophrenia cases in 'high' and 'low' proinflammatory cytokine subgroups. Consistent with the existence of IgG in the parenchyma of human brain, mRNA and protein of the IgG transporter (FcGRT) were present in the brain, and did not differ according to diagnosis or inflammatory status. Finally, brain-reactive antibody presence and abundance was investigated in the blood of living people. The plasma of living schizophrenia patients and healthy controls contained antibodies that displayed positive binding to Rhesus macaque cerebellar tissue, and the abundance of these antibodies was significantly lower in patients than controls. These findings suggest that antibodies in the brain and brain-reactive antibodies in the blood are present under normal circumstances.

  1. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Science.gov (United States)

    Nemecek, Julie; Nag, Nabanita; Carlson, Christina M.; Schneider, Jay R.; Heisey, Dennis M.; Johnson, Christopher J.; Asher, David M.; Gregori, Luisa

    2013-01-01

    Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in v

  2. Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent.

    Directory of Open Access Journals (Sweden)

    Julie Nemecek

    Full Text Available Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA to amplify abnormal prion protein (PrP(TSE from highly diluted variant Creutzfeldt-Jakob disease (vCJD-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrP(TSE in tissues and blood. Macaque vCJD PrP(TSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA. Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV, a close relative of the bank vole, seeded with macaque vCJD PrP(TSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N. We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrP(TSE. Meadow vole brain (170N/N PrP genotype was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrP(TSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrP(TSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrP(TSE was more permissive than human PrP(TSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrP(TSE from brains of humans and macaques with vCJD. PrP(TSE signals were reproducibly detected by Western blot in dilutions through 10⁻¹² of vCJD-infected 10% brain homogenates. This is the first report showing PrP(TSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect Pr

  3. Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease

    Science.gov (United States)

    2016-09-01

    stages of repetitive brain trauma as well. Current methods of measure brain glutamate using proton spectroscopy is not specific to different cell...covering a representative range of clinical cases: a young female , young male , middle-aged male (all healthy volunteers) and a male patient with...AWARD NUMBER: W81XWH-15-1-0412 TITLE: Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease PRINCIPAL INVESTIGATOR

  4. On brain activity mapping: insights and lessons from Brain Decoding Project to map memory patterns in the hippocampus.

    Science.gov (United States)

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longnian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-09-01

    The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.

  5. In vivo SELEX for Identification of Brain-penetrating Aptamers

    Directory of Open Access Journals (Sweden)

    Congsheng Cheng

    2013-01-01

    Full Text Available The physiological barriers of the brain impair drug delivery for treatment of many neurological disorders. One delivery approach that has not been investigated for their ability to penetrate the brain is RNA-based aptamers. These molecules can impart delivery to peripheral tissues and circulating immune cells, where they act as ligand mimics or can be modified to carry payloads. We developed a library of aptamers and an in vivo evolution protocol to determine whether specific aptamers could be identified that would home to the brain after injection into the peripheral vasculature. Unlike biopanning with recombinant bacteriophage libraries, we found that the aptamer library employed here required more than 15 rounds of in vivo selection for convergence to specific sequences. The aptamer species identified through this approach bound to brain capillary endothelia and penetrated into the parenchyma. The methods described may find general utility for targeting various payloads to the brain.

  6. Brains, tools, innovation and biogeography in crows and ravens

    DEFF Research Database (Denmark)

    Jønsson, Knud Andreas; Fabre, Pierre-Henri Fréderic; Irestedt, Martin

    2012-01-01

    BACKGROUND:Crows and ravens (Passeriformes: Corvus) are large-brained birds with enhanced cognitive abilities relative to other birds. They are among the few non-hominid organisms on Earth to be considered intelligent and well-known examples exist of several crow species having evolved innovative....... Hence, we propose that all crows and ravens have relatively large brains compared to other birds and thus the potential to be innovative if conditions and circumstances are right.......BACKGROUND:Crows and ravens (Passeriformes: Corvus) are large-brained birds with enhanced cognitive abilities relative to other birds. They are among the few non-hominid organisms on Earth to be considered intelligent and well-known examples exist of several crow species having evolved innovative...... Corvus. We date the phylogeny and determine ancestral areas to investigate historical biogeographical patterns of the crows. Additionally, we use data on brain size and a large database on innovative behaviour and tool use to test whether brain size (i) explains innovative behaviour and success...

  7. Effects of intracarotid ioxaglate on the normal blood-brain barrier

    International Nuclear Information System (INIS)

    Wilcox, J.; Sage, M.R.

    1985-01-01

    Using two different models, the effect on the blood-brain barrier of intracarotid injections of sodium/meglumine ioxaglate at similar iodine concentrations (280 mgI/ml) was investigated. In both models the degree of blood-brain barrier damage was assessed visually using Evans' Blue stain. Quantitative assessment of blood-brain barrier disruption was made by contrast enhancement as measured by CT of the dog brain, and by 99m Tc-pertechnetate uptake by the brain in the rabbit model. No Evans' Blue staining was observed in any study using the canine/CT model. Slight staining was observed in two studies with ioxaglate using the rabbit/pertechnetate model. Statistical analysis of results from the canine/CT model did not detect any damage to the blood-brain barrier with either ioxaglate or saline control studies (P>0.1). However, in the rabbit/pertechnetate model a slight increase in disruption of the blood-brain barrier was observed with ioxaglate compared with control studies, but this was only significant at the 0.1 level. The results suggest that the rabbit/pertechnetate model is a more sensitive measure of blood-brain barrier disruption than the canine/CT model. This study also demonstrates that blood-brain barrier disruption following intracarotid injection of ioxaglate is minimal. (orig.)

  8. Altered Function and Expression of ABC Transporters at the Blood–Brain Barrier and Increased Brain Distribution of Phenobarbital in Acute Liver Failure Mice

    Directory of Open Access Journals (Sweden)

    Li Liu

    2018-03-01

    Full Text Available This study investigated alterations in the function and expression of P-glycoprotein (P-GP, breast cancer resistance protein (BCRP, and multidrug resistance-associated protein 2 (MRP2 at the blood–brain barrier (BBB of acute liver failure (ALF mice and its clinical significance. ALF mice were developed using intraperitoneal injection of thioacetamide. P-GP, BCRP, and MRP2 functions were determined by measuring the ratios of brain-to-plasma concentration of rhodamine 123, prazosin, and dinitrophenyl-S-glutathione, respectively. The mRNA and proteins expression levels of P-GP, BCRP, and MRP2 were evaluated with quantitative real-time PCR and western blot, respectively. MDCK-MDR1 and HCMEC/D3 cells were used to document the effects of the abnormally altered components in serum of ALF mice on the function and expression of P-GP. The clinical significance of alteration in P-GP function and expression was investigated by determining the distribution of the P-GP substrate phenobarbital (60 mg/kg, intravenous administration in the brain and loss of righting reflex (LORR induced by the drug (100 mg/kg. The results showed that ALF significantly downregulated the function and expression of both P-GP and BCRP, but increased the function and expression of MRP2 in the brain of mice. Cell study showed that increased chenodeoxycholic acid may be a reason behind the downregulated P-GP function and expression. Compared with control mice, ALF mice showed a significantly higher brain concentration of phenobarbital and higher brain-to-plasma concentration ratios. In accordance, ALF mice showed a significantly larger duration of LORR and shorter latency time of LORR by phenobarbital, inferring the enhanced pharmacological effect of phenobarbital on the central nervous system (CNS. In conclusion, the function and expression of P-GP and BCRP decreased, while the function and expression of MRP2 increased in the brain of ALF mice. The attenuated function and expression

  9. Cerebral perfusion changes in traumatic diffuse brain injury. IMP SPECT studies

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kawashima, Ryuta; Fukuda, Hiroshi; Ishii, Kiyoshi; Onuma, Takehide.

    1997-01-01

    Diffuse brain injury (DBI) is characterized by axonal degeneration and neuronal damage which cause diffuse brain atrophy. We have investigated the time course of abnormalities in cerebral perfusion distribution in cases of DBI by using Iodine-123-IMP SPECT, and the relationship to the appearance of diffuse brain atrophy. SPECT scans were performed on eight patients with diffuse brain injury due to closed cranial trauma in acute and chronic stages. All patients showed abnormalities in cerebral perfusion with decreases in perfusion, even in non-depicted regions on MRI, and the affected areas varied throughout the period of observation. Diffuse brain atrophy appeared in all patients. In some patients, diffuse brain atrophy was observed at or just after the time when the maximum number of lesions on SPECT were seen. The abnormalities in cerebral perfusion in cases of DBI might therefore be related to axonal degeneration and neuronal damage which causes diffuse brain atrophy. (author)

  10. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  11. Sex Differences in Brain Activity Related to General and Emotional Intelligence

    Science.gov (United States)

    Jausovec, Norbert; Jausovec, Ksenija

    2005-01-01

    The study investigated gender differences in resting EEG (in three individually determined narrow [alpha] frequency bands) related to the level of general and emotional intelligence. Brain activity of males decreased with the level of general intelligence, whereas an opposite pattern of brain activity was observed in females. This difference was…

  12. Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain.

    Science.gov (United States)

    Schnydrig, Sabine; Korner, Lukas; Landweer, Svenja; Ernst, Beat; Walker, Gaby; Otten, Uwe; Kunz, Dieter

    2007-12-11

    Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.

  13. The blind brain: how (lack of) vision shapes the morphological and functional architecture of the human brain.

    Science.gov (United States)

    Ricciardi, Emiliano; Handjaras, Giacomo; Pietrini, Pietro

    2014-11-01

    Since the early days, how we represent the world around us has been a matter of philosophical speculation. Over the last few decades, modern neuroscience, and specifically the development of methodologies for the structural and the functional exploration of the brain have made it possible to investigate old questions with an innovative approach. In this brief review, we discuss the main findings from a series of brain anatomical and functional studies conducted in sighted and congenitally blind individuals by our's and others' laboratories. Historically, research on the 'blind brain' has focused mainly on the cross-modal plastic changes that follow sensory deprivation. More recently, a novel line of research has been developed to determine to what extent visual experience is truly required to achieve a representation of the surrounding environment. Overall, the results of these studies indicate that most of the brain fine morphological and functional architecture is programmed to develop and function independently from any visual experience. Distinct cortical areas are able to process information in a supramodal fashion, that is, independently from the sensory modality that carries that information to the brain. These observations strongly support the hypothesis of a modality-independent, i.e. more abstract, cortical organization, and may contribute to explain how congenitally blind individuals may interact efficiently with an external world that they have never seen. © 2014 by the Society for Experimental Biology and Medicine.

  14. Radiation-induced brain injury: A review

    Directory of Open Access Journals (Sweden)

    Michael eRobbins

    2012-07-01

    Full Text Available Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (> 6 months to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses > 30 Gy; white matter necrosis occurs at fractionated doses > 60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain

  15. The distribution of multiple opiate receptors in bovine brain

    International Nuclear Information System (INIS)

    Ninkovic, M.; Hunt, S.P.; Emson, P.C.; Iversen, L.L.

    1981-01-01

    The distribution of μ and delta opiate receptors in bovine brain has been investigated using the selective radioligands [ 3 H]morphine and D-[ 3 H]Ala 2 , D-Leu 5 -enkephalin. Their distributions were found to vary independently through different brain areas with up to a 10-fold difference between the ratio of μ to delta binding sites for the substantia nigra and the dentate gyrus of the hippocampus. (Auth.)

  16. Brain Development

    Science.gov (United States)

    ... Become a Member Home Early Development & Well-Being Brain Development A child’s brain undergoes an amazing period of development from birth ... neural connections each second. The development of the brain is influenced by many factors, including a child’s ...

  17. Data-driven analysis of functional brain interactions during free listening to music and speech.

    Science.gov (United States)

    Fang, Jun; Hu, Xintao; Han, Junwei; Jiang, Xi; Zhu, Dajiang; Guo, Lei; Liu, Tianming

    2015-06-01

    Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech.

  18. Brain parenchyma PO2, PCO2, and pH during and after hypoxic, ischemic brain insult in dogs.

    Science.gov (United States)

    McKinley, B A; Morris, W P; Parmley, C L; Butler, B D

    1996-11-01

    1) The investigation of fiberoptic PO2, PCO2, and pH sensor technology as a monitor of brain parenchyma during and after brain injury, and 2) the comparison of brain parenchyma PO2, PCO2, and pH with intracranial pressure during and after hypoxic, ischemic brain insult. Prospective, controlled, animal study in an acute experimental preparation. Physiology laboratory in a university medical school. Fourteen mongrel dogs (20 to 35 kg), anesthetized, room-air ventilated. Anesthesia was induced with thiopental and maintained after intubation using 1% to 1.5% halothane in room air (FiO2 0.21). Mechanical ventilation was established to maintain end-tidal PCO2 approximately 35 torr (-4.7 kPa). Intravenous, femoral artery, and pulmonary artery catheters were placed. The common carotid arteries were surgically exposed, and ultrasonic blood flow probes were applied. A calibrated intracranial pressure probe was placed through a right-side transcranial bolt, and a calibrated intracranial chemistry probe with optical sensors for PO2, PCO2, and pH was placed through a left-side bolt into brain parenchyma. Brain insult was induced in the experimental group (n = 6) by hypoxia (FiO2 0.1), ischemia (bilateral carotid artery occlusion), and hypotension (mean arterial pressure [MAP] approximately 40 mm Hg produced with isoflurane approximately 4%). After 45 mins, carotid artery occlusion was released, FiO2 was reset to 0.21, and anesthetic was returned to halothane (approximately 1.25%). The control group (n = 5) had the same surgical preparation and sequence of anesthetic agent exposure but no brain insult. Monitored variables included brain parenchyma PO2, PCO2, and pH, which were monitored at 1-min intervals, and intracranial pressure, MAP, arterial hemoglobin oxygen saturation (by pulse oximetry), end-tidal PCO2, and carotid artery blood flow rate, for which data were collected at 15-min intervals for 7 hrs. Arterial and mixed venous blood gas analyses were done at approximately 1

  19. Understanding Brain Tumors

    Science.gov (United States)

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  20. Abnormal brain function in neuromyelitis optica: A fMRI investigation of mPASAT.

    Science.gov (United States)

    Wang, Fei; Liu, Yaou; Li, Jianjun; Sondag, Matthew; Law, Meng; Zee, Chi-Shing; Dong, Huiqing; Li, Kuncheng

    2017-10-01

    Cognitive impairment with the Neuromyelitis Optica (NMO) patients is debated. The present study is to study patterns of brain activation in NMO patients during a pair of task-related fMRI. We studied 20 patients with NMO and 20 control subjects matched for age, gender, education and handedness. All patients with NMO met the 2006 Wingerchuk diagnostic criteria. The fMRI paradigm included an auditory attention monitoring task and a modified version of the Paced Auditory Serial Addition Task (mPASAT). Both tasks were temporally and spatially balanced, with the exception of task difficulty. In mPASAT, Activation regions in control subjects included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA45), bilateral inferior parietal lobule (BA7), left cingulate gyrus (BA32), left insula (BA13), and cerebellum. Activation regions in NMO patients included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA9), right cingulate gyrus (BA32), right inferior parietal gyrus (BA40), left insula (BA13) and cerebellum. Some dispersed cognition related regions are greater in the patients. The present study showed altered cerebral activation during mPASAT in patients with NMO relative to healthy controls. These results are speculated to provide further evidence for brain plasticity in patients with NMO. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Comparative studies of brain activation with MEG and functional MRI

    International Nuclear Information System (INIS)

    George, J.S.; Aine, C.J.; Sanders, J.A.; Lewine, J.D.; Caprihan, A.

    1993-01-01

    The past two years have witnessed the emergence of MRI as a functional imaging methodology. Initial demonstrations involved the injection of a paramagnetic contrast agent and required ultrafast echo planar imaging capability to adequately resolve the passage of the injected bolus. By measuring the local reduction in image intensity due to magnetic susceptibility, it was possible to calculate blood volume, which changes as a function of neural activation. Later developments have exploited endogenous contrast mechanisms to monitor changes in blood volume or in venous blood oxygen content. Recently, we and others have demonstrated that it is possible to make such measurements in a clinical imager, suggesting that the large installed base of such machines might be utilized for functional imaging. Although it is likely that functional MRI (fMRI) will subsume some of the clinical and basic neuroscience applications now touted for MEG, it is also clear that these techniques offer different largely complementary, capabilities. At the very least, it is useful to compare and cross-validate the activation maps produced by these techniques. Such studies will be valuable as a check on results of neuromagnetic distributed current reconstructions and will allow better characterization of the relationship between neurophysiological activation and associated hemodynamic changes. A more exciting prospect is the development of analyses that combine information from the two modalities to produce a better description of underlying neural activity than is possible with either technique in isolation. In this paper we describe some results from initial comparative studies and outline several techniques that can be used to treat MEG and fMRI data within a unified computational framework

  2. Use of brain electrical activity for the identification of hematomas in mild traumatic brain injury.

    Science.gov (United States)

    Hanley, Daniel F; Chabot, Robert; Mould, W Andrew; Morgan, Timothy; Naunheim, Rosanne; Sheth, Kevin N; Chiang, William; Prichep, Leslie S

    2013-12-15

    This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED. The volume of blood and distance from recording electrodes were measured by blinded independent experts. Brain electrical activity data were submitted to a classification algorithm independently developed traumatic brain injury (TBI) index to identify the probability of a CT+traumatic event. There was no significant relationship between the TBI-Index and type of hematoma, or distance of the bleed from recording sites. A significant correlation was found between TBI-Index and blood volume. The sensitivity to hematomas was 100%, positive predictive value was 74.5%, and positive likelihood ratio was 2.92. The TBI-Index, derived from brain electrical activity, demonstrates high accuracy for identification of traumatic hematomas. Further, this was not influenced by distance of the bleed from the recording electrodes, blood volume, or type of hematoma. Distance and volume limitations noted with other methods, (such as that based on near-infrared spectroscopy) were not found, thus suggesting the TBI-Index to be a potentially important adjunct to acute assessment of head injury. Because of the life-threatening risk of undetected hematomas (false negatives), specificity was permitted to be lower, 66%, in exchange for extremely high sensitivity.

  3. Brain Cancer—Patient Version

    Science.gov (United States)

    Brain cancer refers to growths of malignant cells in tissues of the brain. Tumors that start in the brain are called primary brain tumors. Tumors that spread to the brain are called metastatic brain tumors. Start here to find information on brain cancer treatment, research, and statistics.

  4. Hippotherapy in Adult Patients with Chronic Brain Disorders: A Pilot Study

    OpenAIRE

    Sunwoo, Hyuk; Chang, Won Hyuk; Kwon, Jeong-Yi; Kim, Tae-Won; Lee, Ji-Young; Kim, Yun-Hee

    2012-01-01

    Objective To investigate the effects of hippotherapy for adult patients with brain disorders. Method Eight chronic brain disorder patients (7 males, mean age 42.4?16.6 years) were recruited. The mean duration from injury was 7.9?7.7 years. The diagnoses were stroke (n=5), traumatic brain disorder (n=2), and cerebral palsy (n=1). Hippotherapy sessions were conducted twice a week for eight consecutive weeks in an indoor riding arena. Each hippotherapy session lasted 30 minutes. All participants...

  5. Left Brain/Right Brain Learning for Adult Education.

    Science.gov (United States)

    Garvin, Barbara

    1986-01-01

    Contrasts and compares the theory and practice of adult education as it relates to the issue of right brain/left brain learning. The author stresses the need for a whole-brain approach to teaching and suggests that adult educators, given their philosophical directions, are the perfect potential users of this integrated system. (Editor/CT)

  6. Brain, nutrition and metabolism : Studies in lean, obese and insulin resistant humans

    NARCIS (Netherlands)

    Versteeg, R.I.

    2017-01-01

    This thesis describes studies on the effects of obesity, weight loss and meal timing on the human brain and glucose metabolism. We investigated effects of meal timing during a hypocaloric diet and weight loss on brain serotonin transporters (SERT) and dopamine transporters (DAT), neuronal activity

  7. The imaging diagnosis of diffuse brain swelling due to severe brain trauma

    International Nuclear Information System (INIS)

    Shen Jianqiang; Hu Jiawang

    2008-01-01

    Objective: To discuss the clinical and pathological characteristics and the imaging types of the diffuse brain swelling due to severe brain trauma. Methods: The clinical data and CT and MR images on 48 cases with diffuse brain swelling due to severe brain trauma were analyzed. Results: Among these 48 cases of the diffuse brain swelling due to severe brain trauma, 33 cases were complicated with brain contusions (including 12 cases brain diffuse axonal injury, 1 case infarct of the right basal ganglion), 31 cases were complicated with hematoma (epidural, subdural or intracerebral), 27 cases were complicated with skull base fracture, and 10 cases were complicated with subarachnoid hematoma. The CT and MR imaging of the diffuse brain swelling included as followed: (1) Symmetrically diffuse brain swelling in both cerebral hemispheres with cerebral ventricles decreased or disappeared, without median line shift. (2)Diffuse brain swelling in one side cerebral hemisphere with cerebral ventricles decreased or disappeared at same side, and median line shift to other side. (3) Subarachnoid hematoma or little subcortex intracerebral hematoma were complicated. (4) The CT value of the cerebral could be equal, lower or higher comparing with normal. Conclusion: The pathological reason of diffuse brain swelling was the brain vessel expanding resulting from hypothalamus and brainstem injured in severe brain trauma. There were four CT and MR imaging findings in diffuse brain swelling. The diffuse brain swelling without hematoma may be caused by ischemical reperfusion injury. (authors)

  8. Brain Aneurysm

    Science.gov (United States)

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  9. Combined Bisulfite Restriction Analysis for brain tissue identification.

    Science.gov (United States)

    Samsuwan, Jarunya; Muangsub, Tachapol; Yanatatsaneejit, Pattamawadee; Mutirangura, Apiwat; Kitkumthorn, Nakarin

    2018-05-01

    According to the tissue-specific methylation database (doi: 10.1016/j.gene.2014.09.060), methylation at CpG locus cg03096975 in EML2 has been preliminarily proven to be specific to brain tissue. In this study, we enlarged sample size and developed a technique for identifying brain tissue in aged samples. Combined Bisulfite Restriction Analysis-for EML2 (COBRA-EML2) technique was established and validated in various organ samples obtained from 108 autopsies. In addition, this technique was also tested for its reliability, minimal DNA concentration detected, and use in aged samples and in samples obtained from specific brain compartments and spinal cord. COBRA-EML2 displayed 100% sensitivity and specificity for distinguishing brain tissue from other tissues, showed high reliability, was capable of detecting minimal DNA concentration (0.015ng/μl), could be used for identifying brain tissue in aged samples. In summary, COBRA-EML2 is a technique to identify brain tissue. This analysis is useful in criminal cases since it can identify the vital organ tissues from small samples acquired from criminal scenes. The results from this analysis can be counted as a medical and forensic marker supporting criminal investigations, and as one of the evidences in court rulings. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  11. Cognitive Reserve and Brain Maintenance: Orthogonal Concepts in Theory and Practice.

    Science.gov (United States)

    Habeck, C; Razlighi, Q; Gazes, Y; Barulli, D; Steffener, J; Stern, Y

    2017-08-01

    Cognitive Reserve and Brain Maintenance have traditionally been understood as complementary concepts: Brain Maintenance captures the processes underlying the structural preservation of the brain with age, and might be assessed relative to age-matched peers. Cognitive Reserve, on the other hand, refers to how cognitive processing can be performed regardless of how well brain structure has been maintained. Thus, Brain Maintenance concerns the "hardware," whereas Cognitive Reserve concerns "software," that is, brain functioning explained by factors beyond mere brain structure. We used structural brain data from 368 community-dwelling adults, age 20-80, to derive measures of Brain Maintenance and Cognitive Reserve. We found that Brain Maintenance and Cognitive were uncorrelated such that values on one measure did not imply anything about the other measure. Further, both measures were positively correlated with verbal intelligence and education, hinting at formative influences of the latter to both measures. We performed extensive split-half simulations to check our derived measures' statistical robustness. Our approach enables the out-of-sample quantification of Brain Maintenance and Cognitive Reserve for single subjects on the basis of chronological age, neuropsychological performance and structural brain measures. Future work will investigate the prognostic power of these measures with regard to future cognitive status. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Social cognition, the male brain and the autism spectrum.

    Directory of Open Access Journals (Sweden)

    Jeremy Hall

    Full Text Available Behavioral studies have shown that, at a population level, women perform better on tests of social cognition and empathy than men. Furthermore Autism Spectrum Disorders (ASDs, which are characterized by impairments in social functioning and empathy, occur more commonly in males than females. These findings have led to the hypothesis that differences in the functioning of the social brain between males and females contribute to the greater vulnerability of males to ASD and the suggestion that ASD may represent an extreme form of the male brain. Here we sought to investigate this hypothesis by determining: (i whether males and females differ in social brain function, and (ii whether any sex differences in social brain function are exaggerated in individuals with ASD. Using fMRI we show that males and females differ markedly in social brain function when making social decisions from faces (compared to simple sex judgements especially when making decisions of an affective nature, with the greatest sex differences in social brain activation being in the inferior frontal cortex (IFC. We also demonstrate that this difference is exaggerated in individuals with ASD, who show an extreme male pattern of IFC function. These results show that males and females differ significantly in social brain function and support the view that sex differences in the social brain contribute to the greater vulnerability of males to ASDs.

  13. Organisation and functional role of the brain angiotensin system

    Directory of Open Access Journals (Sweden)

    Catherine Llorens-Cortes

    2002-03-01

    Full Text Available The discovery that all components of the renin-angiotensin system (RAS are present in the brain led investigators to postulate the existence of a local brain RAS. Supporting this, angiotensin immunoreactive neurones have been visualised in the brain. Two major pathways were described: a forebrain pathway which connects circumventricular organs to the median preoptic nucleus, paraventricular and supraoptic nuclei, and a second pathway connecting the hypothalamus to the medulla oblongata. Blood-brain-barrier deficient circumventricular organs are rich in angiotensin II (Ang II receptors. By activating these receptors, circulating Ang II may act on central cardiovascular centres via angiotensinergic neurones, providing a link between peripheral and central Ang II systems. Among the effector peptides of the brain RAS, Ang II and angiotensin III (Ang III have the same affinity for type 1 and type 2 Ang II receptors. When injected into the brain, both peptides increase blood pressure (BP, water intake and pituitary hormone release and may modify learning and memory. Since Ang II is converted in vivo to Ang III, the nature of the true effector is unknown. This review summarises new insights into the predominant role of brain Ang III in the control of BP and underlines the fact that brain aminopeptidase A, the enzyme forming central Ang III, could constitute a putative central therapeutic target for the treatment of hypertension.

  14. Miniature Brain Decision Making in Complex Visual Environments

    National Research Council Canada - National Science Library

    Dyer, Adrian

    2008-01-01

    .... In particular, the grantee investigated the problem of face invariance to understand the role that experience with stimuli can play in permitting a brain to learn how to reliably recognize target...

  15. Brain Drain: A Child's Brain on Poverty. Poverty Fact Sheet

    Science.gov (United States)

    Damron, Neil

    2015-01-01

    "Brain Drain: A Child's Brain on Poverty," released in March 2015 and prepared by intern Neil Damron, explores the brain's basic anatomy and recent research findings suggesting that poverty affects the brain development of infants and young children and the potential lifelong effects of the changes. The sheet draws from a variety of…

  16. SPECT of the brain: Present and future

    International Nuclear Information System (INIS)

    Fazio, F.; Lenzi, G.L.

    1986-01-01

    In both PET and SPECT, most of the studies and the models have been addressed to two organs: brain and heart. So far, brain has certainly been investigated more. The several comparisons between planar scintigraphy and SPECT, between X-ray TCT and SPECT, and also between PET and SPECT, have tended to consider SPECT a cheap but scarcely useful tool for a nuclear medicine section. Again the authors feel that this is due to the fact that SPECT is really a ''physiological tomography'', with little known about its physiology or how it is measured. Thus the present state of the art of SPECT of the brain is characterized by a collection of data and reports on brain imaging and by a slowly growing basic understanding of the utilized modes. The introduction of a new brain-imaging radiopharmaceutical is immediately signaled by its ''first clinical application'' without parallel studies on the kinetics, the metabolic degradation, and the real suitability of the molecule as a tracer for measurement of regional CBF. Only a few attempts seek to narrow this discussion between clinic and biology, and the authors like to emphasize the need for nuclear medicine people to dedicate more time and effort

  17. Age-dependent association of thyroid function with brain morphology and microstructural organization: evidence from brain imaging.

    Science.gov (United States)

    Chaker, Layal; Cremers, Lotte G M; Korevaar, Tim I M; de Groot, Marius; Dehghan, Abbas; Franco, Oscar H; Niessen, Wiro J; Ikram, M Arfan; Peeters, Robin P; Vernooij, Meike W

    2018-01-01

    Thyroid hormone (TH) is crucial during neurodevelopment, but high levels of TH have been linked to neurodegenerative disorders. No data on the association of thyroid function with brain imaging in the general population are available. We therefore investigated the association of thyroid-stimulating hormone and free thyroxine (FT4) with magnetic resonance imaging (MRI)-derived total intracranial volume, brain tissue volumes, and diffusion tensor imaging measures of white matter microstructure in 4683 dementia- and stroke-free participants (mean age 60.2, range 45.6-89.9 years). Higher FT4 levels were associated with larger total intracranial volumes (β = 6.73 mL, 95% confidence interval = 2.94-9.80). Higher FT4 levels were also associated with larger total brain and white matter volumes in younger individuals, but with smaller total brain and white matter volume in older individuals (p-interaction 0.02). There was a similar interaction by age for the association of FT4 with mean diffusivity on diffusion tensor imaging (p-interaction 0.026). These results are in line with differential effects of TH during neurodevelopmental and neurodegenerative processes and can improve the understanding of the role of thyroid function in neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Encoding of Physics Concepts: Concreteness and Presentation Modality Reflected by Human Brain Dynamics

    OpenAIRE

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentati...

  19. Life satisfaction in adult survivors of childhood brain tumors.

    Science.gov (United States)

    Crom, Deborah B; Li, Zhenghong; Brinkman, Tara M; Hudson, Melissa M; Armstrong, Gregory T; Neglia, Joseph; Ness, Kirsten K

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, lifelong deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors' physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggest some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population-based matched controls. Chi-square tests, t tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated that life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors' general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population. © 2014 by Association of Pediatric Hematology/Oncology Nurses.

  20. Bilirubin and its oxidation products damage brain white matter

    Science.gov (United States)

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  1. Blood-brain barrier transport of drugs for the treatment of brain diseases.

    Science.gov (United States)

    Gabathuler, Reinhard

    2009-06-01

    The central nervous system is a sanctuary protected by barriers that regulate brain homeostasis and control the transport of endogenous compounds into the brain. The blood-brain barrier, formed by endothelial cells of the brain capillaries, restricts access to brain cells allowing entry only to amino acids, glucose and hormones needed for normal brain cell function and metabolism. This very tight regulation of brain cell access is essential for the survival of neurons which do not have a significant capacity to regenerate, but also prevents therapeutic compounds, small and large, from reaching the brain. As a result, various strategies are being developed to enhance access of drugs to the brain parenchyma at therapeutically meaningful concentrations to effectively manage disease.

  2. Investigating reading comprehension through EEG

    Directory of Open Access Journals (Sweden)

    Luciane Baretta

    2012-12-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2012n63p69   Experimental studies point that different factors can influence reading comprehension, such as the topic, text type, reading task, and others. The advances in technologies for the past decades have provided researchers with several possibilities to investigate what goes on in one’s brain since their eyes meet the page until comprehension is achieved. Since the mid-80’s, numerous studies have been conducted with the use of the electroencephalogram (EEG to investigate the process of reading, through the analysis of different components – n400, n100 or n1, P2, among others. These components reveal, for example, how the brain integrates the meaning of a specific word in the semantic context of a given sentence.  based on previous studies, which demonstrate that different types of words affect cognitive load, this paper aims at investigating how the brain processes function and content words inserted in expository and narrative texts with suitable / unsuitable conclusions. results showed that the type of text and word influence the cognitive load in different scalp areas (midline, right and left hemispheres. The  n1s were more pronounced to the content words inserted in narrative texts and to the function words inserted in the expository type of texts, corroborating former studies.

  3. Investigation on 3H-labelled bilirubin for study of blood-brain barrier

    International Nuclear Information System (INIS)

    Cao Rongzhen; Dong Mo; Zhang Yulong; Zhou Ruiju

    1996-01-01

    Synthesis of 3 H-labelled bilirubin is described. 3 H-bilirubin is prepared by the reduction of biliverdin using sodium boro-[ 3 H]-hydride in methanol solvent. But biliverdin is synthesized through dehydrogenation of bilirubin with 2,3- dichloro-5, 6-dicyanobenzoquinone (DDQ) in dimethyl sulphoxide and sodium boro-[ 3 H]-hydride is produced by exchange of sodium boro-hydride with tritium gas using nickel catalyst at high temperature. The specific activity of obtained 3 H-bilirubin is 306 GBq/mmol, while the radiochemical purity is over 95% by HPLC and paper chromatography. The permeated profile of 3 H-labelled bilirubin in rat brain has been obtained in animal experiments

  4. Silent ischemic brain lesions after transcatheter aortic valve replacement : lesion distribution and predictors

    NARCIS (Netherlands)

    Samim, Mariam; Hendrikse, Jeroen; van der Worp, H. Bart; Agostoni, Pierfrancesco; Nijhoff, Freek; Doevendans, Pieter A.; Stella, Pieter R.

    Silent ischemic brain lesions and ischemic stroke are known complications of transcatheter aortic valve replacement (TAVR). We aimed to investigate the occurrence and distribution of TAVR-related silent ischemic brain lesions using diffusion-weighted magnetic resonance imaging (DWI). Consecutive

  5. The mating brain: early maturing sneaker males maintain investment into the brain also under fast body growth in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Kotrschal, Alexander; Trombley, Susanne; Rogell, Björn; Brannström, Ioana; Foconi, Eric; Schmitz, Monika; Kolm, Niclas

    It has been suggested that mating behaviours require high levels of cognitive ability. However, since investment into mating and the brain both are costly features, their relationship is likely characterized by energetic trade-offs. Empirical data on the subject remains equivocal. We investigated if early sexual maturation was associated with brain development in Atlantic salmon ( Salmo salar ), in which males can either stay in the river and sexually mature at a small size (sneaker males) or migrate to the sea and delay sexual maturation until they have grown much larger (anadromous males). Specifically, we tested how sexual maturation may induce plastic changes in brain development by rearing juveniles on either natural or ad libitum feeding levels. After their first season we compared brain size and brain region volumes across both types of male mating tactics and females. Body growth increased greatly across both male mating tactics and females during ad libitum feeding as compared to natural feeding levels. However, despite similar relative increases in body size, early maturing sneaker males maintained larger relative brain size during ad libitum feeding levels as compared to anadromous males and females. We also detected several differences in the relative size of separate brain regions across feeding treatments, sexes and mating strategies. For instance, the relative size of the cognitive centre of the brain, the telencephalon, was largest in sneaker males. Our data support that a large relative brain size is maintained in individuals that start reproduction early also during fast body growth. We propose that the cognitive demands during complex mating behaviours maintain a high level of investment into brain development in reproducing individuals.

  6. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    Science.gov (United States)

    2016-02-01

    excised after severe brain injury . Experimental neurology 2004;190:192-203. 24. Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative...Brain Injury PRINCIPAL INVESTIGATORs: Marc Diamond, MD CONTRACTING ORGANIZATION: Washington University, St Louis MO 63110 UT Southwestern, Dallas...of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-13-2-0016 5c. PROGRAM ELEMENT NUMBER 6

  7. Mapping Language Function in the Brain: A Review of the Recent Literature.

    Science.gov (United States)

    Crafton, Robert E.; Kido, Elissa

    2000-01-01

    Considers the potential importance of brain study for composition instruction, briefly describes functional imaging techniques, and reviews the findings of recent brain-mapping studies investigating the neurocognitive systems involved in language function. Presents a review of the recent literature and considers the possible implications of this…

  8. Boys with precocious or early puberty: incidence of pathological brain magnetic resonance imaging findings and factors related to newly developed brain lesions

    Directory of Open Access Journals (Sweden)

    Keun Hee Choi

    2013-12-01

    Full Text Available PurposeBrain magnetic resonance imaging (MRI findings and factors predictive of pathological brain lesions in boys with precocious puberty (PP or early puberty (EP were investigated.MethodsSixty-one boys with PP or EP who had brain MRI performed were included. PP was classified into the central or peripheral type. Brain MRI findings were categorized into group I (pathological brain lesion known to cause puberty; newly diagnosed [group Ia] or previously diagnosed [group Ib]; group II (brain lesion possibly related to puberty; and group III (incidental or normal findings. Medical history, height, weight, hormone test results, and bone age were reviewed.ResultsBrain lesions in groups I and II were detected in 17 of 23 boys (74% with central PP, 9 of 30 boys (30% with EP, and 7 of 8 boys (88% with peripheral PP. All brain lesions in boys with peripheral PP were germ cell tumors (GCT, and 3 lesions developed later during follow-up. Group I showed earlier pubertal onset (P<0.01 and greater bone age advancement (P<0.05 than group III. Group III had lower birth weight and fewer neurological symptoms than "Ia and II" (all P<0.05.ConclusionEarlier onset of puberty, greater bone age advancement, and/or neurological symptoms suggested a greater chance of pathological brain lesions in boys with central PP or EP. All boys with peripheral PP, even those with normal initial MRI findings, should be evaluated for the emergence of GCT during follow-up.

  9. Radiosurgery for brain metastases: is whole brain radiotherapy necessary?

    International Nuclear Information System (INIS)

    Sneed, Penny K.; Lamborn, Kathleen R.; Forstner, Julie M.; McDermott, Michael W.; Chang, Susan; Park, Elaine; Gutin, Philip H.; Phillips, Theodore L.; Wara, William M.; Larson, David A.

    1999-01-01

    Purpose: Because whole brain radiotherapy (WBRT) may cause dementia in long-term survivors, selected patients with brain metastases may benefit from initial treatment with radiosurgery (RS) alone reserving WBRT for salvage as needed. We reviewed results of RS ± WBRT in patients with newly diagnosed brain metastasis to provide background for a prospective trial. Methods and Materials: Patients with single or multiple brain metastases managed initially with RS alone vs. RS + WBRT (62 vs. 43 patients) from 1991 through February 1997 were retrospectively reviewed. The use of upfront WBRT depended on physician preference and referral patterns. Survival, freedom from progression (FFP) endpoints, and brain control allowing for successful salvage therapy were measured from the date of diagnosis of brain metastases. Actuarial curves were estimated using the Kaplan-Meier method. Analyses to adjust for known prognostic factors were performed using the Cox proportional hazards model (CPHM) stratified by primary site. Results: Survival and local FFP were the same for RS alone vs. RS + WBRT (median survival 11.3 vs. 11.1 months and 1-year local FFP by patient 71% vs. 79%, respectively). Brain FFP (scoring new metastases and/or local failure) was significantly worse for RS alone vs. RS + WBRT (28% vs. 69% at 1 year; CPHM adjusted p = 0.03 and hazard ratio = 0.476). However, brain control allowing for successful salvage of a first failure was not significantly different for RS alone vs. RS + WBRT (62% vs. 73% at 1 year; CPHM adjusted p = 0.56). Conclusions: The omission of WBRT in the initial management of patients treated with RS for up to 4 brain metastases does not appear to compromise survival or intracranial control allowing for salvage therapy as indicated. A randomized trial of RS vs. RS + WBRT is needed to assess survival, quality of life, and cost in good-prognosis patients with newly diagnosed brain metastases

  10. Oscillatory neuronal dynamics associated with manual acupuncture: a magnetoencephalography study using beamforming analysis

    Directory of Open Access Journals (Sweden)

    Aziz eAsghar

    2012-11-01

    Full Text Available Magnetoencephalography (MEG enables non-invasive recording of neuronal activity, with reconstruction methods providing estimates of underlying brain source locations and oscillatory dynamics from externally recorded neuromagnetic fields. The aim of our study was to use MEG to determine the effect of manual acupuncture on neuronal oscillatory dynamics. A major problem in MEG investigations of manual acupuncture is the absence of onset times for each needle manipulation. Given that beamforming (spatial filtering analysis is not dependent upon stimulus-driven responses being phase-locked to stimulus onset, we postulated that beamforming could reveal source locations and induced changes in neuronal activity during manual acupuncture. In a beamformer analysis, a two-minute period of manual acupuncture needle manipulation delivered to the ipsilateral right LI-4 (Hegu acupoint was contrasted with a two-minute baseline period. We considered oscillatory power changes in the theta (4-8Hz, alpha (8-13Hz, beta (13-30Hz and gamma (30-100Hz frequency bands. We found significant decreases in beta band power in the contralateral primary somatosensory cortex and superior frontal gyrus. In the ipsilateral cerebral hemisphere, we found significant power decreases in beta and gamma frequency bands in only the superior frontal gyrus. No significant power modulations were found in theta and alpha bands. Our results indicate that beamforming is a useful analytical tool to reconstruct underlying neuronal activity associated with manual acupuncture. Our main finding was of beta power decreases in primary somatosensory cortex and superior frontal gyrus, which opens up a line of future investigation regarding whether this contributes towards an underlying mechanism of acupuncture.

  11. Mapping brain function to brain anatomy

    International Nuclear Information System (INIS)

    Valentino, D.J.; Huang, H.K.; Mazziotta, J.C.

    1988-01-01

    In Imaging the human brain, MRI is commonly used to reveal anatomical structure, while PET is used to reveal tissue function. This paper presents a protocol for correlating data between these two imaging modalities; this correlation can provide in vivo regional measurements of brain function which are essential to our understanding of the human brain. The authors propose a general protocol to standardize the acquisition and analysis of functional image data. First, MR and PET images are collected to form three-dimensional volumes of structural and functional image data. Second, these volumes of image data are corrected for distortions inherent in each imaging modality. Third, the image volumes are correlated to provide correctly aligned structural and functional images. The functional images are then mapped onto the structural images in both two-dimensional and three-dimensional representations. Finally, morphometric techniques can be used to provide statistical measures of the structure and function of the human brain

  12. Hierarchical functional modularity in the resting-state human brain.

    Science.gov (United States)

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  13. Neuropsychological functioning and brain structure in schizophrenia.

    Science.gov (United States)

    Crespo-Facorro, Benedicto; Barbadillo, Laura; Pelayo-Terán, José Maria; Rodríguez-Sánchez, José Manuel

    2007-08-01

    Cognitive deficits are core features of schizophrenia that are already evident at early phases of the illness. The study of specific relationships between cognition and brain structure might provide valuable clues about neural basis of schizophrenia and its phenomenology. The aim of this article was to review the most consistent findings of the studies exploring the relationships between cognitive deficits and brain anomalies in schizophrenia. Besides several important methodological shortcomings to bear in mind before drawing any consistent conclusion from the revised literature, we have attempted to systematically summarize these findings. Thus, this review has revealed that whole brain volume tends to positively correlate with a range of cognitive domains in healthy volunteers and female patients. An association between prefrontal morphological characteristics and general inability to control behaviour seems to be present in schizophrenia patients. Parahippocampal volume is related to semantic cognitive functions. Thalamic anomalies have been associated with executive deficits specifically in patients. Available evidence on the relationship between cognitive functions and cerebellar structure is still contradictory. Nonetheless, a larger cerebellum appears to be associated with higher IQ in controls and in female patients. Enlarged ventricles, including lateral and third ventricles, are associated with deficits in attention, executive and premorbid cognitive functioning in patients. Several of these reported findings seem to be counterintuitive according to neural basis of cognitive functioning drawn from animal, lesion, and functional imaging investigations. Therefore, there is still a great need for more methodologically stringent investigations that would help in the advance of our understanding of the cognition/brain structure relationships in schizophrenia.

  14. Brain volume reduction after whole-brain radiotherapy: quantification and prognostic relevance.

    Science.gov (United States)

    Hoffmann, Christian; Distel, Luitpold; Knippen, Stefan; Gryc, Thomas; Schmidt, Manuel Alexander; Fietkau, Rainer; Putz, Florian

    2018-01-22

    Recent studies have questioned the value of adding whole-brain radiotherapy (WBRT) to stereotactic radiosurgery (SRS) for brain metastasis treatment. Neurotoxicity, including radiation-induced brain volume reduction, could be one reason why not all patients benefit from the addition of WBRT. In this study, we quantified brain volume reduction after WBRT and assessed its prognostic significance. Brain volumes of 91 patients with cerebral metastases were measured during a 150-day period after commencing WBRT and were compared with their pretreatment volumes. The average daily relative change in brain volume of each patient, referred to as the "brain volume reduction rate," was calculated. Univariate and multivariate Cox regression analyses were performed to assess the prognostic significance of the brain volume reduction rate, as well as of 3 treatment-related and 9 pretreatment factors. A one-way analysis of variance was used to compare the brain volume reduction rate across recursive partitioning analysis (RPA) classes. On multivariate Cox regression analysis, the brain volume reduction rate was a significant predictor of overall survival after WBRT (P < 0.001), as well as the number of brain metastases (P = 0.002) and age (P = 0.008). Patients with a relatively favorable prognosis (RPA classes 1 and 2) experienced significantly less brain volume decrease after WBRT than patients with a poor prognosis (RPA class 3) (P = 0.001). There was no significant correlation between delivered radiation dose and brain volume reduction rate (P = 0.147). In this retrospective study, a smaller decrease in brain volume after WBRT was an independent predictor of longer overall survival. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  15. Immunotherapy targeting immune check-point(s) in brain metastases.

    Science.gov (United States)

    Di Giacomo, Anna Maria; Valente, Monica; Covre, Alessia; Danielli, Riccardo; Maio, Michele

    2017-08-01

    Immunotherapy with monoclonal antibodies (mAb) directed to different immune check-point(s) is showing a significant clinical impact in a growing number of human tumors of different histotype, both in terms of disease response and long-term survival patients. In this rapidly changing scenario, treatment of brain metastases remains an high unmeet medical need, and the efficacy of immunotherapy in these highly dismal clinical setting remains to be largely demonstrated. Nevertheless, up-coming observations are beginning to suggest a clinical potential of cancer immunotherapy also in brain metastases, regardless the underlying tumor histotype. These observations remain to be validated in larger clinical trials eventually designed also to address the efficacy of therapeutic mAb to immune check-point(s) within multimodality therapies for brain metastases. Noteworthy, the initial proofs of efficacy on immunotherapy in central nervous system metastases are already fostering clinical trials investigating its therapeutic potential also in primary brain tumors. We here review ongoing immunotherapeutic approaches to brain metastases and primary brain tumors, and the foreseeable strategies to overcome their main biologic hurdles and clinical challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Brain-to-brain coupling during handholding is associated with pain reduction.

    Science.gov (United States)

    Goldstein, Pavel; Weissman-Fogel, Irit; Dumas, Guillaume; Shamay-Tsoory, Simone G

    2018-03-13

    The mechanisms underlying analgesia related to social touch are not clear. While recent research highlights the role of the empathy of the observer to pain relief in the target, the contribution of social interaction to analgesia is unknown. The current study examines brain-to-brain coupling during pain with interpersonal touch and tests the involvement of interbrain synchrony in pain alleviation. Romantic partners were assigned the roles of target (pain receiver) and observer (pain observer) under pain-no-pain and touch-no-touch conditions concurrent with EEG recording. Brain-to-brain coupling in alpha-mu band (8-12 Hz) was estimated by a three-step multilevel analysis procedure based on running window circular correlation coefficient and post hoc power of the findings was calculated using simulations. Our findings indicate that hand-holding during pain administration increases brain-to-brain coupling in a network that mainly involves the central regions of the pain target and the right hemisphere of the pain observer. Moreover, brain-to-brain coupling in this network was found to correlate with analgesia magnitude and observer's empathic accuracy. These findings indicate that brain-to-brain coupling may be involved in touch-related analgesia.

  17. Transcriptomic analyses of tributyltin-induced sexual dimorphisms in rare minnow (Gobiocypris rarus) brains.

    Science.gov (United States)

    Zhang, Ji-Liang; Liu, Min; Zhang, Chun-Nuan; Li, Er-Chao; Fan, Ming-Zhen; Huang, Mao-Xian

    2018-07-30

    The brain of fish displays sexual dimorphisms and exhibits remarkable sexual plasticity throughout their life span. Although reproductive toxicity of tributyltin (TBT) in fish is well documented in fish, it remains unknown whether TBT interrupts sexual dimorphisms of fish brains. In this work, brain transcriptomic profiles of rare minnow (Gobiocypris rarus) was characterized and sex-biased genes were identified using RNA sequencing. Functional annotation and enrichment analysis were performed to reveal differences of gene products and pathways between the brains of male and female fish. Furthermore, transcriptomic responses of male and female brains to TBT at 10 ng/L were also investigated to understand effects of TBT on brain sexual dimorphisms. Only 345 male-biased and 273 female-biased genes were found in the brains. However, significant female-biased pathways of circadian rhythm and phototransduction were identified in the brains by enrichment analysis. Interestingly, following TBT exposure in the female fish, the circadian rhythm pathway was significantly disrupted based on enrichment analysis, while in the male fish, the phototransduction pathway was significantly disrupted. In the female fish, expression of genes (Per, Cry, Rev-Erb α, Ror, Dec and CK1δ/ε) in the circadian rhythm pathway was down-regulated after TBT exposure; while in the male fish, expression of genes (Rec, GNAT1_2, GNGT1, Rh/opsin, PDE and Arr) in the phototransduction pathway was up-regulated after TBT exposure. Overall, our results not only provide key data on the molecular basis of brain sexual dimorphisms in fish, but also offer valuable resources for investigating molecular mechanisms by which environmental chemicals might influence brain sexual plasticity. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Asymmetric Frontal Brain Activity and Parental Rejection

    NARCIS (Netherlands)

    Huffmeijer, R.; Alink, L.R.A.; Tops, M.; Bakermans-Kranenburg, M.J.; van IJzendoorn, M.H.

    2013-01-01

    Asymmetric frontal brain activity has been widely implicated in reactions to emotional stimuli and is thought to reflect individual differences in approach-withdrawal motivation. Here, we investigate whether asymmetric frontal activity, as a measure of approach-withdrawal motivation, also predicts

  19. BrainNet Europe's Code of Conduct for brain banking.

    Science.gov (United States)

    Klioueva, Natasja M; Rademaker, Marleen C; Dexter, David T; Al-Sarraj, Safa; Seilhean, Danielle; Streichenberger, Nathalie; Schmitz, Peer; Bell, Jeanne E; Ironside, James W; Arzberger, Thomas; Huitinga, Inge

    2015-07-01

    Research utilizing human tissue and its removal at post-mortem has given rise to many controversies in the media and posed many dilemmas in the fields of law and ethics. The law often lacks clear instructions and unambiguous guidelines. The absence of a harmonized international legislation with regard to post-mortem medical procedures and donation of tissue and organs contributes to the complexity of the issue. Therefore, within the BrainNet Europe (BNE) consortium, a consortium of 19 European brain banks, we drafted an ethical Code of Conduct for brain banking that covers basic legal rules and bioethical principles involved in brain banking. Sources include laws, regulations and guidelines (Declarations, Conventions, Recommendations, Guidelines and Directives) issued by international key organizations, such as the Council of Europe, European Commission, World Medical Association and World Health Organization. The Code of Conduct addresses fundamental topics as the rights of the persons donating their tissue, the obligations of the brain bank with regard to respect and observance of such rights, informed consent, confidentiality, protection of personal data, collections of human biological material and their management, and transparency and accountability within the organization of a brain bank. The Code of Conduct for brain banking is being adopted by the BNE network prior to being enshrined in official legislation for brain banking in Europe and beyond.

  20. Blood-brain barrier dysfunction and amyloid precursor protein accumulation in microvascular compartment following ischemia-reperfusion brain injury with 1-year survival.

    Science.gov (United States)

    Pluta, R

    2003-01-01

    This study examined the late microvascular consequences of brain ischemia due to cardiac arrest in rats. In reacted vibratome sections scattered foci of extravasated horseradish peroxidase were noted throughout the brain and did not appear to be restricted to any specific area of brain. Ultrastructural investigation of leaky sites frequently presented platelets adhering to the endothelium of venules and capillaries. Endothelial cells demonstrated pathological changes with evidence of perivascular astrocytic swelling. At the same time, we noted C-terminal of amyloid precursor protein/beta-amyloid peptide (CAPP/betaA) deposits in cerebral blood vessels, with a halo of CAPP/betaA immunoreactivity in the surrounding parenchyma suggested diffusion of CAPP/betaA out of the vascular compartment. Changes predominated in the hippocampus, cerebral and entorhinal cortex, corpus callosum, thalamus, basal ganglia and around the lateral ventricles. These data implicate delayed abnormal endothelial function of vessels following ischemia-reperfusion brain injury as a primary event in the pathogenesis of the recurrent cerebral infarction.

  1. The neuroimaging evidence for chronic brain damage due to boxing

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, I.F. [Lysholm Radiological Department, National Hospital for Neurology and Neurosurgery, London (United Kingdom)

    2000-01-01

    A number of imaging techniques have been used to investigate changes produced in the brain by boxing. Most morphological studies have failed to show significant correlations between putative abnormalities on imaging and clinical evidence of brain damage. Fenestration of the septum pellucidum, with formation of a cavum, one of the most frequent observations, does not appear to correlate with neurological or physiological evidence of brain damage. Serial studies on large groups may be more informative. Magnetic resonance spectroscopy and cerebral blood flow studies have been reported in only small numbers of boxers; serial studies are not available to date. (orig.)

  2. State-related functional integration and functional segregation brain networks in schizophrenia.

    Science.gov (United States)

    Yu, Qingbao; Sui, Jing; Kiehl, Kent A; Pearlson, Godfrey; Calhoun, Vince D

    2013-11-01

    Altered topological properties of brain connectivity networks have emerged as important features of schizophrenia. The aim of this study was to investigate how the state-related modulations to graph measures of functional integration and functional segregation brain networks are disrupted in schizophrenia. Firstly, resting state and auditory oddball discrimination (AOD) fMRI data of healthy controls (HCs) and schizophrenia patients (SZs) were decomposed into spatially independent components (ICs) by group independent component analysis (ICA). Then, weighted positive and negative functional integration (inter-component networks) and functional segregation (intra-component networks) brain networks were built in each subject. Subsequently, connectivity strength, clustering coefficient, and global efficiency of all brain networks were statistically compared between groups (HCs and SZs) in each state and between states (rest and AOD) within group. We found that graph measures of negative functional integration brain network and several positive functional segregation brain networks were altered in schizophrenia during AOD task. The metrics of positive functional integration brain network and one positive functional segregation brain network were higher during the resting state than during the AOD task only in HCs. These findings imply that state-related characteristics of both functional integration and functional segregation brain networks are impaired in schizophrenia which provides new insight into the altered brain performance in this brain disorder. © 2013.

  3. Long-term neuroglobin expression of human astrocytes following brain trauma.

    Science.gov (United States)

    Chen, Xiameng; Liu, Yuan; Zhang, Lin; Zhu, Peng; Zhu, Haibiao; Yang, Yu; Guan, Peng

    2015-10-08

    Neuroglobin (Ngb), a 17 kDa monomeric protein, was initially described as a vertebrate oxygen-binding heme protein in 2000 and detected in metabolically active organs or cells, like the brain, peripheral nervous system as well as certain endocrine cells. A large array of initial experimental work reported that Ngb displayed a neuron restricted expression pattern in mammalian brains. However, growing evidence indicated astrocytes may also express Ngb under pathological conditions. To address the question whether human astrocytes express Ngb under traumatic insults, we investigated Ngb immuno-reactivity in post-mortem human brain tissues that died of acute, sub-acute and chronic brain trauma, respectively. We observed astrocytic Ngb expression in sub-acute and chronic traumatic brains rather than acute traumatic brains. Strikingly, the Ngb immuno-reactive astrocytes were still strongly detectable in groups that died 12 months after brain trauma. Our findings may imply an unexplored role of Ngb in astrocytes and the involved mechanisms were suggested to be further characterized. Also, therapeutic application of Ngb or Ngb-inducible chemical compounds in neuro-genesis or astrocytic scar forming can be expected. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Study of perifocal low-density area in metastatic brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R; Okada, K; Hiratsuka, H; Inaba, Y [Tokyo Medical and Dental Univ. (Japan). School of Medicine; Tsuyumu, M

    1980-04-01

    It is well known that vasogenic brain edema often develops in brain tumors, head injuries, and inflammatory brain lesions. In order to investigate the development and resolution of vasogenic brain edema, some CT findings of metastatic brain tumors were studied in detail. 20 cases of metastatic brain tumors of the past three years were examined by means of a CT scan. In almost all the cases there was a perifocal low-density area (PFL) in the CT findings. In the tumors which were cystic and/or located in the infratentorial space, PFL was not present or, if present, only slightly so. On the contrary, in the tumors which were nodular and/or in the supratentorial space, PFL was present extensively. In the supratentorial metastasis, PFL seemed to be restricted within the white matter and not to involve the gray matter nor such midline structures as basal ganglia and corpus callosum. Besides, PFL was always in contact with the lateral ventricular wall. These results show that PFL in the metastatic tumors resembles in shape the experimental cold-induced brain edema in cats. PFL is presumed to represent vasogenic brain edema; these findings support the hypothesis that the main mechanism of the resolution of vasogenic brain edema is the drainage of the edema fluid into the ventricular CSF.

  5. Brain networks, structural realism, and local approaches to the scientific realism debate.

    Science.gov (United States)

    Yan, Karen; Hricko, Jonathon

    2017-08-01

    We examine recent work in cognitive neuroscience that investigates brain networks. Brain networks are characterized by the ways in which brain regions are functionally and anatomically connected to one another. Cognitive neuroscientists use various noninvasive techniques (e.g., fMRI) to investigate these networks. They represent them formally as graphs. And they use various graph theoretic techniques to analyze them further. We distinguish between knowledge of the graph theoretic structure of such networks (structural knowledge) and knowledge of what instantiates that structure (nonstructural knowledge). And we argue that this work provides structural knowledge of brain networks. We explore the significance of this conclusion for the scientific realism debate. We argue that our conclusion should not be understood as an instance of a global structural realist claim regarding the structure of the unobservable part of the world, but instead, as a local structural realist attitude towards brain networks in particular. And we argue that various local approaches to the realism debate, i.e., approaches that restrict realist commitments to particular theories and/or entities, are problematic insofar as they don't allow for the possibility of such a local structural realist attitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Music therapy and "brain music": state of the art, problems and perspectives].

    Science.gov (United States)

    Fedotchev, A I; Radchenko, G S

    2013-01-01

    Recent literature on the problem of interaction between music and the brain is reviewed and summarized. Mechanisms and effects of two most popular music therapy applications are picked out, including music listening and music making. Special attention is paid to relatively new line of investigations that is called "music of the brain" and deals with transformation of bioelectric processes of human organism into music. Unresolved questions of music therapy are identified and some promising lines of future investigations are delineated.

  7. Discovering Patterns in Brain Signals Using Decision Trees

    Directory of Open Access Journals (Sweden)

    Narusci S. Bastos

    2016-01-01

    Full Text Available Even with emerging technologies, such as Brain-Computer Interfaces (BCI systems, understanding how our brains work is a very difficult challenge. So we propose to use a data mining technique to help us in this task. As a case of study, we analyzed the brain’s behaviour of blind people and sighted people in a spatial activity. There is a common belief that blind people compensate their lack of vision using the other senses. If an object is given to sighted people and we asked them to identify this object, probably the sense of vision will be the most determinant one. If the same experiment was repeated with blind people, they will have to use other senses to identify the object. In this work, we propose a methodology that uses decision trees (DT to investigate the difference of how the brains of blind people and people with vision react against a spatial problem. We choose the DT algorithm because it can discover patterns in the brain signal, and its presentation is human interpretable. Our results show that using DT to analyze brain signals can help us to understand the brain’s behaviour.

  8. Quantitative imaging of brain chemistry

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.

    1986-01-01

    We can now measure how chemicals affect different regions of the human brain. One area involves the study of drugs - in-vivo neuro-pharmacology; another involves the study of toxic chemical effects - in vivo neurotoxicology. The authors approach is to label drugs with positron-emitting radioactive tracers - chiefly carbon-11 with a half-life of 20 minutes and fluorine-18 with a half-life of 110 minutes. The labeled drugs are injected intravenously and a positron emission tomography (PET) scanner is used to map out the distribution of the radioactivity within the brain from the moment of injection until about 90 minutes later. Mathematical models are used to calculate receptor concentrations and the affinity of the receptors for the injected radioactive tracer. By means of PET scanning, they look at cross sections or visual slices throughout the human brain, obtaining computer-generated images in any plane. The authors are investigating the functions of specific drugs or specific receptors, as well as looking at the metabolic activity in different parts of the brain as revealed in glucose metabolism. For example, the authors are studying opiate receptors in patients with a variety of conditions: those who suffer from chronic pain, those who are congenitally insensitive to pain and drug addicts. They are studying patients with schizophrenia, tardive dyskinesia, Parkinson's disease, Huntington's disease, depressed patients and sex-offenders. They are relating the state of the neurotransmitter/neuroreceptor systems to behavior. In essence, they believe that they can now examine in living human beings what relates the structure of the brain to the function of the mind that is chemistry

  9. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  10. Brain tumor - primary - adults

    Science.gov (United States)

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  11. Effects of diets containing unripe plantain diet on brain serotonin in ...

    African Journals Online (AJOL)

    In this study, the effect of plantain-containing mouse diet on brain serotonin mice was investigated in mice. Thirty adult Swiss mice were divided into three groups of ten each and fed normal rodent chow containing 0%, 50% and 100% unripe plantain. After thirty days, the brain levels of 5-HT and 5-HTP were measured using ...

  12. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation

    Directory of Open Access Journals (Sweden)

    Alireza eGharabaghi

    2014-03-01

    Full Text Available Motor recovery after stroke is an unsolved challenge despite intensive rehabilitation training programs. Brain stimulation techniques have been explored in addition to traditional rehabilitation training to increase the excitability of the stimulated motor cortex. This modulation of cortical excitability augments the response to afferent input during motor exercises, thereby enhancing skilled motor learning by long-term potentiation-like plasticity. Recent approaches examined brain stimulation applied concurrently with voluntary movements to induce more specific use-dependent neural plasticity during motor training for neurorehabilitation. Unfortunately, such approaches are not applicable for the many severely affected stroke patients lacking residual hand function. These patients require novel activity-dependent stimulation paradigms based on intrinsic brain activity. Here, we report on such brain state-dependent stimulation (BSDS combined with haptic feedback provided by a robotic hand orthosis. Transcranial magnetic stimulation of the motor cortex and haptic feedback to the hand were controlled by sensorimotor desynchronization during motor-imagery and applied within a brain-machine interface environment in one healthy subject and one patient with severe hand paresis in the chronic phase after stroke. BSDS significantly increased the excitability of the stimulated motor cortex in both healthy and post-stroke conditions, an effect not observed in non-BSDS protocols. This feasibility study suggests that closing the loop between intrinsic brain state, cortical stimulation and haptic feedback provides a novel neurorehabilitation strategy for stroke patients lacking residual hand function, a proposal that warrants further investigation in a larger cohort of stroke patients.

  13. Neuropathological biomarker candidates in brain tumors: key issues for translational efficiency.

    Science.gov (United States)

    Hainfellner, J A; Heinzl, H

    2010-01-01

    Brain tumors comprise a large spectrum of rare malignancies in children and adults that are often associated with severe neurological symptoms and fatal outcome. Neuropathological tumor typing provides both prognostic and predictive tissue information which is the basis for optimal postoperative patient management and therapy. Molecular biomarkers may extend and refine prognostic and predictive information in a brain tumor case, providing more individualized and optimized treatment options. In the recent past a few neuropathological brain tumor biomarkers have translated smoothly into clinical use whereas many candidates show protracted translation. We investigated the causes of protracted translation of candidate brain tumor biomarkers. Considering the research environment from personal, social and systemic perspectives we identified eight determinants of translational success: methodology, funding, statistics, organization, phases of research, cooperation, self-reflection, and scientific progeny. Smoothly translating biomarkers are associated with low degrees of translational complexity whereas biomarkers with protracted translation are associated with high degrees. Key issues for translational efficiency of neuropathological brain tumor biomarker research seem to be related to (i) the strict orientation to the mission of medical research, that is the improval of medical practice as primordial purpose of research, (ii) definition of research priorities according to clinical needs, and (iii) absorption of translational complexities by means of operatively beneficial standards. To this end, concrete actions should comprise adequate scientific education of young investigators, and shaping of integrative diagnostics and therapy research both on the local level and the level of influential international brain tumor research platforms.

  14. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity.

    Science.gov (United States)

    Laing, Mark; Rees, Adrian; Vuong, Quoc C

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  15. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    Directory of Open Access Journals (Sweden)

    Mark eLaing

    2015-10-01

    Full Text Available The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we use amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only or auditory-visual (AV trials in the scanner. On AV trials, the auditory and visual signal could have the same (AV congruent or different modulation rates (AV incongruent. Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for auditory-visual integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  16. Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood–brain barrier disruption after ischemic brain injury

    Science.gov (United States)

    Jiang, Xiaoyan; Zhang, Lili; Pu, Hongjian; Hu, Xiaoming; Zhang, Wenting; Cai, Wei; Gao, Yanqin; Leak, Rehana K.; Keep, Richard F.; Bennett, Michael V. L.; Chen, Jun

    2017-01-01

    The damage borne by the endothelial cells (ECs) forming the blood–brain barrier (BBB) during ischemic stroke and other neurological conditions disrupts the structure and function of the neurovascular unit and contributes to poor patient outcomes. We recently reported that structural aberrations in brain microvascular ECs—namely, uncontrolled actin polymerization and subsequent disassembly of junctional proteins, are a possible cause of the early onset BBB breach that arises within 30–60 min of reperfusion after transient focal ischemia. Here, we investigated the role of heat shock protein 27 (HSP27) as a direct inhibitor of actin polymerization and protectant against BBB disruption after ischemia/reperfusion (I/R). Using in vivo and in vitro models, we found that targeted overexpression of HSP27 specifically within ECs—but not within neurons—ameliorated BBB impairment 1–24 h after I/R. Mechanistically, HSP27 suppressed I/R-induced aberrant actin polymerization, stress fiber formation, and junctional protein translocation in brain microvascular ECs, independent of its protective actions against cell death. By preserving BBB integrity after I/R, EC-targeted HSP27 overexpression attenuated the infiltration of potentially destructive neutrophils and macrophages into brain parenchyma, thereby improving long-term stroke outcome. Notably, early poststroke administration of HSP27 attached to a cell-penetrating transduction domain (TAT-HSP27) rapidly elevated HSP27 levels in brain microvessels and ameliorated I/R-induced BBB disruption and subsequent neurological deficits. Thus, the present study demonstrates that HSP27 can function at the EC level to preserve BBB integrity after I/R brain injury. HSP27 may be a therapeutic agent for ischemic stroke and other neurological conditions involving BBB breakdown. PMID:28137866

  17. Transferrin receptor-1 and ferritin heavy and light chains in astrocytic brain tumors

    DEFF Research Database (Denmark)

    Rosager, Ann Mari; Sørensen, Mia D; Dahlrot, Rikke H

    2017-01-01

    Astrocytic brain tumors are the most frequent primary brain tumors. Treatment with radio- and chemotherapy has increased survival making prognostic biomarkers increasingly important. The aim of the present study was to investigate the expression and prognostic value of transferrin receptor-1 (TfR...

  18. Drug delivery to the human brain via the cerebrospinal fluid

    International Nuclear Information System (INIS)

    Howden, L.; Aroussi, A.; Vloeberghs, M.

    2003-01-01

    This Study investigates the flow of Cerebrospinal Fluid (CSF) inside the human ventricular system with particular emphasis on drug path flow for the purpose of medical drug injections. The investigation is conducted using the computational fluid dynamics package FLUENT. The role of the ventricular system is very important in protecting the brain from injury by cushioning it against the cranium during sudden movements. If for any reason the passage of CSF through the ventricular system is blocked (usually by stenosis) then a condition known as Hydrocephalus occurs, where by the blocked CSF causes the Intra Cranial Pressure (ICP) inside the brain to rise. If this is not treated then severe brain damage and death can occur. Previous work conducted by the authors on this subject has focused on the technique of ventriculostomy to treat hydrocephalus. The present study carries on from the previous work but focuses on delivering medical drugs to treat brain tumors that are conventionally not accessible and which require complicated surgical procedures to remove them. The study focuses on the possible paths for delivering drugs to tumors in the human nervous system through conventionally accessible locations without major surgery. The results of the investigation have shown that it is possible to reach over 95% of the ventricular system by injection of drugs however the results also show that there are many factors that can affect the drug flow paths through the ventricular system and thus the areas reachable, by these drugs. (author)

  19. Drug delivery to the human brain via the cerebrospinal fluid

    Energy Technology Data Exchange (ETDEWEB)

    Howden, L.; Aroussi, A. [Univ. of Nottingham, School of Mechanical, Material, Manufacturing Engineering and Managements, Nottingham (United Kingdom)]. E-mail: eaxljh@nottingham.ac.uk; Vloeberghs, M. [Queens Medical Centre, Dept. of Child Health, Nottingham (United Kingdom)

    2003-07-01

    This Study investigates the flow of Cerebrospinal Fluid (CSF) inside the human ventricular system with particular emphasis on drug path flow for the purpose of medical drug injections. The investigation is conducted using the computational fluid dynamics package FLUENT. The role of the ventricular system is very important in protecting the brain from injury by cushioning it against the cranium during sudden movements. If for any reason the passage of CSF through the ventricular system is blocked (usually by stenosis) then a condition known as Hydrocephalus occurs, where by the blocked CSF causes the Intra Cranial Pressure (ICP) inside the brain to rise. If this is not treated then severe brain damage and death can occur. Previous work conducted by the authors on this subject has focused on the technique of ventriculostomy to treat hydrocephalus. The present study carries on from the previous work but focuses on delivering medical drugs to treat brain tumors that are conventionally not accessible and which require complicated surgical procedures to remove them. The study focuses on the possible paths for delivering drugs to tumors in the human nervous system through conventionally accessible locations without major surgery. The results of the investigation have shown that it is possible to reach over 95% of the ventricular system by injection of drugs however the results also show that there are many factors that can affect the drug flow paths through the ventricular system and thus the areas reachable, by these drugs. (author)

  20. Subacute brain atrophy induced by radiation therapy to the malignant brain tumors

    International Nuclear Information System (INIS)

    Asai, Akio; Matsutani, Masao; Takakura, Kintomo.

    1987-01-01

    In order to analyze brain atrophy after radiation therapy to the brain tumors, we calculated a CSF-cranial volume ratio on CT scan as an index of brain atrophy, and estimated dementia-score by Hasegawa's method in 91 post-irradiated patients with malignant brain tumors. Radiation-induced brain atrophy was observed in 51 out of 91 patients (56 %) and dementia in 23 out of 47 patients (49 %). These two conditions were closely related, and observed significantly more often in aged and whole-brain-irradiated patients. As radiation-induced brain atrophy accompanied by dementia appeared 2 - 3 months after the completion of radiation therapy, it should be regarded as a subacute brain injury caused by radiation therapy. (author)

  1. Medical exposure to ionising radiation and the risk of brain tumours

    DEFF Research Database (Denmark)

    Blettner, Maria; Schlehofer, Brigitte; Samkange-Zeeb, Florence

    2007-01-01

    BACKGROUND: The role of exposure to low doses of ionising radiation in the aetiology of brain tumours has yet to be clarified. The objective of this study was to investigate the association between medically or occupationally related exposure to ionising radiation and brain tumours. METHODS: We...... used self-reported medical and occupational data collected during the German part of a multinational case-control study on mobile phone use and the risk of brain tumours (Interphone study) for the analyses. RESULTS: For any exposure to medical ionising radiation we found odds ratios (ORs) of 0.63 (95...... regions. CONCLUSION: We did not find any significant increased risk of brain tumours for exposure to medical ionising radiation....

  2. Imaging of Brain Connectivity in Dementia: Clinical Implications for Diagnosis of its Underlying Diseases

    NARCIS (Netherlands)

    R. Meijboom (Rozanna)

    2017-01-01

    markdownabstractIn this thesis we investigated the use of advanced magnetic resonance imaging (MRI) techniques in identifying subtle brain abnormalities, associating brain abnormalities with disease symptomatology, and improving early (differential) diagnosis in several diseases underlying dementia.

  3. Experimental investigation of the accuracy for absolute quantification of brain creatine concentration using long time echo point resolved spectroscopy sequence with an external standard and linear combination of model spectra

    International Nuclear Information System (INIS)

    Lin Yan; Shen Zhiwei; Xiao Yeyu; Zheng Wenbin; Wu Renhua; Li Hui; Xiao Zhuanwei

    2008-01-01

    Objective: To investigate the accuracy for absolute quantification of brain creatine (Cr) concentration using long time echo (TE) point resolved spectroscopy (PRESS) sequence performed with an extemal standard and postprocessed with the linear combination of model spectra ( LCModel). Methods: Ten swine (3.1 ± 0.6 kg) and an external standard phantom containing detectable compounds of known concentration were investigated in this study by using 1.5 T GE Signa scanner and a standard head coil. The single-voxel proton magnetic resonance spectroscopy ( 1 H-MRS) data were acquired from the two ROIs (2 cm x 2 cm x 2 cm) placed in swine brain and external standard solution using PRESS sequence with TE 135 ms, TR 1500 ms, and 128 scan averages. The in vivo quantification of Cr was accomplished by LCModel. After 1 H-MRS examination, each animal was sacrificed immediately. In vitro Cr concentration was analyzed by high performance liquid chromatography (HPLC). Results: In the 1 H-MRS group, the Cr concentration was (9.37±0.14)mmol/kg. In the HPLC group, the Cr concentration was (8.91± 0.13)mmol/kg. Good agreement was obtained between these two methods (t=9.038, P=0.491). Conclusion: The long echo time PRESS sequence performed with an external standard and processed with LCModel is proven to be an accurate technique to detect the in vivo brain Cr concentration. (authors)

  4. Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

    Directory of Open Access Journals (Sweden)

    Martin R.

    2015-08-01

    Full Text Available Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

  5. Disruption of Brain-Heart Coupling in Sepsis

    NARCIS (Netherlands)

    Admiraal, Marjolein M.; Gilmore, Emily J.; Van Putten, Michel J.A.M.; Zaveri, Hitten P.; Hirsch, Lawrence J.; Gaspard, Nicolas

    2017-01-01

    Purpose: To investigate heart rate and EEG variability and their coupling in patients with sepsis and determine their relationship to sepsis severity and severity of sepsis-Associated brain dysfunction. Methods: Fifty-Two patients with sepsis were prospectively identified, categorized as comatose (N

  6. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Stefanie Endesfelder

    2017-01-01

    Full Text Available Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term “oxygen radical disease of prematurity”. Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6 corresponds to that of a human fetal brain at 28–32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC, promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1, down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB, reduced pro-apoptotic effectors (poly (ADP-ribose polymerase-1 (PARP-1, apoptosis inducing factor (AIF, and caspase-3, and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP 2, and inhibitor of metalloproteinase (TIMP 1/2. Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  7. Teaching Creativity for Right Brain and Left Brain Thinkers.

    Science.gov (United States)

    Geske, Joel

    Right brain and left brain dominant people process information differently and need different techniques to learn how to become more creative. Various exercises can help students take advantage of both sides of their brains. Students must feel comfortable and unthreatened to reach maximal creativity, and a positive personal relationship with…

  8. Alteration and reorganization of functional networks: a new perspective in brain injury study

    Directory of Open Access Journals (Sweden)

    Nazareth P. Castellanos

    2011-09-01

    Full Text Available Plasticity is the mechanism underlying brain’s potential capability to compensate injury. Recently several studies have shown that functional connections among brain areas are severely altered by brain injury and plasticity leading to a reorganization of the networks. This new approach studies the impact of brain injury by means of alteration of functional interactions. The concept of functional connectivity refers to the statistical interdependencies between physiological time series simultaneously recorded in various brain areas and it could be an essential tool for brain function studies, being its deviation from healthy reference an indicator for damage. In this article, we review studies investigating functional connectivity changes after brain injury and subsequent recovery, providing an accessible introduction to common mathematical methods to infer functional connectivity, exploring their capabilities, future perspectives and clinical uses in brain injury studies.

  9. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    factors change at different time points after brain injury, and what is the relationship between associated factors and cognitive disorder.CONCLUSION: It is necessary to comprehensively study some associated factors, to analyze their changes and their relationship with cognitive disorder following brain injury, and to investigate their effects at different time points after brain injury.

  10. Relationship between catalase activity and uptake of elemental mercury by rat brain

    International Nuclear Information System (INIS)

    Eide, I.; Syversen, T.L.M.

    1983-01-01

    Uptake of mercury by brain after intravenous injection of elemental mercury was investigated in the rat. Catalase activity was inhibited by aminotriazole either by intraperitoneal affecting catalase in most tissues of the animal or by intraventricular injections affecting catalase in the brain selectively. Uptake of elemental mercury by rat brain was not influenced by intraperitoneal administration of aminotriazole resulting in 50% inhibition of brain catalase. However, when the inhibitor was injected intraventricularly in concentrations to give a 50% inhibition of brain catalase, it was shown that the mercury uptake by brain was significantly decreased. In the latter case when only brain catalase was inhibited and the supply of elemtal mercury to brain was maintained, mercury uptake by brain was proportional to the activity of catalase in brain tissue and to the injected amount of elemental mercury. Contrary to the intraventricular injection of aminotriazole, in animals recieving aminotriazole intraperitoneally prior to elemental mercury injection, we suggest that the lower activity of brain catalse is compensated by an increased supply of elemtal mercury caused by the generally lower oxidation rate in the animal. This view is supported by the finding that mercury uptake by liver increased due to aminotriazole intraperitoneally although activity of catalase was depressed. (author)

  11. Radiosurgery for brain metastases: is whole brain radiation therapy necessary?

    International Nuclear Information System (INIS)

    Forstner, Julie M.; Sneed, Penny K.; Lamborn, Kathleen R.; Shu, H.-K.G.; McDermott, Michael W.; Park, Elaine; Ho, Maria; Chang, Susan; Gutin, Philip H.; Phillips, Theodore L.; Wara, William M.; Larson, David A.

    1996-01-01

    Purpose: Because whole brain radiotherapy (WBRT) carries a significant risk of dementia in long-term survivors, it is desirable to determine if some patients with brain metastases may be managed with radiosurgery (RS) alone, reserving WBRT for salvage therapy as needed. To begin to approach this problem, we retrospectively reviewed freedom from brain failure/progression (Brain FFP) and survival of patients with newly-diagnosed solitary or multiple brain metastases treated with Gamma Knife RS ± WBRT. Materials and Methods: All patients treated at our institution with Gamma Knife RS for newly-diagnosed solitary or multiple (2-8) brain metastases from September 1991 through December 1995 were reviewed. Whether or not WBRT was given depended on physician preference and referral patterns. Brain FFP was measured from the date of RS until development of a new brain metastasis or progression of a treated metastasis, with censoring at the time of the last imaging study. Survival was measured from the date of RS until death or last clinical follow-up. Actuarial curves were estimated using the Kaplan-Meier method and compared with the log rank test. Multivariate analyses to adjust for known prognostic variables (age, KPS, history of extracranial metastases, and total target volume) were performed using the Cox proportional hazards model. Results: From September 1991-December 1995, 90 patients with newly-diagnosed brain metastases underwent RS. Three patients treated palliatively to a small component of their intracranial disease were excluded, leaving 54 treated with RS alone and 33 treated with RS + WBRT. Age ranged from 31-83 years (median, 59 years), KPS from 60-100 (median, 90), and total target volume from 0.15-26.1 cm 3 (median, 5.5 cm 3 ). Fifty patients had a history of extracranial metastases. Results are shown below. In the RS alone group, (22(54)) patients (41%) had a brain failure and (20(54)) (37%) died without evidence of brain failure. In the RS + WBRT group

  12. Stress-sensitive arterial hypertension, haemodynamic changes and brain metabolites in hypertensive ISIAH rats: MRI investigation.

    Science.gov (United States)

    Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel, A L; Akulov, A E

    2017-05-01

    What is the central question of this study? Stress-sensitive arterial hypertension is considered to be controlled by changes in central and peripheral sympathetic regulating mechanisms, which eventually result in haemodynamic alterations and blood pressure elevation. Therefore, study of the early stages of development of hypertension is of particular interest, because it helps in understanding the aetiology of the disease. What is the main finding and its importance? Non-invasive in vivo investigation in ISIAH rats demonstrated that establishment of sustainable stress-sensitive hypertension is accompanied by a decrease in prefrontal cortex activity and mobilization of hypothalamic processes, with considerable correlations between haemodynamic parameters and individual metabolite ratios. The study of early development of arterial hypertension in association with emotional stress is of great importance for better understanding of the aetiology and pathogenesis of the hypertensive disease. Magnetic resonance imaging (MRI) was applied to evaluate the changes in haemodynamics and brain metabolites in 1- and 3-month-old inherited stress-induced arterial hypertension (ISIAH) rats (10 male rats) with stress-sensitive arterial hypertension and in control normotensive Wistar Albino Glaxo (WAG) rats (eight male rats). In the 3-month-old ISIAH rats, the age-dependent increase in blood pressure was associated with increased blood flow through the renal arteries and decreased blood flow in the lower part of the abdominal aorta. The renal vascular resistance in the ISIAH rats decreased during ageing, although at both ages it remained higher than the renal vascular resistance in WAG rats. An integral metabolome portrait demonstrated that development of hypertension in the ISIAH rats was associated with an attenuation of the excitatory and energetic activity in the prefrontal cortex, whereas in the WAG rats the opposite age-dependent changes were observed. In contrast, in the

  13. Estimation Methods for Infinite-Dimensional Systems Applied to the Hemodynamic Response in the Brain

    KAUST Repository

    Belkhatir, Zehor

    2018-01-01

    available measurements is essential. The human brain is an example of IDSs with severe constraints on information collection from controlled experiments and invasive sensors. Investigating the intriguing modeling potential of the brain is, in fact, the main

  14. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  15. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  16. Histopathological investigation of radiation necrosis. Coagulation necrosis in the irradiated and non-irradiated brain tumors and in the normal brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, N [Niigata Univ. (Japan). Brain Research Inst.

    1977-01-01

    Eighty four irradiated tumors (including 59 gliomas) and the surrounding brain tissue were analyzed. In 'normal' brain tissue, typical coagulation necrosis attributable to irradiation was observed in the cerebral white matter, presenting a whitish-yellow color but no remarkable changes in volume. Histologically there was complete desintegration of myelin and axon. Vascular changes included hyalinous thickening, concentric cleavage, fibrinoid degeneration, adventitial fibrosis and edema of small arteries, fibrin thrombi or occlusion of arterioles and capillaries, and telangiectasia of small veins and venules. While other tumors showed hyalinous or fibrous scar tissue and decrease in volume, the gliomas maintained their original volume without residual tumor cells. Massive coagulation necrosis was occasionally found even in full volume, non-irradiated gliomas (controls), although the changes were fewer and not so varied as in typical radiation necrosis. With small dosages, it was difficult to judge whether the necrosis was caused by irradiation or occurred spontaneously. Coagulation necrosis in tumor tissue was found in 25 of 59 cases (42%) of irradiated gliomas, but in only 2 of 49 cases (4%) of the nonirradiated gliomas. In 49 cases no coagulation necrosis of the surrounding tissue was found. Although histopathological judgement is difficult, it is suggested that there is a significant correlation between coagulation necrosis and irradiation. Discussion of the relationship between coagulation necrosis and NSD (nominal standard dose) led to the conclusion that coagulation necrosis will not be caused by irradiation of less than 1400 rets in NSD.

  17. Brain cancer mortality rates increase with Toxoplasma gondii seroprevalence in France

    Science.gov (United States)

    Vittecoq, Marion; Elguero, Eric; Lafferty, Kevin D.; Roche, Benjamin; Brodeur, Jacques; Gauthier-Clerc, Michel; Missé, Dorothée; Thomas, Frédéric

    2012-01-01

    The incidence of adult brain cancer was previously shown to be higher in countries where the parasite Toxoplasma gondii is common, suggesting that this brain protozoan could potentially increase the risk of tumor formation. Using countries as replicates has, however, several potential confounding factors, particularly because detection rates vary with country wealth. Using an independent dataset entirely within France, we further establish the significance of the association between T. gondii and brain cancer and find additional demographic resolution. In adult age classes 55 years and older, regional mortality rates due to brain cancer correlated positively with the local seroprevalence of T. gondii. This effect was particularly strong for men. While this novel evidence of a significant statistical association between T. gondii infection and brain cancer does not demonstrate causation, these results suggest that investigations at the scale of the individual are merited.

  18. Brain regions involved in observing and trying to interpret dog behaviour.

    Science.gov (United States)

    Desmet, Charlotte; van der Wiel, Alko; Brass, Marcel

    2017-01-01

    Humans and dogs have interacted for millennia. As a result, humans (and especially dog owners) sometimes try to interpret dog behaviour. While there is extensive research on the brain regions that are involved in mentalizing about other peoples' behaviour, surprisingly little is known of whether we use these same brain regions to mentalize about animal behaviour. In this fMRI study we investigate whether brain regions involved in mentalizing about human behaviour are also engaged when observing dog behaviour. Here we show that these brain regions are more engaged when observing dog behaviour that is difficult to interpret compared to dog behaviour that is easy to interpret. Interestingly, these results were not only obtained when participants were instructed to infer reasons for the behaviour but also when they passively viewed the behaviour, indicating that these brain regions are activated by spontaneous mentalizing processes.

  19. SPECT brain perfusion imaging in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Li Juan; Liu Baojun; Zhao Feng; He Lirong; Xia Yucheng

    2003-01-01

    Objective: To study the clinical value of SPECT brain perfusion imaging after mild traumatic brain injury and to evaluate the mechanism of brain blood flow changes in the brain traumatic symptoms. Methods: SPECT 99 Tc m -ethylene cysteinate dimer (ECD) brain perfusion imaging was performed on 39 patients with normal consciousness and normal computed tomography. The study was performed on 23 patients within 3 months after the accidental injury and on 16 patients at more than 3 months post-injury. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in cortex or basal ganglia to below 70%, or even to below 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. Results: The results of 23 patients (59%) were abnormal. Among them, 20 patients showed 74 focal lesions with an average of 3.7 per patient (15 studies performed within 3 months and 8 studies performed more than 3 months after injury). The remaining 3 showed diffuse hypoperfusion (two at the early stage and one at more than 3 months after the injury). The 13 abnormal studies performed at the early stage showed 58 lesions (average, 4.5 per patient), whereas there was a reduction to an average of 2.3 per patient in the 7 patients (total 16 lesions) at more than 3 months post-injury. In the 20 patients with focal lesions, mainly the following regions were involved: frontal lobes 43.2% (32/74), basal ganglia 24.3% (18/74) and temporal lobes 17.6% (13/74). Conclusions: 1) SPECT brain perfusion imaging is more sensitive than computed tomography in detecting brain lesions of mild traumatic brain injury. 2) SPECT brain perfusion imaging is more sensitive at early stage than at late stage after injury. 3) The most common complaints were headache, dizziness, memory deficit. The patients without loss of consciousness may present brain hypoperfusion, too. 4) The changes may explain a neurological component of the patient symptoms in

  20. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.