WorldWideScience

Sample records for investigating energy partitioning

  1. Effects of fermentable starch and straw-enriched housing on energy partitioning of growing pigs

    NARCIS (Netherlands)

    Bolhuis, J.E.; Brand, van den H.; Staals, S.T.M.; Zandstra, T.; Alferink, S.J.J.; Heetkamp, M.J.W.; Gerrits, W.J.J.

    2008-01-01

    Both dietary fermentable carbohydrates and the availability of straw bedding potentially affect activity patterns and energy utilisation in pigs. The present study aimed to investigate the combined effects of straw bedding and fermentable carbohydrates (native potato starch) on energy partitioning

  2. Rapid calculation of partition functions and free energies of fluids.

    Science.gov (United States)

    Do, Hainam; Hirst, Jonathan D; Wheatley, Richard J

    2011-11-07

    The partition function (Q) is a central quantity in statistical mechanics. All the thermodynamic properties can be derived from it. Here we show how the partition function of fluids can be calculated directly from simulations; this allows us to obtain the Helmholtz free energy (F) via F = -k(B)T ln Q. In our approach, we divide the density of states, assigning half of the configurations found in a simulation to a high-energy partition and half to a low-energy partition. By recursively dividing the low-energy partition into halves, we map out the complete density of states for a continuous system. The result allows free energy to be calculated directly as a function of temperature. We illustrate our method in the context of the free energy of water.

  3. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    Science.gov (United States)

    Jakobtorweihen, S.; Zuniga, A. Chaides; Ingram, T.; Gerlach, T.; Keil, F. J.; Smirnova, I.

    2014-07-01

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.

  4. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    International Nuclear Information System (INIS)

    Jakobtorweihen, S.; Ingram, T.; Gerlach, T.; Smirnova, I.; Zuniga, A. Chaides; Keil, F. J.

    2014-01-01

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations

  5. Seasonal energy and evapotranspiration partitioning in a desert vineyard

    Science.gov (United States)

    The challenge of partitioning energy and evapotranspiration (ET) components was addressed over a season (bud break till harvest) in a wine grape vineyard located in an extreme arid region. A below canopy energy balance approach was applied to continuously estimate evaporation from the soil (E) while...

  6. Energy partitioning for growth by rabbits fed groundnut and stylo ...

    African Journals Online (AJOL)

    Forty eight crossbred (California X New Zealand White) rabbits were used to evaluate energy partitioning of rabbits fed forages supplemented with concentrate. The rabbits were randomly allocated to three treatments consisting of sole Stylosanthes hamata (stylo),sole Arachis hypogea (groundnut) haulms and 50:50 mixture ...

  7. On solving energy-dependent partitioned eigenvalue problem by ...

    Indian Academy of Sciences (India)

    An energy-dependent partitioning scheme is explored for extracting a small number of eigenvalues of a real symmetric matrix with the help of genetic algorithm. The proposed method is tested with matrices of different sizes (30 × 30 to 1000 × 1000). Comparison is made with Löwdin's strategy for solving the problem.

  8. On solving energy-dependent partitioned eigenvalue problem by ...

    Indian Academy of Sciences (India)

    Abstract. An energy-dependent partitioning scheme is explored for extracting a small number of eigenvalues of a real symmetric matrix with the help of genetic algorithm. The proposed method is tested with matrices of different sizes (30 × 30 to 1000 × 1000). Com- parison is made with Löwdin's strategy for solving the ...

  9. Partitions

    Directory of Open Access Journals (Sweden)

    Renata Biadacz

    2015-04-01

    Full Text Available The aim of the article is to present scientific and didactic achievements of Polish accounting at the turn of the 19th century. The first part of the study addresses key issues in the development of accounting science and practice on Polish territory during the Partitions period. In the second part, attention is focused on scientific achievements of J. Walicki, B. Wilmowski and P. Ciompa. The third part discusses the question of Polish accounting handbooks at the turn of the 19th century, as well as the state of accounting practice at that time and problems in the development of professional periodicals on Polish territory during the Partitions. The last part focuses on various perspectives on the nature of accounting in handbooks from the late 19th and early 20th century. The research method applied is literature study based on selected textbooks and scientific papers published in Polish language in the late 19th and early 20th centuries. The article provides a synthetic overview of the state of accounting knowledge and professional accounting periodicals on Polish soil during the Partitions, which had an impact on further development of accounting in Poland.

  10. ENERGY PARTITIONING, ENERGY COUPLING (EPEC) EXPERIMENTS AT THE NATIONAL IGNITION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K B; Brown, C G; May, M J; Dunlop, W H; Compton, S M; Kane, J O; Mirkarimi, P B; Guyton, R L; Huffman, E

    2012-01-05

    The energy-partitioning, energy-coupling (EPEC) experiments at the National Ignition Facility (NIF) will simultaneously measure the coupling of energy into both ground shock and air-blast overpressure from a laser-driven target. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of seismic and air-blast phenomena caused by a nuclear weapon. In what follows, we discuss the motivation for our investigation and briefly describe NIF. Then, we introduce the EPEC experiments, including diagnostics, in more detail.

  11. Tundra permafrost thaw causes significant shifts in energy partitioning

    Directory of Open Access Journals (Sweden)

    Christian Stiegler

    2016-04-01

    Full Text Available Permafrost, a key component of the arctic and global climate system, is highly sensitive to climate change. Observed and ongoing permafrost degradation influences arctic hydrology, ecology and biogeochemistry, and models predict that rapid warming is expected to significantly reduce near-surface permafrost and seasonally frozen ground during the 21st century. These changes raise concern of how permafrost thaw affects the exchange of water and energy with the atmosphere. However, associated impacts of permafrost thaw on the surface energy balance and possible feedbacks on the climate system are largely unknown. In this study, we show that in northern subarctic Sweden, permafrost thaw and related degradation of peat plateaus significantly change the surface energy balance of three peatland complexes by enhancing latent heat flux and, to less degree, also ground heat flux at the cost of sensible heat flux. This effect is valid at all radiation levels but more pronounced at higher radiation levels. The observed differences in flux partitioning mainly result from the strong coupling between soil moisture availability, vegetation composition, albedo and surface structure. Our results suggest that ongoing and predicted permafrost degradation in northern subarctic Sweden ultimately result in changes in land–atmosphere coupling due to changes in the partitioning between latent and sensible heat fluxes. This in turn has crucial implications for how predictive climate models for the Arctic are further developed.

  12. Dietary Energy Source in Dairy Cows in Early Lactation: Energy Partitioning and Milk Composition

    NARCIS (Netherlands)

    Knegsel, van A.T.M.; Brand, van den H.; Dijkstra, J.; Straalen, van W.M.; Heetkamp, M.J.W.; Tamminga, S.; Kemp, B.

    2007-01-01

    Metabolic problems related to negative energy balance suggest a role for the balance in supply of lipogenic and glucogenic nutrients. To test the effect of lipogenic and glucogenic nutrients on energy partitioning, energy balance and nitrogen balance of 16 lactating dairy cows were determined by

  13. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  14. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  15. CURRENT SHEET ENERGETICS, FLARE EMISSIONS, AND ENERGY PARTITION IN A SIMULATED SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Reeves, Katharine K.; Linker, Jon A.; Mikic, Zoran; Forbes, Terry G.

    2010-01-01

    We investigate coronal energy flow during a simulated coronal mass ejection (CME). We model the CME in the context of the global corona using a 2.5D numerical MHD code in spherical coordinates that includes coronal heating, thermal conduction, and radiative cooling in the energy equation. The simulation domain extends from 1 to 20 R s . To our knowledge, this is the first attempt to apply detailed energy diagnostics in a flare/CME simulation when these important terms are considered in the context of the MHD equations. We find that the energy conservation properties of the code are quite good, conserving energy to within 4% for the entire simulation (more than 6 days of real time). We examine the energy release in the current sheet as the eruption takes place, and find, as expected, that the Poynting flux is the dominant carrier of energy into the current sheet. However, there is a significant flow of energy out of the sides of the current sheet into the upstream region due to thermal conduction along field lines and viscous drag. This energy outflow is spatially partitioned into three separate components, namely, the energy flux flowing out the sides of the current sheet, the energy flowing out the lower tip of the current sheet, and the energy flowing out the upper tip of the current sheet. The energy flow through the lower tip of the current sheet is the energy available for heating of the flare loops. We examine the simulated flare emissions and energetics due to the modeled CME and find reasonable agreement with flare loop morphologies and energy partitioning in observed solar eruptions. The simulation also provides an explanation for coronal dimming during eruptions and predicts that the structures surrounding the current sheet are visible in X-ray observations.

  16. Radiation-energy partition among mixture components: current ideas on an old question

    International Nuclear Information System (INIS)

    Swallow, A.J.

    1988-01-01

    We review the basis of the familiar idea that the energy partition among mixture components in the initial stage would be governed by the total electron fraction. For considerations of many problems in radiation chemistry, it is better to use the valence-electron fraction. We also point out recent developments in more detailed treatments, which indicate limitations of the very concept of the energy partition for the determination of the yields of initial molecular species that appear under irradiation. (author)

  17. Seasonal patterns in energy partitioning of two freshwater marsh ecosystems in the Florida Everglades

    Science.gov (United States)

    Sparkle L. Malone; Christina L. Staudhammer; Henry W. Loescher; Paulo Olivas; Steven F. Oberbauer; Michael G. Ryan; Jessica Schedlbauer; Gregory Starr

    2014-01-01

    We analyzed energy partitioning in short- and long-hydroperiod freshwater marsh ecosystems in the Florida Everglades by examining energy balance components (eddy covariance derived latent energy (LE) and sensible heat (H) flux). The study period included several wet and dry seasons and variable water levels, allowing us to gain better mechanistic information about the...

  18. Partition functions of perturbed minimal models and background dependent free energy of string field theory

    International Nuclear Information System (INIS)

    Ghoshal, D.; Sen, A.

    1991-01-01

    We calculate the partition function of the (ρ, ρ + 1) minimal model, perturbed by the operators φ 1.3 and φ 3.1 , to leading order in 1/ρ, and show that the result agrees with the partition functions of the (ρ-1, ρ) and (ρ+1, ρ+2) minimal models respectively. We also relate the change in the partition function of a conformal field theory under a perturbation to a change in the free energy of appropriate string field theory due to a change in the background. (orig.)

  19. Calculation of partition functions and free energies of a binary mixture using the energy partitioning method: application to carbon dioxide and methane.

    Science.gov (United States)

    Do, Hainam; Hirst, Jonathan D; Wheatley, Richard J

    2012-04-19

    It is challenging to compute the partition function (Q) for systems with enormous configurational spaces, such as fluids. Recently, we developed a Monte Carlo technique (an energy partitioning method) for computing Q [ J. Chem. Phys. 2011 , 135 , 174105 ]. In this paper, we use this approach to compute the partition function of a binary fluid mixture (carbon dioxide + methane); this allows us to obtain the Helmholtz free energy (F) via F = -k(B)T ln Q and the Gibbs free energy (G) via G = F + pV. We then utilize G to obtain the coexisting mole fraction curves. The chemical potential of each species is also obtained. At the vapor-liquid equilibrium condition, the chemical potential of methane significantly increases, while that of carbon dioxide slightly decreases, as the pressure increases along an isotherm. Since Q is obtained from the density of states, which is independent of the temperature, equilibrium thermodynamic properties at any condition can be obtained by varying the total composition and volume of the system. Our methodology can be adapted to explore the free energies of other binary mixtures in general and of those containing CO(2) in particular. Since the method gives access to the free energy and chemical potentials, it will be useful in many other applications.

  20. Region-based Image Segmentation by Watershed Partition and DCT Energy Compaction

    Directory of Open Access Journals (Sweden)

    Chi-Man Pun

    2012-02-01

    Full Text Available An image segmentation approach by improved watershed partition and DCT energy compaction has been proposed in this paper. The proposed energy compaction, which expresses the local texture of an image area, is derived by exploiting the discrete cosine transform. The algorithm is a hybrid segmentation technique which is composed of three stages. First, the watershed transform is utilized by preprocessing techniques: edge detection and marker in order to partition the image in to several small disjoint patches, while the region size, mean and variance features are used to calculate region cost for combination. Then in the second merging stage the DCT transform is used for energy compaction which is a criterion for texture comparison and region merging. Finally the image can be segmented into several partitions. The experimental results show that the proposed approach achieved very good segmentation robustness and efficiency, when compared to other state of the art image segmentation algorithms and human segmentation results.

  1. Energy Partitioning in Collisions of Slow Polyatomic Ions with Carbon Surfaces

    Czech Academy of Sciences Publication Activity Database

    Žabka, Ján; Dolejšek, Zdeněk; Roithová, Jana; Grill, V.; Märk, T. D.; Herman, Zdeněk

    2002-01-01

    Roč. 213, 2/3 (2002), s. 145-156 ISSN 1387-3806 R&D Projects: GA ČR GA203/00/0632 Institutional research plan: CEZ:AV0Z4040901 Keywords : ion-surface collisions * polyatomic ions * energy partitioning Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.134, year: 2002

  2. Energy partitioning in single-electron transfer events between gaseous dications and their neutral counterparts

    Czech Academy of Sciences Publication Activity Database

    Schröder, Detlef

    2012-01-01

    Roč. 18, č. 2 (2012), s. 139-148 ISSN 1469-0667 R&D Projects: GA ČR GA203/09/1223 Institutional research plan: CEZ:AV0Z40550506 Keywords : coincidence techniques * dications * electron transfer * energy partitioning * synchrotron radiation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.259, year: 2012

  3. Partitioning of methyl internal rotational barrier energy of ...

    Indian Academy of Sciences (India)

    Unknown

    the theoretical point of view and the potential energy surfaces governing large amplitude motions have been calculated directly by ab initio molecular orbital procedures 3–6. Recently, the role of lone-pair electrons on methyl internal rotational barrier of dimethyl ether and its homologues has been analysed theoretically.

  4. Methane production and energy partition in sheep fed timothy silage- or hay-based diets

    OpenAIRE

    B Santoso; B Mwenya; C Sar; J Takahashi

    2007-01-01

    Methane is produced as a result of anaerobic fermentation of the soluble and structural carbohydrates by methanogens in the rumen of ruminant animals. Removal of methane from rumen represents a loss of approximately 7.22% of gross energy intake. Four ruminally fistulated Cheviot wethers were used in a crossover design to determine methane production and energy partition in sheep fed timothy silage- or hay-based diets. The experimental diets consisted of either timothy silage or timothy hay a...

  5. Partitioning of methyl internal rotational barrier energy of ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The nature of methyl internal rotational barrier in thioacetaldehyde has been investigated by relaxation effect, natural bond orbital (NBO) analysis and. Pauling exchange interactions. The true experimental barrier can be obtained by considering fully relaxed rotation. Nuclear-electron attraction term is a barrier.

  6. Partitioning of methyl internal rotational barrier energy of ...

    Indian Academy of Sciences (India)

    The nature of methyl internal rotational barrier in thioacetaldehyde has been investigated by relaxation effect, natural bond orbital (NBO) analysis and Pauling exchange interactions. The true experimental barrier can be obtained by considering fully relaxed rotation. Nuclear-electron attraction term is a barrier forming term in ...

  7. Influence of interface energies on solute partitioning mechanisms in doped aluminas

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Shen J., E-mail: sdillon@illinois.edu [University of Illinois, Materials Science and Engineering, 1304 West Green Street, Champaign, IL 61801 (United States); Harmer, Martin P. [Lehigh University, Center for Advanced Materials and Nanotechnology, 5 East Packer Avenue, Bethlehem, PA 18015 (United States); Rohrer, Gregory S. [Carnegie Mellon University, Department of Materials Science and Engineering, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)

    2010-09-15

    The experiments described in this paper have been designed to understand how particular dopants in alumina (Ca, Mg, Si, and Y) affect microstructural development through the energetics of their associated precipitates. Specifically, the role of the interphase boundary energy and precipitation activation energy are considered to be in competition with grain boundary complexion (disorder) transitions for partitioning excess solute. The results reveal a relationship between the relative precipitation activation energy and the temperature at which grain boundary complexion transitions occur. The large differences in activation energy primarily derive from the interphase boundary energy. Precipitates that form lower interphase boundary energies tend to suppress complexion transitions, while systems that contain precipitates with high interphase boundary energies are more susceptible. Based on the findings, a new criterion for additive selection to control complexion transitions and abnormal grain growth is proposed that is based on interfacial energies between the host and precipitate.

  8. Charged Particle Motion in a Plasma: Electron-Ion Energy Partition

    OpenAIRE

    Brown, Lowell S.; Preston, Dean L.; Singleton Jr, Robert L.

    2011-01-01

    A charged particle traversing a plasma loses its energy to both plasma electrons and ions. We compute the energy partition, the fractions $E_e/E_0$ and $E_\\smI/E_0$ of the initial energy $E_0$ of this `impurity particle' that are deposited into the electrons and ions when it has slowed down into an equilibrium distribution that we shall determine. We use a well-defined Fokker-Planck equation for the phase space distribution of the charged impurity particles in a weakly to moderately coupled p...

  9. Production and Energy Partition of Lactating Dairy Goats Fed Rations Containing Date Fruit Waste

    Directory of Open Access Journals (Sweden)

    E. Yuniarti

    2016-04-01

    Full Text Available Dates fruit waste (DFW is a by-product of dates juice industry that contains high energy. So, it is suitable for an energy source in dairy goat ration. This study was conducted to observe the effect of DFW utilization in the ration on energy partition and productivity of lactating dairy goats. The experimental design was randomized block design using 9 primiparous lactating dairy goats. There were three types of ration as treatments used in this study, i.e. R0= 35% forage + 65% concentrate, R1= 35% forage + 55% concentrate + 10% DFW, and R2= 35% forage + 45% concentrate + 20% DFW. Data were analyzed using ANOVA and polynomial orthogonal test. The evaluated variables were dry matter intake (DMI, energy partition including energy intake, digestible and metabolizable energy, fecal and urine energy, energy in methane gas, and energy in milk, milk production and quality. The results showed that the linear decreased of DMI, energy intake, digestible energy, metabolizable energy, and urine energy with the increased of DFW level in the rations. The use of 10% DFW (R1 showed the lowest energy loss through feces and methane gas of all treatments about 1089.57 kcal/head/d and 2.36 kcal/head/d, respectively. The use of DFW did not affect energy retention in milk. The utilization of DFW in ration did not significantly prevent the decline of milk production and milk quality. It can be concluded that DFW can be used as an alternative feed for the lactating dairy goat up to 10% in the ration.

  10. On the Temperature of the Photosphere: Energy Partition in the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available In this note, energy partition within the Sun is briefly addressed. It is argued that the laws of thermal emission cannot be directly applied to the Sun, as the continuous solar spectrum ( T app 6 ; 000K reveals but a small fraction of the true solar energy profile. Without considering the energy linked to fusion itself, it is hypothesized that most of the photospheric energy remains trapped in the Sun’s translational degrees of freedom and associated convection currents. The Sun is known to support both convective granules and differential rotation on its surface. The emission of X-rays in association with eruptive flares and the elevated temperatures of the corona might provide some measure of these energies. At the same time, it is expected that a fraction of the solar energy remains tied to the filling of conduction bands by electrons especially within sunspots. This constitutes a degree of freedom whose importance cannot be easily assessed. The discussion highlights how little is truly understood about energy partition in the Sun.

  11. Changes in surface energy partitioning in China over the past three decades

    Science.gov (United States)

    Qian, Yitian; Hsu, Pang-Chi; Cheng, Chi-Han

    2017-05-01

    Surface energy balance and the partitioning of sensible heat flux (SHF) and latent heat flux (LHF) play key roles in land-atmosphere feedback. However, the lack of long-term observations of surface energy fluxes, not to mention spatially extensive ones, limits our understanding of how the surface energy distribution has responded to a warming climate over recent decades (1979-2009) at the national scale in China. Using four state-of-the-art reanalysis products with long-term surface energy outputs, we identified robust changes in surface energy partitioning, defined by the Bowen ratio (BR = SHF/LHF), over different climate regimes in China. Over the past three decades, the net radiation showed an increasing trend over almost the whole of China. The increase in available radiative energy flux, however, was balanced by differential partitioning of surface turbulent fluxes, determined by local hydrological conditions. In semi-arid areas, such as Northeast China, the radiative energy was transferred largely into SHF. A severe deficiency in near-surface and soil moistures led to a significant decreasing trend in LHF. The combined effect of increased SHF and decreased LHF resulted in significant upward trends in the BR and surface warming over Northeast China. In contrast, in the wet monsoon regions, such as southern China, increased downward net radiation favored a rise in LHF rather than in SHF, leading to a significant decreasing trend in the BR. Meanwhile, the increased LHF partly cancelled out the surface warming. The warming trend in southern China was smaller than that in Northeast China. In addition to impacts on heat-related events, the changes in the BR also reflected recent cases of extreme drought in China. Our results indicate that information regarding the BR may be valuable for drought monitoring, especially in regions prone to such conditions.

  12. Energy partitioning constraints at kinetic scales in low-β turbulence

    Science.gov (United States)

    Gershman, Daniel J.; F.-Viñas, Adolfo; Dorelli, John C.; Goldstein, Melvyn L.; Shuster, Jason; Avanov, Levon A.; Boardsen, Scott A.; Stawarz, Julia E.; Schwartz, Steven J.; Schiff, Conrad; Lavraud, Benoit; Saito, Yoshifumi; Paterson, William R.; Giles, Barbara L.; Pollock, Craig J.; Strangeway, Robert J.; Russell, Christopher T.; Torbert, Roy B.; Moore, Thomas E.; Burch, James L.

    2018-02-01

    Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here, we present observations of plasma fluctuations in low-β turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance is highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.

  13. Responses of energy partitioning and surface resistance to drought in a poplar plantation in northern China

    Science.gov (United States)

    Kang, M.; Zhang, Z.; Noormets, A.; Fang, X.; Zha, T.; Zhou, J.; Sun, G.; McNulty, S.; Chen, J.

    2015-01-01

    Poplar (Populus sp.) plantations have been used broadly for combating desertification, urban greening, and paper and wood production in northern China. However, given the high water use by the species and the regional dry environment, the long-term sustainability of these plantations needs to be evaluated. Currently, the understanding of energy partitioning and canopy resistance to water vapor and CO2 in poplar plantations is limited, impeding an accurate assessment of their true ecosystem functions. This study examined the variability of canopy bulk resistance parameters and energy partitioning over a four-year period encompassing both dry and wet conditions in a poplar (Populus euramericana CV. "74 / 76") plantation ecosystem located in northern China. Available energy (Net radiation Rn minus Soil Heat Flux, G) partitioning to latent (LE) and sensible (H) heat was responsive to climatological drought, with LE/(Rn-G) ranging from 62% in wet years (e.g. 2007 and 2008) to 53% in dry years (e.g. 2006 and 2009), and H/(Rn-G) from 25 to 33% between wet and dry years. Correspondingly, the Bowen ratio (β=H/LE) were 0.83 and 1.57. Surface resistance (Rs) had the greatest response to drought (+43%), but the aerodynamic and climatological resistances did not change significantly (p > 0.05). Partial correlation analysis indicated that Rs was the dominant factor in controlling the Bowen ratio. Furthermore, Rs was the major factor controlling LE during the growing season, even in wet years, as indicated by the decoupling coefficient (Ω = 0.45 and 0.39 in wet and dry years, respectively), and the LE / LEeq ratio ranged from 0.81 and 0.68 in wet and dry years, respectively. In general, the dry surface conditions dominated in this poplar plantation ecosystem regardless of soil water availability suggesting that fast-growing and water use-intensive species like poplar plantations are poorly adapted for the water limited region.

  14. Effects of partly replacing dietary starch with fiber and fat on milk production and energy partitioning.

    Science.gov (United States)

    Boerman, J P; Potts, S B; VandeHaar, M J; Lock, A L

    2015-10-01

    The effects of partly replacing dietary starch with fiber and fat to provide a diet with similar net energy for lactation (NEL) density on yields of milk and milk components and on energy partitioning were evaluated in a crossover design experiment. Holstein cows (n = 32; 109 ± 22 d in milk, mean ± standard deviation) were randomly assigned to treatment sequence. Treatments were a high-starch diet containing 33% corn grain (mixture of dry ground and high-moisture corn; HS) or a high-fiber, high-fat diet containing 2.5% palmitic acid-enriched fatty acid (FA) supplement (HFF). Diets contained corn silage, alfalfa silage, and wheat straw as forage sources; HS contained 32% starch, 3.2% FA, and 25% neutral detergent fiber, whereas HFF contained 16% starch, 5.4% FA, and 33% neutral detergent fiber. Compared with HS, the HFF treatment reduced milk yield, milk protein concentration, and milk protein yield, but increased milk fat concentration, milk fat yield, milk energy output, and milk to feed ratio (energy-corrected milk/dry matter intake). The HFF treatment reduced the yield of de novo synthesized ( 16-carbon) milk FA was not different. The HFF treatment increased plasma concentrations of triglycerides and nonesterified fatty acids, but decreased plasma concentration of insulin. Compared with HS, the HFF treatment reduced body weight gain, change in body condition score, and fat thickness over the rump and rib. Calculated body energy gain, as a fraction of NEL use, was less for HFF than HS, whereas milk energy as a fraction of NEL use was increased for HFF. We concluded that the 2 treatments resulted in similar apparent NEL densities and intakes, but the HS treatment partitioned more energy toward body gain whereas the HFF treatment partitioned more energy toward milk. A high-fiber, high-fat diet might diminish the incidence of over conditioning in mid-lactation cows while maintaining high milk production. Copyright © 2015 American Dairy Science Association

  15. Partitioning of late gestation energy expenditure in ewes using indirect calorimetry and a linear regression approach

    DEFF Research Database (Denmark)

    Kiani, Alishir; Chwalibog, André; Nielsen, Mette O

    2007-01-01

    study metabolizable energy (ME) intake ranges for twin-bearing ewes were 220-440, 350- 700, 350-900 kJ per metabolic body weight (W0.75) at week seven, five, two pre-partum respectively. Indirect calorimetry and a linear regression approach were used to quantify EE(gest) and then partition to EE......(conceptus) and EE(homeorhetic). Energy expenditure of basal metabolism of the non-gravid tissues (EE(bmng)), derived from the intercept of the linear regression equation of retained energy [kJ/W0.75] and ME intake [kJ/W(0.75)], was 298 [kJ/ W0.75]. Values of the intercepts of the regression equations at week seven...

  16. ELECTRON ENERGY PARTITION IN THE ABOVE-THE-LOOPTOP SOLAR HARD X-RAY SOURCES

    International Nuclear Information System (INIS)

    Oka, Mitsuo; Krucker, Säm; Hudson, Hugh S.; Saint-Hilaire, Pascal

    2015-01-01

    Solar flares produce non-thermal electrons with energies up to tens of MeVs. To understand the origin of energetic electrons, coronal hard X-ray (HXR) sources, in particular above-the-looptop sources, have been studied extensively. However, it still remains unclear how energies are partitioned between thermal and non-thermal electrons within the above-the-looptop source. Here we show that the kappa distribution, when compared to conventional spectral models, can better characterize the above-the-looptop HXRs (≳15 keV) observed in four different cases. The widely used conventional model (i.e., the combined thermal plus power-law distribution) can also fit the data, but it returns unreasonable parameter values due to a non-physical sharp lower-energy cutoff E c . In two cases, extreme-ultraviolet data were available from SDO/AIA and the kappa distribution was still consistent with the analysis of differential emission measure. Based on the kappa distribution model, we found that the 2012 July 19 flare showed the largest non-thermal fraction of electron energies about 50%, suggesting equipartition of energies. Considering the results of particle-in-cell simulations, as well as density estimates of the four cases studied, we propose a scenario in which electron acceleration is achieved primarily by collisionless magnetic reconnection, but the electron energy partition in the above-the-looptop source depends on the source density. In low-density above-the-looptop regions (few times 10 9  cm –3 ), the enhanced non-thermal tail can remain and a prominent HXR source is created, whereas in higher-densities (>10 10  cm –3 ), the non-thermal tail is suppressed or thermalized by Coulomb collisions

  17. Genetic background in partitioning of metabolizable energy efficiency in dairy cows.

    Science.gov (United States)

    Mehtiö, T; Negussie, E; Mäntysaari, P; Mäntysaari, E A; Lidauer, M H

    2018-02-21

    The main objective of this study was to assess the genetic differences in metabolizable energy efficiency and efficiency in partitioning metabolizable energy in different pathways: maintenance, milk production, and growth in primiparous dairy cows. Repeatability models for residual energy intake (REI) and metabolizable energy intake (MEI) were compared and the genetic and permanent environmental variations in MEI were partitioned into its energy sinks using random regression models. We proposed 2 new feed efficiency traits: metabolizable energy efficiency (MEE), which is formed by modeling MEI fitting regressions on energy sinks [metabolic body weight (BW 0.75 ), energy-corrected milk, body weight gain, and body weight loss] directly; and partial MEE (pMEE), where the model for MEE is extended with regressions on energy sinks nested within additive genetic and permanent environmental effects. The data used were collected from Luke's experimental farms Rehtijärvi and Minkiö between 1998 and 2014. There were altogether 12,350 weekly MEI records on 495 primiparous Nordic Red dairy cows from wk 2 to 40 of lactation. Heritability estimates for REI and MEE were moderate, 0.33 and 0.26, respectively. The estimate of the residual variance was smaller for MEE than for REI, indicating that analyzing weekly MEI observations simultaneously with energy sinks is preferable. Model validation based on Akaike's information criterion showed that pMEE models fitted the data even better and also resulted in smaller residual variance estimates. However, models that included random regression on BW 0.75 converged slowly. The resulting genetic standard deviation estimate from the pMEE coefficient for milk production was 0.75 MJ of MEI/kg of energy-corrected milk. The derived partial heritabilities for energy efficiency in maintenance, milk production, and growth were 0.02, 0.06, and 0.04, respectively, indicating that some genetic variation may exist in the efficiency of using

  18. Energy partitioning and methane emission by sheep fed sorghum silages at different maturation stages

    Directory of Open Access Journals (Sweden)

    F.S. Machado

    2015-06-01

    Full Text Available Energy partitioning and methane production by sheep fed silages of three commercially available sorghum hybrids (BRS 610, BR 700 and BRS 655 harvested at three maturation stages (milk, soft dough and floury were evaluated in open circuit respiration chambers. A complete randomized design was used in a 3 × 3 (hybrids × maturity stages factorial arrangement, and the means were compared by the Student-Newman-Keuls (SNK test (P0.10 among the treatments for the apparent digestibility of gross energy and metabolizability (qm. An interaction (P0.10 among treatments occurred in the daily methane production. There is substantial genetic diversity within sorghum species, determining different nutritional values. Sorghum genetics and maturity at harvest should not be an opportunity to reduce the contribution of agriculture to methane emissions.

  19. Study of energy partitioning using a set of related explosive formulations

    Science.gov (United States)

    Lieber, Mark; Foster, Joseph C.; Stewart, D. Scott

    2012-03-01

    Condensed phase high explosives convert potential energy stored in the electro-magnetic field structure of complex molecules to high power output during the detonation process. Historically, the explosive design problem has focused on intramolecular energy storage. The molecules of interest are derived via molecular synthesis providing near stoichiometric balance on the physical scale of the molecule. This approach provides prompt reactions based on transport physics at the molecular scale. Modern material design has evolved to approaches that employ intermolecular ingredients to alter the spatial and temporal distribution of energy release. State of the art continuum methods have been used to study this approach to the materials design. Cheetah has been used to produce data for a set of fictitious explosive formulations based on C-4 to study the partitioning of the available energy between internal and kinetic energy in the detonation. The equation of state information from Cheetah has been used in ALE3D to develop an understanding of the relationship between variations in the formulation parameters and the internal energy cycle in the products.

  20. Energy partition of seismic coda waves in layered media: theory and application to Pinyon Flats Observatory

    Science.gov (United States)

    Margerin, L.; Campillo, M.; Van Tiggelen, B. A.; Hennino, R.

    2009-05-01

    We have studied the partition of shear, compressional and kinetic energies in the coda of 10 earthquakes recorded on a dense array, located at Pinyon Flats Observatory (PFO), California. Deformation energies are estimated by measuring finite differences of the wavefield components. We have thoroughly studied the validity and stability of this technique for the PFO data and obtained reliable measurements in the 5-7 Hz frequency band. We observe a clear stabilization of the ratio between shear and compressional energies (WS/WP) in the coda, with similar values for all 10 earthquakes under study. We interpret this observation as a signature of equipartition. The average WS/WP ratio is about 2.8, which is smaller by a factor 2.5 than the expected value, around 7.2, for equipartitioned elastic waves at the surface of a homogeneous Poisson half-space. The ratio between the vertical and horizontal kinetic energies (V2/H2) also exhibits stabilization in the coda and can be measured from 5 to 25Hz. The V2/H2 ratio shows an abrupt transition from 0.1 in the 5-10Hz band, to about 0.8 in the 15-25Hz band. These measured values are again in sharp contrast with the theoretical prediction, around 0.56, for equipartitioned elastic waves at the surface of a Poisson half-space. To explain these observations, we have developed a theory of equipartition in a layered elastic half-space. Using a rigorous spectral decomposition of the elastic wave equation, we define equipartition as a white noise distributed over the complete set of eigenfunctions. This definition is shown to agree with the standard physical concepts in canonical cases. The theory predicts that close to the resonance frequency of a low-velocity layer, the ratio between the shear and compressional energies strongly decreases. Using a detailed model of the subsurface at PFO, this counter-intuitive result is found to be in good qualitative and quantitative agreement with the observations. Near the resonance frequency of

  1. Ion heating and energy partition at the heliospheric termination shock: hybrid simulations and analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Wu, Pin [BOSTON UNIV.; Schwadron, N A [BOSTON UNIV.; Lee, M [UNIV OF NEW HAMPSHIRE

    2009-01-01

    The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index {gamma} used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share (approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock.

  2. Solving many-body Schrödinger equations with kinetic energy partition method

    Science.gov (United States)

    Chen, Yu-Hsin; Chao, Sheng D.

    2018-01-01

    We present a general formulation of our previously developed kinetic energy partition (KEP) method for solving many-bodySchrödinger equations. In atomic physics, as well as in general molecular and solid state physics, solving many-electronSchrödinger equations is a very challenging task, often called Dirac's challenge. The central problem is how to properly handle the electron-electron Coulomb repulsion interactions. Using the KEP solution scheme, in addition to dividing the kinetic energy into partial terms, the electron-electron Coulomb interaction is also separated into parts to be associated with a "negative mass" kinetic energy term. Therefore, the full Hamiltonian can be expressed as a simple sum of subsystem Hamiltonians, each representing an effective one-body problem. Using a Hartree-like product in constructing the wave-function, we achieve fast convergence in the calculations of the ground state energies. First, the model Moshinsky atoms are used to illustrate the solution procedure. We then apply this new KEP method to harmonium atoms and obtain precise energies with an error less than 5% using only two basis functions from each subsystem. It is thus very promising that this methodology, when further extended, can be useful for general many-body systems.

  3. Quantum chemical investigation of the interaction between a hydrogen molecule and a solid surface using the partitioning technique

    International Nuclear Information System (INIS)

    Kuenne, L.D.

    1984-01-01

    The partitioning technique is used to investigate the chemisorption of hydrogen. Including non-zero overlap between atomic orbitals the developed formulation of the problem is valid in any LCAO-approximation. Its extension to the problem of chemisorption of other molecules is briefly discussed. (author)

  4. Energy partitioning and surface resistance of a poplar plantation in northern China

    Science.gov (United States)

    Kang, M.; Zhang, Z.; Noormets, A.; Fang, X.; Zha, T.; Zhou, J.; Sun, G.; McNulty, S. G.; Chen, J.

    2015-07-01

    Poplar (Populus sp.) plantations have been, on the one hand, broadly used in northern China for urban greening, combating desertification, as well as for paper and wood production. On the other hand, such plantations have been questioned occasionally for their possible negative impacts on water availability due to the higher water-use nature of poplar trees compared with other tree species in water-limited dryland regions. To further understand the acclimation of poplar species to semiarid environments and to evaluate the potential impacts of these plantations on the broader context of the region's water supply, we examine the variability of bulk resistance parameters and energy partitioning in a poplar (Populus euramericana cv. "74/76") plantation located in northern China over a 4-year period, encompassing both dry and wet conditions. The partitioning of available energy to latent heat flux (LE) decreased from 0.62 to 0.53 under mediated meteorological drought by irrigation applications. A concomitant increase in sensible heat flux (H) resulted in the increase of a Bowen ratio from 0.83 to 1.57. Partial correlation analysis indicated that surface resistance (Rs) normalized by leaf area index (LAI; Rs:LAI) increased by 50 % under drought conditions and was the dominant factor controlling the Bowen ratio. Furthermore, Rs was the main factor controlling LE during the growing season, even in wet years, as indicated by the decoupling coefficient (Ω = 0.45 and 0.39 in wet and dry years, respectively). Rs was also a major regulator of the LE / LEeq ratio, which decreased from 0.81 in wet years to 0.68 in dry years. All physiological and bioclimatological metrics indicated that the water demands of the poplar plantation were greater than the amount available through precipitation, highlighting the poor match of a water-intensive species like poplar for this water-limited region.

  5. The energy partitioning of non-thermal particles in a plasma: the Coulomb logarithm revisited

    International Nuclear Information System (INIS)

    Singleton, Robert L Jr; Brown, Lowell S

    2008-01-01

    The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated exactly to leading and next-to-leading accuracy in the plasma density by Brown, Preston and Singleton (BPS). Since the calculational techniques of BPS might be unfamiliar to some, and since the same methodology can also be used for other energy transport phenomena, we will review the main ideas behind the calculation. BPS used their stopping power calculation to derive a Fokker-Planck equation, also accurate to leading and next-to-leading orders, and we will also review this. We use this Fokker-Planck equation to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion-more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible. One method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows down and becomes thermalized into the background plasma, this method of calculating the electron-ion energy splitting breaks down. As a result, it suffers a systematic error that may be as large as T/E 0 , where T is the plasma temperature and E 0 is the initial energy of the charged particle. The formalism presented here is designed to account for the thermalization process and it provides results that are near-exact.

  6. Investigation of heavy metal partitioning influenced by flue gas moisture and chlorine content during waste incineration.

    Science.gov (United States)

    Li, Qinghai; Meng, Aihong; Jia, Jinyan; Zhang, Yanguo

    2010-01-01

    The impact of moisture on the partitioning of the heavy metals including Pb, Zn, Cu and Cd in municipal solid waste (MSW) was studied in a laboratory tubular furnace. A thermodynamic investigation using CHEMKIN software was performed to compare the experimental results. Simulated waste, representative of typical MSW with and without chlorine compounds, was burned at the background temperature of 700 and 950 degrees C, respectively. In the absence of chlorine, the moisture content has no evident effect on the volatility of Pb, Zn and Cu at either 700 or 950 degrees C, however, as flue gas moisture increasing the Cd distribution in the bottom ash increased at 700 degrees C and reduced at 950 degrees C, respectively. In the presence of chlorine, the flue gas moisture reduced the volatility of Pb, Zn and Cu due to the transformation of the more volatile metal chlorides into less volatile metal oxides, and the reduction became significant as chlorine content increase. For Cd, the chlorine promotes its volatility through the formation of more volatile CdCl2. As a result, the increased moisture content increases the Pb, Zn, Cu and Cd concentrations in the bottom ash, which limits the utilization of the bottom ash as a construction material. Therefore, in order to accumulate heavy metals into the fly ash, MSW should be dried before incineration.

  7. Energy partitioning over the West African savanna: multi-year evaporation and surface conductance measurements in Eastern Burkina Faso

    NARCIS (Netherlands)

    Bagayoko, F.; Yonkeu, S.; Elbers, J.A.; Giesen, van de N.

    2007-01-01

    Seasonal variability of the energy partitioning was analyzed with a combination of eddy fluxes of sensible and latent heat and weather data on intensely farmed land in the savanna area of Eastern Burkina Faso, West Africa. The analysis covers two rainy seasons (May-October 2003 and 2004), one dry

  8. Methane production and energy partition in sheep fed timothy silage- or hay-based diets

    Directory of Open Access Journals (Sweden)

    B Santoso

    2007-03-01

    Full Text Available Methane is produced as a result of anaerobic fermentation of the soluble and structural carbohydrates by methanogens in the rumen of ruminant animals. Removal of methane from rumen represents a loss of approximately 7.22% of gross energy intake. Four ruminally fistulated Cheviot wethers were used in a crossover design to determine methane production and energy partition in sheep fed timothy silage- or hay-based diets. The experimental diets consisted of either timothy silage or timothy hay and a commercial concentrate (85:15, on DM basis. Variables measured were nutrients digestibility, energy balance and methane production. Apparent digestibilities of DM, OM, CP, NDF, ADF, cellulose and hemicellulose were significantly higher (P<0.05 on sheep fed silage-based diet than those fed hay-based diet. Sheep fed silage-based diet had greater (P<0.01 urinary energy loss, methane and heat production, but lower (P<0.05 fecal energy loss. Methane production, either expressed as g kg-1 dry matter intake or g day-1 was markedly lower (P<0.05 in hay-based diet as compared to silage-based diet. There was a strong relationship between methane production (g day-1 and NDF digested (g day-1 (R2 = 88.4%, P<0.001. Methane production expressed as g kg-1 NDF digested in silage-based diet was higher (P<0.05 than in hay-based diet (66.44 vs 62.70. These results indicate that methane release by sheep increased with increasing NDF digested.

  9. Partitioning of respiratory energy and environmental tolerance in the copepods Calanipeda aquaedulcis and Arctodiaptomus salinus

    Science.gov (United States)

    Svetlichny, Leonid; Khanaychenko, Antonina; Hubareva, Elena; Aganesova, Larisa

    2012-12-01

    Total and basal metabolism was studied in the widely distributed copepod species Calanipeda aquaedulcis and Arctodiaptomus salinus of both genders in order to estimate respiratory energy partitioning. Specific oxygen consumption was found to double in C. aquaedulcis than in A. salinus, and double in males than in females both in terms of total and basal metabolism. Respiration rates in females carrying ovisacs were 1.49 and 1.43 times higher than those in females without ovisacs for C. aquaedulcis and A. salinus, respectively. Extra energy expenditures are due to carrying ovisacs and egg respiration. There was no significant effect of salinity (0.1-40), oxygen concentration (1-8 mg O2 l-1) or crowding on oxygen consumption confirming the hypothesis that C. aquaedulcis and A. salinus are the animals with a type of respiratory metabolism independent of salinity and oxygen concentration. At critical oxygen concentrations less than 1 mg O2 l-1 respiration rate fell notably by approximately an order of magnitude in both species and in both genders.

  10. Generalized linear solvation energy model applied to solute partition coefficients in ionic liquid-supercritical carbon dioxide systems.

    Science.gov (United States)

    Planeta, Josef; Karásek, Pavel; Hohnová, Barbora; Sťavíková, Lenka; Roth, Michal

    2012-08-10

    Biphasic solvent systems composed of an ionic liquid (IL) and supercritical carbon dioxide (scCO(2)) have become frequented in synthesis, extractions and electrochemistry. In the design of related applications, information on interphase partitioning of the target organics is essential, and the infinite-dilution partition coefficients of the organic solutes in IL-scCO(2) systems can conveniently be obtained by supercritical fluid chromatography. The data base of experimental partition coefficients obtained previously in this laboratory has been employed to test a generalized predictive model for the solute partition coefficients. The model is an amended version of that described before by Hiraga et al. (J. Supercrit. Fluids, in press). Because of difficulty of the problem to be modeled, the model involves several different concepts - linear solvation energy relationships, density-dependent solvent power of scCO(2), regular solution theory, and the Flory-Huggins theory of athermal solutions. The model shows a moderate success in correlating the infinite-dilution solute partition coefficients (K-factors) in individual IL-scCO(2) systems at varying temperature and pressure. However, larger K-factor data sets involving multiple IL-scCO(2) systems appear to be beyond reach of the model, especially when the ILs involved pertain to different cation classes. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Energy balance partitioning and evapotranspiration from irrigated Muskmelon under Semi-Arid Conditions

    Directory of Open Access Journals (Sweden)

    Giuliana Mairana Morais de Sousa Vanomark

    Full Text Available ABSTRACT The Mossoró-Assu-Baraúna district, Rio Grande do Norte State (RN, is recognized by the intense production of horticulture, mainly muskmelon for export. However, this region is often devastated by intense droughts. Thus, the muskmelon production is predominantly under irrigated condition and, due to constant threat of water resources collapse on the region, a rigorous irrigation water management in the region is needed. The main objective of this article was to analyze the seasonal pattern of energy balance partitioning and evapotranspiration on irrigated muskmelon crop on the region around Mossoró-RN. The study was carried out in two areas of commercial production of muskmelons in the Mossoró-Assu-Barúna district, during two growth seasons from 2012-Jun to 2012-Nov. The components of energy balance and evapotranspiration were determined by using the Bowen Ratio Energy Balance method. It was observed that more than 60% of the net radiation (Rn was converted into latent heat flux (λE, while 21 and 11% of Rn was converted into sensible heat flux (H and soil heat flux (G, respectively. The ratio λE/Rn varies according to the change of leaf area index (LAI while the ratios H/Rn and G/Rn vary inversely with the LAI. The agreement λE/Rn and LAI is also evidenced by similarity between curves of crop evapotranspiration (ETc and LAI, particularly when the melon crop reaches its maximum vegetative growth (LAI > 3. The muskmelon ETc ranged from 265 to 289 mm, values that are similar to those found by other researcher.

  12. Demagnetization investigation of a partitioned rotor flux switching machine with hybrid permanent magnet

    Science.gov (United States)

    Fan, Deyang; Quan, Li; Zhu, Xiaoyong; Xiang, Zixuan; Wu, Wenye

    2017-05-01

    In this paper, the partitioned rotor flux switching permanent magnet machine with ferrite permanent magnet is proposed. By the adoption of the partitioned rotor configuration, the stator flux leakage is eliminated and the permanent magnet utilization is improved. The ferrite permanent magnet machine often suffers from irreversible demagnetization due to the inherent relatively low coercivity of ferrite permanent magnet. To mitigate the machine irreversible demagnetization risk, an improved partitioned rotor flux switching permanent magnet machine with hybrid permanent magnet topology is also proposed. Two little pieces of rare-earth permanent magnet are installed at the corners of ferrite permanent magnet, thus forming the hybrid permanent magnet topology. And the demagnetization mechanisms of both machines are clarified by the magnetic equivalent circuit method, which prove that the rare-earth permanent magnet offer magnetic protection function for the ferrite permanent magnet. Furthermore, by the 2-D finite element analysis, the demagnetization characteristics and the electromagnetic performances of the two machines are quantitively assessed, revealing that the demagnetization risk is reduced significantly. Both theoretical analysis and simulation results verify that the improved machine can not only maintain low-cost design, but also possess enhanced demagnetization withstand capability and competitive electromagnetic performances as expected.

  13. Investigation of the in vitro gender-specific partitioning of mefloquine in malarial infected red blood cells and plasma.

    Science.gov (United States)

    Seethorn, Nongluk; Wernsdorfer, Walther H; Noedl, Harald; Karbwang, Juntra; Na-Bangchang, Kesara

    2013-10-01

    The investigation of gender-specific partitioning of the antimalarial drug mefloquine to cellular and fluid blood compartments was performed using blood collected from a female and male healthy subject that were infected with Plasmodium falciparum PCM2 clone and spiked with mefloquine (0.25, 1, and 5 μM). Mefloquine concentrations in red cells of both female and male subjects were significantly higher than plasma, which suggests an intensive uptake by red cells. This was supported by a high ratio of mefloquine concentrations in the parasitized and non-parasitized red cells of about 4-fold. Gender-specific partitioning of mefloquine in parasitized blood was seen only in plasma where significantly higher concentrations were observed in female compared with male plasma. Down-adjusting the therapeutic dose of mefloquine in female patients with malaria is not advisable because mefloquine concentrations in the target cellular compartment are similar in both genders.

  14. Forest Evapotranspiration and Energy Flux Partitioning Based on Eddy Covariance Methods in an Arid Desert Region of Northwest China

    OpenAIRE

    Ma, Xiaohong; Feng, Qi; Su, Yonghong; Yu, Tengfei; Jin, Hua

    2017-01-01

    In this study, the characteristics of energy flux partitioning and evapotranspiration of P. euphratica forests were examined in the extreme arid region of Northwest China. Energy balance closure of the ecosystem was approximately 72% (H + LE = 0.72 ∗ (Rn-G)+7.72, r2=0.79, n=12095), where Rn is the net radiation, G is the soil heat flux, H is the sensible heat flux, and LE is the latent heat flux. LE was the main term of energy consumption at annual time scale because of higher value in the gr...

  15. Effects of nitrogen underfeeding and energy source on nitrogen ruminal metabolism, digestion, and nitrogen partitioning in dairy cows.

    Science.gov (United States)

    Fanchone, A; Nozière, P; Portelli, J; Duriot, B; Largeau, V; Doreau, M

    2013-02-01

    This work aimed to investigate the effects of 2 levels of N (low or high) and 2 energy sources (starch or fiber) on N partitioning, N ruminal metabolism, and digestion in dairy cows. Four Holstein cows were used in a 4 × 4 Latin square design. The 4 cows (on average, 662 ± 62 kg and at 71 ± 10 d in milk at the beginning of the experiment) were fitted with rumen, proximal duodenum, and terminal ileum cannula. The cows received 4 diets having the same forage proportion on a DM basis. The high level of N supply met 110% of the protein requirements of cows with an adequate supply in rumen-degradable N. The low level covered 80% of these requirements with a shortage in rumen-degradable N. Energy sources differed by their nature (i.e., starch from barley, corn, and wheat or fiber from soybean hulls and dehydrated beet pulp). Duodenal digesta flow was determined using YbCl3 as a marker. Microbial duodenal N flow was determined using purine and pyrimidine bases as markers from liquid-associated bacteria and mixed bacteria samples. Microbial N flow and efficiency of microbial protein synthesis, calculated using mixed bacteria as a reference microbial sample, were not significantly modified by the N level (P = 0.19 and 0.29, respectively) and the energy source of the diet (P = 0.11 and 0.08, respectively). Total tract apparent digestibility of OM and total tact digestibility of NDF were lower at the low N level (P = 0.006 and 0.007, respectively). Total tract apparent digestibility of OM tended to be greater (P = 0.08) with high-starch diets than with high-fiber diets. Total tact digestibility of NDF was greater (P excretion in urine and decreased milk production but did not affect N excretion in feces or microbial protein synthesis.

  16. Evapotranspiration estimation using a parameter-parsimonious energy partition model over Amazon basin

    Science.gov (United States)

    Xu, D.; Agee, E.; Wang, J.; Ivanov, V. Y.

    2017-12-01

    The increased frequency and severity of droughts in the Amazon region have emphasized the potential vulnerability of the rainforests to heat and drought-induced stresses, highlighting the need to reduce the uncertainty in estimates of regional evapotranspiration (ET) and quantify resilience of the forest. Ground-based observations for estimating ET are resource intensive, making methods based on remotely sensed observations an attractive alternative. Several methodologies have been developed to estimate ET from satellite data, but challenges remained in model parameterization and satellite limited coverage reducing their utility for monitoring biodiverse regions. In this work, we apply a novel surface energy partition method (Maximum Entropy Production; MEP) based on Bayesian probability theory and nonequilibrium thermodynamics to derive ET time series using satellite data for Amazon basin. For a large, sparsely monitored region such as the Amazon, this approach has the advantage methods of only using single level measurements of net radiation, temperature, and specific humidity data. Furthermore, it is not sensitive to the uncertainty of the input data and model parameters. In this first application of MEP theory for a tropical forest biome, we assess its performance at various spatiotemporal scales against a diverse field data sets. Specifically, the objective of this work is to test this method using eddy flux data for several locations across the Amazonia at sub-daily, monthly, and annual scales and compare the new estimates with those using traditional methods. Analyses of the derived ET time series will contribute to reducing the current knowledge gap surrounding the much debated response of the Amazon Basin region to droughts and offer a template for monitoring the long-term changes in global hydrologic cycle due to anthropogenic and natural causes.

  17. Application of the two-source energy balance model to partition evapotranspiration in an arid wine vineyard

    Science.gov (United States)

    Kool, Dilia; Kustas, William P.; Agam, Nurit

    2016-04-01

    The partitioning of evapotranspiration (ET) into transpiration (T), a productive water use, and soil water evaporation (E), which is generally considered a water loss, is highly relevant to agriculture in the light of increasing desertification and water scarcity. This task is challenged by the complexity of soil and plant interactions, coupled with changes in atmospheric and soil water content conditions. Many of the processes controlling water/energy exchange are not adequately modeled. The two-source energy balance model (TSEB) was evaluated and adapted for independent E and T estimations in an isolated drip-irrigated wine vineyard in the arid Negev desert. The TSEB model estimates ET by computing vegetation and soil energy fluxes using remotely sensed composite surface temperature, local weather data (solar radiation, air temperature and humidity, and wind speed), and vegetation metrics (row spacing, canopy height and width, and leaf area). The soil and vegetation energy fluxes are computed numerically using a system of temperature gradient and resistance equations; where soil and canopy temperatures are derived from the composite surface temperature. For estimation of ET, the TSEB model has been shown to perform well for various agricultural crops under a wide range of environmental conditions, but validation of T and E fluxes is limited to one study in a well-watered cotton crop. Extending the TSEB approach to water-limited vineyards demands careful consideration regarding how the complex canopy structure of vineyards will influence the accuracy of the partitioning between E and T. Data for evaluation of the TSEB model were collected over a season (bud break till harvest). Composite, canopy, and soil surface temperatures were measured using infrared thermometers. The composite vegetation and soil surface energy fluxes were assessed using independent measurements of net radiation, and soil, sensible and latent heat flux. The below canopy energy balance was

  18. Investigation of the possibilities of phosphogypsum application for building partitioning Walls - elements of a prefabricated house

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2002-01-01

    Full Text Available Phosphogypsum is a waste product in the manufacture of phosphoric acid from phosphorite and sulphuric acid by so-called "wet process" and represents a refuse that is as such simply thrown away. Phosphogypsum which is produced by "dihydrating procedure" contains not only various impurties but also radionuclides, which limits its construction use. Performed testings point to the complexity of phosphogypsum structure and composition while the electron microscope's pictures showed its different crystal composition compared to the natural gypsum. The calcined and refined phosphogypsum can be used for partition walls manufacture. To avoid the danger of the possible presence of radionuclides it is better to use the mixture of natural gypsum and phosphogypsum for this purpose. Substantial saving of materials and economic effect can be achieved in this way. The analyse performed in this work have shown significant presence of radionuclides in phosphogypsum. Gammaspectrometric measurements of radioactivity have determined substantial radioactivity of phosphogypsum. Using the maximum tolerated level values that are legally accepted, as well as equations to calculate indexes of tolerated radionuclide presence, an index of 2.23 has been determined for interiors and 1.13 for exteriors, i.e. 0.64 in case of roads. On the basis of the maximum tolerated level of radioactive building materials contamination (< 1, forbiden is the use of phosphogypsum in interiors, allowed (≈ 1 in exteriors and roads. The tests of heavy metal components in phosphogypsum have proved their presence in the amounts potentially producing consequences if present in closed spaces. That is conditioned by the phosphogypsum quantity, as well as by the area of space partitioned.

  19. Partition and poliomyelitis: an investigation of the polio disparity affecting Muslims during India's eradication program.

    Directory of Open Access Journals (Sweden)

    Rashid S Hussain

    Full Text Available Significant disparities in the incidence of polio existed during its eradication campaign in India. In 2006, Muslims, who comprise 16% of the population in affected states, comprised 70% of paralytic polio cases. This disparity was initially blamed on the Muslims and a rumor that the vaccination program was a plot to sterilize their children. Using the framework of structural violence, this paper describes how the socio-political and historical context of Muslim populations in India shaped the polio disparity.A qualitative study utilizing methods of rapid ethnography was conducted from May-August 2009 in Aligarh, Uttar Pradesh, India. Field methods included participant observation of vaccination teams, historical document research, and 107 interviews with both Global Polio Eradication Initiative (GPEI stakeholders and families with vaccine-eligible children. Almost all respondents agreed that Aligarh was a highly segregated city, mostly due to riots after Partition and during the 1990s. Since the formation of segregated neighborhoods, most respondents described that "Muslim areas" had been underdeveloped compared to "Hindu areas," facilitating the physical transmission of poliovirus. Distrust of the government and resistance to vaccination were linked to this disparate development and fears of sterilization influenced by the "Family Planning Program" from 1976-1977.Ethnic violence and social marginalization since the Partition and during the rise of Hindu nationalism led to distrust of the government, the formation of segregated slums, and has made Muslims victims of structural violence. This led to the creation of disease-spreading physical environments, lowered vaccine efficacy, and disproportionately higher levels of resistance to vaccination. The causes of the polio disparity found in this study elucidate the nature of possible other health disparities affecting minorities in India.This study is limited by the manual coding of the

  20. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency.

    Science.gov (United States)

    Gondret, F; Louveau, I; Mourot, J; Duclos, M J; Lagarrigue, S; Gilbert, H; van Milgen, J

    2014-11-01

    The use and partition of feed energy are key elements in productive efficiency of pigs. This study aimed to determine whether dietary energy sources affect the partition of body lipids and tissue biochemical pathways of energy use between pigs differing in feed efficiency. Forty-eight barrows (pure Large White) from two divergent lines selected for residual feed intake (RFI), a measure of feed efficiency, were compared. From 74 d to 132 ± 0.5 d of age, pigs (n = 12 by line and by diet) were offered diets with equal protein and ME contents. A low fat, low fiber diet (LF) based on cereals and a high fat, high fiber diet (HF) where vegetal oils and wheat straw were used to partially substitute cereals, were compared. Irrespective of diet, gain to feed was 10% better (P Lipid contents in backfat and LM also declined (-5% and -19%, respectively; P lipid content was greater (P lipid and glucose storage in tissues.

  1. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa

    Science.gov (United States)

    Majozi, Nobuhle P.; Mannaerts, Chris M.; Ramoelo, Abel; Mathieu, Renaud; Nickless, Alecia; Verhoef, Wouter

    2017-07-01

    Flux towers provide essential terrestrial climate, water, and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based Earth observation and monitoring efforts, such as assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface energy balance closure (EBC) and partitioning. The surface energy balance closure was evaluated using the ordinary least squares regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (LE)) against available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the surface energy during the wet and dry seasons was also investigated, as well as how it is affected by atmospheric vapour pressure deficit (VPD), and net radiation. After filtering years with low-quality data (2004-2008), our results show an overall mean EBR of 0.93. Seasonal variations of EBR also showed the wet season with 1.17 and spring (1.02) being closest to unity, with the dry season (0.70) having the highest imbalance. Nocturnal surface energy closure was very low at 0.26, and this was linked to low friction velocity during night-time, with results showing an increase in closure with increase in friction velocity. The energy partition analysis showed that sensible heat flux is the dominant portion of net radiation, especially between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the wet season where latent heat flux dominated sensible heat flux. An increase in net radiation was characterized by an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse happening during the dry season. An increase in

  2. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa

    Directory of Open Access Journals (Sweden)

    N. P. Majozi

    2017-07-01

    Full Text Available Flux towers provide essential terrestrial climate, water, and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based Earth observation and monitoring efforts, such as assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface energy balance closure (EBC and partitioning. The surface energy balance closure was evaluated using the ordinary least squares regression (OLS of turbulent energy fluxes (sensible (H and latent heat (LE against available energy (net radiation (Rn less soil heat (G, and the energy balance ratio (EBR. Partitioning of the surface energy during the wet and dry seasons was also investigated, as well as how it is affected by atmospheric vapour pressure deficit (VPD, and net radiation. After filtering years with low-quality data (2004–2008, our results show an overall mean EBR of 0.93. Seasonal variations of EBR also showed the wet season with 1.17 and spring (1.02 being closest to unity, with the dry season (0.70 having the highest imbalance. Nocturnal surface energy closure was very low at 0.26, and this was linked to low friction velocity during night-time, with results showing an increase in closure with increase in friction velocity. The energy partition analysis showed that sensible heat flux is the dominant portion of net radiation, especially between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the wet season where latent heat flux dominated sensible heat flux. An increase in net radiation was characterized by an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse happening during the dry season. An

  3. Investigation on neptunium behavior in electrolytic partitioning process of uranium and plutonium

    International Nuclear Information System (INIS)

    Zhang Qingxuan; Zhang Jiajun; Tian Baosheng; Jiang Dongliang; Li Zhaoyi; He Jianyu

    1988-01-01

    The electrolytic oxidation-raduction of Np(V, VI) in HNO 3 solution was studied. Experimental results showed that the electrode process of Np(V)-Np(VI) couple is reversible, and the half reaction time of the process mentioned above is about 1.5 minutes under given conditions. The overpotential of reduction of Np(V) is high, which makes it difficult to reduce Np(V) into Np(IV) directly at cathode. Owing to a large quantity of U(IV) produced through electrolysis, it is presaged that neptunium will be mainly in tetravalent state in the electrolytic M-S battery. A new type of electrolytic M-S battery was developed, in which anodes were installed in each settling chamber without any specific anode chamber in the battery. Owing to using of the mechanical stirrer driven by a wheel gear, stage efficiency is high. Demonstration campaign was carried out. It follows from the results that the yield of Pu is 99.90 ∼ 99.99%. Separation factor of U from Pu is 3900 ∼ 33000. Material balance of U and Pu is satisfactory. Heavy accumulation of Np in the battery was observed. Np in the battery is mainly in the tetravalent state. It is believed that it is difficult to recover Np quantitatively from single fluent (e.g. 1BP or 1BU) under normal conditions of partitioning step of the PUREX process

  4. Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw.

    Science.gov (United States)

    Kongphitee, Kanokwan; Sommart, Kritapon; Phonbumrung, Thamrongsak; Gunha, Thidarat; Suzuki, Tomoyuki

    2018-03-13

    This study was conducted to assess the effects of replacing rice straw with different proportions of cassava pulp on growth performance, feed intake, digestibility, rumen microbial population, energy partitioning and efficiency of metabolizable energy utilization in beef cattle. Eighteen yearling Thai native beef cattle (Bos indicus) with an average initial body weight of 98.3 ± 12.8 kg were allocated to one of three dietary treatments and fed ad libitum for 149 days in a randomized complete block design. Three dietary treatments using different proportions of cassava pulp (100, 300 and 500 g/kg dry matter basis) instead of rice straw as a base in a fermented total mixed ration were applied. Animals were placed in a metabolic pen equipped with a ventilated head box respiration system to determine total digestibility and energy balance. The average daily weight gain, digestible intake and apparent digestibility of dry matter, organic matter and non-fiber carbohydrate, total protozoa, energy intake, energy retention and energy efficiency increased linearly (p energy excretion in the urine (p energy requirement for the maintenance of yearling Thai native cattle, determined by a linear regression analysis, was 399 kJ/kg BW0.75, with an efficiency of metabolizable energy utilization for growth of 0.86. Our results demonstrated that increasing the proportion of cassava pulp up to 500 g/kg of dry matter as a base in a fermented total mixed ration is an effective strategy for improving productivity in zebu cattle.

  5. On the relationship between molecular spectroscopy and statistical mechanics: calculation of vibrational–rotational energy levels and partition functions in the ground electronic state of BC2

    Directory of Open Access Journals (Sweden)

    STANKA JEROSIMIĆ

    2011-04-01

    Full Text Available The results of extensive ab initio calculations of the vibrational–rotational energy spectrum in the ground electronic state of the BC2 molecule are presented. These data were employed to discuss the evaluation of the corresponding partition functions. Special attention was paid to the problems connected with the calculation of the partition functions for the bending vibrations and rotations about the axis corresponding to the smallest moment of inertia.

  6. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat

    Energy Technology Data Exchange (ETDEWEB)

    Mobberley, Jennifer M.; Lindemann, Stephen R.; Bernstein, Hans C.; Moran, James J.; Renslow, Ryan S.; Babauta, Jerome; Hu, Dehong; Beyenal, Haluk; Nelson, William C.

    2017-03-21

    Phototrophic mat communities are model ecosystems for studying energy cycling and elemental transformations because complete biogeochemical cycles occur over millimeter-to-centimeter scales. Characterization of energy and nutrient capture within hypersaline phototrophic mats has focused on specific processes and organisms, however little is known about community-wide distribution of and linkages between these processes. To investigate energy and macronutrient capture and flow through a structured community, the spatial and organismal distribution of metabolic functions within a compact hypersaline mat community from Hot Lake have been broadly elucidated through species-resolved metagenomics and geochemical, microbial diversity, and metabolic gradient measurements. Draft reconstructed genomes of abundant organisms revealed three dominant cyanobacterial populations differentially distributed across the top layers of the mat suggesting niche separation along light and oxygen gradients. Many organisms contained diverse functional profiles, allowing for metabolic response to changing conditions within the mat. Organisms with partial nitrogen and sulfur metabolisms were widespread indicating dependence upon metabolite exchange. In addition, changes in community spatial structure were observed over the diel. These results indicate that organisms within the mat community have adapted to the temporally dynamic environmental gradients in this hypersaline mat through metabolic flexibility and fluid syntrophic interactions, including shifts in spatial arrangements.

  7. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat

    Science.gov (United States)

    Mobberley, Jennifer M.; Lindemann, Stephen R.; Bernstein, Hans C.; Moran, James J.; Renslow, Ryan S.; Babauta, Jerome; Hu, Dehong; Beyenal, Haluk; Nelson, William C.

    2017-01-01

    Abstract Phototrophic mat communities are model ecosystems for studying energy cycling and elemental transformations because complete biogeochemical cycles occur over millimeter-to-centimeter scales. Characterization of energy and nutrient capture within hypersaline phototrophic mats has focused on specific processes and organisms; however, little is known about community-wide distribution of and linkages between these processes. To investigate energy and macronutrient capture and flow through a structured community, the spatial and organismal distribution of metabolic functions within a compact hypersaline mat community from Hot Lake have been broadly elucidated through species-resolved metagenomics and geochemical, microbial diversity and metabolic gradient measurements. Draft reconstructed genomes of 34 abundant organisms revealed three dominant cyanobacterial populations differentially distributed across the top layers of the mat suggesting niche separation along light and oxygen gradients. Many organisms contained diverse functional profiles, allowing for metabolic response to changing conditions within the mat. Organisms with partial nitrogen and sulfur metabolisms were widespread indicating dependence on metabolite exchange. In addition, changes in community spatial structure were observed over the diel. These results indicate that organisms within the mat community have adapted to the temporally dynamic environmental gradients in this hypersaline mat through metabolic flexibility and fluid syntrophic interactions, including shifts in spatial arrangements. PMID:28334407

  8. Trace element partitioning between plagioclase and melt: An investigation of the impact of experimental and analytical procedures

    Science.gov (United States)

    Nielsen, Roger L.; Ustunisik, Gokce; Weinsteiger, Allison B.; Tepley, Frank J.; Johnston, A. Dana; Kent, Adam J. R.

    2017-09-01

    Quantitative models of petrologic processes require accurate partition coefficients. Our ability to obtain accurate partition coefficients is constrained by their dependence on pressure temperature and composition, and on the experimental and analytical techniques we apply. The source and magnitude of error in experimental studies of trace element partitioning may go unrecognized if one examines only the processed published data. The most important sources of error are relict crystals, and analyses of more than one phase in the analytical volume. Because we have typically published averaged data, identification of compromised data is difficult if not impossible. We addressed this problem by examining unprocessed data from plagioclase/melt partitioning experiments, by comparing models based on that data with existing partitioning models, and evaluated the degree to which the partitioning models are dependent on the calibration data. We found that partitioning models are dependent on the calibration data in ways that result in erroneous model values, and that the error will be systematic and dependent on the value of the partition coefficient. In effect, use of different calibration datasets will result in partitioning models whose results are systematically biased, and that one can arrive at different and conflicting conclusions depending on how a model is calibrated, defeating the purpose of applying the models. Ultimately this is an experimental data problem, which can be solved if we publish individual analyses (not averages) or use a projection method wherein we use an independent compositional constraint to identify and estimate the uncontaminated composition of each phase.

  9. Exact and Effective Pair-Wise Potential for Protein-Ligand Interactions Obtained from a Semiempirical Energy Partition

    Directory of Open Access Journals (Sweden)

    André Melo

    2008-09-01

    Full Text Available In this work, the partition method introduced by Carvalho and Melo was used to study the complex between Cucurbita maxima trypsin inhibitor (CMTI-I and glycerol at the AM1 level. An effective potential, combining non-bonding and polarization plus charge transfer (PLCT terms, was introduced to evaluate the magnitude of the interaction between each amino acid and the ligand. In this case study, the nonbonding–PLCT noncompensation characterizes the stabilization energy of the association process in study. The main residues (Gly29, Cys3 and Arg5 with net attractive effects and Arg1 (with a net repulsive effect, responsible by the stability of protein-ligand complex, are associated with large nonbonding energies non-compensated by PLCT effects. The results obtained enable us to conclude that the present decomposition scheme can be used for understanding the cohesive phenomena in proteins.

  10. Investigating Planetesimal Evolution by Experiments with Fe-Ni Metallic Melts: Light Element Composition Effects on Trace Element Partitioning Behavior

    Science.gov (United States)

    Chabot, N. L.

    2017-12-01

    As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into

  11. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  12. On measuring and remote sensing surface energy partitioning over the Tibetan Plateau

    NARCIS (Netherlands)

    Ma, Y.; Su, Z.; Koike, T.; Yao, T.; Ishikawa, H.; Ueno, K.; Menenti, M.

    2003-01-01

    The energy and water cycle over the Tibetan Plateau play an important role in the Asian monsoon system, which in turn is a major component of both the energy and water cycles of the global climate system. The intensive observation period and long-term observation of the GEWEX (global energy and

  13. Lysine partitioning in broiler breeders is not affected by energy or protein intake when fed at current industry levels.

    Science.gov (United States)

    Ekmay, R D; Salas, C; England, J; Cerrate, S; Coon, C N

    2014-07-01

    A study was conducted to determine the effects of dietary energy and protein intake on the partitioning of lysine in broiler breeder hens. One hundred twenty-six broiler breeders were randomly assigned to 1 of 6 dietary treatments in a 2 (390, 450 kcal/d) × 3 (22, 24, 26 g of CP/d) fashion. Thirty-six hens were administered a daily oral dose of 15 mg of (15)N-Lys for a period of 2 wk or until first egg. After the 2-wk enrichment period, no isotopes were given for 2 d. After 2 d, a daily oral dose of 15 mg of (2)D4-Lys was administered until the 2nd, 3rd, and 4th egg (saved) after the initial (2)D4-Lys was given, at which point pectoralis muscle was sampled. Weeks 25, 29, and 45 were assessed. Isotopic enrichment of pectoralis muscle, egg yolk, and albumen was determined via gas chromatography-mass spectrometry. The (15)N-Lys was intended to represent endogenous lysine, whereas the (2)D4-Lys was intended to represent dietary lysine. Greater than 78% of all labeled lysine ((15)N and (2)D4-Lys) was found in breast muscle. Endogenous muscle was the main source of lysine for yolk formation at wk 25 and 45. Diet was the main source of lysine for albumen formation at wk 25 and 29. A consistent decrease in the (15)N-Lys in breast muscle from the 2nd to the 3rd egg was observed, while also seeing an increase in the (15)N-Lys in the egg from the 3rd to the 4th egg. No difference in the partitioning of lysine was determined by energy or protein intake at levels typical for the current poultry industry. Rather, age, and possibly rate of production, appear to be the main drivers of lysine partitioning in the broiler breeder hen. © 2014 Poultry Science Association Inc.

  14. Thorium partitioning in Greek industrial bauxite investigated by synchrotron radiation and laser-ablation techniques

    Science.gov (United States)

    Gamaletsos, P.; Godelitsas, A.; Mertzimekis, T. J.; Göttlicher, J.; Steininger, R.; Xanthos, S.; Berndt, J.; Klemme, S.; Kuzmin, A.; Bárdossy, G.

    2011-12-01

    Typical red-brown (Fe-rich) and high-quality white-grey (Fe-depleted) bauxite samples from active mines of the Parnassos-Ghiona area, central Greece, were investigated. According to XRF and ICP-MS analyses their actinide content, and particularly of Th, is relatively increased. Fe-depleted samples contain up to 62.75 ppm Th corresponding to 220 Bq/kg due to 228Ac ( 232Th-series), whereas Fe-rich samples are less Th-radioactive (up to 58.25 ppm Th, 180 Bq/kg due to 228Ac). Powder-XRD patterns showed that Th-enriched (Fe-depleted) bauxite consists mostly of diaspore (AlOOH polymorph), anatase and rutile (TiO 2 polymorphs). SEM-EDS indicated the presence of Ti-Fe-containing phases (e.g. ilmenite, FeTiO 3), chromite (Cr-spinel) and besides LREE-minerals (mostly bastnäsite/parisite-group) and zircon (ZrSiO 4) hosting a part of the bulk Th. The presence of Th in diaspore and in Ti-containing phases (not detected by SEM-EDS as in the case of REE-minerals and zircon) was investigated, into distinct pisoliths of Fe-depleted bauxite, using μ-XRF and μ-XAFS in the SUL-X beamline of the ANKA Synchrotron facility (KIT, Germany). XAFS spectra of Th salts and Th-containing reference materials were obtained as well. Accordingly it was revealed, for the first time in the literature, that Ti-phases, and particularly anatase, host significant amounts of Th. This novel conclusion was complementary supported by LA-ICP-MS analyses indicated an average of 73 ppm Th in anatase grains together with abundant Nb (3356 ppm), Ta (247 ppm) and U (33 ppm). The Th LIII-edge XAFS spectra as compared to reference materials, give also evidence that Th 4+ may not replace Ti 4+ in distorted [TiO 6] fundamental octahedral units of anatase and ilmenite lattice (CN = 6). The occupation of either extraframework sites of higher coordination (CN = 6.9 or even CN = 7.4), according to EXAFS signals evaluation, or of defected/vacant (**) sites is more probable. This is likely explained by the difficulty of

  15. Thorium partitioning in Greek industrial bauxite investigated by synchrotron radiation and laser-ablation techniques

    International Nuclear Information System (INIS)

    Gamaletsos, P.; Godelitsas, A.; Mertzimekis, T.J.; Göttlicher, J.; Steininger, R.; Xanthos, S.; Berndt, J.; Klemme, S.; Kuzmin, A.; Bárdossy, G.

    2011-01-01

    Typical red–brown (Fe-rich) and high-quality white–grey (Fe-depleted) bauxite samples from active mines of the Parnassos-Ghiona area, central Greece, were investigated. According to XRF and ICP-MS analyses their actinide content, and particularly of Th, is relatively increased. Fe-depleted samples contain up to 62.75 ppm Th corresponding to 220 Bq/kg due to 228 Ac ( 232 Th-series), whereas Fe-rich samples are less Th-radioactive (up to 58.25 ppm Th, 180 Bq/kg due to 228 Ac). Powder-XRD patterns showed that Th-enriched (Fe-depleted) bauxite consists mostly of diaspore (AlOOH polymorph), anatase and rutile (TiO 2 polymorphs). SEM-EDS indicated the presence of Ti–Fe–containing phases (e.g. ilmenite, FeTiO 3 ), chromite (Cr-spinel) and besides LREE-minerals (mostly bastnäsite/parisite-group) and zircon (ZrSiO 4 ) hosting a part of the bulk Th. The presence of Th in diaspore and in Ti-containing phases (not detected by SEM-EDS as in the case of REE-minerals and zircon) was investigated, into distinct pisoliths of Fe-depleted bauxite, using μ-XRF and μ-XAFS in the SUL-X beamline of the ANKA Synchrotron facility (KIT, Germany). XAFS spectra of Th salts and Th-containing reference materials were obtained as well. Accordingly it was revealed, for the first time in the literature, that Ti-phases, and particularly anatase, host significant amounts of Th. This novel conclusion was complementary supported by LA-ICP-MS analyses indicated an average of 73 ppm Th in anatase grains together with abundant Nb (3356 ppm), Ta (247 ppm) and U (33 ppm). The Th L III -edge XAFS spectra as compared to reference materials, give also evidence that Th 4+ may not replace Ti 4+ in distorted [TiO 6 ] fundamental octahedral units of anatase and ilmenite lattice (CN = 6). The occupation of either extraframework sites of higher coordination (CN = 6.9 or even CN = 7.4), according to EXAFS signals evaluation, or of defected/vacant (**) sites is more probable. This is likely explained by

  16. Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet

    Directory of Open Access Journals (Sweden)

    M. van den Broeke

    2008-12-01

    Full Text Available We present four years (August 2003–August 2007 of surface mass balance data from the ablation zone of the west Greenland ice sheet along the 67° N latitude circle. Sonic height rangers and automatic weather stations continuously measured accumulation/ablation and near-surface climate at distances of 6, 38 and 88 km from the ice sheet margin at elevations of 490, 1020 and 1520 m a.s.l. Using a melt model and reasonable assumptions about snow density and percolation characteristics, these data are used to quantify the partitioning of energy and mass fluxes during melt episodes. The lowest site receives very little winter accumulation, and ice melting is nearly continuous in June, July and August. Due to the lack of snow accumulation, little refreezing occurs and virtually all melt energy is invested in runoff. Higher up the ice sheet, the ice sheet surface freezes up during the night, making summer melting intermittent. At the intermediate site, refreezing in snow consumes about 10% of the melt energy, increasing to 40% at the highest site. The sum of these effects is that total melt and runoff increase exponentially towards the ice sheet margin, each time doubling between the stations. At the two lower sites, we estimate that radiation penetration causes 20–30% of the ice melt to occur below the surface.

  17. Forest Evapotranspiration and Energy Flux Partitioning Based on Eddy Covariance Methods in an Arid Desert Region of Northwest China

    Directory of Open Access Journals (Sweden)

    Xiaohong Ma

    2017-01-01

    Full Text Available In this study, the characteristics of energy flux partitioning and evapotranspiration of P. euphratica forests were examined in the extreme arid region of Northwest China. Energy balance closure of the ecosystem was approximately 72% (H + LE = 0.72 ∗ (Rn-G+7.72, r2=0.79, n=12095, where Rn is the net radiation, G is the soil heat flux, H is the sensible heat flux, and LE is the latent heat flux. LE was the main term of energy consumption at annual time scale because of higher value in the growing season. The ratios of the latent (LE and sensible (H heat fluxes to net radiation were 0.47 and 0.28 throughout the year, respectively. Moreover, the yearly evapotranspiration of P. euphratica forests was 744 mm year−1. And the mean daily ET was 5.09 mm·d−1 in the vibrant growing season. In particular, a small spike in the actual evapotranspiration distribution occurred during the soil ablation period due to the higher temperature and sufficient soil moisture associated with soil thawing. This period is accompanied by a series of physical processes, such as moisture transfer and heat exchange.

  18. Temporal energy partitions of Florida extreme sea level events as a function of Atlantic multidecadal oscillation

    Directory of Open Access Journals (Sweden)

    J. Park

    2010-06-01

    Full Text Available An energy-conservative metric based on the discrete wavelet transform is applied to assess the relative energy distribution of extreme sea level events across different temporal scales. The metric is applied to coastal events at Key West and Pensacola Florida as a function of two Atlantic Multidecadal Oscillation (AMO regimes. Under AMO warm conditions there is a small but significant redistribution of event energy from nearly static into more dynamic (shorter duration timescales at Key West, while at Pensacola the AMO-dependent changes in temporal event behaviour are less pronounced. Extreme events with increased temporal dynamics might be consistent with an increase in total energy of event forcings which may be a reflection of more energetic storm events during AMO warm phases. As dynamical models mature to the point of providing regional climate index predictability, coastal planners may be able to consider such temporal change metrics in planning scenarios.

  19. Energy partitioning and GPP values in a rotating crop in the Spanish Plateau

    Science.gov (United States)

    Sánchez, María Luisa; Pardo, Nuria; Perez, Isidro A.; Garcia, M. Angeles

    2016-04-01

    In order to assess crop ability to act as a CO2 sink and to describe GPP dynamic evolution, in 2008 we installed an eddy correlation station located in an agricultural plot of the Spanish plateau. Continuous measurements of 30-min NEE fluxes and other common variables have been measured over four years. Agricultural practices at the selected plot consisted of annual rotation of non-irrigated rapeseed, wheat, peas, rye. The maximum canopy height of rapeseed, wheat and rye was 1.3, 0.6 and 1.6 m respectively, the values being reached at the end of May. Although no measurements were performed in the pea crop, according to the farmer's information the maximum height was approximately 0.45-0.5 m. The quality of long-term eddy covariance data was evaluated by calculating the energy balance closure. This paper presents and compares the seasonal variation of major components involved in the energy balance as well as GPP for each type of crop. An energy balance closure of 92% was found when using the global dataset. On a four-year basis, the sensible heat flux, H, played the main role in the energy balance with a ratio of 52%. Latent heat flux, LE, accounted for 40% of the energy, with soil heat flux contributing around 8% to the energy balance. These values changed during the period of maximum interest. For this period LE played the main role, using over half of the available energy, 51%, related to evapotranspiration processes. Over the four years of study annual accumulated GPP exhibited a great variability, 1680, 710, 730 and 1410 g C m-2 for rapeseed, wheat, peas and rye, respectively. The influence of crop architecture, phenology and climatic conditions dominated crop-to-crop seasonal evolution. The highest LE contributions to the energy balance were found for rapeseed and rye. Higher GPP were also obtained for denser and higher canopy height crops, rapeseed and rye, yielding annuals almost comparable to C4 plants. Both crops exhibited a marked seasonal variation of

  20. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    Science.gov (United States)

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property

  1. Isospin bounds for energy partition in e-bare and N-bar N annihilation

    International Nuclear Information System (INIS)

    Bell, J.S.; Karl, G.; Smith, C.H.L.

    1995-01-01

    In reactions such as e-bare → anything, N-bar N → anything, the final state (neglecting secondary isospin violating decays) is customarily supposed to have isospin zero or one. It is shown that for such states the average fraction (X) of the energy carried away by neutral pions is bounded by X 3 = 0 (e.g., for ee, pp, nn) and by X > (11 - √41)/40 ∼ 0.115, when I 3 = ±1 (e.g., for pn or np). (author)

  2. Evaluating the influence of plant-specific physiological parameterizations on the partitioning of land surface energy fluxes

    Science.gov (United States)

    Sulis, Mauro; Langensiepen, Matthias; Shrestha, Prabhakar; Schickling, Anke; Simmer, Clemens; Kollet, Stefan

    2015-04-01

    Vegetation has a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature. Therefore plant physiological properties play a key role in mediating and amplifying interactions and feedback mechanisms in the soil-vegetation-atmosphere continuum. Because of the direct impact on latent heat fluxes, these properties may also influence weather generating processes, such as the evolution of the atmospheric boundary layer (ABL). In land surface models, plant physiological properties are usually obtained from literature synthesis by unifying several plant/crop species in predefined vegetation classes. In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the bio-physical parameterization of the Community Land Model (CLM), which is a component of the Terrestrial Systems Modeling Platform (TerrSysMP). The measured set of parameters for two typical European mid-latitudinal crops (sugar beet and winter wheat) is validated using eddy covariance measurements (sensible heat and latent heat) over multiple years from three measurement sites located in the North Rhine-Westphalia region, Germany. We found clear improvements of CLM simulations, when using the crop-specific physiological characteristics of the plants instead of the generic crop type when compared to the measurements. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two new crop-specific parameter sets leads to an improved quantification of the diurnal energy partitioning. These findings are cross-validated using estimates of gross primary production extracted from net ecosystem exchange measurements. This independent analysis reveals that the better agreement between observed and simulated latent heat using the plant-specific physiological properties largely stems from an improved simulation of the

  3. Study of gas-liquid partitioning of alkane solutes in several organic solvents by using principal component analysis and linear solvation energy relationships

    Energy Technology Data Exchange (ETDEWEB)

    Castells, Cecilia B.; Reta, Mario R

    2003-07-17

    Principal component analysis (PCA) was used to extract the number of factors which can describe the 737 gas-liquid partition coefficients of five linear, four branched, and two cyclic alkanes in 67 common solvents. Based on the reconstruction of partition coefficient data matrix, we concluded that the experimental dataset could readily be reduced to two relevant factors. Using only these two factors, there were no errors larger than 3%, 7 cases had errors larger than 2%, and in 34 cases, errors were between 1 and 2%. n-Hexane and ethylcyclohexane were chosen as the test factors, and all other partition coefficients were expressed in terms of these two test factors. Prediction of the logarithmic partition coefficient of these alkanes in seven chemically different solvents, which were originally excluded from the data matrix, was excellent: the root mean square error was 0.064, only in 11 cases the errors were larger than 1%, and only 3 had errors larger than 4%. Linear solvation energy relationships (LSERs) using both theoretical and empirical solvent parameters were used to explain the molecular interactions responsible for partition. Several combinations of parameters were tried but the standard deviations were not less than 0.31. This could be attributed to the model itself, imprecisions in the data matrix or in some of the LSER parameters. Solvent cohesive parameters and surface tension in combination with polarity-polarizability or dispersion parameters perform the best. Finally, the two principal component factors were rotated onto the most relevant physicochemical parameters that control the gas-liquid partitioning phenomena.

  4. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy.

    Science.gov (United States)

    Robakowski, Piotr; Bielinis, Ernest; Sendall, Kerrie

    2018-02-07

    This study addressed whether competition under different light environments was reflected by changes in leaf absorbed light energy partitioning, photosynthetic efficiency, relative growth rate and biomass allocation in invasive and native competitors. Additionally, a potential allelopathic effect of mulching with invasive Prunus serotina leaves on native Quercus petraea growth and photosynthesis was tested. The effect of light environment on leaf absorbed light energy partitioning and photosynthetic characteristics was more pronounced than the effects of interspecific competition and allelopathy. The quantum yield of PSII of invasive P. serotina increased in the presence of a competitor, indicating a higher plasticity in energy partitioning for the invasive over the native Q. petraea, giving it a competitive advantage. The most striking difference between the two study species was the higher crown-level net CO 2 assimilation rates (A crown ) of P. serotina compared with Q. petraea. At the juvenile life stage, higher relative growth rate and higher biomass allocation to foliage allowed P. serotina to absorb and use light energy for photosynthesis more efficiently than Q. petraea. Species-specific strategies of growth, biomass allocation, light energy partitioning and photosynthetic efficiency varied with the light environment and gave an advantage to the invader over its native competitor in competition for light. However, higher biomass allocation to roots in Q. petraea allows for greater belowground competition for water and nutrients as compared to P. serotina. This niche differentiation may compensate for the lower aboveground competitiveness of the native species and explain its ability to co-occur with the invasive competitor in natural forest settings.

  5. MSTor: A program for calculating partition functions, free energies, enthalpies, entropies, and heat capacities of complex molecules including torsional anharmonicity

    Science.gov (United States)

    Zheng, Jingjing; Mielke, Steven L.; Clarkson, Kenneth L.; Truhlar, Donald G.

    2012-08-01

    processors) Operating system: Linux/Unix/Mac OS RAM: 2 Mbytes Classification: 16.3, 16.12, 23 Nature of problem: Calculation of the partition functions and thermodynamic functions (standard-state energy, enthalpy, entropy, and free energy as functions of temperatures) of complex molecules involving multiple torsional motions. Solution method: The multi-structural approximation with torsional anharmonicity (MS-T). The program also provides results for the multi-structural local harmonic approximation [1]. Restrictions: There is no limit on the number of torsions that can be included in either the Voronoi calculation or the full MS-T calculation. In practice, the range of problems that can be addressed with the present method consists of all multi-torsional problems for which one can afford to calculate all the conformations and their frequencies. Unusual features: The method can be applied to transition states as well as stable molecules. The program package also includes the hull program for the calculation of Voronoi volumes and six utility codes that can be used as stand-alone programs to calculate reduced moment-of-inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes for torsional subdomain defined by Voronoi tessellation of the conformational subspace, to generate template input files, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Additional comments: The program package includes a manual, installation script, and input and output files for a test suite. Running time: There are 24 test runs. The running time of the test runs on a single processor of the Itasca computer is less than 2 seconds. J. Zheng, T. Yu, E. Papajak, I.M. Alecu, S.L. Mielke, D.G. Truhlar, Practical methods for including torsional anharmonicity in thermochemical calculations of complex molecules: The internal-coordinate multi

  6. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle.

    Science.gov (United States)

    Nkrumah, J D; Okine, E K; Mathison, G W; Schmid, K; Li, C; Basarab, J A; Price, M A; Wang, Z; Moore, S S

    2006-01-01

    Residual feed intake (RFI) is the difference between the actual and expected feed intake of an animal based on its BW and growth rate over a specified period. The biological mechanisms underlying the variation in feed efficiency in animals with similar BW and growth rate are not well understood. This study determined the relationship of feedlot feed efficiency, performance, and feeding behavior with digestion and energy partitioning of 27 steers. The steers were selected from a total of 306 animals based on their RFI following feedlot tests at the University of Alberta Kinsella Research Station. Selected steers were ranked into high RFI (RFI > 0.5 SD above the mean, n = 11), medium RFI (RFI +/- 0.5 SD above and below the mean, n = 8), and low RFI (RFI 0.10). Residual feed intake was correlated with daily methane production and energy lost as methane (r = 0.44; P < 0.05). Methane production was 28 and 24% less in low-RFI animals compared with high- and medium-RFI animals, respectively. Residual feed intake tended to be associated (P < 0.10) with apparent digestibilities of DM (r = -0.33) and CP (r = -0.34). The RFI of steers was correlated with DE (r = -0.41; P < 0.05), ME (r = -0.44; P < 0.05), heat production (HP; r = 0.68; P < 0.001), and retained energy (RE; r = -0.67; P < 0.001; energy values are expressed in kcal/kg of BW(0.75)). Feedlot partial efficiency of growth was correlated (P < 0.01) with methane production (r = -0.55), DE (r = 0.46), ME (r = 0.49), HP (r = -0.50), and RE (r = 0.62). With the exception of HP (r = 0.37; P < 0.05), feed conversion ratio was unrelated to the traits considered in the study. Feeding duration was correlated (P < 0.01) with apparent digestibility of DM (r = -0.55), CP (r = -0.47), methane production (r = 0.51), DE (r = -0.52), ME (r = -0.55), and RE (r = -0.60). These results have practical implications for the selection of animals that eat less at a similar BW and growth rate and for the environmental sustainability of beef

  7. Surface Energy Exchange in a Tropical Montane Cloud Forest Environment: Flux Partitioning, and Seasonal and Land Cover-Related Variations

    Science.gov (United States)

    Holwerda, F.; Alvarado-Barrientos, M. S.; González-Martínez, T.

    2015-12-01

    Relationships between seasonal climate, land cover and surface energy exchange in tropical montane cloud forest (TMCF) environments are poorly understood. Yet, understanding these linkages is essential to evaluating the impacts of land use and climate change on the functioning of these unique ecosystems. In central Veracruz, Mexico, TMCF occurs between 1100 and 2500 m asl. The canopy of this forest consists of a mix of deciduous and broadleaved-evergreen tree species, the former of which shed their leaves for a short period during the dry season. The aim of this study was to quantify the surface energy balance, and seasonal variations therein, for TMCF, as well as for shaded coffee (CO) and sugarcane (SU), two important land uses that have replaced TMCF at lower elevations. Sensible (H) and latent heat (LE) fluxes were measured using eddy covariance and sap flow methods. Other measurements included: micrometeorological variables, soil heat flux, soil moisture and vegetation characteristics. Partitioning of available energy (A) into H and LE showed important seasonal changes as well as differences among land covers. During the wet-season month of July, average midday Bowen ratios for sunny days were lowest and least variable among land covers: 0.5 in TMCF and SU versus 0.7 in CO. However, because of higher A, along with lower Bowen ratio with respect to CO, LE over TMCF was ca. 20% higher compared to CO and SU. During the late dry-season months of March and April, average midday Bowen ratios for sunny days were generally much higher and more variable among land covers. The higher Bowen ratios indicated a reduction of LE under the drier conditions prevailing (low soil moisture and high VPD), something rarely observed in TMCFs. Moreover, because some trees were still partially leafless in March, LE over TMCF was about half that over CO and SU, suggesting an important effect of phenology on energy exchange of this TMCF. Observed differences between seasons and land

  8. A genomics investigation of partitioning into and among flavonoid-derived condensed tannins for carbon sequestration in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Scott, A; Tsai, Chung-jui; Lindroth, Richard, L

    2013-03-24

    The project set out to use comparative (genotype and treatment) and transgenic approaches to investigate the determinants of condensed tannin (CT) accrual and chemical variability in Populus. CT type and amount are thought to effect the decomposition of plant detritus in the soil, and thereby the sequestering of carbon in the soil. The stated objectives were: 1. Genome-wide transcriptome profiling (microarrays) to analyze structural gene, transcription factor and metabolite control of CT partitioning; 2. Transcriptomic (microarray) and chemical analysis of ontogenetic effects on CT and PG partitioning; and 3. Transgenic manipulation of flavonoid biosynthetic pathway genes to modify the control of CT composition. Objective 1: A number of approaches for perturbing CT content and chemistry were tested in Objective 1, and those included nitrogen deficit, leaf wounding, drought, and salicylic acid spraying. Drought had little effect on CTs in the genotypes we used. Plants exhibited unpredictability in their response to salicylic acid spraying, leading us to abandon its use. Reduced plant nitrogen status and leaf wounding caused reproducible and magnitudinally striking increases in leaf CT content. Microarray submissions to NCBI from those experiments are the following: GSE ID 14515: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 1979. Public on Jan 04, 2010; Contributor(s) Harding SA, Tsai C GSE ID 14893: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 3200. Public on Feb 19, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16783 Wound-induced gene expression changes in Populus: 1 week; clone RM5. Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16785 Wound-induced gene expression changes in Populus: 90 hours; clone RM5 Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C Although CT amount changed in response to treatments, CT composition was essentially

  9. Novel medium-throughput technique for investigating drug-cyclodextrin complexation by pH-metric titration using the partition coefficient method.

    Science.gov (United States)

    Dargó, Gergő; Boros, Krisztina; Péter, László; Malanga, Milo; Sohajda, Tamás; Szente, Lajos; Balogh, György T

    2018-05-05

    The present study was aimed to develop a medium-throughput screening technique for investigation of cyclodextrin (CD)-active pharmaceutical ingredient (API) complexes. Dual-phase potentiometric lipophilicity measurement, as gold standard technique, was combined with the partition coefficient method (plotting the reciprocal of partition coefficients of APIs as a function of CD concentration). A general equation was derived for determination of stability constants of 1:1 CD-API complexes (K 1:1,CD ) based on solely the changes of partition coefficients (logP o/w N -logP app N ), without measurement of the actual API concentrations. Experimentally determined logP value (-1.64) of 6-deoxy-6[(5/6)-fluoresceinylthioureido]-HPBCD (FITC-NH-HPBCD) was used to estimate the logP value (≈ -2.5 to -3) of (2-hydroxypropyl)-ß-cyclodextrin (HPBCD). The results suggested that the amount of HPBCD can be considered to be inconsequential in the octanol phase. The decrease of octanol volume due to the octanol-CD complexation was considered, thus a corrected octanol-water phase ratio was also introduced. The K 1:1,CD values obtained by this developed method showed a good accordance with the results from other orthogonal methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Load partition in NiTi shape memory alloy polycrystals investigated by in-situ neutron diffraction and micromechanics modelling

    Czech Academy of Sciences Publication Activity Database

    Šittner, P.; Novák, V.; Lukáš, Petr; Lugovyy, Dmytro; Neov, Dimitar; Tovar, M.

    2002-01-01

    Roč. 404, č. 4 (2002), s. 829-834 ISSN 0255-5476. [Proceedings of the European conference on residual stresses /6./. Coimbra, 10.07.2002-13.07.2002] R&D Projects: GA AV ČR IAA1048107; GA ČR GV202/97/K038; GA AV ČR KSK1010104 Keywords : shape memory alloy * neutron diffraction * martensitic transformation * NiTi * micromechanics modelling * load partition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.613, year: 2002

  11. Spectrum of Singly Charged Uranium (U II : Theoretical Interpretation of Energy Levels, Partition Function and Classified Ultraviolet Lines

    Directory of Open Access Journals (Sweden)

    Ali Meftah

    2017-06-01

    Full Text Available In an attempt to improve U II analysis, the lowest configurations of both parities have been interpreted by means of the Racah-Slater parametric method, using Cowan codes. In the odd parity, including the ground state, 253 levels of the interacting configurations 5 f 3 7 s 2 + 5 f 3 6 d 7 s + 5 f 3 6 d 2 + 5 f 4 7 p + 5 f 5 are interpreted by 24 free parameters and 64 constrained ones, with a root mean square (rms deviation of 60 cm − 1 . In the even parity, the four known configurations 5 f 4 7 s , 5 f 4 6 d , 5 f 2 6 d 2 7 s , 5 f 2 6 d 7 s 2 and the unknown 5 f 2 6 d 3 form a basis for interpreting 125 levels with a rms deviation of 84 cm − 1 . Due to perturbations, the theoretical description of the higher configurations 5 f 3 7 s 7 p + 5 f 3 6 d 7 p remains unsatisfactory. The known and predicted levels of U II are used for a determination of the partition function. The parametric study led us to a re-investigation of high resolution ultraviolet spectrum of uranium recorded at the Meudon Observatory in the late eighties, of which the analysis was unachieved. In the course of the present study, a number of 451 lines of U II has been classified in the region 2344 –2955 Å. One new level has been established as 5 f 3 6 d 7 p ( 4 I 6 K ( J = 5.5 at 39113.98 ± 0.1 cm − 1 .

  12. Post-transition state dynamics and product energy partitioning following thermal excitation of the F⋯HCH2CN transition state: Disagreement with experiment.

    Science.gov (United States)

    Pratihar, Subha; Ma, Xinyou; Xie, Jing; Scott, Rebecca; Gao, Eric; Ruscic, Branko; Aquino, Adelia J A; Setser, Donald W; Hase, William L

    2017-10-14

    Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH 3 CN → HF + CH 2 CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. The experiments were performed at 300 K, and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F⋯HCH 2 CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation. The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH 2 CN and then trapping in the CH 2 CN⋯HF post-reaction potential energy well of ∼10 kcal/mol with respect to the HF + CH 2 CN products. In contrast to this IRC, five different trajectory types were observed: the majority proceeded by direct H-atom transfer and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH 2 CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. Simulations with an anharmonic zero-point energy constraint gave product distributions for relative translation, HF rotation, HF vibration, CH 2 CN rotation, and CH 2 CN vibration as 5%, 11%, 60%, 7%, and 16%, respectively. In contrast, the experimental energy partitioning percentages to HF rotation and vibration are 6% and 41%. Comparisons are made between the current simulation and those for other F + H-atom abstraction reactions. The simulation product energy partitioning and HF vibrational population for F + CH 3 CN

  13. Energy sustainable communities: Environmental psychological investigations

    International Nuclear Information System (INIS)

    Schweizer-Ries, Petra

    2008-01-01

    Energy sustainability is becoming an increasing issue-or rather 'the' issue in our society. Often it is reduced to a purely technical problem. Renewable energies and energy-efficient technologies are developed to solve the problem, but finally the end-users will 'decide' how much and what kind of energy they are going to consume. This article is targeted on showing the environmental psychological aspects of the change of energy demand and supply. It builds upon a transactional model of human technology interchange and summarises environmental psychological work done during more than 5 years. It refers to the idea of energy sustainable communities (ESCs), shows the development of one example community and concentrates on one aspect of the social dimension of ESCs, the 'acceptance of renewable energy technology', its definition and measurement in Germany

  14. A flow-through aqueous standard generation system for thin film microextraction investigations of UV filters and biocides partitioning to different environmental compartments.

    Science.gov (United States)

    Ahmadi, Fardin; Sparham, Chris; Pawliszyn, Janusz

    2017-11-01

    In this paper problems associated with preparation of aqueous standard of highly hydrophobic compounds such as partial precipitation, being lost on the surfaces, low solubility in water and limited sample volume for accurate determination of their distribution coefficients are addressed. The following work presents two approaches that utilize blade thin film microextraction (TFME) to investigate partitioning of UV filters and biocides to humic acid (dissolved organic carbon) and sediment. A steady-state concentration of target analytes in water was generated using a flow-through aqueous standard generation (ASG) system. Dialysis membranes, a polytetrafluoroethylene permeation tube, and a frit porous (0.5 μm) coated by epoxy glue were basic elements used for preparation of the ASG system. In the currently presented study, negligible depletion TFME using hydrophilic-lipophilic balance (HLB) and octadecyl silica-based (C18) sorbents was employed towards the attainment of free concentration values of target analytes in the studied matrices. Thin film geometry provided a large volume of extraction phase, which improved the sensitivity of the method towards highly matrix-bound analytes. Extractions were performed in the equilibrium regime so as to prevent matrix effects and with aims to reach maximum method sensitivity for all analytes under study. Partitioning of analytes on dissolved organic carbon (DOC) was investigated in ASG to facilitate large sample volume conditions. Binding percentages and DOC distribution coefficients (Log K DOC ) ranged from 20 to 98% and 3.71-6.72, respectively. Furthermore, sediment-water partition coefficients (K d ), organic-carbon normalized partition coefficients (Log K OC ), and DOC distribution coefficients (Log K DOC ) were investigated in slurry sediment, and ranged from 33 to 2860, 3.31-5.24 and 4.52-5.75 Lkg -1 , respectively. The obtained results demonstrated that investigations utilizing ASG and TFME can yield reliable binding

  15. A QTAIM-based energy partitioning for understanding the physical origin of conformational preferences: application to the Z effect in O=C-X-R and related units.

    Science.gov (United States)

    Ferro-Costas, David; Otero, Nicolás; Graña, Ana M; Mosquera, Ricardo A

    2012-12-15

    A quantum theory of atoms in molecules-based energy partitioning was carried out for Z and E conformers of a series of O=C-X-R containing compounds. The results obtained for the simplest compound (formic acid) indicate that the attraction of the electron density within carbonyl oxygen by the nucleus of the acid hydrogen is the most important energy term for Z preference. This conclusion can be extended (mutatis mutandis) to larger carboxylic acids, esters, sulfur derivatives, secondary amides, and carbonyl isocyanates, and even explains the sequence of relative conformational energies in the HCXOH series (X = O, S, Se). In contrast, although the hyperconjugative model has been traditionally employed to explain this preference, we observe it is incompatible with: (i) relative values of diverse QTAIM atomic populations for the Z/E conformational equilibrium; (ii) conformational energies in the HCXOH series. Copyright © 2012 Wiley Periodicals, Inc.

  16. Investigating Uranium Mobility Using Stable Isotope Partitioning of 238U/235U and a Reactive Transport Model

    Science.gov (United States)

    Bizjack, M.; Johnson, T. M.; Druhan, J. L.; Shiel, A. E.

    2015-12-01

    We report a numerical reactive transport model which explicitly incorporates the effectively stable isotopes of uranium (U) and the factors that influence their partitioning in bioactive systems. The model reproduces trends observed in U isotope ratios and concentration measurements from a field experiment, thereby improving interpretations of U isotope ratios as a tracer for U reactive transport. A major factor contributing to U storage and transport is its redox state, which is commonly influenced by the availability of organic carbon to support metal-reducing microbial communities. Both laboratory and field experiments have demonstrated that biogenic reduction of U(VI) fractionates the stable isotope ratio 238U/235U, producing an isotopically heavy solid U(IV) product. It has also been shown that other common reactive transport processes involving U do not fractionate isotopes to a consistently measurable level, which suggests the capacity to quantify the extent of bioreduction occurring in groundwater containing U using 238U/235U ratios. A recent study of a U bioremediation experiment at the Rifle IFRC site (Colorado, USA) applied Rayleigh distillation models to quantify U stable isotope fractionation observed during acetate amendment. The application of these simplified models were fit to the observations only by invoking a "memory-effect," or a constant source of low-concentration, unfractionated U(VI). In order to more accurately interpret the measured U isotope ratios, we present a multi-component reactive transport model using the CrunchTope software. This approach is capable of quantifying the cycling and partitioning of individual U isotopes through a realistic network of transport and reaction pathways including reduction, oxidation, and microbial growth. The model incorporates physical heterogeneity of the aquifer sediments through zones of decreased permeability, which replicate the observed bromide tracer, major ion chemistry, U concentration, and U

  17. Post-transition state dynamics and product energy partitioning following thermal excitation of the F∙∙∙HCH2 CN transition state: Disagreement with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pratihar, Subha [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Ma, Xinyou [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Xie, Jing [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA; Scott, Rebecca [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Gao, Eric [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Ruscic, Branko [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA and Computation Institute, University of Chicago, Chicago, Illinois 60637, USA; Aquino, Adelia J. A. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People’s Republic of China; Institute for Soil Research University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria; Setser, Donald W. [Institute for Soil Research University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria; Hase, William L. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA

    2017-10-14

    Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH3CN → HF + CH2CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. In accord with experiment and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F-HCH2CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST for the simulation. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation. The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH2CN and then trapping in the CH2CN-HF post-reaction potential energy well of ~10 kcal/mol with respect to the HF + CH2CN products. In contrast to this IRC, five different trajectory types were observed, with the majority involving direct dissociation and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH2CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. From the simulations and with an anharmonic zero-point energy constraint, the percentage partitioning of the product energy to relative translation, HF rotation, HF vibration, CH2CN rotation and CH2CN vibration is 5, 11, 60, 7, and 16%, respectively. In contrast the experimental energy partitioning percentages to HF rotation and vibration are 6 and 41%. Comparisons are made between the current simulation and those for other F + H

  18. Embedded Mean-Field Theory with Block-Orthogonalized Partitioning.

    Science.gov (United States)

    Ding, Feizhi; Manby, Frederick R; Miller, Thomas F

    2017-04-11

    Embedded mean-field theory (EMFT) provides a simple, flexible framework for describing subsystems at different levels of mean-field theory. Subsystems are defined by partitioning a one-particle basis set, with a natural choice being the atomic orbital (AO) basis. Although generally well behaved, EMFT with AO partitioning can exhibit unphysical collapse of the self-consistent solution. To avoid this issue, we introduce subsystem partitioning of a block-orthogonalized (BO) basis set; this eliminates the unphysical collapse without significantly increasing computational cost. We also investigate a non-self-consistent implementation of EMFT, in which the density matrix is obtained using BO partitioning and the final energy evaluated using AO partitioning; this density-corrected EMFT approach is found to yield more accurate energies than BO partitioning while also avoiding issues of the unphysical collapse. Using these refined implementations of EMFT, previously proposed descriptions of the exact-exchange coupling between subsystems are compared: although the EX1 coupling scheme is slightly more accurate than EX0, the small improvement does not merit its substantially greater computational cost.

  19. Responses of Surface Energy Partition to Climatic Factors: A Comparison Over Two Types of Underlying Surfaces in Qinghai-Xizang Plateau

    Science.gov (United States)

    Yu, Y.; Xie, J.; Xia, D.

    2017-12-01

    Sensible and latent heat fluxes are energy ties that connect the land surface and the atmosphere through tightly coupling soil moisture to temperature and precipitation. The response of surface energy partitioning into sensible and latent heat fluxes to climatic factors is extremely complex and significantly different in different regions. The Qinghai-Tibetan Plateau, known as the "roof of the world", has an average elevation of more than 4000 m and an area of about 2.57 x 106 km2 . Due to its high elevation, much less column air mass, and strong solar radiation, the land-atmosphere interaction is very strong over the plateau. In this study, surface observations at two sites with distinctively different surface conditions (nearly bare vs alpine grassland) over Qinghai-Xizang Plateau were obtained in 2014. A combinatorial stratification method was used to compare and analysis the direct and indirect effects of soil water content (SWC), net radiation (Rnet) and vapor pressure deficit (VPD) on surface energy partitioning at the two sites, and a path analysis method was used to study the key climatic factors influencing surface energy partition over the two different underlying surfaces. Results show that the responses of evaporative fraction (EF) to SWC stayed in soil moisture-limited regime at the nearly bare site while it is energy-limited at the alpine grassland. EF grows faster with SWC when VPD was high and Rnet had little impact on the variation of EF with SWC at the bare ground site. The variation of EF with SWC is not influenced by VPD and Rnet at the alpine grassland. EF decreases at first and then tends to be stable as VPD increases, and the sensitive of EF to VPD reduced when SWC becomes larger and it is independent of Rnet at the bare ground site. EF increases slightly at first and then tends to be stable as VPD increases and the trend is not influenced by SWC and Rnet at the alpine grassland. EF tends to be stable as Rnet increases and the stable values

  20. Outer membrane phospholipase A in phospholipid bilayers: a model system for concerted computational and experimental investigations of amino acid side chain partitioning into lipid bilayers.

    Science.gov (United States)

    Fleming, Patrick J; Freites, J Alfredo; Moon, C Preston; Tobias, Douglas J; Fleming, Karen G

    2012-02-01

    Understanding the forces that stabilize membrane proteins in their native states is one of the contemporary challenges of biophysics. To date, estimates of side chain partitioning free energies from water to the lipid environment show disparate values between experimental and computational measures. Resolving the disparities is particularly important for understanding the energetic contributions of polar and charged side chains to membrane protein function because of the roles these residue types play in many cellular functions. In general, computational free energy estimates of charged side chain partitioning into bilayers are much larger than experimental measurements. However, the lack of a protein-based experimental system that uses bilayers against which to vet these computational predictions has traditionally been a significant drawback. Moon & Fleming recently published a novel hydrophobicity scale that was derived experimentally by using a host-guest strategy to measure the side chain energetic perturbation due to mutation in the context of a native membrane protein inserted into a phospholipid bilayer. These values are still approximately an order of magnitude smaller than computational estimates derived from molecular dynamics calculations from several independent groups. Here we address this discrepancy by showing that the free energy differences between experiment and computation become much smaller if the appropriate comparisons are drawn, which suggests that the two fields may in fact be converging. In addition, we present an initial computational characterization of the Moon & Fleming experimental system used for the hydrophobicity scale: OmpLA in DLPC bilayers. The hydrophobicity scale used OmpLA position 210 as the guest site, and our preliminary results demonstrate that this position is buried in the center of the DLPC membrane, validating its usage in the experimental studies. We further showed that the introduction of charged Arg at position 210

  1. Organic Carbon/Water and Dissolved Organic Carbon/Water Partitioning of Cyclic Volatile Methylsiloxanes: Measurements and Polyparameter Linear Free Energy Relationships.

    Science.gov (United States)

    Panagopoulos, Dimitri; Jahnke, Annika; Kierkegaard, Amelie; MacLeod, Matthew

    2015-10-20

    The sorption of cyclic volatile methyl siloxanes (cVMS) to organic matter has a strong influence on their fate in the aquatic environment. We report new measurements of the partition ratios between freshwater sediment organic carbon and water (KOC) and between Aldrich humic acid dissolved organic carbon and water (KDOC) for three cVMS, and for three polychlorinated biphenyls (PCBs) that were used as reference chemicals. Our measurements were made using a purge-and-trap method that employs benchmark chemicals to calibrate mass transfer at the air/water interface in a fugacity-based multimedia model. The measured log KOC of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were 5.06, 6.12, and 7.07, and log KDOC were 5.05, 6.13, and 6.79. To our knowledge, our measurements for KOC of D6 and KDOC of D4 and D6 are the first reported. Polyparameter linear free energy relationships (PP-LFERs) derived from training sets of empirical data that did not include cVMS generally did not predict our measured partition ratios of cVMS accurately (root-mean-squared-error (RMSE) for logKOC 0.76 and for logKDOC 0.73). We constructed new PP-LFERs that accurately describe partition ratios for the cVMS as well as for other chemicals by including our new measurements in the existing training sets (logKOC RMSEcVMS: 0.09, logKDOC RMSEcVMS: 0.12). The PP-LFERs we have developed here should be further evaluated and perhaps recalibrated when experimental data for other siloxanes become available.

  2. Transfer and partitioning of energy and mass through seafloor hydrothermal systems: comparative studies at the Ridge2000 Integrated Study Sites (ISS) (Invited)

    Science.gov (United States)

    Tivey, M. K.

    2010-12-01

    Seafloor hydrothermal systems are major players in the transfer of mass and energy from the mantle and crust to the ocean and biosphere. Over the past thirty years, much has been learned about this transfer to the ocean, but considerably less is known about the transfer to the biosphere. Study of hydrothermal systems in a diverse range of geologic settings has shown relationships between spreading rate and hydrothermal heat flux, substrate composition (including rock geochemistry, presence/absence of sediment) and hydrothermal fluid composition, and magmatic/tectonic events and temporal variability of fluid composition (e.g., German and Von Damm, Treatise On Geochemistry, 2004; Baker et al. AGU Monograph Series 91, 1995). Studies in arc and back-arc settings are documenting the effects of magmatic acid volatiles on fluid-rock reaction and fluid and vent deposit compositions (e.g., Ishibashi and Urabe, Backarc Basins: Tectonics and Magmatism, 1995). These comparative studies in a wide range of geologic settings, including at the three Ridge2000 ISS, have provided a fairly good understanding of the flux of heat and many elements to the ocean associated with high temperature seafloor hydrothermal systems. Considerably less is known, however, about the partitioning of heat and mass (particularly metals and sulfur) in hydrothermal systems. The deposits that form at vent sites are intimately linked within paths of energy and mass transport from the mantle and crust to the oceans. Transport differs greatly through different types of deposits (e.g., black smokers, white smokers/diffusers, flanges). Estimates of heat flux from measured temperatures of flow (unless integrated over and around an entire vent field) require an understanding of the partitioning of flow between focused black smokers and more diffuse flow from diffusers, flanges, and surfaces of deposits, and from the igneous substrate. Estimates of mass flux into the ocean require an understanding of the

  3. Aquaculture investigations with nuclear energy techniques

    International Nuclear Information System (INIS)

    Heredia Salazar, Brunilda

    1997-01-01

    The culture of aquatic organisms, especially that of fishes under controlled conditions, up to their harvesting, processing, commercialization and consumption, has been pointed out as an activity that produces a lot of benefits, among them: the obtention high proteic valued food, the incorporation to the economy of lands not usefull for agriculture activities, the increment of fishing resources, the recycling of organic matter produced in the units, the regional development, the generation of employment, technologies and foreign currencies. Several research areas are identified that can be developed, using the nuclear technologies, for example in the reproduction, nutrition, diagnose and control of illnesses, environmental monitoring and quality certification of products. In the concerning to the Venezuelan aquaculture, investigations are required that need to use those techniques. For example: 1) Production of autochthonous inductive agents, by means of radioinmunoenssay (RIA), to determine the gonadotropines coming from the hypophysis of fish cultivated with the purpose of gathering the glands in its best moment, to generate the final maturation and spawn in autochthonous species. 2) Genetic improvement of cultivated species through the knowledge of the genetic load of different lines and breeds found in the natural means, and to achieve its maintenance to solve inbreeding problems, in autochthonous species aswell in as in exotic ones, by the use of marking techniques (ADE, RFLA and microsatellite techniques). 3) Nutritional and feeding studies of species under commertial culture, especially on the effect of the aflatoxins in the inputs or the portions, substances that influence in a negative way the aquatic nutrition. In this case, competitive immunoassays of enzymes bounded (ELISA) and radioinmunoessays. 4) Illness diagnose, by means of the ELISA kit, specifically of the more common illness in fishes cultivated in the country [es

  4. Investigations of a Cost-Optimal Zero Energy Balance

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Nørgaard, Jesper; Heiselberg, Per

    2012-01-01

    The Net Zero Energy Building (Net ZEB) concept is worldwide recognised as a promising solution for decreasing buildings’ energy use. Nevertheless, a consistent definition of the Net ZEB concept is constantly under discussion. One of the points on the Net ZEB agenda is the zero energy balance......, in particular the types of energy use that should be included in it. Since the user perspective and the cost of energy-efficiency technologies is so crucial for the successful adaptation of energy-conservation solutions, such like the Net ZEB concept, this paper has deployed the Life Cycle Cost (LCC) analysis...... and taken a view point of private building owner to investigate what types of energy uses should be included in the cost-optimal zero energy balance. The analysis is conducted for five renewable energy supply systems and five user profiles with a study case of a multi-storey residential Net ZEB. The results...

  5. Investigating the molecular underpinnings underlying morphology and changes in carbon partitioning during tension wood formation in Eucalyptus.

    Science.gov (United States)

    Mizrachi, Eshchar; Maloney, Victoria J; Silberbauer, Janine; Hefer, Charles A; Berger, Dave K; Mansfield, Shawn D; Myburg, Alexander A

    2015-06-01

    Tension wood has distinct physical and chemical properties, including altered fibre properties, cell wall composition and ultrastructure. It serves as a good system for investigating the genetic regulation of secondary cell wall biosynthesis and wood formation. The reference genome sequence for Eucalyptus grandis allows investigation of the global transcriptional reprogramming that accompanies tension wood formation in this global wood fibre crop. We report the first comprehensive analysis of physicochemical wood property changes in tension wood of Eucalyptus measured in a hybrid (E. grandis × Eucalyptus urophylla) clone, as well as genome-wide gene expression changes in xylem tissues 3 wk post-induction using RNA sequencing. We found that Eucalyptus tension wood in field-grown trees is characterized by an increase in cellulose, a reduction in lignin, xylose and mannose, and a marked increase in galactose. Gene expression profiling in tension wood-forming tissue showed corresponding down-regulation of monolignol biosynthetic genes, and differential expression of several carbohydrate active enzymes. We conclude that alterations of cell wall traits induced by tension wood formation in Eucalyptus are a consequence of a combination of down-regulation of lignin biosynthesis and hemicellulose remodelling, rather than the often proposed up-regulation of the cellulose biosynthetic pathway. © 2014 University of Pretoria New Phytologist © 2014 New Phytologist Trust.

  6. An investigation on energy consumption in Japan. Industry sector

    International Nuclear Information System (INIS)

    Suzuki, Takayoshi

    2005-03-01

    Energy consumption in the industry sector, which is larger than that of the residential/commercial or transportation sector, occupies nearly 50% of final energy consumption in Japan. The industry sector has made an effort for energy conservation from an economical point of view. Now further effort is required also to cope with a global warming problem. This report summarizes the results of investigation on energy consumption, changes in energy intensity and development of energy conservation technologies including those common to the industries and recycling of wastes, focusing on energy intensive industries such as iron and steel and chemicals. Advanced energy conservation technologies or systems are being developed with a large and continuous effort in all industries, and recycling of wastes, e.g. waste plastics, has started in industry scale. (author)

  7. Investigations on a vortex induced vibration based energy harvester

    Science.gov (United States)

    Kumar, S. Krishna; Bose, Chandan; Ali, Shaikh Faruque; Sarkar, Sunetra; Gupta, Sayan

    2017-12-01

    This study investigates energy harvesting from vortex induced vibrations of a flexible cantilevered flapper placed in the wake of a rigid circular cylinder. The effect of the gap between the cylinder and the flapper on the energy harvested is investigated through wind tunnel experiments and numerical simulations. As the flow speed is varied, a transition in the flapper dynamics is observed, which in turn affects the power extracted by the harvester. Numerical investigations reveal that the flapper dynamics is different depending on whether the vortices are shed ahead or behind the flapper. This study concludes that the choice of the gap influences the energy harvesting potential of such harvesters.

  8. Experimental investigation of rubble mound breakwaters for wave energy conversion

    DEFF Research Database (Denmark)

    Luppa, C.; Contestabile, P.; Cavallaro, L.

    2015-01-01

    The paper describes recent laboratory investigation on the breakwater integrated device named “OBREC” (Overtopping BReakwater for Energy Conversion). This technology recently appeared on the wave energy converter scene as an executive outcome of improving composite seawalls by including overtopping...... type wave energy converters [1]. Two complementary experimental campaigns were carried out, in 2012 and in 2014. Several geometries and wave conditions were examined. Preliminary comparison of hydraulic behaviour has been summarized, focusing on reflection analysis and overtopping flow rate...

  9. The 'Salting Out' Effect: Investigating the Influence of Both the Nature and Concentration of Salt on the Partition Coefficient of Butan-1,4-Dioic Acid

    Science.gov (United States)

    McCullagh, John

    2018-01-01

    This sixth-form chemistry activity describes how students can use acid-base titrimetry to investigate how adding salt to the aqueous phase may change the value of the partition coefficient of an organic acid between water and 2-methylpropan-1-ol. While the presence of lithium chloride and sodium chloride increases the value of the partition…

  10. Investigation of poultry housing capacity on energy efficiency of ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the evaluated energy efficiency and effect of poultry house size on energy productivity in three different capacity. Capacities of houses were 10,000 (3 housings), 20,000 (2 housings) and 28,000 (1 house) birds per production period and were assigned as HI, HII and HIII respectively.

  11. Investigation of Solar and Solar-Gas Thermal Energy Sources

    OpenAIRE

    Ivan Herec; Jan Zupa

    2003-01-01

    The article deals with the investigation of solar thermal sources of electrical and heat energy as well as the investigation of hybrid solar-gas thermal sources of electrical and heat energy (so called photothermal sources). Photothermal sources presented here utilize computer-controlled injection of the conversion fluid into special capillary porous substance that is adjusted to direct temperature treatment by the concentrated thermal radiation absorption.

  12. Energy Partitioning in Collisions of Slow Polyatomic Ions with Surfaces: Ethanol Molecular Ions on Surfaces Covered by Self-Assembled Monolayers (CF-SAM, CH-SAM, COOH-SAM)

    Czech Academy of Sciences Publication Activity Database

    Žabka, Ján; Dolejšek, Zdeněk; Herman, Zdeněk

    2002-01-01

    Roč. 106, č. 45 (2002), s. 10861-10869 ISSN 1089-5639 R&D Projects: GA ČR GA203/97/0351; GA ČR GA203/00/0632 Institutional research plan: CEZ:AV0Z4040901 Keywords : energy partitioning * collisions * surfaces Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.765, year: 2002

  13. Simulation-based Investigations of Electrostatic Beam Energy Analysers

    CERN Document Server

    Pahl, Hannes

    2015-01-01

    An energy analyser is needed to measure the beam energy profile behind the REX-EBIS at ISOLDE. The device should be able to operate with an accuracy of 1 V at voltages up to 30 kV. In order to find a working concept for an electrostatic energy analyser different designs were evaluated with simulations. A spherical device and its design issues are presented. The potential deformation effects of grids at high voltages and their influence on the energy resolution were investigated. First tests were made with a grid-free ring electrode device and show promising results.

  14. Investigation on wind energy-compressed air power system.

    Science.gov (United States)

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  15. Investigation of building energy autonomy in the sahelian environment

    International Nuclear Information System (INIS)

    Coulibaly, O; Koulidiati, J; Ouedraogo, A; Kuznik, F; Baillis, D

    2012-01-01

    In this study, the energy generation of a set of photovoltaic panels is compared with the energy load of a building in order to analyse its autonomy in the sahelian environment when taking into account, the orientation, the insulation and the energy transfer optimisation of its windows. The Type 56 TRNSYS multizone building model is utilized for the energy load simulation and the Type 94 model of the same code enables the coupling of photovoltaic (PV) panels with the building. Without insulation, the PV energy generation represents 73.52 and 111.79% of the building electric energy load, respectively for poly-crystalline and mono-crystalline panels. For the same PV characteristics and when we insulate the roof and the floor, the energy generation increases to represent successively 121.09 and 184.13%. In the meantime, for building without insulation and with insulate the roof, the floor and 2 cm insulated walls, the energy consumption ratios decrease respectively from 201.13 to 105.20 kWh/m 2 /year. The investigations finally show that it is even possible to generate excess energy (positive energy building) and reduce the number and incident surface area of the PV panels if we conjugate the previous model with building passive architectural design mode (orientation, solar protection ...).

  16. Effects of replacing lactose from milk replacer by glucose, fructose, or glycerol on energy partitioning in veal calves.

    Science.gov (United States)

    Gilbert, M S; Pantophlet, A J; van den Borne, J J G C; Hendriks, W H; Schols, H A; Gerrits, W J J

    2016-02-01

    Calf milk replacers contain 40 to 50% lactose. Fluctuating dairy prices are a major economic incentive to replace lactose from milk replacers by alternative energy sources. Our objective was, therefore, to determine the effects of replacement of lactose with glucose, fructose, or glycerol on energy and protein metabolism in veal calves. Forty male Holstein-Friesian calves (114±2.4 kg) were fed milk replacer containing 46% lactose (CON) or 31% lactose and 15% of glucose (GLUC), fructose (FRUC), or glycerol (GLYC). Solid feed was provided at 10 g of dry matter (DM)/kg of metabolic body weight (BW(0.75)) per day. After an adaptation of 48 d, individual calves were harnessed, placed in metabolic cages, and housed in pairs in respiration chambers. Apparent total-tract disappearance of DM, energy, and N and complete energy and N balances were measured. The GLUC, FRUC, and GLYC calves received a single dose of 1.5 g of [U-(13)C]glucose, [U-(13)C]fructose, or [U-(13)C]glycerol, respectively, with their milk replacer at 0630 h and exhaled (13)CO2 and (13)C excretion with feces was measured. Apparent total-tract disappearance was decreased by 2.2% for DM, 3.2% for energy, and 4.2% for N in FRUC compared with CON calves. Energy and N retention did not differ between treatments, and averaged 299±16 kJ/kg of BW(0.75) per day and 0.79±0.04 g/kg of BW(0.75) per day, respectively, although FRUC calves retained numerically less N (13%) than other calves. Recovery of (13)C isotopes as (13)CO2 did not differ between treatments and averaged 72±1.6%. The time at which the maximum rate of (13)CO2 production was reached was more than 3 h delayed for FRUC calves, which may be explained by a conversion of fructose into other substrates before being oxidized. Recovery of (13)C in feces was greater for FRUC calves (7.7±0.59%) than for GLUC (1.0±0.27%) and GLYC calves (0.5±0.04%), indicating incomplete absorption of fructose from the small intestine resulting in fructose excretion or

  17. Energy partitioning and impulse dispersion in the decorated, tapered, strongly nonlinear granular alignment: A system with many potential applications

    Science.gov (United States)

    Doney, Robert L.; Agui, Juan H.; Sen, Surajit

    2009-09-01

    Rapid absorption of impulses using light-weight, small, reusable systems is a challenging problem. An axially aligned set of progressively shrinking elastic spheres, a "tapered chain," has been shown to be a versatile and scalable shock absorber in earlier simulational, theoretical, and experimental works by several authors. We have recently shown (see R. L. Doney and S. Sen, Phys. Rev. Lett. 97, 155502 (2006)) that the shock absorption ability of a tapered chain can be dramatically enhanced by placing small interstitial grains between the regular grains in the tapered chain systems. Here we focus on a detailed study of the problem introduced in the above mentioned letter, present extensive dynamical simulations using parameters for a titanium-aluminum-vanadium alloy Ti6Al4V, derive attendant hard-sphere analyses based formulae to describe energy dispersion, and finally discuss some preliminary experimental results using systems with chrome spheres and small Nitinol interstitial grains to present the underlying nonlinear dynamics of this so-called decorated tapered granular alignment. We are specifically interested in small systems, comprised of several grains. This is because in real applications, mass and volume occupied must inevitably be minimized. Our conclusion is that the decorated tapered chain offers enhanced energy dispersion by locking in much of the input energy in the grains of the tapered chain rather than in the small interstitial grains. Thus, the present study offers insights into how the shock absorption capabilities of these systems can be pushed even further by improving energy absorption capabilities of the larger grains in the tapered chains. We envision that these scalable, decorated tapered chains may be used as shock absorbing components in body armor, armored vehicles, building applications and in perhaps even in applications in rehabilitation science.

  18. Generalized linear solvation energy model applied to solute partition coefficients in ionic liquid-supercritical carbon dioxide systems

    Czech Academy of Sciences Publication Activity Database

    Planeta, Josef; Karásek, Pavel; Hohnová, Barbora; Šťavíková, Lenka; Roth, Michal

    2012-01-01

    Roč. 1250, SI (2012), s. 54-62 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GAP206/11/0138; GA ČR(CZ) GAP106/12/0522; GA ČR(CZ) GPP503/11/P523 Institutional research plan: CEZ:AV0Z40310501 Keywords : ionic liquid * supercritical carbon dioxide * solvation energy model Subject RIV: BJ - Thermodynamics Impact factor: 4.612, year: 2012

  19. Goldbach Partitions and Sequences

    Indian Academy of Sciences (India)

    IAS Admin

    Properties of Goldbach partitions of numbers, as sums of primes, are presented and their potential applications to cryptography are described. The sequence of the number of partitions has excel- lent randomness properties. Goldbach partitions can be used to create ellipses and circles on the number line and they can also ...

  20. Gentile statistics and restricted partitions

    Indian Academy of Sciences (India)

    bosons confined in a harmonic trap at a given energy E, in the N → ∞ limit, is the same as the number of ways of ... with a power-law energy spectrum, is analogous to ps(n), that is, the number of ways of partitioning an integer n as a sum of sth ..... [11] for the nuclear level density. We further note that the k → ∞, or the ...

  1. Concrete thermal energy storage for steam generation: A numerical investigation

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    the heat exchanger tubes embedded in a cylindrical shape concrete configuration. Three-dimensional multiphysics model of the storage system is developed to investigate transient conjugate heat transfer between the two mediums, the heat transfer fluid, and the concrete. The model comprehends the dynamics...... of storing thermal energy in the storage at the temperature range of 350??390 C. To evaluate the performance of the storage system using finned heat exchanger tubes, thermal characteristics such as charging/discharging time, energy, and exergy efficiency are predicted. The developed model satisfactorily......Establishing enhancement methods to develop cost-effective thermal energy storage technology requires a detailed analysis. In this paper, a numerical investigation of the concrete based thermal energy storage system is carried out. The storage system consists of a heat transfer fluid flowing inside...

  2. Vertical Distribution of Radiation and Energy Balance Partitioning Within and Above a Lodgepole Pine Stand Recovering from a Recent Insect Attack

    Science.gov (United States)

    Emmel, Carmen; Paul-Limoges, Eugenie; Black, Thomas Andrew; Christen, Andreas

    2013-11-01

    The current outbreak of mountain pine beetle (MPB) that started in the late 1990s in British Columbia, Canada, is the largest ever recorded in the north American native habitat of the beetle. The killing of trees is expected to change the vertical distribution of net radiation () and the partitioning of latent () and sensible () heat fluxes in the different layers of an attacked forest canopy. During an intensive observation period in the summer of 2010, eddy-covariance flux and radiation measurements were made at seven heights from ground level up to 1.34 times the canopy height in an MPB-attacked open-canopy forest stand in the interior of British Columbia, Canada. The lodgepole pine dominated stand with a rich secondary structure (trees and understorey not killed by the beetle) was first attacked by the MPB in 2003 and received no management. In this study, the vertical distribution of the energy balance components and their sources and sinks were analyzed and energy balance closure (EBC) was determined for various levels within the canopy. The low stand density resulted in approximately 60 % of the shortwave irradiance and 50 % of the daily total reaching the ground. Flux divergence calculations indicated relatively strong sources of latent heat at the ground and where the secondary structure was located. Only very weak sources of latent heat were found in the upper part of the canopy, which was mainly occupied by dead lodgepole pine trees. was the dominant term throughout the canopy, and the Bowen ratio () increased with height in the canopy. Soil heat flux () accounted for approximately 4 % of . Sensible heat storage in the air () was the largest of the energy balance storage components in the upper canopy during daytime, while in the lower canopy sensible heat storage in the boles () and biochemical energy storage () were the largest terms. was almost constant from the bottom to above the canopy. , and latent heat storage in the air () varied more than

  3. Investigating Energy-Saving Potentials in the Cloud

    Science.gov (United States)

    Lee, Da-Sheng

    2014-01-01

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405

  4. Investigating energy-saving potentials in the cloud.

    Science.gov (United States)

    Lee, Da-Sheng

    2014-02-20

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit.

  5. Empirical investigation of energy efficiency barriers in Italian manufacturing SMEs

    International Nuclear Information System (INIS)

    Trianni, Andrea; Cagno, Enrico; Worrell, Ernst; Pugliese, Giacomo

    2013-01-01

    The paper identifies and evaluates barriers to industrial energy efficiency through the investigation of 48 manufacturing Small and Medium-sized Enterprises (SMEs) in Northern Italy. The research provides interesting suggestions both for enterprises and energy policy-makers. Firstly, economic and information barriers are perceived as the major obstacles to the adoption of energy-efficient technologies, whilst behavioural barriers do not seem to affect enterprises very much. Nonetheless, despite what declared, the most relevant barriers are the lack of interest in energy efficiency and the existence of other priorities, thus showing that decision-makers tend to downgrade energy efficiency to a marginal issue. Furthermore, perceived barriers do not take place exclusively in implementing energy-efficient technologies, but, with comparable importance, also in generating the interest and knowledge of the opportunities. Moreover, the study highlights that relevant differences can be appreciated for both perceived and real barriers even among SMEs, that thus should not be bundled together. In addition to that, other factors affect barriers, stimulating future research: indeed, lower real barriers can be observed with higher complexity of the production, high variability of the demand and strong competitors. -- Highlights: ► Evidence of existing misalignments between perceived and real barriers to the adoption of energy-efficient technologies. ► Relevance of barriers to the generation of interest towards energy efficiency. ► Evidence of firm's size (within SMEs) and energy expenditures on barriers to energy efficiency. ► Importance, for energy efficiency barriers, of avoid bundling SMEs as a whole. ► Preliminary evidence of factors related to supply chain complexity affecting barriers to energy efficiency.

  6. HCN elimination from vinyl cyanide: product energy partitioning, the role of hydrogen-deuterium exchange reactions and a new pathway.

    Science.gov (United States)

    Vázquez, Saulo A; Martínez-Núñez, Emilio

    2015-03-14

    The different HCN elimination pathways from vinyl cyanide (VCN) are studied in this paper using RRKM, Kinetic Monte Carlo (KMC), and quasi-classical trajectory (QCT) calculations. A new HCN elimination pathway proves to be very competitive with the traditional 3-center and 4-center mechanisms, particularly at low excitation energies. However, low excitation energies have never been experimentally explored, and the high and low excitation regions are dynamically different. The KMC simulations carried out using singly deuterated VCN (CH2=CD-CN) at 148 kcal mol(-1) show the importance of hydrogen-deuterium exchange reactions: both DCN and HCN will be produced in any of the 1,1 and 1,2 elimination pathways. The QCT simulation results obtained for the 3-center pathway are in agreement with the available experimental results, with the 4-center results showing much more excitation of the products. In general, our results seem to be consistent with a photodissociation mechanism at 193 nm, where the molecule dissociates (at least the HCN elimination pathways) in the ground electronic state. However, our simulations assume that internal conversion is a fully statistical process, i.e., the HCN elimination channels proceed on the ground electronic state according to RRKM theory, which might not be the case. In future studies it would be of interest to include the photo-prepared electronically excited state(s) in the dynamics simulations.

  7. Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent.

    Science.gov (United States)

    Savitch, Leonid V; Ivanov, Alexander G; Krol, Marianna; Sprott, David P; Oquist, Gunnar; Huner, Norman P A

    2010-09-01

    Second year needles of Lodgepole pine (Pinus contorta L.) were exposed for 6 weeks to either simulated control summer ['summer'; 25 °C/250 photon flux denisty (PFD)], autumn ('autumn'; 15°C/250 PFD) or winter conditions ('winter'; 5 °C/250 PFD). We report that the proportion of linear electron transport utilized in carbon assimilation (ETR(CO2)) was 40% lower in both 'autumn' and 'winter' pine when compared with the 'summer' pine. In contrast, the proportion of excess photosynthetic linear electron transport (ETR(excess)) not used for carbon assimilation within the total ETR(Jf) increased by 30% in both 'autumn' and 'winter' pine. In 'autumn' pine acclimated to 15°C, the increased amounts of 'excess' electrons were directed equally to 21  kPa O2-dependent and 2  kPa O2-dependent alternative electron transport pathways and the fractions of excitation light energy utilized by PSII photochemistry (Φ(PSII)), thermally dissipated through Φ(NPQ) and dissipated by additional quenching mechanism(s) (Φ(f,D)) were similar to those in 'summer' pine. In contrast, in 'winter' needles acclimated to 5 °C, 60% of photosynthetically generated 'excess' electrons were utilized through the 2  kPa O2-dependent electron sink and only 15% by the photorespiratory (21  kPa O2) electron pathway. Needles exposed to 'winter' conditions led to a 3-fold lower Φ(PSII), only a marginal increase in Φ(NPQ) and a 2-fold higher Φ(f,D), which was O2 dependent compared with the 'summer' and 'autumn' pine. Our results demonstrate that the employment of a variety of alternative pathways for utilization of photosynthetically generated electrons by Lodgepole pine depends on the acclimation temperature. Furthermore, dissipation of excess light energy through constitutive non-photochemical quenching mechanisms is O2 dependent.

  8. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies.

    Science.gov (United States)

    Koester, Robert P; Skoneczka, Jeffrey A; Cary, Troy R; Diers, Brian W; Ainsworth, Elizabeth A

    2014-07-01

    Soybean (Glycine max Merr.) is the world's most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha(-1) year(-1), and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Topological string partition functions as polynomials

    International Nuclear Information System (INIS)

    Yamaguchi, Satoshi; Yau Shingtung

    2004-01-01

    We investigate the structure of the higher genus topological string amplitudes on the quintic hypersurface. It is shown that the partition functions of the higher genus than one can be expressed as polynomials of five generators. We also compute the explicit polynomial forms of the partition functions for genus 2, 3, and 4. Moreover, some coefficients are written down for all genus. (author)

  10. Partitioning of resveratrol between pentane and DMSO

    DEFF Research Database (Denmark)

    Shen, Chen; Stein, Paul C.; Klösgen-Buchkremer, Beate Maria

    2015-01-01

    Partitioning of trans-3,5,4′-trihydroxy-stilbene (resveratrol) between n-pentane and DMSO was investigated as a contribution to understand the interaction between resveratrol and biomembranes. In order to determine the partition coefficient P* of resveratrol between pentane and DMSO, resveratrol ...

  11. Towards prediction of heatwaves based on the complementary relationship between actual and potential evaporation - energy partitioning and hydrologic attributes

    Science.gov (United States)

    Or, D.; Aminzadeh, M.; Roderick, M. L.

    2017-12-01

    Prediction of extreme climate events such as heatwaves that are characterized by prolonged periods of high air temperatures (accompanied by low precipitation and high radiation) provides an opportunity to potentially mitigate the associated environmental, social and economic impacts. Vegetation may respond to these extreme conditions by reducing evaporative flux either due to soil water depletion or inability to meet the atmospheric evaporative demand (high canopy resistance). We implement a newly generalized Complementary Relationship (CR) for spatially heterogeneous land surfaces to predict the actual evaporation from drying landscapes covered by different vegetation types (i.e., grassland and forest). A strong correlation between air temperature and sensible heat flux anomalies identified from FLUXNET network data suggests that abrupt changes in sensible heat flux above climatological means can serve as indicators for predicting the onset of a heatwave. We thus capitalize on the inherent coupling between evaporative and sensible heat fluxes linked to moisture availability within the CR framework to predict rapid increase in regional sensible heat flux associated with soil drying (low precipitation) or with extreme evaporative demand (high radiation) while soil moisture is not limiting. The proposed approach evaluated using FLUXNET datasets provides an energy constraint framework based on the CR concept to obtain new insights into the onset of heatwaves and climate extremes such as regional droughts.

  12. Investigation of high-energy-proton effects in aluminum

    International Nuclear Information System (INIS)

    Czajkowski, C.J.; Snead, C.L. Jr.; Todosow, M.

    1997-01-01

    Specimens of 1100 aluminum were exposed to several fluences of 23.5-GeV protons at the Brookhaven Alternating Gradient Synchrotron. Although this energy is above those currently being proposed for spallation-neutron applications, the results can be viewed as indicative of trends and other microstructural evolution with fluence that take place with high-energy proton exposures such as those associated with an increasing ratio of gas generation to dpa. TEM investigation showed significantly larger bubble size and lower density of bubbles compared with lower-energy proton results. Additional testing showed that the tensile strength increased with fluence as expected, but the microhardness decreased, a result for which an intepretation is still under investigation

  13. Investigation of thermoelectric SiC ceramics for energy harvesting ...

    Indian Academy of Sciences (India)

    Investigation of thermoelectric SiC ceramics for energy harvesting applications on supersonic vehicles leading–edges. XIAO-YI HANa, b,∗. , JUN WANGa and HAI-FENG CHENGa. aScience and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and. Engineering ...

  14. Linear solvation energy relationship of the limiting partition coefficient of organic solutes between water and activated carbon

    Science.gov (United States)

    Luehrs, Dean C.; Hickey, James P.; Nilsen, Peter E.; Godbole, K.A.; Rogers, Tony N.

    1995-01-01

    A linear solvation energy relationship has been found for 353 values of the limiting adsorption coefficients of diverse chemicals:  log K = −0.37 + 0.0341Vi − 1.07β + D + 0.65P with R = 0.951, s = 0.51, n = 353, and F = 818.0, where Vi is the intrinsic molar volume; β is a measure of the hydrogen bond acceptor strength of the solute; D is an index parameter for the research group which includes the effects of the different types of carbon used, the temperature, and the length of time allowed for the adsorption equilibrium to be established; and P is an index parameter for the flatness of the molecule. P is defined to be unity if there is an aromatic system in the molecule or if there is a double bond or series of conjugated double bonds with no more that one non-hydrogen atom beyond the double bond and zero otherwise. A slightly better fit is obtained if the two-thirds power of Vi is used as a measure of the surface area in place of the volume term:  log K = −1.75 + 0.227V2/3 − 1.10β + D + 0.60P with R = 0.954, s = 0.49, n = 353, and F = 895.39. This is the first quantitative measure of the effect of the shape of the molecule on its tendency to be adsorbed on activated carbon.

  15. The influence of land cover on surface energy partitioning and evaporative fraction regimes in the U.S. Southern Great Plains

    Science.gov (United States)

    Bagley, Justin E.; Kueppers, Lara M.; Billesbach, Dave P.; Williams, Ian N.; Biraud, Sébastien C.; Torn, Margaret S.

    2017-06-01

    Land-atmosphere interactions are important to climate prediction, but the underlying effects of surface forcing of the atmosphere are not well understood. In the U.S. Southern Great Plains, grassland/pasture and winter wheat are the dominant land covers but have distinct growing periods that may differently influence land-atmosphere coupling during spring and summer. Variables that influence surface flux partitioning can change seasonally, depending on the state of local vegetation. Here we use surface observations from multiple sites in the U.S. Department of Energy Atmospheric Radiation Measurement Southern Great Plains Climate Research Facility and statistical modeling at a paired grassland/agricultural site within this facility to quantify land cover influence on surface energy balance and variables controlling evaporative fraction (latent heat flux normalized by the sum of sensible and latent heat fluxes). We demonstrate that the radiative balance and evaporative fraction are closely related to green leaf area at both winter wheat and grassland/pasture sites and that the early summer harvest of winter wheat abruptly shifts the relationship between evaporative fraction and surface state variables. Prior to harvest, evaporative fraction of winter wheat is strongly influenced by leaf area and soil-atmosphere temperature differences. After harvest, variations in soil moisture have a stronger effect on evaporative fraction. This is in contrast with grassland/pasture sites, where variation in green leaf area has a large influence on evaporative fraction throughout spring and summer, and changes in soil-atmosphere temperature difference and soil moisture are of relatively minor importance.

  16. Data Partitioning Technique for Improved Video Prioritization

    Directory of Open Access Journals (Sweden)

    Ismail Amin Ali

    2017-07-01

    Full Text Available A compressed video bitstream can be partitioned according to the coding priority of the data, allowing prioritized wireless communication or selective dropping in a congested channel. Known as data partitioning in the H.264/Advanced Video Coding (AVC codec, this paper introduces a further sub-partition of one of the H.264/AVC codec’s three data-partitions. Results show a 5 dB improvement in Peak Signal-to-Noise Ratio (PSNR through this innovation. In particular, the data partition containing intra-coded residuals is sub-divided into data from: those macroblocks (MBs naturally intra-coded, and those MBs forcibly inserted for non-periodic intra-refresh. Interactive user-to-user video streaming can benefit, as then HTTP adaptive streaming is inappropriate and the High Efficiency Video Coding (HEVC codec is too energy demanding.

  17. Investigation of Sustainable Energy Policy: Nairobi Case Study

    Science.gov (United States)

    Shengyuan, Y.; Habiyaremye, J. F. L.; Yingying, W.

    2017-07-01

    A plan for actively achieving green energy obligation is a strategic tool for policies that point forward the diminution of the fossil fuel consumption and greenhouse gas (GHG) in conformity with the Paris environment-friendly accords (COP21) and updates of other ecosystem agreements. To achieve the concrete implementation of the sustainable energy strategy (SES) and to accomplish its objectives, an investigation is a critical factor. SES investigation has to consider both the advancement of each particular action and its wide-ranging green effect, which necessitates multiple levels of improvement. In this study, a consolidated eco strategy for evaluating, monitoring and handling the SES via investigation and execution process is established. The city of Nairobi was used as one of the geographical positions to test the effectiveness of this approach and to investigate its robust and weak points. Specifically, benefit-cost analysis, reliability, peer review and general level of participation were renowned as vital tools for attaining a functional SES investigation and for then drafting successful energy guidelines. Some suggestions were put forward to highlight the research and execution methods and to draw a road map of how SES can be strategically placed into practice.

  18. Metabolic models to investigate energy limited anaerobic ecosystems.

    Science.gov (United States)

    Rodríguez, J; Premier, G C; Guwy, A J; Dinsdale, R; Kleerebezem, R

    2009-01-01

    Anaerobic wastewater treatment is shifting from a philosophy of solely pollutants removal to a philosophy of combined resource recovery and waste treatment. Simultaneous wastewater treatment with energy recovery in the form of energy rich products, brings renewed interest to non-methanogenic anaerobic bioprocesses such as the anaerobic production of hydrogen, ethanol, solvents, VFAs, bioplastics and even electricity from microbial fuel cells. The existing kinetic-based modelling approaches, widely used in aerobic and methanogenic wastewater treatment processes, do not seem adequate in investigating such energy limited microbial ecosystems. The great diversity of similar microbial species, which share many of the fermentative reaction pathways, makes quantify microbial groups very difficult and causes identifiability problems. A modelling approach based on the consideration of metabolic reaction networks instead of on separated microbial groups is suggested as an alternative to describe anaerobic microbial ecosystems and in particular for the prediction of product formation as a function of environmental conditions imposed. The limited number of existing relevant fermentative pathways in conjunction with the fact that anaerobic reactions proceed very close to thermodynamic equilibrium reduces the complexity of such approach and the degrees of freedom in terms of product formation fluxes. In addition, energy limitation in these anaerobic microbial ecosystems makes plausible that selective forces associated with energy further define the system activity by favouring those conversions/microorganisms which provide the most energy for growth under the conditions imposed.

  19. Investigation and usage of renewable energy sources. First conference proceedings

    International Nuclear Information System (INIS)

    Tiit, Valdur

    2000-01-01

    The conference was devoted to sustainable development promotion in Estonia. Modern lifestyle and outstanding technical achievements are strongly based on usage of fossil energy sources, especially oil products. Development demands an increasing amount of energy, but the supplies of non-renewable natural resources are limited. Moreover, their usage pollutes the environment and conveys vital oxygen out of the atmosphere. Due to supplies run out the production of fossil fuels will inevitably decrease already after 20 years. The same is likely to happen with Estonian oil shale resources, which is not only a fuel for electric power stations, but also an important staple of chemical industry. And after the rise of oil prices and its fall in market share, oil shale will have even greater value. To satisfy mankind's energy demand we have to take solar energy and processes started by solar (wind, flowing water, synthesis of plants biomass) more into use. The spread of their usage is determined by natural and social situation of the region, and economic expediency. Although rapid growth in using renewable energy sources has started, it will take decades to raise their share over half of total energy use. Estonia has chosen the path of sustainable development, which should guarantee development and healthy environment also in the farther future. There are great solar and wind energy resources plus good assumptions for producing biomass in Estonia. However, for efficient use of national natural resources we need more knowledge and skills, people with environment friendly attitude and extensive scientific, technical and applied investigations. In addition we have to advance sensible international cooperation as well as national industry of this field. The technical progress concerning renewable energy usage has a long way to go, which could apply also Estonians

  20. Effect of electrostatic interaction between fluoxetine and lipid membranes on the partitioning of fluoxetine investigated using second derivative spectrophotometry and FTIR.

    Science.gov (United States)

    Do, Tien T T; Dao, Uyen P N; Bui, Huong T; Nguyen, Trang T

    2017-10-01

    The interaction between a drug molecule and lipid bilayers is highly important regarding the pharmaceutical activity of the drug. In this study, the interaction of fluoxetine, a well-known selective serotonin reuptake inhibitor antidepressant and lipid bilayers composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied from the aspect of electrostatics using second derivative spectrophotometry and Fourier transform infrared spectroscopy (FTIR) in order to provide insights into the drug behavior. Changing pH from 7.4 to 9.5 to increases the neutral state of fluoxetine, the partitioning of fluoxetine into the zwitterionic DPPC large unilamellar vesicles (LUVs) was increased whereas it was reduced into the negatively charged DPPG LUVs. Fluoxetine was found to exhibit a disordering effect on the acyl chains of DPPC and DPPG bilayers upon its partitioning. In addition, increasing concentration of NaCl lessened the binding of fluoxetine into DPPG bilayers due to the reduction in electrostatic attraction between positively charged fluoxetine and negatively charged DPPG LUVs. In addition, the FTIR study revealed that increasing the NaCl concentration could trigger the shift to higher frequency of the CH 2 stretching as well as the notable blue shift in the PO 2 - regions of DPPG, indicating that fluoxetine had deeper penetration into DPPG LUVs. The differences in the NaCl concentration showed a negligible effect on the incorporation of fluoxetine into the zwitterionic DPPC LUVs. In summary, the electrostatic interaction plays an important role on the partitioning of a cationic amphiphilic SSIR drug into the lipid bilayers and the drug partitioning induces the lipids' conformational change. These imply a possible influence on the drug pharmacology. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Household energy and climate mitigation policies: Investigating energy practices in the housing sector

    International Nuclear Information System (INIS)

    Schaffrin, André; Reibling, Nadine

    2015-01-01

    One central aim of climate change mitigation in the European Union is to reduce energy consumption in the housing sector. In order to ensure effectiveness of policies targeting household energy conservation, it is important to investigate existing energy practices of different social groups. This article describes and explains energy practices in three leading states in environmental politics, technological innovation, and support for renewable energy production: Denmark, Austria, and the United Kingdom. Based on a longitudinal analysis of housing utility costs from the European Community Statistics on Income and Living Conditions we show that income plays a central role in households' energy practices. While high-income households have higher overall energy consumption, low-income groups spend a larger share of their income on utility costs. The variation of energy consumption across income groups is related to household characteristics, characteristics of the dwellings, and cross-national differences in the housing sector. - Highlights: • We explain energy practices in Denmark, Austria, and the United Kingdom. • We show that income plays a central role in households’ energy practices. • High-income households have higher overall energy consumption. • Low-income groups spend a larger share of their income on utility costs. • Consumption depends on the household, dwelling and the housing sector

  2. Investigation in Query System Framework for High Energy Physics

    CERN Document Server

    Jatuphattharachat, Thanat

    2017-01-01

    We summarize an investigation in query system framework for HEP (High Energy Physics). Our work was an investigation on distributed server part of Femtocode, which is a query language that provides the ability for physicists to make plots and other aggregations in real-time. To make the system more robust and capable of processing large amount of data quickly, it is necessary to deploy the system on a redundant and distributed computing cluster. This project aims to investigate third party coordination and resource management frameworks which fit into the design of real-time distributed query system. Zookeeper, Mesos and Marathon are the main frameworks for this investigation. The results indicate that Zookeeper is good for job coordinator and job tracking as it provides robust, fast, simple and transparent read and write process for all connecting client across distributed Zookeeper server. Furthermore, it also supports high availability access and consistency guarantee within specific time bound.

  3. GPU Acceleration of Graph Matching, Clustering, and Partitioning

    NARCIS (Netherlands)

    Fagginger Auer, B.O.

    2013-01-01

    We consider sequential algorithms for hypergraph partitioning and GPU (i.e., fine-grained shared-memory parallel) algorithms for graph partitioning and clustering. Our investigation into sequential hypergraph partitioning is concerned with the efficient construction of high-quality matchings for

  4. On the partition dimension of two-component graphs

    Indian Academy of Sciences (India)

    D O Haryeni

    2017-11-17

    Nov 17, 2017 ... Abstract. In this paper, we continue investigating the partition dimension for disconnected graphs. We determine the partition dimension for some classes of disconnected graphs G consisting of two components. If G = G1 ∪ G2, then we give the bounds of the partition dimension of G for G1 = Pn or G1 = Cn ...

  5. Investigating the added values of high frequency energy consumption data using data mining techniques

    Science.gov (United States)

    Ni, Ying; Engström, Christopher; Malyarenko, Anatoliy; Wallin, Fredrik

    2014-12-01

    In this paper we apply data-mining techniques to customer classification and clustering tasks on actual electricity consumption data from 350 Swedish households. For the classification task we classify households into different categories based on some statistical attributes of their energy consumption measurements. For the clustering task, we use average daily load diagrams to partition electricity-consuming households into distinct groups. The data contains electricity consumption measurements on each 10-minute time interval for each light source and electrical appliance. We perform the classification and clustering tasks using four variants of processed data sets corresponding to the 10-minute total electricity consumption aggregated from all electrical sources, the hourly total consumption aggregated over all 10-minute intervals during that clock hour, the total consumption over each four-hour intervals and finally the daily total consumption. The goal is to see if there are any differences in using data sets of various frequency levels. We present the comparison results and investigate the added value of the high-frequency measurements, for example 10-minute measurements, in terms of its influence on customer clustering and classification.

  6. Analytical investigation of low temperature lift energy conversion systems with renewable energy source

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    The efficiency of the renewable energy powered energy conversion system is typically low due to its moderate heat source temperature. Therefore, improving its energy efficiency is essential. In this study, the performance of the energy conversion system with renewable energy source was theoretically investigated in order to explore its design aspect. For this purpose, a computer model of n-stage low temperature lift energy conversion (LTLEC) system was developed. The results showed that under given operating conditions such as temperatures and mass flow rates of heat source and heat sink fluids the unit power generation of the system increased with the number of stage, and it became saturated when the number of staging reached four. Investigation of several possible working fluids for the optimum stage LTLEC system revealed that ethanol could be an alternative to ammonia. The heat exchanger effectiveness is a critical factor on the system performance. The power generation was increased by 7.83% for the evaporator and 9.94% for the condenser with 10% increase of heat exchanger effectiveness. When these low temperature source fluids are applied to the LTLEC system, the heat exchanger performance would be very critical and it has to be designed accordingly. - Highlights: •Energy conversion system with renewable energy is analytically investigated. •A model of multi-stage low temperature lift energy conversion systems was developed. •The system performance increases as the stage number is increased. •The unit power generation is increased with increase of HX effectiveness. •Ethanol is found to be a good alternative to ammonia

  7. Investigation of Rare Particle Production in High Energy Nuclear Collisions

    International Nuclear Information System (INIS)

    Crawford, Henry J.; Engelage, Jon M.

    1999-01-01

    Our program is an investigation of the hadronization process through measurement of rare particle production in high energy nuclear interactions. Such collisions of heavy nuclei provide an environment similar in energy density to the conditions in the Big Bang. We are currently involved in two major experiments to study this environment, E896 at the AGS and STAR at RHIC. We have completed our physics running of E896, a search for the H dibaryon and measurement of hyperon production in AuAu collisions, and are in the process of analyzing the data. We have produced the electronics and software for the STAR trigger and will begin to use these tools to search for anti-nuclei and strange hadrons when RHIC turns on later this year

  8. Investigation of multi-layer thin films for energy storage.

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy Jerome; Monson, Todd

    2009-01-01

    We investigate here the feasibility of increasing the energy density of thin-film capacitors by construction of a multi-layer capacitor device through ablation and redeposition of the capacitor materials using a high-power pulsed ion beam. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The dielectric capacitor filler material was a composition of Lead-Lanthanum-Zirconium-Titanium oxide (PLZT). The energy storage can be increased by using material of intrinsically high dielectric constant, and constructing many thin layers of this material. For successful device construction, there are a number of challenging requirements including correct stoichiometric and crystallographic composition of the deposited PLZT. This report details some success in satisfying these requirements, even though the attempt at device manufacture was unsuccessful. The conclusion that 900 C temperatures are necessary to reconstitute the deposited PLZT has implications for future manufacturing capability.

  9. Equilibrium partitioning of drug molecules between aqueous and amino acid ester-based ionic liquids

    International Nuclear Information System (INIS)

    Jing, Jun; Li, Zhiyong; Pei, Yuanchao; Wang, Huiyong; Wang, Jianji

    2013-01-01

    Highlights: ► Partition coefficients of twelve drug molecules in ILs have been determined. ► The possible mechanism has been investigated from 13 C NMR measurements. ► Hydrophobic π–π interaction is the main driving force for the partitioning of drug molecules. -- Abstract: In this work, a series of novel room temperature ionic liquids (ILs) have been synthesized with cheap, naturally α-amino acid ester as cations and bis(trifluoromethylsulfonyl)imide as anion. The glass transition temperature and thermal decomposition temperature of these ILs, partition coefficients of some coumarins and purine alkaloids between water and the amino acid ester-based ILs at T = 298.15 K, and Gibbs energy, enthalpy and entropy changes for the transfer of caffeine and 6,7-dihydroxycoumarin from water to [LeuC 2 ][Tf 2 N] have been determined. It is shown that these ILs are highly effective materials for the extraction of drug compounds like coumarin, 4-hydroxycoumarin, 7-hydroxycoumarin, 3-aminocoumarin, coumarin-3-carboxylic acid, 6,7-dihydroxycoumarin, 6,7-dihydroxy-4-methylcoumarin, caffeine, theobromine, theophylline, inosine, and 2,6-diaminopurine. The partition process is driven by enthalpy term, and partition coefficients of the drug molecules increase with the increase of hydrophobicity of both the drug molecules and the ILs. Furthermore, the possible partition mechanism has been investigated from 13 C NMR measurements

  10. Neutron imaging methods for the investigation of energy related materials

    Directory of Open Access Journals (Sweden)

    Lehmann Eberhard H.

    2015-01-01

    Full Text Available After a short explanation of the state-of-the-art in the field of neutron imaging we give some examples how energy related materials can be studied successfully. These are in particular fuel cell studies, battery research approaches, the storage of hydrogen, but also some investigations with nuclear fuel components. The high contrast for light isotopes like H-1, Li-6 or B-10 are used to trace low amounts of material even within compact sealing of metals which are relatively transparent for neutrons at the same time.

  11. Investigation on energy efficient sensor node placement in railway systems

    Directory of Open Access Journals (Sweden)

    Ayona Philipose

    2016-06-01

    Full Text Available Recently wireless sensor network (WSN has been widely used for monitoring railway tracks and rail tunnels. The key requirement in the design of such WSN is to minimize the energy consumption so as to maximize the network lifetime. This paper includes the performance of an improved medium access control (MAC protocol, namely, time adaptive-bit map assisted (TA-BMA protocol, for the purpose of communication between the sensors placed in a railway wagon. The train is considered to be moving at a constant speed, and the sensor nodes are stationary with respect to the motion of train. The effect of mobility on the proposed MAC protocol is determined using genetic algorithm (GA, and the observed increase in energy consumption on considering mobility is 18.51%. Performance analysis of the system model is carried out using QualNet (ver. 7.1, and the energy consumption in transmit mode, receive mode, percentage of time in sleep mode, end-to-end delay and throughput are investigated.

  12. Experimental investigation of fatigue in a cantilever energy harvesting beam

    Science.gov (United States)

    Avvari, Panduranga Vittal; Yang, Yaowen; Liu, Peiwen; Soh, Chee Kiong

    2015-03-01

    Over the last decade, cantilever energy harvesters gained immense popularity owing to the simplicity of the design and piezoelectric energy harvesting (PEH) using the cantilever design has undergone considerable evolution. The major drawback of a vibrating cantilever beam is its vulnerability to fatigue over a period of time. This article brings forth an experimental investigation into the phenomenon of fatigue of a PEH cantilever beam. As there has been very little literature reported in this area, an effort has been made to scrutinize the damage due to fatigue in a linear vibrating cantilever PEH beam consisting of an aluminum substrate with a piezoelectric macro-fiber composite (MFC) patch attached near the root of the beam and a tip mass attached to the beam. The beam was subjected to transverse vibrations and the behavior of the open circuit voltage was recorded with passing time. Moreover, electro-mechanical admittance readings were obtained periodically using the same MFC patch as a Structural health monitoring (SHM) sensor to assess the health of the PEH beam. The results show that with passing time the PEH beam underwent fatigue in both the substrate and MFC, which is observed in a complimentary trend in the voltage and admittance readings. The claim is further supported using the variation of root mean square deviation (RMSD) of the real part of admittance (conductance) readings. Thus, this study concludes that the fatigue issue should be addressed in the design of PEH for long term vibration energy harvesting.

  13. Investigation of Energy-Efficient Supermarket Display Cases

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.H.

    2005-01-21

    contributing about 3/4 of that fraction. Consequently, the focus of this investigation has tilted toward the open, vertical, multi-deck medium temperature case type. Various technologies and control methods are energy efficiency measures (EEMs) that could be applied to display cases and result in the reduction of the refrigeration load and of the energy consumption of the supermarket refrigeration system. An extensive evaluation of the EEMs was conducted in order to select those that met the following criteria: (1) Near-term implementation--All EEMs considered could be implemented with existing refrigeration hardware and technology. (2) Potential for energy-efficiency improvements--Energy savings and/or refrigeration load reduction must be obtained by the implementation of the EEM. (3) Enhancement of the ability to maintain target product temperature--Proper operation of the display case and maintenance of the stored product temperature could not be compromised by the use of the EEM. The energy impact of a number of viable display case EEMs was quantified by performing whole building hourly simulations. A special version of the U.S. Department of Energy's (DOE-2.3) program was used to develop a model of a supermarket. The model was then calibrated using available end-use monitored data to increase confidence in simulation results.

  14. Combinatorics of set partitions

    CERN Document Server

    Mansour, Toufik

    2012-01-01

    Focusing on a very active area of mathematical research in the last decade, Combinatorics of Set Partitions presents methods used in the combinatorics of pattern avoidance and pattern enumeration in set partitions. Designed for students and researchers in discrete mathematics, the book is a one-stop reference on the results and research activities of set partitions from 1500 A.D. to today. Each chapter gives historical perspectives and contrasts different approaches, including generating functions, kernel method, block decomposition method, generating tree, and Wilf equivalences. Methods and d

  15. 'Investigating the appropriate Renewable Energy Technologies in the Mauritian context'

    OpenAIRE

    Khadoo - Jeetah, Pratima Devi

    2011-01-01

    With limited indigenous conventional energy resources, Mauritius imports over 80% of its energy supply from foreign countries, mostly from the Middle East. Developing independent renewable energy resources is thus of priority concern for the Mauritian government. A tropical island surrounded by the Indian Ocean, Mauritius has enormous potential to develop various renewable energies, such as solar energy, biomass energy, wind power, geothermal energy, hydropower, etc. However, owing to the imp...

  16. Investigating the Interdependencies of the Energy Balance Closure and the Turbulent Kinetic Energy Budget.

    Science.gov (United States)

    Banerjee, T.; Zeeman, M. J.; De Roo, F.; Brugger, P.; Mauder, M.

    2016-12-01

    The energy balance residual (EBR), defined as the difference between the available energy (sum of net radiation and ground heat flux) and the turbulent fluxes of latent and sensible heat, is often found to have a large positive value. Several land surface experiments and flux networks report an average energy balance closure of approximately 80%. Although different factors can influence the energy balance closure across measurement campaigns, a significant EBR even when sites are horizontally with short canopies indicates of a systematic bias resulting from the general underestimation of the aerodynamic transport of energy, especially horizontal divergence of the mean advective fluxes and transport by low-frequency motions generally called `secondary circulations'. These low frequency local transports can occur from various processes such as coherent large scale organized motions, convective cells and even significant transient changes. Thus, we decided to study the budget of the turbulent kinetic energy (TKE) in conjunction with the energy balance closure. In the current work, this interdependency has been investigated using surface flux (Eddy Covariance) and remote sensing based measurements (triple 3d Doppler LiDAR, thermal imagery) from the ScaleX campaigns at the TERENO pre-alpine observatory Fendt in Southern Germany (with gentle topography), coupled with large eddy simulations (LES). Statistical methods ranging from dimensional reduction techniques to information theory has been used to extract the effects and significance of aforementioned processes towards explaining the observed annual average EBR of about 50 Wm-2. Initial results indicate a high correlation between EBR and the TKE dissipation rate, as well as the skewness of vertical velocity, confirming the role of secondary circulations. The role of transport and the advection terms will also be investigated. Overall, improved understanding of such connections between the fundamental mechanisms of TKE

  17. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Carolyn Ann [Colorado School of Mines, Golden, CO (United States)

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  18. Partitioning a macroscopic system into independent subsystems

    Science.gov (United States)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  19. Multiscale Investigation of Thermal Fluctuations on Solar-Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Margaret Shun [Univ. of Houston, TX (United States)

    2014-09-01

    Photoinduced charge transfer (CT) plays a central role in biologically significant systems and in applications that harvest solar energy. We investigate the relationship of CT kinetics and conformation in a molecular triad. The triad, consisting of carotenoid, porphyrin, and fullerene is structurally flexible and able to acquire significantly varied conformations under ambient conditions. With an integrated approach of quantum calculations and molecular dynamics simulations, we compute the rate of CT at two distinctive conformations. The linearly extended conformation, in which the donor (carotenoid) and the acceptor (fullerene) are separated by nearly 50 Å, enables charge separation through a sequential CT process. A representative bent conformation that is entropically dominant, however, attenuates the CT, although the donor and the acceptor are spatially closer. Our computed rate of CT at the linear conformation is in good agreement with measured values. Our work provides unique fundamental understanding of the photoinduced CT process in the molecular triad.

  20. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  1. Energy-efficient Building in Greenland: Investigation of the Energy Consumption and Indoor Climate

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Kotol, Martin; Lading, Tove

    2016-01-01

    Recently, a brand new single family home was built in Sisimiut, Greenland. The building was constructed as a wooden house typical for Greenland. However, some non-traditional measures were implemented in order to reduce the energy consumption and improve indoor air quality. Assessment...... was installed in the house. It enables the evaluation of the indoor air quality, as well as building's energy performance. The aim of this investigation was to evaluate the performance of the newly constructed house by and compare it with the performance of identical house built in a traditional way by using...... a computer model. The data obtained from the measurements in the new house were used to verify the model. Significant energy savings and improvements of indoor air quality were found in the new house when compared to the traditional one. Moreover, all the extra measures have a feasible payback time despite...

  2. Energy-efficient Building in Greenland: Investigation of the Energy Consumption and Indoor Climate

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Kotol, Martin; Lading, Tove

    2015-01-01

    Recently, a brand new single family home was built in Sisimiut, Greenland. The building was constructed as a wooden house typical for Greenland. However, some non-traditional measures were implemented in order to reduce the energy consumption and improve indoor air quality. Assessment...... was installed in the house. It enables the evaluation of the indoor air quality, as well as building's energy performance. The aim of this investigation was to evaluatethe performance of the newly constructed house by and compare it with the performance of identical house built in a traditional way by using...... a computer model. The data obtained from the measurements in the new house were used to verify the model. Significant energy savings and improvements of indoor air quality were found in the new house when compared to the traditional one. Moreover, all the extra measures have a feasible payback time despite...

  3. High Energy Solar Spectroscopic Imager (HESSI) Team Investigations

    Science.gov (United States)

    Emslie, A. Gordon

    1998-01-01

    This report covers activities on the above grant for the period through the end of September 1997. The work originally proposed to be performed under a three-year award was converted at that time to a two-year award for the remainder of the period, and is now funded under award NAGS-4027 through Goddard Space Flight Center. The P.I. is a co-investigator on the High Energy Solar Spectroscopic Imager (HESSI) team, selected as a Small-Class Explorer (SNMX) mission in 1997. He has also been a participant in the Space Physics Roadmap Planning Group. Our research has been strongly influenced by the NASA mission opportunities related to these activities. The report is subdivided into four sections, each dealing with a different aspect of our research within this guiding theme. Personnel involved in this research at UAH include the P.I. and graduate students Michele Montgomery and Amy Winebarger. Much of the work has been carried out in collaboration with investigators at other institutions, as detailed below. Attachment: Laser wakefield acceleration and astrophysical applications.

  4. Investigation for promoting the utilization of ligneous energy. (3). Direction of ligneous energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Actual state of 140 cases of ligneous energy utilization in the agricultural industry, the fishing industry, domestic purposes and public facilities was investigated in respect of the kind of ligneous fuels, availability and burning equipments. The results of investigation are classified by the purpose (paper and pulp mill, particle board mill, plywood mill, lumber mill, horticulture, mushroom growing, sericulture and public facilities), the ligneous fuel, type of pretreatment of ligneous fuels, equipment and the amount of fuel consumption. Three experimental studies, namely, combustion of ligneous fuels in a small hot water boiler, heating of a horticultural facility by an underground heat exchange system and manufacture of smoked firewood.

  5. Investigation of Symphytum cordatum alkaloids by liquid-liquid partitioning, thin-layer chromatography and liquid chromatography-ion-trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mroczek, Tomasz [Department of Pharmacognosy with Medicinal Plants Laboratory, Medical University, 1 Chodzki St., 20-093 Lublin (Poland)]. E-mail: tmroczek@pharmacognosy.org; Ndjoko-Ioset, Karine [Laboratoire de Pharmacognosie et Phytochimie, Ecole de Pharmacie Geneve-Lausanne, Universite de Geneve, Quai Ernest-Ansermet 30, CH-1211 Geneva 4 (Switzerland); Glowniak, Kazimierz [Department of Pharmacognosy with Medicinal Plants Laboratory, Medical University, 1 Chodzki St., 20-093 Lublin (Poland); Mietkiewicz-Capala, Agnieszka [Department of Pharmacognosy with Medicinal Plants Laboratory, Medical University, 1 Chodzki St., 20-093 Lublin (Poland); Hostettmann, Kurt [Laboratoire de Pharmacognosie et Phytochimie, Ecole de Pharmacie Geneve-Lausanne, Universite de Geneve, Quai Ernest-Ansermet 30, CH-1211 Geneva 4 (Switzerland)

    2006-05-04

    From the alkalised crude extract of Symphytum cordatum (L.) W.K. roots, pyrrolizidine alkaloids (PAs) were extracted as free tertiary bases and polar N-oxides in a merely one-step liquid-liquid partitioning (LLP) in separation funnel and subsequently pre-fractionated by preparative multiple-development (MD) thin-layer chromatography (TLC) on silica gel plates. In this way three alkaloid fractions of different polarities and retention on silica gel plates were obtained as: the most polar N-oxides of the highest retention, the tertiary bases of medium retention, and diesterified N-oxides of the lowest retention. The former fraction was reduced into free bases by sodium hydrosulfite and purified by LLP on Extrelut-NT3 cartridge. It was further analysed together with the two other fractions by high-performance liquid chromatography (HPLC)-ion-trap mass spectrometry with atmospheric pressure chemical ionization (APCI) interface on XTerra C{sub 18} column using a gradient elution. Based on MS {sup n} spectra, 18 various alkaloids have been tentatively determined for the first time in this plant as the following types of structure: echimidine-N-oxide (three diasteroisomers), 7-sarracinyl-9-viridiflorylretronecine (two diasteroisomers), echimidine (two diasteroisomers), lycopsamine (two diasteroisomers), dihydroechinatine-N-oxide, dihydroheliospathuline-N-oxide, lycopsamine-N-oxide (three diasteroisomers), 7-acetyllycopsamine-N-oxide, symphytine-N-oxide (two diasteroisomers) and 2'',3''-epoxyechiumine-N-oxide.

  6. Investigation of Symphytum cordatum alkaloids by liquid-liquid partitioning, thin-layer chromatography and liquid chromatography-ion-trap mass spectrometry

    International Nuclear Information System (INIS)

    Mroczek, Tomasz; Ndjoko-Ioset, Karine; Glowniak, Kazimierz; Mietkiewicz-Capala, Agnieszka; Hostettmann, Kurt

    2006-01-01

    From the alkalised crude extract of Symphytum cordatum (L.) W.K. roots, pyrrolizidine alkaloids (PAs) were extracted as free tertiary bases and polar N-oxides in a merely one-step liquid-liquid partitioning (LLP) in separation funnel and subsequently pre-fractionated by preparative multiple-development (MD) thin-layer chromatography (TLC) on silica gel plates. In this way three alkaloid fractions of different polarities and retention on silica gel plates were obtained as: the most polar N-oxides of the highest retention, the tertiary bases of medium retention, and diesterified N-oxides of the lowest retention. The former fraction was reduced into free bases by sodium hydrosulfite and purified by LLP on Extrelut-NT3 cartridge. It was further analysed together with the two other fractions by high-performance liquid chromatography (HPLC)-ion-trap mass spectrometry with atmospheric pressure chemical ionization (APCI) interface on XTerra C 18 column using a gradient elution. Based on MS n spectra, 18 various alkaloids have been tentatively determined for the first time in this plant as the following types of structure: echimidine-N-oxide (three diasteroisomers), 7-sarracinyl-9-viridiflorylretronecine (two diasteroisomers), echimidine (two diasteroisomers), lycopsamine (two diasteroisomers), dihydroechinatine-N-oxide, dihydroheliospathuline-N-oxide, lycopsamine-N-oxide (three diasteroisomers), 7-acetyllycopsamine-N-oxide, symphytine-N-oxide (two diasteroisomers) and 2'',3''-epoxyechiumine-N-oxide

  7. Investigating the Environmental Effects of Ocean Energy Generation (Invited)

    Science.gov (United States)

    Copping, A. E.; Anderson, R.; Schultz, I.; Woodruff, D.; Carlson, T.; Ward, J.; van Cleve, F.; Eere Mhk Environmental Effects

    2010-12-01

    The production of electricity from the moving waters of the ocean has the potential to be a viable addition to the portfolio of renewable energy sources worldwide. The marine and hydrokinetic (MHK) industry seeks to deploy and operate devices that harvest energy from the tides, waves, ocean currents and run of the river. Challenges facing the emerging industry include technology development, rigors of offshore deployments, and financing; however, the barrier most commonly cited by industry, regulators, and stakeholders is the uncertainty surrounding potential environmental effects of devices placed in the water and the permitting processes associated with those impacts. There is a need to evaluate the extensive list of potential interactions that may cause harm to marine organisms and ecosystems, to set priorities for regulatory triggers, and to direct future research. Project developers need information to understand how to minimize environmental effects; regulators need to know what monitoring targets are needed near ocean energy farms; and stakeholders need to know what mitigation strategies are effective in addressing unavoidable impacts. Scientists from Pacific Northwest National Laboratory (PNNL) are developing an Environmental Risk Evaluation System (ERES) to assess environmental effects associated with MHK technologies and projects through a systematic analytical process, with specific input from key stakeholder groups. The ERES development process provides the scientific structure to support risk characterization, comparison of tradeoffs, and risk-informed decision-making by project and technology developers, regulatory agencies, and other interested stakeholders. The PNNL team will determine the range and severity of environmental effects of MHK development, leading to the development of mitigation strategies where residual risk remains. Input to ERES draws from a wide range of marine and freshwater studies to understand which marine receptors may suffer

  8. Investigation of a working fluid for cryogenic energy storage systems

    Science.gov (United States)

    Wojcieszak, P.; Poliński, J.; Chorowski, M.

    2017-12-01

    Cryogenic energy storage (CES) systems are promising alternatives to existing electrical energy storage technologies such as a pumped hydroelectric storage (PHS) or compressed air energy storage (CAES). In CES systems, excess electrical energy is used to liquefy a cryogenic fluid. The liquid can be stored in large cryogenic tanks for a long time. When a demand for the electricity is high, the liquid cryogen is pumped to high pressure and then warmed in a heat exchanger using ambient temperature or an available waste heat source. The vaporized cryogen is then used to drive a turbine and generate the electricity. Most research on cryogenic energy storage focuses on liquid air energy storage, as atmospheric air is widely available and therefore it does not limit a location of the energy storage plant. Nevertheless, CES with other gases as the working fluids can exhibit a higher efficiency. In this research a performance analysis of simple CES systems with several working fluids was performed.

  9. Matrix string partition function

    CERN Document Server

    Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre

    1998-01-01

    We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.

  10. Plane partition vesicles

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Ma, J

    2006-01-01

    We examine partitions and their natural three-dimensional generalizations, plane partitions, as models of vesicles undergoing an inflation-deflation transition. The phase diagrams of these models include a critical point corresponding to an inflation-deflation transition, and exhibits multicritical scaling in the vicinity of a multicritical point located elsewhere on the critical curve. We determine the locations of the multicritical points by analysing the generating functions using analytic and numerical means. In addition, we determine the numerical values of the multicritical scaling exponents associated with the multicritical scaling regimes in these models

  11. Energy technology monitoring - New areas and in-depth investigations

    International Nuclear Information System (INIS)

    Rigassi, R.; Eicher, H.; Steiner, P.; Ott, W.

    2005-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined long-term trends in the energy technology area in order to provide information that is to form the basis for political action and the distribution of energy research funding in Switzerland. Energy-technology areas examined include variable-speed electrical drives, ventilation systems for low-energy-consumption buildings, membrane technology and the use of plastics in lightweight automobiles. Examples are quoted and the current state of the appropriate technologies and market aspects are examined. Also, the potential and future developments in the areas listed are looked at. The consequences for energy policy and future developments in the technology-monitoring area are considered

  12. Investigation of thin film energy-saving coatings

    Directory of Open Access Journals (Sweden)

    Bukhmirov Vyacheslav

    2017-01-01

    Full Text Available The report presents the results of an experimental study of the thermophysical properties and energy efficiency of thin-film energy-saving coatings consisting of hollow microspheres and a binder material from styrene-acrylic dispersion. The value of the thermal conductivity coefficient of the energy-saving paint is estimated depending on its composition and temperature, and the thermal diffusivity coefficient is determined. Experimental results of energy efficiency of using thin-film coatings for insulation of facades of buildings and as thermal insulation for pipelines with a hot coolant are presented.

  13. Laser Spectroscopic Investigations of Praseodymium I Transitions: New Energy Levels

    Directory of Open Access Journals (Sweden)

    Zaheer Uddin

    2012-01-01

    Full Text Available We report the discovery of about 140 new energy levels of the neutral praseodymium atom, found by means of laser-induced fluorescence spectroscopy. Their energy has been determined with an uncertainty of 0.010 cm−1 using a wave number calibrated Fourier-transform spectrum.

  14. Gluing Nekrasov Partition Functions

    Science.gov (United States)

    Qiu, Jian; Tizzano, Luigi; Winding, Jacob; Zabzine, Maxim

    2015-07-01

    In this paper we summarise the localisation calculation of 5D super Yang-Mills on simply connected toric Sasaki-Einstein (SE) manifolds. We show how various aspects of the computation, including the equivariant index, the asymptotic behaviour and the factorisation property are governed by the combinatorial data of the toric geometry. We prove that the perturbative partition function on a simply connected SE manifold corresponding to an n-gon toric diagram factorises to n copies of perturbative part (zero instanton sector) of the Nekrasov partition function. This leads us to conjecture a prescription for the computation of the complete partition function, by gluing n copies of the full Nekrasov partition functions. This work is a generalisation of some earlier computation carried out on Y p, q manifolds, whose moment map cone has a quadrangle base and our result is valid for manifolds whose moment map cones have pentagon base, hexagon base, etc. The algorithm we used for dealing with general cones may also be of independent interest.

  15. Goldbach Partitions and Sequences

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Goldbach Partitions and Sequences. Subhash Kak. General Article Volume 19 Issue 11 November 2014 pp 1028-1037. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/019/11/1028-1037 ...

  16. On the partition dimension of two-component graphs

    Indian Academy of Sciences (India)

    Abstract. In this paper, we continue investigating the partition dimension for disconnected graphs. We determine the partition dimension for some classes of disconnected graphs G consisting of two components. If G = G 1 ∪ G 2 , then we give the bounds of the partition dimension of G for G 1 = P n or G 1 = C n and also for p ...

  17. Statistical investigation of expected wave energy and its reliability

    International Nuclear Information System (INIS)

    Ozger, M.; Altunkaynak, A.; Sen, Z.

    2004-01-01

    The statistical behavior of wave energy at a single site is derived by considering simultaneous variations in the period and wave height. In this paper, the general wave power formulation is derived by using the theory of perturbation. This method leads to a general formulation of the wave power expectation and other statistical parameter expressions, such as standard deviation and coefficient of variation. The statistical parameters, namely the mean value and variance of wave energy, are found in terms of the simple statistical parameters of period, significant wave height and zero up-crossing period. The elegance of these parameters is that they are distribution free. These parameters provide a means for defining the wave energy distribution function by employing the Chebyschev's inequality. Subsequently, an approximate probability distribution function of the wave energy is also derived for assessment of risk and reliability associated with wave energy. Necessary simple charts are given for risk and reliability assessments. Two procedures are presented for such assessments in wave energy calculations and the applications of these procedures are provided for wave energy potential assessment in the regions of the Pacific Ocean off the west coast of U.S. (author)

  18. Statistical investigation of expected wave energy and its reliability

    International Nuclear Information System (INIS)

    Oezger, Mehmet; Altunkaynak, Abduesselam; Sen, Zekai

    2004-01-01

    The statistical behavior of wave energy at a single site is derived by considering simultaneous variations in the period and wave height. In this paper, the general wave power formulation is derived by using the theory of perturbation. This method leads to a general formulation of the wave power expectation and other statistical parameter expressions, such as standard deviation and coefficient of variation. The statistical parameters, namely the mean value and variance of wave energy, are found in terms of the simple statistical parameters of period, significant wave height and zero up-crossing period. The elegance of these parameters is that they are distribution free. These parameters provide a means for defining the wave energy distribution function by employing the Chebyschev's inequality. Subsequently, an approximate probability distribution function of the wave energy is also derived for assessment of risk and reliability associated with wave energy. Necessary simple charts are given for risk and reliability assessments. Two procedures are presented for such assessments in wave energy calculations and the applications of these procedures are provided for wave energy potential assessment in the regions of the Pacific Ocean off the west coast of U.S

  19. Phase 1 report: investigation of geothermal energy information sources

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-14

    A subject screening list was developed which would be used by acquisitions specialists as a guide to the orientation of pertinent literature. The subject screening list was derived primarily from the geothermal subset of the ERDA Energy Thesaurus and from the ERDA Energy Information Data Base Subject Categories (TID-4584). The subject screening list is included. Subsequent to preparation of the subject screening list, a core list of serial publications containing geothermal energy information was generated by SIS library scientists. This list was corelated with the ERDA-TIC serial publications list. Included in both lists is an estimate of the annual geothermal information yield of the serial sources. A listing of sources of geothermal energy information other than serial publications and the conclusions, including methods of acquisitioning to be utilized and the estimated annual volume of information from all sources are presented.

  20. Investigation of thermoelectric SiC ceramics for energy harvesting ...

    Indian Academy of Sciences (India)

    The output power and energy efficiency of the nose-tip model are obtained with Mach number varying from 2.5–4.5. The generated power reaches 1.708 W/m2 at a temperature difference of 757 K at = 4.5. With respect to the Thomson effect, the output power decreases rapidly. However, larger output power and energy ...

  1. Tracer Interaction Effects During Partitioning Tracer Tests for NAPL Detection

    Science.gov (United States)

    Imhoff, P. T.; Pirestani, K.; Jafarpour, Y.; Spivey, K. M.

    2002-05-01

    Partitioning tracer tests have been used in laboratory and field investigations to quantify the amount of nonaqueous phase liquid (NAPL) within porous media. In these tests multiple chemical tracers are typically injected into flowing groundwater: conservative tracers react minimally with the NAPL, while non-conservative tracers partition into the NAPL and exhibit retarded transport. The mean travel times of the conservative and partitioning tracers can be used to estimate the NAPL saturation in the swept zone. When multiple tracers are injected in the system, the tracers themselves change the chemical composition of the NAPL, which may affect partitioning behavior. Although co-tracer interactions have been considered by others, there are no reports of such effects during actual partitioning tracer tests. In this study tracer partitioning was examined in static batch systems and dynamic column experiments using 2,3-dimethyl-2-butanol and 1-hexanol as partitioning tracers and trichloroethylene as the NAPL. Co-tracer effects resulted in nonlinear partitioning of 2,3-dimethyl-2-butanol in batch tests, which increased with increasing tracer concentrations. The UNIFAC model was used to predict tracer activities in the NAPL, and the resulting predictions of tracer partitioning matched the data trends. Column experiments were conducted with these same tracers, and nonlinear tracer partitioning associated with co-tracer effects resulted in underestimation of NAPL mass in some systems. If linear partitioning were assumed, a priori analysis suggested that nonlinear partitioning would result in an overestimation of NAPL saturation. We discuss these observations and suggest guidelines for avoiding co-tracer effects during partitioning tracer tests.

  2. Partitioning of Viruses in Wastewater Systems and Potential for Aerosolization.

    Science.gov (United States)

    Titcombe Lee, Mari; Pruden, Amy; Marr, Linsey C

    2016-05-10

    To gain insight into the potential for aerosolization of viruses in wastewater systems, we investigated the partitioning of MS2 and Phi6 bacteriophages in synthetic sludge and anaerobically digested sludge from a wastewater treatment plant. We evaluated partitioning among the liquid, solids, and material surfaces of porcelain, concrete, polyvinyl chloride (PVC), and polypropylene. In all cases, at least 94% of the virions partitioned into the liquid fraction. In real sludge, no more than 0.8% of virions partitioned to the solids and no more than 6% to the material surface. Both MS2 and Phi6 partitioned more to the surface of concrete and polypropylene than to the surface of porcelain or PVC. Partitioning of viruses in wastewater among the liquid, biosolids, and material surface does not appear to mitigate the potential for aerosolization of virus, as most of the virus remains in the liquid phase.

  3. Investigation of lithium sulphate for high temperature thermal energy storage

    Science.gov (United States)

    Bayon, Alicia; Liu, Ming; Bruno, Frank; Hinkley, Jim

    2017-06-01

    Lithium sulphate (Li2SO4) was evaluated as a solid-solid PCM material to be coupled with concentrated solar power (CSP) technologies. The energy is stored in a cubic crystalline phase that is formed at temperatures above 576°C and can potentially be discharged at temperatures as low as 150°C, providing both sensible and latent thermal energy storage in a hybrid sensible-latent system. These operational conditions are appropriate for current CSP technologies based on subcritical steam Rankine power cycles. Results from thermal cycling experiments in air showed no change in energy storage capacity after 15 cycles. There was up to a 5% reduction in latent thermal capacity and 0.95% in total thermal capacity after 150 cycles in air. In our paper, we evaluate a hybrid sensible-latent thermal energy storage system based on lithium sulphate from an economic and technical performance point of view, demonstrating its potential as a high temperature thermal energy storage material.

  4. Practical Investigation for Road Lighting using Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Maged A. Abu Adma

    2017-12-01

    Full Text Available Abstract - Hybrid renewable energy systems are recently used to counteract the limitations of solar and wind as solo renewable energy sources due to adverse weather conditions. This study explains a design of a fully independent -off grid- hybrid solar and wind road lighting system according to geography and weather conditions recorded from the National Research Institute of Astronomy and Geophysics. The computerized model is designed step by step by the aid of Simulink-Matlab and the simulation was successfully run to show the performance of each module.

  5. Manifold Partition Discriminant Analysis.

    Science.gov (United States)

    Yang Zhou; Shiliang Sun

    2017-04-01

    We propose a novel algorithm for supervised dimensionality reduction named manifold partition discriminant analysis (MPDA). It aims to find a linear embedding space where the within-class similarity is achieved along the direction that is consistent with the local variation of the data manifold, while nearby data belonging to different classes are well separated. By partitioning the data manifold into a number of linear subspaces and utilizing the first-order Taylor expansion, MPDA explicitly parameterizes the connections of tangent spaces and represents the data manifold in a piecewise manner. While graph Laplacian methods capture only the pairwise interaction between data points, our method captures both pairwise and higher order interactions (using regional consistency) between data points. This manifold representation can help to improve the measure of within-class similarity, which further leads to improved performance of dimensionality reduction. Experimental results on multiple real-world data sets demonstrate the effectiveness of the proposed method.

  6. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  7. Generalised twisted partition functions

    CERN Document Server

    Petkova, V B

    2001-01-01

    We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.

  8. BKP plane partitions

    International Nuclear Information System (INIS)

    Foda, Omar; Wheeler, Michael

    2007-01-01

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another

  9. BKP plane partitions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, Omar; Wheeler, Michael [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2007-01-15

    Using BKP neutral fermions, we derive a product expression for the generating function of volume-weighted plane partitions that satisfy two conditions. If we call a set of adjacent equal height-h columns, h > 0, an h-path, then 1. Every h-path can assume one of two possible colours. 2. There is a unique way to move along an h-path from any column to another.

  10. Experimental Investigation on an Energy Efficient Solar Tunnel Dryer

    OpenAIRE

    M. R. Seshan Ram

    2012-01-01

    The research determines the effectiveness of the solar tunnel dryer developed and the product dried in the device is superior in quality and also it is compatible with branded products available in the market. The study also determines Acetamide as Phase Key words: Solar Tunnel Dryer, Acetamide as Phase Change Materials, Conversion into Thermal Energy, Thermocouple, and Pyranometer

  11. Investigation of thermoelectric SiC ceramics for energy harvesting ...

    Indian Academy of Sciences (India)

    the thermal protection system (Lu and Liu 2012b) and the power supply system of the vehicles would be reduced and the payload would be increased. Thermoelectric conversion techniques show a novel solution. Thermoelectric conversion technology enables the direct conversion between heat and electric energy (Rowe ...

  12. Investigation of high-energy neutron SEE on FLASHROM

    International Nuclear Information System (INIS)

    Yang Huaimin; Fan Sian

    2003-01-01

    The high-energy neutron SEE on FLASHROM and testing methods were reported in the paper. 14 MeV neutron from T(d,n) is used for irradiating FLASHROM. Testing is done at neutron generator of Lanzhou University. The memory upset is observed and closed data is recorded. Finally the paper estimate closed cross section

  13. Study of the potential of energy storage - Investigation report - Synthesis

    International Nuclear Information System (INIS)

    Renaud, Arnaud; Fournie, Laurent; Girardeau, Pierre; Chammas, Maxime; Tarel, Guillaume; Chiche, Alice; De Freminville; Pierre; Lacroix, Olivier; Rakotojaona, Loic; Payen, Luc; Riu, Delphine; Kerouedan, Anne-Fleur

    2013-01-01

    The objective of this study is to assess, for France and its overseas territories, the potential of energy storage by 2030, and to identify the technological sectors which are the most economically relevant. A global surplus has been calculated, as well as the benefit from additional storage capacities. This benefit has been compared with cost predictions by 2030 for different storage technologies. Economically viable powers and types of energy storages are assessed with respect to different scenarios, and impacts in terms of associated jobs are assessed. The document reports and discusses the surplus assessment for the community, describes the various services provided by energy storage, presents the modelling scenarios and hypotheses, discusses the main results of valorisation for the community, presents the various energy storage technologies (gravity, thermodynamic, electrochemical, electrostatic, inertial, latent thermal, thermo-chemical, and power to gas), presents business models and deployment potential for different applications (mass storage of electricity in France, electricity storage in a non-connected area, decentralised electricity storage as a response to grid congestion, valorisation of an electricity storage, thermal storage on a heat network, cold storage, management of diffuse demand of hot water), and discusses implications regarding employment

  14. Investigating 100% renewable energy supply at regional level using scenario analysis

    Directory of Open Access Journals (Sweden)

    Annicka Waenn

    2016-06-01

    Full Text Available Energy modelling work in Ireland to date has mainly taken place at a national level. A regional modelling approach is necessary however, for Ireland to reach the ambitious targets for renewable energy and emissions reduction. This paper explores the usefulness of the energy modelling tool EnergyPLAN in investigating the energy system of the South West Region of Ireland. This paper estimates a 10.5% current renewable energy share of energy use, with 40% renewable electricity. We build and assess a reference scenario and three renewable energy scenarios from a technological and resources perspective. The results show that sufficient resources are available for the South West Region energy system to become 100% renewable and quantifies the land-use implications. Moreover, EnergyPLAN can be a useful tool in exploring different technical solutions. However, thorough investigations of as many alternatives as possible, is necessary before major investments are made in a future energy system.

  15. Zr partitioning and kinetics and mechanism

    Science.gov (United States)

    Taylor, L. A.

    1973-01-01

    The results of investigations concerning the cooling histories of lunar rocks are reported. Publications resulting from this research are listed. Studies discussed include the partitioning of Zr between FeTi03 and Fe2Ti04 in the presence of Fe + Zr02, and ulvospinel reduction.

  16. Investigation of the possibility of using residual heat reactor energy

    Science.gov (United States)

    Aminov, R. Z.; Yurin, V. E.; Bessonov, V. N.

    2017-11-01

    The largest contribution to the probable frequency of core damage is blackout events. The main component of the heat capacity at each reactor within a few minutes following a blackout is the heat resulting from the braking of beta-particles and the transfer of gamma-ray energy by the fission fragments and their decay products, which is known as the residual heat. The power of the residual heat changes gradually over a long period of time and for a VVER-1000 reactor is about 15–20 MW of thermal power over 72 hours. Current cooldown systems increase the cost of the basic nuclear power plants (NPP) funds without changing the amount of electricity generated. Such systems remain on standby, accelerating the aging of the equipment and accordingly reducing its reliability. The probability of system failure increases with the duration of idle time. Furthermore, the reactor residual heat energy is not used. A proposed system for cooling nuclear power plants involves the use of residual thermal power to supply the station’s own needs in emergency situations accompanied by a complete blackout. The thermal power of residual heat can be converted to electrical energy through an additional low power steam turbine. In normal mode, the additional steam turbine generates electricity, which makes it possible to ensure spare NPP and a return on the investment in the reservation system. In this work, experimental data obtained from a Balakovo NPP was analyzed to determine the admissibility of cooldown of the reactors through the 2nd circuit over a long time period, while maintaining high-level parameters for the steam generated by the steam generators.

  17. Mechanical Properties of Lightweight Concrete Partition with a Core of Textile Waste

    Directory of Open Access Journals (Sweden)

    Kamran Aghaee

    2013-01-01

    Full Text Available This investigation is focused on bending experiment of some prismatic perlite lightweight concrete. In these samples, textile waste fibers are confined with textile mesh glass fiber and embedded in the central part of cubic lightweight concrete specimens. Bending experiments revealed that lightweight concrete panels with a core of textile waste fiber have less density than water and high energy absorption and ductility. Furthermore, these composite panels by having appropriate thermal insulation characteristics could be used for partitioning in the buildings.

  18. Experimental investigation of jojoba as a renewable energy source

    Energy Technology Data Exchange (ETDEWEB)

    Al-Widyan, Mohamad I. [Mechanical Engineering Department, Jordan University of Science and Technology, PO Box 3030, Irbid 22110 (Jordan); Al-Muhtaseb, Mu' taz A. [Mechanical Engineering Department, Faculty of Engineering, University of Jordan, PO Box 961060, Amman 11196 (Jordan)

    2010-08-15

    This work examined jojoba (oil and cake) as possible alternative fuel sources. Jojoba is a shrub that grows very well in deserts and its cake is the solid part produced upon processing of the jojoba seeds for oil extraction. In this study, pure jojoba oil and 50/50 blends with diesel fuel were tested as fuels in a single cylinder diesel engine. The diesel fuel was the baseline of comparison throughout the runs. The cake was tested for both direct combustion (pellets) and as a substrate for biogas production. The pellets were formed by compacting the cake in cylindrical dies using a hydraulic press while the biogasification was conducted in an anaerobic digester model Bioflo 110 from Brunswick. The findings indicate that the optimum injection pressure for jojoba oil in the engine is 210 bars at which engine speed was maximum (2700 rpm), NO{sub x} and CO emissions as well as exhaust temperature were minimum. Using jojoba cake for biogasification resulted in a yield of about 600 ml biogas per 400 g of jojoba cake. Burning jojoba compacted cake (pellets) for direct combustion in a stove indicated that jojoba cake sustained a temperature in excess of 300 C for a reasonable amount of time and that the cake was very competitive to wood and has energy content more than most types of wood. Overall, it may be stated that both jojoba oil and cake hold real promise as alternative energy sources. (author)

  19. Experimental investigation of jojoba as a renewable energy source

    International Nuclear Information System (INIS)

    Al-Widyan, Mohamad I.; Al-Muhtaseb, Mu'taz A.

    2010-01-01

    This work examined jojoba (oil and cake) as possible alternative fuel sources. Jojoba is a shrub that grows very well in deserts and its cake is the solid part produced upon processing of the jojoba seeds for oil extraction. In this study, pure jojoba oil and 50/50 blends with diesel fuel were tested as fuels in a single cylinder diesel engine. The diesel fuel was the baseline of comparison throughout the runs. The cake was tested for both direct combustion (pellets) and as a substrate for biogas production. The pellets were formed by compacting the cake in cylindrical dies using a hydraulic press while the biogasification was conducted in an anaerobic digester model Bioflo 110 from Brunswick. The findings indicate that the optimum injection pressure for jojoba oil in the engine is 210 bars at which engine speed was maximum (2700 rpm), NO x and CO emissions as well as exhaust temperature were minimum. Using jojoba cake for biogasification resulted in a yield of about 600 ml biogas per 400 g of jojoba cake. Burning jojoba compacted cake (pellets) for direct combustion in a stove indicated that jojoba cake sustained a temperature in excess of 300 deg. C for a reasonable amount of time and that the cake was very competitive to wood and has energy content more than most types of wood. Overall, it may be stated that both jojoba oil and cake hold real promise as alternative energy sources.

  20. An investigation of energy efficient and sustainable heating systems for buildings : Combining photovoltaics with heat pump

    OpenAIRE

    Hesaraki, Arefeh; Holmberg, Sture

    2013-01-01

    Renewable energy sources contribute considerable amounts of energy when natural phenomena are converted into useful forms of energy. Solar energy, i.e. renewable energy, is converted to electricity by photovoltaic systems (PV). This study was aimed at investigating the possibility of combining PV with Heat Pump (HP) (PV-HP system). HP uses direct electricity to produce heat. In order to increase the sustainability and efficiency of the system, the required electricity for the HP was supposed ...

  1. A Preliminary Investigation of Energy Return on Energy Investment for Global Oil and Gas Production

    Directory of Open Access Journals (Sweden)

    Lysle Brinker

    2009-07-01

    Full Text Available Economies are fueled by energy produced in excess of the amount required to drive the energy production process. Therefore any successful society’s energy resources must be both abundant and exploitable with a high ratio of energy return on energy invested (EROI. Unfortunately most of the data kept on costs of oil and gas operations are in monetary, not energy, terms. Fortunately we can convert monetary values into approximate energy values by deriving energy intensities for monetary transactions from those few nations that keep both sets of data. We provide a preliminary assessment of EROI for the world’s most important fuels, oil and gas, based on time series of global production and estimates of energy inputs derived from monetary expenditures for all publicly traded oil and gas companies and estimates of energy intensities of those expenditures. We estimate that EROI at the wellhead was roughly 26:1 in 1992, increased to 35:1 in 1999, and then decreased to 18:1 in 2006. These trends imply that global supplies of petroleum available to do economic work are considerably less than estimates of gross reserves and that EROI is declining over time and with increased annual drilling levels. Our global estimates of EROI have a pattern similar to, but somewhat higher than, the United States, which has better data on energy costs but a more depleted resource base.

  2. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    International Nuclear Information System (INIS)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.; Razalli, Mohammad Shahrazel; Kadhim, Rasim A.

    2015-01-01

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed an investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction

  3. Variable length adjacent partitioning for PTS based PAPR reduction of OFDM signal

    Energy Technology Data Exchange (ETDEWEB)

    Ibraheem, Zeyid T.; Rahman, Md. Mijanur; Yaakob, S. N.; Razalli, Mohammad Shahrazel; Kadhim, Rasim A. [School of Computer and Communication Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    Peak-to-Average power ratio (PAPR) is a major drawback in OFDM communication. It leads the power amplifier into nonlinear region operation resulting into loss of data integrity. As such, there is a strong motivation to find techniques to reduce PAPR. Partial Transmit Sequence (PTS) is an attractive scheme for this purpose. Judicious partitioning the OFDM data frame into disjoint subsets is a pivotal component of any PTS scheme. Out of the existing partitioning techniques, adjacent partitioning is characterized by an attractive trade-off between cost and performance. With an aim of determining effects of length variability of adjacent partitions, we performed an investigation into the performances of a variable length adjacent partitioning (VL-AP) and fixed length adjacent partitioning in comparison with other partitioning schemes such as pseudorandom partitioning. Simulation results with different modulation and partitioning scenarios showed that fixed length adjacent partition had better performance compared to variable length adjacent partitioning. As expected, simulation results showed a slightly better performance of pseudorandom partitioning technique compared to fixed and variable adjacent partitioning schemes. However, as the pseudorandom technique incurs high computational complexities, adjacent partitioning schemes were still seen as favorable candidates for PAPR reduction.

  4. Minimum Energy Dwelling (MED) workbook: an investigation of techniques and materials for energy conscious design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This workbook is based upon information gathered during the design phase of the Minimum Energy Dwelling. The objective of the project, sponsored by the Southern California Gas Co., Department of Energy, and Mission Viejo is to substantially reduce energy use by the incorporation of energy conservation and solar techniques in a single-family detached dwelling. The Project will demonstrate to builders, as well as to the general public, a number of technological innovations that can, at reasonable cost, be included in a dwelling design. The problem facing Southern California Gas Co., along with most other gas utilities, is ever-decreasing amounts of gas at increasing prices. The dwelling designed has approximately 1,150 ft/sup 2/, consistent with current home-building trends. Through the optimum use of energy-conserving appliances, insulation, window and wall shading, exterior coloring, and thermal mass, the yearly energy usage has been reduced by over 50%. Of the remaining 50% of the energy required for heating, cooling, and domestic hot water, the majority is supplied by the solar-energy system. Three hundred twenty square feet (270 effective) of evacuated tube collector are incorporated into the building structure. The hot water provided by the collectors is used to run an absorption chiller for cooling, the domestic hot water, and the heating system. The remaining energy requirements are met by an auxiliary natural gas energy system and a cool-air-economizer cycle.

  5. Investigation of the energy spectrum of high-energy muons in the Frejus detector

    International Nuclear Information System (INIS)

    Rhode, W.

    1993-10-01

    The complete data of muons recorded during 1984-1988 with the Frejus Detector has been reanalyzed. The subsamples of single stopping muons, of single throughgoing muons, of multiple muons and of the energy loss spectrum of single muons within the detector are treated separately. The subsample of the stopping muons contains about 5000 events in the depth-range between 4000 mwe and 50000 mwe and the local energy interval between 500 MeV and 2100 MeV. Both the intensity of stopping atmospheric muons and of stopping neutrino-induced muons is measured. The local energy spectrum of both these contributions is determined. The energy spectrum of atmospheric muons at production is deduced from the muon energy loss within the rock. The energy spectrum of approximately half a million atmospheric muons is calculated from the energy loss within the rock. The zenith-angle-dependence of the muon-flux within the interval between 4 and 84 is examined. An excess of muons for a depth larger than 6000 mwe is observed. The spectral index of the uncorrelated flux of atmospheric muons has been deduced. This value is compared to the expected indices for two different models of the primary composition. This also allows checking of the model of primary interactions. Limits on the possible energy loss within the rock are deduced. The spectrum of energy losses within the detector is analyzed in order to obtain the mean energy or equivalently the shape of the local energy spectrum. This value is used to determine the spectral index from the energy loss within the rock and then determining the spectral index independent of the calculation of the energy loss within the rock. (orig./HP)

  6. Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy

    International Nuclear Information System (INIS)

    Davidsson, Simon; Grandell, Leena; Wachtmeister, Henrik; Höök, Mikael

    2014-01-01

    Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns. - Highlights: • Growth rates and service life is important when evaluating energy transitions. • A sustained commissioning model is suggested for analysing renewable energy. • Natural resource requirements for renewable energy are connected to growth rates. • Arguments by recent studies ruling out physical constraints appear inadequate

  7. Preliminary investigations of the thermal energy grid concept

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.

    1977-10-01

    This study examines, in a preliminary manner, the feasibility of the thermal grid concept. This concept essentially envisions the supply of heat to a long-distance transmission line from a dual-purpose nuclear or coal-fired power plant. The transmission line delivers heat to a subregion distribution network which delivers it to the consumer. District chilled water supply is also considered, using heat from the grid to power steam-turbine-driven water chillers. Candidate technologies for generation, transmission, and distribution of thermal energy are identified and assessed. Potential applications, including both industrial use and residential space conditioning and hot water supply, are evaluated. Results indicate that high-temperature hot-water transmission lines are favored for longer distances, while steam lines may be acceptable for shorter distances. It is also evident that thermal grid heat is more economically competitive for new applications, as opposed to retrofit situations, in the residential-commercial sector. The two applications are about equally feasible in the industrial sector. The results further indicate that thermal grid heat is most competitive in areas of high-heat-load density and expensive fuel costs. It appears that the thermal grid service area should include the industrial sector as a base load. The multifamily residential-commercial sector space and water heating loads can be added to the service area to maximize utilization of the transmission line and maintain low transmission costs. Supply of chilled water to the multifamily residential-commercial sector can also be included for new applications to increase the transmission line use factor. The thermal grid concept appears to be economically and technically feasible, when compared to oil and electric systems in the multifamily residential-commercial sector and coal- or oil-fired systems in the industrial sector, and should be explored in greater detail.

  8. Numerical Investigation of Floor Heating Systems in Low Energy Houses

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Jensen, Claus Franceos

    2002-01-01

    In this paper an investigation of floor heating systems is performed with respect to heating demand and room temperature. Presently (2001) no commercially available building simulation programs that can be used to evaluate heating demand and thermal comfort in buildings with building integrated....... The model calculates heating demand, room temperatures, and thermal comfort parameters for a person in the room. The model is based on a numerical Finite Control Volume (FCV) method for the heat transfer in walls, ceiling, windows and floor. The model uses both convective and radiative heat transfer...... to the room air and between the room surfaces. The simulation model has been used to calculate heating demand and room temperature in a typical well insulated Danish single-family house with a heating demand of approximately 6000 kWh per year, for a 130 m² house. Two different types of floor heating systems...

  9. Solid state nuclear magnetic resonance investigations of advanced energy materials

    Science.gov (United States)

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  10. Sustainable development of cabins. An investigation of cabin owners' attitudes towards the environment and energy

    International Nuclear Information System (INIS)

    Velvin, Jan

    2004-01-01

    An investigation on private cabin owners in the three Buskerud (Norway) municipalities: Sigdal, Rollag and Hol. The main purpose has been to evaluate the state of local value-creation related to cabin tourism, energy and environmental aspects of the cabin-usage, and other conditions related to sustainable development. This report deals in specific with environment and energy questions concerning cabin owners, and their attitudes towards energy-saving measures. Results from the investigation show that the standard on facilities of cabins has increased, indicating that the energy consumption will rise accordingly. Income is the primary explanation factor in relation to energy consumption. More results are presented in the report (ml)

  11. Investigation of energy inputs for peach production using sensitivity analysis in Iran

    International Nuclear Information System (INIS)

    Royan, Mahsa; Khojastehpour, Mehdi; Emadi, Bagher; Mobtaker, Hassan Ghasemi

    2012-01-01

    Highlights: ► We investigated energy use and inputs–output relationship in peach production. ► Total energy consumption in peach production was 37536.96 MJ ha −1 . ► Diesel fuel with about (26.32%) was the major energy consumer. ► Energy use efficiency and energy productivity were 0.55 and 0.29 kg MJ −1 . ► The machinery energy was the most significant input affecting the output level. - Abstract: The purpose of this research was to investigate the energy balance between the energy inputs and yield in peach production in Golestan province of Iran as a case study. The results showed that total energy consumption in peach production was 37536.96 MJ ha −1 where the diesel fuel with about (26.32%) was the major energy consumer. The direct energy shared about (50.98%) whereas the indirect energy did (49.02%). Energy use efficiency, energy productivity, specific energy and net energy were 0.55, 0.29 kg MJ −1 , 3.41 MJ kg −1 and −16642.03 MJ ha −1 , respectively. Econometric assessment results revealed that the energy inputs of human labor, machinery, diesel fuel, chemical fertilizers and farm yard manure had significant influence on the yield. The impact of human labor energy (1.36) was found as the highest among the other input parameters. Sensitivity analysis indicated that the MPP value of energy inputs was between −2.8 and 11.31. Also the MPP value of human labor was the highest, followed by diesel fuel and farm yard manure energy inputs, respectively.

  12. Investigation of the energy levels of the gadolinium atom using resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kim, Jin Tae; Yi, Jong Hoon; Rhee, Yong Joo; Lee, Jong Min

    2000-01-01

    We have investigated the ionization processes, the energy values, and the strengths of ion signals by using a dye laser frequency in the ultra-violet range with one-color multi-photon ionization. Also, two color multi-photon ionization by using another near infrared photon has been done to investigate energy levels with odd-parity in the energy range of between 35500 cm -1 and 37700 cm -1

  13. Investigation of the energy levels of the gadolinium atom using resonance ionization mass spectrometry

    CERN Document Server

    Kim, J T; Rhee, Y J; Lee, J M

    2000-01-01

    We have investigated the ionization processes, the energy values, and the strengths of ion signals by using a dye laser frequency in the ultra-violet range with one-color multi-photon ionization. Also, two color multi-photon ionization by using another near infrared photon has been done to investigate energy levels with odd-parity in the energy range of between 35500 cm sup - sup 1 and 37700 cm sup - sup 1

  14. Investigation of the Energy Balance in the Spark Discharge Generator for Nanoparticles Synthesis

    Science.gov (United States)

    Mylnikov, D. A.; Efimov, A. A.; Ivanov, V. V.

    2017-07-01

    In this paper we investigate the balance of energy in the discharge circuit of a spark discharge generator (SDG) for nanoparticles synthesis. The released energy consists of several parts: the energy in a discharge gap and the energy dissipated in the other elements of the circuit. In turn, in the gap a one part of the energy releases in preanode and precathode regions and the other part in an arc between electrodes. We measured these parts and proposed ways to optimize energy efficiency of the nanoparticles production.

  15. Stochastic Graph Partition: Generalizing the Swendsen-Wang Method

    OpenAIRE

    Barbu, Adrian; Zhu, Song-Chun

    2003-01-01

    Vision tasks, such as segmentation, grouping, recognition, and learning, have a "what-goes-with-what" component. It can be formulated as partitioning an adjacent graph into a number of subgraphs, each being a "coherent" visual pattern in the sense of optimizing a Bayesian posterior probability or minimizing an energy functional. In this paper, we generalize Swendsen-Wang (1987)- a well celebrated algorithm in statistical mechanics-for general graph partition. Our objective is to design revers...

  16. Gentile statistics and restricted partitions

    Indian Academy of Sciences (India)

    The partition function of Gentile statistics also has the property that it nicely interpolates between the ... We now construct the partition function for such a system which also incorporates the property of interpolation ... As in [4], we however keep s arbitrary even though for s > 2 there are no quadratic. Hamiltonian systems.

  17. Gentile statistics and restricted partitions

    Indian Academy of Sciences (India)

    We generalise these results to obtain an asymptotic formula for the restricted or coloured partitions p k s ( n ) , which is the number of partitions of an integer into the summand of th powers of integers such that each power of a given integer may occur utmost times. While the method is not rigorous, it reproduces the ...

  18. Metal-framed partitions with reduced thicknesses. Part 1: Narrower studs and cavities

    Science.gov (United States)

    Plumb, G. D.

    The sound insulations were measured, in the Research Department Transmission Suite, of ten different metal-framed partitions. These partitions had narrower cavities and metal studs than those of the conventional thickness metal-framed Camden. Mineral wool had been installed in the cavities of some of the partitions and some partitions had double plasterboard skins rather than plasterboard-fiberboard skins. The sound insulations of these narrow partitions were generally comparable with, or marginally higher than, those of similar partitions, having stud and cavity widths equal to those in the conventional thickness metal-framed Camden. However, the loadbearing capabilities must be investigated before these narrow partitions can be recommended as alternatives to the conventional thickness metal-framed Camden. The use of these narrow partitions should result in average increases, of approximately 8%, in the available floor areas of typical studios.

  19. Partitioning of absorbed light energy differed between the sun-exposed side and the shaded side of apple fruits under high light conditions.

    Science.gov (United States)

    Chen, Changsheng; Zhang, Di; Li, Pengmin; Ma, Fengwang

    2012-11-01

    Fractions of absorbed light energy consumed via photochemistry and different thermal dissipation processes was quantified and compared between the sun-exposed peel and the shaded peel of apple fruits at different developmental stages. During fruit development, the fraction of absorbed light consumed via photochemistry was no more than 7% in the sun-exposed peel and no more than 5% in the shaded peel under high light conditions. Under high light, the fraction of absorbed light energy consumed via light dependent thermal dissipation was higher whereas that via constitutive thermal dissipation was lower in the sun-exposed peel. The light dependent thermal dissipation in the sun-exposed peel mainly depended on the xanthophyll cycle, and the xanthophyll cycle pool size was significantly larger in the sun-exposed peel than in the shaded peel. The light dependent thermal dissipation in the shaded peel was dependent on both the xanthophyll cycle and the presence of inactivated reaction centers. Under high light conditions, the densities of both Q(A)-reducing reaction centers and Q(B)-reducing reaction centers decreased faster in the shaded peel than in the sun-exposed peel. The thermal dissipation related to photoinhibition increased and then kept unchanged in the sun-exposed peel but decreased in the shaded peel during fruit development. We conclude that under high light intensities, fruit peel looses the excess energy in order of predominance: first by the xanthophyll cycle, then the thermal dissipation related to photoinhibition, next through inactivated reaction centers, and finally by constitutive thermal dissipation. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. An investigation on image of nuclear energy from the view of Japanese high school students

    International Nuclear Information System (INIS)

    Takahashi, Reiko; Nakayama, Kazuhiko.

    1996-01-01

    The authors have conducted an investigation on Japanese high school students' knowledge, recognition and interest on energy issues. How they are currently recognizing the 'Nuclear Energy' and whether there is a difference in the way of recognition with their attributes have been revealed in this investigation. A questionnaire based on a word association (WA) method and a cluster analysis have been carried out. Using these statistical methodologies, a picture of energy issues from the view of young generations has been cleared. The authors believe that the analysis in the field of nuclear energy by means of such techniques has been done for the first time in Japan. (author)

  1. Acyl-CoA metabolism and partitioning

    DEFF Research Database (Denmark)

    Grevengoed, Trisha J; Klett, Eric L; Coleman, Rosalind A

    2014-01-01

    expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing......Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue...... metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute...

  2. Generalised partition functions: inferences on phase space distributions

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2016-06-01

    Full Text Available It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs–Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1∕|q − 1|, with κ, q ∈ R both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel–Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs–Boltzmann partition function is fundamental not only to Gibbs–Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the

  3. Partitioning of organochlorine pesticides from water to polyethylene passive samplers

    International Nuclear Information System (INIS)

    Hale, Sarah E.; Martin, Timothy J.; Goss, Kai-Uwe; Arp, Hans Peter H.; Werner, David

    2010-01-01

    The mass transfer rates and equilibrium partitioning behaviour of 14 diverse organochlorine pesticides (OCP) between water and polyethylene (PE) passive samplers, cut from custom made PE sheets and commercial polyethylene plastic bags, were quantified. Overall mass transfer coefficients, k O , estimated PE membrane diffusion coefficients, D PE , and PE-water partitioning coefficients, K PE-water, are reported. In addition, the partitioning of three polycyclic aromatic hydrocarbons (PAHs) from water to PE is quantified and compared with literature values. K PE-water values agreed mostly within a factor of two for both passive samplers and also with literature values for the reference PAHs. As PE is expected to exhibit similar sorption behaviour to long-chain alkanes, PE-water partitioning coefficients were compared to hexadecane-water partitioning coefficients estimated with the SPARC online calculator, COSMOtherm and a polyparameter linear free energy relationship based on the Abraham approach. The best correlation for all compounds tested was with COSMOtherm estimated hexadecane-water partitioning coefficients. - The partitioning of organochlorine pesticides between single phase polyethylene passive samplers and water is quantified.

  4. Solar thermal energy utilization. German studies on technology and application. Vol. 1. General investigations on energy availability

    Energy Technology Data Exchange (ETDEWEB)

    Becker, M. (Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V. (DFVLR), Koeln (Germany, F.R.). Hauptabteilung Energietechnik) (ed.)

    1987-01-01

    The first volume of a three-volume series titled 'Solar thermal energy utilization' comprises three papers dealing with general investigations into energy availability. Their titles are: Yearly yield of solar CRS-process heat and temperature of reaction; - literature survey in the field of primary and secondary concentrating solar energy systems concerning the choice and manufacturing process of suitable materials; - considerations and proposals for future research and development of high temperature solar processes. Each of the three chapters was abstracted for entry into the database. (HWJ).

  5. Fourier Transform Spectrometer Controller for Partitioned Architectures

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Keymeulen, D.; Berisford, D.

    2013-01-01

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Resear......, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture....

  6. A statistical method to investigate national energy consumption in the residential building sector of China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuqin; Li, Nianping; Guan, Jun; Xie, Yanqun; Sun, Fengmei; Ni, Ji [Civil Engineering College, Hunan University, Changsha, Hunan 410082 (China)

    2008-07-01

    The purpose of this research is to found a national statistical system of energy consumption in the residential building sector of China, so as to look into the actuality of residential energy consumption, and to provide data support for building energy efficiency work in China. The frame of a national statistical system of residential energy consumption is presented in this paper, according to current status of the climate, social and historic conditions, and energy consumption characteristics in the five architecture climate divisions in China. The statistical index system of residential energy consumption is constituted which refers to housing unit characteristics, household characteristics, possession and utilization of energy consuming equipment, and residential energy consumption quantities. This index system suits for all the different utilization structures of residential energy consumption in different architecture climate divisions. On this base, a complete set of statistical reports is worked out to measure the energy consumption of cities, provinces and the country stage by stage. Finally the statistical method above is applied to measure residential energy consumption by case studies, in order to validate the feasibility of this method. The research in this paper covers the first step of the elaboration of the statistical method to investigate energy consumption in China, and more work will be done in future to further impel national statistics of residential energy consumption. (author)

  7. The interaction of fiber, supplied by distillers dried grains with solubles, with an antimicrobial and a nutrient partitioning agent on nitrogen balance, water utilization, and energy digestibility in finishing pigs.

    Science.gov (United States)

    Pilcher, C M; Arentson, R; Patience, J F

    2015-03-01

    The objective of this study was to determine if a higher-fiber diet alters the response of finishing pigs to an antimicrobial (tylosin phosphate [TP]) and a nutrient partitioning agent (ractopamine HCl [RAC]) in terms of N and water utilization and energy digestibility. Seventy-two gilts (initial BW = 107.4 ± 4.2 kg) were blocked by weight and allotted to 1 of 8 dietary treatments. Treatments were arranged as a 2 × 2 × 2 factorial: distillers dried grains with solubles (DDGS; 0 vs. 30%), RAC (0 mg of RAC/kg and 0.70% standardized ileal digestible [SID] Lys vs. 5 mg of RAC/kg and 0.95% SID Lys) and TP (0 vs. 44 mg of TP/kg). Pig was the experimental unit, with 9 replications per treatment. Pigs were housed in individual metabolism crates and fed treatment diets for 17 d. Feed was provided twice daily, as much as the pigs could consume within 1 h per meal, and water was provided to the pigs between feeding periods, ad libitum. Fecal and urine collection occurred on d 7 and 8 and on d 15 and 16, for sampling periods 1 and 2, respectively. Pigs fed the DDGS diets had reduced ADG ( interaction ( 0.10). Pigs fed DDGS diets had higher N intake ( < 0.01) and higher fecal ( < 0.0001) and urinary ( < 0.01) N excretion with no difference in N retention (g/d). Overall, RAC increased N retention by 33% ( < 0.0001) and the response to RAC was similar in both corn-soybean meal-based and corn-soybean meal-DDGS-based diets. Tylosin phosphate tended to improve growth performance in pigs fed corn-soybean meal-based diets but not in diets containing 30% DDGS; however, this response was not explained by changes in N balance or in energy digestibility.

  8. Investigation the Advantages of CPV for Building Integrated PV : 28th European Photovoltaic Solar Energy Conference

    NARCIS (Netherlands)

    S. van der Craats; R.G. Catau; Piet Sonneveld; J.V. Sahedi; A.R. Sparemberger

    2013-01-01

    The objective of this concept is a significant reduction of energy consumption in greenhouses and buildings with large facades and windows by using available solar energy. The scope of this investigation is to study the advantages of a building integrated CPV system. The basic idea is that a larger

  9. Investigating Possibilities of Energy Supply from a Tidal Lagoon at Swansea Bay

    Science.gov (United States)

    Thomas, Denise

    2017-01-01

    Derivation of an energy source from the movement of the tides is the reason for considering a lagoon to trap seawater in Swansea Bay. But while the professional engineers are investigating the possibility of that development, this student group has undertaken a study of the viability of developing biological sources of energy in this restricted…

  10. An investigation of X-ray and radio isotope energy absorption of ...

    Indian Academy of Sciences (India)

    Abstract. This study investigated the X-ray and radioisotope energy absorption capacity of heavyweight concrete containing barite aggregate. Concrete plates were prepared using differing amounts of barite aggregate instead of normal aggregate. Density–thickness–energy variations of these concretes for 85 keV, 118 keV, ...

  11. An investigation of X-ray and radio isotope energy absorption of ...

    Indian Academy of Sciences (India)

    This study investigated the X-ray and radioisotope energy absorption capacity of heavyweight concrete containing barite aggregate. Concrete plates were prepared using differing amounts of barite aggregate instead of normal aggregate. Density–thickness–energy variations of these concretes for 85 keV, 118 keV, 164 keV, ...

  12. Investigation of Electrical Energy Efficiency Use in an Automobile Assembly Industry

    Directory of Open Access Journals (Sweden)

    Jacob TSADO

    2016-12-01

    Full Text Available This research work investigated the electrical energy efficiency improvement and cost saving potentials for automobile assembly plant; a case of Peugeot Automobile Nigeria Limited. The study identified lighting system as a major source through which energy is being wasted, hence efficient energy saving lighting systems are being proffered; also saving accrued were determined to justify their deployment. In the course of this work, an energy saving calculating tool was developed to calculate energy saving capabilities using energy efficient lamps. With ample devotion to the implementation of the recommendations made, the cost of energy per car will be drastically reduced while profits are also made simultaneously. In all, more cars will be produced thus translating to more employment opportunities in the industry.

  13. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    Science.gov (United States)

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  14. Using Sdo's AIA to Investigate Energy Transport from a Flare's Energy Release Site to the Chromosphere

    Science.gov (United States)

    Brosius, Jeffrey W.; Holman, Gordon D.

    2012-01-01

    Coordinated observations of a GOES B4.8 microflare with SDOs Atmospheric Imaging Assembly (AIA) and the RamatyHigh Energy Solar Spectroscopic Imager (RHESSI) on 2010 July 31 show that emission in all seven of AIAs EUV channels brightened simultaneously nearly 6 min before RHESSI or GOES detected emission from plasma at temperatures around 10 MK. Aims. To help interpret these and AIA flare observations in general, we characterized the expected temporal responses of AIAs 94, 131, 171, 193, 211, and 335 channels to solar flare brightenings by combining (1) AIAs nominal temperature response functions available through SSWIDL with (2) EUV spectral line data observed in a flare loop Coordinated observations of a GOES B4.8 microflare with SDOs Atmospheric Imaging Assembly (AIA) and the RamatyHigh Energy Solar Spectroscopic Imager (RHESSI) on 2010 July 31 show that emission in all seven of AIAs EUV channels brightenedsimultaneously nearly 6 min before RHESSI or GOES detected emission from plasma at temperatures around 10 MK.Aims. To help interpret these and AIA flare observations in general, we characterized the expected temporal responses of AIAs 94,131, 171, 193, 211, and 335 channels to solar flare brightenings by combining (1) AIAs nominal temperature response functionsavailable through SSWIDL with (2) EUV spectral line data observed in a flare loop

  15. An investigation on nuclear energy policy in Turkey and public perception

    Science.gov (United States)

    Coskun, Mehmet Burhanettin; Tanriover, Banu

    2016-11-01

    Turkey, which meets nearly 70 per cent of its energy demands with import, is facing the problems of energy security and current account deficit as a result of its dependence on foreign sources in terms of energy input. It is also known that Turkey is having environmental problems due to the increases in CO2 emission. Considering these problems in Turkish economy, where energy input is commonly used, it is necessary to use energy sources efficiently and provide alternative energy sources. Due to the dependency of renewable sources on meteorological conditions (the absence of enough sun, wind, and water sources), the energy generation could not be provided efficiently and permanently from these sources. At this point, nuclear energy as analternative energy source maintains its importance as a sustainable energy source that providing energy in 7 days and 24 hours. The main purpose of this study is to evaluate the nuclear energy subject within the context of negative public perceptions emerged after Chernobyl (1986) and Fukushima (2011) disasters and to investigate in the economic framework.

  16. An investigation on nuclear energy policy in Turkey and public perception

    International Nuclear Information System (INIS)

    Coskun, Mehmet Burhanettin; Tanriover, Banu

    2016-01-01

    Turkey, which meets nearly 70 per cent of its energy demands with import, is facing the problems of energy security and current account deficit as a result of its dependence on foreign sources in terms of energy input. It is also known that Turkey is having environmental problems due to the increases in CO 2 emission. Considering these problems in Turkish economy, where energy input is commonly used, it is necessary to use energy sources efficiently and provide alternative energy sources. Due to the dependency of renewable sources on meteorological conditions (the absence of enough sun, wind, and water sources), the energy generation could not be provided efficiently and permanently from these sources. At this point, nuclear energy as analternative energy source maintains its importance as a sustainable energy source that providing energy in 7 days and 24 hours. The main purpose of this study is to evaluate the nuclear energy subject within the context of negative public perceptions emerged after Chernobyl (1986) and Fukushima (2011) disasters and to investigate in the economic framework

  17. Investigation on the energy absorption performance of a fixed-bottom pressure-differential wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Babarit, A.; Wendt, F.; Yu, Y. -H.; Weber, J.

    2017-04-01

    In this article, we investigate the energy absorption performance of a fixed-bottom pressure-differential wave energy converter. Two versions of the technology are considered: one has the moving surfaces on the bottom of the air chambers whereas the other has the moving surfaces on the top. We developed numerical models in the frequency domain, thereby enabling the power absorption of the two versions of the device to be assessed. It is observed that the moving surfaces on the top allow for easier tuning of the natural period of the system. Taking into account stroke limitations, the design is optimized. Results indicate that the pressure-differential wave energy converter is a highly efficient technology both with respect to energy absorption and selected economic performance indicators.

  18. Numerical Investigation of the Influences of Wellbore Flow on Compressed Air Energy Storage in Aquifers

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-01-01

    Full Text Available With the blossoming of intermittent energy, compressed air energy storage (CAES has attracted much attention as a potential large-scale energy storage technology. Compared with caverns as storage vessels, compressed air energy storage in aquifers (CAESA has the advantages of wide availability and lower costs. The wellbore can play an important role as the energy transfer mechanism between the surroundings and the air in CAESA system. In this paper, we investigated the influences of the well screen length on CAESA system performance using an integrated wellbore-reservoir simulator (T2WELL/EOS3. The results showed that the well screen length can affect the distribution of the initial gas bubble and that a system with a fully penetrating wellbore can obtain acceptably stable pressurized air and better energy efficiencies. Subsequently, we investigated the impact of the energy storage scale and the target aquifer depth on the performance of a CAESA system using a fully penetrating wellbore. The simulation results demonstrated that larger energy storage scales exhibit better performances of CAESA systems. In addition, deeper target aquifer systems, which could decrease the energy loss by larger storage density and higher temperature in surrounding formation, can obtain better energy efficiencies.

  19. A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 2: Investigation and Modeling of Indirect Energy Requirements

    Directory of Open Access Journals (Sweden)

    Giuseppe Todde

    2018-02-01

    Full Text Available Dairy cattle farms are continuously developing more intensive systems of management, which require higher utilization of durable and non-durable inputs. These inputs are responsible for significant direct and indirect fossil energy requirements, which are related to remarkable emissions of CO2. This study focused on investigating the indirect energy requirements of 285 conventional dairy farms and the related carbon footprint. A detailed analysis of the indirect energy inputs related to farm buildings, machinery and agricultural inputs was carried out. A partial life cycle assessment approach was carried out to evaluate indirect energy inputs and the carbon footprint of farms over a period of one harvest year. The investigation highlights the importance and the weight related to the use of agricultural inputs, which represent more than 80% of the total indirect energy requirements. Moreover, the analyses carried out underline that the assumption of similarity in terms of requirements of indirect energy and related carbon emissions among dairy farms is incorrect especially when observing different farm sizes and milk production levels. Moreover, a mathematical model to estimate the indirect energy requirements of dairy farms has been developed in order to provide an instrument allowing researchers to assess the energy incorporated into farm machinery, agricultural inputs and buildings. Combining the results of this two-part series, the total energy demand (expressed in GJ per farm results in being mostly due to agricultural inputs and fuel consumption, which have the largest share of the annual requirements for each milk yield class. Direct and indirect energy requirements increased, going from small sized farms to larger ones, from 1302–5109 GJ·y−1, respectively. However, the related carbon dioxide emissions expressed per 100 kg of milk showed a negative trend going from class <5000 to >9000 kg of milk yield, where larger farms were able to

  20. Partitioning and transmutation. Annual Report 1999

    International Nuclear Information System (INIS)

    Ekberg, C.; Enarsson, Aa.; Gustavsson, C.; Landgren, A.; Liljenzin, J.O.; Spjuth, L.

    2000-05-01

    The current research project on partitioning and transmutation at the Dept. of Nuclear Chemistry, CTH, has the primary objective to investigate separation processes useful in connection with transmutation of long-lived radionuclides in high level nuclear waste. Partitioning is necessary in order to recover and purify the elements before and after each irradiation in a P and T treatment. In order to achieve a high transmutation efficiency the chemical separation process used must have small losses to various waste streams. At present, only aqueous based separation processes are known to be able to achieve the high recovery and separation efficiencies necessary for a useful P and T process. During 1999 two of the three PhD students in this project have finalised their dissertations. Lena Spjuth has been working with oligo pyridines, triazines and malonamides; Anders Landgren has studied Aliquat-336 and redox kinetics. Two papers, included as appendices in the report, have been separately indexed

  1. Investigation of energy management strategies for photovoltaic systems - A predictive control algorithm

    Science.gov (United States)

    Cull, R. C.; Eltimsahy, A. H.

    1983-01-01

    The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.

  2. Hawk: A Runtime System for Partitioned Objects

    NARCIS (Netherlands)

    Ben Hassen, S.; Bal, H.E.; Tanenbaum, A.S.

    1997-01-01

    Hawk is a language-independent runtime system for writing data-parallel programs using partitioned objects. A partitioned object is a multidimensional array of elements that can be partitioned and distributed by the programmer. The Hawk runtime system uses the user-defined partitioning of objects

  3. Investigation of deep permeable strata in the permian basin for future geothermal energy reserves

    Energy Technology Data Exchange (ETDEWEB)

    Erdlac, Richard J., Jr.; Swift, Douglas B.

    1999-09-23

    This project will investigate a previously unidentified geothermal energy resource, opening broad new frontiers to geothermal development. Data collected by industry during oil and gas development demonstrate deep permeable strata with temperatures {ge} 150 C, within the optimum window for binary power plant operation. The project will delineate Deep Permeable Strata Geothermal Energy (DPSGE) assets in the Permian Basin of western Texas and southeastern New Mexico. Presently, geothermal electrical power generation is limited to proximity to shallow, high-temperature igneous heat sources. This geographically restricts geothermal development. Delineation of a new, less geographically constrained geothermal energy source will stimulate geothermal development, increasing available clean, renewable world energy reserves. This proposal will stimulate geothermal reservoir exploration by identifying untapped and unrealized reservoirs of geothermal energy. DPSGE is present in many regions of the United States not presently considered as geothermally prospective. Development of this new energy source will promote geothermal use throughout the nation.

  4. Experimental investigation on an innovative resorption system for energy storage and upgrade

    International Nuclear Information System (INIS)

    Jiang, Long; Wang, Liwei; Wang, Ruzhu; Zhu, Fangqi; Lu, Yiji; Roskilly, Anthony Paul

    2017-01-01

    Highlights: • A resorption thermal energy storage system is established and investigated for energy upgrade. • The highest heat release temperature is 155 °C. • The maximum thermal storage density is about 662 kJ/kg. • The energy efficiency and exergy efficiency range from 27.5% to 40.6% and from 32.5% to 47%. • ENG-TSA as the additive improves the heat and mass performance of composite adsorbent. - Abstract: Progress of efficient thermal energy storage (TES) has become a key technology for the development of energy conversion system. Among TES technologies, sorption thermal energy storage (STES) has drawn burgeoning attentions due to its advantages of high energy density, little heat loss and flexible working modes. Based on STES, this paper presents an innovative resorption sorption energy storage (RTES), and the experimental system is established and investigated for energy storage and upgrade. 4.8 kg and 3.9 kg MnCl 2 and CaCl 2 composite sorbents are separately filled in the sorption reactor, and expanded natural graphite treated with sulfuric acid (ENG-TSA) is integrated as the matrix for heat transfer intensification. It is indicated that the highest energy storage density are 662 kJ/kg and 596 kJ/kg when heat input temperature is 125 °C and heat release temperature are 130 °C and 135 °C, respectively. For different heat input and release temperature, the energy efficiency and exergy efficiency range from 27.5% to 40.6% and from 32.5% to 47%, respectively. The novel RTES system verifies the feasibility for energy storage and upgrade, which shows the great potential for low grade heat utilization especially for industrial process.

  5. The investigation of high school student’s energy concept by using analogies

    Science.gov (United States)

    Toedtanya, K.; Wuttiprom, S.

    2017-09-01

    Alternative energy tends to be more widespread in Thailand because the advanced technology, enhance the potential of equipment which becomes more economically rather than setting in laboratory likes in the past. For this reason students should understand profoundly about the characteristic of energy before they learned about alternative energy. To help students get more comprehension about the characteristic of energy, we need to investigate the idea about energy. There are three main reasons for the investigation (1) to know how students use analogy to describe characteristic of energy (2) to find out the most frequent characteristic that student used (3) to classify analogies for energy by using category of misconceptions which helped us to group students if there were any vague content in students’ explanation. Students were given a task to write their analogies after doing the STEM activity (Bungee Jump) in class. The answers were categorized into four terms of scientific contexts: energy can be accounted, can change forms, can be lost and can be transferred.

  6. Energy partitioning in elementary chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Bersohn, R. [Columbia Univ., New York, NY (United States)

    1993-12-01

    In the past year research has centered on the decomposition of hot molecules, the reaction of ethynyl radicals with hydrogen molecules and the reaction of oxygen atoms with acetylene. Reaction kinetics studies are reported for each of these systems.

  7. Classification algorithms using adaptive partitioning

    KAUST Repository

    Binev, Peter

    2014-12-01

    © 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.

  8. Investigating User Perception of High-Performance Schools about Factors Associated with Building Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Mohd Najib Mohd Salleh

    2016-01-01

    Full Text Available Energy demand in buildings can be reduced by improving energy efficiency. MS1525 has recommended that energy efficiency for Non-Residential Buildings in Malaysia to be not more than 135kWh/m²/year. A school building is a non-residential building and has major social responsibilities. Based on the theory of building energy-efficiency, energy efficiency can be achieved through three main factors: a design of buildings; b design of services; and c user behavior. This study aims to investigate the user perceptions in High-Performance Schools. The questionnaire viewed three main perceptions of users: perception of user behavior, the perception of building design and perception of services design.

  9. Spectroscopic investigation on the energy transfer process in photosynthetic apparatus of cyanobacteria

    Science.gov (United States)

    Li, Ye; Wang, Bei; Ai, Xi-Cheng; Zhang, Xing-Kang; Zhao, Jing-Quan; Jiang, Li-Jin

    2004-06-01

    In this work, we employ cyanobacteria, Spirulina platensis, and separate their photosynthetic apparatus, phycobilisome (PBS), thylakoid membrane and phycobilisome-thylakoid membrane complex. The steady state absorption spectra, fluorescence spectra and corresponding deconvoluted spectra and picosecond time-resolved spectra are used to investigate the energy transfer process in phycobilisome-thylakoid membrane complex. The results on steady state spectra show chlorophylls of the photosystem II are able to transfer excitation energy to phycobilisome with Chl a molecules selectively excited. The decomposition of the steady state spectra further suggest the uphill energy transfer originate from chlorophylls of photosystem II to cores of phycobilisome, while rods and cores of phycobilisome cannot receive energy from the chlorophylls of photosystem I. The time constant for the back energy transfer process is 18 ps.

  10. Theoretical analysis, infrared and structural investigations of energy dissipation in metals under cyclic loading

    International Nuclear Information System (INIS)

    Plekhov, O.A.; Saintier, N.; Palin-Luc, T.; Uvarov, S.V.; Naimark, O.B.

    2007-01-01

    The infrared and structural investigations of energy dissipation processes in metals subjected to cyclic loading have given impetus to the development of a new thermodynamic model with the capability of describing the energy balance under plastic deformation. The model is based on the statistical description of the mesodefect ensemble evolution and its influence on the dissipation ability of the material. Constitutive equations have been formulated for plastic and structural strains, which allow us to describe the stored and dissipated parts of energy under plastic flow. Numerical results indicate that theoretical predictions are in good agreement with the experimentally observed temperature data

  11. Investigation of electron emission energy composition from micro-pinch discharge plasma with time resolution

    International Nuclear Information System (INIS)

    Gulin, M.A.; Dolgov, A.N.; Kirichenko, N.N.; Savelov, A.S.

    1995-01-01

    Time features of electron emission from micro-pinch discharge plasma are investigated. Detection of > 25 keV energy electrons, emitted in the axial direction and x radiation with > 2 keV quantum energy is performed with nanosecond time resolution using a multichannel system of scintillation detectors. Comparison of amplitude ratio of electron signals from two detectors, placed behind aluminium filters, to the estimated ratio, corresponding to one-component temperature model of particle energy spectrum, allows one to distinguish two groups of emitted electrons: one is characterized by effective kT e e > 30 keV. 9 refs., 5 figs., 1 tab

  12. Unpartitioned versus incompletely partitioned cochleae: radiologic differentiation.

    Science.gov (United States)

    Sennaroglu, Levent; Saatci, Isil

    2004-07-01

    In the process of evaluating our patients, we realized that the term "Mondini deformity" was being used to describe two different types of incomplete partition of the cochlea. THE First one consisted of an unpartitioned, completely empty cochlea where the interscalar septum and entire modiolus were absent, giving the cochlea a cystic appearance; a grossly dilated vestibule accompanied this lesion. The second pathology fitted the classic description of Mondini deformity, consisting of a normal basal turn and cystic apex (where the middle and apical turns form a cystic cavity), dilated vestibule, and enlarged vestibular aqueduct. This study was planned to investigate the differences between the two types of incomplete partition for inner ear malformations based on radiologic features. We conducted a retrospective review of temporal bone computed tomography (CT) findings. The subjects were 18 patients with profound bilateral sensorineural hearing loss who had high-resolution CT with contiguous 1-mm thick images obtained through the petrous bone in axial sections. The CT results were reviewed as incomplete partition type I (IP-I) and type II (IP-II). Incomplete partition type I (unpartitioned cochlea, cystic cochleovestibular malformation) is defined as a malformation in which the cochlea lacks the entire modiolus and interscalar septa, resulting in a cystic appearance and there is an accompanying grossly dilated vestibule. In incomplete partition type II (incompletely partitioned cochlea, the Mondini deformity), there is a cochlea comprised of a normal basal turn and cystic apex accompanied by a minimally dilated vestibule and enlarged vestibular aqueduct (VA). Measurements involving the cochlea, vestibule, vestibular aqueduct, and internal auditory canal (IAC) were done to determine the characteristic features of these pathologies. : Thirteen ears had IP-I and 18 ears had IP-II anomaly. The size of the cochleae in both anomalies showed no significant difference from

  13. Smith River Rancheria's Development of an Energy Organization Investigation

    Energy Technology Data Exchange (ETDEWEB)

    W.G Buehler & Associates

    2007-08-27

    Smith River Rancheria (SRR), for some time, has had a strong commitment to attaining energy selfsufficiency, to reduce overall energy costs and concurrently initiate economic development within the community. Early on it was recognized that the development of an energy organization was important and for this reason was made part of the SRR's strategic review not only for economic development but also the reduction of energy costs. Towards this end, SRR retained Werner G. Buehler of W.G. Buehler & Associates to investigate the many phases or steps required to establish such an energy organization and determine, if in fact, it could benefit the Tribe. The basic phases are delineated as: (1) Identify potential sources of wholesale power and transmission paths; (2) Evaluating the various forms of energy organizations; (3) Determining the benefits (and disadvantages) of each form of organization; (4) Gathering costs to organize and operate the selected form or energy organization; (5) Performing an economic analysis of forming and operating an energy organization; and (6) Develop an implementation plan.

  14. Nutrient and carbohydrate partitioning in sorghum stover

    International Nuclear Information System (INIS)

    Powell, J.M.; Hons, F.M.; McBee, G.G.

    1991-01-01

    Sorghum [Sorghum bicolor (L.) Moench] stover has been demonstrated to be a potential biomass energy source. Complete aboveground crop removal, however, can result in soil degradation. Differential dry matter, nutrient, and carbohydrate partitioning by sorghum cultivars may allow management strategies that return certain parts to the field while removing other portions for alternative uses, such as energy production. A field study was conducted to determine N,P,K, nonstructural carbohydrate, cellulose hemicellulose, and lignin distributions in stover of three diverse sorghum cultivars of differing harvest indices. Determinations were based on total vegetative biomass; total blades; total stalks; and upper middle, and lower blades and stalks. Concentrations of N and P were higher in blades than stalks and generally declines from upper to lower stover parts. Large carbohydrate and lignin concentration differences were observed on the basis of cultivar and stover part. Greater nutrient partitioning to the upper third of the intermediate and forage-type sorghum stovers was observed as compared to the conventional grain cultivar. Stover carbohydrates for all cultivars were mainly contained in the lower two-thirds of the stalk fraction. A system was proposed for returning upper stover portion to soil, while removing remaining portions for alternative uses

  15. Analysis of load balance in hybrid partitioning | Talib | Botswana ...

    African Journals Online (AJOL)

    In information retrieval systems, there are three types of index partitioning schemes - term partitioning, document partitioning, and hybrid partitioning. The hybrid-partitioning scheme combines both term and document partitioning schemes. Term partitioning provides high concurrency, which means that queries can be ...

  16. Does moving towards renewable energy causes water and land inefficiency? An empirical investigation

    International Nuclear Information System (INIS)

    Al-mulali, Usama; Solarin, Sakiru Adebola; Sheau-Ting, Low; Ozturk, Ilhan

    2016-01-01

    This study investigates the effect of renewable energy production on water and land footprint in 58 developed and developing countries for the period of 1980–2009. Utilizing the ecological footprint as an indicator, the fixed effects, difference and system generalized method of moment (GMM) approaches were employed and eight different models were constructed to achieve robustness in the empirical outcomes. Despite the use of different methods and models, the outcome was the same whereby GDP growth, urbanization, and trade openness increase the water and land footprint. Moreover, renewable energy production increases the water and land inefficiency because of its positive effect on ecological footprint. Additionally, based on the square of GDP it is concluded that the EKC hypothesis does not exist while the square of renewable energy production indicates that renewable energy production will continue to increase water and land footprint in the future. From the outcome of this study, a number of recommendations were provided to the investigated countries. - Highlights: •The effect of renewable energy production on water and land footprint is studied. •58 developed and developing countries were examined for the period of 1980–2009. •Eight different models were constructed to achieve robustness in the outcomes. •GDP, urbanization, and trade openness increase the water and land footprint. •Renewable energy production increases the water and land inefficiency.

  17. Rectilinear partitioning of irregular data parallel computations

    Science.gov (United States)

    Nicol, David M.

    1991-01-01

    New mapping algorithms for domain oriented data-parallel computations, where the workload is distributed irregularly throughout the domain, but exhibits localized communication patterns are described. Researchers consider the problem of partitioning the domain for parallel processing in such a way that the workload on the most heavily loaded processor is minimized, subject to the constraint that the partition be perfectly rectilinear. Rectilinear partitions are useful on architectures that have a fast local mesh network. Discussed here is an improved algorithm for finding the optimal partitioning in one dimension, new algorithms for partitioning in two dimensions, and optimal partitioning in three dimensions. The application of these algorithms to real problems are discussed.

  18. Partitioning and transmutation: Radioactive waste management option

    International Nuclear Information System (INIS)

    Stanculescu, A.

    2005-01-01

    Growing world population with increasing energy needs, especially in the developing countries, Threat of global warming due to CO 2 emissions demands non-fossil electricity production. Nuclear will have to be part of a sustainable mix of energy production options Figures show that 350 GWe worldwide capacity is 'nuclear'. Present worldwide spent fuel (containing high Pu inventory) and HLW would need large repositories. In view of the previous facts this lecture deals Partitioning and transmutation as radioactive waste management option. Partitioning and transmutation (P and T) is a complex technology i.e. advanced reprocessing, and demand transuranics fuel fabrication plants, as well as innovative and/or dedicated transmutation reactors. In addition to U, Pu, and 129 I, 'partitioning' extracts from the liquid high level waste the minor actinides (MA) and the long-lived fission products (LLFP) 99-Tc, 93-Zr, 135-Cs, 107-Pd, and 79-Se). 'Transmutation' requires fully new fuel fabrication plants and reactor technologies to be developed and implemented on industrial scale. Present LWRs are not suited for MA and LLFP transmutation (safety consideration, plant operation, poor incineration capability). Only specially licensed LWRs can cope with MOX fuel; for increased Pu loadings (up to 100%), special reactor designs (e.g., ABB80+) are required; a combination of these reactor types could allow Pu inventory stabilization. Long-term waste radiotoxicity can be effectively reduced only if transuranics are 'incinerated' through fission with very hard neutron spectra. New reactor concepts (dedicated fast reactors, Accelerator Driven Systems (ADS), fusion/fission hybrid reactors) have been proposed as transmuters/incinerators. Significant Pu+MAs incineration rates can be achieved in symbiotic scenarios: LWR-MOX and dedicated fast reactors; fast neutron spectrum ADS mainly for MA incineration; very high thermal flux ADS concepts could also provide a significant transuranics

  19. Actinide and Fission Product Partitioning and Transmutation

    International Nuclear Information System (INIS)

    2015-06-01

    The benefits of partitioning and transmutation (P and T) have now been established worldwide and, as a result, many countries are pursuing R and D programmes to advance the technologies associated with P and T. In this context, the OECD Nuclear Energy Agency (NEA) has organised a series of biennial information exchange meetings to provide experts with a forum to present and discuss state-of-the-art developments in the field of partitioning and transmutation since 1990. The OECD Nuclear Energy Agency Information Exchange Meeting on Actinides and Fission Products Partitioning and Transmutation is a forum for experts to present and discuss the state-of-the-art development in the field of P and T. Thirteen meetings have been organised so far and held in Japan, the United States, France, Belgium, Spain, the Republic of Korea and the Czech Republic. This 13. meeting was hosted by Seoul National University (Seoul, Republic of Korea) and was organised in co-operation with the International Atomic Energy Agency (IAEA) and the European Community (EC). The meeting covered strategic and scientific developments in the field of P and T such as: fuel cycle strategies and transition scenarios, the role of P and T in the potential evolution of nuclear energy as part of the future energy mix; radioactive waste management strategies; transmutation fuels and targets; advances in pyro and aqueous separation processes; P and T specific technology requirements (materials, spallation targets, coolants, etc.); transmutation systems: design, performance and safety; impact of P and T on the fuel cycle; fabrication, handling and transportation of transmutation fuels. A total of 103 presentations (39 oral and 64 posters) were discussed among the 110 participants from 19 countries and 2 international organisations. The meeting consisted of one plenary session where national and international programmes were presented followed by 5 technical sessions: - Fuel Cycle Strategies and Transition

  20. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    International Nuclear Information System (INIS)

    Miller, John; Sibley Lewis, B.; Wohlgemuth, John

    1999-01-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs

  1. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  2. Investigation of the stochastic nature of temperature and humidity for energy management

    Science.gov (United States)

    Hadjimitsis, Evanthis; Demetriou, Evangelos; Sakellari, Katerina; Tyralis, Hristos; Iliopoulou, Theano; Koutsoyiannis, Demetris

    2017-04-01

    Atmospheric temperature and dew point, in addition to their role in atmospheric processes, influence the management of energy systems since they highly affect the energy demand and production. Both temperature and humidity depend on the climate conditions and geographical location. In this context, we analyze numerous of observations around the globe and we investigate the long-term behaviour and periodicities of the temperature and humidity processes. Also, we present and apply a parsimonious stochastic double-cyclostationary model for these processes to an island in the Aegean Sea and investigate their link to energy management. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  3. A partitioning-free transmutation concept of nuclear waste reduction

    International Nuclear Information System (INIS)

    Taczanowski, S.

    1996-01-01

    The idea of a symbiotic nuclear energy system, consisted of an Accelerator-driven Fuel Regenerator and a number of LWRs serviced by it, is the subject of this study, in view of supposed safety and partitioning avoidance advantages. The design premises leading to this concept are widely discussed. 7 refs, 7 figs

  4. Partition function of nearest neighbour Ising models: Some new ...

    Indian Academy of Sciences (India)

    Administrator

    insights. †. G NANDHINI and M V SANGARANARAYANAN*. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036 e-mail: sangara@iitm.ac.in. Abstract. The partition function for one-dimensional nearest neighbour Ising models is estimated by summing all the energy terms in the Hamiltonian for ...

  5. Partition function of the two-dimensional nearest neighbour Ising ...

    Indian Academy of Sciences (India)

    y; J and H are assumed to be positive quantities. For a square lattice of 16 sites, our tour de force consists in deducing the partition function by systematically enumerating all the 65,536 configurations; this task is accomplished by employing Visual Basic programming in conjunction with the Excel software. The energies.

  6. Mechanical properties of carbynes investigated by ab initio total-energy calculations

    DEFF Research Database (Denmark)

    Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola

    2012-01-01

    As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...... response to small longitudinal and bending deformations and their failure limits for longitudinal compression and elongation....

  7. An investigation of energy harvesting from renewable sources with PVDF and PZT

    International Nuclear Information System (INIS)

    Vatansever, D; Hadimani, R L; Shah, T; Siores, E

    2011-01-01

    Piezoelectric materials have been in use for many years; however, with an increasing concern about global warming, piezoelectricity has gained significant importance in research and development for extracting energy from the environment. In this work the voltage responses of ceramic based piezoelectric fibre composite structures (PFCs) and polymer based piezoelectric strips, PVDF (polyvinylidene fluoride), were evaluated when subjected to various wind speeds and water droplets in order to investigate the possibility of energy generation from these two natural renewable energy sources for utilization in low power electronic devices. The effects of material dimensions, drop mass, releasing height of the drops and wind speed on the voltage output were studied and the power was calculated. This work showed that piezoelectric polymer materials can generate higher voltage/power than ceramic based piezoelectric materials and it was proved that producing energy from renewable sources such as rain drops and wind is possible by using piezoelectric polymer materials

  8. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    Science.gov (United States)

    Cull, R. C.; Eltimsahy, A. H.

    1982-01-01

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  9. An investigation of standby energy losses in residential sector: Solutions and policies

    Energy Technology Data Exchange (ETDEWEB)

    Singh Solanki, Parmal [Caledonian (University) College of Engineering, Muscat (Oman); Sarma Mallela, Venkateswara [G. Narayanamma Institute of Technology and Science (for Women), Hyderabad (India); Zhou, Chengke [Glasgow Caledonian University, Glasgow, Scotland (United Kingdom)

    2013-07-01

    This paper investigates the standby power losses of household appliances and determines these losses by field measurements and bottom-up approaches. It is revealed that average standby power losses of e-appliances at household in Oman is 103.4 Watts and could further increase if other miscellaneous appliances are also taken into account. Calculations show that TV sets alone are responsible to consume 1.89 MW standby powers across the country. The paper considers various technological and socio-economic options to diminish the standby power consumption and signify that 42.72% of energy consumed by appliances can be saved by end-users implementing suitable measures. Energy management programmes like energy efficiency standards, labelling and policy instruments to tackle the standby power losses are also discussed. Finally, paper looks into the barriers and their way-outs to implement the energy efficiency standards and labelling.

  10. Improved Multibody Dynamics for Investigating Energy Dissipation in Train Collisions Based on Scaling Laws

    Directory of Open Access Journals (Sweden)

    Heng Shao

    2016-01-01

    Full Text Available This study aimed to investigate energy dissipation in train collisions. A 1/8 scaled train model, about one-dimensional in longitudinal direction, was used to carry out a scaled train collision test. Corresponding multibody dynamic simulations were conducted using traditional and improved method model (IMM in ADAMS. In IMM, the connection between two adjacent cars was expressed by a nonlinear spring and energy absorbing structures were equivalently represented by separate forces, instead of one force. IMM was able to simulate the motion of each car and displayed the deformation of structures at both ends of the cars. IMM showed larger deformations and energy absorption of structures in moving cars than those in stationary cars. Moreover, the asymmetry in deformation proportion in main energy absorbing structures decreased with increasing collision speed. The asymmetry decreased from 11.69% to 3.60% when the collision speed increased from 10 km/h to 36 km/h.

  11. Investigation on the possibility of extracting wave energy from the Texas coast

    Science.gov (United States)

    Haces-Fernandez, Francisco

    Due to the great and growing demand of energy consumption in the Texas Coast area, the generation of electricity from ocean waves is considered very important. The combination of the wave energy with offshore wind power is explored as a way to increase power output, obtain synergies, maximize the utilization of assigned marine zones and reduce variability. Previously literature has assessed the wave energy generation, combined with wind in different geographic locations such as California, Ireland and the Azores Island. In this research project, the electric power generation from ocean waves on the Texas Coast was investigated, assessing its potential from the meteorological data provided by five buoys from National Data Buoy Center of the National Oceanic and Atmospheric Administration, considering the Pelamis 750 kW Wave Energy Converter (WEC) and the Vesta V90 3 MW Wind Turbine. The power output from wave energy was calculated for the year 2006 using Matlab, and the results in several locations were considered acceptable in terms of total power output, but with a high temporal variability. To reduce its variability, wave energy was combined with wind energy, obtaining a significant reduction on the coefficient of variation on the power output. A Matlab based interface was created to calculate power output and its variability considering data from longer periods of time.

  12. Gentile statistics and restricted partitions

    Indian Academy of Sciences (India)

    In a recent paper (Tran et al, Ann. Phys. 311, 204 (2004)), some asymptotic number theoretical results on the partitioning of an integer were derived exploiting its connection to the quantum density of states of a many-particle system. We generalise these results to obtain an asymptotic formula for the restricted or coloured ...

  13. Partitioning of a DRM receiver

    NARCIS (Netherlands)

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Smit, L.T.

    In this article we present the results of partitioning the OFDM baseband processing of a DRM receiver into smaller independent processes. Furthermore, we give a short introduction into the relevant parts of the DRM standard. Based on the number of multiplications and additions we can map individual

  14. Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems

    OpenAIRE

    McCullough, Michael; Small, Michael; Stemler, Thomas; Iu, Herbert Ho-Ching

    2015-01-01

    We investigate a generalised version of the recently proposed ordinal partition time series to network transformation algorithm. Firstly we introduce a fixed time lag for the elements of each partition that is selected using techniques from traditional time delay embedding. The resulting partitions define regions in the embedding phase space that are mapped to nodes in the network space. Edges are allocated between nodes based on temporal succession thus creating a Markov chain representation...

  15. Investigation of energy transfer between PM567:Rh610 dye mixture in modified poly (methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohui, E-mail: lixiaohuihit@163.com [National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080 (China); Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080 (China); Fan, Rongwei; Yu, Xin [National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080 (China); Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080 (China); Chen, Deying, E-mail: dychen@hit.edu.cn [National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080 (China); Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080 (China)

    2014-01-15

    In this paper, solid dye samples were prepared by codoping laser dyes Pyrromethene 567 (PM567) as the energy donor and Rhodamine 610 (Rh610) as the energy acceptor into the ethanol modified poly (methyl methacrylate) matrix (MPMMA) to enhance the properties of the solid dye lasers. The fluorescence intensity of the acceptor was enhanced by up to 9 fold with the introduction of the donor molecules. The laser efficiency of the dye mixture doped samples was improved by up to 8 times relative to that of the samples solely doped with the acceptor, and the highest slope efficiency was obtained as 70.4%. The radiative and nonradiative energy transfer rate constants (K{sub R} and K{sub NR}) were calculated using the Stern–Volmer plots and the acceptor concentration dependence of the radiative and nonradiative transfer efficiencies were also obtained. The K{sub R} was three orders of magnitude higher than the K{sub NR}, indicating the dominance of the radiative energy transfer mechanism in the present system. The deviation of the Stern–Volmer plot from the linearity demonstrated that both the dynamic and transient quenching mechanism exist in the present energy transfer system. -- Highlights: • Energy transfer between PM567:Rh610 dye-mixture in MPMMA matrices studied. • Fluorescence intensity of acceptor was improved 9 fold due to the energy transfer. • Highest slope efficiency was 70.4%, 8 times of that of acceptor doped sample. • Energy transfer rate constants and efficiencies were investigated. • Dominant mechanism responsible for the energy transfer is radiative type.

  16. A strategic study of the partitioning and transmutation system being developed at JAERI

    International Nuclear Information System (INIS)

    Yoshida, H.; Kubota, M.; Katsuta, H.; Mukaiyama, T.; Takizuka, T.

    1993-01-01

    The present HLW management is based on disposal HLW of in a deep geological formation after its solidification and cooling. The partitioning and transmutation (P-T) technology plays roles to mitigate the issues in the present HLW management,according to advance of the technology,such as a supporting technology by reduction of HLW volume and heat generation, a complemental technology by mitigation of natural barrier uncertainty, and a new technology different from the geological disposal. Under the framework of OMEGA programme in Japan, the Japan Atomic Energy Research Institute(JAERI) has studied partitioning and transmutation (P-T) technologies which has a potential to provide a different HLW management from geological disposal. The technologies include a partitioning process to separate HLW into 4 elements groups together with minor-actinides group[l],and two different kinds of transmutation systems; minor-actinide burning fast reactor and proton accelerator-based transmutation system, both of which have equivalent transmutation capability. A preliminary strategic study has been carried out to investigate effectiveness of the above-mentioned P-T technologies to the HLW management. The study includes followings: effect of long-lived nuclides separation to radioactive toxicity of HLW and, effect of long-lived nuclides transmutation to their accumulation. (authors)

  17. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds

    Science.gov (United States)

    Ekman, Åsa; Hayden, Daniel M.; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development. PMID:19036843

  18. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.

    Science.gov (United States)

    Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.

  19. Overall assessment of actinide partitioning and transmutation for waste management purposes

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Croff, A.G.; Finney, B.C.; Tedder, D.W.

    1980-01-01

    A program to establish the technical feasibility and incentives for partitioning (i.e., recovering) actinides from fuel cycle wastes and then transmuting them in power reactors to shorter-lived or stable nuclides has recently been concluded at the Oak Ridge National Laboratory. The feasibility was established by experimentally investigating the reduction that can be practicably achieved in the actinide content of the wastes sent to a geologic repository, and the incentives for implementing this concept were defined by determining the incremental costs, risks, and benefits. Eight US Department of Energy laboratories and three private companies participated in the program over its 3-year duration. A reference fuel cycle was chosen based on a self-generated plutonium recycle PWR, and chemical flowsheets based on solvent extraction and ion-exchange techniques were generated that have the potential to reduce actinides in fuel fabrication and reprocessing plant wastes to less than 0.25% of those in the spent fuel. Waste treatment facilities utilizing these flowsheets were designed conceptually, and their costs were estimated. Finally, the short-term (contemporary) risks from fuel cycle operations and long-term (future) risks from deep geologic disposal of the wastes were estimated for cases with and without partitioning and transmutation. It was concluded that, while both actinide partitioning from wastes and transmutation in power reactors appear to be feasible using currently identified and studied technology, implementation of this concept cannot be justified because of the small long-term benefits and substantially increased costs of the concept

  20. Investigation of the thermal hazardous effect of protective clothing caused by stored energy discharge.

    Science.gov (United States)

    He, Jiazhen; Lu, Yehu; Chen, Yan; Li, Jun

    2017-09-15

    In addition to direct thermal energy from a heating source, a large amount of thermal energy stored in clothing will continuously discharge to skin after exposure. Investigating the thermal hazardous effect of clothing caused by stored energy discharge is crucial for the reliability of thermal protective clothing. In this study several indices were proposed and applied to evaluate the impact of thermal energy discharge on human skin. The heat discharge from different layers of fabric systems was investigated, and the influences of air gaps and applied compression were examined. Heat fluxes at the boundaries of fabric layers and the distribution of heat discharge were determined. Additionally, the correlation between heat storage during exposure and heat discharge after exposure was identified. The results demonstrated that heat discharge to the skin could be correlated with heat storage within the fabric, however, it highly depended on the air gap under clothing, the applied compression, and the insulation provided by the fabric layers. Results from this study could contribute to thoroughly understanding the thermal hazardous effect of clothing and enhance the technical basis for developing new fabric combinations to minimize energy discharge after exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Investigation of flow-induced vibration for energy harvesting using a model soap-film system

    Science.gov (United States)

    Yang, Wenchao; Stremler, Mark; Virginia Tech Team

    2017-11-01

    One way to extract energy from geophysical flows is to take advantage of flow-induced vibration (FIV) caused by vortices being shed from a bluff body. Wake-induced vibration of the downstream cylinder in a tandem pair is a promising design for a FIV energy harvesting system, especially suitable for low Reynolds number flows. For this design, the upstream cylinder is fixed in place, while the downstream cylinder is free to oscillate like a pendulum that is driven by interactions with the flow, including the wake of the upstream cylinder. We use a flowing soap film system, with behavior that resembles two-dimensional hydrodynamics, to experimentally investigate the wake interaction between a stationary upstream circular disk and a free downstream circular disk, which acts as a swinging pendulum. The wake flow generates thickness variations in the thin soap film, allowing direct observation of wake patterns through visualization of interference fringes. With the ability to tie together the wake structure and the object motion, we investigate the relationship between energy generation and flow structure in the simplified model energy harvesting system for Re =150. The research results find the optimal efficiency of the energy harvesting system by a parametric study.

  2. Some trees with partition dimension three

    Science.gov (United States)

    Fredlina, Ketut Queena; Baskoro, Edy Tri

    2016-02-01

    The concept of partition dimension of a graph was introduced by Chartrand, E. Salehi and P. Zhang (1998) [2]. Let G(V, E) be a connected graph. For S ⊆ V (G) and v ∈ V (G), define the distance d(v, S) from v to S is min{d(v, x)|x ∈ S}. Let Π be an ordered partition of V (G) and Π = {S1, S2, ..., Sk }. The representation r(v|Π) of vertex v with respect to Π is (d(v, S1), d(v, S2), ..., d(v, Sk)). If the representations of all vertices are distinct, then the partition Π is called a resolving partition of G. The partition dimension of G is the minimum k such that G has a resolving partition with k partition classes. In this paper, we characterize some classes of trees with partition dimension three, namely olive trees, weeds, and centipedes.

  3. Design and experimental investigation of a Multi-segment plate concentrated photovoltaic solar energy system

    International Nuclear Information System (INIS)

    Wang, Gang; Chen, Zeshao; Hu, Peng

    2017-01-01

    Highlights: • A multi-segment plate concentrated photovoltaic solar energy system was proposed. • A prototype of this new concentrator was developed for experimental investigation. • Experimental investigation results showed a good concentrating uniformity. - Abstract: Solar energy is one of the most promising renewable energies and meaningful for the sustainable development of energy source. A multi-segment plate concentrated photovoltaic (CPV) solar power system was proposed in this paper, the design principle of the multi-segment plate concentrator of this solar power system was given, which could provide uniform solar radiation flux density distribution on solar cells. A prototype of this multi-segment plate CPV solar power system was developed for the experimental study, aiming at the investigations of solar radiation flux density distribution and PV performances under this concentrator design. The experimental results showed that the solar radiation flux density distribution provided by the multi-segment plate concentrator had a good uniformity, and the number and temperature of solar cells both influence the photoelectric transformation efficiency of the CPV solar power system.

  4. Investigating the high-energy QCD approaches for prompt-photon production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Machado, M.V.T. [Universidade Federal do Pampa, Campus de Bage, Centro de Ciencias Exatas e Tecnologicas, Bage, RS (Brazil); Mariotto, C.B. [Universidade Federal do Rio Grande, Departamento de Fisica, Box 474, Rio Grande, RS (Brazil)

    2009-06-15

    We investigate the rapidity and transverse-momentum distributions of the prompt photon production at the CERN LHC energies considering the current perturbative QCD approaches for this scattering process. Namely, we compare the predictions from the usual NLO pQCD calculations to the color-dipole formalism, using distinct dipole cross sections. Special attention is paid to parton-saturation models at high energies, which are expected to be important at the forward rapidities in pp collisions ({radical}(s)=14 TeV) at the LHC. (orig.)

  5. Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Anqi [Argonne National Lab. (ANL), Argonne, IL (United States); Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Biruduganti, Munidhar [Argonne National Lab. (ANL), Argonne, IL (United States); Bihari, Bipin [Argonne National Lab. (ANL), Argonne, IL (United States); Matusik, Katarzyna E. [Argonne National Lab. (ANL), Argonne, IL (United States); Duke, Daniel J. [Argonne National Lab. (ANL), Argonne, IL (United States); Powell, Christopher F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kastengren, Alan L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.

  6. Comparative Investigation of the Efficiency of Absorption of Solar Energy by Carbon Composite Materials

    Science.gov (United States)

    Prikhod‧ko, N. G.; Smagulova, G. T.; Rakhymzhan, N. B.; Kim, S.; Lesbaev, B. T.; Nazhipkyzy, M.; Mansurov, Z. A.

    2017-01-01

    This paper presents the results of research on the efficiency of absorption of solar energy by various carbon materials (soot, carbonized apricot pits and rice husks, and carbon nanotubes in the form of a ″forest″), as well as by composites based on them with inclusions of metal oxide nanoparticles. An analysis of the efficiency of absorption of solar energy by various carbon materials has demonstrated the advantage of the carbon material from carbonized apricot pits. The results of the comparative investigation of the absorptivity of apricot pits with that of the coating of a production prototype of solar collector are presented.

  7. Pulsed ion hall accelerator for investigation of reactions between light nuclei in the astrophysical energy range

    Science.gov (United States)

    Bystritsky, V. M.; Bystritsky, Vit. M.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.

    2017-07-01

    The factors defining the constraints on the current characteristics of the magnetically insulated ion diode (IDM) are considered. The specific current parameters close to the maximum possible ones are obtained for the particular IDM-40 design assigned for acceleration of light ions and investigation of nuclear reactions with small cross sections in the astrophysical energy range (2-40 keV) in the entrance channel. It is experimentally demonstrated that the chosen optimal operation conditions for IDM-40 units provide high stability of the parameters (energy distribution and composition of accelerated particle beams, degree of neutralization) of the accelerated particle flux, which increases during the working pulse.

  8. Time Domain Partitioning of Electricity Production Cost Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jones, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hale, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Production cost models are often used for planning by simulating power system operations over long time horizons. The simulation of a day-ahead energy market can take several weeks to compute. Tractability improvements are often made through model simplifications, such as: reductions in transmission modeling detail, relaxation of commitment variable integrality, reductions in cost modeling detail, etc. One common simplification is to partition the simulation horizon so that weekly or monthly horizons can be simulated in parallel. However, horizon partitions are often executed with overlap periods of arbitrary and sometimes zero length. We calculate the time domain persistence of historical unit commitment decisions to inform time domain partitioning of production cost models. The results are implemented using PLEXOS production cost modeling software in an HPC environment to improve the computation time of simulations while maintaining solution integrity.

  9. Investigation of Energy and Environmental Potentials of a Renewable Trigeneration System in a Residential Application

    Directory of Open Access Journals (Sweden)

    Eun-Chul Kang

    2016-09-01

    Full Text Available Micro polygeneration utilizing renewable energy is a suitable approach to reduce energy consumption and carbon emission by offering high-efficiency performance, offsetting the need for centrally-generated grid electricity and avoiding transmission/distribution losses associated with it. This paper investigates the energy and environmental potential of a renewable trigeneration system in a residential application under Incheon (Korea and Ottawa (Canada weather conditions. The trigeneration system consists of a ground-to-air heat exchanger (GAHX, photovoltaic thermal (PVT panels and an air-to-water heat pump (AWHP. The study is performed by simulations in TRNSYS (Version 17.02 environment. The performance of the trigeneration system is compared to a reference conventional system that utilizes a boiler for space and domestic hot water heating and a chiller for space cooling. Simulation results showed substantial annual primary energy savings from the renewable trigeneration system in comparison to the reference system—45% for Incheon and 42% for Ottawa. The CO2eq emission reduction from the renewable trigeneration system is also significant, standing at 43% for Incheon and 82% for Ottawa. Furthermore, trigeneration systems’ capability to generate electricity and thermal energy at the point of use is considered as an attractive option for inclusion in the future smart energy network applications.

  10. Investigation of techniques for energy-efficient new-build data centres

    Energy Technology Data Exchange (ETDEWEB)

    De Buck, A.; Afman, M.; Van Lieshout, M. [CE Delft, Delft (Netherlands); Harryvan, D. [Mansystems, Den Haag (Netherlands)

    2013-05-15

    Data centres are becoming an increasingly important sector of the Dutch economy, but are also substantial and rapidly growing energy consumers, currently responsible for approximately 1.5% of national electricity use. In recent years a range of technical options have been developed that permit major improvements in the energy efficiency of data centres. In this context CE Delft has investigated in-depth a number of options for new-build data centres. All these options limit energy use and are economically and technically feasible. The study was conducted for the Dutch government's NL Agency in close cooperation with the trade association Nederland ICT and individual data centres, as well as national and local government authorities. The study consists of an extensive literature study and entailed interviews with suppliers of energy-efficient techniques. Based on detailed data delivered by these suppliers, model calculations were performed to predict the energy performance at different loading degrees. The results were validated with data centre operators. The results show that a high degree of energy efficiency can be achieved. Various combinations of techniques available to this end can deliver EUEs below 1.2. This is a significant step beyond the EUE of 1.3 used as a reference. EUE, Energy Usage Efficiency, is a measure of how energy-efficient a data centre provides its services. A crucial factor in all technology combinations is substantial use of 'free cooling', i.e. utilising natural sources of cold. The efficient variants use technology geared to maximising such use. The type of power supply is another key factor, and in this respect modular construction is pivotal. Operational aspects are also important for achieving high efficiencies. The report is to serve as a basis for guidelines for local government in the framework of environmental permits.

  11. Partitioning in P-T concept

    International Nuclear Information System (INIS)

    Zhang Peilu; Qi Zhanshun; Zhu Zhixuan

    2000-01-01

    Comparison of dry- and water-method for partitioning fission products and minor actinides from the spent fuels, and description of advance of dry-method were done. Partitioning process, some typical concept and some results of dry-method were described. The problems fond in dry-method up to now were pointed out. The partitioning study program was suggested

  12. Fair partitions of polygons: An elementary introduction

    Indian Academy of Sciences (India)

    different numbers of sides etc. and could be arbitrarily positioned within P. Unlike area, we do not know upfront how much perimeter each piece ought to have – its common value has to emerge from the partition. Following [7], we define a fair partition of a polygon as a partition of it into finite number of pieces such that every ...

  13. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  14. Sound intensity as a function of sound insulation partition

    OpenAIRE

    Cvetkovic, S.; Prascevic, R.

    1994-01-01

    In the modern engineering practice, the sound insulation of the partitions is the synthesis of the theory and of the experience acquired in the procedure of the field and of the laboratory measurement. The science and research public treat the sound insulation in the context of the emission and propagation of the acoustic energy in the media with the different acoustics impedance. In this paper, starting from the essence of physical concept of the intensity as the energy vector, the authors g...

  15. Enhanced Stability of Retained Austenite by Quenching and Double Partitioning Process

    Science.gov (United States)

    Hou, Z. R.; Zhao, X. M.

    2017-12-01

    In the present study, a novel quenching and double partitioning (Q&DP) process is proposed. The quenching and partitioning (Q&P) process was accompanied by a second partitioning process, which led to the enhanced stability of retained austenite. The chemical composition of the investigated steel was 0.24C-1.9Mn-1.85Si, without an excess addition of alloying elements. This process aims to enhance the stability of retained austenite by controlling martensitic transformation and carbon partitioning. By applying this process, the uniform and total elongation is increased, without obvious reduction in ultimate tensile strength. An optimum combination of strength and ductility (ultimate tensile strength: 1304MPa; total elongation: 23%) was achieved by quenching to 65°C and subsequent second partitioning treatment, after the first quenching to 300°C and partitioning process. The enhanced mechanical properties were attributed to the increased amount of stabilized film-like austenite.

  16. Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Khaligh, A.; Rasmussen, Peter Omand

    2008-01-01

    Combining high energy density batteries and high power density ultracapacitors in Fuel Cell Hybrid Electric Vehicles (FCHEV) results in a high efficient, high performance, low size, and light system. Often the batteries are rated with respect to their energy requirement in order to reduce...... their volume and mass. This does not prevent deep discharges of the batteries, which is critical to their lifetime. In this paper, the ratings of the batteries and ultracapacitors in a FCHEV are investigated. Comparison of system volume, mass, efficiency, and battery lifetime due to the rating of the energy...... storage devices are presented. It is concluded, that by sufficient rating of the battery or ultracapacitors, an appropriate balance between system volume, mass, efficiency, and battery lifetime is achievable....

  17. Investigation of Different Configurations of a Ventilated Window to Optimize Both Energy Efficiency and Thermal Comfort

    DEFF Research Database (Denmark)

    Liu, Mingzhe; Heiselberg, Per; Larsen, Olena Kalyanova

    2017-01-01

    ) for the calculation of the thermal and solar properties of commercial and innovative window systems. Additionally, comfort performance is evaluated by inlet air temperature and internal surface temperature of the windows calculated by WIS software. The results of the study show the energy and comfort performance...... the energy consumption or optimizing the thermal comfort. The provided optimal window typologies can be used in residential and commercial buildings for both new constructions and renovations.......The study in this article investigates 15 ventilated window typologies with different pane configurations and glazing types in climates of four European countries (United Kingdom, Denmark, France and Germany) in order to identify the optimum typology with regard to their energy balance and impact...

  18. Investigation of heat of fusion storage for solar low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2005-01-01

    This paper describes a theoretical investigation by means of TRNSYS simulations of a partly heat loss free phase change material (PCM) storage solution for solar heating systems. The partly heat loss free storage is obtained by controlled used of super cooling in a mixture of sodium acetate...... and xanthane rubber. The storage can cool down to surrounding temperature preserving the latent heat in form of the heat of fusion energy. The basis for the calculations is a super low energy house with a space heating demand of 2010 kWh/year and a domestic hot water demand of 2530 kWh/year. For storage...... volumes in the range of 500 – 3000 litres the heat loss free state is seldom reached and the effect of super cooling is limited. For larger volumes the heat loss free state may be reached. The benefit of using a PCM storage compared to a traditional water storage is limited with respect to energy savings...

  19. Public contracts in the Dutch energy sector. A strategic investigation with regard to normalisation

    International Nuclear Information System (INIS)

    Van der Feen, E.J.; Maas, P.J.J.

    1995-01-01

    A number of strategic investigations is carried out to determine if and to what extent normalization of public contracts can support the position of the Dutch businesses and industry in the European market. The strategic investigation in this report is limited to clusters within the Dutch energy utilities' sector concerning the production, transportation and distribution of electricity and heat, and the distribution of natural gas in the Netherlands. The results of this report can support those companies that will acquire orders via public contracts in the future; companies that wish to continue existing relations with tender services, if they will change to public contracts; and tender services that will have to put their orders via public contracts.Relevant European guidelines and accompanying procedures are outlined. The economic interest of the total Dutch energy sector and the different energy clusters in the Netherlands is discussed. Also attention is paid to the process of normalization, the role of standards and other technical documents regarding the guidelines Public Contracts. An inventory of available standards and conceptual standards is given for each energy cluster. Finally, an indication is given of the actual compliance of the guidelines. 5 figs., 4 tabs., 16 appendices

  20. Teaching Renewable Energy Using Online PBL in Investigating Its Effect on Behaviour towards Energy Conservation among Malaysian Students: ANOVA Repeated Measures Approach

    Science.gov (United States)

    Nordin, Norfarah; Samsudin, Mohd Ali; Harun, Abdul Hadi

    2017-01-01

    This research aimed to investigate whether online problem based learning (PBL) approach to teach renewable energy topic improves students' behaviour towards energy conservation. A renewable energy online problem based learning (REePBaL) instruction package was developed based on the theory of constructivism and adaptation of the online learning…

  1. Investigation of inelastic scattering of ultracold neutrons with small energy transfer at solid state surfaces

    International Nuclear Information System (INIS)

    Lychagin, E.V.; Muzychka, A.Yu.; Nekhaev, G.V.; Strelkov, A.V.; Shvetsov, V.N.; Nesvizhevskij, V.V.; Tal'daev, R.R.

    2001-01-01

    Inelastic scattering of neutrons with small energy transfer of ∼10 -7 eV was investigated using gravitational UCN spectrometer. The probability of such a process at stainless steel and beryllium surfaces was measured. It was also estimated at copper surface. The measurement showed that the detected flux of neutrons scattered at beryllium and copper surfaces is ∼ 2 times higher at room temperature compared to that at the liquid nitrogen temperature. (author)

  2. Total scattering investigation of materials for clean energy applications: the importance of the local structure.

    Science.gov (United States)

    Malavasi, Lorenzo

    2011-04-21

    In this Perspective article we give an account of the application of total scattering methods and pair distribution function (PDF) analysis to the investigation of materials for clean energy applications such as materials for solid oxide fuel cells and lithium batteries, in order to show the power of this technique in providing new insights into the structure-property correlation in this class of materials.

  3. Structure of ion-plated amorphous hydrogenated carbon films investigated by electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muehling, I.; Bewilogua, K.; Breuer, K. (Sektion Physik/Elektronische Bauelemente, Technische Univ., Karl-Marx-Stadt (German Democratic Republic))

    1990-05-15

    Thin ion-plated amorphous hydrogenated carbon films were investigated by electron energy loss spectroscopy. From an analysis of the dielectric function, information on the film structure could be obtained. The results will be compared with those of electron diffraction studies. Differences between insulating and conducting substrates could be verified in the film structure and are related to surface charging effects. From an analysis of the oscillator strength sum rule the content of C sp{sup 2} atoms was estimated. (orig.).

  4. An investigation into the Eco-design of Energy Using Products directive.

    Science.gov (United States)

    Meech, Christina Goodrick

    2006-01-01

    This study reviews the eco-design of energy using products directive and additional legislation on the way that waste electrical and electronic equipment should be disposed of, and how this may influence the future product design of appliances. During the investigation 'lifecycle analysis' and consumers' responses to this legislation, and the industry were also reviewed. Finally, for future product designers who work with electrical and electronic equipment some guidelines and rules are given to consider while designing for the environment and sustainability.

  5. Progress report for an Outstanding Junior Investigator Award in experimental high energy physics

    International Nuclear Information System (INIS)

    Partridge, R.

    1990-01-01

    An experimental program based upon the study of hadron collisions at the highest available energy is being carried out with the support of an Outstanding Junior Investigator Award to Prof. Richard Partridge. The work described in this report includes the development of the Level 0 trigger for the D0 experiment at Fermilab preparation for the D0 physics program, and studies of detector design for the Superconducting Super Collider (SSC)

  6. Investigating Efficient Tar Management from Biomass and Waste to Energy Gasification Processes

    Science.gov (United States)

    2015-04-01

    tars or allow them to react excessively. A collet creates a minimal air leak path while the ball valve is opened and the probe is slid into...Heated Gravimetric Tar Sampling Probe. Figure 20 shows the actual heated probe along with the airlock system of the 2” ball valve and collet...FINAL REPORT Investigating Efficient Tar Management from Biomass and Waste to Energy Gasification Processes SERDP Project WP-2236 APRIL

  7. The optimal graph partitioning problem

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros; Holm, Søren

    1993-01-01

    In this paper we consider the problem of partitioning the set of nodes in a graph in at most p classes, such that the sum of node weights in any class is not greater than the class capacity b, and such that the sum of edge weights, for edges connecting nodes in the same class, is maximal. This pr......In this paper we consider the problem of partitioning the set of nodes in a graph in at most p classes, such that the sum of node weights in any class is not greater than the class capacity b, and such that the sum of edge weights, for edges connecting nodes in the same class, is maximal...

  8. PAQ: Partition Analysis of Quasispecies.

    Science.gov (United States)

    Baccam, P; Thompson, R J; Fedrigo, O; Carpenter, S; Cornette, J L

    2001-01-01

    The complexities of genetic data may not be accurately described by any single analytical tool. Phylogenetic analysis is often used to study the genetic relationship among different sequences. Evolutionary models and assumptions are invoked to reconstruct trees that describe the phylogenetic relationship among sequences. Genetic databases are rapidly accumulating large amounts of sequences. Newly acquired sequences, which have not yet been characterized, may require preliminary genetic exploration in order to build models describing the evolutionary relationship among sequences. There are clustering techniques that rely less on models of evolution, and thus may provide nice exploratory tools for identifying genetic similarities. Some of the more commonly used clustering methods perform better when data can be grouped into mutually exclusive groups. Genetic data from viral quasispecies, which consist of closely related variants that differ by small changes, however, may best be partitioned by overlapping groups. We have developed an intuitive exploratory program, Partition Analysis of Quasispecies (PAQ), which utilizes a non-hierarchical technique to partition sequences that are genetically similar. PAQ was used to analyze a data set of human immunodeficiency virus type 1 (HIV-1) envelope sequences isolated from different regions of the brain and another data set consisting of the equine infectious anemia virus (EIAV) regulatory gene rev. Analysis of the HIV-1 data set by PAQ was consistent with phylogenetic analysis of the same data, and the EIAV rev variants were partitioned into two overlapping groups. PAQ provides an additional tool which can be used to glean information from genetic data and can be used in conjunction with other tools to study genetic similarities and genetic evolution of viral quasispecies.

  9. Partitioning sparse rectangular matrices for parallel processing

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  10. Spectral partitioning in equitable graphs.

    Science.gov (United States)

    Barucca, Paolo

    2017-06-01

    Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.

  11. Partitioning of Nanoparticles into Organic Phases and Model Cells

    Energy Technology Data Exchange (ETDEWEB)

    Posner, J.D.; Westerhoff, P.; Hou, W-C.

    2011-08-25

    There is a recognized need to understand and predict the fate, transport and bioavailability of engineered nanoparticles (ENPs) in aquatic and soil ecosystems. Recent research focuses on either collection of empirical data (e.g., removal of a specific NP through water or soil matrices under variable experimental conditions) or precise NP characterization (e.g. size, degree of aggregation, morphology, zeta potential, purity, surface chemistry, and stability). However, it is almost impossible to transition from these precise measurements to models suitable to assess the NP behavior in the environment with complex and heterogeneous matrices. For decades, the USEPA has developed and applies basic partitioning parameters (e.g., octanol-water partition coefficients) and models (e.g., EPI Suite, ECOSAR) to predict the environmental fate, bioavailability, and toxicity of organic pollutants (e.g., pesticides, hydrocarbons, etc.). In this project we have investigated the hypothesis that NP partition coefficients between water and organic phases (octanol or lipid bilayer) is highly dependent on their physiochemical properties, aggregation, and presence of natural constituents in aquatic environments (salts, natural organic matter), which may impact their partitioning into biological matrices (bioaccumulation) and human exposure (bioavailability) as well as the eventual usage in modeling the fate and bioavailability of ENPs. In this report, we use the terminology "partitioning" to operationally define the fraction of ENPs distributed among different phases. The mechanisms leading to this partitioning probably involve both chemical force interactions (hydrophobic association, hydrogen bonding, ligand exchange, etc.) and physical forces that bring the ENPs in close contact with the phase interfaces (diffusion, electrostatic interactions, mixing turbulence, etc.). Our work focuses on partitioning, but also provides insight into the relative behavior of ENPs as either "more like

  12. Performance analysis of four-partition desiccant wheel and hybrid dehumidification air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jongsoo; Yamaguchi, Seiichi; Saito, Kiyoshi; Kawai, Sunao [Department of Applied Mechanics and Aerospace Engineering, School of Fundamental Science and Engineering, Waseda University, 3-4-1-58-210 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2010-05-15

    A desiccant dehumidification system with air can decrease energy consumption because it can be driven by low-grade waste heat below 80 C. If this system can be driven by low-temperature heat sources whose temperature is below 50 C, exhausted heat from fuel cells or air conditioners that exist everywhere can be used as heat sources. This could lead to considerable energy saving. This study provides a detailed evaluation of the performance of a four-partition desiccant wheel to make a low-temperature driving heat source possible and achieve considerable energy saving by the simulation and experiment. Further, the study investigates the in-depth performance of a hybrid air-conditioning system with a four-partition desiccant wheel by simulation. As a result, it was clear that there exists an optimum rotational speed to maximize the dehumidification performance and that the hybrid air-conditioning system improves COP by approximately 94% as compared to the conventional vapour compression-type refrigerator. (author)

  13. System Dynamics of Polysilicon for Solar Photovoltaics: A Framework for Investigating the Energy Security of Renewable Energy Supply Chains

    Directory of Open Access Journals (Sweden)

    Debra Sandor

    2018-01-01

    Full Text Available Renewable energy, produced with widely available low-cost energy resources, is often included as a component of national strategies to address energy security and sustainability. Market and political forces cannot disrupt the sun or wind, unlike oil and gas supplies. However, the cost of renewable energy is highly dependent on technologies manufactured through global supply chains in leading manufacturing countries. The countries that contribute to the global supply chains may take actions that, directly or indirectly, influence global access to materials and components. For example, high-purity polysilicon, a key material in solar photovoltaics, has experienced significant price fluctuations, affecting the manufacturing capacity and cost of both polysilicon and solar panels. This study developed and validated an initial system dynamics framework to gain insights into global trade in polysilicon. The model represents an initial framework for exploration. Three regions were modeled—China, the United States, and the rest of the world—for a range of trade scenarios to understand the impacts of import duties and non-price drivers on the relative volumes of imports and domestic supply. The model was validated with the historical case of China imposing an import duty on polysilicon from the United States, the European Union, and South Korea, which altered the regional flows of polysilicon—in terms of imports, exports, and domestic production—to varying degrees. As expected, the model tracked how regional demand shares and influx volumes decrease as a duty on a region increases. Using 2016 as a reference point, in the scenarios examined for U.S. exports to China, each 10% increase in the import duty results in a 40% decrease in import volume. The model also indicates that, under the scenarios investigated, once a duty has been imposed on a region, the demand share from that region declines and does not achieve pre-duty levels, even as global

  14. A layer model of ethanol partitioning into lipid membranes.

    Science.gov (United States)

    Nizza, David T; Gawrisch, Klaus

    2009-06-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.

  15. Short-term carbon partitioning fertilizer responses vary among two full-sib loblolly pine clones

    Science.gov (United States)

    Jeremy P. Stovall; John R. Seiler; Thomas R. Fox

    2012-01-01

    We investigated the effects of fertilizer application on the partitioning of gross primary productivity (GPP) between contrasting full-sib clones of Pinus taeda (L.). Our objective was to determine if fertilizer growth responses resulted from similar short-term changes to partitioning. A modeling approach incorporating respiratory carbon (C) fluxes,...

  16. Buoyant production and consumption of turbulence kinetic energy in cloud-topped mixed layers

    Science.gov (United States)

    Randall, D. A.

    1984-01-01

    It is pointed out that studies of the entraining planetary boundary layer (PBL) have generally emphasized the role of buoyancy fluxes in driving entrainment. The buoyancy flux is proportional to the rate of conversion of the potential energy of the mean flow into the kinetic energy of the turbulence. It is not unusual for conversion to proceed in both directions simultaneously. This occurs, for instance, in both clear and cloudy convective mixed layers which are capped by inversions. A partitioning of the net conversion into positive parts, generating turbulence kinetic energy (TKE), and negative parts (TKE-consuming), would make it possible to include the positive part in the gross production rate, and closure would be achieved. Three different approaches to partitioning have been proposed. The present investigation is concerned with a comparison of the three partitioning theories. Particular attention is given to the cloud-topped mixed layer because in this case the differences between two partitioning approaches are most apparent.

  17. The part-frequency matrices of a partition

    Directory of Open Access Journals (Sweden)

    William J. Keith

    2016-09-01

    Full Text Available A new combinatorial object is introduced, the part-frequency matrix sequence of a partition, whichis elementary to describe and is naturally motivated by Glaisher’s bijection. We prove results thatsuggest surprising usefulness for such a simple tool, including the existence of a related statistic thatrealizes every possible Ramanujan-type congruence for the partition function. To further exhibit itsresearch utility, we give an easy generalization of a theorem of Andrews, Dixit and Yee [1] on the mocktheta functions. Throughout, we state a number of observations and questions that can motivate anarray of investigations.

  18. An investigation on the effects of air on electron energy in atmospheric pressure helium plasma jets

    Science.gov (United States)

    Liu, Yadi; Tan, Zhenyu; Chen, Xinxian; Li, Xiaotong; Zhang, Huimin; Pan, Jie; Wang, Xiaolong

    2018-03-01

    In this work, the effects of air on electron energy in the atmospheric pressure helium plasma jet produced by a needle-plane discharge system have been investigated by means of the numerical simulation based on a two-dimensional fluid model, and the air concentration dependences of the reactive species densities have also been calculated. In addition, the synergistic effects of the applied voltage and air concentration on electron energy have been explored. The present work gives the following significant results. For a fixed applied voltage, the averaged electron energy is basically a constant at air concentrations below about 0.5%, but it evidently decreases above the concentration of 0.5%. Furthermore, the averaged densities of four main reactive species O, O(1D), O2(1Δg), and N2(A3Σu+) increase with the increasing air concentration, but the increase becomes slow at air concentrations above 0.5%. The air concentration dependences of the averaged electron energy under different voltage amplitudes are similar, and for a given air concentration, the averaged electron energy increases with the increase in the voltage amplitude. For the four reactive species, the effects of the air concentration on their averaged densities are similar for a given voltage amplitude. In addition, the averaged densities of the four reactive species increase with increasing voltage amplitude for a fixed air concentration. The present work suggests that a combination of high voltage amplitude and the characteristic air concentration, 0.5% in the present discharge system, allows an expected electron energy and also generates abundant reactive species.

  19. NEEDS for LHC experiment planning from results of very high energy cosmic ray Investigations (NEEDS-2

    Directory of Open Access Journals (Sweden)

    Petrukhin A.A.

    2015-01-01

    Full Text Available 12 years ago, at 12th ISVHECRI, a special NEEDS workshop was held to discuss future LHC data required for interpretation of cosmic ray experiments. Now, when the main task of LHC is solved – the Higgs boson is discovered – the question “What will be the next?” is very actual. In this paper the results of cosmic ray experiments at LHC energies are considered. Their possible explanation in the frame of a new model of production of quark-gluon matter blobs is discussed. The necessity to pass in LHC experiments from investigations of pp-interactions to investigations of nucleus-nucleus interactions is underlined since cosmic rays consist mainly of nuclei (≈ 60% which interact with nuclei of air. But namely in these nucleus-nucleus interactions many unusual results were obtained in cosmic ray investigations. Corresponding tasks for future LHC experiments are proposed.

  20. Growth, assimilate partitioning and grain yield response of soybean ...

    African Journals Online (AJOL)

    Abstract. This investigation tested variation in the growth components, assimilate partitioning and grain yield of soybean (Glycine max L. Merrrill) varieties established in CO2 enriched atmosphere when inoculated with mixtures of Arbuscular mycorrhizal fungi (AMF) species in the humid rainforest of Nigeria. A pot and a field ...

  1. Feeding habits and food partitioning between three commercial fish ...

    African Journals Online (AJOL)

    We investigated the diet and food partitioning between the aforementioned species using stomach content and stable isotope analyses (δ13C,δ15N). Priacanthus hamrur and S. crumenophthalmus fed on a larger prey diversity and showed significant overlap in their diets, with crustacean larvae the dominant prey.

  2. Investigation of {sup 17}F+p elastic scattering at near-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    El-Azab Farid, M. [Assiut University, Physics Department, Assiut (Egypt); Ibraheem, Awad A. [Al-Azhar University, Physics Department, Assiut (Egypt); King Khalid University, Physics Department, Abha (Saudi Arabia); Al-Hajjaji, Arwa S. [Taiz University, Physics Department, Taiz (Yemen)

    2015-10-15

    The {sup 17}F +p elastic scattering at two near-barrier energies of 3.5 and 4.3 MeV/nucleon, have been analyzed in the framework of the single folding approach. The folded potentials are constructed by folding the density-dependent (DDM3Y) effective nucleon-nucleon interaction over the nuclear density of the one-proton halo nucleus {sup 17}F. Two versions of the density are considered. In addition, two versions of the one-nucleon knock-on exchange potentials are introduced to construct the real microscopic potentials. The derived potentials supplemented by phenomenological Woods-Saxon imaginary and spin-orbit potentials produced excellent description of the differential elastic scattering cross sections at the higher energy without need to introduce any renormalization. At the lower energy, however, in order to successfully reproduce the data, it is necessary to reduce the strength of the constructed real DDM3Y potential by about 25% of its original value. Furthermore, good agreement with data is obtained using the extracted microscopic DDM3Y potentials for both real and imaginary parts. Moreover, the interesting notch test is applied to investigate the sensitivity of the elastic scattering cross section to the radial distribution of the constructed microscopic potentials. The extracted reaction (absorption) cross sections are, also, investigated. (orig.)

  3. Impact of partitioning and transmutation in radioactive waste management

    International Nuclear Information System (INIS)

    Magill, J.

    2006-01-01

    Nuclear energy provides a significant contribution to the overall energy supply in Europe. With 148 reactors in 13 of the 25 Member States producing a total power of 125 G We, the resulting energy generation of 850 TWh per year provides 35% of the total electrical energy requirements in the European Union. Worldwide, 441 commercial reactors operate in 31 countries and provide 17% of the electrical requirements. Currently 32 nuclear reactors are being built worldwide mostly in India, China and in neighbouring countries. The used fuel discharged from nuclear power plants constitutes the main contribution to nuclear waste in countries which do not undertake reprocessing. As such, its disposal requires isolation from the biosphere in stable deep geological formations for long periods of time (some hundred thousand years) until its radioactivity decreases through the process of radioactive decay. Ways for significantly reducing the volumes and radio toxicities of the waste and to shorten the very long times for which the waste must be stored safely are being investigated. This is the motivation behind the partitioning and transmutation (P and T) activities worldwide. Most of the hazard from the spent fuel stems from only a few chemical elements, namely plutonium, neptunium, americium, curium, and some long-lived fission products such as iodine, caesium and technetium. At present approximately 2500 t of spent fuel are produced annually in the EU, containing about 25 t of plutonium, and 3.5 t of the minor actinides neptunium, americium and curium, and about 3 t of long-lived fission products. These radioactive by-products, although present in relatively low concentrations in the used fuel, are a hazard to life forms when released into the environment. This paper addresses the potential impact of P and T on the long-term disposal of nuclear waste. In particular, it evaluates how realistic P and T scenarios can lead to a reduction in the time required for the waste to be

  4. Apparatus and method for investigation of energy consumption of microwave assisted drying systems

    Science.gov (United States)

    Göllei, Attila; Vass, András; Magyar, Attila; Pallai, Elisabeth

    2009-10-01

    Convective, hot air drying by itself is relatively efficient for removing water from the surface environment of agricultural seed products. However, moving internal moisture to the surface needs rather a long time, as a rule. The major research aim of the authors was to decrease the processing time and processing costs, to improve the quality of the dried product, and to increase drying efficiency. For this reason their research activities focused on the development of a special drying apparatus and a method suitable for measuring of energy conditions in a hybrid (microwave and convective) dryer. Experimental investigations were made with moistened wheat as model material. Experiments were carried out in microwave, convective and hybrid drying systems. The microwave drying alone was more efficient than the convective method. The lowest energy consumption and shortest drying time were obtained by the use of a hybrid method in which the waste energy of magnetron was utilized and the temperature was controlled. In this way, it was possible to keep the temperature of the dried product at a constant and safe value and to considerably decrease the energy consumption.

  5. Design and investigation of an enhanced magneto-mechanical nonlinear energy harvester

    Science.gov (United States)

    Nammari, Abdullah; Caskey, Logan; Negrete, Johnny; Bardaweel, Hamzeh

    2017-04-01

    In this work, a unique magneto-mechanical energy harvester is fabricated, modeled, and investigated. The magnetomechanical energy harvester consists of a levitated magnet, forming a magnetic spring, connected to oblique, mechanical springs. Upon base-excitation, the levitated magnet experiences nonlinear forces in the direction of motion due to the mechanical and magnetic spring. Voltage is induced in a coil placed around the body of the energy harvester. Results confirm the oblique, mechanical springs and magnetic springs introduce geometric negative and hardening stiffnesses. This behavior allows for the use of disc magnets instead of ring magnets, reducing energy dissipation due to Coulomb damping. Forward and reverse sinusoidal frequency sweep measurements at a constant acceleration of 0.75g shows the characteristic backbone curve exhibited by Duffing-type nonlinear oscillators. The frequency response of the proposed device demonstrates the broadband capabilities with a measured peak power of approximately 7-mW at 15Hz. Results from the model are in good agreement with data obtained from the experiment.

  6. Electroencephalographic scalp-energy analysis as a tool for investigation of cognitive performance.

    Science.gov (United States)

    Montgomery, R W; Montgomery, L D; Guisado, R

    1993-01-01

    In a new method of using electroencephalography (EEG) to monitor cognitive events, multichannel event-related potentials (ERPs) were used to estimate scalp distributions of surface energy densities of cortically generated electrical fields. Cross-subject regression analyses were then used to map sites and post-stimulus latencies, for which there is a high correlation of energy densities with subjects' performances. In a preliminary study, five right-handed young men were presented mental arithmetic tasks via a computer screen. A 21-channel ERP was computed for each subject and converted to show the scalp distribution of energy density at each sampling period (every 7.8 msec). Indices of subjects' task performances were regressed upon these estimates of potential energy at each electrode site and post-stimulus latency. High correlations were found at four distinct regions and latencies. These corresponded to the stages and sites of cortical localization for mental arithmetic inferred from studies of patients with localized cortical lesions. This correspondence suggests that the EEG procedure may offer an inexpensive, noninvasive method of investigating cortical localization of cognitive function in healthy subjects.

  7. Channel for Applied Investigations on Low Energy Ion Beams of Cyclotron DC-60

    CERN Document Server

    Gikal, B N; Borisenko, A N; Fateev, A A; Gulbekyan, G G; Kalagin, I V; Kazacha, V I; Kazarinov, N Yu; Kolesov, I V; Lebedev, N I; Lysukhin, S N; Melnikov, V N

    2006-01-01

    The channel intended for carrying out applied investigations on the low energy ion beams having the kinetic energy 25 $Z/A$ keV/a.u. and transported from the ECR-source to a target is worked out. The channel structure and parameters of all its optics elements are defined. The calculation results of different ion types transportation are given. It is shown that ions having the ratio of their mass to charge Z/A=2-20 can be transported in the worked out channel with enough high expected efficiency. At that the ion beam diameter on the target is $\\sim$40 mm. The characteristics of the basic optical elements of the channel are also given.

  8. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng, E-mail: dssu@imr.ac.cn [Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016 (China)

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  9. Apparatus for Investigating Momentum and Energy Conservation With MBL and Video Analysis

    Science.gov (United States)

    George, Elizabeth; Vazquez-Abad, Jesus

    1998-04-01

    We describe the development and use of a laboratory setup that is appropriate for computer-aided student investigation of the principles of conservation of momentum and mechanical energy in collisions. The setup consists of two colliding carts on a low-friction track, with one of the carts (the target) attached to a spring, whose extension or compression takes the place of the pendulum's rise in the traditional ballistic pendulum apparatus. Position vs. time data for each cart are acquired either by using two motion sensors or by digitizing images obtained with a video camera. This setup allows students to examine the time history of momentum and mechanical energy during the entire collision process, rather than simply focusing on the before and after regions. We believe that this setup is suitable for helping students gain understanding as the processes involved are simple to follow visually, to manipulate, and to analyze.

  10. Investigation of nucleon-induced reactions in the Fermi energy domain within the microscopic DYWAN model

    Energy Technology Data Exchange (ETDEWEB)

    Sebille, F.; Bonilla, C. [SUBATECH, Universite de Nantes, CNRS/IN2P3, 44 - Nantes (France); Blideanu, V.; Lecolley, J.F. [Laboratoire de Physique Corpusculaire, ENSICAEN, Universite de Caen, IN2P3-CNRS, 14 - Caen (France)

    2004-06-01

    A microscopic investigation of nucleon-induced reactions is addressed within the DYWAN model, which is based on the projection methods of out of equilibrium statistical physics and on the mathematical theory of wavelets. Due to a strongly compressed representation of the fermionic wave-functions, the numerical simulations of the nucleon transport in target are therefore able to preserve the quantum nature of the colliding system, as well as a least biased many-body information needed to keep track of the cluster formation. A special attention is devoted to the fingerprints of the phase space topology induced by the fluctuations of the self-consistent mean-field. Comparisons be ween theoretical results and experimental data point out that ETDHF type approaches are well suited to describe reaction mechanisms in the Fermi energy domain. The observed sensitivity to physical effects shows that the nucleon-induced reactions provide a valuable probe of the nuclear interaction in this range of energy. (authors)

  11. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    Science.gov (United States)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  12. Investigation of heat of fusion storage for solar low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2005-01-01

    This paper describes a theoretical investigation by means of TRNSYS simulations of a partly heat loss free phase change material (PCM) storage solution for solar heating systems. The partly heat loss free storage is obtained by controlled used of super cooling in a mixture of sodium acetate...... volumes in the range of 500 – 3000 litres the heat loss free state is seldom reached and the effect of super cooling is limited. For larger volumes the heat loss free state may be reached. The benefit of using a PCM storage compared to a traditional water storage is limited with respect to energy savings...

  13. Schmidt games and Markov partitions

    Science.gov (United States)

    Tseng, Jimmy

    2009-03-01

    Let T be a C2-expanding self-map of a compact, connected, C∞, Riemannian manifold M. We correct a minor gap in the proof of a theorem from the literature: the set of points whose forward orbits are nondense has full Hausdorff dimension. Our correction allows us to strengthen the theorem. Combining the correction with Schmidt games, we generalize the theorem in dimension one: given a point x0 ∈ M, the set of points whose forward orbit closures miss x0 is a winning set. Finally, our key lemma, the no matching lemma, may be of independent interest in the theory of symbolic dynamics or the theory of Markov partitions.

  14. Many-body formalism for fermions: The partition function

    Science.gov (United States)

    Watson, D. K.

    2017-09-01

    The partition function, a fundamental tenet in statistical thermodynamics, contains in principle all thermodynamic information about a system. It encapsulates both microscopic information through the quantum energy levels and statistical information from the partitioning of the particles among the available energy levels. For identical particles, this statistical accounting is complicated by the symmetry requirements of the allowed quantum states. In particular, for Fermi systems, the enforcement of the Pauli principle is typically a numerically demanding task, responsible for much of the cost of the calculations. The interplay of these three elements—the structure of the many-body spectrum, the statistical partitioning of the N particles among the available levels, and the enforcement of the Pauli principle—drives the behavior of mesoscopic and macroscopic Fermi systems. In this paper, we develop an approach for the determination of the partition function, a numerically difficult task, for systems of strongly interacting identical fermions and apply it to a model system of harmonically confined, harmonically interacting fermions. This approach uses a recently introduced many-body method that is an extension of the symmetry-invariant perturbation method (SPT) originally developed for bosons. It uses group theory and graphical techniques to avoid the heavy computational demands of conventional many-body methods which typically scale exponentially with the number of particles. The SPT application of the Pauli principle is trivial to implement since it is done "on paper" by imposing restrictions on the normal-mode quantum numbers at first order in the perturbation. The method is applied through first order and represents an extension of the SPT method to excited states. Our method of determining the partition function and various thermodynamic quantities is accurate and efficient and has the potential to yield interesting insight into the role played by the Pauli

  15. Investigation report from the commission for energy regulation about the outage of Saturday November 4, 2006

    International Nuclear Information System (INIS)

    2007-01-01

    On November 4, 2006, a large-scale incident occurred on the European high-voltage interconnected power network which left 15 million people without electricity in Western Europe during about 2 hours. Considering the European dimension of the outage, the European Regulators Group for Electricity and Gas (ERGEG) conducted an investigation, the final report of which being made publically available on February 6, 2007. Considering the impact of this incident on the French territory, the French commission for energy regulation (CRE) decided as soon as November 5, 2006 to carry out its own investigation in order to inform the French consumers about the chronology of facts and the precise causes of this incident. This document summarises the CRE's report and presents its conclusions and recommendations as well as the technical report of the incident

  16. Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Arthur Pecher

    2014-02-01

    Full Text Available A quasi-static analysis and sensitivity investigation of two different mooring configurations—a single anchor leg mooring (SALM and a three-legged catenary anchor leg system (CALM—is presented. The analysis aims to indicate what can be expected in terms of requirements for the mooring system size and stiffness. The two mooring systems were designed for the same reference load case, corresponding to a horizontal design load at the wave energy converter (WEC of 2000 kN and a water depth of 30 m. This reference scenario seems to be representative for large WECs operating in intermediate water depths, such as Weptos, Wave Dragon and many others, including reasonable design safety factors. Around this reference scenario, the main influential parameters were modified in order to investigate their impact on the specifications of the mooring system, e.g. the water depth, the horizontal design load, and a mooring design parameter.

  17. Investigation and Optimisation of a Discrete Fluid Power PTO-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard

    recently focused research on improving the power take off (PTO) system converting the mechanical motion of the floats into electricity. This has brought attention to discrete fluid power (DFP) technology, especially secondary controlled common pressure rail systems. A novel discrete PTO-system has been...... investigation show how the wave climate naturally influence the optimal system configuration yielding maximal energy output, and how one may choose the system configuration based on the installation site. The switching manifold is the control element of the secondary controlled force system. The force....... Involvement in designing, installation and control of a full scale PTO test-bench has been under-taken parallel to the theoretical work. Preliminary force switching tests have been conducted to investigate the influence of valve switching time on the dynamic behaviour of the PTO-system. The results...

  18. On some trees having partition dimension four

    Science.gov (United States)

    Ida Bagus Kade Puja Arimbawa, K.; Baskoro, Edy Tri

    2016-02-01

    In 1998, G. Chartrand, E. Salehi and P. Zhang introduced the notion of partition dimension of a graph. Since then, the study of this graph parameter has received much attention. A number of results have been obtained to know the values of partition dimensions of various classes of graphs. However, for some particular classes of graphs, finding of their partition dimensions is still not completely solved, for instances a class of general tree. In this paper, we study the properties of trees having partition dimension 4. In particular, we show that, for olive trees O(n), its partition dimension is equal to 4 if and only if 8 ≤ n ≤ 17. We also characterize all centipede trees having partition dimension 4.

  19. Investigation of point and extended defects in electron irradiated silicon—Dependence on the particle energy

    Energy Technology Data Exchange (ETDEWEB)

    Radu, R.; Pintilie, I.; Nistor, L. C. [National Institute of Materials Physics, Atomistilor 105 bis, Magurele 077125 (Romania); Fretwurst, E.; Lindstroem, G. [Institute for Experimental Physics, University of Hamburg, D-22761 Hamburg (Germany); Makarenko, L. F. [Belarusian State University, Independence Ave. 4, 220030 Minsk (Belarus)

    2015-04-28

    This work is focusing on generation, time evolution, and impact on the electrical performance of silicon diodes impaired by radiation induced active defects. n-type silicon diodes had been irradiated with electrons ranging from 1.5 MeV to 27 MeV. It is shown that the formation of small clusters starts already after irradiation with high fluence of 1.5 MeV electrons. An increase of the introduction rates of both point defects and small clusters with increasing energy is seen, showing saturation for electron energies above ∼15 MeV. The changes in the leakage current at low irradiation fluence-values proved to be determined by the change in the configuration of the tri-vacancy (V{sub 3}). Similar to V{sub 3}, other cluster related defects are showing bistability indicating that they might be associated with larger vacancy clusters. The change of the space charge density with irradiation and with annealing time after irradiation is fully described by accounting for the radiation induced trapping centers. High resolution electron microscopy investigations correlated with the annealing experiments revealed changes in the spatial structure of the defects. Furthermore, it is shown that while the generation of point defects is well described by the classical Non Ionizing Energy Loss (NIEL), the formation of small defect clusters is better described by the “effective NIEL” using results from molecular dynamics simulations.

  20. Investigation of Combined Motor/Magnetic Bearings for Flywheel Energy Storage Systems

    Science.gov (United States)

    Hofmann, Heath

    2003-01-01

    Dr. Hofmann's work in the summer of 2003 consisted of two separate projects. In the first part of the summer, Dr. Hofmann prepared and collected information regarding rotor losses in synchronous machines; in particular, machines with low rotor losses operating in vacuum and supported by magnetic bearings, such as the motor/generator for flywheel energy storage systems. This work culminated in a presentation at NASA Glenn Research Center on this topic. In the second part, Dr. Hofmann investigated an approach to flywheel energy storage where the phases of the flywheel motor/generator are connected in parallel with the phases of an induction machine driving a mechanical actuator. With this approach, additional power electronics for driving the flywheel unit are not required. Simulations of the connection of a flywheel energy storage system to a model of an electromechanical actuator testbed at NASA Glenn were performed that validated the proposed approach. A proof-of-concept experiment using the D1 flywheel unit at NASA Glenn and a Sundstrand induction machine connected to a dynamometer was successfully conducted.

  1. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage

    International Nuclear Information System (INIS)

    Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B.

    2011-01-01

    Research highlights: → In conventional buildings thermal mass is a permanent building characteristic. → Permanent thermal mass concepts are not optimal in all operational conditions. → We propose a concept that combines the benefits of low and high thermal mass. → Building simulation shows the concept is able to reduce the energy demand with 35%. → Furthermore, the concept increases the performance robustness of the building. -- Abstract: In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass by applying hybrid adaptable thermal storage (HATS) systems and materials to a lightweight building. The HATS concept increases building performance and the robustness to changing user behavior, seasonal variations and future climate changes. Building performance simulation is used to investigate the potential of the novel concept for reducing heating energy demand and increasing thermal comfort. Simulation results of a case study in the Netherlands show that the optimal quantity of the thermal mass is sensitive to the change of seasons. This implies that the building performance will benefit from implementing HATS. Furthermore, the potential of HATS is quantified using a simplified HATS model. Calculations show heating energy demand reductions of up to 35% and increased thermal comfort compared to conventional thermal mass concepts.

  2. Investigation of very high energy cosmic rays by means of inclined muon bundles

    Science.gov (United States)

    Bogdanov, A. G.; Kokoulin, R. P.; Mannocchi, G.; Petrukhin, A. A.; Saavedra, O.; Shutenko, V. V.; Trinchero, G.; Yashin, I. I.

    2018-03-01

    In a typical approach to extensive air shower (EAS) investigations, horizontal arrays are used and near-vertical EAS are detected. In contrast, in this work vertically arranged muon detectors are used to study inclined EAS. At large zenith angles, EAS consisting solely of muon component are employed. The transverse dimensions of EAS rapidly increase when the zenith angle increases. Hence, EAS in a wide energy interval can be explored by means of a relatively small detector. Here we present results of the analysis of the data on inclined muon bundles accumulated from 2002 to 2016 in the DECOR experiment. For the first time, these results demonstrate with more than 3σ significance the existence of the second knee in the EAS muon component spectrum near 1017 eV primary energy. An excess of muon bundles at energies about 1 EeV found earlier in DECOR data has been confirmed and analyzed in detail. It is highly likely that the obtained outcomes indicate the appearance of new processes of muon generation.

  3. Performance investigation of solar heating ocean thermal energy conversion (SH OTEC) in Korea

    International Nuclear Information System (INIS)

    Hap, Nguyen Van; Lee, Geun Sik

    2013-01-01

    The use of ocean thermal energy conversion (OTEC) to generate electricity is one of the methods proposed to utilize renewable energy and to protect the environment. In this study, simulations were performed to investigate the effect of weather conditions in the Ulsan region, Korea, on the efficiency of a solar heating OTEC (SH OTEC) system. This system utilizes solar thermal energy as the secondary heat source. Various working fluids were also simulated to select one that is suitable for this system. The results showed that R152A, R600, and R600A, in that order, were the most suitable working fluids. The effective area of the solar collector for a 20 .deg. C increase in the collector outlet temperature fluctuated from 50 to 97m'2' owing to the change in the monthly average solar gain. The annual average efficiency of the SH OTEC increases to 6.23%, compared to that of a typical conventional OTEC, which is 2-4%

  4. Numerical investigation of kinetic energy dynamics during autoignition of n-heptane/air mixture

    Science.gov (United States)

    Lucena Kreppel Paes, Paulo; Brasseur, James; Xuan, Yuan

    2015-11-01

    Many engineering applications involve complex turbulent reacting flows, where nonlinear, multi-scale turbulence-combustion couplings are important. Direct representation of turbulent reacting flow dynamics is associated with prohibitive computational costs, which makes it necessary to employ turbulent combustion models to account for the effects of unresolved scales on resolved scales. Classical turbulence models are extensively employed in reacting flow simulations. However, they rely on assumptions about the energy cascade, which are valid for incompressible, isothermal homogeneous isotropic turbulence. A better understanding of the turbulence-combustion interactions is required for the development of more accurate, physics-based sub-grid-scale models for turbulent reacting flows. In order to investigate the effects of reaction-induced density, viscosity, and pressure variations on the turbulent kinetic energy, Direct Numerical Simulation (DNS) of autoignition of partially-premixed, lean n-heptane/air mixture in three-dimensional homogeneous isotropic turbulence has been performed. This configuration represents standard operating conditions of Homogeneous-Charge Compression-Ignition (HCCI) engines. The differences in the turbulent kinetic energy balance between the present turbulent reacting flow and incompressible, isothermal homogeneous isotropic turbulence are highlighted at different stages during the autoignition process.

  5. Investigation on minimum ignition energy of mixtures of α-pinene-benzene/air.

    Science.gov (United States)

    Coudour, B; Chetehouna, K; Rudz, S; Gillard, P; Garo, J P

    2015-01-01

    Minimum ignition energies (MIE) of α-pinene-benzene/air mixtures at a given temperature for different equivalence ratios and fuel proportions are experimented in this paper. We used a cylindrical chamber of combustion using a nanosecond pulse at 1,064 nm from a Q-switched Nd:YAG laser. Laser-induced spark ignitions were studied for two molar proportions of α-pinene/benzene mixtures, respectively 20-80% and 50-50%. The effect of the equivalence ratio (Φ) has been investigated for 0.7, 0.9, 1.1 and 1.5 and ignition of fuel/air mixtures has been experimented for two different incident laser energies: 25 and 33 mJ. This study aims at observing the influence of different α-pinene/benzene proportions on the flammability of the mixture to have further knowledge of the potential of biogenic volatile organic compounds (BVOCs) and smoke mixtures to influence forest fires, especially in the case of the accelerating forest fire phenomenon (AFF). Results of ignition probability and energy absorption are based on 400 laser shots for each studied fuel proportions. MIE results as functions of equivalence ratio compared to data of pure α-pinene and pure benzene demonstrate that the presence of benzene in α-pinene-air mixture tends to increase ignition probability and reduce MIE without depending strongly on the α-pinene/benzene proportion. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. An investigation on using GIS to prospect for renewable energy in Nigeria

    Science.gov (United States)

    Alabi, Omowumi Oluwayemisi

    This study focuses on Nigeria, a region in the tropics bounded between latitude 4°N and 14°N, and longitude 3°E and 14°E. The project investigated, in a geographic information system, the spatial and seasonal variation in wind and solar energy over Nigeria, using the surface meteorology and solar energy (SSE version 6) dataset. These data, derived from satellites and models, were recently released by the United States' National Aeronautical Space Agency (NASA). The data used for the study was collected between 1983 and 2005. The results from NASA's SSE dataset were used to evaluate previous work done on renewable energy in Nigeria, using conventional data measured from the ground. This study confirmed some observations, made from conventional data, about the wind and solar energy characteristics of Nigeria. For example, the meridional increase in surface insolation towards the semi-arid northern part of the country; the meridional increase in averaged annual precipitation towards the coastal region of the south; and the phenomenon known as the 'little dry season', characterized by an abnormal decrease in precipitation which occurred during the month of August, within a narrow belt at the coastal region, during the peak of the rainy season. Furthermore, the trend in seasonal variations of surface wind, and the predominant directions of the prevailing winds within the study area were similar. However, this investigation revealed that wind speed in Nigeria increased towards a northeastern direction, as opposed to the northward increase in wind speed recorded with conventional data. Also, the remotely sensed estimates for wind in most of the stations in Nigeria are much less than the ground measured values. According to NASA's SSE data, the range of the wind power density for the country indicated that Nigeria is among those countries that have the lowest wind power density in the world. Comparing measurements at 35 locations within Nigeria, the study concluded

  7. Investigations on the improvement of the energy output of a Closed Loop Geothermal System (CLGS)

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Sven-Uwe

    2008-08-04

    The scope of this study are the development of an integrated simulation model for the estimation of the energy output of a deep Closed Loop Geothermal System (CLGS) and the discussion of several approaches to the enhancement of this output. Due to its closed character this kind of geothermal installation provides the opportunity of heat utilization even in dry and impermeable geological zones without any stimulation effort and the usage of external fluids. After a short introduction of the system itself and the limitations of other geothermal systems that are available, the investigations start with the description of the state-of-the-art with regard to the energy output analyses of the CLGS that have been done in the past. These are evaluated and their shortcomings are identified. The newly developed and introduced 3-dimensional approach of this study is a capable tool for the pre-feasibility phase of the project development of a CLGS. A geological/geothermal model summarizes selected relevant data and information about the project area in the form of a spatial data distribution. Thereby the formation boundaries are modelled as well as local in-homogeneities. The lithology can be modelled as well as the distribution of the thermal and physical properties of the rocks. The temperature distribution can be modelled using map or drill log data and be interpolated using geostatistical methods. After the combination of the geological/geothermal model and the technical model of the CLGS containing all relevant data with regard to the drill hole design, dimensions, casings and thermal properties of the installed materials, incl. the annuli, the thermal behaviour of the heat bearing fluid (HBF) flowing within the pipe system is simulated over time in connection with the simulation of the thermal behaviour of the surrounding rock mass. This core simulation is added by the afterwards processed scenario based energy supply simulation that calculates the amounts of energy

  8. Scheduling Driven Partitioning of Heterogeneous Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    1998-01-01

    In this paper we present an algorithm for system level hardware/software partitioning of heterogeneous embedded systems. The system is represented as an abstract graph which captures both data-flow and the flow of control. Given an architecture consisting of several processors, ASICs and shared...... busses, our partitioning algorithm finds the partitioning with the smallest hardware cost and is able to predict and guarantee the performance of the system in terms of worst case delay....

  9. Lift of dilogarithm to partition identities

    International Nuclear Information System (INIS)

    Terhoeven, M.

    1992-11-01

    For the whole set of dilogarithm identities found recently using the thermodynamic Bethe-Ansatz for the ADET series of purely elastic scattering theories we give partition identities which involve characters of those conformal field theories which correspond to the UV-limits of the scattering theories. These partition identities in turn allow to derive the dilogarithm identities using modular invariance and a saddle point approximation. We conjecture on possible generalizations of this correspondance, namely, a lift from dilogarithm to partition identities. (orig.)

  10. Partitioning of selected antioxidants in mayonnaise

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Schwarz, K.; Stockmann, H.

    1999-01-01

    This study examined partitioning of alpha-, beta-, and gamma- tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise...... by either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic...

  11. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  12. The stringy instanton partition function

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, Giulio [International School of Advanced Studies (SISSA),via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste,Trieste (Italy); I.C.T.P.,Strada Costiera 11, 34014 Trieste (Italy); Sciarappa, Antonio; Tanzini, Alessandro; Vasko, Petr [International School of Advanced Studies (SISSA),via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste,Trieste (Italy)

    2014-01-09

    We perform an exact computation of the gauged linear sigma model associated to a D1-D5 brane system on a resolved A{sub 1} singularity. This is accomplished via supersymmetric localization on the blown-up two-sphere. We show that in the blow-down limit ℂ{sup 2}/ℤ{sub 2} the partition function reduces to the Nekrasov partition function evaluating the equivariant volume of the instanton moduli space. For finite radius we obtain a tower of world-sheet instanton corrections, that we identify with the equivariant Gromov-Witten invariants of the ADHM moduli space. We show that these corrections can be encoded in a deformation of the Seiberg-Witten prepotential. From the mathematical viewpoint, the D1-D5 system under study displays a twofold nature: the D1-branes viewpoint captures the equivariant quantum cohomology of the ADHM instanton moduli space in the Givental formalism, and the D5-branes viewpoint is related to higher rank equivariant Donaldson-Thomas invariants of ℙ{sup 1}×ℂ{sup 2}.

  13. Modeling of adipose/blood partition coefficient for environmental chemicals.

    Science.gov (United States)

    Papadaki, K C; Karakitsios, S P; Sarigiannis, D A

    2017-12-01

    A Quantitative Structure Activity Relationship (QSAR) model was developed in order to predict the adipose/blood partition coefficient of environmental chemical compounds. The first step of QSAR modeling was the collection of inputs. Input data included the experimental values of adipose/blood partition coefficient and two sets of molecular descriptors for 67 organic chemical compounds; a) the descriptors from Linear Free Energy Relationship (LFER) and b) the PaDEL descriptors. The datasets were split to training and prediction set and were analysed using two statistical methods; Genetic Algorithm based Multiple Linear Regression (GA-MLR) and Artificial Neural Networks (ANN). The models with LFER and PaDEL descriptors, coupled with ANN, produced satisfying performance results. The fitting performance (R 2 ) of the models, using LFER and PaDEL descriptors, was 0.94 and 0.96, respectively. The Applicability Domain (AD) of the models was assessed and then the models were applied to a large number of chemical compounds with unknown values of adipose/blood partition coefficient. In conclusion, the proposed models were checked for fitting, validity and applicability. It was demonstrated that they are stable, reliable and capable to predict the values of adipose/blood partition coefficient of "data poor" chemical compounds that fall within the applicability domain. Copyright © 2017. Published by Elsevier Ltd.

  14. The spin-partitioned total position-spread tensor: An application to Heisenberg spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Fertitta, Edoardo; Paulus, Beate [Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany); El Khatib, Muammar; Evangelisti, Stefano; Leininger, Thierry [Laboratoire de Chimie et Physique Quantiques–LCPQ/IRSAMC, Université de Toulouse (UPS) et CNRS (UMR-5626), 118 Route de Narbonne, Toulouse Cedex 31062 (France); Bendazzoli, Gian Luigi [Dipartimento di Chimica Industriale “Toso Montanari,” Università di Bologna, Viale Risorgimento 4, I–40136 Bologna (Italy)

    2015-12-28

    The spin partition of the Total Position-Spread (TPS) tensor has been performed for one-dimensional Heisenberg chains with open boundary conditions. Both the cases of a ferromagnetic (high-spin) and an anti-ferromagnetic (low-spin) ground-state have been considered. In the case of a low-spin ground-state, the use of alternating magnetic couplings allowed to investigate the effect of spin-pairing. The behavior of the spin-partitioned TPS (SP-TPS) tensor as a function of the number of sites turned to be closely related to the presence of an energy gap between the ground-state and the first excited-state at the thermodynamic limit. Indeed, a gapped energy spectrum is associated to a linear growth of the SP-TPS tensor with the number of sites. On the other hand, in gapless situations, the spread presents a faster-than-linear growth, resulting in the divergence of its per-site value. Finally, for the case of a high-spin wave function, an analytical expression of the dependence of the SP-TPS on the number of sites n and the total spin-projection S{sub z} has been derived.

  15. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  16. New Weighted Partition Theorems with the Emphasis on the Smallest Part of Partitions

    OpenAIRE

    Berkovich, Alexander; Uncu, Ali Kemal

    2016-01-01

    We use the $q$-binomial theorem, the $q$-Gauss sum, and the ${}_2\\phi_1 \\rightarrow {}_2\\phi_2$ transformation of Jackson to discover and prove many new weighted partition identities. These identities involve unrestricted partitions, overpartitions, and partitions with distinct even parts. Smallest part of the partitions plays an important role in our analysis. This work was motivated in part by the research of Krishna Alladi.

  17. Investigating a Learning Progression for Energy Ideas from Upper Elementary through High School

    Science.gov (United States)

    Herrmann-Abell, Cari F.; DeBoer, George E.

    2018-01-01

    This study tests a hypothesized learning progression for the concept of energy. It looks at 14 specific ideas under the categories of (i) Energy Forms and Transformations; (ii) Energy Transfer; (iii) Energy Dissipation and Degradation; and (iv) Energy Conservation. It then examines students' growth of understanding within each of these ideas at…

  18. Empowering Students to Investigate Their Energy Consumption with a Safe, Easy-to-Use, Low-Cost Electrical Energy Meter

    Science.gov (United States)

    Darling, Gerald

    2012-01-01

    Middle school students hear about energy continuously: in the news, in many of their classes, and at home. Most students realize that recent wars have been fought over energy resources, and many will accept that overreliance on fossil fuels is changing the global climate. Students understand that as the world population surges past seven billion,…

  19. The photon energy dependence of the alanine/EPR dosimetry system, an experimental investigation

    International Nuclear Information System (INIS)

    Bergstrand, E.S.; Hole, E.O.; Shortt, K.R.; Ross, C.K.

    2002-01-01

    The energy dependence of a dosimetry system based on electron paramagnetic resonance (EPR) spectroscopy of alanine has been studied to determine its suitability for use in dose verification for radiotherapy. A few experiments with high-energy photon irradiation of alanine have been reported in the literature. However, the reported results disagree whether the ratio of dose in alanine to dose in water is independent of the radiation energy or whether there is a small dependence for photon energies of relevance to radiotherapy. The concentration of free radicals in alanine is proportional to the absorbed dose in alanine over a wide dose range covering three decades. The relative number of radicals may be determined by examining the EPR spectrum, and hence it is possible to determine the dose with a system that has been calibrated using a known dose of 60 Co radiation. In the present work, irradiations of alanine dosimeters were performed at the National Research Council (NRC), in Ottawa, Canada. The radiation qualities investigated were 10, 20 and 30 MV x-rays using the NRC linac. For each radiation quality, 30 dosimeters were irradiated in a water phantom with a level of absorbed dose to water ranging from 10 to 50 Gy. For reference purposes, irradiations using the NRC 60 Co source were performed on more or less the same day as the irradiations at each specific linac quality. In all beams, the dose to water was measured using a graphite-walled NE2571 ionisation chamber that was originally calibrated by comparison with a sealed-water calorimeter. The alanine dosimeters were evaluated at the EPR laboratory at the University of Oslo, Norway, using an X-band Bruker ESP300E spectrometer with a rectangular double resonator. One of the resonators contained a Mn 2+ /MgO sample that was read after each dosimeter reading, in order to provide independence from short-term sensitivity fluctuations in the spectrometer. All dosimeters irradiated at one specific linac quality were

  20. Energy partitioning in polyatomic chemical reactions: Quantum state resolved studies of highly exothermic atom abstraction reactions from molecules in the gas phase and at the gas-liquid interface

    Science.gov (United States)

    Zolot, Alexander M.

    This thesis recounts a series of experiments that interrogate the dynamics of elementary chemical reactions using quantum state resolved measurements of gas-phase products. The gas-phase reactions F + HCl → HF + Cl and F + H2O → HF + OH are studied using crossed supersonic jets under single collision conditions. Infrared (IR) laser absorption probes HF product with near shot-noise limited sensitivity and high resolution, capable of resolving rovibrational states and Doppler lineshapes. Both reactions yield inverted vibrational populations. For the HCl reaction, strongly bimodal rotational distributions are observed, suggesting microscopic branching of the reaction mechanism. Alternatively, such structure may result from a quantum-resonance mediated reaction similar to those found in the well-characterized F + HD system. For the H2O reaction, a small, but significant, branching into v = 2 is particularly remarkable because this manifold is accessible only via the additional center of mass collision energy in the crossed jets. Rotationally hyperthermal HF is also observed. Ab initio calculations of the transition state geometry suggest mechanisms for both rotational and vibrational excitation. Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic jet of F atoms with liquid squalane (C30H62), a low vapor pressure hydrocarbon compatible with the high vacuum environment. IR spectroscopy provides absolute HF( v,J) product densities and Doppler resolved velocity component distributions perpendicular to the surface normal. Compared to analogous gas-phase F + hydrocarbon reactions, the liquid surface is a more effective "heat sink," yet vibrationally excited populations reveal incomplete thermal accommodation with the surface. Non-Boltzmann J-state populations and hot Doppler lineshapes that broaden with HF excitation indicate two competing scattering mechanisms: (i) a direct reactive scattering channel

  1. A dwelling-level investigation into the physical and socio-economic drivers of domestic energy consumption in England

    International Nuclear Information System (INIS)

    Wyatt, Peter

    2013-01-01

    The UK Government's Department for Energy and Climate Change has been investigating the feasibility of developing a national energy efficiency data framework covering both domestic and non-domestic buildings. Working closely with the Energy Saving Trust and energy suppliers, the aim is to develop a data framework to monitor changes in energy efficiency, develop and evaluate programmes and improve information available to consumers. Key applications of the framework are to understand trends in built stock energy use, identify drivers and evaluate the success of different policies. For energy suppliers, it could identify what energy uses are growing, in which sectors and why. This would help with market segmentation and the design of products. For building professionals, it could supplement energy audits and modelling of end-use consumption with real data and support the generation of accurate and comprehensive benchmarks. This paper critically examines the results of the first phase of work to construct a national energy efficiency data-framework for the domestic sector focusing on two specific issues: (a) drivers of domestic energy consumption in terms of the physical nature of the dwellings and socio-economic characteristics of occupants and (b) the impact of energy efficiency measures on energy consumption. - Highlights: • We examine the drivers of domestic energy consumption. • We examine the impact of domestic energy efficiency measures on energy use. • Dwelling type and size affect electricity and gas consumption. • Income level, tenure and number of resident adults influence energy use. • Energy efficiency measures lead to significant energy savings for households

  2. Use of JANAF Tables in Equilibrium Calculations and Partition Function Calculations for an Undergraduate Physical Chemistry Course

    Science.gov (United States)

    Cleary, David A.

    2014-01-01

    The usefulness of the JANAF tables is demonstrated with specific equilibrium calculations. An emphasis is placed on the nature of standard chemical potential calculations. Also, the use of the JANAF tables for calculating partition functions is examined. In the partition function calculations, the importance of the zero of energy is highlighted.

  3. A thesis investigating the impact of energy related environmental factors on domestic window design

    Science.gov (United States)

    McEvoy, Michael Edward

    In recent years the extent of glazing in houses has been tightly controlled by the Building Regulations in order to save energy. In addition guidelines derived from passive solar principles prescribe the distribution of domestic windows between elevations according to their orientation. This thesis studies the impact of these energy-related environmental factors on domestic window design. The first of these investigations determined the degree to which limitations on the area and arrangement of windows are significant in terms of daylighting. The experiments measured the effect that passive solar requirements and detailed aspects of window design have on the quality of daylighting in houses. The volume of background ventilation required for domestic accommodation has recently been increased. As a result, in a well-sealed construction, heat loss due to background ventilation becomes a larger part of the total heat loss and larger air movements become a potential cause of draughts. The ventilation experiment sought to establish the impact of these more onerous requirements on comfort within rooms. The third experiment combines these factors and asks the question: Could windows be actively involved in overcoming some of these difficulties by being used to preheat ventilation air in order to diminish the extent of heat loss and to alleviate the problem of cold draughts? Also by designing the window to reclaim heat from the room might it be possible to offset the window's thermal inadequacy? Through analysis of responses to a questionnaire and the use of optimisation techniques, scenarios were suggested for the future modification of windows in relation to energy and health expectations. The conclusions form a commentary on recent and future revisions to the Building Regulations and determine whether or not the Regulations facilitate the environmental engineering of windows as an active component of a building's whole environmental system.

  4. Investigation of the impact of atmospheric pollutants on solar module energy efficiency

    Directory of Open Access Journals (Sweden)

    Radonjić Ivana S.

    2017-01-01

    Full Text Available Soiling is a term used to describe the deposition of dust (dirt on the solar modules, which reduces the amount of solar radiation that reaches the solar cells. This can cause a more difficult operation of the entire photovoltaic system and therefore generation of less electric energy. This paper presents the results of the influence of various pollutants commonly found in the air (carbon, calcium carbonate – CaCO3, and soil particles on the energy efficiency of solar modules. Scanning electron microscope investigation of carbon powder, CaCO3, and soil particles which were applied to solar modules showed that the particles of carbon and CaCO3 are similar in size, while the space between the particles through which the light can pass, is smaller in carbon than in CaCO3. Dimensions of soil particles are different, and the space between the soil particles through which the light can pass is similar to CaCO3. Solar radiation more easily reaches the surface of solar modules soiled by CaCO3 and soil particles than the surface of the solar modules soiled by carbon. The efficiency of the module soiled by carbon on average decreases by 37.6%, the efficiency of the module soiled by CaCO3 by 6.7%, and the efficiency of the module soiled by soil particles by 6.8%, as compared to the clean solar module. The greatest influence on reducing the energy efficiency of solar modules by soiling exerts carbon, and the influence of CaCO3 and soil particles is similar.

  5. Schmidt games and Markov partitions

    International Nuclear Information System (INIS)

    Tseng, Jimmy

    2009-01-01

    Let T be a C 2 -expanding self-map of a compact, connected, C ∞ , Riemannian manifold M. We correct a minor gap in the proof of a theorem from the literature: the set of points whose forward orbits are nondense has full Hausdorff dimension. Our correction allows us to strengthen the theorem. Combining the correction with Schmidt games, we generalize the theorem in dimension one: given a point x 0 in M, the set of points whose forward orbit closures miss x 0 is a winning set. Finally, our key lemma, the no matching lemma, may be of independent interest in the theory of symbolic dynamics or the theory of Markov partitions

  6. Reliability study of Piezoelectric Structures Dedicated to Energy Harvesting by the Way of Blocking Force Investigation

    International Nuclear Information System (INIS)

    Maaroufi, S; Parrain, F; Lefeuvre, E; Boutaud, B; Molin, R Dal

    2015-01-01

    In this paper we propose an approach to study the reliability of piezoelectric structures and more precisely energy harvesting micro-devices dedicated to autonomous active medical implants (new generation pacemakers). The structure under test is designed as a bimorph piezoelectric cantilever with a seismic mass at its tip. Good understanding of material aging and mechanical failure is critical for this kind of system. To study the reliability and durability of the piezoelectric part we propose to establish a new accelerated methodology and an associated test bench where the environment and stimuli can be precisely controlled over a wide period of time. This will allow the identification of potential failure modes and the study of their impacts by the way of direct mechanical investigation based on stiffness and blocking force measurements performed periodically. (paper)

  7. Neonatal anthropometrics and body composition in obese children investigated by dual energy X-ray absorptiometry

    DEFF Research Database (Denmark)

    Lausten-Thomsen, Ulrik; Nielsen, Tenna Ruest Haarmark; Thagaard, Ida Näslund

    2014-01-01

    index (BFMI), and fat free mass index (FFMI) in obese children and the preceding in utero conditions expressed by birth weight, birth length, and birth weight for gestational age. The study cohort consisted of 776 obese Danish children (median age 11.6 years, range 3.6-17.9) with a mean Body Mass Index......UNLABELLED: Epidemiological and animal studies have suggested an effect of the intrauterine milieu upon the development of childhood obesity. This study investigates the relationship between body composition measured by dual energy X-ray absorptiometry expressed as body fat percent, body fat mass...... obesity treatment to be significantly correlated with both birth weight and birth weight for gestational age. CONCLUSION: These results indicate a prenatal influence upon childhood obesity. Although there are currently no sufficient data to suggest any recommendations to pregnant women, it is possible...

  8. Numerical and experimental investigation on frosting of energy-recovery ventilator

    Science.gov (United States)

    Bilodeau, Stephane; Mercadier, Yves; Brousseau, Patrick

    Frosting of energy-recovery ventilators results in two major problems: increase of pressure losses and reduction of heat transfer rates. Frost formation of heat and mass exchangers used in these ventilation systems is investigated both experimentally and numerically. A numerical model for the prediction of the thermal behavior of the exchanger is presented. The model is validated with experimental data and is then employed to conduct a parametric study. Results indicate that the absolute humidity is the prevailing parameter for characterizing the frosting phenomenon. A frost-mass-fraction chart is established in terms of the absolute humidity of the warm exhaust stream and of the temperature of the cold supply stream. The effect of time and mass flowrate is also evaluated. The transient three-dimensional model shows that the absolute humidity and the temperature of both air flows vary nonlinearly in the frosted zone.

  9. Experimental and numerical investigations of the energy confinement times in the stellarator TJ-K

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed; Koehn, Alf; Munoz, Alejandro; Holzhauer, Eberhard; Ramisch, Mirko [Institute of Interfacial Process Engineering and Plasma Technology IGVP, Uni Stuttgart, Stuttgart (Germany); Birkenmeier, Gregor [Max-Planck Institute fuer Plasmaphysik, Garching (Germany)

    2015-05-01

    A particle and power balance model has been employed to numerically simulate and qualitatively understand transport processes, which determine equilibrium density and temperature profiles in the stellarator TJ-K. To quantify losses by these processes, the e-folding time of density and energy after switching off the heating source is used as a measure of the corresponding confinement times. For comparison with numerical simulation, both quantities are investigated experimentally in TJ-K. The particle confinement can be directly deduced from an interferometer or from Langmuir probes measuring the ion-saturation current. A commercial satellite receiver is used to measure the emitted radiation around 12 GHz, which is assumed to be dominated by Bremsstrahlung. In addition, the signal from a fast diode, which is sensitive in the visible range of light, is used. Results of the comparative numerical and experimental studies are presented.

  10. Investigation of Detectability of Elementary Composition of Rainbow trout muscle with EDS (Energy Dispersive Spectroscopy Method

    Directory of Open Access Journals (Sweden)

    Saltuk Buğrahan CEYHUN

    2017-06-01

    Full Text Available In present study, it is investigated that detectability of elementary composition of rainbow trout muscle using Energy Dispersive Spectroscopy (EDS. EDS system which has worked with attached to scanning electron microscope can do qualitative and semi-quantitative elementary analyses on selected region of sample using characteristic X-rays. For this purpose, it was performed four point and two mapping analyses from four samples. According to results, it was detected 13 elements which are consist of C, N and O in 87.70 percentage. As a result, although the method is sensitive and reliable, it is concluded that not adequate for elemental analysis alone but can be used as a support for analyzes with systems such as especially atomic absorption and ICP-MS.

  11. Investigating the response of Micromegas detector to low-energy neutrons using Monte Carlo simulation

    Science.gov (United States)

    Khezripour, S.; Negarestani, A.; Rezaie, M. R.

    2017-08-01

    Micromegas detector has recently been used for high-energy neutron (HEN) detection, but the aim of this research is to investigate the response of the Micromegas detector to low-energy neutron (LEN). For this purpose, a Micromegas detector (with air, P10, BF3, 3He and Ar/BF3 mixture) was optimized for the detection of 60 keV neutrons using the MCNP (Monte Carlo N Particle) code. The simulation results show that the optimum thickness of the cathode is 1 mm and the optimum of microgrid location is 100 μm above the anode. The output current of this detector for Ar (3%) + BF3 (97%) mixture is greater than the other ones. This mixture is considered as the appropriate gas for the Micromegas neutron detector providing the output current for 60 keV neutrons at the level of 97.8 nA per neutron. Consecuently, this detector can be introduced as LEN detector.

  12. Investigation of energy spread and angular scatter in inner and outer conductor foilless diodes

    International Nuclear Information System (INIS)

    Thode, L.E.

    1983-01-01

    The axisymmetric perturbations (sausage and hollowing modes) of a high-energy self-pinched relativistic electron beam in the highly resistive plasma medium are analyzed using the Vlasov-Maxwell model. In steady state, all the beam equilibrium quantities are assumed to be azimuthally symmetric and infinitely long and uniform in the axial direction, complete space charge neutralization by the ambient plasma and paraxial beam flow are assumed. We use the energy-group model developed by Uhm and Lampe to consider the beam with any arbitrary radial density profile. The rounded beam density profile radially allows the electrons to have a spread of betatron frequency which introduces phase mixing to damp the oscillations. An integro-differential eigenvalue equation is derived for the dispersion relation between the oscillating angular frequency and the Dopplershifted eigenfrequency. The calculations for the general case include the effects of rounded beam density profiles, a steady return current and finite specified conductivity. This eigenvalue problem can be used to investigate the axisymmetric instability for a broad range of system parameters and arbitrary beam density profile

  13. Investigation of reasons for small changes in energy of UCN due to their interaction with surface

    CERN Document Server

    Lychagin, E V; Nekhaev, G V; Strelkov, A V; Kartashov, D G; Nesvizhevsky, V V

    2002-01-01

    The nature of the phenomenon of small changes in energy of ultracold neutrons (UCN) has been investigated. This phenomenon occurs during collisions of UCN with a surface, which increase the UCN energy by approx 10 sup - sup 7 eV with a probability of 10 sup - sup 8 -10 sup - sup 5 per collision. Such neutrons are named VUCN. It was observed that the preliminary warming up of samples at 500-600 K leads to an increase of the small heating probability P sub V sub U sub C sub N by at least a factor of 100 for a surface of stainless steel and by a factor of 10 for a copper surface. Extremely intensive UCN small heating by a diamond nanopowder has been observed for the first time. The spectrum of these VUCN and the temperature dependence of their heating probability P sub V sub U sub C sub N are similar to those measured earlier for stainless steel, beryllium, and copper. It is not observed small UCN heating, nor nanoparticles on a monocrystalline sapphire surface. That leads to the conclusion that VUCN are produce...

  14. Thermodynamics of transport through the ammonium transporter Amt-1 investigated with free energy calculations.

    Science.gov (United States)

    Ullmann, R Thomas; Andrade, Susana L A; Ullmann, G Matthias

    2012-08-16

    Amt-1 from Archaeoglobus fulgidus (AfAmt-1) belongs to the Amt/Rh family of ammonium/ammonia transporting membrane proteins. The transport mode and the precise microscopic permeation mechanism utilized by these proteins are intensely debated. Open questions concern the identity of the transported substrate (ammonia and/or ammonium) and whether the transport is passive or active. To address these questions, we studied the overall thermodynamics of the different transport modes as a function of the environmental conditions. Then, we investigated the thermodynamics of the underlying microscopic transport mechanisms with free energy calculations within a continuum electrostatics model. The formalism developed for this purpose is of general utility in the calculation of binding free energies for ligands with multiple protonation forms or other binding forms. The results of our calculations are compared to the available experimental and theoretical data on Amt/Rh proteins and discussed in light of the current knowledge on the physiological conditions experienced by microorganisms and plants. We found that microscopic models of electroneutral and electrogenic transport modes are in principle thermodynamically viable. However, only the electrogenic variants have a net thermodynamic driving force under the physiological conditions experienced by microorganisms and plants. Thus, the transport mechanism of AfAmt-1 is most likely electrogenic.

  15. Numerical and experimental investigation on novel systems for harvesting tidal current energy

    Energy Technology Data Exchange (ETDEWEB)

    Coiro, D.P. [Naples Univ., Naples (Italy). Dept. of Aerospace Engineering

    2008-07-01

    Theoretical and experimental tidal current energy investigations currently being conducted at an aerospace engineering department in Italy were presented. The department has set up a test site to harness marine and river current energy in the Messina Strait. A vertical axis hydro turbine developed by the department has been installed at the site. This presentation provided details of unsteady viscous numerical studies conducted to examine flow curvature effects on the turbine's airfoils and rotor design. Numerical studies were also conducted to develop a new generator and optimize the hydrodynamic efficiency of the turbine's rotor. The use of flow increasers to double output power was also examined. The aim of the study was to prove that the vertical axis turbine is capable of reaching the same efficiency levels as horizontal axis turbines. The department is also designing a 300 kW horizontal axis turbine that operates as an underwater ocean kite anchored at the bottom with a winched chain. Details of studies conducted to measure rotational speed, rotor torque, and thrust were presented, as well as details of tests performed at various depths and velocities in order to obtain cavitation numbers for the full-scale turbine. Details of computational fluid dynamics (CFD) studies of the turbine modelled as an actuator disk were also included. tabs., figs.

  16. Investigation on the correlation between energy deposition and clustered DNA damage induced by low-energy electrons.

    Science.gov (United States)

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2018-05-01

    This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the

  17. Tungsten Partitioning in Silicates. A Key to Understanding the Early Evolution of the Moon

    Science.gov (United States)

    Shearer, C. K.; Righter, K.

    2000-01-01

    We investigate the partitioning behavior of W in a variety of silicates that may have been stable during LMO crystallization, evaluate their role in generating W isotopic signatures, and speculate about the early differentiation of the Moon.

  18. Phylogenetic relationships in Asarum: Effect of data partitioning and a revised classification.

    Science.gov (United States)

    Sinn, Brandon T; Kelly, Lawrence M; Freudenstein, John V

    2015-05-01

    Generic boundaries and infrageneric relationships among the charismatic temperate magnoliid Asarum sensu lato (Aristolochiaceae) have long been uncertain. Previous molecular phylogenetic analyses used either plastid or nuclear loci alone and varied greatly in their taxonomic implications for the genus. We analyzed additional molecular markers from the nuclear and plastid genomes, reevaluated the possibility of a derived loss of autonomous self-pollination, and investigated the topological effects of matrix-partitioning-scheme choice. We sequenced seven plastid regions and the nuclear ITS1-ITS2 region of 58 individuals representing all previously recognized Asarum s.l. segregate genera and the monotypic genus Saruma. Matrices were partitioned using common a priori partitioning schemes and PartitionFinder. Topologies that were recovered using a priori partitioning of matrices differed from those recovered using a PartitionFinder-selected scheme, and by analysis method. We recovered six monophyletic groups that we circumscribed into three subgenera and six sections. Putative fungal mimic characters served as synapomorphies only for subgenus Heterotropa. Subgenus Geotaenium, a new subgenus, was recovered as sister to the remainder of Asarum by ML analyses of highly partitioned datasets. Section Longistylis, also newly named, is sister to section Hexastylis. Our analyses do not unambiguously support a single origin for all fungal-mimicry characters. Topologies recovered through the analysis of PartitionFinder-optimized matrices can differ drastically from those inferred from a priori partitioned matrices, and by analytical method. We recommend that investigators evaluate the topological effects of matrix partitioning using multiple methods of phylogenetic reconstruction. © 2015 Botanical Society of America, Inc.

  19. A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys

    Science.gov (United States)

    Marya, Manuel; Singh, Virendra; Hascoet, Jean-Yves; Marya, Surendar

    2018-02-01

    Among additive manufacturing (AM) processes, the direct energy deposition (DED) by laser is explored to establish its applicability for the repair of ferrous alloys such as UNS G41400 low-alloy steel, UNS S41000 martensitic stainless steel, UNS S17400 precipitation-strengthened martensitic stainless steel, and UNS S32750 super-duplex stainless steel. Unlike plating, thermal spray, and conventional cladding weld, DED laser powder deposition offers potential advantages, e.g., thin deposits, limited dilutions, narrow heat-affected zones (HAZ), potentially improved surface properties. In this investigation, all AM deposits were completed with an IREPA CLAD™ system using a powder feed of UNS N06625, an alloy largely selected for its outstanding corrosion resistance. This investigation first addresses topological aspects of AM deposits (including visual imperfections) before focusing on changes in microstructure, microhardness, chemical composition across AM deposits and base materials. It has been established that dense, uniform, hard ( 300 HVN), crack-free UNS N06625-compliant AM deposits of fine dendritic microstructures are reliably produced. However, except for the UNS S32750 steel, a significant martensitic hardening was observed in the HAZs of UNS G41400 ( 650 HVN), UNS S41000 ( 500 HVN), and UNS S17400 ( 370 HVN). In summary, this investigation demonstrates that the DED laser repair of ferrous parts with UNS N06625 may restore damaged surfaces, but it also calls for cautions and complementary investigations for alloys experiencing a high HAZ hardening, for which industry standard recommendations are exceeded and lead to an increased risk of delayed cracking in corrosive environments.

  20. Graph Partitioning Models for Parallel Computing

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, B.; Kolda, T.G.

    1999-03-02

    Calculations can naturally be described as graphs in which vertices represent computation and edges reflect data dependencies. By partitioning the vertices of a graph, the calculation can be divided among processors of a parallel computer. However, the standard methodology for graph partitioning minimizes the wrong metric and lacks expressibility. We survey several recently proposed alternatives and discuss their relative merits.

  1. [On the partition of acupuncture academic schools].

    Science.gov (United States)

    Yang, Pengyan; Luo, Xi; Xia, Youbing

    2016-05-01

    Nowadays extensive attention has been paid on the research of acupuncture academic schools, however, a widely accepted method of partition of acupuncture academic schools is still in need. In this paper, the methods of partition of acupuncture academic schools in the history have been arranged, and three typical methods of"partition of five schools" "partition of eighteen schools" and "two-stage based partition" are summarized. After adeep analysis on the disadvantages and advantages of these three methods, a new method of partition of acupuncture academic schools that is called "three-stage based partition" is proposed. In this method, after the overall acupuncture academic schools are divided into an ancient stage, a modern stage and a contemporary stage, each schoolis divided into its sub-school category. It is believed that this method of partition can remedy the weaknesses ofcurrent methods, but also explore a new model of inheritance and development under a different aspect through thedifferentiation and interaction of acupuncture academic schools at three stages.

  2. Compactified webs and domain wall partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Khurram [Government College University, Department of Mathematics, Lahore (Pakistan)

    2017-04-15

    In this paper we use the topological vertex formalism to calculate a generalization of the ''domain wall'' partition function of M-strings. This generalization allows calculation of partition function of certain compactified webs using a simple gluing algorithm similar to M-strings case. (orig.)

  3. Partitions of sets and the Riemann integral

    OpenAIRE

    Ungar, Š.

    2006-01-01

    We will discuss the definition of the Riemann integral using general partitions and give an elementary explication, without resorting to nets, generalized sequences and such, of what is meant by saying that "the Riemann integral is the limit of Darboux sums when the mesh of the partition approaches zero".

  4. Stirling numbers and integer partitions | Merca | Quaestiones ...

    African Journals Online (AJOL)

    In this paper, we prove that the Stirling numbers of both kinds can be written as sums over integer partitions. As corollaries, we rewrite some identities with Stirling numbers of both kinds without Stirling numbers. Keywords: Integer partitions, symmetric functions, Stirling numbers ...

  5. Partition functions for supersymmetric black holes

    NARCIS (Netherlands)

    Manschot, J.

    2008-01-01

    This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a

  6. Purification of biomaterials by phase partitioning

    Science.gov (United States)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  7. Generating Milton Babbitt's all-partition arrays

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David

    2016-01-01

    In most of Milton Babbitt's (1916–2011) works written since the early 1960s, both the pitch and rhythmic content is organized according to a highly constrained structure known as the all-partition array. The all-partition array provides a framework that ensures that as many different forms...... backtracking algorithm for generating a particular type of all-partition array found in Babbitt’s works, known as a Smalley array. Constructing such an array is a difficult task, and we present two heuristics for helping to generate this type of structure. We provide the parameter values required...... by this algorithm to generate the specific all-partition arrays used in three of Babbitt’s works. Finally, we evaluate the algorithm and the heuristics in terms of how well they predict the sequences of integer partitions used in two of Babbitt’s works. We also explore the effect of the heuristics...

  8. Investigating the Effect of Voltage-Switching on Low-Energy Task Scheduling in Hard Real-Time Systems

    National Research Council Canada - National Science Library

    Swaminathan, Vishnu; Chakrabarty, Krishnendu

    2005-01-01

    We investigate the effect of voltage-switching on task execution times and energy consumption for dual-speed hard real-time systems, and present a new approach for scheduling workloads containing periodic tasks...

  9. Numerical investigation of a joint approach to thermal energy storage and compressed air storage in aquifers

    OpenAIRE

    Guo, Chaobin.; Zhanga, Keni.; Pan, Lehua.; Cai, Zuansi.; Lid, Cai.; Lie, Yi.

    2017-01-01

    Different from conventional compressed air energy storage (CAES) systems, the advanced adiabatic compressed air energy storage (AA-CAES) system can store the compression heat which can be used to reheat air during the electricity generation stage. Thus, AA-CAES system can achieve a higher energy storage efficiency. Similar to the AA-CAES system, a compressed air energy storage in aquifers (CAESA) system, which is integrated with an aquifer thermal energy storage (ATES) could possibly achieve ...

  10. Theoretical investigation of the performance of integrated seawater desalination plant utilizing renewable energy

    International Nuclear Information System (INIS)

    Ismail, Tamer M.; Azab, A.K.; Elkady, M.A.; Abo Elnasr, M.M.

    2016-01-01

    Highlights: • Integrated desalination plant consisting of MED and MVC is investigated. • A theoretical model was employed using the MATLAB software. • A parametric analysis was conducted to elaborate the important factors affect the plant. • Results indicate that the site selection plays a very important role in desalination. • Solar intensity and water salinity are the most factors in assessing the collector area. - Abstract: In the present work, theoretical investigation of the performance of two sequential desalination systems, multi-effect distillation and mechanical vapor compression, is carried out. A mathematical model is developed and implemented in MATLAB and validated by results available in the literature. Then the parametric analysis is carried out to produce distillate water and salt utilizing renewable energy. A parametric analysis has been conducted to understand the important factors that affect the performance of the plant. Furthermore, three sites are selected in Egypt (Marsa Matrouh, Ras Benas, and Taba) and economic feasibility of the proposed desalination system is carried out and compared with plant economy of conventional fossil fuels. The results show that site location, solar intensity, wind speed, ambient temperature, and water salinity are the most dominant factors in the performance.

  11. Investigation of the effect of contrails on global irradiance and solar energy production

    Science.gov (United States)

    Weihs, Philipp; Rennhofer, Marcus; Baumgartner, Dietmar; Wagner, Jochen; Laube, Wolfgang; Gadermaier, Josef

    2013-04-01

    In the present study we investigate the effect of contrails on global shortwave radiation and on Photovoltaic module performance. This investigation is performed using continuous hemispherical fish eye photographs of the sky, diffuse and direct shortwave measurements and short circuit current measurements of a-Si, c-Si and CdTe PV modules. These measurements have been performed at the solar observatory Kanzelhöhe (1540 m.a.s.l) located in the southern part of Austria during a period of one and half year. The time resolution of the measurements is one minute, which allows to accurately follow the formation-eventually the disappearance- or the movement of the contrails in the sky. Using the fish eye photographs we identified clear sky days with a high contrail persistence. We especially look at situations where the contrails were shading the sun. Results show that contrails shading the sun may reduce the global radiation by up to 60%. In general we however observe that during days with a high contrail persistence the diffuse irradiance is slightly increased. Finally a statistic of the contrail persistence during the period of measurement is presented and conclusions as to the relevance for the solar energy production are drawn.

  12. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunckhorst, Elin

    2009-02-26

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a {sup 10}B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with {sup 6}Li and {sup 7}Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined

  13. Experimental investigations of the neutron contamination in high-energy photon fields at medical linear accelerators

    International Nuclear Information System (INIS)

    Brunckhorst, Elin

    2009-01-01

    The scope of this thesis was to develop a device for the detection of the photoneutron dose inside the high-energy photon field. The photoneutron contamination of a Siemens PRIMUS linear accelerator was investigated in detail in its 15 MV photon mode. The experimental examinations were performed with three ionisation chambers (a tissue equivalent chamber, a magnesium chamber and a 10 B-coated magnesium chamber) and two types of thermoluminescence detectors (enriched with 6 Li and 7 Li, respectively). The detectors have different sensitivities to photons and neutrons and their combination allows the dose separation in a mixed neutron/photon field. The application of the ionisation chamber system, as well as the present TLD system for photoneutron detection in high-energy photon beams is a new approach. The TLD neutron sensitivity was found to be too low for a measurement inside the open photon field and the further investigation focused on the ionisation chambers. The three ionisation chambers were calibrated at different photon and neutron sources and a the borated magnesium chamber showed a very high response to thermal neutrons. For a cross check of the calibration, the three chambers were also used for dose separation of a boron neutron capture therapy beam where the exact determination of the thermal neutron dose is essential. Very accurate results were achieved for the thermal neutron dose component. At the linear accelerator the chamber system was reduced to a paired chamber system utilising the two magnesium chambers, since the fast neutron component was to small to be separated. The neutron calibration of the three chambers could not be applied, instead a conversion of measured thermal neutron signal by the borated chamber to Monte Carlo simulated total neutron dose was performed. Measurements for open fields in solid water and liquid water were performed with the paired chamber system. In larger depths the neutron dose could be determined with an

  14. Multilevel Algorithms for Multi-Constraint Hypergraph Partitioning

    National Research Council Canada - National Science Library

    Karypis, George

    1999-01-01

    Traditional hypergraph partitioning algorithms compute a bisection of a graph such that the number of hyperedges that are cut by the partitioning is minimized and each partition has an equal number of vertices...

  15. Regulation of assimilate partitioning by daylength and spectral quality

    Energy Technology Data Exchange (ETDEWEB)

    Britz, S.J. [USDA-Climate Stress Lab., Beltsville, MD (United States)

    1994-12-31

    Photosynthesis is the process by which plants utilize light energy to assimilate and transform carbon dioxide into products that support growth and development. The preceding review provides an excellent summary of photosynthetic mechanisms and diurnal patterns of carbon metabolism with emphasis on the importance of gradual changes in photosynthetically-active radiation at dawn and dusk. In addition to these direct effects of irradiance, there are indirect effects of light period duration and spectral quality on carbohydrate metabolism and assimilate partitioning. Both daylength and spectral quality trigger developmental phenomena such as flowering (e.g., photoperiodism) and shade avoidance responses, but their effects on partitioning of photoassimilates in leaves are less well known. Moreover, the adaptive significance to the plants of such effects is sometimes not clear.

  16. Investigating student conceptions of energy through the lens of metaphor theory

    Science.gov (United States)

    Lancor, Rachael Anderman

    Energy is one of the most important unifying themes in science. Yet the way energy is conceptualized varies greatly from discipline to discipline. In this thesis, I examine the discourse used to discuss energy in science courses from the perspective of metaphor theory, and explore how these metaphors both highlight and obscure various aspects of energy. A set of five characteristics of energy are presented that correspond to metaphors commonly found in science classroom discourse. Five substance metaphors for energy were identified: energy as a substance that can be accounted for, energy as a substance that can change forms, energy as a substance that can flow, energy as a substance that can be carried, energy as a substance that can be lost, and energy as a substance that can be added, produced or stored. Additionally, one final metaphor depicts energy as a process or interaction. Working under this framework, undergraduate students in introductory college biology, chemistry, and physics courses were asked to write analogies that reflect their understanding of the role of energy in the context of ecosystems, chemical reactions, mechanical systems, and electrical circuits. These student-generated analogies were analyzed qualitatively to gain insight into how students conceptualize energy. The results of this empirical study confirm that students use the metaphors identified above to explain the role of energy in these various scientific contexts. A second empirical study is also presented in which students taking an interdisciplinary, issues-based general science course at the undergraduate level were asked to explain the role of energy in five contexts that frequently appear the media: radioactivity, transportation, generating electricity, natural disasters, and the big bang theory for the origin of the universe. Their explanations were analyzed through the lens of metaphor theory, and showed evidence of the same metaphors seen in traditional disciplinary topics

  17. CO2 Energy Reactor - Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization

    Directory of Open Access Journals (Sweden)

    Rafael M Santos

    2016-02-01

    Full Text Available To overcome the challenges of mineral CO2 sequestration, Innovation Concepts B.V. is developing a unique proprietary Gravity Pressure Vessel (GPV reactor technology, and has focussed on generating reaction products of high economic value. The GPV provides intense process conditions through hydrostatic pressurization and heat exchange integration that harvests exothermic reaction energy, thereby reducing energy demand of conventional reactor designs, in addition to offering other benefits. In this paper, a perspective on the status of this technology and outlook for the future is provided. To date, laboratory-scale tests of the envisioned process have been performed in a tubular rocking autoclave reactor. The mineral of choice has been olivine (~Mg1.6Fe2+0.4(SiO4 + ppm Ni/Cr, although asbestos, steel slags and oil shale residues are also under investigation. The effect of several process parameters on reaction extent and product properties have been tested: CO2 pressure, temperature, residence time, additives (buffers, lixiviants, chelators, oxidizers, solids loading, and mixing rate. The products (carbonates, amorphous silica and chromite have been physically separated (based on size, density and magnetic properties, characterized (for chemistry, mineralogy and morphology and tested in intended applications (as pozzolanic carbon-negative building material. Economically, it is found that product value is the main driver for mineral carbonation, rather than, or in addition to, the sequestered CO2. The approach of using a GPV and focusing on valuable reaction products could thus make CO2 mineralization a feasible and sustainable industrial process.

  18. Laboratory investigations on continuous bio-methanization of energy crops as mono-substrate without supplementation

    International Nuclear Information System (INIS)

    Demirel, Burak

    2009-01-01

    Continuous bio-methanization of an energy crop, namely the beet silage, was investigated in this laboratory-scale work as mono-substrate, using a mesophilic biogas digester controlled by a fuzzy logic control (FLC) technique and without using any supplementing or buffering agent, despite the low pH of the substrate around 3.80. The temperature, pH, redox potential (ORP), daily biogas production and composition of digester biogas were continuously measured online. During the operation, the hydraulic retention time (HRT) varied between 24.8 and 9 days, as the organic loading rate (OLR) ranged from 2.6 to 4.7 g L -1 d -1 . The average pH, specific gas production rate (spec. GPR) and volumetric gas production rate (vol. GPR) were determined to be 7.12, 0.31 L g VS -1 d -1 and 1.084 L L -1 d -1 , respectively. The average methane (CH 4 ) content of digester biogas was about 56%. The FLC technique, which was developed at HAW Hamburg for anaerobic conversion of acidic energy crops to methane, determined the daily feeding volume (∼ OLR/HRT) for the biogas digester, depending on the feedback from online pH and methane measurements, and on the calculation of the spec. GPR. The spec. GPR was calculated by the corrected daily biogas production. Through online monitoring of pH, biogas production rate and composition, and by use of the FLC technique, the acidic beet silage could continuously be converted to biogas, without using manure or any other kind of buffering or supplementing agent(s). The lab-scale anaerobic biogas digester performed stable and safe, without encountering any problems of instability, as indicated by an adequate amount of buffering capacity, a VFA content below 0.5 g L -1 and a neutral pH range throughout the study.

  19. Investigation of multilayered nanocomposites as low energy X-Rays attenuators

    International Nuclear Information System (INIS)

    Silva, Liliane; Batista, Adriana S.M.; Nascimento, Jefferson P.; Furtado, Clascídia A.; Faria, Luiz O.

    2017-01-01

    The development of radiation attenuating materials has application in radioprotection and conditioning of short-lived waste. Polymeric materials can serve as a matrix for the dispersion of nanomaterials with good attenuation features, resulting in lightweight, conformable, flexible and easy-to-process materials. Thus, some well-known shielding materials could be used in low proportion for the formation of new materials. On the other hand, nanostructured carbon materials, such as graphene oxide (GO) and carbon nanotubes (NTCs), have been reported recently to show enhanced attenuation properties. In this sense, polymeric matrixes provide the necessary flexibility for use in various applications that require molding. For the present work, poly(vinylidene fluoride) [PVDF] homopolymers and its fluorinated copolymers were filled with nanosized metallic and graphene oxides in order to produce nanocomposites with increased low energy X-ray attenuation efficiency. Film samples of PVDF/reduced Graphene Oxide [PVDF/rGO] and Poly(vinylidene fluoride – tryfluorethylene)/Barium Oxide [P(VDF-TrFE)/BaO] were synthesized. In a second step, the samples were then sandwiched between Kapton® layers and exposed to X-rays source (8.5 keV). The samples were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The attenuation coefficient was evaluated and compared with the attenuation of the individual constituents. It was observed an increase in the linear attenuation coefficient of the layered materials, justifying further investigation of these nanostructured composites as X-ray or gamma radiation attenuators. (author)

  20. Investigation of multilayered nanocomposites as low energy X-Rays attenuators

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Liliane; Batista, Adriana S.M.; Nascimento, Jefferson P.; Furtado, Clascídia A.; Faria, Luiz O., E-mail: asfisica@gmail.com, E-mail: adriananuclear@yahoo.com.br, E-mail: farialo@cdtn.br, E-mail: nascimentopatricio@yahoo.com.br, E-mail: clas@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The development of radiation attenuating materials has application in radioprotection and conditioning of short-lived waste. Polymeric materials can serve as a matrix for the dispersion of nanomaterials with good attenuation features, resulting in lightweight, conformable, flexible and easy-to-process materials. Thus, some well-known shielding materials could be used in low proportion for the formation of new materials. On the other hand, nanostructured carbon materials, such as graphene oxide (GO) and carbon nanotubes (NTCs), have been reported recently to show enhanced attenuation properties. In this sense, polymeric matrixes provide the necessary flexibility for use in various applications that require molding. For the present work, poly(vinylidene fluoride) [PVDF] homopolymers and its fluorinated copolymers were filled with nanosized metallic and graphene oxides in order to produce nanocomposites with increased low energy X-ray attenuation efficiency. Film samples of PVDF/reduced Graphene Oxide [PVDF/rGO] and Poly(vinylidene fluoride – tryfluorethylene)/Barium Oxide [P(VDF-TrFE)/BaO] were synthesized. In a second step, the samples were then sandwiched between Kapton® layers and exposed to X-rays source (8.5 keV). The samples were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The attenuation coefficient was evaluated and compared with the attenuation of the individual constituents. It was observed an increase in the linear attenuation coefficient of the layered materials, justifying further investigation of these nanostructured composites as X-ray or gamma radiation attenuators. (author)

  1. Determination of partition behavior of organic surrogates between paperboard packaging materials and air.

    Science.gov (United States)

    Triantafyllou, V I; Akrida-Demertzi, K; Demertzis, P G

    2005-06-03

    The suitability of recycled paperboard packaging materials for direct food contact applications is a major area of investigation. Chemical contaminants (surrogates) partitioning between recycled paper packaging and foods may affect the safety and health of the consumer. The partition behavior of all possible organic compounds between cardboards and individual foodstuffs is difficult and too time consuming for being fully investigated. Therefore it may be more efficient to determine these partition coefficients indirectly through experimental determination of the partitioning behavior between cardboard samples and air. In this work, the behavior of organic pollutants present in a set of two paper and board samples intended to be in contact with foods was studied. Adsorption isotherms have been plotted and partition coefficients between paper and air have been calculated as a basis for the estimation of their migration potential into food. Values of partition coefficients (Kpaper/air) from 47 to 1207 were obtained at different temperatures. For the less volatile surrogates such as dibutyl phthalate and methyl stearate higher Kpaper/air values were obtained. The adsorption curves showed that the more volatile substances are partitioning mainly in air phase and increasing the temperature from 70 to 100 degrees C their concentrations in air (Cair) have almost doubled. The analysis of surrogates was performed with a method based on solvent extraction and gas chromatographic-flame ionization detection (GC-FID) quantification.

  2. The partition dimension of cycle books graph

    Science.gov (United States)

    Santoso, Jaya; Darmaji

    2018-03-01

    Let G be a nontrivial and connected graph with vertex set V(G), edge set E(G) and S ⊆ V(G) with v ∈ V(G), the distance between v and S is d(v,S) = min{d(v,x)|x ∈ S}. For an ordered partition ∏ = {S 1, S 2, S 3,…, Sk } of V(G), the representation of v with respect to ∏ is defined by r(v|∏) = (d(v, S 1), d(v, S 2),…, d(v, Sk )). The partition ∏ is called a resolving partition of G if all representations of vertices are distinct. The partition dimension pd(G) is the smallest integer k such that G has a resolving partition set with k members. In this research, we will determine the partition dimension of Cycle Books {B}{Cr,m}. Cycle books graph {B}{Cr,m} is a graph consisting of m copies cycle Cr with the common path P 2. It is shown that the partition dimension of cycle books graph, pd({B}{C3,m}) is 3 for m = 2, 3, and m for m ≥ 4. pd({B}{C4,m}) is 3 + 2k for m = 3k + 2, 4 + 2(k ‑ 1) for m = 3k + 1, and 3 + 2(k ‑ 1) for m = 3k. pd({B}{C5,m}) is m + 1.

  3. Seismic performance evaluation of plasterboard partitions via shake table tests

    OpenAIRE

    Magliulo, G.; Petrone, C.; Capozzi, V.; Maddaloni, G.; Lopez, P.; Manfredi, G.

    2014-01-01

    The damage of nonstructural components represents the largest contribution to the economic loss caused by an earthquake. Since nonstructural components are not amenable to traditional structural analysis, full-scale experimental testing is crucial to understand their behaviour under earthquake. For this reason, shaking table tests are performed to investigate the seismic behaviour of plasterboard partitions. A steel test frame is properly designed in order to simulate the seismic effects at a...

  4. Speeding Up FPGA Placement via Partitioning and Multithreading

    Directory of Open Access Journals (Sweden)

    Cristinel Ababei

    2009-01-01

    placement subproblems are created by partitioning and then processed concurrently by multiple worker threads that are run on multiple cores of the same processor. Our main goal is to investigate the speedup that can be achieved with this simple approach compared to previous approaches that were based on distributed computing. The new hybrid parallel placement algorithm achieves an average speedup of 2.5× using four worker threads, while the total wire length and circuit delay after routing are minimally degraded.

  5. Dynamic criteria for partitioning and transmutation

    International Nuclear Information System (INIS)

    Lu, A.H.

    1991-11-01

    This paper addresses dynamic criteria intended to optimize partitioning and transmutation (P-T) concept development supporting improved nuclear waste management. Six criteria are proposed initially and the rationale for each is briefly explained. Each criterion is used as a measure (or dimension) on which the developed concepts can be evaluated. The criteria allow the P-T concepts to be evaluated in an integral system including long-term energy needs, fuel cycle, and waste management. New criteria will be identified along with the P-T concept development, and each criterion will be realistically weighted so that it is comparable in an overall criteria evaluation. The weights are subject to change as a result of technical advancements and public perception on various issues. Incomplete criteria will result in a poor choice because important factors may not be considered when the decision is made. A successful decision on the optimal P-T system depends on the completeness of criteria (dimensions) as well as realistic weights assigned to each criterion

  6. Using Rasch Modeling to Investigate a Learning Progression for Energy Ideas

    Science.gov (United States)

    Herrmann-Abell, Cari F.; DeBoer, George E.

    2016-01-01

    Energy is a core concept in the teaching of science. Therefore, it is important to know how students' thinking about energy develops so that elementary, middle, and high school students can be appropriately supported in their understanding of energy. This study tests the validity of a proposed theoretical model of students' growth of understanding…

  7. AN INVESTIGATION OF WAVE ENERGY POTENTIAL IN WESTERN BLACK SEA REGION

    Directory of Open Access Journals (Sweden)

    İlyas UYGUR

    2006-01-01

    Full Text Available The main energy sources which are natural, clean, environmentally friendly, and renewable are wind power, solar energy, biomass energy, hydro energy, and wave energy. The wave energy has no cost except for the first investment and maintenance. There is also no cost for input energy. Besides these, it has no pollution effect on the environment, it is cheap and there is a huge potential all around the world. Wave energy is a good opportunity to solve the energy problem for Turkey which is surrounded by seas. Concerning all these facts, it has been conducted some studies which included five years of observation in the Western Black Sea Region (Akçakoca. The wave energy potential has also been calculated. From this sutdy results, it can be concluded that the wave energy potential of this region is inefficient. It is believed that by the improvement of the new energy converter devices in future, this low potential can be used more efficiently and as a result this study might be used as a basis for the future researches.

  8. Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.

    Science.gov (United States)

    Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G

    2015-11-17

    Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.

  9. REE Partitioning in Lunar Minerals

    Science.gov (United States)

    Rapp, J. F.; Lapen, T. J.; Draper, D. S.

    2015-01-01

    Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.

  10. Evapotranspiration Partitioning with Sub-Daily Isotopic Measurement in a Sub-Humid Grassland Ecosystem

    Science.gov (United States)

    Sun, X.; Wilcox, B. P.; Zou, C.; Stebler, E.; West, J. B.

    2015-12-01

    Evapotranspiration (ET) interweaves water, energy, and biogeochemical interactions between the land surface and atmospheric system. Stable isotopic measurement, especially field deployable laser absorption spectrometers, provides a promising tool for ET partitioning with its direct and efficient measurement on isotopic components of water vapor. This isotopic approach, however, is still facing some uncertainties in quantifying ET and its constituents according to assumptions and empirical formula involved. In this study, we combined high-time resolution measurement with laser absorption spectrometers and eddy covariance techniques to quantify ET and its two components, namely soil water Evaporation (E) and plant transpiration (T) for a sub-humid grassland in southern US. Direct chamber measurement on these two end-members was compared with revised Craig-Gordon model for the quantification consistency assessment. Our results indicate the daily ratio of T/ET and its sub-daily dynamics for different soil moisture and micro-climate conditions. We investigated the controlling factors for ET and its partitioning dynamics for this grassland ecosystem. The uncertainties involved in the quantification were also assessed by comparison between direct chamber and empirical approaches.

  11. Convex Regression with Interpretable Sharp Partitions.

    Science.gov (United States)

    Petersen, Ashley; Simon, Noah; Witten, Daniela

    2016-06-01

    We consider the problem of predicting an outcome variable on the basis of a small number of covariates, using an interpretable yet non-additive model. We propose convex regression with interpretable sharp partitions (CRISP) for this task. CRISP partitions the covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex optimization problem, resulting in low-variance fits. We explore the properties of CRISP, and evaluate its performance in a simulation study and on a housing price data set.

  12. Electrochemical investigations of advanced materials for microelectronic and energy storage devices

    Science.gov (United States)

    Goonetilleke, Pubudu Chaminda

    A broad range of electrochemical techniques are employed in this work to study a selected set of advanced materials for applications in microelectronics and energy storage devices. The primary motivation of this study has been to explore the capabilities of certain modern electrochemical techniques in a number of emerging areas of material processing and characterization. The work includes both aqueous and non-aqueous systems, with applications in two rather general areas of technology, namely microelectronics and energy storage. The sub-systems selected for investigation are: (i) Electrochemical mechanical and chemical mechanical planarization (ECMP and CMP, respectively), (ii) Carbon nanotubes in combination with room temperature ionic liquids (ILs), and (iii) Cathode materials for high-performance Li ion batteries. The first group of systems represents an important building block in the fabrication of microelectronic devices. The second and third groups of systems are relevant for new energy storage technologies, and have generated immense interests in recent years. A common feature of these different systems is that they all are associated with complex surface reactions that dictate the performance of the devices based on them. Fundamental understanding of these reactions is crucial to further development and expansion of their associated technologies. It is the complex mechanistic details of these surface reactions that we address using a judicious combination of a number of state of the art electrochemical techniques. The main electrochemical techniques used in this work include: (i) Cyclic voltammetry (CV) and slow scan cyclic voltammetry (SSCV, a special case of CV); (ii) Galvanostatic (or current-controlled) measurements; (iii) Electrochemical impedance spectroscopy (EIS), based on two different methodologies, namely, Fourier transform EIS (FT-EIS, capable of studying fast reaction kinetics in a time-resolved mode), and EIS using frequency response

  13. Investigation of x-ray energy for computed tomography using film technique

    International Nuclear Information System (INIS)

    Somyot Srisatit; Nares Chankow; Attaporn Pattarasumunt

    1996-01-01

    The x-ray computed tomography (CT) using film technique is investigated. Each object is radiographed by the x-rays at different angles of 3.6 degrees increment from ) throughout a minimum of a 180 degrees rotation using a developed automatic x-ray CT system controlled by a microcontroller. After film development, the density profiles on films at a desired position are read using an automatic scan densitometer which is controlled by a microcomputer. The density profile data are simultaneously saved on a floppy disk for CT image reconstruction. A software programme for the CT image reconstruction is developed and run on a 80486DX IBM microcomputer with a VGA color monitor. The convolution filter backprojection (CFBP) technique and Shepp-Logan filter function are selected for the reconstruction software programme. The resolution of the x-ray CT image is found to be approximately 1 mm and the contrast, which depends on the x-ray energy is found to be satisfactory

  14. Investigation on the chemically fixing technique of carbon dioxide utilizing solar energy

    Science.gov (United States)

    1993-03-01

    This report describes the results of an effective fixing technique of CO2 by utilizing solar energy. First of all, the investigation was directed to the technique for synthesizing ethylene, hydrocarbons, and alcohol by electrochemical reduction of CO2. The power required for this process is supplied by photovoltaic power generation. Development of an excellent electrode catalyst is needed because the reduction of CO2 requires a high overvoltage. It is desirable to enhance the selectivity of the reaction for specific material and improve the transport process in the electrolytic cell. Next, the designing of materials and the reaction of photocatalysts using semiconductor electrode and semiconductor particulate was examined. A semiconductor electrode made of FeS2 is inexpensive and is very efficient at collecting solar light. In the category of a photocatalysis system, a photocatalytic system in which semiconductor particles are embedded in a vesicle and a photocatalyst based on potassium niobate are noteworthy. As biosystem, the method of reducing CO2 by calcareous algae which simultaneously advances fixing and calcification of CO2 by photosynthesis is noteworthy.

  15. Investigations of low-energy ion irradiation influence on glassy polymeric carbon

    Science.gov (United States)

    Abidzina, V.; Tereshko, I.; Elkin, I.; Muntele, I.; Muntele, C.; Minamisawa, R. A.; Ila, D.

    2007-04-01

    Glassy polymeric carbon (GPC), which is made from phenolic resins, has a high chemical inertness and is used as high temperature and radiation resistant coatings, as high temperature heat-exchangers, as well as a biomaterial in medicine for the manufacture of heart valves and prosthetic devices [G.M. Jenkins, D. Ila, H. Maleki, Mater. Res. Soc. Symp. Proc. 394 (1995) 181]. GPC is also used for the harsh environment of space, as well as for protective coating against extreme environments such as high temperature, highly ionizing radiation, as well as corrosive environments. In this work, we present the results of our investigation of the influence of the low-energy ion irradiation in glow-discharge plasma on GPC. Chemical changes in GPC prepared at 1000 °C were studied using FTIR, micro-Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Porosity changes were monitored through introducing lithium from a molten LiCl salt into GPC and using the (p, α) nuclear reaction analysis (NRA) to measure Li concentration in treated GPC.

  16. Experimental investigation of low aspect ratio, large amplitude, aeroelastic energy harvesting systems

    Science.gov (United States)

    Kirschmeier, Benjamin; Summerour, Jacob; Bryant, Matthew

    2017-04-01

    Interest in clean, stable, and renewable energy harvesting devices has increased dramatically with the volatility of petroleum markets. Specifically, research in aero/hydro kinetic devices has created numerous new horizontal and vertical axis wind turbines, and oscillating wing turbines. Oscillating wing turbines (OWTs) differ from their wind turbine cousins by having a rectangular swept area compared to a circular swept area. The OWT systems also possess a lower tip speed that reduces the overall noise produced by the system. OWTs have undergone significant computational analysis to uncover the underlying flow physics that can drive the system to high efficiencies for single wing oscillations. When two of these devices are placed in tandem configuration, i.e. one placed downstream of the other, they either can constructively or destructively interact. When constructive interactions occurred, they enhance the system efficiency to greater than that of two devices on their own. A new experimental design investigates the dependency of interaction modes on the pitch stiffness of the downstream wing. The experimental results demonstrated that interaction modes are functions of convective time scale and downstream wing pitch stiffness. Heterogeneous combinations of pitch stiffness exhibited constructive and destructive lock-in phenomena whereas the homogeneous combination exhibited only destructive interactions.

  17. Investigations of low-energy ion irradiation influence on glassy polymeric carbon

    International Nuclear Information System (INIS)

    Abidzina, V.; Tereshko, I.; Elkin, I.; Muntele, I.; Muntele, C.; Minamisawa, R.A.; Ila, D.

    2007-01-01

    Glassy polymeric carbon (GPC), which is made from phenolic resins, has a high chemical inertness and is used as high temperature and radiation resistant coatings, as high temperature heat-exchangers, as well as a biomaterial in medicine for the manufacture of heart valves and prosthetic devices [G.M. Jenkins, D. Ila, H. Maleki, Mater. Res. Soc. Symp. Proc. 394 (1995) 181]. GPC is also used for the harsh environment of space, as well as for protective coating against extreme environments such as high temperature, highly ionizing radiation, as well as corrosive environments. In this work, we present the results of our investigation of the influence of the low-energy ion irradiation in glow-discharge plasma on GPC. Chemical changes in GPC prepared at 1000 deg. C were studied using FTIR, micro-Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Porosity changes were monitored through introducing lithium from a molten LiCl salt into GPC and using the (p, α) nuclear reaction analysis (NRA) to measure Li concentration in treated GPC

  18. INVESTIGATING OF ECO- AND ENERGY-EFFICIENT LUBRICATION STRATEGIES FOR THE DRILLING OF LIGHT METAL ALLOYS

    Directory of Open Access Journals (Sweden)

    N.F. Treurnicht

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Energy use will be one of the main drivers for the achievement of more eco-efficient drilling processes in the automotive industry. Industry awareness of the environmental impact of used cutting emulsions, and the negative effect on worker health, has increased sharply. This has led to innovative lubrication methods such as through-spindle minimal quantity lubrication (MQL for drilling aluminium-silicon alloys. In this work the performance of MQL at different cutting speeds and feed rates has been investigated using infrared temperature measurements. The results indicate that MQL is a feasible eco-efficient alternative to conventional flood cooling when drilling aluminium-silicon alloys.

    AFRIKAANSE OPSOMMING: Energiebenutting maak een van die hoofdryfvere uit om eko-doeltreffendheid te behaal in boorprosesse in die motornywerheid. Nywerheidsbewustheid van die omgewingsimpak van gebruikte sny-vloeistowwe, en die negatiewe effek daarvan op werkergesondheid, het skerp toegeneem. Hierdie bewustheid het aanleiding gegee tot die ontwikkeling van smeringsmetodes soos deur-spil minimale hoeveelheid smering (Engels: Minimal Quantity Lubrication, MQL vir die boor van aluminium-silikon legerings. In hierdie werk word die prestasie van MQL ondersoek teen verskillende snyspoed- en voertempo-kondisies deur middel van infra-rooi temperatuurmeting. Die resultate dui daarop dat MQL ’n lewensvatbare eko-vriendelike alternatief tot konvensionele vloedverkoeling is, wanneer aluminium-silikon legerings geboor word.

  19. Numerical and Experimental Investigation on a Thermo-Photovoltaic Module for Higher Efficiency Energy Generation

    Science.gov (United States)

    Karami-Lakeh, Hossein; Hosseini-Abardeh, Reza; Kaatuzian, Hassan

    2017-05-01

    One major problem of solar cells is the decrease in efficiency due to an increase in temperature when operating under constant irradiation of solar energy. The combination of solar cell and a thermoelectric generator is one of the methods proposed to solve this problem. In this paper, the performance of thermo-photovoltaic system is studied experimentally as well as through numerical simulation. In the experimental part, design, manufacture and test of a novel thermo-photovoltaic system assembly are presented. Results of the assembled system showed that with reduction of one degree (Centigrade) in the temperature of solar cell under investigation, and about 0.2 % increase in the efficiency will be obtained in comparison with given efficiency at that specified temperature. The solar cell in a hybrid-assembled system under two cooling conditions (air cooling and water cooling) obtained an efficiency of 8 % and 9.5 %, respectively, while the efficiency of a single cell under the same radiation condition was 6 %. In numerical simulation part, photo-thermoelectric performance of system was analyzed. Two methods for evaluation of thermoelectric performance were used: average properties and finite element method. Results of simulation also demonstrate an increase in solar cell efficiency in the combined system in comparison with that of the single cell configuration.

  20. Influence of Zn and Pb on Rhizopogon roseolus mycelium - energy dispersion spectroscopy and cytochemical investigation

    Directory of Open Access Journals (Sweden)

    Katarzyna Turnau

    2014-01-01

    Full Text Available Mycelium isolated from fruitbodies of Rhizopogon roseolus, collected from calamine wastes in Poland, was cultivated on agar media supplemented with Zn or Pb salts. The stimulation of exudate production by the aerial mycelium and the mycelium growing on the surface of the media, accompanied by the change of mycelium pigmentation, was found as a result of Zn application. The presence of Pb resulted mainly in the stimulation of crystalloid production on the surface of mycelium, in direct contact with the medium. Exudate droplets formed on the surface of mycelium cultivated on media with and without the Zn addition, were investigated by means of cytochemical tests (PATAg and Gomori-Swift reaction. In the control media most droplets gave a diffused, positive reaction to both tests. In media supplemented with Zn salts, besides the droplet-like material described in the control also another kind of exudate was observed. It was characterized by the collar showing apositive Gomori-Swift reaction, while the rest of the exudate had an oily appearance and gave a faint or no reaction to both tests. Comparative research by means of scanning electron microscopy accompanied by energy dispersion spectroscopy, was carried out showing the differences in exudate and in mycelia composition as a result of the Zn and Pb presence in the medium.

  1. Experimental investigation of electron cooling and stacking of lead ions in a low energy accumulation ring

    CERN Document Server

    Bosser, Jacques; Chanel, M; Hill, C; Lombardi, A M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Rossi, S; Tanke, E; Tranquille, G; Vretenar, Maurizio

    1999-01-01

    This report gives the results of a programme of experimental investigations, which were carried out to test stacking of lead ions in a storage ring (the former Low Energy Antiproton Ring, LEAR) at 4.2 MeV per nucleon. The motivation was to demonstrate the feasibility of gaining the large factor in the phase-space density required for injection into the LHC. In the first part of the report, the layout of the experiments is described, the choice of the parameters of the electron cooling system used for stacking is reported and the multi-turn injection using horizontal- and longitudinal- (and in the final project also vertical-) phase space is discussed. In the second part the experimental results are presented. Factors of vital importance are the stacking efficiency, the beam life-time and the cooling time of the ions. The beam decay owing to charge exchange with the residual gas and to recombination by the capture of cooling electrons was intensively studied. Beam instabilities and space-charge effects in the ...

  2. Investigation of Prolactin Receptor Activation and Blockade Using Time-Resolved Fluorescence Resonance Energy Transfer

    Directory of Open Access Journals (Sweden)

    Estelle eTallet

    2011-09-01

    Full Text Available The prolactin receptor (PRLR is emerging as a therapeutic target in oncology. Knowledge-based drug design led to the development of a pure PRLR antagonist (Del1-9-G129R-hPRL that was recently shown to prevent PRL-induced mouse prostate tumorogenesis. In humans, the first gain-of-function mutation of the PRLR (PRLRI146L was recently identified in breast tumor patients. At the molecular level, the actual mechanism of action of these two novel players in the PRL system remains elusive. In this study, we addressed whether constitutive PRLR activation (PRLRI146L or PRLR blockade (antagonist involved alteration of receptor oligomerization and/or of inter-chain distances compared to unstimulated and PRL-stimulated PRLR. Using a combination of various biochemical and spectroscopic approaches (co-IP, blue-native electrophoresis, BRET1, we demonstrated that preformed PRLR homodimers are altered neither by PRL- or I146L-induced receptor triggering, nor by antagonist-mediated blockade. These findings were confirmed using a novel time-resolved fluorescence resonance energy transfer (TR-FRET technology that allows monitoring distance changes between cell-surface tagged receptors. This technology revealed that PRLR blockade or activation did not involve detectable distance changes between extracellular domains of receptor chains within the dimer. This study merges with our previous structural investigations suggesting that the mechanism of PRLR activation solely involves intermolecular contact adaptations leading to subtle intramolecular rearrangements.

  3. Investigation of Energy Indices and Energy Consumption Optimization for Peach Production- Case Study: Saman Region in Chaharmahal va Bakhtiari Province

    Directory of Open Access Journals (Sweden)

    M Ghasemi-Varnamkhasti

    2015-03-01

    Full Text Available As one of the most important conditions in sustainable agriculture, optimization of energy consumption in agriculture is necessary in order to reduce the production cost and saving non renewable resources as well as reduction of air pollutants. In this regard, this study was conducted in Saman region, Chaharmahal va Bakhtiari province. A linear programming based on Data Envelopment Analysis (DEA was used for optimization of energy consumption in peach production in order to increase the technical efficiency. By performing a linear regression analysis, some inputs including animal fertilizer, pesticide, human labor and machinery had no significant influence on product yield, while some other inputs including fuel, electricity, water and chemical fertilizer showed a significant effect on the product yield. Therefore, the latter inputs and the product yield were considered as the inputs and output, respectively. Selecting the BCC model (efficiency to variable scale model of input nature and using DEA Solver software, efficient and inefficient farmers were determined. The efficient farmers had the technical efficiency of unit (one and the inefficient farmers had this value within 0.47-0.94. Also, the technical efficiency of inefficient farmers was computed as 0.74. This means that using 74% of the inputs and keeping the current yield, the inefficient farmers can approach to the efficiency limit. Total technical efficiency of all farmers was found to be 0.82. Based on the results, the maximum value of inefficiency belonged to electricity energy with 65.32%.

  4. Partitioning and transmutation (P and T) 1997. Status report

    Energy Technology Data Exchange (ETDEWEB)

    Enarsson, Aasa; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Gudowski, W.; Wallenius, J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-05-01

    Research on and the evaluation of partitioning and transmutation are currently in progress in many industrial countries due to its potential as a long-term, sustainable energy source with low environmental impact and due to its ability to destroy many long-lived nuclides. The cost of the research and development work on partitioning and transmutation is considered to be so great that international co-operation is required. With respect to Sweden, we recommend a balanced research work on both partitioning and transmutation technology. Within the area of partitioning, it is above all a question of locating new reagents which can be used to simplify the necessary partitioning processes and minimize the losses. The requirements with respect to high selectivity and minor losses will be significantly higher in a recirculating system based on transmutation than in the reprocessing facilities of today where only uranium and plutonium are recovered. If the utilized reagents can be easily destroyed, by dry or wet incineration and conversion into non-complex gaseous chemical compounds, this will open up good opportunities for the recovery of the radionuclides. From a purely technical standpoint, it would seem that a combination of different types of reactor systems would give the best possible transmutation efficiency. While existing light water reactors can be utilized for increased plutonium incineration, there is currently consensus about the view that reactors with high-energy neutrons are necessary to achieve a sufficiently high transmutation efficiency for neptunium, americium, curium and certain fission products. By allowing an accelerator-based neutron source to drive a subcritical heavy metal-cooled reactor, the potential for transmutation of fission products is increased, at the same time that satisfactory safety margins are achieved for certain fuel types with a low share of delayed neutrons and a high heat conductivity. Regardless of what types of systems are

  5. Partitioning and transmutation (P and T) 1997. Status report

    International Nuclear Information System (INIS)

    Enarsson, Aasa; Landgren, A.; Liljenzin, J.O.; Skaalberg, M.; Spjuth, L.; Gudowski, W.; Wallenius, J.

    1998-05-01

    Research on and the evaluation of partitioning and transmutation are currently in progress in many industrial countries due to its potential as a long-term, sustainable energy source with low environmental impact and due to its ability to destroy many long-lived nuclides. The cost of the research and development work on partitioning and transmutation is considered to be so great that international co-operation is required. With respect to Sweden, we recommend a balanced research work on both partitioning and transmutation technology. Within the area of partitioning, it is above all a question of locating new reagents which can be used to simplify the necessary partitioning processes and minimize the losses. The requirements with respect to high selectivity and minor losses will be significantly higher in a recirculating system based on transmutation than in the reprocessing facilities of today where only uranium and plutonium are recovered. If the utilized reagents can be easily destroyed, by dry or wet incineration and conversion into non-complex gaseous chemical compounds, this will open up good opportunities for the recovery of the radionuclides. From a purely technical standpoint, it would seem that a combination of different types of reactor systems would give the best possible transmutation efficiency. While existing light water reactors can be utilized for increased plutonium incineration, there is currently consensus about the view that reactors with high-energy neutrons are necessary to achieve a sufficiently high transmutation efficiency for neptunium, americium, curium and certain fission products. By allowing an accelerator-based neutron source to drive a subcritical heavy metal-cooled reactor, the potential for transmutation of fission products is increased, at the same time that satisfactory safety margins are achieved for certain fuel types with a low share of delayed neutrons and a high heat conductivity. Regardless of what types of systems are

  6. Investigation on future perspective of nuclear power generation. Countermeasures to global environment problems and role of stable energy supply

    International Nuclear Information System (INIS)

    Sikami, Yutaka

    1995-01-01

    This investigation is concerned with the long term energy demand and supply in the world, which was carried out by the Institute of Energy Economics Japan for the purpose of contributing to the deliberation of the Atomic Energy Commission of Japan. This perspective of the demand and supply took the ultralong period up to 2100 as the object, and two points of the newest information on energy resources and the greenhouse effect problem due to carbon dioxide are included. The model used for the simulation was the modified Edmond Riley model. Energy consumption was estimated from that per one person and the population classified into nine districts. The assumed conditions for energy demand and supply are explained. The simulation of energy demand and supply was carried out for basic case in which the present state continues, carbon dioxide restriction case and restriction and plutonium utilization case. The results of the simulation on energy demand and supply, the effect to environment and the problems of resources are reported. The energy consumption in the world continues to increase hereafter centering around developing countries, and in 2100, the primary energy supply more than three times as much as that in 1990 becomes necessary. Unless the release of carbon dioxide is restricted, the resolution of environmental problems becomes difficult. Nuclear power generation is affected by uranium resource depletion around 2100, and early countermeasures are necessary. (K.I.)

  7. Towards a Platform of Investigative Tools for Biomimicry as a New Approach for Energy-Efficient Building Design

    Directory of Open Access Journals (Sweden)

    Natasha Chayaamor-Heil

    2017-03-01

    Full Text Available Major problems worldwide are environmental concern and energy shortage along with the high consumption of energy in buildings and the lack of sources. Buildings are the most intensive energy consumers, and account for 40% of worldwide energy use, which is much more than transportation. In next 25 years, CO2 emissions from buildings are projected to grow faster than in other sectors. Thus, architects must attempt to find solutions for managing buildings energy consumption. One of new innovative approaches is Biomimicry, which is defined as the applied science that derives inspiration for solutions to human problems through the study of natural designs’ principles. Although biomimicry is considered to be a new approach for achieving sustainable architecture, but there is still not enough access for architects to make use of it, especially to implement biomimetic design strategy in architectural project. The main objective of this paper is to raise awareness of architects making use of biomimetic strategies with better accessible facility. We propose to create the tool setting relationship to formalize and bridge between biological and architectural knowledge, along with investigative tools to investigate the ability of reducing energy consumption by applying the biomimetic strategies on efficient-energy building design. This article hypothetically proposes an investigative tool based on Bayesian networks for testing the rapid result of choices from natural devices according to specific multi-criteria requirements in each case study.

  8. Helium-air exchange flows through partitioned opening and two-opening

    International Nuclear Information System (INIS)

    Kang, T. I.

    1997-01-01

    This paper describes experimental investigations of helium-air exchange flows through partitioned opening and two-opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature engineering test reactor. A test vessel with the two types of small opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed to measure the exchange flow rate. Upward flow of the helium and downward flow of the air in partitioned opening system interact out of entrance and exit of the opening. Therefore, an experiment with two-opening system is made to investigate effect of the fluids interaction of partitioned opening system. As a result of comparison of the exchange flow rates between two types of the opening system, it is demonstrated that the exchange flow rate of the two-opening system is larger than that of the partitioned opening system because of absence of the effect of fluids interaction. (author)

  9. Investigating predictors of eating: is resting metabolic rate really the strongest proxy of energy intake?

    Science.gov (United States)

    McNeil, Jessica; Lamothe, Gilles; Cameron, Jameason D; Riou, Marie-Ève; Cadieux, Sébastien; Lafrenière, Jacynthe; Goldfield, Gary; Willbond, Stephanie; Prud'homme, Denis; Doucet, Éric

    2017-11-01

    Background: Evidence suggests that fat-free mass and resting metabolic rate (RMR), but not fat mass, are strong predictors of energy intake (EI). However, body composition and RMR do not explain the entire variance in EI, suggesting that other factors may contribute to this variance. Objective: We aimed to investigate the associations between body mass index (in kg/m 2 ), fat mass, fat-free mass, and RMR with acute (1 meal) and daily (24-h) EI and between fasting appetite ratings and certain eating behavior traits with daily EI. We also evaluated whether RMR is a predictor of the error variance in acute and daily EI. Design: Data collected during the control condition of 7 studies conducted in Ottawa, Ontario, Canada, were included in these analyses ( n = 191 and 55 for acute and daily EI, respectively). These data include RMR (indirect calorimetry), body composition (dual-energy X-ray absorptiometry), fasting appetite ratings (visual analog scales), eating behavior traits (Three-Factor Eating Questionnaire), and EI (food buffet or menu). Results: Fat-free mass was the best predictor of acute EI ( R 2 = 0.46; P fasting prospective food consumption ratings and RMR was the best predictor of daily EI ( R 2 = 0.44; P < 0.0001). RMR was a statistically significant positive predictor of the error variance for acute ( R 2 = 0.20; P < 0.0001) and daily ( R 2 = 0.23; P < 0.0001) EI. RMR did, however, remain a statistically significant predictor of acute ( R 2 = 0.32; P < 0.0001) and daily ( R 2 = 0.30; P < 0.0001) EI after controlling for this error variance. Conclusions: Our findings suggest that combined measurements of appetite ratings and RMR could be used to estimate EI in weight-stable individuals. However, greater error variance in acute and daily EI with increasing RMR values was observed. Future studies are needed to identify whether greater fluctuations in daily EI over time occur with increasing RMR values. This trial was registered at clinicaltrials.gov as NCT

  10. Investigations and system design for simultaneous energy and data transmission through inductively coupled resonances

    Science.gov (United States)

    Schmidt, C.; Lloret Fuentes, E.; Buchholz, M.

    2015-11-01

    Wireless Power Transfer (WPT) with simultaneous data transmission through coupled magnetic resonators is investigated in this paper. The development of this system is dedicated to serve as a basis for applications in the field of Ambient Assisted Living (AAL), for example tracking vital parameters remotely, charge and control sensors and so on. Due to these different scenarios we consider, it is important to have a system which is reliable under the circumstance of changing positioning of the receiving device. State of the art radio systems would be able to handle this. Nevertheless, energy harvesting from far field sources is not sufficient to power the devices additionally on mid-range distances. For this reason, coupled magnetic resonant circuits are proposed as a promising alternative, although suffering from more complex positioning dependency. Based on measurements on a simple prototype system, an equivalent circuit description is used to model the transmission system dependent on different transmission distances and impedance matching conditions. Additionally, the simulation model is used to extract system parameters such as coupling coefficients, coil resistance and self-capacitance, which cannot be calculated in a simple and reliable way. Furthermore, a mathematical channel model based on the schematic model has been built in MATLAB©. It is used to point out the problems occurring in a transmission system with variable transmission distance, especially the change of the passband's centre frequency and its bandwidth. Existing solutions dealing with this distance dependent behaviour, namely the change of the transmission frequency dependent on distance and the addition of losses to the resonators to increase the bandwidth, are considered as not inventive. First, changing the transmission frequency increases the complexity in the data transmission system and would use a disproportional total bandwidth compared to the actually available bandwidth

  11. Investigation of Optimal Configuration of Solar Energy System Considering Configuration of Apparatuses and Electricity Transportation between Interprofessional Consumers

    Science.gov (United States)

    Ohkura, Masashi; Mori, Shunsuke

    This paper describes about a decision model for solar energy utilization and an investigation of optimal configuration of solar energy system considering electricity transportation between interprofessional consumers. Solar energy is effective energy source for CO2 reduction. Available collectable area for solar energy is limited to consumer's condition. A photovoltaic can supply electricity which is flexible. However its efficiency is low compared to solar heat collector. A solar heat collector has high efficiency. But heat demand varies with consumer type. We investigate optimal ratio of photovoltaic and solar heat collector in several condition. The result shows that solar heat collector is effective energy supply system for consumers which require high hot water demand in daytime. On the other hand, electrical heat pump for hot water supply varies optimal configuration of solar energy system due to the shift of energy source from gas to electricity. To introduce electrical heat pump for hot water supply increases the ratio of photovoltaic due to the increase in electricity demand. However, there is no consumer without solar heat collector. Therefore, solar heat collector does not compare with electrification of consumer.

  12. Energy technology monitoring - New areas and in-depth investigations; Technologie-Monitoring - Weitere Bereiche - Vertiefungen

    Energy Technology Data Exchange (ETDEWEB)

    Rigassi, R.; Eicher, H. [Dr. Eicher und Pauli AG, Liestal (Switzerland); Steiner, P.; Ott, W. [Econcept AG, Zuerich (Switzerland)

    2005-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined long-term trends in the energy technology area in order to provide information that is to form the basis for political action and the distribution of energy research funding in Switzerland. Energy-technology areas examined include variable-speed electrical drives, ventilation systems for low-energy-consumption buildings, membrane technology and the use of plastics in lightweight automobiles. Examples are quoted and the current state of the appropriate technologies and market aspects are examined. Also, the potential and future developments in the areas listed are looked at. The consequences for energy policy and future developments in the technology-monitoring area are considered.

  13. Plasmid and chromosome partitioning: surprises from phylogeny

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus

    2000-01-01

    Plasmids encode partitioning genes (par) that are required for faithful plasmid segregation at cell division. Initially, par loci were identified on plasmids, but more recently they were also found on bacterial chromosomes. We present here a phylogenetic analysis of par loci from plasmids...... and chromosomes from prokaryotic organisms. All known plasmid-encoded par loci specify three components: a cis-acting centromere-like site and two trans-acting proteins that form a nucleoprotein complex at the centromere (i.e. the partition complex). The proteins are encoded by two genes in an operon...... that is autoregulated by the par-encoded proteins. In all cases, the upstream gene encodes an ATPase that is essential for partitioning. Recent cytological analyses indicate that the ATPases function as adaptors between a host-encoded component and the partition complex and thereby tether plasmids and chromosomal...

  14. Thermal tolerance and resource partitioning in aphids

    Czech Academy of Sciences Publication Activity Database

    Dixon, Anthony F. G.

    XCII, - (2009), s. 171-173 ISSN 0370-4327 Institutional research plan: CEZ:AV0Z60870520 Keywords : aphids * coexistence * food quality * resource partitioning * thermal tolerance Subject RIV: EG - Zoology

  15. Cell Partition in Two Polymer Aqueous Phases

    Science.gov (United States)

    Harris, J. M.

    1985-01-01

    Partition of biological cells in two phase aqueous polymer systems is recognized as a powerful separation technique which is limited by gravity. The synthesis of new, selective polymer ligand conjugates to be used in affinity partition separations is of interest. The two most commonly used polymers in two phase partitioning are dextran and polyethylene glycol. A thorough review of the chemistry of these polymers was begun, particularly in the area of protein attachment. Preliminary studies indicate the importance in affinity partitioning of minimizing gravity induced randomizing forces in the phase separation process. The PEG-protein conjugates that were prepared appear to be ideally suited for achieving high quality purifications in a microgravity environment. An interesting spin-off of this synthetic work was the observation of catalytic activity for certain of our polymer derivatives.

  16. OPTIMAL PARTITIONS OF DATA IN HIGHER DIMENSIONS

    Data.gov (United States)

    National Aeronautics and Space Administration — OPTIMAL PARTITIONS OF DATA IN HIGHER DIMENSIONS BRADLEY W. JACKSON*, JEFFREY D. SCARGLE, AND CHRIS CUSANZA, DAVID BARNES, DENNIS KANYGIN, RUSSELL SARMIENTO, SOWMYA...

  17. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2013-10-30

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  18. A case study for energy issues of public buildings and utilities in a small municipality: Investigation of possible improvements and integration with renewables

    International Nuclear Information System (INIS)

    Fiaschi, Daniele; Bandinelli, Romeo; Conti, Silvia

    2012-01-01

    Highlights: ► Energy issues of buildings and utilities owned by a small municipality are assessed. ► An overview of heat and electricity consumption of public buildings and utilities is carried out. ► The potential of PV on roofs of public buildings and improvement of streets lighting are evaluated. ► Some possible retrofitting of school buildings and sport facilities are evaluated. ► The results have several general aspects, replicable to other small towns in that size range. -- Abstract: This manuscript summarises the results of a project concerning the energy consumption of public buildings and utilities and the evaluation of the most effective and feasible ways to save energy in Certaldo, a small township in Tuscany with approximately 16,000 inhabitants. The energy analysis highlighted a specific partitioning of electric and thermal energy for final use. For example, more than 60% of the electricity consumption of the town is for street lighting, which is still uses obsolete and environmentally problematic lighting technologies, and more than 13% for lighting public schools. With respect to heat utilities, more than 60% of natural gas consumption is for heating public schools and 18% is for heating sport/athletic facilities. The partitioning of energy consumption introduced a list of requalification measures focused on specific areas: each area has an energy saving potential and specific feasible energy requalification technologies in addition to the possible introduction of suitable renewables. The selection of the proposed interventions was based on the results of model simulations, municipal urban regulations and prevailing trends resulting from a survey of municipalities that are the same size as Tuscany. The type and impact of these interventions were also in agreement with the trends found in different international contexts. In the final part of this paper, some instruments and considerations regarding the evaluation of the return on investment

  19. An Investigation of Energy Coupling in Various Arc Susceptible and Resistant Conductors.

    Science.gov (United States)

    1982-06-01

    of Energy CouDlinQ in Various Arc Susceptible -n! Resistaht C6nductors by Robert Norton Ietheny Captain, United States Army B.S., U.S. .iliary Acai !emy...Continued research into energy coupling would benefit from the acquisition of additional diagnostic equipment. The lone electrostatic probe broke...reflectivity vs. time would also be of benefit in the energy balance bookkeeping. It is also recommended that two students normally be assigned to thesis

  20. Situation and perspectives of the development of investigation on photovoltage conversion of solar energy in Kazakhstan

    International Nuclear Information System (INIS)

    Mansurov, Z.A.; Taurbaev, T.I.; Mikhailov, L.V.; Bychkov, S.G.

    1997-01-01

    The article presents the talk on the research and development on photovoltaic conversion of solar energy in Kazakhstan given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. It is shown that the use of solar energy devices in particular on the basis of photovoltaic cells has the economical advantage in Kazakhstan arid lands. The description of some photovoltaic cells on the basis of aluminium and gallium arsenide is presented. (A.A.D.)

  1. Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units

    International Nuclear Information System (INIS)

    Gao, Mingming; Hong, Feng; Liu, Jizhen

    2017-01-01

    Highlights: • The model of energy storage of subcritical CFB boilers is established. • The capacity and increment rate of heat storage are quantified. • A novel load control strategy is proposed to improve the quick load change ability. • An application on the 300 MW CFB unit proves the load change rate to 5–8 MW/min. - Abstract: The energy storage of circulating fluidized bed (CFB) boilers on fuel side cannot be ignored due to the special combustion type different from pulverized coal boilers. The sizable energy storage makes it possible for CFB units to enhance the quick load change ability and to increase the scale of new energy power connected into grid. Through mechanism analysis, the model of energy storage of subcritical CFB boilers has been established for the first time. Then by the project practice, the quantitative analysis is demonstrated for the capacity and control characteristics of energy storage on fuel side and steam water side. Based on the control characteristics and the transformation of the energy storage, a coordinated control system (CCS) control strategy named advanced energy balance (AEB) is designed to shorten the response time through the use of energy storage and to accelerate the load change speed of subcritical CFB units. Finally, a case study on a 300 MW CFB unit proves the feasibility of the proposed control strategy.

  2. Experimental investigation on the hydrodynamic performance of a wave energy converter

    Science.gov (United States)

    Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu

    2017-06-01

    Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.

  3. Deriving the Hirshfeld partitioning using distance metrics

    Science.gov (United States)

    Heidar-Zadeh, Farnaz; Ayers, Paul W.; Bultinck, Patrick

    2014-09-01

    The atoms in molecules associated with the Hirshfeld partitioning minimize the generalized Hellinger-Bhattacharya distance to the reference pro-atom densities. Moreover, the reference pro-atoms can be chosen by minimizing the distance between the pro-molecule density and the true molecular density. This provides an alternative to both the heuristic "stockholder" and the mathematical information-theoretic interpretations of the Hirshfeld partitioning. These results extend to any member of the family of f-divergences.

  4. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    1997-01-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  5. Deriving the Hirshfeld partitioning using distance metrics

    International Nuclear Information System (INIS)

    Heidar-Zadeh, Farnaz; Ayers, Paul W.; Bultinck, Patrick

    2014-01-01

    The atoms in molecules associated with the Hirshfeld partitioning minimize the generalized Hellinger-Bhattacharya distance to the reference pro-atom densities. Moreover, the reference pro-atoms can be chosen by minimizing the distance between the pro-molecule density and the true molecular density. This provides an alternative to both the heuristic “stockholder” and the mathematical information-theoretic interpretations of the Hirshfeld partitioning. These results extend to any member of the family of f-divergences

  6. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  7. Investigation on the actual energy consumption by office automation devices used in offices; Office ni okeru OA kiki no energy shohi jittai chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    With an objective to further improve efficiency of power demand by office automation devices and suppress increase in the power demand, investigations were carried out on the actual power consumption by office automation devices, and discussions were given on energy saving effects in the office automation devices. In the investigations, measurements were conducted for small offices as the subject thereof with regard to electric power consumed by such presentation tools and their peripheral devices as personal computers, word processors, copying machines, facsimile machines, electronic whiteboards and overhead projectors. Power consumption particularly in a standby condition was also investigated. As a result of the investigations, the following characteristics were revealed: the number of office automation devices used to deal with the Energy Star is increasing rapidly; power consumption believed to have been reduced by the Energy Star transferring to lower power consumption is estimated to be 3% in average for personal computers, 26% for copying machines, and 68% for facsimile machines; and while facsimile machines are left in operating condition for 24 hours, their operation rate at night is very low, wherein there is a large room for saving energy in this time band. 65 figs., 21 tabs.

  8. Deep Geothermal Energy for Lower Saxony (North Germany) - Combined Investigations of Geothermal Reservoir Characteristics

    Science.gov (United States)

    Hahne, Barbara; Thomas, Rüdiger

    2014-05-01

    In Germany, successful deep geothermal projects are mainly situated in Southern Germany in the Molassebecken, furthermore in the Upper Rhine Graben and, to a minor extend, in the North German Basin. Mostly they are hydrothermal projects with the aim of heat production. In a few cases, they are also constructed for the generation of electricity. In the North German Basin temperature gradients are moderate. Therefore, deep drilling of several thousand meters is necessary to reach temperatures high enough for electricity production. However, the porosity of the sedimentary rocks is not sufficient for hydrothermal projects, so that natural fracture zones have to be used or the rocks must be hydraulically stimulated. In order to make deep geothermal projects in Lower Saxony (Northern Germany) economically more attractive, the interdisciplinary research program "Geothermal Energy and High-Performance Drilling" (gebo) was initiated in 2009. It comprises four focus areas: Geosystem, Drilling Technology, Materials and Technical System and aims at improving exploration of the geothermal reservoir, reducing costs of drilling and optimizing exploitation. Here we want to give an overview of results of the focus area "Geosystem" which investigates geological, geophysical, geochemical and modeling aspects of the geothermal reservoir. Geological and rock mechanical investigations in quarrys and core samples give a comprehensive overview on rock properties and fracture zone characteristics in sandstones and carbonates. We also show that it is possible to transfer results of rock property measurements from quarry samples to core samples or to in situ conditions by use of empirical relations. Geophysical prospecting methods were tested near the surface in a North German Graben system. We aim at transferring the results to the prospection of deep situated fracture zones. The comparison of P- and S-wave measurements shows that we can get hints on a possible fluid content of the

  9. Channelling investigation of the behaviour of urania under low-energy ion irradiation

    International Nuclear Information System (INIS)

    Nguyen, Tien Hien

    2013-01-01

    This thesis is dedicated to the investigation of the structural destabilisation of UO 2 single crystal. Irradiations with 470-keV Xe, 500-keV Ce and 500-keV La ions (with corresponding ion range of Rp 85 nm and range straggling of Delta Rp 40 nm according to SRIM calculation) have been performed to investigate the destabilisation of UO 2 single crystals induce by (i) the radiation damage effects due to the nuclear stopping process of a fission fragment at the end of their trajectories (ballistic contribution) and by (ii) the incorporation of a fission product at high concentration (chemical contribution). The energies and masses of bombarding ions were deliberately chosen so that they would have very similar projected range in UO 2 in order to compare the effects induced by solubles (La and Ce) versus non soluble Xe species in UO 2 . Rutherford Backscattering Spectrometry in channelling geometry (RBS/C) was applied to study the defects induced. Channelling data were analysed afterwards by Monte-Carlo simulation with McChasy code assuming a two-class model of defects comprising (i) the randomly displaced atoms (RDA) and the bent channels (BC) defects. The accumulation of RDA with increasing ion fluence leads to a steep increase (build-up of defects) observed from 4 to 7 dpa regardless of nature of ions and a dramatic increase observed from 300 dpa (corresponding to 5 at. % of implanted ions) only for Xe irradiated crystal. The difference due to the soluble versus insoluble species was clearly observed. Such a difference was observed via the dramatic increase of RDA when the crystal is implanted at very high concentration only for crystal implanted with insoluble species. Moreover, the difference is also observed via the higher fraction of RDA created in the crystal irradiated with insoluble element. This phenomenon is mostly due to the size of implanted species in the matrix. Insoluble Xe atoms have the atomic radius which is larger than twice the atomic radius of U

  10. Investigation of Membrane Receptors' Oligomers Using Fluorescence Resonance Energy Transfer and Multiphoton Microscopy in Living Cells

    Science.gov (United States)

    Mishra, Ashish K.

    Investigating quaternary structure (oligomerization) of macromolecules (such as proteins and nucleic acids) in living systems (in vivo) has been a great challenge in biophysics, due to molecular diffusion, fluctuations in several biochemical parameters such as pH, quenching of fluorescence by oxygen (when fluorescence methods are used), etc. We studied oligomerization of membrane receptors in living cells by means of Fluorescence (Forster) Resonance Energy Transfer (FRET) using fluorescent markers and two photon excitation fluorescence micro-spectroscopy. Using suitable FRET models, we determined the stoichiometry and quaternary structure of various macromolecular complexes. The proteins of interest for this work are : (1) sigma-1 receptor and (2) rhodopsin, are described as below. (1) Sigma-1 receptors are molecular chaperone proteins, which also regulate ion channels. S1R seems to be involved in substance abuse, as well as several diseases such as Alzheimer's. We studied S1R in the presence and absence of its ligands haloperidol (an antagonist) and pentazocine +/- (an agonist), and found that at low concentration they reside as a mixture of monomers and dimers and that they may form higher order oligomers at higher concentrations. (2) Rhodopsin is a prototypical G protein coupled receptor (GPCR) and is directly involved in vision. GPCRs form a large family of receptors that participate in cell signaling by responding to external stimuli such as drugs, thus being a major drug target (more than 40% drugs target GPCRs). Their oligomerization has been largely controversial. Understanding this may help to understand the functional role of GPCRs oligomerization, and may lead to the discovery of more drugs targeting GPCR oligomers. It may also contribute toward finding a cure for Retinitis Pigmentosa, which is caused by a mutation (G188R) in rhodopsin, a disease which causes blindness and has no cure so far. Comparing healthy rhodopsin's oligomeric structure with that

  11. The 1st reveal of Gen-V nuclear energy. Prospecting investigation of nuclear power 2050 (A2050) for energy innovation in the nuclear industry

    International Nuclear Information System (INIS)

    Woo, Tae Ho; Lee, Soon Ho

    2012-01-01

    The proposed strategy for the future nuclear energy is analyzed. The conventional nuclear power plants (NPPs) are investigated by the 21 st style interdisciplinary research as the information technology (IT), nanotechnology (NT), and biological technology (BT). New kinds of energy production methods as spherical isotropic power reactor (SIPR) and nano lattice power (NLP) are introduced. In addition, the problems of Gen-IV technologies are challenged to be solved, which is the matters of the mechanical and thermal controls of several coolants cases. The simulation result shows the increasing for the usefulness of the business. The core and vessel are very tractable due to moving core vessel (SIPR). The concept of safety system is changed to be submerged into coolant instead of injection concept (SIPR). The commercial fusion energy is realized for mass energy productions (NLP). Eventually, the safety as well as economical status is increased comparing to previous NPPs. (orig.)

  12. R and D on HLW Partitioning in Russia

    International Nuclear Information System (INIS)

    Khaperskaya, A.; Babain, V.; Alyapyshev, M.

    2015-01-01

    Results of more than thirty years investigations on high level radioactive waste (HLW) partitioning in Russia are described. The objectives of research and development is to assess HLW partitioning technical feasibility and its advantages compared to direct vitrification of long-lived radionuclides. Many technological flowsheets for long-lived nuclides (cesium, strontium and minor actinides) separation were developed and tested with simulated and actual HLW. Different classes of extractants, including carbamoyl-phosphine oxides, dialkyl-phosphoric acids, crown ethers and diamides of heterocyclic acids were studied. Some of these processes were tested at PA 'Mayak' and MCC. Many extraction systems based on chlorinated cobalt dicarbollide (CCD), including UNEX-extractant and its modifications, were also observed. Diamides of diglycolic acid and diamides of heterocyclic acids in polar diluents have shown promising properties for minor actinide-lanthanide extraction and separation. Comparison of different solvents and possible ways of implementing new flowsheets in radiochemical technology are also discussed. (authors)

  13. Phenanthrene partitioning in sediment-surfactant-fresh/saline water systems

    International Nuclear Information System (INIS)

    Sun Hongwen; Wu Wenling; Wang Lei

    2009-01-01

    The objective of this study was to investigate the influence of salinity on the effectiveness of surfactants in the remediation of sediments contaminated with phenanthrene (PHE). This is an example of a more general application of surfactants in removing hydrophobic organic compounds (HOCs) from contaminated soil/sediment in saline environments via in-situ enhanced sorption or ex-situ soil washing. Salinity effects on surfactant micelle formation and PHE partitioning into solution surfactant micelles and sorbed surfactant were investigated. The critical micelle concentration of surfactants decreased, and PHE partition between surfactant micelles and water increased with increasing salinity. Carbon-normalized partition coefficients (K ss ) of PHE onto the sorbed cationic surfactant increased significantly with increasing salinity, which illustrates a more pronounced immobilization of PHE by cationic surfactant in a saline system. Reduction of PHE sorption by anionic surfactant was more pronounced in the saline system, indicating that the anionic surfactant has a higher soil washing effectiveness in saline systems. - The effectiveness of surfactant-enhanced remediation technology was promoted when applying it in estuarine environment with a higher salinity.

  14. Real-space investigation of energy transfer in heterogeneous molecular dimers.

    Science.gov (United States)

    Imada, Hiroshi; Miwa, Kuniyuki; Imai-Imada, Miyabi; Kawahara, Shota; Kimura, Kensuke; Kim, Yousoo

    2016-10-20

    Given its central role in photosynthesis and artificial energy-harvesting devices, energy transfer has been widely studied using optical spectroscopy to monitor excitation dynamics and probe the molecular-level control of energy transfer between coupled molecules. However, the spatial resolution of conventional optical spectroscopy is limited to a few hundred nanometres and thus cannot reveal the nanoscale spatial features associated with such processes. In contrast, scanning tunnelling luminescence spectroscopy has revealed the energy dynamics associated with phenomena ranging from single-molecule electroluminescence, absorption of localized plasmons and quantum interference effects to energy delocalization and intervalley electron scattering with submolecular spatial resolution in real space. Here we apply this technique to individual molecular dimers that comprise a magnesium phthalocyanine and a free-base phthalocyanine (MgPc and H 2 Pc) and find that locally exciting MgPc with the tunnelling current of the scanning tunnelling microscope generates a luminescence signal from a nearby H 2 Pc molecule as a result of resonance energy transfer from the former to the latter. A reciprocating resonance energy transfer is observed when exciting the second singlet state (S 2 ) of H 2 Pc, which results in energy transfer to the first singlet state (S 1 ) of MgPc and final funnelling to the S 1 state of H 2 Pc. We also show that tautomerization of H 2 Pc changes the energy transfer characteristics within the dimer system, which essentially makes H 2 Pc a single-molecule energy transfer valve device that manifests itself by blinking resonance energy transfer behaviour.

  15. Energy investigations on the mechanical properties of magnesium alloyed by X = C, B, N, O and vacancy

    KAUST Repository

    Wu, Xiaozhi

    2013-10-25

    The generalized stacking fault (GSF) energies and surface energies of magnesium and its alloys with alloying atoms X = C, B, N, O and vacancy have been investigated using the first-principles methods. It is found that the predominant reducing effects of the alloying atoms and vacancy on the stacking fault energy are resulted from the position of them in the 1st layer near the slip plane. The stacking fault energies are nearly the same as the pure magnesium while the alloying atoms and vacancy are placed in the 2nd, 3rd, 4th, 5th and 6th layers. It has been shown that O strongly reduces the GSF energy of Mg. The alloying atoms C, B and N increase the surface energy, but O and vacancy reduce the surface energy of Mg. The ductilities of Mg and Mg alloys have been discussed based on the Rice criterion by using the ratio between surface energy and unstable stacking fault energy. © 2013 Higher Education Press and Springer-Verlag Berlin Heidelberg.

  16. Large-scale energy storage. Investigating improvements of redox flow batteries

    CSIR Research Space (South Africa)

    Swartbooi, A

    2008-11-01

    Full Text Available and more sustainable energy source. One problem however lies with the intermittent nature of the solar energy source, coupled with a mismatch between generation and use. Redox flow batteries provide a means to bridge the time lag between the availability...

  17. Investigation of the performances of PZT vs rare earth (BaLaTiO3 vibration based energy harvester

    Directory of Open Access Journals (Sweden)

    Pak Nehemiah

    2017-01-01

    Full Text Available This study proposes the investigation of two piezoelectric material namely PZT and Lanthanum Doped Barium Titanate (BaLaTiO3 performance as a vibration based energy harvester. The piezoelectric material when applied mechanical stress or strain produces electricity through the piezoelectric effect. The vibration energy would exude mechanical energy and thus apply mechanical force on the energy harvester. The energy harvester would be designed and simulated using the piezoelectric material individually. The studied outputs are divided to frequency response, the load dependence, and the acceleration dependence whereby measurement are observed and taken at maximum power output. The simulation is done using the cantilevers design which employs d31 type of constants. Three different simulations to study the dependence of output power on the resonant frequency response, load and acceleration have found that material that exhibit highest power generation was the BaLaTiO3.

  18. Evaluation of actinide partitioning and transmutation

    International Nuclear Information System (INIS)

    1982-01-01

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  19. Autocatalytic sets in a partitioned biochemical network.

    Science.gov (United States)

    Smith, Joshua I; Steel, Mike; Hordijk, Wim

    2014-01-01

    In previous work, RAF theory has been developed as a tool for making theoretical progress on the origin of life question, providing insight into the structure and occurrence of self-sustaining and collectively autocatalytic sets within catalytic polymer networks. We present here an extension in which there are two "independent" polymer sets, where catalysis occurs within and between the sets, but there are no reactions combining polymers from both sets. Such an extension reflects the interaction between nucleic acids and peptides observed in modern cells and proposed forms of early life. We present theoretical work and simulations which suggest that the occurrence of autocatalytic sets is robust to the partitioned structure of the network. We also show that autocatalytic sets remain likely even when the molecules in the system are not polymers, and a low level of inhibition is present. Finally, we present a kinetic extension which assigns a rate to each reaction in the system, and show that identifying autocatalytic sets within such a system is an NP-complete problem. Recent experimental work has challenged the necessity of an RNA world by suggesting that peptide-nucleic acid interactions occurred early in chemical evolution. The present work indicates that such a peptide-RNA world could support the spontaneous development of autocatalytic sets and is thus a feasible alternative worthy of investigation.

  20. Partitioning and transmutation. Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, S.; Ekberg, C.; Enarsson, Aa.; Liljenzin, J.O.; Mesmin, C.; Nilsson, M.; Skarnemark, G. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    2002-01-01

    The project Partition and Transmutation (PandT) at the department of Nuclear Chemistry, Chalmers University of Technology, is aimed at investigating new solvent extraction reagents and new processes for the separation of different chemical elements needed in a possible future PandT process. During the year 2001, the work has mainly been in five areas: 1) method development and testing of means to determine protonation constants of two model reagents (2,2':6',2''-terpyridine and 2,4,6-tri-(2-pyridyl)-1,3,5-triazine), 2) modelling the influence of organic phase composition on the extraction of trivalent metals (Pm, Am, Cm), 3) determination of the density and refractive index of 2,2':6',2''-terpyridine, 4) the extraction behaviour of four new nitrogen based reagents (2,6-bis-(benzoxazolyl)-4- dodecyloxylpyridine, 2,6-bis-(benzimidazol-2-yl)-4-dodecyloxylpyridine, 2,6-bis-( benzimidazolyl)-pyridine, 2,4-bis-(3,5-dimethylpyrazol-1-yl)-6-methoxy-1,3,5-triazine), and 5) a study of the effect of temperature on the synergistic extraction of Eu and Am with 2,2':6',2''-terpyridine or 2,4,6-tri-(2-pyridyl)-1,3,5-triazine in the presence of 2 -bromodecanoic acid dissolved in a series of organic diluents.

  1. Partitioning and transmutation. Annual Report 2001

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Enarsson, Aa.; Liljenzin, J.O.; Mesmin, C.; Nilsson, M.; Skarnemark, G.

    2002-01-01

    The project Partition and Transmutation (PandT) at the department of Nuclear Chemistry, Chalmers University of Technology, is aimed at investigating new solvent extraction reagents and new processes for the separation of different chemical elements needed in a possible future PandT process. During the year 2001, the work has mainly been in five areas: 1) method development and testing of means to determine protonation constants of two model reagents (2,2':6',2''-terpyridine and 2,4,6-tri-(2-pyridyl)-1,3,5-triazine), 2) modelling the influence of organic phase composition on the extraction of trivalent metals (Pm, Am, Cm), 3) determination of the density and refractive index of 2,2':6',2''-terpyridine, 4) the extraction behaviour of four new nitrogen based reagents (2,6-bis-(benzoxazolyl)-4- dodecyloxylpyridine, 2,6-bis-(benzimidazol-2-yl)-4-dodecyloxylpyridine, 2,6-bis-( benzimidazolyl)-pyridine, 2,4-bis-(3,5-dimethylpyrazol-1-yl)-6-methoxy-1,3,5-triazine), and 5) a study of the effect of temperature on the synergistic extraction of Eu and Am with 2,2':6',2''-terpyridine or 2,4,6-tri-(2-pyridyl)-1,3,5-triazine in the presence of 2 -bromodecanoic acid dissolved in a series of organic diluents

  2. Investigation of techniques for analyzing and evaluating the effects of newly developed new-energy and energy-saving technologies; Shinsho energy gijutsu kaihatsu koka no bunseki hyoka shuho ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    For the comprehensive and rational evaluation of technologies related to new energy and energy saving, investigations have been conducted about the history and trend of related policies and technological development. Japan saw a great change in the demand-supply structure in 10 to 15 years following the first oil crisis when oil was partially replaced with atomic energy and LNG and energy-saving efforts came into practice. However, the diversification of energy sources by developing new energies and improvement on the self-sustenance rate remain far from success. Related policies both in Japan and overseas are shifting from the conventional efforts for stable supply and economic growth to the handling of deregulation and environmental problems. Energy stratagem has been studied, not regarding energy technology as a mere economic task and working out how the demand for energy should be with the restricted resources, social economy, and environments, taken into account. Models and scenarios are proposed, for the quantitative analysis and evaluation of the energy stratagem wherein the development of technologies for new energy and energy saving are positioned clearly. Especially, concepts emphasized therein are the technique of power source planning and the development of regenerative energy. 24 refs., 32 figs., 15 tabs.

  3. Radionuclide Partitioning in an Underground Nuclear Test Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

    2009-01-09

    In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors

  4. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    Energy Technology Data Exchange (ETDEWEB)

    Salabat, Alireza, E-mail: a-salabat@araku.ac.ir [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of); Moghadam, Somayeh Tiani [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of)

    2011-10-15

    Highlights: > Thermodynamics parameters for partitioning of L-methionine in ATPS. > Investigation of different effects on partition coefficient of the amino acid. > Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H{sub 2}O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH{sub 2}PO{sub 4}), di-sodium hydrogen phosphate (Na{sub 2}HPO{sub 4}) and tri-sodium phosphate (Na{sub 3}PO{sub 4}). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters ({Delta}H{sup o}, {Delta}S{sup o} and {Delta}G{sup o}) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na{sub 3}PO{sub 4} are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  5. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    International Nuclear Information System (INIS)

    Salabat, Alireza; Sadeghi, Rahmat; Moghadam, Somayeh Tiani; Jamehbozorg, Bahman

    2011-01-01

    Highlights: → Thermodynamics parameters for partitioning of L-methionine in ATPS. → Investigation of different effects on partition coefficient of the amino acid. → Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H 2 O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH 2 PO 4 ), di-sodium hydrogen phosphate (Na 2 HPO 4 ) and tri-sodium phosphate (Na 3 PO 4 ). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters (ΔH o , ΔS o and ΔG o ) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na 3 PO 4 are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  6. Low-Energy Muons at PSI: Examples of Investigations of Superconducting Properties in Near-Surface Regions and Heterostuctures

    Science.gov (United States)

    Morenzoni, Elvezio; Prokscha, Thomas; Saadaoui, Hassan; Salman, Zaher; Suter, Andreas; Wojek, Bastian M.; Baglo, Jordan; Božović, Ivan; Hossain, Masrur; Kiefl, Robert F.; Logvenov, Gennady; Ofer, Oren

    With the advent of polarized low-energy muons, with tunable energy in the kiloelectronvolt range, it is possible to use the sensitivity and the local-probe character of µSR to perform depth-dependent investigations on the nanometer scale of magnetic and superconducting properties of materials. Here, after a brief summary of the present status of LE-µSR at PSI, we give some examples of investigations of superconducting properties in the near-surface regions of single crystals and thin-film materials.

  7. Calorimetric investigation on mechanically activated storage energy mechanism of sphalerite and pyrite

    International Nuclear Information System (INIS)

    Xiao Zhongliang; Chen Qiyuan; Yin Zhoulan; Hu Huiping; Wu Daoxin

    2005-01-01

    The structural changes of mechanically activated sphalerite and pyrite under different grinding conditions were determined by X-ray powder diffraction (XRD), laser particle size analyzer and elemental analysis. The storage energy of mechanically activated sphalerite and pyrite was measured by a calorimetric method. A thermochemical cycle was designed so that mechanically activated and non-activated minerals reached the same final state when dissolved in the same oxidizing solvent. The results show that the storage energy of mechanically activated sphalerite and pyrite rises with increased in grinding time, and reaches a maximum after a certain grinding period. The storage energy of mechanically activated pyrite decreases when heated under inert atmosphere. The storage energy of mechanically activated sphalerite and pyrite remains constant when treated below 573 K under inert atmosphere. The percentage of the storage energy caused by surface area increase during mechanical activation decreases with increasing grinding time. These results support our opinion that the mechanically activated storage energy of sphalerite is closely related to lattice distortions, and the mechanically activated storage energy of pyrite is mainly caused by the formation of reactive sites on the surface

  8. Experimental Investigation of Irregular Wave Cancellation Using a Cycloidal Wave Energy Converter

    Science.gov (United States)

    2012-07-01

    direction [◦] γ Flap wave maker angle [◦] TF Wave maker period [s] δ(t) Main Shaft rotational angle [◦] θ Phase [◦] between wave maker and WEC main shaft...for many WEC designs. While wave energy as a resource may be free, the construction effort to harness it is a major expense and to a large degree...determines the cost of energy being produced. As a less efficient WEC will need to be larger in size to extract the same amount of energy as a more

  9. Investigation into introduction and promotion of clean energy cars; Clean energy jidosha no donyu sokushin ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Gazing the introduction target for fiscal 2000 and 2010, the paper arranged comprehensively and systematically the trend in Japan and overseas of clean energy cars and described subjects. Themes of the study to be promoted in terms of electric cars are: Li secondary batteries, heightening of performance of batteries such as Ni-hydrogen, power generation/power storage hybridization to make the long-distance travel possible. For the price reduction, the body is so made as to make it possible to select three kinds of power unit, that is, gasoline, hybrid, and electricity. Low noise and easy operation are also important. As to natural gas vehicles, the price is more than three times as high as that of gasoline vehicles, and relaxation of the related regulations on metal tanks, the Road Traffic Act, etc. is necessary. It is indispensable to establish quantity production and technical standards and reduce cost by the remodeling for bi-fueling with gasoline engines, development of FRP tanks, etc. Methanol vehicles are the closest to gasoline vehicles, but the introduction is delayed having no groups for generalization. Solar and hydrogen cars are promising, but are on a stage of developing the basic technology. 43 figs., 104 tabs.

  10. Investigation the Effects of Operation Methods on Energy Consumption in Agricultural Water Pumping Stations

    Directory of Open Access Journals (Sweden)

    M. DelfanAzari

    2017-01-01

    Full Text Available Introduction: The energy crisis has led the world toward the reduction of energy consumption. More than 70 percent of the energy in agriculture sector is used by pumps. In our country, there is no clear standard and guideline and also no adequate supervision for the design, selection, installation and operation of pumping systems appropriate to the circumstances and needs. Consequently, these systems operate with low efficiency and high losses of energy. While more than 20 percent of the world's electricity is consumed by pumps, average pumping efficiency is less than 40%. So evaluation of pumping stations and providing some solutions to increase efficiency and pumping system’s life time and to reduce energy consumption can be an effective in optimization of energy consumption in the country. The main reasons for the low efficiency of pumping systems comparing to potential efficiency are using unsuitable techniques for flow control, hydraulic and physical changes of pumping system during the time, using pumps or motors with low efficiency and poor maintenance. Normally the amount of flow is not constant over the time in a pumping system and needed flow rate is changed at different times. Designing of pumping system should be responsible for peak requirements as well as it must suggest the suitable flow control method to achieve least energy losses for minimum flow requirements. Also one of the main capabilities to reduce energy consumption in pumping stations is improving the flow control method. Using the flow control valves and bypass line with high energy losses is very common. While the use of variable speed pumps (VSPs that supply water requirement with sufficient pressure and minimum amount of energy, is limited due to lack of awareness of designers and (or high initial costs. Materials and Methods: In this study, the operation of the pumping stations under four scenarios (for discharge control in a drip irrigation system was analyzed

  11. Dual-phase reactor plant with partitioned isolation condenser

    Science.gov (United States)

    Hui, Marvin M.

    1992-01-01

    A nuclear energy plant housing a boiling-water reactor utilizes an isolation condenser in which a single chamber is partitioned into a distributor plenum and a collector plenum. Steam accumulates in the distributor plenum and is conveyed to the collector plenum through an annular manifold that includes tubes extending through a condenser pool. The tubes provide for a transfer of heat from the steam, forming a condensate. The chamber has a disk-shaped base, a cylindrical sidewall, and a semispherical top. This geometry results in a compact design that exhibits significant performance and cost advantages over prior designs.

  12. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    International Nuclear Information System (INIS)

    Özen, Soner; Pat, Suat; Korkmaz, Şadan; Şenay, Volkan

    2016-01-01

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the range of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.

  13. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    Energy Technology Data Exchange (ETDEWEB)

    Özen, Soner, E-mail: osoner@ogu.edu.tr; Pat, Suat; Korkmaz, Şadan [Eskişehir Osmangazi University, Physics Department, 26480 (Turkey); Şenay, Volkan [Eskişehir Osmangazi University, Physics Department, 26480 (Turkey); Bayburt University, Primary Science Education Department, 69000 (Turkey)

    2016-03-25

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the range of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.

  14. Investigation of Substrates and Mounting Techniques for the High Energy Focusing Telescope (HEFT)

    DEFF Research Database (Denmark)

    Hailey, Charles J.; Abdali, Salim; Christensen, Finn Erland

    1997-01-01

    The High Energy Focusing Telescope (HEFT) is a balloon-borne system for obtaining arcminute imagery in the 20-100 keV energy band. The hard X-ray optics are baselined to use thin epoxy-replicated aluminum foil substrates coated with graded-d multilayers, and we show some results on X-ray performa......The High Energy Focusing Telescope (HEFT) is a balloon-borne system for obtaining arcminute imagery in the 20-100 keV energy band. The hard X-ray optics are baselined to use thin epoxy-replicated aluminum foil substrates coated with graded-d multilayers, and we show some results on X...

  15. An investigation into electron scattering from pyrazine at intermediate and high energies

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, A. G.; Fuss, M. C. [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid (Spain); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Gorfinkiel, J. D. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Almeida, D.; Ferreira da Silva, F.; Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Brunger, M. J. [ARC Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); García, G., E-mail: g.garcia@iff.csic.es [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid (Spain); Centre for Medical Radiation Physics, University of Wollongong, NSW 2522 (Australia)

    2013-11-14

    Total electron scattering cross sections for pyrazine in the energy range 10–500 eV have been measured with a new magnetically confined electron transmission-beam apparatus. Theoretical differential and integral elastic, as well as integral inelastic, cross sections have been calculated by means of a screening-corrected form of the independent-atom representation (IAM-SCAR) from 10 to 1000 eV incident electron energies. The present experimental and theoretical total cross sections show a good level of agreement, to within 10%, in the overlapping energy range. Consistency of these results with previous calculations (i.e., the R-matrix and Schwinger Multichannel methods) and elastic scattering measurements at lower energies, below 10 eV, is also discussed.

  16. Economic Investigation of Community-Scale Versus Building Scale Net-Zero Energy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas; Katipamula, Srinivas; Brambley, Michael R.; Reddy, T. A.

    2009-12-31

    The study presented in this report examines issues concerning whether achieving net-zero energy performance at the community scale provides economic and potentially overall efficiency advantages over strategies focused on individual buildings.

  17. The impact of VAT introduction on UK residential energy demand: an investigation using the cointegration approach

    International Nuclear Information System (INIS)

    Fouquet, Roger

    1995-01-01

    Over a two-year period, which started in April 1994, the real price of energy to UK households was expected to rise by 17.5% as a result of value-added tax (VAT) introduction. The regressive nature of the tax forced the government to limit VAT on residential fuel to 8%. Using a cointegration approach, to take account of the non-stationarity fuel consumption time series, this paper estimates real energy and fuel specific price and income elasticities for the period 1974:1-1994:1. They suggest that natural gas has a positive real energy price elasticity indicating that, as real price of energy rises, households scrap inefficient heaters and invest in more efficient ones, principally natural gas. These estimates enable projections to be made of the impact of the introduction of VAT and imply a rise in natural gas consumption as a result of the additional VAT, although at the expense of other less efficient fuels. (author)

  18. A Quantitative and Systematic Methodology to Investigate Energy Consumption Issues in Multimodal Intercity Transportation Systems

    Directory of Open Access Journals (Sweden)

    Lili Du

    2015-09-01

    Full Text Available Energy issues in transportation systems have garnered increasing attention recently. This study proposes a systematic methodology for policy-makers to minimize energy consumption in multimodal intercity transportation systems considering suppliers’ operational constraints and travelers’ mobility requirements. A bi-level optimization model is developed for this purpose and considers the air, rail, private auto, and transit modes. The upper-level model is a mixed integer nonlinear program aiming to minimize energy consumption subject to transportation suppliers’ operational constraints and traffic demand distribution to paths resulting from the lower-level model. The lower-level model is a linear program seeking to maximize the trip utilities of travelers. The interactions between the multimodal transportation suppliers and intercity traffic demand are considered under the goal of minimizing system energy consumption. The proposed bi-level mixed integer model is relaxed and transformed into a mathematical program with complementarity constraints, and solved using a customized branch-and-bound algorithm. Numerical experiments, conducted using multimodal travel options between Lafayette, Indiana and Washington, D.C. reiterate that shifting traffic demand from private cars to the transit and rail modes significantly reduce energy consumption. Moreover, the proposed methodology provides tools to quantitatively analyze system energy consumption and traffic demand distribution among transportation modes under specific policy instruments. The results illustrate the need to systematically incorporate the interactions among traveler preferences, network structure, and supplier operational schemes to provide policy-makers insights for developing traffic demand shift mechanisms to minimize system energy consumption. Hence, the proposed methodology provide policy-makers the capability to analyze energy consumption in the transportation sector by a

  19. A Retrospective Investigation of Thiamin and Energy Intakes Following an Outbreak of Beriberi in the Gambia

    Directory of Open Access Journals (Sweden)

    Margaret B. E. Livingstone

    2011-01-01

    Full Text Available In the early part of the rainy season in 1988, an outbreak of beriberi occurred in free-living adults in a relatively small area in the North Bank region of The Gambia. In 1995 we selected two compounds in a village called Chilla situated within the affected district to retrospectively examine dietary factors potentially contributing to the outbreak. There had previously been cases of beriberi in one compound (BBC but not in the other (NBC. We measured energy and thiamin intakes for four days on six occasions during the year. We calculated energy and thiamin intakes of people living in the two compounds and foods were collected for thiamin analysis through the year. Thiamin:Energy ratios only met international recommendations in the immediate post‑harvest season when energy and thiamin intakes were highest and then fell through the year. In the rainy season when food was short and labour was heaviest, energy intakes were lower in the NBC but thiamin:energy ratios were lower in BBC. Records of rainfall in 1988 collected near the village indicated that the amount in August was twice the average. We suggest the heavy rainfall may have increased farm workload and reduced income from outside-village work activity. The lower energy intakes in the NBC may have forced adults to rest thus sparing thiamin demands and delaying onset of beriberi. In contrast, the higher energy intake of adults in the BBC may have enabled them to continue working, thus increasing demands for thiamin and inducing the earlier onset of beriberi.

  20. Initial Investigation of a Novel Thermal Storage Concept as Part of a Renewable Energy System

    Science.gov (United States)

    2013-06-01

    Bowman Scholar project advisor at the United States Naval Academy for introducing me to the field of Fluid Mechanics. I learned valuable lessons...reserves (2008). From [8]. Of these nations, only Mexico and Canada are considered “strategically reliable sources of energy to the United States...greenfleet.dodlive.mil/environment/land-based-efforts/solar-wind-and- geothermal -power/ [14] F. Sehar, “Impact of Ice Storage on Electrical Energy

  1. Combined heat and power systems for commercial buildings: investigating cost, emissions, and primary energy reduction based on system components

    Science.gov (United States)

    Smith, Amanda D.

    Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission losses are averted, and heat which is a byproduct of power production may be useful to the building. That thermal energy can be used for hot water or space heating, among other applications. This dissertation focuses on CHP systems using natural gas, a common fuel, and systems serving commercial buildings in the United States. First, the necessary price difference between purchased electricity and purchased fuel is analyzed in terms of the efficiencies of system components by comparing CHP with a conventional separate heat and power (SHP) configuration, where power is purchased from the electrical grid and heat is provided by a gas boiler. Similarly, the relationship between CDE due to electricity purchases and due to fuel purchases is analyzed as well as the relationship between primary energy conversion factors for electricity and fuel. The primary energy conversion factor indicates the quantity of source energy necessary to produce the energy purchased at the site. Next, greenhouse gas emissions are investigated for a variety of commercial buildings using CHP or SHP. The relationship between the magnitude of the reduction in emissions and the parameters of the CHP system is explored. The cost savings and reduction in primary energy consumption are evaluated for the same buildings. Finally, a CHP system is analyzed with the addition of a thermal energy storage (TES) component, which can store excess thermal energy and deliver it later if necessary. The potential for CHP with TES to reduce cost, emissions, and primary energy consumption is investigated for a variety of buildings. A case study is developed for one building for which TES does provide additional benefits over a CHP system alone, and the requirements for a water tank TES device are examined.

  2. Development of a global electricity supply model and investigation of electricity supply by renewable energies with a focus on energy storage requirements for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Troendle, Tobias Wolfgang

    2014-12-12

    Electricity supply at present requires about 38% of the global primary energy demand and it is likely to rise further in the coming decades. Facing major problems, such as limited resources of fuels and an ongoing anthropogenic climate change, a sustainable electricity supply based on renewable energies is absolutely vital. Wind and solar power will play an extensive role in future supplies but require energy storage capacities to meet electricity demand. To investigate the relationship of power plant mix and required energy storage capacity, a computer model based on global weather data has been developed to enable the simulation of electricity supply scenarios by up to ten different power plant types for various regions. The focus of the investigation has been on the energy storage requirements of an electricity supply for Europe by wind and solar power. The minimum required energy storage capacity for a totally weather dependent electricity supply occurs at a ratio of 30% wind and 70% photovoltaic (PV) power plant capacity installed. Thus, the required energy storage capacity rises from a transition of to-day's electricity supply to the afore-mentioned 100% renewable wind and PV scenario exponentially to about 150 TWh (3.8% of the annual electricity demand). The installation of additional excess wind and PV power plant capacity was seen to be an efficient way to reduce the required energy storage. Already 10% excess capacity lead to a reduction by 50% of the required storage capacity. To use different storage technologies in an optimised way in terms of storage capacity and efficiency, the storage tasks can be separated into a daily and a seasonal usage. While the seasonal storage capacity has to be about two orders of magnitude larger than the required capacity of the storage for the daily cycle, the sum of stored energy during one year is almost equal for the long and short time storage. In summary, an electricity supply by wind and PV power was shown to

  3. Investigation of human teeth with respect to the photon interaction, energy absorption and buildup factor

    Energy Technology Data Exchange (ETDEWEB)

    Kurudirek, Murat, E-mail: mkurudirek@gmail.co [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey); Topcuoglu, Sinan [Faculty of Dentistry, Department of Endodontic, Ataturk University, 25240 Erzurum (Turkey)

    2011-05-15

    The effective atomic numbers and electron densities of human teeth have been calculated for total photon interaction (Z{sub PI{sub e{sub f{sub f}}}},Ne{sub PI{sub e{sub f{sub f}}}}) and photon energy absorption (Z{sub PEA{sub e{sub f{sub f}}}},Z{sub RW{sub e{sub f{sub f}}}}Ne{sub PEA{sub e{sub f{sub f}}}}) in the energy region 1 keV-20 MeV. Besides, the energy absorption (EABF) and exposure (EBF) buildup factors have been calculated for these samples by using the geometric progression fitting approximation in the energy region 0.015-15 MeV up to 40 mfp (mean free path). Wherever possible the results were compared with experiment. Effective atomic numbers (Z{sub PI{sub e{sub f{sub f}}}}) of human teeth were calculated using different methods. Discrepancies were noted in Z{sub PI{sub e{sub f{sub f}}}} between the direct and interpolation methods in the low and high energy regions where absorption processes dominate while good agreement was observed in intermediate energy region where Compton scattering dominates. Significant variations up to 22% were observed between Z{sub PI{sub e{sub f{sub f}}}} and Z{sub PEA{sub e{sub f{sub f}}}} in the energy region 30-150 keV which is the used energy range in dental cone beam computed tomography (CBCT) X-ray machines. The Z{sub eff} values of human teeth were found to relatively vary within 1% if different laser treatments are applied. In this variation, the Er:YAG laser treated samples were found to be less effected than Nd:YAG laser treated ones when compared with control group. Relative differences between EABF and EBF were found to be significantly high in the energy region 60 keV-1 MeV even though they have similar variations with respect to the different parameters viz. photon energy, penetration depth.

  4. Beyond nearly zero-energy buildings: Experimental investigation of the thermal indoor environment and energy performance of a single-family house designed for plus-energy targets

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2016-01-01

    A detached, one-story, single-family house in Denmark was operated with different heating and cooling strategies for 1 year. The strategies compared during the heating season were floor heating without ventilation, floor heating supplemented by warm air heating (ventilation system), and floor...... heating with heat recovery from exhaust air. During the cooling season, the house was cooled by floor cooling and was ventilated mechanically. Air and globe (operative, when applicable) temperatures at different heights at a central location were recorded. The thermal indoor environment, local thermal...... discomfort and overheating were evaluated based on EN 15251 (2007), EN ISO 7730 (2005), and DS 469 (2013), respectively. Energy performance was evaluated based on the energy production and HVAC system energy use. The thermal indoor environment during the heating season was satisfactory...

  5. Commuting quantum circuits and complexity of Ising partition functions

    International Nuclear Information System (INIS)

    Fujii, Keisuke; Morimae, Tomoyuki

    2017-01-01

    Instantaneous quantum polynomial-time (IQP) computation is a class of quantum computation consisting only of commuting two-qubit gates and is not universal. Nevertheless, it has been shown that if there is a classical algorithm that can simulate IQP efficiently, the polynomial hierarchy collapses to the third level, which is highly implausible. However, the origin of the classical intractability is still less understood. Here we establish a relationship between IQP and computational complexity of calculating the imaginary-valued partition functions of Ising models. We apply the established relationship in two opposite directions. One direction is to find subclasses of IQP that are classically efficiently simulatable by using exact solvability of certain types of Ising models. Another direction is applying quantum computational complexity of IQP to investigate (im)possibility of efficient classical approximations of Ising partition functions with imaginary coupling constants. Specifically, we show that a multiplicative approximation of Ising partition functions is #P-hard for almost all imaginary coupling constants even on planar lattices of a bounded degree. (paper)

  6. Building energy performance analysis by an in-house developed dynamic simulation code: An investigation for different case studies

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; Palombo, Adolfo

    2014-01-01

    Highlights: • A new dynamic simulation code for building energy performance analysis is presented. • The thermal behavior of each building element is modeled by a thermal RC network. • The physical models implemented in the code are illustrated. • The code was validated by the BESTEST standard procedure. • We investigate residential buildings, offices and stores in different climates. - Abstract: A novel dynamic simulation model for the building envelope energy performance analysis is presented in this paper. This tool helps the investigation of many new building technologies to increase the system energy efficiency and it can be carried out for scientific research purposes. In addition to the yearly heating and cooling load and energy demand, the obtained output is the dynamic temperature profile of indoor air and surfaces and the dynamic profile of the thermal fluxes through the building elements. The presented simulation model is also validated through the BESTEST standard procedure. Several new case studies are developed for assessing, through the presented code, the energy performance of three different building envelopes with several different weather conditions. In particular, dwelling and commercial buildings are analysed. Light and heavyweight envelopes as well as different glazed surfaces areas have been used for every case study. With the achieved results interesting design and operating guidelines can be obtained. Such data have been also compared vs. those calculated by TRNSYS and EnergyPlus. The detected deviation of the obtained results vs. those of such standard tools are almost always lower than 10%

  7. Productivity, biomass partitioning, and energy yield of low-input short-rotation American sycamore (Platanus occidentalis L.) grown on marginal land: Effects of planting density and simulated drought

    Science.gov (United States)

    Jean-Christophe Domec; Elissa Ashley; Milan Fischer; Asko Noormets; Jameson Boone; James C. Williamson; John S. King

    2017-01-01

    Short-rotation woody crops (SRWC) grown for bioenergy production are considered a more sustainable feedstock than food crops such as corn and soybean. However, to be sustainable SRWC should be deployed on land not suitable for agriculture (e.g., marginal lands). Here we quantified productivity and energy yield of four SRWC candidate species grown at different planting...

  8. Investigation of wind characteristics and assessment of wind energy potential for Waterloo region, Canada

    International Nuclear Information System (INIS)

    Li Meishen; Li Xianguo

    2005-01-01

    Wind energy becomes more and more attractive as one of the clean renewable energy resources. Knowledge of the wind characteristics is of great importance in the exploitation of wind energy resources for a site. It is essential in designing or selecting a wind energy conversion system for any application. This study examines the wind characteristics for the Waterloo region in Canada based on a data source measured at an elevation 10 m above the ground level over a 5-year period (1999-2003) with the emphasis on the suitability for wind energy technology applications. Characteristics such as annual, seasonal, monthly and diurnal wind speed variations and wind direction variations are examined. Wind speed data reveal that the windy months in Waterloo are from November to April, defined as the Cold Season in this study, with February being the windiest month. It is helpful that the high heating demand in the Cold Season coincides with the windy season. Analysis shows that the day time is the windy time, with 2 p.m. in the afternoon being the windiest moment. Moreover, a model derived from the maximum entropy principle (MEP) is applied to determine the diurnal, monthly, seasonal and yearly wind speed frequency distributions, and the corresponding Lagrangian parameters are determined. Based on these wind speed distributions, this study quantifies the available wind energy potential to provide practical information for the application of wind energy in this area. The yearly average wind power density is 105 W/m 2 . The day and night time wind power density in the Cold Season is 180 and 111 W/m 2 , respectively

  9. Development of long-lived radionuclide partitioning technology

    International Nuclear Information System (INIS)

    Lee, Eil Hee; Kwon, S. G.; Yang, H. B.

    2001-04-01

    This project was aimed at the development of an optimal process that could get recovery yields of 99% for Am and Np and 90% for Tc from a simulated radioactive waste and the improvements of unit processes. The performed works are summarized, as follows. 1) The design and the establishment of a laboratory-scale partitioning process were accomplished, and the interfacial conditions between each unit process were determined. An optimal flow diagram for long-lived radionuclide partitioning process was suggested. 2) In improvements of unit processes, a) Behaviors of the co-extraction and sequential separation for residual U, Np and Tc(/Re) by chemical and electrochemical methods were examined. b) Conditions for co-extraction of Am/RE, and selective stripping of Am with metal containing extractant and a mixed extractant were decided. c) Characteristics of adsorption and elution by ion exchange chromatography and extraction chromatography methods were analysed. d) The simulation codes for long-lived radionuclide partitioning were gathered. and reaction equations were numerically formulated. 3) An existing γ-lead cell was modified the α-γ cells for treatment of long-lived radioactive materials. 4) As the applications of new separation technologies, a) Behaviors of photo reductive precipitation for Am/RE were investigated, b) Conditions for selective extraction and stripping of Am with pyridine series extractants were established. All results will be used as the fundamental data for establishment of partitioning process and radiochemical test of long-lived radionuclides recovery technology to be performed in the next stage

  10. Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study

    Science.gov (United States)

    McIntosh, E. C.; Rapp, J. F.; Draper, D. S.

    2016-01-01

    The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism.

  11. Plate Coupling and Strain Partitioning in the Northeastern Caribbean

    Science.gov (United States)

    Manaker, D.; Calais, E.; Jansma, P.; Mattioli, G.

    2006-12-01

    Major strike-slip faults commonly found on the margin of overriding plates in oblique subduction zone settings facilitate the partitioning of strain into trench-parallel and trench-normal tectonics. Their development has been proposed to be controlled by factors such as convergence obliquity, basal tractions, magnitude of slab-pull force, or strength of interplate coupling. In the northeastern Caribbean, the direction of GPS velocities and earthquake slip vectors suggests low coupling along the Puerto Rico and Lesser Antilles trenches, but strong coupling to the west along the Hispaniola margin, while the convergence obliquity remains constant. Coincidentally, large strike-slip faults in the overriding plate only develop in Hispaniola, which is also the locus of the largest historical subduction earthquakes in the Caribbean (M8.0, 1946-53 sequence). We investigate interplate coupling at the Caribbean-North American plate boundary using a model that allows for block rotations and elastic strain accumulation on partially coupled faults. Model parameters (block rotations and coupling on interplate faults) are derived from an inversion of earthquake slip vectors and new GPS data covering Haiti, the Dominican Republic, Puerto Rico and the Virgin Islands, and the Lesser Antilles. We find that intraplate coupling is high in the western half of the domain, coincident with the development of large and fast-slipping strike-slip faults in the upper plate that partition the Carribean/North America plate motion, but low in its eastern half, along the Puerto Rico and Lesser Antilles subductions, that show little to no strain partitioning. This suggests that strain partitioning occur only if interplate coupling is large enough to effectively transfer shear stresses to the overriding plate.

  12. Partitioning the Outburst Energy of a Low Eddington Accretion Rate AGN at the Center of an Elliptical Galaxy: The Recent 12 Myr History of the Supermassive Black Hole in M87

    Energy Technology Data Exchange (ETDEWEB)

    Forman, W.; Jones, C.; Kraft, R.; Vikhlinin, A. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Churazov, E. [MPI für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85740 Garching (Germany); Heinz, S., E-mail: wrf@cfa.harvard.edu [University of Wisconsin, Madison, Wisconsin (United States)

    2017-08-01

    M87, the active galaxy at the center of the Virgo cluster, is ideal for studying the interaction of a supermassive black hole (SMBH) with a hot, gas-rich environment. A deep Chandra observation of M87 exhibits an approximately circular shock front (13 kpc radius, in projection) driven by the expansion of the central cavity (filled by the SMBH with relativistic radio-emitting plasma) with projected radius ∼1.9 kpc. We combine constraints from X-ray and radio observations of M87 with a shock model to derive the properties of the outburst that created the 13 kpc shock. Principal constraints for the model are (1) the measured Mach number ( M ∼ 1.2), (2) the radius of the 13 kpc shock, and (3) the observed size of the central cavity/bubble (the radio-bright cocoon) that serves as the piston to drive the shock. We find that an outburst of ∼5 × 10{sup 57} erg that began about 12 Myr ago and lasted ∼2 Myr matches all the constraints. In this model, ∼22% of the energy is carried by the shock as it expands. The remaining ∼80% of the outburst energy is available to heat the core gas. More than half the total outburst energy initially goes into the enthalpy of the central bubble, the radio cocoon. As the buoyant bubble rises, much of its energy is transferred to the ambient thermal gas. For an outburst repetition rate of about 12 Myr (the age of the outburst), 80% of the outburst energy is sufficient to balance the radiative cooling.

  13. Partitioning the Outburst Energy of a Low Eddington Accretion Rate AGN at the Center of an Elliptical Galaxy: The Recent 12 Myr History of the Supermassive Black Hole in M87

    Science.gov (United States)

    Forman, W.; Churazov, E.; Jones, C.; Heinz, S.; Kraft, R.; Vikhlinin, A.

    2017-08-01

    M87, the active galaxy at the center of the Virgo cluster, is ideal for studying the interaction of a supermassive black hole (SMBH) with a hot, gas-rich environment. A deep Chandra observation of M87 exhibits an approximately circular shock front (13 kpc radius, in projection) driven by the expansion of the central cavity (filled by the SMBH with relativistic radio-emitting plasma) with projected radius ˜1.9 kpc. We combine constraints from X-ray and radio observations of M87 with a shock model to derive the properties of the outburst that created the 13 kpc shock. Principal constraints for the model are (1) the measured Mach number (M ˜ 1.2), (2) the radius of the 13 kpc shock, and (3) the observed size of the central cavity/bubble (the radio-bright cocoon) that serves as the piston to drive the shock. We find that an outburst of ˜5 × 1057 erg that began about 12 Myr ago and lasted ˜2 Myr matches all the constraints. In this model, ˜22% of the energy is carried by the shock as it expands. The remaining ˜80% of the outburst energy is available to heat the core gas. More than half the total outburst energy initially goes into the enthalpy of the central bubble, the radio cocoon. As the buoyant bubble rises, much of its energy is transferred to the ambient thermal gas. For an outburst repetition rate of about 12 Myr (the age of the outburst), 80% of the outburst energy is sufficient to balance the radiative cooling.

  14. Energy

    International Nuclear Information System (INIS)

    Meister, F.; Ott, F.

    2002-01-01

    This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)

  15. Dynamic slip of polydisperse linear polymers using partitioned plate

    Science.gov (United States)

    Ebrahimi, Marzieh; Konaganti, Vinod Kumar; Hatzikiriakos, Savvas G.

    2018-03-01

    The slip velocity of an industrial grade high molecular weight high-density polyethylene (HDPE) is studied in steady and dynamic shear experiments using a stress/strain controlled rotational rheometer equipped with a parallel partitioned plate geometry. Moreover, fluoroalkyl silane-based coating is used to understand the effect of surface energy on slip in steady and dynamic conditions. The multimode integral Kaye-Bernstein-Kearsley-Zapas constitutive model is applied to predict the transient shear response of the HDPE melt obtained from rotational rheometer. It is found that a dynamic slip model with a slip relaxation time is needed to adequately predict the experimental data at large shear deformations. Comparison of the results before and after coating shows that the slip velocity is largely affected by surface energy. Decreasing surface energy by coating increases slip velocity and decreases the slip relaxation time.

  16. Investigation of high-resolution superconducting tunnel junction detectors for low-energy X-ray fluorescence analysis

    CERN Document Server

    Beckhoff, B; Ulm, G

    2003-01-01

    The energy resolution of conventional semiconductor detectors is insufficient for simultaneously separating the leading fluorescence lines of low Z and medium Z materials in the soft X-ray regime. It is therefore important to investigate alternative detection instruments offering higher energy resolution and evaluate their applicability to soft X-ray fluorescence (XRF) analysis. In this paper, various results of the characterization and evaluation of a cryogenic superconducting tunnel junction (STJ) detector, which was provided to the Physikalisch-Technische Bundesanstalt (PTB) by the Lawrence Livermore National Laboratory, are given with respect to both detector response functions and XRF. For this investigation, monochromatized undulator radiation of high spectral purity, available to the PTB X-ray radiometry laboratory at the electron storage ring BESSY II, was employed, by which it was possible to record the STJ response functions at various photon energies of interest ranging from 180 to 1600 eV. By scan...

  17. The complex formation-partition and partition-association models of solvent extraction of ions

    International Nuclear Information System (INIS)

    Siekierski, S.

    1976-01-01

    Two models of the extraction process have been proposed. In the first model it is assumed that the partitioning neutral species is at first formed in the aqueous phase and then transferred into the organic phase. The second model is based on the assumption that equivalent amounts of cations are at first transferred from the aqueous into the organic phase and then associated to form a neutral molecule. The role of the solubility parameter in extraction and the relation between the solubility of liquid organic substances in water and the partition of complexes have been discussed. The extraction of simple complexes and complexes with organic ligands has been discussed using the first model. Partition coefficients have been calculated theoretically and compared with experimental values in some very simple cases. The extraction of ion pairs has been discussed using the partition-association model and the concept of single-ion partition coefficients. (author)

  18. Experimental apparatus to investigate interactions of low energy ions with solid surfaces, 1

    International Nuclear Information System (INIS)

    Tsukakoshi, Osamu; Narusawa, Tadashi; Mizuno, Masayasu; Sone, Kazuho; Ohtsuka, Hidewo.

    1975-12-01

    Experimental apparatus to study the surface phenomena has been designed, which is intended to solve the vacuum wall problems in future thermonuclear fusion reactors and large experimental tokamak devices. An ion source and the beam transport optics are provided for bombarding solid target surface with an ion beam of energy from 0.1 to 6 keV. Measuring instruments include an ion energy analyser, a quadrupole mass spectrometer, an Auger electron spectrometer, an electro-micro-balance, a neutral particle energy spectrometer and its calibration system. Pumping system consists of oil-free ultrahigh vacuum pumps. Various kinds of experiments will be carried out by using the apparatus: 1) sputtering by low energy ion bombardment, 2) re-emission of the incident particles during and after ion bombardment, 3) release of adsorbed and occluded gases in the solids by ion bombardment, and 4) backscattering of fast ions. The combinations of measuring instruments for each experiment and their relative positions in the vacuum chamber are described through detailed drawings. The fundamental aspect in design of the ion beam transport optics for a low energy ion beam which can no longer neglect the space charge effect is also discussed. (auth.)

  19. Investigation of incomplete linear momentum transfer in heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Leray, S.

    1986-07-01

    At intermediate energies, heavy ion central collisions lead to the incomplete fusion of the incident nuclei while part of the initial linear momentum is carried away by fast light particles. Experiments were performed with 30 MeV per nucleon neon and 20, 35 and 44 MeV per nucleon argon projectiles bombarding heavy targets. Results obtained with 30 MeV per nucleon neon and 20 MeV per nucleon argon beams are in good agreement with an empirical law established with lighter projectiles. On the contrary, 35 and 44 MeV per nucleon argon projectiles do not follow the same law and fission fragments progressively disappear. A simple model explains the evolution of the amount of transferred linear momentum versus incident energy. The disappearance of the fusion products of the composite system observed with argon projectiles beyond 35 MeV per nucleon is explained by a limitation of the excitation energy per nucleon which can be deposited in a nucleus. The limit is evaluated from nucleon binding energy in nuclei and probability to emit clusters and is in good agreement with experimental data. Because of the coupling between intrinsic motion of nucleons and relative motion of nuclei, some nucleons have a kinetic energy high enough to be emitted: a theoretical model is proposed which rather well fits the data concerning fast nucleons but cannot explain the measured amounts of transferred linear momentum. This is attributed to the existence of other mechanisms [fr

  20. Investigating Theoretical PV Energy Generation Patterns with Their Relation to the Power Load Curve in Poland

    Directory of Open Access Journals (Sweden)

    Jakub Jurasz

    2016-01-01

    Full Text Available Polish energy sector is (almost from its origin dominated by fossil fuel feed power. This situation results from an abundance of relatively cheap coal (hard and lignite. Brown coal due to its nature is the cheapest energy source in Poland. However, hard coal which fuels 60% of polish power plants is picking up on prices and is susceptible to the coal imported from neighboring countries. Forced by the European Union (EU regulations, Poland is struggling at achieving its goal of reaching 15% of energy consumption from renewable energy sources (RES by 2020. Over the year 2015, RES covered 11.3% of gross energy consumption but this generation was dominated by solid biomass (over 80%. The aim of this paper was to answer the following research questions: What is the relation of irradiation values to the power load on a yearly and daily basis? and how should photovoltaics (PV be integrated in the polish power system? Conducted analysis allowed us to state that there exists a negative correlation between power demand and irradiation values on a yearly basis, but this is likely to change in the future. Secondly, on average, daily values of irradiation tend to follow power load curve over the first hours of the day.